প্রথম অধ্যায়

কোষ ও এর গঠন

CELL AND ITS STRUCTURE

প্রধান শব্দসমূহ : কোখ, জোমোলোম, DNA, RNA, জিন, ট্রাঙ্গজিপখন।

মাধ্যমিক পর্যায়ে উদ্ভিদ ও প্রাণিকোষ, কোষের গঠন এবং বিভিন্ন অঙ্গাণুর গঠন ও কাজ সম্বন্ধে তোমরা পড়েছ। এ অধ্যায়ে বিশেষ করে উদ্ভিদকোষের বিভিন্ন অঙ্গাণুসমূহের অবস্থান, গঠন ও কাজ সম্বন্ধে আরও বিস্তারিত জানতে পারবে।

এ অধ্যায় পাঠ শেষে শিক্ষার্থীরা—

- কোষ প্রাচীর ও প্রাজমামেমব্রেন এর অবস্থান, রাসায়নিক গঠন ও কাজ বর্ণনা করতে পারবে।
- সাইটোপ্লাজমের রাসায়নিক প্রকৃতি এবং বিপাকীয় ভূমিকা বর্ণনা করতে পারবে।
- আইবোলোম, গলণিবস্ত, লাইসোজোম, সেন্দ্রিয়োল-এর অবস্থান, গঠন ও কাজ বর্ণনা করতে পারবে।
- গঠন ও কাজের ভিত্তিতে মৃত্ব ও অমৃত্ব এভোপ্লাজমিক রেটিকুলাম এর মধ্যে পার্থক্য করতে পারবে।
- মাইটোকভিয়নের বহিঃগঠন ও অন্তঃগঠনের সাথে এর কাজের আন্তঃসম্পর্ক ব্যাখ্যা করতে পারবে।
- ৬. ক্রোরোপ্লাস্টের বহিঃগঠন ও অভঃগঠনের সাথে এর কাজের আভঃসম্পর্ক ব্যাখ্যা করতে পারবে।
- নিউক্লিয়াসের গঠন ও কাজ ব্যাখ্যা করতে পারবে।
- দিউক্লিওপ্লাক্তম ও সাইটোপ্লাক্তমের রাসায়নিক গঠনের মধ্যে তুলনা করতে পারবে।
- কোষের বিভিন্ন অপাণুর চিত্র অন্তন করে চিহ্নিত করতে পারবে।
- জীবের বিভিন্ন কার্যক্রমে কোষের অবলান উপলব্ধি করতে পারবে।
- ক্রেনমোজোমের গঠন ও এর রাসায়নিক উপাদান বর্ণনা করতে পারবে।
- কোষ বিভাজনে ক্রোমোজোমের ভূমিকা বিশ্লেষণ করতে পারবে।
- জিএমএ ও আরএমএ গঠন ও কাজ ব্যাখ্যা করতে পারবে।
- ১৪, আরএনএ এর প্রকারতেন ব্যাখ্যা করতে পারবে।
- জিএনএ রেপ্লিকেশনের প্রক্রিয়া ব্যাখ্যা করতে পারবে।
- উাশক্রিপশনের কৌশল ব্যাখ্যা করতে পারবে।
- ১৭. ট্রাপলেশন ব্যাখ্যা করতে পারবে।
- ১৮. জিন ও জেনেটিক কোভ বর্ণনা করতে পারবে।
- বংশগতীয় বস্তু হিসেবে ভিএনএ এর অবদান উপলত্তি করতে পারবে।

Cell (সেল) নামকরণ: Robert Hooke (1635-1703) ১৬৬৫ সালে রয়েল সোসাইটি অব লভন এর যন্ত্রপাতির রক্ষক নিযুক্ত হয়েই ভাবলেন আগামী সাঙাহিক সভায় উপস্থিত বিজ্ঞ বিজ্ঞানীদের সামনে একটা ভালো কিছু উপস্থাপন করতে হবে। তিনি ভাবলেন অপুবীক্ষণ যন্ত্রের মাধ্যমে একটা কিছু করা যায় কিনা। তিনি দেখলেন কাঠের ছিপি (cork) দেখতে নিরেট (solid) অথচ পানিতে ভাসে, এর কারণ কী? তিনি ছিপির একটি পাতলা সেকশন করে অপুবীক্ষণ যন্ত্রে পর্যবেক্ষণ করলেন। তিনি সেখানে মৌমাছির চাকের ন্যায় অসংখ্য ছোট ছোট কুঠুরী বা প্রক্রোষ্ঠ (little boxes) দেখতে পেলেন। তখন তাঁর মনে পড়লো আশ্রমে সন্মাসীদের বা পান্তিদের থাকার জন্য এমন ছোট ছোট Cell (প্রক্রোষ্ঠ) তিনি দেখছেন। এ থেকেই ছিপির little box গুলোকে তিনি নাম দেন Cell বা প্রক্রোষ্ঠ। গ্যাটিন Cellula শব্দের অর্থ পুদ্র প্রক্রোষ্ঠ বা কুঠুরী। তিনি তাঁর পর্যবেক্ষণ Micrographia প্রস্থে প্রকাশ করেন। জেলখানায় কয়েদিদের জন্য নির্মিত ছোট প্রক্রোষ্ঠ করা যায়। অধিকাংশ কোষই আপুরীক্ষণিক, খালি চোখে দেখা যায় না। তবে এর কিছুটা ব্যতিক্রমণ্ড লক্ষ করা যায়। পাথির ডিম একটিমাত্র কোষ দিয়ে গঠিত। হাঁস-মুরগির ডিম খালি চোখেই দেখা যায়। উটপাথির ডিম শবচেরে বড় (17 × 12.5 cm)। তুলা বা পাটের আঁশ, ভালগাছের আঁশ বেশ লখা, খালি চোখে দেবা যায়। মানুষের নিউরন কোষ প্রায় 1.37 মিটার লখা। Cell-এর বাংলা প্রতিশব্দ করা হরেছে কোষ বা জীবকোষ। Cell অর্থ পুত্র প্রক্রেট হ করাই ক্রপ্রত্বপক্ষ মৃত কোষ তথা কেবল প্রক্রোষ্ঠ দেখেছিলেন। পরে ডাচ বিজ্ঞানী আান্টনি তানে শিউয়েনক্ষ

(Antony Van Leeuwenhoek) প্রথম ১৬৭৪ সালে কোন প্রাচীর ছাড়াও ভেতরে পূর্বান্ন কোনীয় দ্রবাসং ছবিত ক পর্যবেক্ষণ করেন। বিভিন্ন সময়ে বিভিন্ন বিজ্ঞানী কোধের বিভিন্ন সংজ্ঞা প্রদান করেছেন।

Y Jean Brachet (1961) वाड भएछ- 'त्याध इत्ना जीत्वा गठेनगछ (मोनिक এकक।'

- Loewy Siekevitz (1963) এর মতে- 'কোষ হলো জৈবিক ক্রিয়াকলাপের একক যা একটি অর্যন্তেদ্য বিশ্বি ৮ পরিবেটিত থাকে এবং যা অন্য কোনো সজীব মাধ্যম ছাড়াই আত্র-জননে সক্ষম।
 - ◆ De Roberties (1979) এর মতে- 'কোষ হলো জীবের মৌলিক গঠনগত ও কার্যগত একক।'

সেল (Cell) তথা কোষের বৈশিট্য

- औदनের জন্য লয়ে।
 য়নীয় সকল গাঠনিক ও আগবিক উপাদান কোয়ে থাকে।
- ২। প্রয়োজনীয় কাঁচামাল ভেডরে গ্রহণ করতে পারে।
- ত। কাঁচামাল বাবহার করে প্রয়োজনীয় শক্তি সংগ্রহ করতে পারে এবং নিজের প্রয়োজনীয় অপুতলোকে সংগ্রে করতে পারে।
- 8। সুনিয়ন্ত্রিভভাবে বেড়ে উঠতে পাবে।
- চারপাশের যে কোনো উত্তেজনার প্রতি সাড়া দিতে পারে।
- ৬। একটি Homeostatic অবস্থা (অর্থাৎ পরিবেশের অবস্থার তারতম্যার মাঝেও অভ্যন্তরীণ স্থিতি অবস্থা) বজা রাখতে পারে।
- ৭। কাল পরিক্রমায় অভিযোজিত হতে পারে।

প্রতিটি জীবদেহ এক (এককোষী জীব) বা একাধিক (বহুকোষী জীব) কোষ দিয়ে গঠিত হয় অর্থাৎ কোষ্ট জীবদেনে

গঠন একক। আবার কোষের ভেতরই জীবের श्रीवनधादरमय जना श्ररप्राजनीय टेलरिक কার্যকলাপ সম্পন্ন হয়। অর্থাৎ জীবদেহের গঠন ও কাভোর একককে কোষ বলে।

কোৰীয় অসাধু (Cell organelles): कारबंद आइस्मिधाक्षरम दिमामान कीरख, কার্যসম্পাদনকারী ও কোলের জীবনধারণের জন্য অপরিহার্য কুদ্রাসসমূহকে কোনীয় অসন্ ৰলে: যেমন-মাইটোকদ্রিয়া, এভোপ্লাজমিক রেটিকুলাম, রাইবোদোম ইড্যাদি। অঙ্গাণু অর্থ 명편 액큐 (organelies) 1

এখানে ইলেট্রন অণুবীক্ষণে দৃষ্ট একটি প্রাণিকোষের লখফেনের চিত্র দেয়া হলো। डिक्रीं डारमाडास्य मध्य कत अवर भूर्त আছবিত জানের আলোকে পুনবায় এর গঠন ত বিভিন্ন অলাণুর অবস্থান ও বাহ্যিক গঠন मिनिटा मांछ। दनाः मुक्ताः महा उदिमकारणत ভিত্তটিক সাবে মিলিয়ে এনের মধ্যকার পার্থকা লিপিবছ তর।

চিত্র ১.১ । একটি আদর্শ আশিকোধ (ইলেকট্রন অপুরীক্ষণে দৃষ্ট)।

কোৰবিদ্যা (Cytology) : জীববিদ্যার যে শাখায় কোব সম্পর্কে আলোচনা করা হয় অর্থাৎ কোষের প্রকার, অঙ্গাপুর ভৌত ও রাসায়নিক গঠন, বিভাজন, বিকাশ, জৈবিক কার্যাবিশি, বৃদ্ধি ইত্যাদি সম্পর্কে আলোচনা করা হয় তাকে কোষবিদ্যা বা সাইটোলজি (Cytology) বলে। সাইটোলজি শন্যটি দৃটি মিক শন্যের Kytos (= cell, ফাঁপা) এবং logos (= discourse, আলোচনা) সমন্বয়ে গঠিত। Robert Hooke (1635–1703) কে কোষবিদ্যার জনক বলা হয়। তবে আধুনিক কোষবিদ্যার জনক বলা হয়। তবে আধুনিক

কোষতত্ব (Cell Theory): কোষ সম্পর্কে বিভিন্ন তথ্য জানার পর ১৮৩৮-১৮৩৯ সালে জার্মান উদ্ভিদবিজ্ঞানী স্লেইডেন (Mathias Jakob Schleiden) ও প্রাণিবিজ্ঞানী বিওডোর সোয়ান (Theodor Schwann) এবং পরে ১৮৫৫ সালে ভারত (Rudolf, Virchow) 'কোষতত্ব' প্রদান করেন, বাতে বলা হয়—

- ১. কোষ হলো জীবন্ত সন্তার গাঠনিক, শারীরবৃত্তীয় ও সাংগঠনিক একক।
- ২. কোষ হলো জীবনের মৌলিক একক
- ৩, কোষ বংশগতির একক।
- সর্বপ্রকার জীবই এক বা একাধিক কোষ দারা গঠিত এবং পূর্বসৃষ্ট কোষ থেকেই নতুন কোষের সৃষ্টি হয়।

কোষের প্রকারতেদ (Kinds of Cell) :

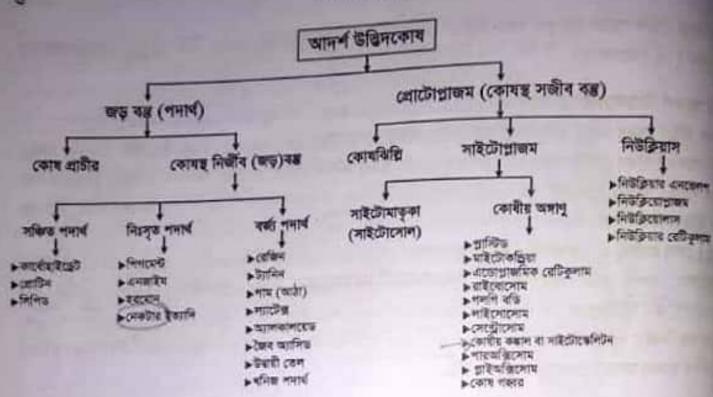
- (১) শারীরবৃত্তীয় কাজের ভিত্তিতে কোষকে দু'ভাগে ভাগ করা যায়; যথা-
- (ক) দেহকোষ (Somatic Cell) : জীবদেহের অস ও <u>অসতরা গঠনকারী কোমকে দেহকোষ বলে। উচ্চ শ্রেণির</u> জীবের দেহকোষে সাধারণত ডিপ্লয়েড সংখ্যক ক্রোমোসোম থাকে। মূল, কাও ও পাতার কোষ, ল্লায়ু কোষ, রক্তকণিকা ইত্যাদি দেহকোষের উদাহরণ।
- (খ) জননকোষ বা গ্যামিট (Reproductive Cell or Gamete) : যৌন প্রজননের জন্য ভিপ্নয়েভ জীবের জননাঙ্গে মায়োসিস প্রক্রিয়ায় উৎপন্ন হ্যাপ্রয়েভ কোষকে জননকোষ বলে। তক্রাবু ও ডিমাবু জননকোষের উদাহরণ। জননকোষ বা গ্যামিট সর্বদাই হ্যাপ্রয়েভ।
 - (২) নিউক্লিয়াসের গঠনের উপর ভিত্তি করে কোখকে দু'ভাগে ভাগ করা যায়; যথা-
- (ক) আনিকেন্দ্রিক কোষ বা আদি কোষ (Prokaryotic Cell) : যে কোষে কোনো আবরনীবেষ্টিত নিউক্লিয়াস, এমনকি আবরণীবেষ্টিত (membrane-bound) অন্যকোনো অপাণুও (organelles) থাকে না তা হলো আদি কোষ। আদি কোষে নন-হিন্টোন প্রোটিনযুক্ত একটি মাত্র বৃত্তাকার DNA খাড়ে যা সাইটোপ্রালমে মুক্তভাবে অবস্থান করে। আদিকোষে বৃত্তাকার DNA যা মুক্তভাবে ছড়ানো থাকে তাকে নিউক্লিঅয়েও (Nocleoid) বলে। এদের রাইবোপ্লেম্ন্ন তি আদি কোষ বি-ভাজন বা অ্যামাইটোসিস প্রক্রিয়ায় বিভাজিত হয়। আদি কোষ দ্বারা গঠিত জীব হলো আদিকোষী জীব (Prokaryotes)। উদাহরণ-মাইকোরাজ্মা, ব্যাকটেরিয়া (Escherichia coli ও সায়ানোব্যাকটেরিয়া (BGA = Blue Green Algae) মেনেরা রাজ্যের সব জীবই আদিকোষী। প্রিক Pro = before, এবং karyon = nut, nucleus অর্থাৎ নিউক্লিয়াস সংগঠনের আর্গের অবস্থা। আদিকোষে অর্থাত শস্ত্রন ঘটে। অধিকাংশ ক্ষেত্রে শোষণ স্কৃতিতে পৃষ্টি ঘটে। কতক ক্ষেত্রে সাগোকসংগ্রেষণ ঘটে।

কাল : উভিদকোষ ও প্রাণিকোষের পোস্টার তৈরি।

উপকরণ : পোস্টার পেপার, পেন্সিল, রং পেনিল, ইরেজার, উত্তিদ ও প্রাণিকোষের চিত্র।

কার্যপদ্ধতি । এড় পোস্টার পেগার নিতে হবে। পেগারে লম্বভাবে পাশাপাশি দুটি কোমের জনা ছান নির্দারণ করতে হবে। প্রথমে পেলিল দিয়ে হালকাভাবে চিত্র দুটি একৈ নিতে হবে, প্রয়োজনে ইরেজার দিয়ে মুছে আবার আবতে হবে। প্রভিটি অংশ চিহ্নিত করে শ্রেণিকক্ষে উপস্থাপন করতে হবে। প্রভিটি অংশ চিহ্নিত করে শ্রেণিকক্ষে উপস্থাপন করতে হবে। মুড়ায়করণের আগে অবশাই শিক্ষককে দেখিয়ে নিতে হবে।

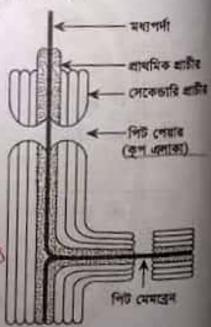
(খ) প্রকৃতকেন্দ্রিক কোষ বা প্রকৃত কোষ (Eukaryotic Cell) : যে কোষে আবরণীবেটিত নিউক্লিয়ান থাকে হা হলো প্রকৃত কোষ। প্রকৃত কোষে নিউক্লিয়ান ছাড়াও আবরণীবেটিত অন্যান্য অঙ্গাণু (যেমন- মাইটোকব্রিয়া, কোরোপ্লাক) গলাগিবন্ধ, লাইসোসোম প্রকৃত কোষে নিউক্লিয়ান ছাড়াও আবরণী (নিউক্লিয়ার এনতেলপ) ছারা পরিবেটিত অবহার গলাগিবন্ধ, লাইসোসোম প্রকৃত কোষের কোমোসোম দ্বা নিউক্লিয়ালয়লম, নিউক্লিয়োলাল এবং একাধিক কোমোসোম নিয়ে নিউক্লিয়াল গঠিত। প্রকৃত কোষের কোমোসোম দ্বা (ব্রাকার নর), দৃই প্রাপ্তবিশিষ্ট এবং DNA ও হিস্টোন-প্রোটিন সমন্বয়ে গঠিত। এদের রাইবোসোম্বার্থতি DNA সূত্রাকার এবং একাধিক কোমোসোমে অবস্থিতঃ কোষ বিভাজন মাইটোনিস ও মারোসিস প্রকৃতির। Eukaryotic শব্রিটি মিক সহ থকে নেয়া হয়েছে, যার অর্থ মিক মে = good; এবং karyon = nucleus অর্থাৎ সুগঠিত নিউক্লিয়ালযুক্ত কোষ। জন্ব কোমপ্রান্তির বিশিষ্ট প্রকৃত কোষর প্রকৃত উত্তিদকোষ। শৈবাল, ছত্রাক, ব্রায়োফাইটস, টোরডোফাইট্স, জিমনোম্পার্মস এবং কোমপ্রান্তির বিশিষ্ট প্রকৃত কোষর প্রকৃত কোষ। শেবাল, ছত্রাক, ব্রায়োফাইটস, টোরডোফাইট্স, জিমনোম্পার্মস এবং ক্রাম্বিত জীব হলো প্রকৃতকোষী জীব (Eukaryotes), প্রকৃত কোষে বিহাত শ্বসন ব্রটি। শোষণ, আত্তিকরণ ও সালোকসংগ্রেষণ প্রতিত পৃষ্টি ঘটে।


কাল । শিক্ষক, শিক্ষার্থীদেরকে কমপক্ষে দু'টি দলে ভাগ করে দিবেন। শিক্ষার্থীগণ আদি কোষ ও প্রকৃত কোষের পার্থকা পাশাপাশি ছঙ্গে শিষ্কবেন। দুই দলের তৈরিকৃত ছকের ওপর ভিত্তি করে শেষ দশ মিনিট শিক্ষক একটি চ্ড়ান্ত ছক তৈরি করে দিবেন। ছক তৈরিকালে কোষের নিউক্লিয়ার বৈশিষ্টা, রাইবোসোম, অন্যান্য অপাণু, DNA, কোষবিভাজন ইত্যাদি বিষয়ের প্রতি গক্ষ রাখতে হবে।

কোষ পরিমাপের বিভিন্ন একক

অধিকাংশ উদ্ভিদ কোষ খালি চোখে দেখা যায় না। এদের দেখার জন্য বিভিন্ন ধরনের অপুবীক্ষণ যন্ত্র ব্যবহার করা হয়। সাধারণত কোষ এবং কোষের উপাংশগুলোর পরিমাপের জন্য যে এককটি ব্যবহার করা হয় তা হলো μm (মাইক্রেমিটার) বা μ (মাইক্রন) এবং nm (ন্যানোমিটার)। নিমে কোষ পরিমাপের জন্য ব্যবহৃত বিভিন্ন একক ও এদের ব্যবহার দেয়া হলো।

- व्यक	সংকেত	মান	रावश्व			
১। সেভিমিটার	1 cm	=0.4 inch	খালি চোখে দেখা যায় (যেমন ভিম) এমন কোখ।			
২। মিলিমিটার	1mm	= 0.1 cm	খাদি চোখে দৃশ্যমান, তবে অণুবাঁকণ যথে পরিষ্কারভাবে দেখা যায় এমন কোষ			
ও। মাইক্রোমিটার বা মাইক্রন	1μm/1μ	= 0,001 mm	আলোক অণুবীক্ষণ যথে দেখা যায় তেমন বেশির ভাগ কোষ ও উপাংশসমূহ।			
৪। ন্যানোমিটার	Lnm	=0.001 µm	ইলেকট্রন অপুরীক্ষণ যন্তে দেখা যায় এমন কোম উপাংশসমূহ।			
৫। আংক্টেম	IÅ	= 0.1 nm	ইলেকট্রন অপুরীক্ষণ যথে একারে প্রক্রিয়ায় দেখা যায় এমন কোব উপাংশসমূহ।			


জি কোষের আয়তন : কোষের কোনো সুনির্নিট আয়তন নেই। অধিকাংশ কোষই আপুরীক্ষণিক। সবচেয়ে ছোট কোষ হলো- Mycoplasma যার অপর নাম PPLO Pleuro Pneumonia Like Organism) এবং বড় কোষ হলো উটপার্বিট ভিম (17 x 12.5 cm)। মানবদেহের সবচেয়ে গিঘা কোষ হলো- মুটর নিউরন যা প্রায় 1.37 মিটার গুড়া এবং স্পাইনাগ

১.১ কোষ প্রাচীর (Cell Wall)

প্রতিটি উদ্ভিদকোর একটি অপেকাকৃত শক্ত জড় আবরণ দিয়ে আবৃত থাকে। এ জড় ও শক্ত আবরণকে কোর মার্দ্র বলে। রবার্ট হক ১৬৬৫ সালে অপুবীক্ষণ যারে যে কোষ দেখেছিলেন তা ছিল মূলত কোষ প্রাচীর। কোর বার্ট্র ইত্রিদকোরের অনন্য বৈশিষ্ট্র। উদ্ভিদ কোষে মধ্য পর্দা এবং কোয়কিপ্লির মাঝখানে জড় কোষ প্রাচীরের অবস্থান। হত্রাকে কোর প্রাচীর আছে। এক কোষী উদ্ভিদ বা ক্যাকটেরিয়াতে কোষঝিপ্লির বাইরে জড় প্রাচীরের অবস্থান।

ভৌত গঠন : একটি বিকশিত কোষ প্রাচীরকে প্রধানত তিনটি ভিন্ন ভরে (layers) বিভক্ত দেখা যায়। এর প্রথমটি হলো মধ্যপর্দা (middle lamella)। মাইটোটিক কোষ বিভাজনের টেলোকেজা (telophase) পর্যায়ে এর সূচনা ঘটে। সাইটোপ্রালম থেকে আসা ফ্র্যাগ্মোপ্রাস্ট (phragmoplast) এবং গললি বভি থেকে আসা পেকটিন জাতীয় ভেসিকলস্ (vesicles or droplets) মিলিতভাবে মধ্যপর্দা সৃষ্টি করে (পেকটিক অ্যাসিড) বেশি থাকার কারণে এটি প্রথম দিকে জেলির মতো থাকে। কোম প্রাচীরের যে জরটি দুটি পাশাপাশি কোষের মধ্যবর্তা সাধারণ পর্দা হিসেবে অবস্থান করে ভার নাম মধ্যপর্দা। এটি বিগলিত হয়ে গেলে দুটি কোষ পৃথক হয়ে যার। ছিতীয় স্তরটি হলো প্রাথমিক প্রাচীর (primary wall)। মধ্যপর্দার ওপর ক্রেমান ছিতীয় স্তরটি হলো প্রাথমিক প্রাচীর (primary wall)। মধ্যপর্দার ওপর প্রিত্যান্ত (cellulose), (হেমিসেপুলোক (hemicellulose) এবং গ্রেটুকেপ্রোটিন (glycoprotein) ইত্যাদি জমা হয়ে একটি পাতলা স্তর্গ (১-০ μπ) পুরুণ) তৈরি করে। এটি প্রাথমিক প্রাচীর। মধ্যপর্দার অস্ত্রভলে এটি তৈরি হয়। কোনো কোনো কোনে বাহে (মেমা- ট্রাকিড, ফাইবার ইত্যাদি) প্রাথমিক প্রাচীরের ওপর আর একটি স্তর তৈরি হয়। এটি সাধারণত কোমের বৃদ্ধি পূর্বায় হবার পর ঘটে থাকে। এ স্তরটি অধিকতর

िया 5.0 : काम शामिताद गरेन ।

পুরু (১-১০ μm)। এতে সাধারণতি সেপুলোজ এবং পিদনিন জমা হয়। এটি সেকেডারি প্রাচীর (secondary wall) শী তৃতীয় তর চোলক কোদ এবং অধিক মাত্রায় বিপাকীয় অন্যান্য কোনে সেকেডারি প্রাচীর তৈরি হয় না। সেকেডারি প্রাচীর তিন কর্মবিশিষ্ট হয়। কৃপ এশাকা (Pit fields): এটি হলো প্রাচীরের সবচেচে পাতলা (hin) এলাকা। দুটি পাশাপাশি কোষের কৃপও একটি অপরটির উন্টোদিকে মুখ্যেমুখি অবস্থিত এবং কৃপ দুটির মাঝখানে কেবল মধ্যপর্দা থাকে। মধ্যপর্দাকে পিট মেমব্রেন বলে। মুখ্যেমুখি দুটি কৃপকে পিট পেয়ার (pit pair) বলে। আসলে কৃপ অঞ্চলে প্রাথমিক প্রাচীর গঠিত হয় না) সেকেভারি প্রাচীর তৈরি হলে কৃপ পাড়হীন অথবা পাড়যুক্ত (bordered pit) হতে পারে। দুটি পাশাপ্রাশি কোমের প্রাচীরের সৃষ্ণ ছিদ্র পথে নলাকার সাইটোপ্রাক্তমিক সংযোগ স্থাপিত হয়। একে প্রাক্তমোডেসমাটা (একবচন: প্রাক্তমোডেসমা) বলে।

রাসায়নিক গঠন : মধ্যপর্দায় অধিক পরিমাণে থাকে প্রিকিটক আসিত। এ ছাড়া অনুবলীয় ক্যালসিয়াম পেকটেট এবং মাাগনেসিয়াম পেকটেট লবণ থাকে- যাকে পেকটিন বলা হয়। এ ছাড়াও অল্প পরিমাণে থাকে প্রোটোপেকটিন। প্রাথমিক প্রাচীরে থাকে প্রধানত স্পূলাজ, হেমিসেলুলাজ এবং গ্লাইকোপ্রোটিন হিমিসেলুলাজ-এ xylans, arabans, galactans ইত্যাদি বিভিন্ন ধরনের পলিস্যাকারাইডস থাকে। গ্লাইকোপ্রোটিনে কার্বোহাইডেট, প্রোটিন এবং অন্যান্য পদার্থ থাকে। বিভিন্ন ধরনের পলিস্যাকারাইডস থাকে। গ্লাইকোপ্রোটিনে কার্বোহাইডেট, প্রোটিন এবং অন্যান্য পদার্থ থাকে। বিগুলিন বিভান ধরনের প্রাচীর গঠনে ক্রিলিংক (cross-link) হিসেবে কাজ করে। অনেক সেকেন্ডারি প্রাচীরে নিগনিন (lignin) থাকে। কোনো কোনো প্রাচীরে সুবেরিন (suberin), ওয়াক্স ইত্যাদি থাকে। ছ্রাকের প্রাচীর কাইটিন এবং আক্রেটেরিয়ার প্রাচীর লিপিড-প্রোটিন পলিমার দিয়ে গঠিত। সাধারণত কোষ প্রাচীরে 40% সেলুলোজ, 20% থেমিসেলুলোজ, 30% পেকটিন ও 10% গ্লাইকোপ্রোটিন বিনামান।

সৃষ্ধ গঠন (Ultra-structure) : কোষ প্রাচীরের প্রধান উপাদান হলো সিলুলোজ সেলুলোজ হলো একটি পশিস্যাকারাইড যা ৬-কার্বনবিশিষ্ট ৪-া) গ্রকোজের অসংখ্য অপু নিয়ে গঠিত। এক হাজার থেকে তিন হাজার সেলুলোজ অপু নিয়ে একটি সেলুলোজ চেইন মিলিতভাবে একটি ক্রিস্টালাইন মাইসেদি (micelle) গঠন করে। মাইসেলিকে কোষ প্রাচীরের জ্বন্তম গাঠনিক একক ধরা হয়। প্রায় ২০টি মাইসেলি মিলে একটি মাইফোফাইবিল (microfibril) গঠন করে এবং ২৫০টি মাইফোফাইবিল মিলিতভাবে একটি স্যাক্রোকাইবিল (macrofibril) গঠন করে। অনেককলো ম্যাক্রোকাইবিল মিলিতভাবে একটি তম্ব (ফাইবার) গঠন করে।

কোষ প্রাচীরের কাজ: (i) কোষের সুনির্দিষ্ট আকৃতি দান করা; (ii) বাইরের আঘাত হতে ভেতরের সজীব বস্তুকে রক্ষা করা; (iii) প্রয়োজনীয় শক্তি ও দৃঢ়তা প্রদান করা; (iv) পানি ও খনিজ লবণ শোষণ ও পরিবহনে সহায়তা করা এবং (v) এক কোষকে অন্য কোষ হতে পৃথক করা। প্রাণিকোষে কোষ প্রাচীর থাকে না।

প্রোটোপ্লাস্ট (Protoplast)

কোষ প্রাচীর ছারা পরিবেটিত সমুদর পদার্থ একসাথে প্রোটোপ্লাস্ট নামে পরিচিত। উদ্ভিদকোষ, ব্যাকটেরিয়া ও ছ্ত্রাকে জড় কোষ প্রাচীরের নিচেই প্রোটোপ্লাস্টর অবস্থান। প্রোটোপ্লাস্ট দু'ভাগে বিভক্ত। মথা- সজীব প্রোটোপ্লাজম ও নির্দ্ধীব বস্তু বা অপ্রোটোপ্লাজমীয় উপাদান। নিম্নে এদের বর্ণনা দেয়া হলো।

প্রোটোপ্লাজম (Protoplasm): কোষের অভ্যন্তরে বচ্ছ, আঠালো এবং জেলির ন্যায় অর্ধতরণ, কলয়ভালধর্মী সজীব পদার্থকে প্রোটোপ্লাজম বলে। প্রোটোপ্লাজম শব্দটি ১৮৪০ সনে বিজ্ঞানী প্রার্কনত্ত প্রথম ব্যবহার করেন। (Gk. proto=আদি, plasma = সংগঠন অর্থাৎ আদি বস্তু)। বিজ্ঞানী হাজ্মলে-র মতে প্রোটোপ্লাজম হচ্ছে জীবনের ভৌত ভিত্তি। কারণ প্রোটোপ্লাজমই কোষের তথা দেহের সকল মৌলিক জৈবিক কার্যাদি সম্পন্ন করে থাকে। এ জনাই প্রোটোপ্লাজমকে জীবনের ভৌত ভিত্তি হিসেবে চিহ্নিত করা হয়। এতে ৭০%—৯০% পানি থাকে। এ থেকেই বোঝা যায় কেন পানির অপর নাম জীবন।

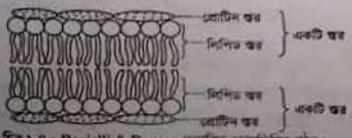
শ্রোটোপ্লাজমের ভৌত বৈশিষ্ট্য: (i) প্রোটোপ্লাজম অর্থপ্রছ, বর্ণহীন, জেলি সদৃশ অর্থতবল আঠালো পদার্থ। (ii) এটি দানাদার ও কলয়ভালধর্মী। (iii) ইহা কোষস্থ পরিবেশ অনুযায়ী জেলি থেকে তরলে এবং তরল থেকে জেলিতে পরিবর্তিত হতে পারে। (iv) প্রোটোপ্রাজমের আপেক্ষিক শুরুত্ব পানি অপেক্ষা বেশি। (v) উত্তাপ, আসিত ও আলকোহলের প্রভাবে প্রোটোপ্রাজম জমাট বাঁধে।

প্রোটোপ্লাজমের রাসায়নিক বৈশিষ্ট্য : রাসায়নিকভাবে প্রোটোপ্লাজমে জৈব এবং অজৈব পদার্থ আছে। এতে প্রবিষ্টাপ্রাজমের রাসায়নিক বৈশিষ্ট্য : রাসায়নিকভাবে প্রোটোপ্লাজমের প্রোটন, এরপর আছে কার্বোহাইত্র পরিমাণে আছে পানি। জৈব পদার্থের মধ্যে সবচেরে বেশি আছে বিভিন্ন ধরনের প্রোটন, এরপর আছে কার্বাহাইত্র পরিমাণে আছে পানি, কার্বাহাইত্র আছে অক্সিজেন, হাইড্রোজেন, নাইট্রোজেন, কার্বন, কপার, জিম্ব, সোভিয়াম, পটানি ম্যাপনিস্থাম, কালসিয়াম, সালফার, আয়রন ইত্যানি।

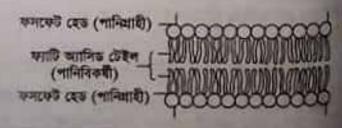
প্রোটোপ্রাজমের জৈবিক বৈশিষ্ট্য : গ্রোটোপ্রাজম বিভিন্ন ধরনের উত্তেজনায় সাড়া দেয়। খাদা তৈরি, খাদা হ প্রোটোপ্রাজমের জৈবিক বৈশিষ্ট্য : গ্রোটোপ্রাজম বিভিন্ন ধরনের উত্তেজনায় সাড়া দেয়। খাদা তৈরি, খাদা হ আজীকরণ, খসন, বৃদ্ধি, জনন ইত্যাদি সকল মেটাবলিক কার্যকলাপ প্রোটোপ্রাজম করে থাকে। প্রামের ইছ বৈশিষ্ট্যই জীবের বৈশিষ্ট্য। অভিন্রবণ প্রক্রিয়ায় প্রোটোপ্রাজম পানি গ্রহণ ও ত্যাগ করতে পারে। এদেরও মৃত্যু খটে।

প্রোটোপ্লাজমের চলন : প্রোটোপ্লাজম কখনো ছির থাকে না। প্রোটোপ্লাজমের এ গতিময়তাকে চলন (moveme বলে। কোম প্রাচীরমূক ও কোম প্রাচীরমূক প্রোটোপ্লাজমের চলনে ভিন্নতা দেখা যায়। কোম প্রাচীরমূক প্রোটোপ্লাজমের চলনে ভিন্নতা দেখা যায়। কোম প্রাচীরমূক প্রোটোপ্লাজ কললোভের মতো যে চলন দেখা যায় তাকে আবর্তন বা সাইক্রোসিস (cyclosis) বলে। আবর্তন আবার দু'ধরনের হ থাকে।

(য় একমুখী আবর্তন : যে চলনে প্রোটোপ্লাজম একটি গহররকে কেন্দ্র করে কোষপ্রাচীরের পাল্ দিয়ে নির্দিষ্ট প্র একদিকে মূরতে থাকে তাকে একমুখী আবর্তন (rotation) বলে। যেমন-পাতা ঝাঝির কোষস্থ প্রোটোপ্লাজমের চলন।


(ii) বৃহ্মুখী আবর্তন : যে চলনে প্রোটোপ্লাজম কতভলো গধেরকে কেন্দ্র করে অনিয়মিতভাবে বিভিন্ন দিকে ছুত্র খাকে তখন তাকে বহুমুখী আবর্তন (circulation) বলে। যেমন- Tradescantia-র কোষস্থ প্রোটোপ্লাজমের চলন। প্রোটোপ্লাজমের প্রধান অংশসমূহ : প্রাজমামেমব্রেন বা কোষবিশ্বি, সাইটোপ্লাজম এবং নিউক্লিয়াস— এ তিনটি হবে

व्यक्तिज्ञानस्मत्र श्रथान यर्ग।


১.২ প্লাজমামেমব্রেন বা কোষবিজ্বি (Cell membrane)

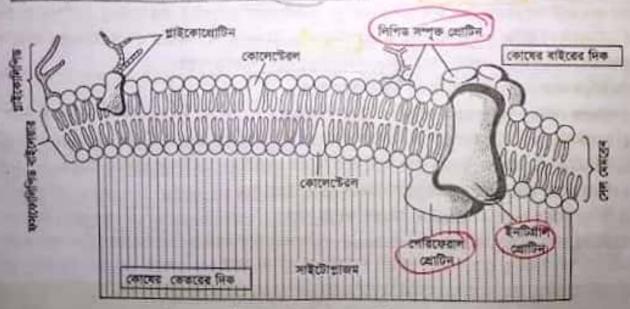
কোষ প্রাচীরের ঠিক নিচে সমন্ত প্রোটোপ্লাজমতে ঘিরে একটি সজীব বিল্লি আছে। এ ঝিল্লিকে কোষঝিরি বাস অন্যভাবে, প্রতিটি সজীব কোষের প্রোটোপ্রাজম যে সূজ, ছিতিছাপক, বৈষম্যভেদ্য, লিপো-প্রোটিন দারা গঠিত সজঁব কিরী ঝিল্লি দিয়ে আবৃত থাকে, তাকে প্রাজমামেমবেন বা কোষঝিরি বলে। একে প্রাজমাদেমা, সাইটোমেমবেন এর নামেও অভিহিত করা হয়। কার্ল নাগেলি (Cardi Nageli ও Cramer, 1855) সর্বপ্রথম এই ঝিল্লিকে প্রাজমামেমনে নামকরণ করেন। তবে বর্তমানে অনেকেই একে বায়োমেমবেন (biomembrane) বলতে চান। J. Q. Plower (1931) প্রাজমাদেমা শব্দটি ব্যবহার করেন। ঝিল্লিটি ছানে ছানে ওাজবিশিষ্ট হতে পারে। প্রতিটি তাজকে মাইক্রোভিলাস (বহুক্রেমাইক্রোভিলাই) বলে। কোষাভাতরে অধিক প্রবিষ্ট মাইক্রোভিলাসকে বলা হয় পিনোসাইটিক ফোন্ডা। প্রাণিকোষে এক জালো দেখা যায়।

ভৌত গঠন (Physical Structure) : কোষঝিছির ভৌত গঠন ব্যাখ্যা করতে গিয়ে Danielli & Davson (1935) সর্বপ্রথম একটি সুনির্নিষ্ট মডেল প্রস্তাব করেন। এটি Sandwitch মড্ডল নামে পরিচিত। তাঁদের মতে ঝিল্লিটি বিস্তরবিশিষ্ট এবং প্রতি স্তরে প্রোটিন (monomolecular) এবং লিপিড (bimolecular) উপ-তর আছে। বিতরবিশিষ্ট ঝিল্লির ওপর বি
নিচে প্রোটিন তর এবং মাঝ্রখানে লিপিড তার অবস্থিত।

Se 5.8 : Danielli & Davson mutters contratipe vian i

ভিত্ৰ ১.৫ : ফসফোলিলিড ৰাইলেয়ার।

এছাড়াও প্লাক্তমামেমব্রেন বা কোববিদ্ধির গঠন সমতে Benson's model (1966), Lenard & Singer's model (1966), Robertson এর Unit membrane hypothesis (1959), Singer & Nicolson (1972) এই Fluid-mosaic model ইত্যাদি মতেল প্রস্তাবিত হয়েছে।


ইউনিট মেমবেন (Unit membrane): বিজ্ঞান ক্রিটেসন ১৯৫৯ ব্রিস্টান্দে প্রাক্তমানেমবেনের ইউনিট মেমবেন মতবাদ ব্যক্ত করেন। তার মতে— সব বারোগজিক্যাল মেমবেনের আণবিক গঠন একই প্রকার অর্থাৎ ক্ষসকোগিপিড বাইলেয়ার নিয়ে গঠিত যার হানে হানে প্রোটিন গ্লোখিত থাকে। হানে হানে গ্লোখিত প্রোটিনসহ ক্ষসকোগিপিড বাইলেয়ারকে কখনো কখনো ইউনিট মেমবেন বলা হয়।

ফুইড-মোজাইক মডেল (Fluid -mosaic model)

বিভিন্ন মডেলের মধ্যে সবচেয়ে গ্রহণীয় মডেল হলো ফুইড-মোজাইক মডেল (S.J. Singer and G.L. Nicolson1972)। প্রাজমামেমব্রেন এর গঠন সংক্রান্ত ব্যাখ্যাদান প্রসঙ্গে ১৯৭২ খ্রিস্টাব্দে এস, জে, সিপ্লার এবং জি, এল, নিকলমন
কর্ত্বক প্রবর্তিত মডেলকে ফুইড-মোজাইক মডেল বলে। এ মডেল অনুযায়ী কোর্যবিদ্ধি ছিত্ররবিশিষ্ট। প্রতিটি স্তর
কর্মফোলিপিড দিয়ে গঠিত (চিত্র ১.৬)। উভয় স্তরের হাইড্রোকার্বন লেজটি সামনাসামনি (মুখোমুখী) থাকে এবং পানিপ্রাহী
(hydrophillic) মেরু অংশ বিপরীত দিকে থাকে। ঝিল্লির প্রোটিন অণুগুলো ক্রমফোলিপিড স্তরে এখানে সেখানে
বিশ্বিস্তাবস্থায় থাকে। কার্বোহাইড্রেট এবং অন্যান্য উপাদানও ক্রসফোলিপিড মাধ্যমে এখানে সেখানে মিশে থাকতে পারে।
লিপিড অপুর মধ্যে প্রোটিনের এরুপ বিন্যাসকে সিপ্লার ও নিকলসন সমুদ্রতলে ভাসমান হিমবৈশ (Iceberg) এর সঙ্গে
ভুলনা করেছেন। সদৃশগত কারণে এ মডেলকে আইসবার্গ মডেলত স্কা। হয়।

ফুইড-মোজাইক মডেল অনুযায়ী কোষঝিল্লির গাঠনিক উপাদান নিমুদ্ধপ:

ক) ফসফোলিপিড বাইলেয়ার: এটি দুই ন্তর্ববিশিষ্ট এবং ফসফোলিপিড (অণু) দিয়ে তৈরি। প্রতিটি ফসফোলিপিড এক অণু গ্রিসারল থাকে এবং গ্রিসারলের সাথে দুটি ননপোণার ফ্যাটি আসিড লেজ এবং একটি পোলার ফসফেট হেড থাকে। ফসফেট হেড ও ফ্যাটি আসিড লেজের মার্থে গ্রিসারল খাকে।

চিত্র ১.৬ : ফুইড-মোজাইক মতেশ অনুযায়ী কোগবিস্থির গঠন।

(খ) মেমব্রেন প্রোটন : কোষধিপ্লিতে তিন ধরনের প্রোটন শনাক্ত করা হয়েছে। যেমন ২৫টা ইনটিয়াল প্রোটনএতলা বিপ্লির উভয় সার্ফেন পর্যন্ত ব্যাক্ত থাকে। ট্রা পেরিফেরাল প্রোটন-এতলো বিপ্লির সার্ফেনে থাকে এবং ট্রেন লিপিড
নম্পুক প্রোটন-এতলো লিপিড কোর-এ সম্পুক্ত থাকে। মেমব্রেনে অবস্থিত প্রোটনই মেমব্রেন প্রোটন।

- গ্রাইকোক্যাণিল : এটি কিল্লির ওপর একটি চিনির তার বিশেষ। ফসফোলিপিড অণুর সঙ্গে কার্বোহাইট্রেট যুক্ত হয়ে গ্লাইকোলিপিড ও প্রোটিন অণুর সাথে কার্বোহাইড্রেট শৃঞ্চল যুক্ত হয়ে গ্লাইকোপ্রোটিন গঠন করে। গ্লাইকো এবং গ্রাইকোলিপিডকে মিলিতভাছে গ্রাইকোক্যালিক্স বলা হয়। কার্বোহাইড্রেট শৃত্যলগুলো সবসময় ঝিল্লির ব অবস্থান করে।
- (খ) কোলেস্টেরল: এটি লিপিড জাতীয় পদার্থ। ফসফোলিপিড অণুর ফাঁকে ফাঁকে এগুলো অবস্থান করে। ল কোষের বিশ্বিতে এটি অপেকাকৃত বেশি থাকে। সেল সার্ফেস (cell surfaces)-এ ভেদ্যতা (permeability) ও এনসারে কার্যকারিতা পরিবর্তনশীল হতে দেখা যায়। এতে বোঝা যায়, সার্ফেস এলাকা এবং এর উপাদান উভয়ই পরিবর্তনযোগ ফুইড-মোজাইক মডেল অনুযায়ী এসব পরিবর্তনশীলতা ঘটা সম্ভব। এ মডেল অনুযায়ী প্রোটিন এবং গঠন উপাদানসমূহত ছির (fixed) ধরা হয় না, বরং মনে করা হয় এরা ফসফোলিপিডে ভেসে থাকে। ফলে বস্তুর একটি মোজাইক তৈরি হয় প্রোটিনসমূহ আংশিক পানিমাহী (hydrophilic-যখন ঝিল্লির সার্ফেস-এ থাকে) এবং আংশিক পানিরোধী (hydrophobio যখন লিপিডের সাথে মিশ্রিত অবস্থায় মাঝের দিকে থাকে) হতে পারে। এ মডেল কোষঝিল্লির কার্বোহাইড্রেট এবং শ্রেটি হতে উৎপন্ন অন্যান্য দ্রব্যাদির (protein derivatives) উপস্থিতি সমর্থন করে। কতিপয় বস্তু কোষের ভেতর হতে বংশ্ব বের করতে এবং বাইর হতে ভেতরে প্রবেশ করাতে কোষঝিল্লির কার্বোহাইড্রেটের উপস্থিতি অত্যস্ত গুরুত্বপূর্ণ বিবেচনা ক देश ।

সাম্প্রতিক গবেষণায় দেখা গিয়েছে কোধবিঞ্জিটি অনেকটা তরল পদার্থের ন্যায় আচরণ করে। **লিপিড অণু ত**ল পদার্থের ন্যায় ঝিল্লির একই স্তরে স্থান পরিবর্তন করে, পাশে ব্যাপ্ত (diffuse) হয় এবং অক্ষের (long axis) বরাবর মুর্ছে (rotate) পারে। একে flip-flop movement বলে। এ তথাওলো ফুইড-মোজাইক মডেলকে বিশেষভাবে সমর্থন করে।

কোষবিক্লির রাসায়নিক উপাদান : (i) কোষবিক্লিতে থাকে প্রোটন, লিপিড এবং কোনো কোনো ক্লেম পশিস্যাকারাইড (polysaccharides)। (ii) প্রোটিন গাঠনিক উপাদান হিসেবে (structural), এনজাইম হিসেবে (enzymes) এবং বাহক প্রেটিন (carrier protein) হিসেবে থাকে। এদের গঠন ও পরিমাণগত পার্থক্য থাকতে পারে। (iii) কোষবিদ্যি মোট তম ওজনের প্রায় (৭৫ ভাশই লিপিড) লিপিড প্রধানত ফসফোলিপিড (phospholipids) হিসেবে থাকে। ইত্যেমধ্যে পাঁচ ব্রুম কসফোলিপিড শনাক্ত করা হয়েছে-যার সবচেয়ে সরলটি হলো কসফোটাইডিক অ্যাসিড এবং অন্য চারটি জন্মি প্রকৃতির (complex)। জটিল ফসফোলিপিডের মধ্যে <mark>পেসিখিন (lecithin) প্রধান। ঝিল্লিছ ফসফোলিপিডের অর্ধেকের বে</mark> থাকে লেসিবিন। (iv) কোনো কোনো ক্ষেত্রে RNA (পিয়াজের কোষে) থাকতে পারে।

কোষবিত্তির কাজ : (i) এটি কোষীয় সব বস্তুকে খিরে রাখে।

- (ii) বাইরের প্রতিকৃল অবস্থা হতে অভ্যন্তরীণ বস্তুকে রক্ষা করে।
- (iii) কোষবিশ্লির মধ্যদিয়ে বস্তুর স্থানান্তর ও ব্যাপন নিয়ন্ত্রণ ও সমস্বয় হয় (control and coordinate)।
- (iv) বিশ্বিটি একটি কাঠামো হিসেবে কাজ করে বাতে বিশেষ এনজাইম এতে বিন্যন্ত থাকতে পারে।
- (v) ভেতর থেকে বাইরে এবং বাইরে থেকে ভেতরে বস্তু স্থানান্তর করে।
- (vi) বিভিন্ন বৃহদাণু (macro-molecule) সংশ্লেষ করতে পারে।
- (vii) বিভিন্ন বৰুম তথ্যের ভিত্তি (information source) হিসেবে কাঞ্জ করে।
- (viii) পারস্পরিক বন্ধন, বৃদ্ধি ও চলন ইত্যাদি কাজেও এর ভূমিকা আছে।

লে। কোৰ বাটাৰ ও প্লালমামেমবেনের মধ্যকার পার্ক্যতলো পাশাপাশি একটি ছকে উপস্থাপন করতে হবে। পার্ক বিভাগে এনের অবস্থান, গঠন, জরায়ন, অসংকরণ, সভীবতা ও কাল ইত্যাদি বিষয়ের প্রতি লক রাখতে হবে।

১.৩ সাইটোপ্লাজম ও অঙ্গাণু (Cytoplasm and Organelles) নিউক্লিয়ানের বাইরে অবস্থিত এবং কোষঝিল্লি নিয়ে পরিবেষ্টিত প্রোটোপ্লাক্ষমীয় অংশের নামই হলো সাইটোপ্লাক্ষ এটি মাতৃকা ও আমাণু অংশ দিয়ে গঠিত।

সাইটোপ্লাজমীয় মাতৃকা (Cytoplasmic matrix) : মাতৃকা হলো সাইটোপ্লাজমের ভিত্তি পদার্থ।

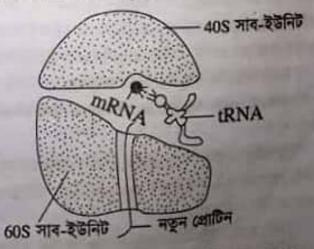
ভৌত গঠন : মাতৃকা হলো একটি অর্থতরল, দানাদার, অর্থস্ক, সমধর্মী, কলরভাল তরল পদার্থ। একে হারালোপ্রাজমন্ত বলা হয়। বর্তমানে একে সাইটোসোল (Cytosol) বলা হয়। H. A. Lardy (1965) প্রথম সাইটোসোল শব্দটি ব্যবহার করেন। এটি বিভিন্ন জৈব ও অজৈব পদার্থ, পানি, বিভিন্ন আাসিভ ও এনজাইম নিয়ে গঠিত। সাইটোপ্রাজমীয় মাতৃকার অপেক্ষাকৃত ঘন, কম দানাদার বহিস্থ শক্ত অঞ্চলকে এক্টোপ্রাজম (কর্টেস্প, প্রাজমাজেল) বলে এবং কেন্দ্রন্থ অপেক্ষাকৃত কম ঘন অঞ্চলকে এন্ডোপ্রাজম বলে। সাইটোপ্রাজমের আপেক্ষিক গুরুত্ব পানি অপেক্ষা বেশি।

অঙ্গাপু (Organelles) : সাইটোপ্লাজমীয় মাতৃকায় প্লাস্টিভ, মাইটোকব্রিয়া, এভোপ্লাজমিক রেটিকুলাম, রাইবোসোম, গলগি বঙি, লাইসোসোম, সেক্ট্রোসোম, মাইক্রোটিউবিউলস প্রভৃতি কুদ্রান্ত এবং বিভিন্ন নিজীব (জড়) পদার্থও থাকে।

সাইটোপ্লাজমের কাজ: (i) বিভিন্ন কুদ্রাঙ্গ ধারণ করা (ii) কতিপয় জৈবিক কাজ করা (iii) কোষের অমৃত্ ও ক্ষারত্ব নিয়ন্ত্রণ করা (iv) রেচন প্রক্রিয়ায় সৃষ্ট বর্জ্য পদার্থ নিষ্কাশনে সাহায্য করা (v) উত্তেজনায় সাড়া দেয়া এবং (vi) পানি পরিশোষণে সাহায্য করা।

সাইটোপ্লাজমের রাসায়নিক উপাদান ও প্রকৃতি (Chemical nature of cytoplasm)

সাইটোপ্লাজমের রাসায়নিক উপাদানকে অজৈব (inorganic) এবং জৈব (organic)— এ দু' শ্রেণিতে বিভক্ত করা যায়।
আজৈব উপাদানের মধ্যে প্রধান হলো পানি ও পানিতে দ্রবীভূত গ্যাস। এছাড়াও আছে বিভিন্ন খনিজ বস্তু, আয়ন। জৈব
উপাদানের মধ্যে আছে কার্বোহাইড্রেট, জৈব অ্যাসিড, লিপিড, প্রোটিন, নিউক্লিক অ্যাসিড, হরমোন, ভিটামিন, বিভিন্ন রম্ভক
পদার্থ। পানির পরিমাণ কোষভেদে ৬৫-৯৬%। সাইটোপ্লাজমের প্রকৃতি অর্ধতরল, দানাদার, অর্ধস্বচ্ছ, সমধ্যী ও
কলয়ডাল।


সাইটোপ্লাজমের বিপাকীয় ভূমিকা (Metabolic role of cytoplasm): যে কোনো জীবদেহে প্রতিনিয়ত বিভিন্ন বিপাকীয় ক্রিয়া চলতে থাকে। এর অধিকাংশই সাইটোপ্লাজম নির্ভর। বিপাকীয় ক্রিয়াগুলোর কতক সাইটোপ্লাজমে সংঘটিত হয়, কতক সাইটোপ্লাজমের অসাণ্ডলোতে সংঘটিত হয়। জীবের জনা সবচেয়ে বড় শারীরবৃত্তীয় কাজ হলো প্রসান। শাসনের প্রথম পর্যায় তথা গ্লাইকোলাইসিস সংঘটিত হয় সাইটোপ্লাজমে। এছাড়া সাইটোপ্লাজম হলো বিভিন্ন এনজাইমের আধার। পার সকল জৈবিক ক্রিয়া বিক্রিয়া নিয়য়ণ করে থাকে বিভিন্ন ধরনের এনজাইম। কাজেই পরোক্ষাবে জীবের সকল বিপাকীয় কাজের নিয়য়কও সাইটোপ্লাজম।

সাইটোপ্লাজমে বিরাজমান অঙ্গাণুসমূহ

সাইটোপ্লাজমে বেশ কিছু গুরুত্বপূর্ণ অঙ্গাণু বিরাজ করে। নিচে সাইটোপ্লাজমের প্রধান প্রধান অঙ্গাণুর বিবরণ উপস্থাপন করা হলো :

সাইটোপ্লাজমে মৃক্ত অবস্থায় বিরাজমান অথবা অন্ত প্রাজমীয় জালিকার গায়ে অবস্থিত যে দানাদার কণায় প্রোটন সংশ্রেষণ ঘটে তাই রাইবোসোম। রাইবোসোম অত্যত ক্ষুদ্র এবং প্রায় গোলাকার। সাধারণত অমসৃণ এভোপ্লাজমিক রেটিকুলামের উভয় দিকে এরা সারিবক্ষভাবে অবস্থিত থাকে। সাইটোপ্লাজমে মৃক্ত অবস্থায়ও রাইবোসোম থাকে মৃক্ত রাইবোসোম আদি কোষের একটি উল্লেখযোগ্য বৈশিষ্ট্য। মুক্ত রাইবোসোমের কোনো আবরণী নাই। সাইটোপ্লাজমে একাধিক রাইবোসোম মৃক্তোর মালার মতো অবস্থান করলে তাকে পলিরাইবোসোম বা

আবিষ্কার: আলবার্ট ক্লড (Albert Claude, 1899-1983) নামক একজন বিজ্ঞানী ১৯৫৪ সালে যকৃত কোষের সাইটোপ্লাজমকে সেন্ত্রিকিউজ করে RNA সমৃদ্ধ ৬০০-২০০০ Å

চিত্ৰ ১.৭ : রাইবোসোম : দুই সাব-ইউনিট এবং mRNA ও tRNA এর সম্ভাব্য অবস্থান দেখানো হয়েছে।

(৬০–২০০ nm) ব্যাসবিশিষ্ট বহু ভূত্রকণা পৃথক করেন এবং নাম দেন মাইক্রোসোম। এরপর রোমানিয়ান কোষ বিশ্ব বিভাবের Palade, ১৯৫৫ সালে কোষের ভারী পদার্থরূপে রাইবোসোম আবিদ্ধার করেন। পরবর্তীতে ১৯৬৫ সালে ইপ্রে আণুবীক্ষণিক চিত্রে মাইক্রোসোমের দুটি অংশ পৃথকযোগ্য দেখা যায়, একটি হলো অভঃপ্রাজমীয় ঝিল্লি এবং অপরটি মূল জূত্রাকার কণা। এ কণাকেই পরবর্তীতে রাইবোসোম নাম দেয়া হয়। ১৯৫৮ সালে Richard B. Roberts এর নাম বেরাইবোসোম। ক্লোরোপ্লাস্ট, মাইটোকজ্রিয়া এবং নিউক্লিয়োপ্লাজমে রাইবোনিউক্লিয়ো-প্রোটিন কণা (Ribonucleo-prote particle-RNP) নামক ক্লুলাকার রাইবোসোম আবিদ্ধৃত হয়েছে।

প্রকার । 70S রাইনোসোম (আণবিক ওজন 2.7 × 10° ডাল্টন) পাওয়া যায় আদিকোষী জীবে। আর 80S রাইনোসোম (আণবিক ওজন 2.7 × 10° ডাল্টন) পাওয়া যায় আদিকোষী জীবে। আর 80S রাইনোসোম (আণবিক ওজন 40 × 10° ডাল্টন) পাওয়া যায় প্রকৃতকোষী জীবে। 70S রাইনোসোম, 50S এবং 30S এই দুই সার ইউনিটে বিভক্ত থাকে। 80S রাইনোসোম, 60S এবং 40S এই দুই সার-ইউনিটে বিভক্ত থাকে। প্রোটিন সংশ্লেষণের সম আদি কোষে 50S ও 30S সার-ইউনিট একত্রিত হয়ে 70S একক গঠন করে এবং প্রকৃত কোষে 60S ও 40S সার-ইউনি একত্রিত হয়ে 70S একক গঠন করে এবং প্রকৃত কোষে 60S ও 40S সার-ইউনি একত্রিত হয়ে 80S একক গঠন করে। কোনো বস্তবে সেন্ট্রিফিউজ করলে তলায় তার অধঃক্ষেপ জমা হয়। সেন্ট্রিফিউজ করে কালে বিভিন্ন ভরসম্পন্ন বস্তুর অধঃক্ষেপণের হারকে S দিয়ে বোঝানো হয়। S= Svedberg unit = ভেদবার্গ একক; সেন্ট্রিফিউজ মহে দ্রুত ঘূর্ণন প্রক্রিয়ায় বিভিন্ন ভরসম্পন্ন বস্তুর অধঃক্ষেপণের হারকে ভেদবার্গ একক বলে। সুইডিস প্রাণরসায়নবিদ Theodor Svedberg এর নামের প্রথম অক্ষর S দিয়ে তা বোঝানো হয়ে থাকে।

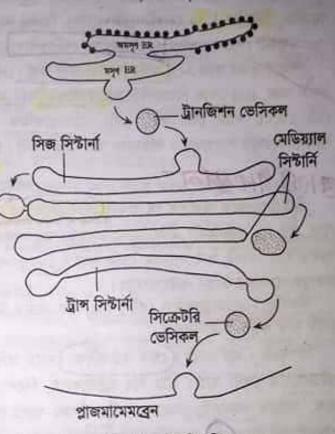
আকৃতি ও ভৌত গঠন: এরা মূলত বৃত্তাকার তবে ত্রিকোণ এবং পঞ্চকোণ বিশিষ্ট বলেও অনেকে দাবি করেছেন। এটি চওড়ায় ২২nm এবং উচ্চতায় ২০nm। রাইবোসোম প্রধানত বহু প্রকার প্রাটিন ও TRNA দিয়ে তৈরি। E-coli কোমে তদ্ধ ওজনের প্রায় ২২ কুগাই বিইবোসোম) রাইবোসোমের বহু প্রোটিন মূলত এনজাইম। বিশিক্ষা তেরি

mRNA অণু রাইবোসোমের সাথে যুক্ত হলে tRNA-র সহায়তায় এমিনো অ্যাসিড দিয়ে পলিপেপটাইড তথা প্রোটি সংশ্লেষিত হয়।

ষাভাবিক অবস্থায় রাইবোসোমে সাব-ইউনিটগুলো পৃথক থাকে। কেবলমাত্র প্রোটিন সংশ্লেষণের সময় এরা একতি হয়। এ সময় রাইবোসোমে ৪টি স্থান লক্ষ্য করা যায়। এগুলো হলো অ্যামাইনোঅ্যাসাইল বা A স্থান, পেপটাইডিল বা P স্থান, নির্গমন বা E স্থান এবং mRNA সংযুক্তি স্থান। অধিকাংশ ক্ষেত্রে দুইয়ের অধিক রাইবোসোম গঠন করে।

রাসায়নিক গঠন : রাইবোসোমের প্রধান উপাদান হচ্ছে RNA ও প্রোটিন) এদের অনুপাত প্রায় ১ ৪ ১ 705 রাইবোসোমে রয়েছে 23S, 16S ও 5S মানের ৩টি rRNA অণু এবং ৫২ প্রকারের প্রোটিন অণু । অপরাদিকে ৪০১ পরিমাণে ধাতব আয়ন, যেমন-Mg⁺⁺, Ca⁺⁺ও Mn⁺⁺ ইত্যাদি থাকে ।

আদি কোষের রাইবোসোম রাসায়নিকভাবে পৃথক ধরনের, তাই <mark>ট্ট্রোসাইক্রিন বা স্ট্রেন্টোমাইসিন</mark> অ্যান্টিবায়োটিক ^{এর্ন্} করে না।


উৎপত্তি: আদি কোষে DNA (আদি ক্রোমোসোম) থেকে উৎপন্ন হয় কিন্তু প্রকৃত কোকে সাব-ইউনিট দু'টি পৃথকডার্থ নাউক্লিয়াদের অভ্যন্তরে তৈরি হয় এবং পরে সাইটোপ্লাজমে চলে আসে। পলিপেপটাইড তৈরি তরু হওয়ার আগ পর্বত

বাইবোসোমের কান্ত: প্রধান কান্ত প্রোটিন সংশ্লেষণ করা। তাই রাইবোসোমকে কোমের প্রোটিন ফ্যান্টরি বলা হয়। তার বাইবোসোমকে কোমের প্রোটিন ফ্যান্টরি বলা হয়। তার বাইবোসোমকে কোমের প্রোটিন ফ্যান্টরি বলা হয়। তার বাইবোসোমকে কোমের প্রোটিন ফ্যান্টরি বলা হয়। তার পর পানি কোমের 30S এব পর্যাধ কারে। তার কারে বিভাগের বিভাগের সাথে সংযোগ ছাল

ইউনিট এসে একত্রিত হয়ে 80S একক গঠন করে এবং প্রোটিন সংশ্রেষণ তরু হয়। এরা সাইটোক্রোম উৎপন্ন করে যারা কোষীয় শসনে ইলেকট্রন পরিবহন করে। (প্রক্রোজের ফসফোরাইলেশন রাইবোসোরে বংঘটিত হয়। ২। গলগি বঙি (Golgi body)

নিউক্লিয়াসের কাছাকাছি অবস্থিত এবং দিস্তরবিশিষ্ট ঝিল্লি ছারা আবদ্ধ ছোট নালিকা, ফোন্ধা, চৌবাচ্চা বা ল্যামেলির

ন্যায় সাইটোপ্লাজমিক অঙ্গাণুর নাম গলগি বডি (গলগি যন্ত্র বা গলগি ক্ষেত্র)। গলগি বডি চেপ্টা, গোলাকার বা লম্বা হতে পারে। এরা সাধারণত নিউক্লিয়াসের কাছাকাছি একত্রিত হয়ে অবস্থান করে। ইতালীয় সায়ুতত্তবিদ ক্যামিলো গলগি (Camillo Golgi, 1843-1926) ১৮৯৮ সালে প্রথম পেচা ও বিভালের সায়ুকোষে এটি দেখতে পান এবং তার নামানুসারে পরবর্তীকালে এ অঙ্গাণুর নাম রাখা হয়েছে গলগি বভি। মসুণ এভোপ্লাজমিক রেটিকুলাম থেকে গলডি বডি সৃষ্টি হয়। এদেরকে (ডিক্টায়োসোম) (dictaosome), ইডিওসোম (Idiosome) বা লাইপোকছিয়া (lypochondria) নামেও অভিহিত করা হয়। প্রায় সব প্রাণী কোষেই এরা বিদ্যমান। গলগি বডিতে ফ্যাটিঅ্যাসিড, ভিটামিন-কে, বিভিন্ন প্রকার এনজাইম (ATPase, ADPase, ট্রান্সফারেজ ইত্যাদি) থাকে। কখনো ক্যারটিনয়েডও থাকে। গুলগি বডিকে 'কোষের টাফিক পুলিশ' (Traffic Police of Cell) বলা হয়। কারণ গলগিবভি কোষের কেন্দ্রীয় অংশ থেকে ঝিল্লিবদ্ধ বস্তু (ভেসিকল) কোষের পরিধির দিকে প্লাজমামেমব্রেন পর্যন্ত नित्य याग्र।

চিত্র ১.৮: গলপি বডি।

ভৌত গঠন : গলগি যদ্রের কতগুলো চ্যান্টা থলে বা চৌবাচ্চা আকৃতির গঠনসমূহকে সিস্টার্নি (এক বচনে-সিস্টার্না) বলে এবং কিছুটা অনিয়মিত নালিকা ও ভেসিকলসমূহকে ট্রান্স-গলগি নেটওয়ার্ক (Trans-Golgi Network-TGN) বলে। সিস্টার্নি একসাথে গাদা করে (stack) থাকে। প্রতিটি স্বতন্ত্র গাদাকে (stack) বলা হয় গলগি বডি বা ডিকটায়োসোম (dictyosome)। গলগি যন্ত্রর প্রাজমামেমব্রেনের কাছাকাছি অংশকে বলা হয় ট্রান্স-ফেইস (trans-face) । আর কোষের কেন্দ্রের দিকের অংশকে বলা হয় সিজ-ফেইস (cis-face)। ট্রান্সফেইস-এর শেষ সিস্টার্নাকে বলা হয় ট্রান্সসিস্টার্না (transcisterna) এবং সিজ-ফেইসের শেষ সিস্টার্নাকে বলা হয় সিজ-সিস্টার্না (cis-cisterna), মধ্যভাগের গুলোকে বলা হয় মেডিয়্যাল সিস্টার্নি (medial cisternae)। সিস্টার্নির পার্শ্বদেশে অবস্থিত গোলাকার বৃহৎ তলের মতো গঠনগুলোকে জাকুওন বলে। সবগুলো সংগঠন ইন্টারসিস্টার্নাল বস্তু দিয়ে একসাথে সংঘবদ্ধ অবস্থায় থাকে। তিন আংশে তিন ধরনের এনজাইম থাকে এবং এদের কাজও তিন ধরনের।

প্রাণিকোষে সাধারণত গলগিয়ন্ত কোষের এক জায়গায় একসাথে অবস্থান করে কিন্তু উদ্ভিদকোষে দৃশ্যত পূথক পৃথক

<u>শভাধিক গ্রুপি বডি সাইটোপ্লাজমে ছড়িয়ে থাকে।</u>

উদ্ভিদ কোষে গলগি বডির প্রধান কাজ হলো গ্লাইকোপ্রোটিনের অলিগোস্যাকারাইড-এ পার্ব শৃঞ্চল সংযুক্ত করা এবং জটিল পলিস্যাকারাইড সংশ্রেষ ও নিঃসরণ করা। তাই উদ্ভিদ কোষে গলগি বডিকে কার্বোহাইজেট ফারিটি গলা হয়। উদ্ভিদ কোষে গলগি বডির আর একটি উল্লেখযোগ্য কাজ হলো কোষ প্রাচীর গঠন কর

এভোপ্নাজমিক রেটিকুলামে উৎপাদিত দ্রব্যাদির ঝিল্লিবন্ধ ভেসিকল (ট্রানজিশন ভেসিকল) সিজ-সিস্টার্না ব্যুল এবং পর্যায়ক্রমিকভাবে মেডিয়্যাল সিস্টার্নির মাধ্যমে শেষ পর্যন্ত ট্রান্সসিস্টার্না হয়ে কোষে অন্যত্র বা প্লাজমামেমন্ত্রিদ যায়।

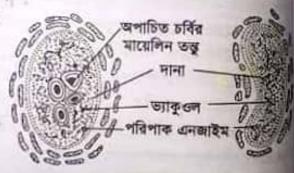
রাসায়নিক গঠন : গলগি বভি আবরণীতে ৬০ ভাগ প্রোটন এবং ৪০ ভাগ লিপিড থাকে। এছাড়া এড । আসিড, ভিটামিন-K ও ক্যারটিনয়েড থাকে। বিভিন্ন ধরনের এনজাইম দ্বারা এদের থলিগুলো পূর্ণ থাকে।

উৎপত্তি: সম্ভবত মসৃণ <u>এডোপ্রাজমিক রেটিকুলাম</u> তৈ উৎপত্তি হয়।

গল্পি বৃত্তির কাল : (i) লাইসোসোম তৈরি করা। (ii) অ-প্রোটিন জাতীয় পদার্থের সংশ্লেষণ করা, (iii) কিছু এনছ

কিন্তু করা, (iv) কোষ বিভাজনকালে কোষপ্লেট তৈরি করা, (v) প্রোটিন, হেমিসেলুলোজ, মাইক্রোকাইবিল তৈরি ও

(vi) কোষস্থ পানি বের করা, (vii) এডোপ্লাজমিক রেটিকুলামে প্রস্তুতকৃত দ্রব্যাদি ঝিল্লিবদ্ধ করা, (viii) বি


পলিস্যাকারাইড সংশ্লেষণ ও পরিবহনে অংশ গ্রহণ করা। (ix) মাইটোকব্রিয়াকে ATP উৎপাদনে উদ্বন্ধ করা ত্যাতি

त्का(धेव शाक्राकाला . । नाहरमारमाम (Lysosome)

সাইটোপ্লাজমে অবস্থিত যে অঙ্গাপুহাইড্রোলাইটিক এনজাইমের আধার হিসেবে কাজ করে তাকে লাইসোসোম ক (Gk. Lyso = হজমকারী এবং soma =বঙ্ক)। বহু সংখ্যক নানাবিধ হাইড্রোলাইটিক এনজাইম একটি বিশ্বরী বিশ্বি ॥ আবদ্ধ হয়ে একটি লাইসোসোম তৈরি করে। ১৯৫৫ সালে দ্য দু'বে (Christain de Duve, 1917-2013) এ ধ্বন অঙ্গাপুর নামকরণ করেন লাইসোসোম।

উৎপত্তি: এভোপ্লাজমিক রেটিকুলাম হতে এদের উৎপত্তি এবং গলগি বভি কর্তৃক প্যাকেজকৃত।

বিশ্তৃতি: প্রাণিদেহের ঝেত রক্তকণিকা কোষে অধিক সংখ্যায় লাইসোমোম দেখা যায়। প্রায় সব প্রাণিকোনে, বিশেষ করে বৃক্ত কোব, অপ্তের আবরণী কোষেও লাইসোমোম আছে। RBC-তে লাইসোমোম থাকেনি সম্প্রতি উদ্ভিদকোষেও লাইসোমোমের ন্যায় spherosome আবিশ্কৃত হয়েছে। এদের্কে oleosome ও বলা হয়। এরা আকারে ছোট। তৈল জাতীয় পদার্থ ঝিল্লিবছ করা এদের প্রধান কাজ। Oleosome-এর ঝিল্লি এক্তরবিশিষ্ট্র বলে জানা যায়।।

চিত্র ১.৯ : লাইলোসোমের গঠন।

ভৌত গঠন : লাইসোসোম সাধারণত বৃত্তাকার, এদের ব্যাস সাধারণত ০.২-০.৮ মাইক্রোমিলি। বৃত্ব কোমে লাইসোসোম অপেকাকৃত বড় হয়ে থাকে। প্রতিটি লাইসোসোম একটি ছিন্তরবিশিষ্ট আবরণী ছারা আবদ্ধ থাকে। এমে ভ্যাকৃতল ঘন তরলে পূর্ণ থাকে।

রাসায়নিক গঠন : লাইসোসোমের আবরণী ঝিল্লি লিপো-প্রোটিন নির্মিত। ঝিল্লি ছারা আবদ্ধ অবস্থায় এতে প্রায় ৪০ বর্ষার এক অবস্থায় এতে প্রায় ৪০ বর্ষার আবদ্ধ অবস্থায় এতে প্রায় ৪০ বর্ষার আবদ্ধ অবস্থায় এতে প্রায় ৪০ বর্ষার আবদ্ধ অবস্থায় এতে প্রায় ৪০ বর্ষার অবস্থায় এতে প্রায় ৪০ বর্ষার আবদ্ধ অবস্থায় এতে প্রায় ৪০ বর্ষার ৪০ বর্ষার ৪০ বর্ষার আবদ্ধ মার অবস্থায় এতে প্রায় ৪০ বর্ষার ৪০ বর্যার ৪০ বর্ষার ৪০ বর্যার ৪০ বর্ষার ৪০ বর্যার ৪০ বর্ষার ৪০ বর্ষার ৪০ বর্ষার ৪০ বর্ষার ৪০ বর্ষার ৪০ বর্ষার ৪

লাইসোসোমের কাজ : লাইসোসোমের এনজাইমসমূহ অন্নীয় পরিবেশে কর্মকম হয়; সাইটোপ্লাজমের নিউট্রাল pliএরা কর্মকম থাকে না; তাই কোষের তেমন কোনো কতি হয় না। প্রয়োজনের সময় সাইটোপ্লাজম থেকে প্রোটন (li)
এনে অন্নীয় পরিবেশ তৈরি করে এবা কাজ করে। এদের কাজ হলো- (i) এরা ফ্যাগোসাইটোসিস (Phagocytosis)
প্রভাততে জীবালু ফংসে করে। (ii) বিগলনকারী এনজাইমসমূহকে আবদ্ধ করে রেখে এটি কোষের জন্যান্য অলাপুকে বা
করে। (iii) শাইসোসোম অন্তঃকোষীয় পরিপ্রাক্ত কাজে সাহায্য করে। (iv) তীব্র খাদ্যাভাবের সময় এর প্রাচীর ফেটে বা
এবং আবদ্ধকৃত এনজাইম বের হয়ে কোষের জন্যান্য অলাপুতলো বিনাই করে দেয়। এ কাজকে বলে ব্য-প্রাস বা অট্যাক্যা

(autophagy)। এভাবে সমস্ত কোষটিও পরিপাক হয়ে যেতে পারে। একে বলা হয় অটোলাইসিস (autolysis)। (v) এরা জীবদেহের অকেজো কোষসমূহকে অটোলাইসিস পদ্ধতিতে ধ্বংস করে বলে এদের <mark>আত্মঘাতী থলিকা বা স্কোয়াভ</mark> (Suicidal bag or squad) বলা হয়। (vi) কোষ বিভাজনকালে এরা কোমীয় ও নিউক্লীয় আবরণী ভাঙ্গতে সাহায্য করে। এরা কোষে করাটিন প্রস্তুত করে।

8। এভোপ্লাজমিক রেটিকুলাম (Endoplasmic reticulum)

পরিণত কোবে সাইটোপ্লাজমে যে জালিকা বিন্যাস দেখা যায় তাই এডোপ্লাজমিক রেটিকুলাম বা অন্তঃপ্লাজমীয় জালিকা।

আবিষার : বিজ্ঞানী পোর্টার (Keith R. Porter) এবং তাঁর সঙ্গীরা (Claude & Fullam) ১৯৪৫ সালে সর্বপ্রথম যকৃত কোষে এটি আবিষ্কার করেন। এন্ডোপ্লাজমিক রেটিকুলাম নামকরণ করেন ১৯৫৩ সালে।

উৎপত্তি: সাইটোপ্লাজমীয় ঝিল্লি, নিউক্লীয় ঝিল্লি অথবা কোষঝিল্লি হতে এদের উৎপত্তি হয়।

বিস্তৃতি: অধিকাংশ ইউক্যারিয়টিক কোষেই এ অঙ্গাণু পাওয়া যায়। তবে বেশি থাকে যকৃত, অগ্ন্যাশয় ও অন্তঃক্ষরা গ্রন্থির কোষে।

প্রকার : এভোপ্লাজমিক রেটিকুলাম দু'প্রকার- মসৃণ এবং অমসৃণ। রেটিকুলামের গায়ে রাইবোসোম থাকলে আঁ অমসুণ বা দানাদার হয়, রাইবোসোম না থাকলে মসুণ বা অদানাদার হয়।

ভৌত গঠন : গঠনগতভাবে এভোপ্লাজমিক রেটিকুলাম তিন প্রকার; যথা-

(ক) সিস্টার্নি (Cisternae): এরা দেখতে অনেকটা চেল্টা, শাখাবিহীন ও লঘা চৌবাচ্চার মতো এবং সাইটোপ্লাজমে পরস্পর সমান্তরালভাবে বিন্যন্ত থাকে। এগুলোর ব্যাস ৪০-৫০ মিলিমাইক্রন (mµ) পুরু। এগুলোর গায়ে অনেক সময় রাইবোসোম যুক্ত থাকে।

(খ) ভেসিকল (Vesicles) : এগুলো বর্তলাকার ফোস্তার মতো। ২৫-৫০ মিলিমাইক্রন ব্যাসযুক্ত।

(গ) টিউবিউল (Tubules) : এগুলো নালিকার মতো, শাখাখিত বা অশাখ। এদের ব্যাস ৫০-১৯০ মিলিমাইক্রন। এদের গায়ে সাধারণত রাইবোসোম যুক্ত থাকে না।

চিত্র ১.১০ : এভোপ্লাজমিক রেটিকুলাম (ক) ত্রিমাত্রিক গঠন, (খ) অমসূল বিহি, (গ) মসূল ভেসিকল এবং (খ) মসূল টেউবিউল্ন

বাসায়নিক গঠন : এভোপ্লাভামিক রেটিকুলামের প্রধান রাসায়নিক উপাদান হলো- প্রোটন (৬০-৭০ আগ) ও লিপিড (৩০-৪০ ভাগ)। এতে প্রায় ১৫ ধরনের এনজাইম পাওয়া যায়; যেমন-গ্লুকোজ ৬-ফসফেটেজ, সক্রির ATPase, NADH ভায়াফোরেজ ইত্যাদি। অমসৃণ জালিতে RNA এবং গ্লাইঅঙ্গিসোম নামক ক্ষুদ্রাকার কণা থাকতে পারে। অমসৃণ ক্রিকুলামের ক্ষুদ্র কৃত্র বিচ্ছিন্ন অংশকে হাইকোসোম (microsome) বলে।

এভাপ্তাজমিক রেটকুলামের কাজ : (i) এটি প্রোটোপ্রাজমের কাঠামে হিসেবে কাজ করে। (ii) অমস্থ রেটি প্রোটিন সংশ্লেষিত হয়। (iii) মস্থ রেটিকুলামে (বিশেষত প্রাণী কোষে) শিপিড, মতান্তরে বিভিন্ন হরমোন, গ্লাইক্ প্রভৃতি সংশ্লেষিত হয়। (iv) এটি শিপিড ও প্রোটিনের প্রেরাহক হিসেবে কাজ করে। (v) অনেকের মঙে কোষপ্রাচীরের জন্য সেলুলোজ তৈরি হয়। (vi) রাইবোসোম, গ্লাইঅস্থিসোমের ধারক হিসেবে কাজ করে। (vii) এর ও অনুপ্রবেশকারী বিভিন্ন বিষাক্ত পদার্থকে নিক্রিয় করে।

গঠন ও কাজে দু'প্রকার এভোপ্লাঞ্জমিক রোটকুলামের মধ্যে পার্থক্য

গঠন ও কাজে দু'প্রকার এভাপ্লাজমিক রেটিকুলামের মধ্যে পার্থক্য আছে। অমসৃণ এভোপ্লাজমিক রেটিকুলামের কাঠামো হিসেবে কাজ করে, রাইবোসোম ধারণ করে এবং প্রোটিন সংশ্লেষণ করে । মসৃণ এভোপ্লাজ রেটিকুলাম সাইটোপ্লাজমের কাঠামো হিসেবে কাজ করে, কোনো রাইবোসোম বহন করে না, প্রোটিন সংশ্লেষণ করে তবে লিপিড বা হরমোন সংশ্লেষণ করতে পারে।

৫। মাইটোকব্রিয়া (Mitochondria)

প্রকৃত জীবকোষের হক্তবুপূর্ণ অঙ্গাণু হলো মাইটোকভ্রিয়া। কোষের যাবতীয় জৈবনিক কাজের শক্তি সরবরাহ হ বলে মাইটোকভ্রিয়াকে কোষের পাওয়ার হাউস' বা শক্তিমর বলা হয়। এ অঙ্গাণুতে ক্রেবস্ চক্র, ফ্যাটি আাসিঃ ছ ইলেকট্রন ট্রাঙ্গপোর্ট প্রক্রিয়া প্রভৃতি ঘটে থাকে। ক্বিন্তরবিশিষ্ট আবরণী ঝিল্লি দ্বারা সীমিত সাইটোপ্লাজমন্থ যে সঙ্গাদ্ধ ক্রেবস্ চক্র, ইলেকট্রন ট্রাঙ্গপোর্ট ইত্যাদি মুটে থাকে এবং শক্তি উৎপন্ন হয় সেই অঙ্গাণুকে মাইটোকভ্রিয়া বলে।

আবিষার ও নামকরণ : কলিকার (Albert Von Kolliker) ১৮৫০ সালে আলোক অণুবীঞ্চণের সার সাইটোপ্লাজমে নানা আকৃতিবিশিষ্ট এসব অঙ্গাণু আবিষার করেন। W. Fleming (1882) কোবে সৃতাকৃতির মাইটোক্লিপ্লা প্রত্যক্ষ করেন এবং ব্যার (ফলা) নামকরণ করেন। Altman (1890) এলের হায়োপ্লাস্ট (bioplast) নামকরণ করেন। কর্তা (Carl Benda-1897) এ অঙ্গাণ্ডলোকে মাইটোকব্রিয়া নামকরণ করেন। কোষের সাইটোপ্লাজমে এরা বিষিক্ষা অবস্থান করে, কোন আর্তনের প্রায় ২০ চাল হলো মাইটোকব্রিয়া, [(Gk- Mitos= thread-সূতা এবং chondries grain-দানা; একব্রন- মাইটোকব্রিয়ান।

উৎপত্তি : বিভাজনের মাধ্যমে এলের সংখ্যা বৃদ্ধি হয়ে থাকে। কোষে একটিমাত্র মাইটোকব্রিয়ন (বহুকান্দি মাইটোকব্রিয়া) থাকলে তা কোষ বিভাজনের সাথেই বিভাজিত হয়ে থাকে।

সংখ্যা : প্রকারভেদে প্রতি কোষে এক হতে একাধিক থাকতে পারে। সাধারণত গড়ে প্রতি কোষে ৩০০ হতে ৪০০ মাইটোকব্রিয়া থাকে। বিকৃত কোষে ১০০০ বা ততোধিক থাকে (Amocha-)তে মারও বেশি থাকে।

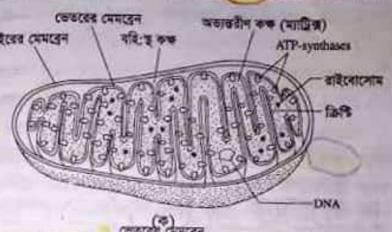
আকৃতি: আকৃতিতে এরা ব্তাকার, দতাকার, তম্তকার (স্তাকার), তারকাকার ও কুওলী আকার হতে পারে।

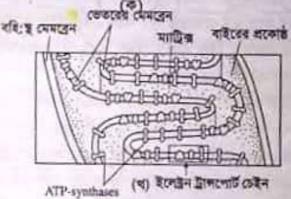
আয়তন: ব্তাকার মাইটোকপ্রিয়ার ব্যাস ০.২-২.০ মাইক্রন। সূত্রাকার মাইটোকপ্রিয়ার দৈর্ঘা ৪০ থেকে ৭০ মাইক্রন দ্বাকার মাইটোকপ্রিয়ার দৈর্ঘা ৯ মাইক্রন ও গ্রন্থ ০.৫ মাইক্রন পর্যন্ত হতে পারে।

মাইটোকব্রিয়ার ভৌত গঠন : নিমুলিখিত অংশ নিয়ে মাইটোকব্রিয়া গঠিত :

১। আবরণী : প্রতিটি মাইটোকব্রিয়ন লিপোপ্রোটিন বাইলেয়ারের দুটি মেমব্রেন নিয়ে গঠিত। বাইরের মেমব্রেন থাজবিহীন, মূলত তেতবের অংশসমূহকে রক্ষা করাই এর প্রধান কাজ। বাইরের মেমব্রেন ভেদ করে বিভিন্ন কুদ্র জবু এই আয়ন ভেতবে প্রবেশ করতে পারে, আবার বের হয়ে যেতেও পারে। এতে কিছু ট্রাঙ্গপোর্ট প্রোটিন থাকে যা প্রয়োহন সক্রিয় ট্রাঙ্গপোর্টে সহায়তা করে। এতে কোনো ETC, ATP Synthases, ATP তৈরির এনজাইম ইত্যাদি থাকে না। জ্বাজ মূলত ক্ষণাব্রেক। দুটি আবরণীর মধ্যে ব্যবধান্ ৬-৮ গ্লাম।

২। বকোষ্ঠ : দুই মেমব্রেনের মাঝখানের ফাঁকা ছানকে বলা হয় বহিস্থ কক্ষ (প্রকোষ্ঠ) বা আভামেমব্রেন ফাঁক বন্ধ ভেতরের মেমব্রেন দিয়ে আবদ্ধ কেন্দ্রীয় অঞ্চলকে বলা হয় অভ্যন্তরীপ কক্ষ। অভ্যন্তরীণ কক্ষ জেলির নাায় মন সম্প্র পদার্থ বা ধাত্র ছারা পূর্ব থাকে। এই ধাত্র পদাথকে মা<mark>টিকাব</mark>লে। ত ক্রিকিট বাইরের মেমব্রেন সোজা কিমু ভেতরের মেমব্রেনটি নির্দিষ্ট বাবধানে ভেতরের দিকে ভাল হয়ে আবৃদের মতো প্রবর্ধক সৃষ্টি করে। প্রবর্ধিত অংশকে ক্রিকিট (cristae) বলে। এদের সংখ্যা ও আকৃতি বিভিন্ন কোষে বিভিন্ন রকম হয়। এখলো মাইটোকব্রিয়ার ধাত্রকে কতগুলো অসম্পূর্ণ প্রকোষ্টে বিভক্ত করে। ক্রিস্টির মধাবর্তী ফাঁকা স্থানকে অন্তঃক্রিকিট ফাঁকা স্থান (intracristal space) বলে-যা বহিঃপ্রকোষ্টের সাথে সংযুক্ত।


8 (অঙ্গিলোম (Oxisome) : মাইটোকব্রিয়ার অন্তঃআবরণীর অন্তর্গায়ে অতি সূজ অসংখ দানা লৈগে থাকে। এদের


অক্সিসোম বলে। অক্সিসোম বৃত্তক বা অবৃত্তক হতে ভ পারে। বৃত্তক অক্সিসোম মন্তক, বোঁটা ও ভূমি নিয়ে বাইজের মেমরেন গঠিত হয়ে থাকে।

৫। ATP-Synthases ও ETC : ক্রিন্টিতে ছানে স্থানে ATP-Synthases নামক গোলাকার বস্ত আছে। এতে ATP সংশ্লেষিত হয়। এছাড়া সমস্ত ক্রিন্টিবাাপী অনেক ইলেব্রন ট্রাঙ্গপোর্ট চেইন (ETC) অবস্থিত।

৬। DNA ও রাইবোসোম : মাইটোকব্রিয়ার নিজস্ব বৃত্তাকার DNA এবং রাইবোসোম (708) রয়েছে। এটিও আদি কোষীয় বৈশিষ্ট্যসম্পন্ন। এরা ম্যাট্রিক্স-এ থাকে।

রাসায়নিক গঠন: মাইটোকব্রিয়ার ৩৯ ওজনের প্রায় ৬৫% প্রোটিন, ২৯% গ্রিসারাইডসমূহ, ৪% লেসিবিন ও সেফালিন এবং ২% কোলেস্টেরল। লিপিডের মধ্যে ৯০% হচ্ছে কসফোলিপিড, বাকি ১০% ফ্যাটি আসিড, ক্যারোটিনয়েড, ভিটামিন ।: এবং কিছু অজৈব পদার্থ।

চিত্র ১.১১ । ইলেট্রন অপুরীখন হয়ে দৃষ্ট মাইটোকপ্রিয়ার দৈর্ঘাচ্ছেন। (ক) অর্থাপে নিমানিক, (খ) গাওলা দৈর্ঘাচ্ছেন।

মাইটোকব্রিয়ার ঝিক্লি লিপো-প্রোটিন সমৃদ্ধ। মাইটোকব্রিয়াতে প্রায় ১০০ প্রকারের এনজাইম ও কো-এনজাইম রয়েছে। এছাড়া এতে(০,৫% RNA)ও সামান্য DNA থাকে।

মাইটোকদ্রিয়ার কাজ: (i) কোবের যাবতীয় কাজের জন্য শক্তি উৎপাদন ও নিরন্ত্রণ করা। (ii) শ্বসনের জন্য প্রয়োজনীয় এনজাইম, কো-এনজাইম প্রভৃতি ধারণ করা। (iii) শ্বসনের বিভিন্ন পর্যায় যেমন- ক্রেবস্ চক্র, ইলেব্রন ট্রাগপোর্ট, অন্তিভেটিভ কসকোরাইলেশন সম্পন্ন করা। (iv) নিজস্ব DNA, RNA উৎপন্ন করা এবং বংশগতিতে ভূমিকা রাখা। (v) প্রোটিন সংশ্লেষ ও সেই বিপাকে সাহায্য করা। (vi) এরা বি, মি প্রভৃতি পদার্থের সক্রিম পরিবর্ধনে সক্রম। (vii) তক্রাপু ও ডিমাণু গঠনে অংশগ্রহণ করা। (viii) কোষের বিভিন্ন অংশে ক্যাগসিয়াম আয়নের সঠিক ঘনত্ রক্ষা করা। (ix) কোষের প্রনির্ধারিত মৃত্যু (apoptosis) নিয়ন্ত্রণ করা। (x) রক্ত কণিকা ও হ্রমোন উৎপাদনে সহায়তা করা। (xi) এতে বিভিন্ন ধরনের ক্যাটারন, হেমন- Cu²+, S²+, Fe²+, Mn²+ ইত্যাদি সঞ্জিত রাখা।

প্রভাসিমবারোন্ট (Endosymbical) : ইউন্যারিয়টিক কোষে বিদ্যামান কোরোপ্রাস্ট ও মাইটোকত্রিয়াকে কোষের জালেনিমবারোন্ট হিসেবে গণা করা হয়ে থাকে। ধারণা করা হয় ইউক্যারিয়টিক কোষ ছারা এভোক্যাগোসাইটোসিস ক্রিয়ায় ভক্ষণকৃত কিছু ব্যাক্টেরিয়া থেকে বিবর্তিত হয়ে এসব অপাণুর উৎপত্তি হয়েছে।

মাইটোকভ্রিয়নের বহিঃগঠন ও অভঃগঠনের সাথে কাজের আভঃসম্পর্ক

মাইটোকদ্রিয়ার বাইরের মেমব্রেনটি মূলত রক্ষণাত্মক ভূমিকা পালন করে। ভেতরের অংশকে রক্ষা করাই এর ৪৯ কাল। শক্তি উৎপানন কাজটি সংঘটিত হয় ভেতরের মেমব্রেন ছারা সৃষ্ট ক্রিস্টিতে। ক্রিস্টিতে ইলেকট্রন ট্রান্সপার্ট চেইচ্ন সব উপাদান সক্তিত থাকে এবং এখানেই শক্তি উৎপন্ন হয়। কাজেই মাইটোকদ্রিয়ার বহিঃগঠন রক্ষণাত্মক এবং অঞ্চতি কর্মধায়ক) বহিংগঠন কর্মধায়ক অংশের ভাঁচামাল ও উৎপন্ন দ্রব্য আদান প্রদান নিয়ন্ত্রণ করে থাকে।

কাজ : পোস্টার পেপারে পাশাপাশি ক্রোরোপ্লাস্ট ও মাইটোকব্রিয়ার চিত্র আঁকতে হবে। অন্তিত চিত্রে বিভিন্ন অ চিহ্নিত করতে হবে। চিত্রের নিচে পাশাপাশি একটি ছকে এদের মধ্যকার পার্থক্য লিখতে হবে।

উপকরণ : পোস্টার পেপার, পেলিল, রং পেলিল, জেল, ক্লোরোপ্লাস্ট ও মাইটোকক্রিয়ার চিত্র।

৬। প্লাস্টিড (Plastid)

স্থামা ও মানা সমৃত এবং লিলো-প্রোটন কিল্লি থারা সীমিত সাইটোপ্লাজমন্ত সর্ববৃহৎ ক্ষুদ্রাঙ্গের নাম প্রাস্টিত। ১৮৮ সালে লিলার (W. Schimper, 1856-1901) সর্বপ্রথম উদ্ভিদ কোষে সবুজ বর্ণের প্লাস্টিত লক্ষ্য করেন এবং এর নামক্ষ করেন ক্রোব্রাস্ট । পরবর্তীতে অন্যান্য প্লাস্টিত আবিষ্কৃত হয়েছে। আলোক অপুরীক্ষণ যন্তের সাহায়েই এদেরতে লালার যায় ছ্রাক্ট্রিয়া, গালাভ-সবুজ শৈবাল প্লভ্জমামেমন্তে তেতরে প্রবিষ্ট হয়ে থাইলাকয়েত সৃষ্টি করে এবং থাইলাকয়েত ক্লোরোঞ্চিল থারণ করে।

প্লাস্টিভ প্রধানত তিন প্রকার: যথা- (ক) লিউকোপ্লাস্ট, (খ) ক্রোমোপ্লাস্ট এবং (গ) ক্রোরোপ্লাস্ট। প্রাস্টিভঙ্গে মধ্যে ক্রোরোপ্লাস্ট সবচেয়ে ওরুত্বপূর্ণ।

(ক) দিউকোল্লাস্ট (Leucoplast) : এরা বর্ণহীন (leucos = বর্ণহীন)। আলোর সংস্পর্শে এলে লিউকোল্লাস্ট, বিশেষ করে ক্রোরোল্লাস্টে রূপান্তরিত হতে পারে।

অবহান: মূল, ছ্-নিমুছ কাও প্রভৃতি যে সব অঙ্গে সূর্যালোক পৌছায় না সে সব অঙ্গের কোষে লিউকোপ্লাস্ট অবহিত। আকার-আকৃতি: লিউকোপ্লাস্ট অর্ধবৃত্তাকৃতি, মূলাকৃতি বা নলাকৃতির হতে পারে।

্র্বারতেন : সন্ধ্যিত খাল্যের প্রকৃতির ওপর ভিত্তি করে লিউকোপ্লাস্টকে তিনভাগে ভাগ করা হয়। যথা-

আনাইলোপ্লাফ (amyloplast) : স্টার্চ বা শ্বেতসার জতীয় খান্য সঞ্চয়কারী লিউকোপ্লাস্টকে অ্যামাইলোপ্লাস্ট বলা হয়। ইলায়োপ্লাস্ট (elaioplast) : চর্বিজাতীয় খাদ্য সঞ্চয়কারী লিউকোপ্লাস্টকে ইলায়োপ্লাস্ট বলা হয়।

আলিউরোপ্রাস্ট (aleuroplast) : প্রোটিন সধায়কারী লিউকোপ্রাস্টকে <mark>আলিউরোপ্রাস্ট বা প্রোটিনোপ্রাস্ট</mark> বলা হয়। কাজ : খাদ্য সক্ষয় করে রাখা এবং শর্করা থেকে শ্বেতসার জাতীয় খাদ্য তৈরি করা এদের প্রধান কাজ।

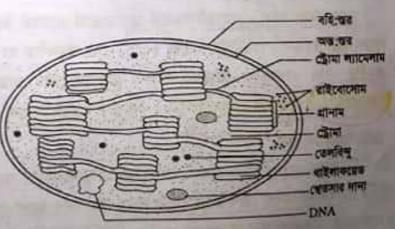
(খ) ক্রোমোপ্রাস্ট (Chromoplast) : রঙিন (chrome = রঙিন) প্রাস্টিডকে ক্রোমোপ্রাস্ট বলা হয়। ক্যারোটন (ক্মলা-লাল) এবং জাধ্যেফিল (হলুদ) লিগমেন্টের জন্যে এরা রঙিন হয়। আকৃতিতেও এরা ভিনুতর। উত্তিদের মে সম্ব বর্ণময় লে সব অঙ্গে ক্রোমোপ্রাস্ট থাকে। যেমন-কুলের পাপড়ি, রঙিন ফল ও বীজ, গাজরের মূল ইত্যাদি। সম্বর্ণ ক্রোরোপ্রাস্ট হতে ক্রোমোপ্রাস্ট সৃষ্টি হয়।

কাজ : ক্রোমোপ্লাস্টের উপস্থিতির জনা পূস্প ও পাতা রঙিন ও সুন্দর হয় তাই কীটপতঙ্গ আকৃষ্ট হয়ে প্রাণাতি সাহায্য করে। রঙের কারণে ফল এবং বীজের বিস্তারেও এদের ভূমিকা আছে। এদের পুথক খাদামূলা আছে।

(গ) ক্রোরোপ্রাস্ট (Chloroplast) : সবুজ বর্ণের প্রাস্টিভকে বলা হয় ক্রোরোপ্রাস্ট । ক্রোরোফিল-a, ক্রোরোফিল-b জারোটিন ও ল্লাছোফিলের সমন্বরে ক্রোরোপ্রাস্ট গঠিত। ক্রোরোফিল নামক সবুজ বর্ণকলিকা (pigment) অধিক মার্মার করে বলে এরা সবুজ বর্ণের। এতে অন্যান্য বর্ণকলিকাও কিছু কিছু পরিমাণে বিদ্যান্য থাকে। উদ্ভিদের অন্য ক্রোরোপ্রাস্ট অন্তার হক্তবুর্ণ অঙ্গাবু। ১৮৮৩ সালে বিজ্ঞানী শিস্পার সর্বপ্রথম উদ্ভিদ কোর্থে সবুজ্ঞ বর্ণের প্রাস্টিভ স্ করেন এবং নামকরণ করেন কোরোপ্লাস্ট। কোরোপ্লাস্ট খাদা সংশ্লেষে সাহায়া করে বলে কোষের রান্নাঘর' (kitchen of cell) বা 'বর্করা জাতীয় খাদ্যের কারখানা' (factory of synthesis of sugar) বলে এটি শক্তি ত্রপ্রত্বরে অসাপু

প্রতি কোবে সংখ্যা : এক হতে একাধিক। উচ্চপ্রেণির উদ্ভিদকোষে সাধারণত ১০ হতে ৪০টি কোরোপ্লাস্ট পাকে।
কিন্তু নিমুশ্রেণির উদ্ভিদকোষে সাধারণত আরও কম থাকে।

আকৃতি : উচ্চশ্রেণির উদ্ভিদকোষে ক্রোরোপ্লাস্টের আকৃতি সাধারণত লেনের মতো হয়ে থাকে। নিমুশ্রেণির উদ্ভিদকোষে এদের আকৃতি হরেক রকম হতে পারে, যেমন- পেয়ালাকৃতি (Chlamydomonas), সূর্পিলাকার (Spirogyra), জালিকাকার (Oedogonium), তারকাকার (Zygnema), ফিতা বা আংটি আকৃতির (Ulothrix), গোলাকার (Pithophara) ইত্যাদি। শ্রিবালে ক্রোরোপ্লাস্টের বৈচিত্র্য বেশি)


আকার : লেন্স আকৃতির ক্লোরোপ্লাস্টের ব্যাস সাধারণত ৩-৫ মাইক্রন। Spirogyra এর সর্পিলাকার ক্লোরোপ্লাস্ট সোজা অবস্থায় কোষের দৈর্ঘোর চেয়েও বেশি লখা।

উৎপত্তি : নিমুশ্রেণির উদ্ভিদে পুরাতন ক্লোরোপ্লাস্টের বিভাজনের মাধ্যমে নতুন ক্লোরোপ্লাস্টের উৎপত্তি হয়। উচ্চ শ্রেণির উদ্ভিদে আদি প্লাস্টিড হতে এদের উৎপত্তি হয়। আদি প্লাস্টিড ০.৫ মাইক্রন ব্যাসবিশিষ্ট একটি গোলাকার বস্তু। প্রতিটি আদি প্লাস্টিড ঘন ফ্রোমা (ধাত্র পদার্থ) একটি দ্বিরবিশিষ্ট আবরণী দ্বারা আবৃত থাকে। সূর্যালোকের উপস্থিতিতে ক্লোরোফিল সৃষ্টির সাথে সাথে আদি প্লাস্টিড পূর্ণাঙ্গ ক্লোরোপ্লাস্ট পরিণত হতে থাকে। আদি প্লাস্টিডের দ্বিত্তরবিশিষ্ট আবরণীর ভেতরের স্তর হতে ফোস্কা (vesicles) বের হয়ে আসে এবং ধাত্র পদার্থে সমান্তরালভাবে সক্ষিত্ত হয়। এ ফোস্কাগুলো মিলিত হয়ে একটি ল্যামেলাম তৈরি করে। কিছু কিছু স্থানে একাধিক ল্যামেলি গ্রানাম তৈরি করে। কিছু কিছু ল্যামেলি বিভিন্ন গ্রানার মধ্যে সংযোগ রক্ষা করে। এভাবে আদি প্লাস্টিড হতে সূর্যালোকের উপস্থিতিতে নতুন ক্লোরোপ্লাস্টের সৃষ্টি হয়। কিছুদিন সূর্যালোক না পেলে ক্লোরোপ্লাস্ট লিউকোপ্লাস্টে পরিণত হয়, তাই সবুজ অংশ কর্থিন হয়। ক্লোরোপ্লাস্টের গঠন : একটি পরিণত ক্লোরোপ্লাস্ট নিমুলিখিত অংশগুলো নিয়ে গঠিত। বুক্ত ক্লিবি DNA থাকি

১। আবরণী ঝিল্লি: সমস্ত ক্লোরোপ্লাস্ট একটি দুই স্তরবিশিষ্ট আংশিক অনুপ্রবিশ্য (semipermeable) মেমব্রেন (ঝিল্লি) দ্বারা আবৃত থাকে। ক্লোরোপ্লাস্ট মেমব্রেনে ফসফোলিপিড-এর পরিবর্তে গ্লাইকোসিল গ্লিসারাইড (glycosyl glyceride) থাকে। এটি একটি ব্যতিক্রমী গঠন।

পানিয়াহী, কলয়েডধর্মী মাাট্রিক্স তরলকে স্ট্রোমা (stroma) বলে। স্ট্রোমাতে 10S রাইবোলোম, অসমোফিলিক দানা, DNA, RNA, ইত্যাদি থাকে। এতে শর্করা তৈরির এনজাইমও থাকে। সালোকসংশ্রেষণে কার্বন বিজারণের মাধ্যমে শর্করা উৎপাদন প্রক্রিয়া (C3 বা C4 চক্র) স্ট্রোমাতে ঘটে

৩। থাইলাকয়েড ও গ্রানাম : স্ট্রোমাতে অসংখ্য আক্রতির 100-300 Å প্রস্তু বিশিষ্ট গ্রিমাত্রিক

চিত্র ১.১২: ক্লোরোপ্লাস্টের বিভিন্ন অংশ (সরদীকৃত)।

থলে আকৃতির 100-300 Å প্রস্থ বিশিষ্ট ত্রিমাত্রিক
সক্ষার গঠন বিদ্যমান। এদের প্রাইলাকয়েড (thylacoid) বলে। প্রত্যেকটি প্রাইলাকয়েডর ভেতরে একটি প্রকাষ্ট পাকে।
এ প্রকোষ্ঠে থাকে ক্লোরোফিল-a, ক্লোরোফিল-b, জ্যাস্থোফিল, ক্যারোটিন, লিপিড ও এনজাইম। এসর বস্তুকে একরে
কটিকাকার দানার মতো দেখায়। তখন এদের কোয়ান্টোসোম বলে। কতগুলো প্রইলাকয়েড একসাবে একটির ওপর আর
কটিকাকার দানার মতো দেখায়। তখন এদের কোয়ান্টোসোম বলে। কতগুলো প্রইলাকয়েড একসাবে একটির ওপর আর
একটি সক্ষিত হয়ে ভূপের মতো প্রাকে। প্রাইলাকয়েডর এ ভূপকে প্রানাম (granum, বন্থবচনে প্রানা) বলা হয়। ১০ থেকে

জীববিজ্ঞান-প্রথম পত্র

থাকে। একটি গ্রানামের আকার ০.৩-১.৭ / µm (মাইকোমিটার)। গ্রানাম ভেতরের পারে ঝিল্লির চক্রের কোয়ান্টোসোম নামক কিছু ফটিকার বস্তু থাকে।

8। त्यामा नगरमिन ঃ দুটি সংখ্যক গ্রানার কিছ পাশাপাশি থাইলাকয়েডস্ সৃক্ষ নালিকা দারা সংযুক্ত থাকে। এই সংযুক্তকারী নালিকাকে স্ট্রোমা ল্যামেলি (একবচন-ল্যামেলাম) বলে। এদের অভ্যন্তরেও কিছু পরিমাণ ক্রোকেল বিদ্যমান থাকে।

চিত্র ১.১৩ : কোরোপ্রাস্ট-প্রানামের ত্রিয়ানিক সন্ত্র শুঠন।

৫। ফটোসিনথেটিক ইউনিট ও ATP-synthases : থাইলাকয়েড মেমব্রেন বহু গোলাকার বস্তু বহন করে থাইলাকয়েড মেমব্রেনের ভেতরের গাত্রে অসংখ্য সালোকসংশ্লেষণকারী একক ও ATP সিস্থেসেস নামক বস্তু থাকে ATP-সিস্থেসেস নামক বস্তুতে ATP-তৈরির সকল এনজাইম থাকে। মেমব্রেনগুলোতে অসংখ্য ফটোসিনথেটিক ইউনি থাকে। প্রতি ইউনিটে ক্লোরোঞ্চিল-এ, ক্লোরোঞ্চিল-বি, ক্যারোটিন, জ্যান্থোঞ্চিল এর প্রায় ৩০০-৪০০টি অণু থাকে। এচ বিভিন্ন ধরনের এনজাইম, মেটাল আয়ন, ফসফোলিপিড, কুইনোন, সালফোলিপিড ইত্যাদি থাকে।

ও। DNA ও রাইবোসোম : একটি ক্লোরোপ্লাস্টের মধ্যে সমান আকৃতির প্রায় ২০০টি DNA অণু থাকতে পারে ক্লারোপ্লাস্টে তার নিজস্ব বৃস্তাকার DNA ও রাইবোসোম থাকে। এদের সাহায্যে ক্লোরোপ্লাস্ট নিজের অনুরূপ কু (reproduce) ও কিছু প্রয়োজনীয় প্রোটিন তৈরি বা সংগ্রেষ করতে পারে। বিজ্ঞানীদের ধারণা কোনো আদিকোষীয় DNA

ব্লাসায়নিক গঠন : রাসায়নিকভাবে ক্লোরোপ্লাস্ট প্রধানত কার্বোহাইড্রেট, লিপিড, প্রোটিন নিয়ে গঠিত। এছাড়া এট থাকে ক্লোরোফিল। প্রোটনের মধ্যে ৮০% হচ্ছে অদ্রবণীয় যা লিপিডের সঙ্গে একত্রে ঝিল্লি নির্মাণ করে. বাকি ২০ দ্রবর্ণীয় এবং এনজাইম হিসেবে থাকে। ক্লোরোপ্লাস্টের রয়েছে ক্লোরোফিল নামক সবুজ বর্ণকণিকা। এর ৭৫৭ জারোফিল-a)ও ২৫% ক্লোকিল-b) এছাড়াও রয়েছে সামান্য ক্যারোটিনয়েড ও নিউক্লিক অ্যাসিড।

- নালোকসংগ্রেহণ প্রক্রিয়ায় শর্করা লাতীয় খাদা প্রস্তুত করা ক্লোরোপ্লাস্টের প্রধান কাজ।
- (ii) সৌরশজ্জিকে জৈবিকশক্তিতে রূপান্তর করা এবং বায়ুর CO2 কে কোয়ান্টোসোমে সংবন্ধন করা। (iii) ক্লোপ্লাস্টের প্রয়োজনে প্রোটিন, নিউক্লিক আসিড তৈরি করা। (iv) ফটোফসফোরাইপেশন অর্থাৎ সূর্যাপোকের সাহাযো ADP-কে ATP-তে ব্রপান্তর করা।

- (vi) সাইটোপ্লাজমিক ইনছেরিটেপে সাহায্য করা।

ক্লারোপ্লাস্টের বহিঃগঠন ও অন্তঃগঠনের সাথে কাজের আন্তঃসম্পর্ক

কোরোপ্নাস্ট দিন্তর বিশিষ্ট আবরণী দারা আবদ্ধ অঙ্গাণু। আবরণীর কাজ রক্ষণাত্মক) ভেতরে ব্রৌমা, পাইলাকয়েড, কটোসিনখেটিক ইউনিটসমূহ মিলিতভাবে শর্করা জাতীয় খাদ্য তৈরি করে থাকে। ক্লোরোপ্লাস্টের অন্তঃগঠন কর্মবিধায়ক, উৎপাদক। বহিঃগঠন রক্ষণাত্মক এবং অভ্যন্তরে কাঁচামাল পাঠানো এবং অভ্যন্তর থেকে উৎপাদিত দ্রব্য বাইরে পাঠানো

নিয়স্ত্রণ করা। নিউকোপ্রাস্ট	কোমোলাস্ট	কোলোগ্রাস্ট		
১। এরা বর্ণহীন।	১। এরা রঙিন।	১। এরা সবুজ।		
২। মূল, ভ্নিমুস্থ কাও প্রভৃতি যেসব অঙ্গে সূর্যের আলো পৌছায় না সেনব অঙ্গের কোষে লিউকোপ্রাস্ট থাকে।	২। উদ্ধিদের যেসব অঙ্গ বর্ণময় বেমন- ফুলের পাপড়ি, রঙিন ফল ও বীজ, গাজরের মূল ইত্যাদিতে ক্রোমোপ্লাস্ট থাকে।	২। উদ্ভিদের সবুজ অঙ্গ যেমন- পাতা, ফুলের সবুজ বৃতি ও কচি কাণ্ডে ক্লোরোপ্লাস্ট থাকে।		
৩। এতে কোনো ধরনের পিগমেন্ট থাকে	্ত। এতে ক্যারোটিন, জ্যাছোফিল ইত্যাদি পিগমেন্ট থাকে।	্ডা- এতে ক্রোরোফল নামক রঞ্জক পদার্থ থাকে।		
না। ৪। এরা স্থালোকের উপস্থিতিতে কোমোপ্লাস্ট ও ক্লোরোপ্লাস্টে	৪। সূর্যালোকের উপস্থিতিতে ক্রোরোপ্লাস্ট হতে ক্রোমোপ্লাস্টে পরিণত হয়।	 ৪। স্র্যালোকের অনুপদ্ধিতিতে লিউকোপ্রাস্টে পরিগত হয় অর্থাৎ সবুজ অঙ্গ বর্ণহীন হয়ে যায়। 		
পরিণত হয়। (খাদ্য সঞ্চয় করে রাখা এবং শর্করা থেকে খেতসার জাতীয় খাদ্য তৈবি করা এর প্রধান কাজ।	 ৫। ফুলের পরাগায়ন এবং ফল ও বীজ বিস্তারের জন্য কীটপতঙ্গ ও প্রাণিকুলকে আকৃষ্ট করা এর প্রধান কাজ। 	৫। সালোকসংশ্রেষণ প্রক্রিয়ার মাধ্যমে শুর্করা জাতীয় খাদ্যপ্রস্তুত করা এর প্রধান কাজ।		

৭। সেন্ট্রিয়োল (Centriole)

প্রধানত প্রাণিকোষ ও কিছু সংখ্যক উদ্ভিদকোষে সেন্ট্রিয়োল থাকে। এরা নিউক্লিয়াসের কাছে অবস্থিত, স্থিজননক্ষমতা দীস্পন্ন এবং একটি গহরেকে ঘিরে ১টি ওচছ প্রান্তীয় মাইক্রোটিউবিউল নিৰ্মিত খাটো নলে গঠিত। বিজ্ঞানী Von Benden ১৮৮৭ সালে এটি আবিষ্কার)করেন এবং জার্মান জীববিজ্ঞানী Theodor Bovery ১৮৮৮ সালে এদের নামকরণ করেন।

বিস্তৃতি : শৈবাল, ছত্রাক, মসবগীয় উদ্ভিদ, ফার্নবগীয় উদ্ভিদ, নগুৰীজী উদ্ভিদে এবং অধিকাংশ প্রাণিকোষে সেন্ট্রিয়োল থাকে।

চিত্র ১.১৪ : সেন্ট্রোসোম ও সেন্ট্রিয়োল এর গঠন।

আদি কোষ, ভাষাটম, ঈস্ট ও আবৃতবীজী উদ্ভিদে এটি অনুপস্থিত। সাধারণত নিউক্লিয়াসের খুব কাছাকাছি এটি অবস্থান করে। সেন্সিয়োল জোড়ায় জোড়ায় অবস্থান করে। একজোড়া সেন্সিয়োলকে একসাথে ডিপ্লোসোম (diplosome) বলে।

ভৌত গঠন : এটি নলাকার, প্রায় ০.১৫-০.২৫ µm ব্যাসবিশিষ্ট। এরা দেখতে বেলনাকার, দুই মুখ খোলা পিপার মতো। প্রতিটি সেন্ট্রিয়োল তিনটি প্রধান অংশ নিয়ে গঠিত; যথা- (১) প্রাচীর বা সিলিভার ওয়াল (cylinder wall) (২) আমী অণুনালিকা বা ট্রিপলেটস (triplets) এবং (৩) যোজক বা লিংকার (linkers)। এদেরকে একত্রে সেন্ত্রিয়োল বলে। সেন্ডিয়োল আবরণী বেষ্টিত নয় এবং এতে কোনো DNA বা RNA থাকে না। এরা প্রোচিন কোণিত গঠিত।

সেন্দ্রিয়োগ প্রাচীর ঠিটি ত্রায়ী অণুনালিকা দিয়ে গঠিত। প্রত্যেক অণুনালিকা সমদূরে অবস্থিত এবং প্রত্যেকে তিনটি করে উপনাগিকা নিয়ে গঠিত। বিজ্ঞানী Threadgold (1968) পরপর সংলগ্ন তিনটি উপনাগিকাকে ভেতর খেকে বাইরের দিকে বধাক্রমে A, B ও C নামে চিহ্নিত করেন। উপনালিকাণ্ডলো পার্শ্ববর্তী অণুনালিকার সাথে এক প্রকারের ঘন উপাদানের সাহাযো হুক্ত থাকে। সেন্ট্রিয়োলের চারপাশে অবস্থিত গাঢ় তরল পদার্থকে সেন্ট্রোক্ষিয়ার (Centrosphere) সেন্ট্রোক্সার সেন্ট্রিয়োল ধারণ করে। সেন্ট্রোক্সার ও সেন্ট্রিয়োলকে একত্রে সেন্ট্রোসোম (Centrosome) বলে। সালে Bovery) সেন্ট্রোসোম নামকরণ করেন।

বাসায়নিক গঠন : সেন্ট্রিয়োল সাধারণত প্রোটিন, লিপিড ও ATP নিয়ে গঠিত।

সেরিয়োশের কাজ: (i) কোষ বিভাজনের সময় মাকৃতন্ত ঠিন করা। (ii) কোষ বিভাজনে সাহায্য করা। (iii) প্ল ও ফ্রাজেলাযুক্ত কোষে সিলিয়া ও ফ্র্যাজেলা সৃষ্টি করা। (iv) তক্রাণুর লেজ গুঠন করা।

৮। কোষীয় क्छान (Cytoskeleton)

সকল প্রকৃত কোষের সাইটোপ্লালমীয় অঙ্গাণুগুলোর অভর্বর্তী স্থানে কতগুলো সূত্রক সন্মিলিতভাবে জালিকার : গঠন তৈরি করে। এদেরকে কোষীয় কঙাল বা সাইটোঙ্কেলিটন বলে। বিজ্ঞানী কোল্টজফ (Koltzoff, 1928) হ সাইটোকেলিটন শব্দটি ব্যবহার করেন। সাধারণত প্রোটিন নির্মিত তিন ধরনের সূত্রক সমন্বয়ে কোষীয় কঙাল গঠি এগুলো হলো- মাইকোটিউবিউল্স, মাইকোফিলামেন্ট ও ইন্টার্মিডিয়েট ফিলামেন্ট। এরা কোষীয় চলনে এবং সেন্তিত সিলিয়া ও ফ্লাজেলা সৃষ্টিতে অংশগ্রহণ করে।

(১) মাইক্রোটিউবিউল্স (Microtubules) : মাইক্রোটিউবিউল্স অশার্থ, লম্বা ও নলাকার। এরা কোষ বিভায় করণ, আন্তঃকোষীয় পরিবহন এবং ফ্লাজেলা ও সিলিয়ার আন্দোলনে ভূমিকা পালন করে। বিজ্ঞানী রবার্ট ও জ্র (Robert ও Franchi) ১৯৫৩ সালে প্রাণীর স্নায়ুকোষে মাইক্রোটিউবিউলস আবিষ্কার করেন। বিজ্ঞানী Ledbetter এ Porter ১৯৫৩ সালে উত্তিদ কোষে এদের অবস্থান প্রথম প্রত্যক্ষ করেন।

ভৌত গঠন : প্রতিটি মাইক্রোটিউবিউল্স দেখতে লঘা, শাখাহীন, ফাঁপা টিউব জাতীয়। সাধারণত এদের ব্যাস ১৯ ২০ মিলিমাইক্রন এবং পদায় কয়েক মাইক্রন পর্যন্ত হয়। এদের এক প্রান্তকে '+' এবং অন্য প্রান্তকে '-' হিসেবে চিফি করা হয়।

রাসায়নিক গঠন : প্রতিটি মাইক্রোটিউবিউল্সে (১৩টি প্রোটোটিউবিউল সর্পিলাকারে সক্ষিত থাকে। মাইক্রোটিউ বিউল্লের প্রতিটি প্রোটোটিউবিউল (ভাইমেরিক) প্রোটিন দিয়ে গঠিত। এদের প্রতিটি প্রোটিন অণু α-β (আলফা-বিটা <mark>টিউবিউপিন (tubulin) প্রোটিন অণু দিয়ে গঠিত।</mark>

অবস্থান : এরা ফ্ল্যাজেলা, সিলিয়া ইত্যাদির উপ-গাঠনিক উপাদান হিলেবে অবস্থান করে, ক্রোমোসোমের সেট্রোমিয়ারের সাথে সংযুক্ত থাকে, স্পিতল ফাইবারে থাকে, সেন্মিয়োল ও বেসাল বডিতে थाटक ।

मायुर्काछिडिविडेन्म-धद काछ :

<u>ম্যাজেলা, সিলিয়া</u> ইত্যাদির আন্দোলনে সাহায্য করে।

কোষ বিভাজনের সময় মাইটোটিক <u>আাপারেটাস</u> তৈরি করে: সেন্ট্রোমিয়ারের সাথে সংযুক্ত হয়ে ক্রোমোসোমকে পুথক করতে এবং বিপরীত মেরুতে পৌছাতে সাহায্য 李13.1

किंद 2.30 : माइटकाविडेविडेन्न-अव गर्टन व व्यवहर्त।

- (III) <u>भारेटकार्लारेजिलात दिनााम निर्मान करत । अत्रा काथ श्राठीत गर्ठत्न</u> अशाया करत ।
- (IV) এরা সাইটোক্ষেলিটন বা <u>রোঘীয় কণ্ণাল হিসেবে কাজ করে এ</u>বং কোয়কে দৃঢ়তা প্রদান করে।
- (v) মেল মেমব্রেন, নিউক্লিয়ার এনতেলপ ও অন্যান্য অঙ্গাণুর সাথে সংযুক্ত থেকে এদের সাথে যোগাযোগ ও পরিবর্ত কার্যে সাহাধ্য করে।

(২) মাইজেফিলামেন্ট (Microfilaments) : প্রকৃত কোষের সাইটোপ্লাজমে প্রোটন দিয়ে তৈরি যেসব অভিসূত্র সংকোচনশীল তম্ভ কোষের চলনে অংশগ্রহণ করে তালের মাইক্রোফিলামেন্ট বলে। বিভানী প্যালেভিজ (Paleviz, 1974) প্রথম কোষে এদের অবস্থান পর্যবেক্ষণ করেন। এদেরকে অ্যাকটিন ফিলামেন্টও (actin filaments) বলা হয়। এওলো কোষ বিশ্লির নিচে ফিতার ন্যায় বিন্যস্ত থেকে অবস্থান করে।

গঠন : মাইক্রোফিলামেন্ট সরু, লম্বা, সংকোচনশীল ও প্যাচানো দিতন্ত্রী। সাধারণত এদের ব্যাস 30-60Å পর্যন্ত হয়।

এরা আকটিন ও মায়োসিন প্রোটিন দিয়ে গঠিত।

কাজ: (i) কোষের আকৃতি দান ও যান্ত্রিক দৃঢ়তা প্রদানে অংশগ্রহণ করে।

- (ii) এরা সাইটোপ্লাজমীয় চলন, ফ্যাগোসাইটোসিস, পিনোসাইটোসিস ইত্যাদি নিয়ন্ত্রণ করে।
- (iii) এরা কোষের <mark>সাইটোকাইনেসিস ঘ</mark>টিয়ে কোষ বিভাজনে সহায়তা করে।
- (iv) কোষীয় অঙ্গাণুর অবস্থান পরিবর্তনে অংশগ্রহণ করে।
- (v) এরা ক্রোমোসোমের বিপরীত মেরুতে চলনে সাহায্য করে।
- (৩) ইন্টারমিডিয়েট ফিলামেন্ট (Intermediate filaments) : এগুলো মাইক্রোটিউবিউল্স ও মাইক্রোফিলামেন্টের মধ্যবর্তী এক ধরনের তম্ভ। এদের আকৃতি প্রায় 10 nm (ন্যানোমিটার) ব্যাসবিশিষ্ট ফিলামেন্ট। এগুলো প্রোটিন দিয়ে গঠিত। বিভিন্ন কোম্<mark>ছেচার ধরনের ইন্টারমিডিয়েট ফিলামেন্ট পাওয়া যায়, যেমন- কেরাচিন, ল্যামিন, নিউরোফিলামেন্ট</mark> এবং ভাইমেন্টিন।

কাজ: (i) এরা কোষের আকৃতি দান ও যান্ত্রিক দৃঢ়তা প্রদানে অংশগ্রহণ করে।

(ii) কোষের অন্যান্য তম্ভকে যথাস্থানে রাখতে সহায়তা করে।

১ পোরঅন্সিসোম (Peroxisome) 2 ()

পারঅব্রিসোম প্রায় সব ধরনের কোষে দেখা গেলেও প্রাণীর কিডনি ও লিভার কোষে অধিক থাকে। অমসূণ এভোপ্লাজমিক রেটিকুলামের আউটপকেটিং-এর মাধ্যমে এরা তৈরি হয়। এরা এক আবরণী বিশিষ্ট, ব্যাস ০.২-১৭ µm, ভেতরে দানাদার। এর ভেতরে ক্রিস্টাল বা দানার আকারে সঞ্চয়ী এনজাইম জমা থাকে। এর মধ্যে catalase প্রধান এনজাইম। এদেরকে মাইক্রোসোম (microsome) নামেও অভিহিত করা হয়। ১৯৬৭ সালে বেলজিয়াম সাইটোলজিস্ট Christian de Duve কোষের সাইটোপ্লাজম থেকে পারঅব্রিসোম অঙ্গাণুটি আবিদ্ধার করেন। এই এনজাইম 2H2O2 (হাইড্রোজেন পারঅক্সাইড)কে 2H2O + O2 (পানি ও অক্সিজেন)-এ রূপান্তরিত করে H2O2 বিষতুলা তাই catalase এনজাইমের সাহায্যে H_2O_2 কে H_2O ও O_2 এ রূপান্তর করে কোষকে রক্ষা করে। এছাড়া কোষে অপ্রিজেনের ঘনত নিয়ন্ত্রণ করাও এদের কাজ। O2 প্রয়োজনীয়, কিন্তু অধিক হলে কোষের জন্য ক্ষতিকর। এছাড়া কো-এনজাইম NAD পুনঃউৎপাদনে, DNA এবং RNA এর নাইট্রোজেন ক্ষারসমূহ ভাঙতে (breakdown) এবং পুনঃউৎপাদনে (recycling) পারঅক্সিসোমের ভূমিকা আছে।

১০ ৷ গ্রাইজঙ্গিসোম (Glyoxisome)

বীজের লিপিড সঞ্চয়ী কোষে এদেরকে দেখা যায়। এদের কাজ হলো বীজের অনুরোদগমকালে লিপিডকে ভেঙ্গে গ্রহণোপযোগী চিনিতে পরিণত করা যাতে করে ফটোসিনথেসিসের মাধ্যমে নিজের খাদ্য তৈরির আগ পর্যন্ত অতুরিত চারার বৃদ্ধি অব্যাহত থাকে। এরাও আবরণী বিশিষ্ট।

১১। কোষ গহরর (Cell Vacuole)

সাইটোপ্লাজমে দৃশ্যত যে ফাঁকা অংশ দেখা যায় তাই কোষ গহরর। অপরিণত কোষে এদের সংখ্যা জনেক থাকে এবং আকারে অত্যন্ত ছোট থাকে। কিন্তু পরিণত উদ্ভিদ কোষে সবগুলো গহরর মিলিতভাবে একটি বুড় আকৃতির গহরে সৃষ্টি করে। প্রোটোপ্রাক্তম দিয়ে গঠিত যে পাতলা পর্দা এ গহেরকে বেইন করে থাকে তাকে <mark>টনোপ্রাস্ট (to</mark>noplast) বলে। এ পর্দা বাবার জাতীয় কোষ গহররের অভ্যন্তরের রসকে কোষরস বলে। কোষ রসে পানি, নানা প্রকার অজেব লবণ, ভোব অ্যাসিড, শর্করা, আমিষ ও চর্বি জাতীয় বিভিন্ন যৌগিক পদার্থ, বিভিন্ন প্রকার রং ইত্যাদি বিদ্যমান থাকে।

কাজ : (i) কোষরস ধারণ করা। (ii) প্রয়োজনীয় বর্জা পদার্থ ধারণ করা। (iii) এরা কোষের অভান্তরের pH রক্ষা

করে। (iv) এরা কোষের ভেতরের পানির চাপ রক্ষা করে।

১.৪ নিউক্লিয়াস (Nucleus)

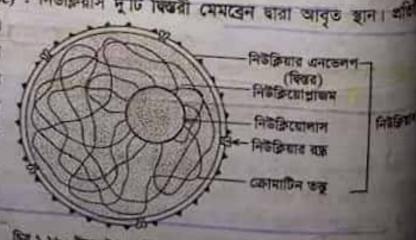
প্রকৃত কোষে যে অঙ্গাণু ছিত্তরবিশিষ্ট ভবল আবরণী বেষ্টিত অবস্থায় প্রোটোপ্লাজমিক রস ও জেনমাটিন জাপিক। করে তাই নিউক্লিয়াস। নিউক্লিয়াসকে কোষের মণ্ডিছ, প্রাণকেন্দ্র, কেন্দ্রিকা ইত্যাদি নামেও অভিহিত করা হয়। বৰ্ষ স (Robert Brown) ১৮৩১ সালে <mark>অর্কিড (রাস্না) পত্রকোষে নিউক্লিয়াস আবিষ্কার ও নামকরণ করেন। স্যাটিন Nur</mark> nut থেকে Nucleus শব্দের উৎপত্তি।

সংখ্যা ও বিষ্ঠি : প্রতি কোষে সাধারণত একটি নিউক্রিয়াস থাকে। আদি কোষে কোনো নিউক্রিয়াস থাকে। সংখ্যক প্রকৃত কোষ, যেমন সভ কোষ মানুষের লোহিত রক্ত কণিকা প্রভৃতিতে পরিণত অবস্থায় নিউক্লিয়াস থাকে অনেক কোষে একাধিক নিউক্লিয়াসও থাকতে পারে, যেমন- Vaucheria, Botrydium, Sphaeroplea ইত্যাদি শৈক Penicillium সহ কতিপয় ছত্রাক। রহু নিউক্রিয়াস বিশিষ্ট এ ধরনের গঠনকে(সিনোসাইট (Coenocyte) বলা হয়।,

আকৃতি: নিউক্লিয়াস সাধারণত বৃত্তাকার হয়। কোনো কোনো ক্লেত্রে উপবৃত্তাকার, ফিউজিফরম (মূলাকার), পাঁচ্চ থালার মতো এবং শাখাখিতও হতে পারে।

অবস্থান: নিউক্লিয়াস সাধারণত কোষের মাঝখানে অবস্থিত থাকে; কোষ গহের বড় হলে নিউক্লিয়াসটি কিনারার নি অবস্থান করে।

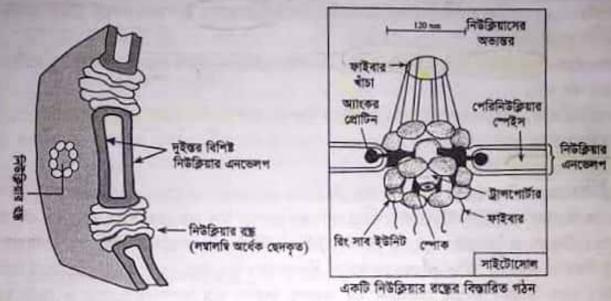
আকার ও আয়তন : আকার ও <u>আয়ুতনে এটি ছোট বড় হতে পারে। গোলাকার নিউক্লিয়াসের ব্যাস সাধারণত র</u> মাইক্রন। সচরাচর এটি কোষে ১০-১৫% স্থান দখল করে থাকতে পারে। স্পার্ম বা ক্তরাণুর প্রার্থ ৯০% নিউক্লিয়ান।


নিউক্লিয়াসের কাজ : নিউক্লিয়াস কোনের <mark>সব ধরনের জৈবিক কাজ নিয়ন্ত্রণ করে।</mark> তাই একে কোষের মন্তিচ, ক্লো প্রাণ বা প্রাণকেন্দ্র বলা হয়। এতে ক্রোমোসোম থাকে যার ছারা বংশ পরম্পরায় জীবের বৈশিষ্ট্য রক্ষা পায়। এরা RNA প্রোটিন সংশ্লেষণে বিশেষ ভূমিকা পালন করে।

রাসায়নিক গঠন : রাসায়নিকভাবে এটি মূলত <mark>নিউক্লিক অ্যাসিড ও প্রোটিন স</mark>িরে গঠিত। এতে থাকে সাধারণ পরি লিপিড, এনজাইম, DNA এবং সামানা RNA, কিছু পরিমাণ কো-এনজাইম ও অন্যান্য উপাদান। একটি আদর্শ নিউক্লিয়াসের গঠন

নিয়লিখিত চারটি অংশ নিয়ে একটি নিউক্লিয়াস গঠিত হয়— (সু নিউক্লিয়ার এনভেলপ, (খু নিউক্লিয়োপ্লাজম, । নউক্লিয়োগাস এবং (ম) নিউক্লিয়ার রেটিকুলাম বা ক্রোমাটিন তম্ভ

(ক) নিউক্লির এনভেদপ (Nuclear envelope) : নিউক্লিয়াস দু'টি বিস্তরী মেমব্রেন হারা আবৃত স্থান। মান


মেমব্রেন দ্বিপ্তরী ফসফোলিপিড বাইলেয়ার দারা গঠিত। প্লাজমামেমপ্রেন এবং অধিকাংশ অঙ্গাণুর আবরণী একটি ছিন্তরী মেমব্রেন ছারা গঠিত। নিউক্লিয়াসের আবরণীকে নিউক্লিয়ার অনভেলপ বলা হয়। নিউক্লিয়ার অন্তেলপে সর্বটেই বিশেষ ধরনের অসংখ্য ভিদ্র পাকে যা অন্যান্য আবরণীতে থাকে না। হিদের ব্যাস ১ nm. ছিন্তের কাছে দুটি আবরণী এক সাথে মিলিত থাকে। প্রতিটি ছিদ্র সংকোচন-প্রসারগানীল। একটি গ্রোটিন নেটভয়াৰ্ক খাৱা এর সংকোচন-প্ৰসাৱণ নিয়ঞিত হয়।

চিত্ৰ ১.১৬ : ইলেকটন অনুধীকলে দৃষ্ট নিউক্লিয়াস ও এর বিভিন্ন কলে।

হিটটিকে থিয়ে চারণাণে বৃত্তাকারে প্রোটিন গ্রানিউল থাকে এবং মাঝখানে একটি অপেকাকৃত বড় আকারের প্রোটিন থাকে একে ট্রালগোটার সলে। আকের প্রোটিন খারা ট্রালপোটার নিউক্লিয়ার এনভেগপের সাথে সংযুক্ত

প্রোটিনতলো স্পোক ঘারা পরস্পর সংযুক্ত থাকে। প্রোটিন-এ সাবইউনিট ও ফাইবার থাকতে পারে। নিউক্লিয়াসের ভেতরের দিকে একটি ফাইবার থাচার মাধ্যমে সবস্তলো প্রোটিন একসাথে খুলে থাকে। মেটি ৮টি প্রোটিন গ্রানিউল মারা ছিদ্রটি নিয়ন্ত্রিত। কেন্দ্রীয় প্রোটিনটি বিভিন্ন দ্রব্য, বিশেষ করে বড় অণু যেমন- RNA; নিউক্রিয়াসের ভেতর থেকে বাইরে এবং বাইর থেকে ভেতরে পরিবহনে প্রধান ভূমিকা পালন করে। কোনো কোনো স্থানে নিউক্লিয়ার এনভেলপের বাইরের আবরণী অন্যকোনো অঙ্গাণুর, বিশেষ করে এভোপ্লাজমিক রেটিকুলামের সাথে সংযুক্ত থাকে।

চিত্র ১.১৭ : নিউক্রিয়ার রছের গঠন।

নিউক্লিয়ার এনভেলপ-এর কাজ: (i) সাইটোপ্লাজম হতে নিউক্লিয়োপ্লাজম, নিউক্লিয়োলাস এবং ক্রোমাটিন জালিকাকে পূথক করা এবং সংরক্ষণ করা। (ii) অভ্যন্তরীণ দ্রব্য ও বহিস্থ সাইটোপ্লাজমের মধ্যে যোগাযোগ রক্ষা ও পরিবহন করা। (iii) এভোপ্লাজমিক রেটিকুলামের সাথে যুক্ত হয়ে নিউক্লিয়াসের অবস্থানকে দৃঢ় করা। (iv) অভ্যন্তরে উৎপন্ন উপাদান রক্ষের মাধ্যমে সাইটোপ্লাজমে পাঠানো।

(ব) নিউক্লিয়োপ্লাজম (Nucleoplasm) : নিউক্লিয়ার এনভেলপ হারা আবৃত স্বচ্ছ, ঘন ও দানাদার তরল পদার্থই নিউক্লিয়োপ্লাজম। একে ক্যারিওলিক্ম-ও বলে। এটি নিউক্লিয়াসের অভ্যন্তরস্থ প্রোটোপ্লাজমিক রস। প্রোটোপ্লাজমের বৈশিষ্ট্যসমূহ এতে বিদ্যমান। নিউক্লিয়োলাস এবং ক্রোমোসোম এতে অবস্থান করে।

নিউক্লিয়োপ্লাজমের কাজ: (i) ক্রোমাটিন জালিকা ধারণ করা, (ii) নিউক্লিয়োলাস ধারণ করা, (iii) নিউক্লিয়াসের বিভিন্ন জৈবনিক কাজে সাহায্য করা, (iv) এনজাইমের কার্যকলাপের মূল ক্ষেত্র হিসেবে কাজ করা।

সাইটোপ্রাজম ও নিউক্লিয়োপ্রাজমের মধ্যে পার্থক্য

সাইটোপ্লাজমের মতো নিউক্লিয়োপ্লাজমও রাসায়নিকভাবে অজৈব ও জৈব উপাদান দিয়ে গঠিত। সাইটোপ্লাজমের ন্যায়
এটি কলয়ভাল নয়, এটি এমার্ফাস (amorphous)। এতে প্রোটিন ও নিউক্লিক আসিডের পরিমাণ অনেক বেশি। এতে
আছে ক্ষারীয় প্রোটিন, অস্লীয় প্রোটিন, সেডিমেন্টেবল প্রোটিন, কো-এনজাইম, আসিটাইল কো-এ ইত্যাদি। এতে কোনো
পিগমেন্ট থাকে না। ক্রোমোসোম গঠনের মৌলিক উপাদান সমৃদ্ধ হলে নিউক্লিয়োপ্লাজম সাইটোপ্লাজমের অপাপুসমূহ
এখানে অনুপত্তিত।

(গ) নিউক্লিয়োলাস (Nucleolus) : নিউক্লিয়াসে যে ছোট ও অধিকতর ঘন গোলাকার বস্তু দেখা যায় তাই নিউক্লিয়োলাস। বিজ্ঞানী ফুন্টানা (Fontana) ১৭৮১ সালে সর্বপ্রথম নিউক্লিয়াসের অন্তান্তরে এটি দেখতে গান এবং ১৮৪০ সালে বোমাান (Bowman) এর নামকরণ করেন। অবস্থান : নিউক্লিয়োলাস সাধারণত নির্দিষ্ট কোমোসোমের একটি নির্দিষ্ট স্থানে লাগানো থাকে। ক্রোমোনে

হানটিতে এটি লাগানো থাকে সে হানটিকে বলা হয় SAT বা সেটেলাইট।

সংখ্যা : প্রতি নিউক্লিয়াসে সাধারণত একটি নিউক্লিয়োলাস থাকে। সাধারণত যে সব কোষে প্রোটিন সংগ্রেণ সংবাদ বাত নিউক্লিয়ালে নিউক্লিয়োলাস থাকে না। যে সব কোষে গ্রোটিন সংশ্রেষণ বেশি পরিমাণ হয় সে স্ব

নিউক্লিয়াসে একাধিক নিউক্লিয়োগাস থাকতে পারে।

উৎপত্তি: SAT ক্রোমোসোমের সেটেলাইটে অবস্থিত জিন নিউক্লিয়োলাস উৎপাদনে প্রত্যক্ষ ভূমিকা পালন কর

যথেট প্রমান পাওয়া গিয়েছে।

ভৌত গঠন : এর কোনো ঝিরি আবিষ্ঠ হয়নি ৷ নিউক্লিয়োলাসকে সাধারণত তন্ত্রময়, দানাদার ও ম্যাট্রিস্ব -৫ क्षरण जान करा यारा।

রাসায়নিক গঠন : নিউক্লিয়োগাসের প্রধান রাসায়নিক উপাদান হলো প্রোটিন, RNA এবং <u>যৎসামান্য DNA।</u> নিউক্লিয়োলাসের কাজ : (i) বিভিন্ন প্রকার RNA সংশ্লেষণ করা, (ii) প্রোটিন সংশ্লেষণ ও সংরক্ষণ কর

নিউক্লিয়োটাইডের ভারার হিসেবে কাজ করা।

(ম) নিউক্লিয়ার রেটিকুলাম বা ক্রোমাটিন তম্ভ (Nuclear reticulum or Chromatin fibre) : কোন্ধে বি অবস্থায় (অ-বিভাজন অবস্থায়) নিউক্লিয়াসের ভেতরে জালিকার আকারে কিছু তম্ভ দেখা যায়। তম্ভঘটিত এই জালিক নিউক্লিয়ার ব্রেটিকুলাম বা ক্রোমাটিন তম্ভ বলা হয়। নিউক্লিয়াসের বিভাজনরত অবস্থায় বা পর্যায় মধ্যক অবস্থায় হৈ স বা বস্তু ফুলজিন বং নেয় সেই বস্তুকে বলা হয় ক্রোমাটিন। প্রকৃতপক্ষে DNA এবং এর সাথে সাথী প্রোটিনের মিনিক্স জ্ঞোমাটিন। কোম বিভাজন অবস্থায় জ্ঞোমাটিন তম্ভ ক্রমাগত কুওলিত হয়ে অপেকাকৃত খাটো ও মোটা হয়ে পুৰ পৃথকভাবে সুনির্দিষ্ট সংখ্যা ও আকৃতিতে দৃশ্যমান হয় তখন এদেরকে ক্রোমোসোম বলা হয়। প্রত্যেক নিউক্লিয়াট সাধারণত প্রজাতির বৈশিষ্ট্য অনুসারে নির্দিষ্ট সংখ্যক ক্রোমোসোম থাকে। সাধারণ অণুবীক্ষণ যন্ত্রের সাহায্যে কেংগদ বিভাজনরত কোষেই বিশেষ রল্পন পদ্ধতিতে এদেরকে দেখা যায়। প্রতিটি ক্রোমোসোমে এক বা একাধিক সে**টোমিয়া** দু'টি ক্রোমাটিভ এবং কোনো কোনো ক্রোমোসোমে সেটেলাইট থাকে। ক্রোমোসোমে জিন অবস্থিত এবং জিন**ং**মে প্রজাতির চারিত্রিক বৈশিষ্ট্য প্রকাশের জন্য দায়ী।

ক্রোমোসোমের রাসায়নিক গঠন : রাসায়নিকভাবে প্রতিটি ক্রোমোসোম DNA, RNA, হিস্টোন ও নন-হিস্টো প্রোটিন দিয়ে গঠিত; এ ছাড়া কিছু ক্যালসিয়াম এবং ম্যাগনেসিয়াম ধাতু আছে। কতগুলো নিউক্লিয়োটাইডের সম্পর । তথ্যা চিচ্চ ANG থাকত।

নিউক্লোর রেটিকুলামের কাজ : (i) বংশগতির বৈশিষ্ট্যের ধারণ ও বাহন হিসেবে কাজ করা, (ii) মিউটেশন, প্রকা সৃষ্টি ইত্যাদি কাজেও মুখ্য ভূমিকা পালন করা।

কাল : পোন্টার পেপারে বড় করে একটি নিউক্লিয়াসের চিত্র আঁকতে হবে এবং বিভিন্ন অংশ চিহ্নিত করতে 💢 এবার নিউক্লিয়াস ও নিউক্লিয়োগাসের মধ্যকার পার্থকা একটি ছকে উপস্থাপন করতে হবে।

উপকরণ। গোন্টার-পেপাত, পেলিল, রং লেলিল, ভেল, ইত্যাদি।

কোষস্থ নিজীব বস্তু (Ergastic substances) : কোষীয় বিপাক ক্রিয়ায় সৃষ্ট বহু নিজীব বস্তু কোষের সাইটোপ্লাজী এবং কোৰ গদেরে জনা হয়। নিজীব বস্তুতলো দ্রবীভূত অবস্থায়, ক্রিস্টাল হিসেবে, ফোঁটা বা দানাদার বস্তু হিসে অবস্থান করতে পারে। নির্জীব বস্তুত্তপাকে প্রধানত তিন প্রোনিতে ভাগ করা যায় : (क) সঞ্জিত পদার্থ, (খ) নিঃস্তুত পদা बाबर (श) वर्ता शनार्थ। TRAIN DEN

(ক) স্থিত পদার্থ (Reserve materials) : প্রধান প্রধান স্থিত পদার্থত্বলা হলো-পর্করা (কার্বোহাইড্রেট), জান (জ্যোটিন) এবং চর্বি (লিপিড)। দ্রবদীয় শর্করার মধ্যে থাকে মুকোজ, চিনি, ইনুপিন। অদ্রবদীয় শর্করার মধ্যে বার্কে

স্টার্চমেইন (শেভসার দানা), সেলুগোজ এবং গ্লাইকোজেন তিল এবং চবি সাধারণত ফোটা ফোটা হিসেবে সাইটোলাজমে বিরাজ করে। আমিষ তথা নাইটোজেনঘটিত সঞ্চিত পদার্থগুলো তরল এবং নিরেট উভয় অবস্থায় বিরাজ করে। সঞ্জিত পদার্থের অধিকাংশই সঞ্জিত খাদ্য হিসেবে বিরাজ করে।

(ব) নিঃসৃত পদার্থ (Secretory products) : প্রধান প্রধান নিঃসৃত পদার্থ হলো পিগমেন্ট, এনজাইম, হরমোন এবং নেকটার। ক্রোরোফিল, এনপ্রোসায়ানি- ক্যারোটিনয়েড ইত্যাদি উল্লেখযোগ্য পিগমেন্ট।

(গ) বজ্ঞা পদার্থ (Excretory products) : বর্জা পদার্থসমূহ অধিকাংশই প্রোটোপ্লাজমের মেটাবলিক কার্য প্রক্রিরায় উপজাত হিসেবে উৎপন্ন হয়। উদ্ভিদে বর্জা পদার্থ নির্গয়নের পূথক তন্ত্র না থাকায় এরা কোনে জমা হয়। উল্লেখযোগ্য বর্জা পদার্থসমূহ হলো রেজিন, ট্যানিন, গাম, গাটেন্ত্র আলকালয়ে, অর্গানিক আসিড, উদ্বায়ী তেল এবং খনিজ ক্রিস্টাল। প্রধান খনিজ ক্রিস্টাল হলো ক্যালসিয়াম অল্পালটি কখনো এরা স্কৃচের মতো আকারে অবস্থান করে। তখন একে বলা হয় রাফাইও আসুরের থোকার মতো ক্যালসিয়াম কার্বনেটের ক্রিস্টালকে বলা হয় সিস্টোলিত cystolith)।

কাজ: চার্ট তৈরি-সাইটোপ্লাজমের অঙ্গাণুগুলোর নাম, গঠন ও কাজ। উপকরণ: পোস্টার পেপার, রংপেশিল, ইরেজার ইত্যাদি। একটি বড় পোস্টার পেপারে একটি ছক কেটে বামপাশে অঙ্গাণুগুলোর নাম ও সংক্ষিপ্ত চিত্র, মাঝখানের ঘরে এদের গঠন এবং ভানপাশের ঘরে এদের কাজ লিখে একটি ছক তৈরি করতে হবে। ছকটি পাঠককে বা শ্রেণিকক্ষে ঝলাতে হবে।

জীবের বিভিন্ন কার্যক্রমে কোষের অবদান: জীবের গঠন ও কার্যের একক হলো কোষ। জীবদেহের সকল কার্যক্রম কোষভিত্তিক। গ্লাইকোলাইসিস, শ্বসন, ফটোসিনথেসিস, কোষ বিভাজন ও বৃদ্ধি, প্রোটিন সিনথেসিস, এনজাইম তৈরি ইত্যাদি প্রক্রিয়ার রাসায়নিক বিক্রিয়াসমূহ সবই কোষের সাইটোপ্লাজম বা অঙ্গাণুগুলোতে সংঘটিত হয়। জীবের সকল কার্যক্রমের আধার হলো কোষ।

ক্রোমোসোম (Chromosome)

ক্রোমোসোম নিউক্লিয়াসের অন্যতম বস্তু। প্রত্যেক নিউক্লিয়াসে প্রজাতির বৈশিষ্ট্য অনুসারে সাধারণত একটি নির্দিষ্ট সংখ্যক ক্রোমোসোম থাকে। সাধারণত একই প্রজাতির বিভিন্ন নমুনায় ক্রোমোসোম সংখ্যা একই থাকে। আদি কোষে কোনো সুগঠিত নিউক্লিয়াস না থাকাতে তাতে কোনো সুগঠিত ক্রোমোসোম থাকে না। তবে ক্রোমোসোমের প্রধান উপাদান DNA (কতক ভাইরাসে RNA) বিদ্যামান থাকে। এদেরকে আদিক্রোমোসোম (prochromosome) বলা হয়। আলোক অণুবীক্ষণ যজে বিভাজনরত কোষে ক্রোমোসোম দেখা যায়। এ জন্য সাধারণত বিশেষ রঞ্জক দ্রব্য ব্যবহার করা হয়।

কোষস্থ নিউক্লিয়াসের মধ্যে অবস্থিত অনুলিপন ক্ষমতাসম্পন্ন, রং ধারণকারী এবং নিউক্লিয়োপ্রোটিন দারা গঠিত যে সব স্থাকৃতির ক্ষ্মান্ত বিংশগতীয় উপাদান, মিউটেশন, প্রকরণ প্রভৃতি কাজে ভূমিকা পালন করে তাদেরকে ক্রোমোসোম বলে। ক্রোমোসোম কখনো কখনো নিউক্লিয়াসের বাইরে সাইটোপ্লাজমেও থাকতে পারে।

আবিষ্কার : Karl Nagli (1842) সর্বপ্রথম উদ্ভিদ কোষের নিউক্লিয়াসে ক্রোমোসোম প্রত্যক্ষ করেন। E. Strasburger (1875) কোষ বিভাজনের সময় সূতার মতো কিছু গঠন লক্ষ্য করেন। Walter Flemming (1888) এসব সূতার মতো গঠনগুলোকে ক্রোমাটিন (chromatin) নামকরণ করেন। বর্ণধারণ ক্ষমতার জন্য W. Waldeyer (1888) এদের ক্রোমোসোম নামকরণ করেন। মিক Chroma অর্থ colour (বর্ণ) এবং soma অর্থ body (দেহ)। কাজেই ক্রোমোসোম অর্থ হলো 'রঞ্জিত দেহ' বা 'রং ধারণকারী দেহ'। কারণ এরা ক্তগুলো বেসিক রং ধারণ করতে পারে। Sutton ও Boveri (1902) ক্রোমোসোমকে বংশগতীয় বৈশিষ্ট্যের বাহক ও ধারক হিসেবে বর্ণনা করেন। Theophilus Painter (1921) সর্বপ্রথম মানুষের ক্রোমোসোম সংখ্যা প্রকাশ করেন।

সংখ্যা : প্রজাতির বৈশিষ্ট্যভেদে এর সংখ্যা ২ হতে ১৬০০ পর্যন্ত হতে পারে। কার্যনীয় উরিগে গর্মোক্ত সংখ্যক ক্রোমোনোম পাওয়া গিয়েছে Ophioglossum reticulatum ১২০০। পুস্পক উদ্ভিদে সর্বনিম সংখ্যক ক্রোমোনোম পাওয়া শিয়েছে Haptopappus gracilis, 2n = 4 এবং সর্বাধিক সংখ্যক Poa littarosa, 2n = 506 - 530। প্রাণীতে স্থান 2, (গোলকৃষি = Ascaris megalocephalus sub. sp. univalens) এবং সর্বাধিক 2n = 1600 (রেডিওলারিছা হে, (শোক্ষের = Aulacantha sp. এ)। এখানে উল্লেখযোগ্য যে, এখনো সমস্ত জীবজগতের ১০ ভাগও ক্রোমোনের করা হয়নি। উচ্চতর জীবে সাধারণত প্রতি দেহকোষে ক্রোমোসোম সংখ্যা ২ হতে ৮০-এর মধ্যে থাকে।

নিচে কয়েকটি উত্তিদ এবং প্রাণীর ডিপ্লয়েড (2n) ক্রোমোসোম সংখ্যা উল্লেখ করা হলো—

উদ্ভিদের নাম	বৈজ্ঞানিক দাম	व्यक्तारमारमाम अस्था (2n)	প্রাণীর নাম	देवळानिक माभ	प्रकारका मरश्रा (
धान	Oryza sativa	24 -	भानुष	Homo sapiens	46
শ্ম	Triticum aestivum	42 ~	গরু	Boss indica	60
च्ट्री:	Zea mays	20	ছাগ্গ	Capra hircus	60
পিয়াক	Allium cepa	16 ~	করুতর	Columba livia	80
শ্বা	Cucumis sativus	14 ~	সোনাব্যাঙ	Rana pipiens	
গোন আনু	Solanum tuberosum	48 🗸	খরগোশ	Oryctolagus cuniculus	26
हत्या हे।	Lycoperation esculentum	24 -	গরিলা	Gorilla gorilla	44
তামাক	Nicotiana tabacum	28	গিনিপিগ	Cavia porcellus	48
পেঁপে	Carica papaya	18	গৃহমাছি		64
বাধাকপি	Brassica oleracea	18	ফলের মাছি	Musca domestica	12
পাট	Corchorus capsularis			Drosophila melanogaster	.08
न्ता	Raphanus sativus	14	কিউলেক্স মশা	Culex pipiens	06
तेनादामा ध		18	গোলকৃমি	Ascaris megalocephalus	2 4
वाग्रहम	Arachis hypogaea ও আকৃতি: সাধারণত প্রতি	40	রেশম পোকা	Bombyx mori	46

আয়তন ও আকৃতি : সাধারণত প্রতিটি প্রজাতির জীবে জোমোসোমের একটি সুনির্দিষ্ট আয়তন থাকে। প্রভাগ অনুসারে ক্রোমোসোমের দৈর্ঘ্য সাধারণত ৩.৫–৩০ মাইক্রোমিটার এবং ব্যাস ০.২-২.০ মাইক্রোমিটার হয়ে হার্কে মানবদেহের ক্রোমোনোমের গড় দৈর্ঘা ৪-৬ মাইক্রোমিটার। Drosophila মাছির ও মাইক্রোমিটার ও ভূটার ৮-১২ माइद्रकामिणित ।

जवज्ञान : निউद्विगाहम ।

ক্রোমোসোমের ভৌত গঠন

কোৰে স্বাভাবিক অবস্থায় ক্রোমোলোম পৃথকভাবে দৃষ্টিগোচর হয় না। কোষ বিভাজনের মেটাফেজ দৃশায় এতটা অত্যন্ত সুগঠিত থাকে এবং পৃথকভাবে দৃষ্টিগোচর হয়। জটিল (যৌগিক) অণুবীক্ষণ যন্ত্রের সাহায্যে ক্রোমোসোমে निम्नुनिश्चि व्यस्त्रदला सका क्या यात्र।

১। ক্রেমাটিন (Chromatin) : ক্রোমোলোমের মূল উপাদান হলো ক্রোমাটিন (রঞ্জিত সূত্রাকার দেহ) যা প্রকৃতগণ DNA শ্রেটিন যৌগ। প্রাথমিকভাবে নিউক্লিয়োপ্রোটিন যৌগের সূত্রটি 11 nm পুরু যা ক্রমান্তরে কুওলী পাকিয়ে 30 ঢাক 300 nm এবং শেষ পর্যায়ে 700 nm পুরু ক্রোমাটিনে পরিণত হয় (মানুষের একটি ক্রোমোলোমে DNA ১০,০০০ জ ৰাটো হতে দেখা যায়।)। হিস্টোন গ্লোটিনের সাথে সংযুক্ত অবস্থায় DNAকে বলা হয় নিউক্লিয়োসোম। Heitz (1928) ক্রোমাটিন তম্ভকে দু'ভাগে ভাগ করেন। যথা-হেটেরোক্রোমাটিন ও ইউক্রোমাটিন।

ইউারকেল ও জোকেল পর্যায়ে কোমাটিনের যে অংশ অধিক কুবলিত থাকে তাকে হিটেরোকোমাটিন অংশ বংশানুশ্বিতে অপেকাকৃত নিচিয় থাকে। mRNA সংশ্লেষণে অংশগ্রহণ করে না। ক্রোমাটনের যে অংশ ক কুলিত থাকে সেই অংশকে ইউক্রোমাটিন বলা হয়। এই অংশ বংশানুস্থৃতিতে সক্রিয় থাকে। এটি ক্রোমোসোমের বিতৃত অংশ এবং mRNA সংশ্লেষণে অংশগ্রহণ করে।

্ব। ক্রোমাটিড (Chromatid) : মাইটোসিস কোষ বিভাজনের প্রোফেজ পর্যায়ে ক্রোমোসোম প্রথম দৃষ্টিগোচর হয় এবং মেটাফেজ পর্যায়ে ক্রোমোসোমকে লম্বালম্বিভাবে দুটি অংশে বিভক্ত দেখা যায় যার প্রতিটির নাম ক্রোমাটিড। প্রতিটি

ক্রোমোসোমে সমান ও সমান্তরাল এক জোড়া ক্রোমাটিভ থাকে। এরা সাধারণত সিস্টার ক্রোমাটিভ নামে পরিচিত। আধুনিক ধারণা অনুযায়ী ক্রোমাটিভ একটি একক DNA অণু দারা গঠিত। বিজ্ঞানী Vejdovsky (1921) এদের ক্রোমোনেমাটা (একবচন-ক্রোমোনেমা) নামে অভিহিত করেছেন।

৩। সেন্ট্রৌমিয়ার (Centromere) : প্রতিটি ক্রোমোসোমে একটি অরঞ্জিত অঞ্চল থাকে। ক্রোমাটিডের এই অরঞ্জিত অঞ্চলকে বলা হয় সেন্ট্রোমিয়ার সিস্টারক্রোমাটিড সেন্ট্রোমিয়ার অঞ্চলে অত্যন্ত দৃঢ়ভাবে সংযুক্ত থাকে। সেন্ট্রোমিয়ারের অবস্থানটি ক্রোমোসোমে একটি থাজ-এর সৃষ্টি করে। এই খাজকে বলা হয় মুখ্যকুঞ্চন বা Primary constriction। আদর্শ ক্রোমোসোমে একটিমাত্র সেন্ট্রোমিয়ার প্রাক্তে। অখাভাবিক অবস্থায় একটি ক্রোমোসোমে ২টি বা অধিক সেন্ট্রোমিয়ার প্রাক্তে পারে, আবার একটিও না প্রাক্তে পারে।

8। বাছ (Arm) : সেন্ট্রোমিয়ার-এর দুপাশের ক্রোমোসোমাল অংশকে বাছ বলা হয়। প্রতিটি ক্রোমোসোমের দুটি বাছ থাকে। বাছ দুটি সমান দৈর্ঘ্যবিশিষ্ট বা অসম দৈর্ঘ্যবিশিষ্ট হতে পারে। ক্রোমোসোমে সেন্ট্রোমিয়ারের অবস্থান অনুযায়ী বাছ দুটির দৈর্ঘ্য নির্দিষ্ট হয়।

৫। কাইনেটোকোর (Kinetochore) : প্রতিটি সেন্ট্রোমিয়ারে একটি ছোট গাঠনিক অবকাঠামো থাকে যাকে কাইনেটোকোর বলে। কাইনেটোকোর-এ মাইক্রোটিউবিউল সংযুক্ত হয়।

৬। ক্রোমোমিয়ার (Chromomere) : মায়োটিক প্রোফেজ-এর স্চনালপ্নে ক্রোমোসোমের দেহে যেসব ক্ষুদ্র ক্ষুদ্র গুটিকা দেখা যায় সেগুলো ক্রোমোমিয়ার নামে পরিচিত। মায়োসিসের প্রথম প্রোফেজের প্যাকাইটিন উপদশায় ক্রোমোমিয়ারের সংখ্যা ও অবস্থান স্পষ্ট দেখা

क्रिय ১.১৮ : व्याप्मात्मात्मव विद्याविक गर्टन ।

যায়।

৭। গৌণকৃঞ্চন (Secondary constriction): সেন্ট্রোমিয়ার নামক মুখ্যকৃঞ্চন ছাড়াও কোনো কোনো ক্রোমোসোমের বাহতে এক বা একাধিক গৌণকৃঞ্চন থাকতে পারে। গৌণকুঞ্চনকে 'নিউক্লিয়োলাস পুনর্গঠন অঞ্চল' নামেও অভিহিত করা হয়।

হয়।

৮। স্যাটেলাইট (Satellite) : কোনো কোনো কোমোসোমের এক বাহুর প্রান্তে ক্রোমাটিন সূত্র হারা সংযুক্ত প্রায় গোলাকৃতির একটি অংশ দেখা যায়। ক্রোমোসোমের প্রান্তের দিকের এ গোলাকৃতি অঞ্চলকে স্যাটেলাইট এবং এ ধরনের ক্রোমোসোমকে স্যাট ক্রোমোসোমকৈ স্যাট ক্রোমোসোমকৈ স্যাট ক্রোমোসোমকৈ স্যাট

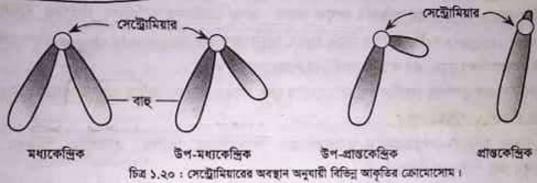
জোযোগোম বলে। তুলা, পাট, ছোলা ইত্যাদি উল্লিদে কোনো কোনো কোমোসোমে স্যাটেলাইট আছে। ক্রোমোসোমে স্যাটেশাইট থাকে।

১। টেলোমিয়ার (Telomere) : বিজ্ঞানী এইচ. জে. মূলার (H.J. Muller)-এর মতে ক্রোমোসোমের উভয় প্রান্তের বিশেষ বৈশিষ্ট্যপূর্ণ অঞ্চলকে টেলোমিয়ার বলে। অধিক বয়সে মানুষের জরা রোধে টেলোমিয়ার বিশেষ ভূমিকা রাখে বলে ধারণা করা হয়। টেলোমারেজ এনজাইম মানুষের জরা রোধে কাজ করে।

১০। মাদ্রির (Matrix) : ক্রোমাটিন সূত্রের চারদিকে পেলিকল দ্বারা আৰুত প্ৰোটিন ও RNA পদাৰ্থের স্তরকে ম্যাদিপ্ত বা মাতৃকা বলে। কোষ বিভাজন পর্যায়ে ম্যাট্রির দ্রবীভূত হয়ে যায়। তবে আধুনিক গবেষণায় ইলেকট্রন অপুরীক্ষণ যমে ম্যাট্রিক্স এর অস্তিত্ব প্রমাণিত হয়নি।

১১। পেশিকশ (Pelicle): ম্যাট্রিক্সসং ক্রোমোসোমের বাইরে একটি পোতলা আবরণী কল্পনা করা হয়। একে পেলিকল বলে। আধুনিক গবেষণায় ইলেকট্রন অণুবীক্ষণ যয়ে পেলিকলের অন্তিত্ব প্রমাণিত হয়নি। তবে ম্যাক ক্লিটন, সোয়ানসন প্রমুখ কোষ বিজ্ঞানী ক্লোমোসোমে পেলিকলের কথা উল্লেখ করেন। কিন্তু ডার্লিংটন, নভিকফ, রিস প্রমূখ বিজ্ঞানী পেলিকলের অতিত্ব অখীকার করেন।

ক্রোমোনোমের প্রকারতেদ (Types of Chromosome)


 কেন্ট্রামিয়ারের সংখ্যা অনুষায়ী তেনমোসোম নিম্নলিখিত পাঁচ श्रकाहः यथा-

🗅 মনোসেক্রিক (Monocentric) : এক সেক্রোমিয়ার বিশিষ্ট ক্রোমোসোমকে মনোসেন্ত্রিক ক্রোমোসোম বলে। (অধিকাংশ) চিত্র ১.১৯ : ক্রোমোসোমের স্থল গল প্রজাতিতে মনোসেন্ট্রিক ক্রোমোসোম দেখা যায়।

ক্রোমাটি

- ভাইসেত্রিক (Dicentric) : দুই সেন্ট্রোমিয়ার বিশিষ্ট ক্রোমোসোমকে ভাইসেন্ট্রিক ক্রোমোসোম বলে ম ক্রাকটি প্রজাতিতে ডাইসেন্ট্রিক ক্রোমোসোম দেখা যায়।
- পশিসেন্তিক (Polycentric) : দুই এর অধিক সেন্ট্রোমিয়ার বিশিষ্ট ক্রোমোসোমকে পশিসেন্ত্রিক ক্রোমো বলে তলা গাছের (Musa sp) কয়েকটি প্রজাতিতে পলিসেক্সিক ক্রোমোসোম দেখা যায়।
- ্র ডিফিউল্লভ (Diffused) : ক্রোমোসোমের সুনির্দিষ্ট স্থানে সুস্পষ্টভাবে কোনো সেন্ট্রোমিয়ার থাকে না।
- ্র আর্লেফ্রিক (Acentric) : এক্ষেত্রে ক্রোমোসোমের কোনো সেন্ট্রোমিয়ার থাকে না। তখন তাকে আর্লে কোমোলোম বলে। কোথ বিভাজনে এরা অংশগ্রহণ করে না। সদ্য ভঙ্গুরকৃত কোনো জোমোসোমের অংকি
- (খ) সের্ব্রোনিয়ারের অবস্থান অনুযায়ী কোমোসোম নিমুলিখিত চার আকৃতির হয়, যথা—
- (i) মধ্যকেপ্তিক বা মেটাসেন্ত্রিক জোমোসোম (Metacentrie) : যে জোমোসোমের সেন্ট্রোমিয়ারটি এঞ্ মাৰখানে অবস্থিত তাকে মধ্যকেশ্দ্রিক বা মেটাগেন্ত্রিক জোমোপোম বলে। মধ্যকেশ্দ্রিক জোমোপোমের দুই বাছ সম विनिष्ठ इष्ट अवर ज्ञानात्कल भर्गाता जन जाकृष्टि देश्त्त्रीक (V) अक्षत्त्रत मटका दमचारा (Solanum nigrum) ক্রেন্মের্ন্সেরই মধ্যকেন্দ্রিক। মধ্যকেন্দ্রিক আদি বৈশিষ্ট্য।

- (II) উপ-মধ্যকেন্দ্রিক বা সাব-মেটাসেট্রিক ক্রোমোসোম (Submetacentric) : বে ক্রোমোসোমের সেক্ট্রোমিয়ারটি মধ্যখান থেকে একটু এক পাশে অবস্থিত তাকে উপ-মধ্যকেন্দ্রিক বা সাব-মেটাসেন্ট্রিক ক্রোমোসোম বলে। উপ-মধ্যকেন্দ্রিক ক্রোমোসোমের দুই বাধ্ সামান্য অসম দৈর্ঘ্যবিশিষ্ট হয় এবং অ্যানাকেজ পর্যায়ে এর আকৃতি অনেকটা ইংরেজি 'L' অক্ষরের মতো দেখায়।
- (iii) উপ-প্রান্তকেন্দ্রিক বা এক্রোসেন্ট্রিক ক্রোমোসোম (Acrocentric) : যে ক্রোমোসোমের সেট্রোমিয়ারটি কোনো এক প্রান্তের কাছাকাছি অবস্থিত তাকে উপ-প্রান্তকেন্দ্রিক বা এক্রোসেন্ট্রিক ক্রোমোসোম বলে। উপ-প্রান্তকেন্দ্রিক ক্রোমোসোমের এক বাহু অনেক লম্বা এবং অপর বাহু বেশ খাটো থাকে। অ্যানাফেজ পর্যায়ে এর আকৃতি অনেকটা ইংরেজি ব্দকরের মতো দেখায়। একই উদ্ভিদ প্রজাতিতে একাধিক প্রকার ক্রোমোসোম থাকতে পারে; যেমন- Typhonium trilobatum (থেটকচু) এর গাঢ় পার্পল প্রকরণে (১১টি) মধ্যকেন্দ্রিক, (৪টি উপ-মধ্যকেন্দ্রিক এবং ২টি উপ-প্রান্তকেন্দ্রিক। এটি একটি মনোসোমিক উদ্ভিদ।

- (iv) প্রান্তকেন্দ্রিক বা টেলোসেন্ট্রিক ক্রোমোসোম (Telocentric) : যে ক্রোমোসোমের সেন্ট্রোমিয়ারটি একেবারে প্রান্তভাগে অবস্থিত তাকে প্রান্তকেন্দ্রিক বা টেলোসেন্ট্রিক ক্রোমোসোম বলে। প্রান্তকেন্দ্রিক ক্রোমোসোমকে এক বাহ বিশিষ্ট মনে হয়। অ্যানাফেজ পর্যায়ে এর আকৃতি অনেকটা ইংরেজি 😗 অকরের মতো বা একটি দণ্ডের মতো দেখায়। উদ্ভিদে সাধারণত প্রান্তকেন্দ্রিক ক্রোমোসোম থাকে না
 - (গ) দেহ গঠন ও লিঙ্গ নির্ধারণের বৈশিষ্ট্য অনুযায়ী কোমোসোম দু'ধরনের হয়, যথা-
- ১। অটোসোম (Autosome): যেসব ক্রোমোসোম দৈহিক বৈশিষ্ট্য নিয়ন্ত্রণকারী জিন বহন করে তাদেরকে অটোসোম বলে। অটোসোমের সেটকে 🗚 চিহ্ন দ্বারা প্রকাশ করা হয়। মানুষে ২৩ জোড়া ক্রোমোসোমের মধ্যে ২২ জোড়া অটোসোম।
- ২। সেক্স ক্রোমোসোম (Sex chromosome): সেক্স ক্রোমোসোম জীবের লিঙ্গ নির্ধারণ করে। সেক্স ক্রোমোসোম দু'প্রকার; যথা- X ও Y। মানুষের একজোড়া সেক্স ক্রোমোসোম থাকে। খ্রীদেহে দুটি সেক্স ক্রেমোসোম এক প্রকার (XX) এবং পুরুষ দেহে সেব্র ক্রোমোসোম দৃটি ভিন্ন ধরনের (XY) হয়।

ক্রোমোসোমের রাসায়নিক গঠন বা উপাদান : ক্রোমোসোমের রাসায়নিক গঠন বেশ জটিল। ক্রোমোসোমের প্রধান রাসায়নিক উপাদান হলো : 🕎 নিউক্লিক অ্যাসিড ও 🔾 প্রোটিন।

- (১) নিউক্লিক অ্যাসিড : ক্রোমোসোমে দু'ধরনের নিউক্লিক অ্যাসিড পাওয়া যায়; যথা : (i) DNA ও (ii) RNA।
- ি DNA : DNA এর পুরো নাম Deoxyribo Nucleic Acid । DNA হলো প্রকৃত ক্রোমোসোমের স্থায়ী উপাদান। ক্রোমোমোমের বিভিন্ন উপাদানের মধ্যে এর পরিমাণ হচ্ছে শতকরা প্রায় 8৫)ভাগ। এটি বি'স্তাবিশিষ্ট পলি নিউক্লিওটাইডের সর্পিলাকার গঠন। একটি সূত্র অন্যটির পরিপূরক। এতে পাঁচ কার্বনবিশিষ্ট পেন্টোজ শর্করা, আলেব ফসফেট, নাইট্রোজেনঘটিত ক্ষারক (অ্যাডিনিন, গুয়ানিন, গ্রায়ামিন ও সাইটোসিন) থাকে। বিজ্ঞানী সুইফট (১৯৬৪) এবং বোনার (১৯৬৮)-এর মতে ক্রোমোদোমে DNA ও হিস্টোন প্রোটিনের অনুপাত হচ্ছে 🔁

- (ii) RNA : RNA এর পুরো নাম Ribo Nucleic Acid । ক্রোমোনোমে এর পরিমাণ হচ্ছে শতকরা ০.২-১৪। RNA ক্রোমোসোমের ছায়ী উপাদান নয়। প্রতিটি RNA অনু সাধারণত একসূত্রবিশিষ্ট। এটি পাঁচ কার্বনবিশিষ্ট যা শৰ্কনা, অজৈৰ ফসফেট, আাতিনিন, তয়ানিন, ইউৱাসিল ও সাইটোসিন দ্বারা গঠিত। অনেক ভাইরাস কোষে DN পরিবর্তে RNA धारक।
- (২) প্রোটিন : প্রোটিন ক্রোমোসোমের মূল কাঠামো গঠনকারী রাসায়নিক উপাদান। এ কাঠামোতে নিউক্লিড আ বিনাত থাকে। ক্রোমোদোমে গ্রোটনের পরিমাণ শতকর (৫৫)ভাগ। ক্রোমোদোমে দু'ধরনের প্রোটন পাওয়া যাই। (i) নিমু আপরিক তক্রত্মম্পন্ন প্রোটিন ও (ii) উচ্চ আণরিক গুরুত্বসম্পন্ন অম্লীয় প্রোটিন।
- (i) নিমু আণবিক তক্তসুসম্পন্ন প্রোটিন : ক্রোমোসোমে প্রোটামিন অথবা হিস্টোন হিসেবে এ দুটি কারীয় 🕬 মধ্যে যে কোনো একটিকে পাওয়া যায়। তবে বেশির ভাগ ক্রোমোসোমে হিস্টোন প্রোটন থাকে। প্রোটামিন পাওয়া ত্যু তক্রাপুর ক্রোমোসোমে। ক্রোমোসোমে হিস্টোনের পরিমাণ DNA এর পরিমাণের কাছাকাছি থাকে।

কতক প্রোটিন DNA অণুর সাথে সরাসরি সংযুক্ত থাকে। এসর প্রোটিনের আর্জিনিন, লাইসিন, হিস্টিডিন ইত ধনাম্রক (Positively charged) সাইড গ্রুপের সাথে DNA অপুর খগাত্মক (negatively charged) কসকেট গ্রুপে তৈরি করে। অন্যান্য প্রোটিন DNA-এর বাউভ প্রোটিনের সাথে সংযুক্ত থাকে।

(ii) উচ্চ আণবিক তরুত্বসম্পন্ন প্রোটিন : ক্রোমোসোমে বেশ করেক ধরনের অন্নীয় প্রোটিন গাকে। উল্লেখযোগ্য চ DNA পলিমারেক ও RNA পলিমারেক।

উল্লিখিত উপাদান ছাড়াও ক্রোমোসোমে ম্যাগনেসিয়াম, ক্যালসিয়াম, লিপিড, এনজাইম, আয়ারন এবং ক্র ব্যসায়নিক পদার্থ বুব অল্প পরিমাণে থাকে।

কোমোসোমের কাজ : (১) কোমোসোম বংশগতির ধারক ও বাহক, তাই বংশপরস্পরায় জীবের বৈশিষ্টা ধারণ ক বংল করে এবং স্থানান্তর করে। (২) বিভক্তির মাধ্যমে ক্রোমোসোম কোষ বিভাজনে প্রত্যক্ষ ভূমিকা পালন করে।। জিন-অণু ধারণ করে। (৪) DNA-এর ছাঁচ অনুযায়ী তৈরি mRNA এর মাধ্যমে প্রোটিন সংশ্লেষণ করে। (৫) স ক্রোমোসোম জীবের লিঙ্গ নির্ধারণে বিশেষ ভূমিকা রাখে। (৬) বংশগতির বাহক জিন জীবের জীবনের **ব্র প্রিট**াটে

কোষ বিভাজনে ক্রেমোসোমের ভূমিকা (The role of chromosome in the cell division)

শীবদেবের বৃদ্ধি ও জনন উভয় কাজের জনাই কোষ বিভাজন জরদরি। কোষ বিভাজনের মুখা বস্তু তেনমোল জোমোলোমকে বাদ দিয়ে কোষ বিভাজন সম্ভব নয়। কোষ বিভাজনের তরু এবং শেষ উভয়ই জোমোলোম দিট জোনোমে অবস্থিত DNA প্রতিলিপনের মাধ্যমে কোষ বিভাজনের প্রস্তুতি সম্পন্ন হয়, অর্থাৎ জোমোসোমস্থ DN অতিবিপিত না হলে কোম বিভাজন তক্ত হবে না। কাজেই দেখা যায় কোম বিভাজনে ক্রোমোসোমের ভূমিকা মুখা। বিভালন প্রক্রিয়ার কোমে কোমোনোমের প্রতিলিপন, বিভালন ও মেরদকরণ সবই আবশ্যকীয় বিষয়। আ জোমোনোমবিহীন কোম তার অন্তিত্বও রক্ষা করতে পারে না, এমনকি কোম বিভাজনকালে জোমোসোমের বৃষ্টন নীতি^ত বহিণ্ঠত হলে কোষের বৈশিষ্ট্য ও অস্তিত্বে বিরুপ প্রভাব পড়বে। কাজেই বলা যায়, কোষ বিভাজন প্রতিয়ায় কোমোসেট প্রভাক কুমিকা রয়েছে। তেনামোনোম কতবার বিভক্ত হবে তার উপর নির্ভর করে কোয় বিভাজনের ধরন, মাইটোসি

বংশগতীয় বস্তু (Genetic materials)

মাতা-পিতার বৈশিষ্ট্য সম্ভান-সমূতি পেয়ে খাকে। পৃথিবীর সব জীবের ক্ষেত্রেই এ প্রাকৃতিক নিয়ম প্রয়োজ্য। আম্বা আমের বীজ থেকে আম গাছ, কাঁঠাগের বীজ থেকে কাঁঠাল গাছ, ধালের বীজ থেকে ধান গাছ, পাটের বীজ গ পাট গাছ হতে নেখি। এভাবেই বংশানুক্রমে প্রজাতিত বৈশিষ্ট্য বজায় থাকে। ইংরোজি প্রবাদ 'Like father like son'

'যেমন পিডা তেমন পূত্র'। এ বিষয় নিয়ে গবেষণার প্রথম পর্যায়ে বিজ্ঞানীরা ধারণা পান যে, মাতা-পিতার মিশনে প্রায় একই বৈশিষ্ট্যের সম্ভান-সম্ভতির জনা হয়। মাতা-পিডা হতে ডাদের বৈশিষ্ট্যগুলো সন্তান-সম্ভতিতে আসার প্রক্রিয়াকে বংশণতি (heredity) বলে। একে জেনেটিক ট্রান্সমিশন (genetic transmission)ও বলা হয়। জেনেটিক ট্রান্সমিশন হলো বংশগতির সমনাম। জীববিজ্ঞানের যে শাখায় বংশগতি নিয়ে বিশদ আলোচনা ও গবেষণা করা হয় ডাকে বংশগতিবিদ্যা (genetics) বলে।

যেসব বস্তুর মাধ্যমে মাতা-পিতার বৈশিষ্ট্য তাদের সন্তান-সম্ভতিতে বাহিত হয় তাদেরকে একত্রে বংশণতি বস্তু (hereditary material) বলা হয়। বংশগতীয় বস্তুর প্রধান উপাদান হচ্ছে ক্রোমোসোম। ক্রোমোসামে রয়েছে DNA, যেখানে জিনগুলো সুসজ্জিত থাকে। জিনই হচ্ছে জীবের সকল চারিত্রিক বৈশিষ্ট্যের ধারক যা পর্যায়ক্রমে বাহ্যিক চরিত্রসমূহ ফুটিয়ে তোলে। নিচে এগুলো সম্বন্ধে সংক্ষিপ্ত বর্ণনা করা হলো।

নিউক্লিক অ্যাসিড (Nucleic Acid)

১৮৬৯ সালে সুইস চিকিৎসক ও রসায়নবিদ Friedrich Miescher (<u>মিশার)</u> ক্ষতস্থানের পুঁজের শ্বেতরক্তকণিকার নিউক্রিনাস থেকে একটি নতুন রাসায়নিক পদার্থ পৃথক করেন এবং নামকরণ করেন নিউক্রিন (nuclein)। নিউক্রিন শর্করা, আমিষ ও স্নেহজাতীয় পদার্থ থেকে ভিন্নধর্মী। ১৮৮৯ সালে অল্টমান (Altman) নিউক্রিনে আসিডের ধর্ম দেখতে পান এবং তিনি এর নামকরণ করেন নিউক্রিক অ্যাসিড। ১৮৯৪ সালে Albrecht Kossel নিউক্রিক আসিডের দু'ধরনের নাইট্রোজেন বেস—পিউরিন ও পাইরিমিডিন এবং তাগার ও ফসফোরিক আসিড শনাক্ত করেন। এজনা তাঁকে ১৯১০ সালে রসায়নে নোবেল পুরছার প্রদান করা হয়। Lavine ১৯২১ সালে DNA ও RNA নামে দু'ধরনের নিউক্রিক আসিড আবিছার করেন।

নিউক্লিক আাসিড কার্বন, হাইড্রোজেন, অক্সিজেন, নাইট্রোজেন এবং ফসফরাস মৌল নিয়ে গঠিত। এতে নাইট্রোজেনের পরিমাণ ১৫% এবং ফসফরাসের পরিমাণ ১০%।

জীবকোষে দু'প্রকার নিউক্লিক আসিড থাকে। এদের একটি DNA এবং অপরটি হলো RNA। DNA সাধারণত নিউক্লিয়াসের ক্রোমাটিনে প্রাক্তে। RNA-এর শতকরা ৯০ ভাগ থাকে সাইটোপ্লাজমে এবং বাকি ১০ ভাগ থাকে

নিউক্লিক আসিড কী? নিউক্লিক আসিডকে নিউক্লিয়েজ এনজাইম বা মৃদু ক্ষার দিয়ে অর্দ্রবিশ্লেষণ করলে পাওয়া যায় অসংখ্য নিউক্লিয়োটাইড। কাজেই বলা যায়, অসংখ্য নিউক্লিয়োটাইড, পলিমার সৃষ্টির মাধ্যমে গঠিত অ্যাসিডের নাম হলো নিউক্লিক আসিড। আবার নিউক্লিয়োটাইডকে মৃদু অ্যাসিড দিয়ে অর্দ্রবিশ্লেষণ করলে উৎপন্ন হয় নাইট্রোজেন ক্ষারক, পেন্টোজ শাগার এবং ফসফোরিক আসিড। এভাবেও বলা যায়, নিউক্লিক আসিড হলো নাইট্রোজেনঘটিত ক্ষারহ, পেন্টোজ শাগার এবং ফসফোরিক আসিডের সমন্বয়ে গঠিত অ্যাসিড যা জীবের বংশগতির ধারাসহ সকল কার্যক্রম নিয়ন্ত্রণ

করে। এতলো কোষের সবচেয়ে বড় রাসায়নিক অণু।
নিউক্লিক আসিড বংশগতির সকল বৈশিষ্ট্য বহন করে
বলে এদের খাস্টার মণিকিউশ (master molecule)
বলে।

নিউক্লিক আসিভের মূল উপাদান: নিউক্লিক আসিভকে হাইড্রোলাইসিসের পর নিম্নলিখিত উপাদানসমূহ পাওয়া যায়।

চিত্ৰ ১.২১ : শেটোল শালার।

১। শেক্টোর শ্রাগ্রার, ২। নৃইট্রোজেনঘটিত কারক, ৩। শুস্কোরিক অয়সিত।

১। গেন্টোল সাগার (Pentose sugar) : পাঁচ কার্বনবিশিষ্ট সাগার (চিনি)-কে বলা হয় পেন্টোল সাগার। স। শেক্ষেত্র সুগার (Pennose sugar) । আসিতে দু'ধরনের পেন্টোজ শুগার থাকে। এর একটি রাইবোজ শুগার এবং অন্যটি ডিঅব্রিরাইবোজ শুগার। ম ৰাইবোজ শুগার এবং DNA-তে ডিঅক্সিরাইবোজ শুগার থাকে। পেন্টোজ শুগার ফসফোরিক অ্যাসিডের সামে গঠনে সক্ষম। রিং স্ট্রীকচারবিশিষ্ট B-D রাইবোজ অথবা B-D ডিঅক্সিরাইবোজ নিউক্লিক অ্যাসিড গঠন করে। NH.

বাইবোজ এবং ডিঅক্সিরাইবোজ শ্রাপার প্রায় একই রকম গঠনবিশির, পার্থকা তথু এই যে, ডিঅক্সিরাইবোজে শ্যুগারের ২নং কার্বনে অন্মিজেন অনুগছিত (ডিঅন্সি = অন্সিজেন ছাড়া)। রাইবোজ শ্রাগার দিয়ে রাইবোনিউক্লিক আাসিড (RNA) এবং ডিঅজিরাইবোজ শাুগার দিয়ে ভিঅজিরাইবো নিউক্লিক স্ম্যাসিড (DNA) গঠিত হয়।

২। নাইটোজেনঘটিত ভারক (Nitrogenous base) : নিউক্লিক আসিতে দুই প্রকার নাইট্রোজেন ক্ষারক থাকে। নাইটোজেন, কার্বন, হাইডোজেন ও অগ্রিজেন দিয়ে এই করকসমূহ গঠিত। ক্ষারকভলো এক বিং বিশিষ্ট বা দুই বিং বিশিষ্ট হতে পারে। এই বিং এর সংখ্যার ওপর ভিত্তি করে ফারক দৃই প্রকার: যথা-(i) পিউরিন এবং (ii) পাইরিমিডিন।

চিত্র ১,২২ ৷ পিউরিন (জ্যাভিনিন ও ত্যানিন) এবং শইটি (i) পিটরিন (Purine) : দুই রিংবিশিষ্ট কারককে বলা হয় (খাইমিন, সাইটোলিন ত ইউরাসিল)। পিউরিন। এর সাধারণ সংকেত হলো CHINI) নিউক্লিক আসিডে দু'প্রকার পিউরিন ক্ষারক থাকে, যথা- আছি (Adenine) धर उप्रानिम (Guanine)। CE Marya

(ii) পাইরিমিডিন (Pyrimidine) : এক রিং বিশিষ্ট কারককে বলা হয় পাইরিমিডিন। এর সাধারণ সংকেত চ C.H.N) নিউক্লিক আসিডে তিন প্রকার পাইরিমিডিন ক্ষারক থাকে, যথা- থাইমিন (thymine), সাইটোসিন (cymine) এবং ইউরাসিল (uracil)। ইউরাসিল কেবল রাইবোনিউক্লিক আাসিডে (RNA) থাকে। থাইমিন কেবল ডিঅল্লিরাইড নিউক্লিক আসিতে (DNA) থাকে। (মনে তাখতে হবে নাম বড় যার গঠন ছোট ভার।)

কারকসমূহের নামকরণ : আভিনিন এবং থাইমিন-এর নামকরণ করা হয়েছে <mark>থাইমাস (Thymus) থেকে। য</mark> য়াত থেকে এদেরকে প্রথম পূরক করা হয়েছিল। <u>এডিনো অর্থ হলো গ্র্যাত</u> (gland)। সাহটোসিন-এর নাম এসেছে সহী (cyto) থেকে; সাইটো অর্থ হলো সেল (cell)। ত্যানিন-এর নাম এসেছে ত্যানো (guano) থেকে। তুয়ালো অর্থ হলো বাদুর বা সীবার্ড এর পড়স্ত মল

(fecaldropping)। সাধারণত ক্ষারকতলো বর্ণমালা 'AGTCU' বারাই পরিচিত। ত। ফরফোরিক আালিভ (Phosphoric acid) : নিউক্লিক আসিভের একটি অন্যতম উপাদান হলো <u>কুসকোরিক অ্যাসিড। এর আপবিক সংক্রেড (H,PO)</u> এতে हिन्छि अकरमाओं शहक्षिण अन्न अदर अकृष्टि पिरमाणी अञ्जित्कन नात्रमान् गरसरह. যেতলো পাঁচযোজী কসকরাস পরমাগুর সাথে সংযুক্ত।

সাইটোসিন (C)

নিউক্লিয়োসাইড (Nucleoside) গঠন : এক অণু নাইটোজেন ক্ষারক ও এক অণু পেন্টোজ শাুগার যুক্ত হয়ে গঠিত মাইকোসাইত যৌগ বলা হয় নিউক্লিয়োগাইড। কারক পাইরিমিডিন হলে ভাকে হলা ই পাইরিহিছিন নিউক্লিয়োগাইড, আর কারক পিউরিন হলে ভাবে বলা ই পিউরিন নিউক্লিয়োসাইড। পাইরিমিডিন নিউক্লিয়োসাইডে কারকের (IACIII) য়ত ১.২০: বিষ্টেলেগছৰ (আভিবেশিনের বাজ্য)। ১নং নাইটোজেন, পোন্টোল শুস্থাবের ১নং কার্বনের হাইদ্রন্থিণ মূল্যেও ^{কার}

खाकिनिन (A)

থাইমিন(I)

্যাইকোসাইভিক বন্ধনে যুক্ত থাকে। কিন্তু পিউরিন নিউক্লিয়োসাইডে ক্ষারকের (A/G) চনং নাইটোজেন (১নং নায়) পেন্টোঞ্জ শ্যুগারের ১নং কার্বনের হাইড্রব্রিল মূলকের সাথে গ্লাইকোসাইডিক বন্ধনে যুক্ত থাকে।

বিভিন্ন প্রকার নিউক্লিয়োসাইড :

পেট্রোজ শাবার	आाडिनिन (A)	च्यानिन (G)	ইউরাসিল (U)	সাইটোসিন (C)	গাইমিন (T)
রাইবোল	আডিলোসিন	चग्रारनात्रिन	ইউবিভিন	সাইটিভিন	4180411.127
তিখালুরাইবোল	ডিঅব্রি আডিনোসিন	ডিঅঝ্নি জ্যানোসিন		ডিঅব্লি সাইটিভিন	ডিঅন্তি গাইমিডিন

নিউক্লিয়োটাইড (Nucleotide) গঠন : এক অবু নিউক্লিয়োলাইড-এর সাথে এক অবু ফসফেট যুক্ত হয়ে গঠিত যৌগকে নিউক্লিয়োটাইড বলে। অন্যভাবে বলা যায়, নিউক্লিয়োটাইড। নিউক্লিয়োটাইড একটার হলো নিউক্লিয়োটাইড। নিউক্লিয়োটাইড হলো নিউক্লিক আসিডের (DNA অবুর) গাঠনিক একক। এক অবু নাইট্রোজেনঘটিত ক্ষারক, এক অবু পেন্টোজ শ্যুগার এবং এক অবু ফসফেট যুক্ত হয়ে যে যৌগ গঠিত হয় তাকে বলে নিউক্লিয়োটাইড। পেন্টোজ শ্যুগার-এর তনং ও এনং কার্বনের সাথে ফসফেট যুক্ত হয়।

damp (ভিত্ৰন্ধি আভিনোগিন মনোফসফেট) dcmp (ভিত্ৰন্ধি সাইটিভিন মনোফসফেট)
চিত্ৰা ১.২৪ : দুটি নিউক্লিয়োটাইড : damp ও dcmp ।

বিভিন্ন প্রকার নিউক্লিয়োটাইড

শ্যুগার রাইবোজ হলে:

অ্যাভিনোসিন মনোঞ্চসফেট = AMP = অ্যাভিনিন নিউক্লিয়োটাইড (অ্যাভিনিলিক অ্যাসিড)

ত্যানোসিন মনোফসফেট = GMP = ত্য়ানিন নিউক্লিয়োটাইড (ত্য়ানিলিক আসিড)

সাইটিডিন মনোফসফেট = CMP = সাইটোসিন নিউক্লিয়োটাইড (সাইটিডিলিক আসিড)

ইউরিডিন মনোফসফেট = UMP = ইউরাসিল নিউক্লিয়োটাইড (ইউরিডিলিক আাসিড)

भागात जिव्यक्रितार दान :

ডিঅক্সি আডিনোসিন মনোফসফেট = dAMP = আডিনিন ডিঅক্সিনিউক্লিয়োটাইড (ডিঅক্সি আডিনিলিক আসিড)

ডিঅব্লি গুয়ানোসিন মনোফসফেট = dGMP = গুয়ানিন ডিঅব্লিনিউক্লিয়োটাইড (ডিঅব্লিগুয়ানিলিক অ্যাসিড)

ডিঅক্সি সাইটিডিন মনোফসফেট = dCMP = সাইটোসিন ডিঅক্সিনিউক্লিয়োটাইড (ডিঅক্সি সাইটিডিলিক আসিড)

ডিঅক্সি থাইমিডিন মনোকসকেট = dTMP = ধাইমিন ডিঅক্সিনিউক্লিয়োটাইড (ডিঅক্সি থাইমিডিলিক আসিড)

অর্থাৎ ক্ষারকের (বা নিউক্রিয়োসাইডের) নামানুসারে নিউক্রিয়োটাইডের নামকরণ করা হয়।

একটি নিউক্লিয়োটাইডে একটি ফসফেট যুক্ত থাকে। এর সাথে আরও এক বা একাধিক ফসফেট যুক্ত হতে পারে। এভাবে ফসফেট সংযুক্তির মাধ্যমে AMP (আভিনোসিন মনোফসফেট) থেকে ADP (আভিনোসিন ভাইফসফেট), আবার ADP থেকে ATP (আভিনোসিন ট্রাইফসফেট) সৃষ্টি হয়।

AMP (আজিনোসিন মনোফসফেট) + P = ADP; ADP + P = ATP GMP (গুয়ানোসিন মনোফসফেট) + P = GDP; GDP + P = GTP CMP (সাইটিজিন মনোফসফেট) + P = CDP; CDP + P = CTP UMP (ইউরিজিন মনোকসফেট) + P = UDP; UDP + P = UTP

কাজ । নিউক্লিয়োটাইডতলো DNA ও RNA তৈরির মূল কাঠামো গঠন করে। এছাড়া মধ্যবতী বিপারে (NAI) কাজ। নিউক্লোটাইডডনো DNA ও RNA ভোগন বুশ NADP'), প্রোটন সংশ্লেষণে (GTP), স্বদনে (ATP), কসফোলিপিড সংশ্লেষণে (CTP) বিশেষ ভূমিবা পাদন কর DP"), মোটন সংক্ষেত্ত (GTP), স্বালা (ATP), বিউক্লিয়োটাইড যখন আরেকটি নিউক্লিয়োটাইডের সাথে চ ভাইনিউক্লিয়োটাইড (Dinucleiotide) । একটি নিউক্লিয়োটাইড যখন আরেকটি নিউক্লিয়োটাইডের সাথে চ

ভাইনিউক্লিয়েটাইড (Dinucleiotide) । একাত নিউক্লিয়োটাইড বলে। ১ম নিউক্লিয়োটাইডের পেন্টোল শু ভাইএকটার বছনীর সাহায্যে যুক হয় তখন তাকে ডাইনিউক্লিয়োটাইড বলে। ১ম নিউক্লিয়োটাইডের পেন্টোল শু ভাহএকার বছনার সাহায়্যে বুক হয় তবন তালে তাল বাল কার্যন ক্রমফেট ভাই-এস্টার বছন দারা হ এনং কার্যনের সাথে এবং ২য় নিউক্লিয়োটাইডের পেন্টোল শুগোরের তনং কার্যন ক্রমফেট ভাই-এস্টার বছন দারা হ

একাচ ভাহানভাক্রোচাইড গাতত হয়। পালনিউক্লিটাইড (Polynucleiotide) : অনেক্তলো নিউক্লিয়োটাইড ৫→৩ অনুমূখী হয়ে পরশার চ খনে একটি ভাইনিউক্লিয়েটাইভ গঠিত হয়। শাশাশভক্ষেত্তাহত (Polymicicionic) ভাইএন্টার বন্ধনীয় সাহায্যে যুক্ত হয়ে একটি লঘা রৈখিক শৃন্ধলের সৃষ্টি করে, তখন তাকে পলিনিউক্লিরোটাইর চ লাধ্বন্যার বরণার নাহান্যে মুক্ত বর্তন প্রতা গঠন সৃষ্টি করে। এই চেইন-এ ফসফেট অণু একদিকে পেন্টোর স (বাইবোল অথবা ডি-অক্সিরাইবোল) -এর ৫নং কার্বনের সাথে যুক্ত থাকে এবং অপর দিকে পাশের পেন্টোজ শুলাহ তনং কার্বনের সাথে যুক্ত থাকে। DNA অণুর প্রতিটি একক হেলিক্স একটি পশিনিউক্লিয়োটাইড চেইন।

নিউক্লিক আসিভের প্রকার : নিউক্লিক আসিভে বিদামান পেন্টোজ শুগারটি রাইবোজ, না ডিঅক্সিরাইবেজ তপর ভিত্তি করে নিউক্লিক আসিড দুই প্রকার; যথা–(১) ডিঅক্সিরাইবোনিউক্লিক আসিড বা DNA এবং ব্রাইবোনিউক্লিক আসিত বা RNA। নিচে এ সংক্ষে সংক্ষিত্ত বিবরণ দেয়া হলো।

DNA

DNA হলো Deoxyribonucleic acid-এর আক্রোনিম (acronym) বা সংক্ষিপ্ত রূপ। DNA হলো জীবের বংশ বৈশিষ্ট্যের ধারক ও বাহক। DNA-এর গঠন একক হলো নিউক্লিয়োটাইড এবং লক্ষ লক্ষ নিউক্লিয়োটাইড-এর পদিমার হলো একটি DNA অণু । DNA হলো একটি বৃহদাপুর জৈব আসিড যা <mark>জৌবনের আণবিক ভিত্তি</mark> (molecul core of life) হিসেবে বীকৃত। DNA-এর গঠন উপাদান হলো পাঁচকার্বনবিশিষ্ট ডিঅক্সিরাইবোজ ভাগার (S): আর্চি (A), জ্মানিন (G), সাইটোসিন (C) ও থাইমিন (I) নামক চার ধরনের নাইট্রোজিনাস কারক এবং কসফোরিক আ (P)। কোনো নির্দিষ্ট জীবের (যেমন মানুষ) প্রতিটি কোষেই সমপরিমাণ DNA পাকে।

প্রকৃত কোষের ক্রোমোসোমের মূল উপাদান হলো DNA। কতক ভাইরাসে DNA থাকে। DNA সূত্রাকার নি আদিকোন, মাইটোকক্রিয়া ও ক্লোরোপ্লাস্টে বৃত্তাকার DNA থাকে। কোনে DNA-এর পরিমাণ পিকোগ্রাম (১ পিকো গ্রা = ১০^{-১২} গ্রাম) এককে প্রকাশ করা হয়।

DNA-धव তोड शहन (Physical Structure of DNA)

১৮৬৯ সালে নিউক্লিক আসিড আবিশ্কৃত হবার পর থেকেই এর প্রকৃতি, গঠন উপাদান এবং ভৌত গঠন সংয জানার জন্য বিস্তব গরেষণা তরু হয়। জার্মান রসায়নবিদ Robert Feulgen ১৯১৪ সালে DNA রঞ্জন পদ্ধতি উত্তাল করেন যা Feulgen staining নামে পরিচিতি লাভ করে। ১৯৫০ সালে Erwin Chargaff বিস্তর গ্রেখণার পর দেবত সক্ষম হন যে কোনো জীবের DNA-তে A এবং T এর পরিমাণ সমান। আবার G এবং C এর পরিমাণও সমান। DNA অপুতে সমান পরিমাণ A ও T এবং সমপরিমাণ C ও G থাকার এই নীতিমালাকে বলা হয় Chargaff's rule নাইটোজিনাস ফারকের অর্দেক হবে পিউরিন (A, G) এবং অর্দেক হবে পাইরিমিভিন (T, C)। একই সময়ে Maurice Wilkins এবং Rosalind Franklin DNA অণুর X-ray ক্রিন্টালোগ্রাফি করে এর ভৌত অবকাঠামোগত ভক্তবুর্ণ ভর্ত উপস্থাপন করেন। এক্স-রে ক্রিন্টালোমাফির মাধ্যমে তারা DNA গঠনকারী আন্তঃজগুর দূরত্ব 2.0 nm, 0.34 nm এবং 3A nm বলে জানান। জারা আরো বলেন যে, সমূবত DNA অণু ভাবল স্ট্রান্ড (একটি বা তিনটি নয়) এবং এরা বাঁকাস গঠনে বিন্যমান, যার করেলে আশুঃঅপুর বিভিন্ন দূরত দেখা যায়।

Watson & Crick-453 DNA NOS

নিভিন্ন তথ্য উপাত পেকে Watson এবং Crick ইতোমধোই নিমুলিখিত বিষয়তলো অবগত হন :

- L DNA হলো চার প্রকার নিউক্লিয়োটাইড দিয়ে পঠিত পশিমার।
- য়, জানা হয়ে যাছ নিউক্লিয়েটাইভসমূহের রাসায়নিক গঠন।
- HL থেছেত DNA অপ্রীয়, কাজেই কস্তেট ক্রপ অবশাই উন্মুক্ত (exposed) থাকবে।
- iv. Chargaif's dain vagurell A. and Profit T. and Phila Col and Court Profit C. and Phila Co.

AGE FORS

v. Wilkins ও Franklin এর আপবিক মাপ 2.0 nm, 0.34 nm, 3.4 nm এবং helix ধারণা।

ए। দৃটি পিউরিন বিপরীতমুখী হয়ে পাশাপাশি 2 nm দ্রত্বে বসতে পারে নাঃ আবার দৃটি পাইরিমিডিন পাশাপাশি
বসলে দ্রত্ব 2 nm এর কম হবে। কাজেই একটি পিউরিন ও একটি পাইরিমিডিন ভারল হেলিক্স-এ বিপরীতমুখী
হয়ে বসতে হবে, তবেই দৃই স্ট্রাভ-এর দ্রত্ব 2 nm সমান থাকাবে।

vii. A ও T দুটি হাইড্রোজেন বভ দিয়ে যুক্ত হয় এবং G ও C তিনটি হাইড্রোজেন বভ দিয়ে যুক্ত হয়।

viii. দৃটি স্ট্রান্ত একটি অপরটির সম্পূরক (Complementary), একইরপ (identical) নির)

উপরিউক্ত তথ্যতলোর ভিত্তিতে Watson ও Crick (J.D. Watson 1928 & Francis H.C. Crick, 1916-2004) ১৯৫৩ সনে DNA অণুর (তার, সিট, ক্ক্, বন্টু ইত্যাদি দিয়ে তৈরি প্যাচানো সিভির ন্যায়) একটি ভৌত মঙেল উপস্থাপন করেন যা পরবর্তীতে সঠিক মঙেল হিসেবে সর্বত্র স্বীকৃত হয়েছে। এই মঙেল উদ্বাবনের কারণে উইলকিলসহ তাঁদেরকে ১৯৬৩ সনে নোবেল পুরদ্ধার প্রদান করা হয়।

Watson ও Crick প্রদত্ত ভাবল হেলিক্স মডেল অনুযায়ী DNA অণুর ভৌত গঠন নিমুক্সপ :

(১) DNA অণু হিস্ত্রক, বিন্যাস ভান থেকে বাম দিকে খুরানো (প্যাচানো) সিভির মতো, যাকে বলা হয় ভাবল ভৌগন (double helix)। পরিপুরক বেসজোড় ৩' প্রাব 3.4 Å (0.34 nm) 5 (5 Prime) 20 A (2 mm) 3 (3 Prime) চিত্র 1.২৫ : DNA অনুর একাপে (সহদীকৃত) । S-শুলার, চিন্ন ১,২৬ : DNA ভাবল হোলিক্স (ভয়াটলম-ক্রিক মতেল) p-মন্ত্রের A, T, G, C= নাইট্রেরিনাস বেস, ... হাইড্রেরেন বভ γ P-मनारकी, S-नागाद, A-व्यावितन, T-पार्टिन, G-क्यानिन, C-नाइरोगिनन, = वाहरामाणन वक ।

- (२) সূত্র দৃটি সমদ্বতে পর=পর বিপরীতমুখী (একটি 5'→ 3' কার্বনমুখী এবং অপরটি 3'→ 5' কার্বনমুখী) হয়ে অবস্থান করে।
- (৩) সূত্র দুটি তৈরি হয় ডিঅক্সিরাইবোল ভাগার (S) ও ফসফেটের (P) পর্যায়ক্রমিক সম্বেক্তির মাধ্যমে।

- (৪) পুত্র দুটির মাঝখালের প্রতিটি গাপ তৈরি হয় একজোড়া নাইটোজেন বেদ (A=T বা G=C) দিয়ে।
- (e) ক্সফেট যুক্ত থাকে ডিঅক্সিরাইবোল ভাগারের 3°ও 5° কার্বনের (৩য় ও ৫ম কার্বনের) সাথে এবং জারকভলো যুক্ত থাকে ডিঅপ্রিরাইবোল ভাগারের । কার্বনের (১ম কার্বনের) সাথে। কাঞ্ছেই সূত্রকের বাইরের দিকে ক্ষপকেট এবং ভেতরের দিকে নাইট্রোজেন কারক থাকে।
- (৬) DNA অণুতে চার ধরনের নাইটোজেন কারক (আ্ডিনিন, ত্য়ানিন, থাইমিন এবং সাইটোসিন) গাকে। আাডিনিন (A) এর সম্পূরক কারক ঘাইমিন (T) এবং গুয়ানিন (G) এর সম্পূরক কারক সাইটোসিন (C)।
- (৭) একটি সূত্রের আাডিনিন অপর সূত্রের থাইমিনের সাথে দুটি হাইডোজেন বন্ধনী দিয়ে (A = T/T = A) এবং একটি সূত্রের গুয়ানিন অপর সূত্রের সাইটোসিনের সাথে তিনটি হাইছ্যোজেন বন্ধনী (G = C / C = G) দিয়ে যুক্ত হয়। কাজেই সিঁড়ির ধাপ হবে A=T অথবা G=C। বক্ত তৈরি হয় পাশাপাশি অবস্থিত দুটি ফারের O-HN, NH-N এবং NH-O এর মধ্যে। C এবং G এর মধ্যে এই তিনটি অপশনই বিদ্যমান। A এবং T এর মধ্যে দুইটি অপশন বিদামান, T তে O থাকলেও পাশে A তে HN নাই।

(৮) DNA অণুর সূত্র দুটির প্রতিটি পাঁচি বা ঘূর্ণনের দৈর্ঘ্য (34 Å)(3.4 nm)। প্রতিটি পাঁচে নাইট্রোজিনাস বেস জোড়ের ১০টি ধাপ সমদ্রতে অবস্থান করে। ফলে সিভির এক ধাপ থেকে অপর ধাপের দূরত্ব হয় 3.4 A (0.34 nm)

(৯) প্রতিটি প্যাচে হেলির দৃটির ব্যাস (20 Å (2 nm)। তবে অপুর দৈর্ঘ্য প্রজাতিভেদে বিভিন্ন।

- (১০) হৈলিক্সের প্রতিটি সম্পূর্ণ প্যাচ বা মূর্ণনে সূত্র্বলের বাইরের দিকে একটি গভীর বাজ (major groove) ভ একটি অগভীর খাঁজ বা ভাঁজের (minor groove) সৃষ্টি হয়।
- (১১) DNA-এর আণবিক ওজন 10%-10° এর মধ্যে।

মোট কথা দু'টি ডিঅঙ্গিরাইবো পলিনিউক্লিয়োটাইডের সূত্র বিপরীতমুখীভাবে পরস্পর সংযুক্ত হয়ে একটি ছিস্তুক DNA অণু গঠন করে। অণুটি প্যাচানো সিঁড়ির মতো বিন্যন্ত থাকে।__

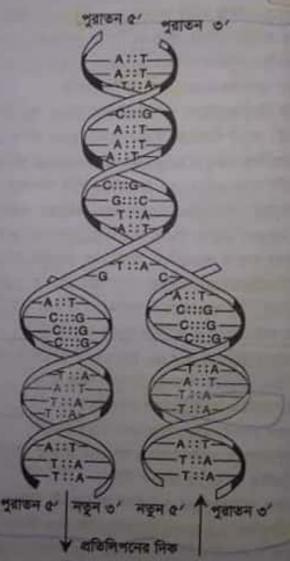
DNA-এর রাসায়নিক গঠন (Chemical Structure of DNA) : যে সব রাসায়নিক পদার্থ নিয়ে DNA গঠিত সে সব রাসায়নিক পদার্থই হলো DNA-এর রাসায়নিক গঠন উপাদান। এক খণ্ড DNA-কে আর্দ্র বিশ্লেষণ করলে পাওয়া যায় কতওলো নিউক্লিরোটাইভ। নিউক্লিয়োটাইভকে অর্দ্র বিশ্লেষণ করলে পাওয়া যায় ফসফোরিক অ্যাসিভ ও নিউক্লিয়োসাইভ। নিউক্লিয়োসাইডকে বিশ্লেষণ করলে পাওয়া যায় নাইটোজেন ঘটিত ফারক এবং ডিজক্মিরাইবোজ শ্যুগার। নাইটোজেনঘটিত কারকসমূহকে বিশ্লেষণ করলে পাওয়া যায় অ্যাভিনিন, তয়ানিন, থাইমিন ও সাইটোসিন নামক কারক (নাইটোজেন বেস)। কাজেই DNA (ডিঅক্সিরাইবোনিউক্লিক আসিড)-এর রাসায়নিক গঠন উপাদান হলো (১) পাঁচ কার্বনবিশিষ্ট ভিঅক্সিরাইবোজ শ্যুগার, (২) ফসফোরিক অ্যাসিড এবং (৩) নাইট্রোজেনঘটিত কারক। কারকগুলো অ্যাডিনিন ও গুয়ানিন নামক পিউরিন এবং সাইটোসিন ও পাইমিন নামক পাইরিমিডিন। 🧠

DNA-এর কাজ (Functions of the DNA) : নিচে DNA-এর কয়েকটি কাজ উল্লেখ করা হলো-

- ১। ক্রোমোসোমের গাঠনিক উপাদান হিসেবে কাল করে।
- ২। বংশগতির আণবিক ভিত্তি ছিসেবে কাঞ্চ করে।
 - ৩। জীবের সকল বৈশিষ্ট্য ধারণ করে এবং নিয়ন্ত্রণ করে।
 - ৪। জীবের বৈশিষ্ট্যসমূহ বংশপরম্পরায় অধঃন্তন প্রজন্ম স্থানান্তর করে।
 - ৫। জীবের যাবতীয় বৈশিষ্ট্যের প্রকাশ ঘটায়।
 - ৬। জীবের সকল শারীরতাত্ত্বিক ও জৈবিক কাজকর্মের নিয়ন্ত্রক হিসেবে কাজ করে।
- প। জীবের পরিবৃত্তির (mutation) ডিন্তি হিসেবে কাভা করে।
 - ৮। DNA এবং তার হেলিব্রের কোনো অহলে গোলযোগ দেখা দিলে তা মেরামত করে নিতে সক্ষম।

DNA কীড়াবে কাল করে ?

DNA-র প্রধান কাজ হলো <u>জীবের বৈশিষ্টা প্রকাশ করা</u>। 'জিন' এর মাধ্যুত্ জীবের বৈশিষ্ট্য প্রকাশ পায় প্রবাহ বংশ


পনাস্পরায় স্থানাছরিত হয়।

ট্রিপলেট হলো জেনেটিক ইনকরমেশনের মূল একক। প্রতিটি ট্রিপলেট একটি নির্দিষ্ট অ্যামিনো অ্যাসিভ নির্দ্ধ mRNA-তে, DNA ট্রিপলেটের সম্পূরক পরপর ডিনটি বেস সিকোয়েলকে বলা হয় কোডন (codon)। প্রতিটি একটি আমিনো অ্যাসিড কোড করে।

DNA-এর জৈবিক ভাৎপর্য বা ভকুত্ (Biological significance of DNA): DNA বংশগতি বিষয়ক শৈশি ধারক ও বাহক। অধিকাংশ জীবের বংশগতির একক অর্ধাৎ জিল (gene) DNA ছাড়া অন্য কিছুই নয়। ক্রি কারণভগোর জন্যই DNA-তে বংশগতির ধারক ও বাহক বলা হয়।

- (i) DNA খারা কোষ বিতাজনের সময় এক নির্তুল প্রতিলিপি সৃষ্টি হয়।
- (ii) DNA कारबत कना निर्मिष्ठ श्रकारवय श्रीपिन मरश्चिष करत ।
- (iii) DNA বংশগতির সব ধরনের জৈবিক সাক্রেড বহন করার ক্ষমতা রাবে।
- (iv) DNA-এর গঠন অত্যন্ত স্থায়ী এবং মিউটেশ্র ছাড়া এর কোনো পরিবর্তন হয় না।
- (v) জীবতোমের জৈবিক সংকেত প্রেরক হড়েছ DNA।
- (vi) কোনো কারণে DNA অপুর গঠনে কোনো পরিবর্তন হলে পরিবৃত্তির উদ্ভব হয়। আর পরিবৃত্ত হলো বি মূল উপাদান।

SE 3.29 I DNA THE GOD FOOM COME

চিত্র ১.২৮ : DNA হাতিলিলিকরণ। (সরলীকৃত)।

পরিশেশে ধলা যায়, DNA-মণু খীবতেকের সকল রাসামনিক বিক্রিয়া নিমন্তি করে, তাই DNA-ই হলো। মালিকিউল (master molecule) ।

RNA

RNA হলো Ribonucleic acid এর আক্রোনিম বা সংক্ষিপ্ত রূপ। যে নিউক্লিক আসিভের পদিনিউক্লিয়োটাইডের মনোমার এককগুলোতে গাঠনিক উপাদানরূপে রাইবোজ শাুগার এবং অন্যতম বেস (ক্ষারক) হিসেত্রে ইউরাসিল থাকে, তা হলো রাইবোনিউক্লিক আসিড RNA)।

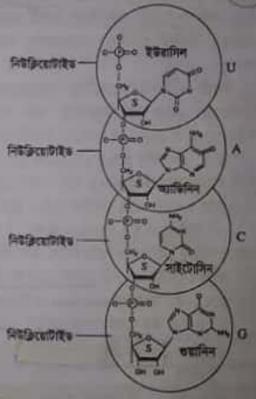
অবস্থান বা বিভৃতি: সকল জীব কোষে RNA থাকে। একটি কোষে বিরাজমান RNA এর শতকরা ৯০ ভাগ থাকে সাইটোপ্লাজমে, বাকি ১০ ভাগ নিউক্লিয়ালে। সাইটোপ্লাজম, রাইবোসোম, নিউক্লিয়াস, ক্রোমোসোম, মাইটোকড্রিয়া এবং প্লাফিডেও RNA পাওয়া যায়। নিউক্লিয়াসের নিউক্লিয়োলাসে এবং DNA-এর সহযোগী হিসেবে ক্রোমোসোমে RNA থাকে। বাাকটেরিয়া কোষেও RNA পাওয়া যায়। এছাড়া কিছু ভাইরাসেও RNA উপস্থিত থাকে।

ভৌত গঠন: RNA এক সূত্রক চেইন-এর মতো। এটি হানে হানে কুওলিত অবস্থায় থাকে। এর গঠনে একাধিক U-

আকৃতির ফাঁস (hairpin loop) বা সুপ থাকে।

রাসায়নিক গঠন : নিমুলিখিত রাসায়নিক পদার্থ নিয়ে RNA গঠিত।

- (i) পাঁচ কার্বনবিশিষ্ট রাইবোজ শাগার (পেন্টোজ শাগার)।
- (iii) নাইট্রোজিনাস বেস (কারক)-আ্যাডিনিন, গুয়ানিন, ইউরাসিল এবং সাইটোসিন।
- (iii) কসকেট (কসকোরিক আগিড)।


RNA-এর শেপিবিভাগ : গঠন ও কাজের ভিত্তিতে RNA-কে নিমুলিখিত পাঁচ ভাগে ভাগ করা হয়েছে।

(i) INTUIN RNA (Transfer RNA II IRNA) : CI HI RNA

WITHCHI WITH CONTROL OF THE PARTY OF THE PAR

চিত্র ১.৩০ । RNA-এর জোরার দিক মডেল।

জেনেটিক কোড অনুযায়ী
একেকটি আমিলো আসিডকে
mRNA অপুতে স্থানাস্তর করে
প্রোটিন সংস্থাবে সাহায্য করে
সেগুলোকে ট্রান্সফার RNA
বলে। প্রতিটি কোষে প্রায় ত১-

किंद 5.25 : RNA प्रमुख बकारण ।

82 রনের IRNA থাকে। নিউক্লিয়াসের ভিতরে tRNA সৃষ্টি হয়। প্রতিটি tRNA-তে মোটামুটি (৯০টি নিউক্লিয়োটাইড থাকে। প্রাথমিকভাবে প্রতিটি tRNA এক সূত্রক এবং লখা চেইনের মতো থাকে কিন্তু পরবর্তীতে এটি ভাষা হয়ে যায় এবং বিভিন্ন বেস-এর মধ্যে জোড়ার সৃষ্টি হয়ে প্রতিটি tRNA-তে একাধিক ফাঁস (loop) সৃষ্টি হয়। সবচেয়ে গুরুত্বপূর্ণ ফাঁস হলো আটিকোলন ফাঁস যা mRNA-এর কোডন-এর সাথে মুর্বেমুখে বসে যেতে গারে। tRNA-

র্ব আরু এক সূত্রক এবং সর সময়ই CCA ধারার বেস সচ্ছিত থাকে। এখানে আমিনো আসিত সংযুক্ত হয়। একে বলা ব্যা আমিনো জ্যাসিত সাইট। কাঁস অবস্থায় সব সময়ই অ্যান্টিকোচন ফাঁস ও অ্যামিনো আসিত সাইট বিশ্রীত অবস্থানে পাতে। তিনটি বেস নিয়ে আন্টিকোতন সৃষ্টি হয়।

বাম : প্রোটন সংগ্রেষণের সময় জেনেটক কোড অনুযায়ী আমিনো আসিডকে mRNA অপুতে খ্যানারর করা।

(ii) রাইবোসোমাল RNA (Ribosomal RNA বা rRNA) : যে সব RNA রাইবোসোমের প্রধান গাঠনিক উপাদান হিসেবে কাজ করে, তাকে রাইবোসোমাল RNA বলে। কোনের সমস্ত RNA-এর শতকরা ৮০-৯০ ছাগই rRNA। কোবের রাইবোসোমে এদের অবস্থান।

কাজ: রাইবোসোম নামক কোষ-অঙ্গাণু সৃষ্টিতে অবদান রাখে যার মাধ্যমে কোষে

প্রোটিন সংশ্রেষিত হয়।

(iii) বার্তাবহ RNA (Messenger RNA বা mRNA): যে সব RNA জিনের সংকেত অনুযায়ী প্রোটিন সংক্লেষের ছাঁচ হিসেবে কার্যকর হয়ে নির্দিষ্ট অ্যামিনো অ্যাসিড অনুক্রম বাছাই করে, সেওগোকে মেসেলার RNA বা বার্তাবহ RNA বলে। DNA থেকে ট্রান্সজিপশনের মাধ্যমে mRNA সৃষ্টি হয়। mRNA লখা চেইলের মতো।

विच ३.७३ : वस्त्री mRNA-এর র্ব প্রান্তের কয়েকটি বেস কোডনবিহীন, এ প্রান্তকে র্ব-লিডার (5-leader) বলে। আবার র্ত প্রাক্ত বেস কোডনবিহীন, এ প্রান্তকে র্ড-ট্রেইলার (3-trailer) বলা হয়। মাঝখানের অংশকে কোডিং অংশ (codi-বলে। পরপর তিনটি বেস মিলে একটি কোডন হয়।

mRNA নির্দিষ্ট প্রোটিন সংশ্রেষণের বার্তা বহন করে। কাজ : নিৰ্দিষ্ট প্ৰোটিন সংশ্ৰেষণের বার্তা

ए- निहात

हित 3.02: mRNA धन गरेन।

কোডিং অঞ্চল

নিউক্লিয়াস থেকে সাইটোগ্রাজমে বহন করে এবং রাইবোসোম ও iRNA-র সাহাযো নির্দিষ্ট আামিনো আসিড অনুক্রমের শৃঙ্গল তৈরি করে।

(iv) বলেগ্ডীয় RNA (Genetic RNA বা gRNA): যে সব RNA কিছু ভাইরাসদেহে বংশগতি বস্ত হিলে করে তাকে বংশগতীয় RNA বলে। এসব ক্ষেত্রে জীবদেহে DNA অনুপস্থিত থাকে। (যেমন TMV

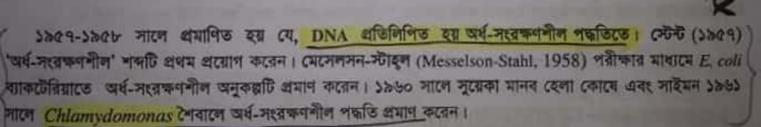
কাজ : প্রধান কাজ প্রোটিন তৈরি। কোনো কোনো ক্ষেত্রে বংশগতির বস্তু হিসেবেও কাজ করে। (যেমন- TMV

(v) মাইনর RNA (Minor RNA) : সাইটোপ্লাজমীয় RNA ও নিউক্লীয় RNA নামে কিছু কুদ্র RNA বজে কোষে বিভিন্ন প্রোটিনের সাথে মিশে এনজাইমের কাঠামো দান করে। এরা মাইনের RNA হিসেবে পরিচিত।

কাজ : বিভিন্ন ধরনের এনজাইমের কাঠামো দান করা এবং এনজাইম হিসেবে কাজ করা।

১। RNA-এর প্রধান কাজ প্রোটিন সংক্রেম ।

২। tRNA-আমিলো আালিড ভানান্তর করে।


ত। rRNA রাইবোনিউক্লিয়োপ্রাটিন ঠিন করে। ৪। mRNA, DNA হতে বার্ডা বহন করে রাইবোলোমে শে DNA ১। ভৌত গঠন খিস্ত্রক, যুৱানো সিভির মতে: ২। রাসায়নিক গঠন (i) এতে থাকে ভিত্তবিদ্ধবাইবোজ তাগার RNA একসূত্রক, শিকলের ন্যায় (ii) DNA-এর পাইরিমিভিনে থাইমিন (i) এতে থাকে রাইবোজ তাগার। সাইটোসিন ৩। প্রকার DNA অণুর কোনো প্রকারতেদ নেই। কার্যণত দিক (ii) RNA-এর পাইরিমিভিনে ইউবলি সাইটোসিন বেস খাকে। হতে DNA-একই বক্ত হয়। अ। वर्गाद কাৰ্যগত দিক হতে RNA পাঁচ ইকার। মধা-অনুদিপনের মাধ্যমে ন্ডুন DNA সৃষ্টি ইয়। ए। अरहान IRNA, rRNA, mRNA, gRNA, WEHER ক্রোমোমে থাকে। তবে माहेकाकिया धनः कालाशास्त्रीत अवश्वन करते। নতুনতারে RNA সৃষ্টি হয়। কোনো অনুদিশন হ अ श्राम काम ধংশগতির ধারক,বাহক ও নিরপ্তক হিসেবে তাক তথা। व्यादमाय, भा**र**क्षाक्षम, बार्खामा १। दर्भगिट DNA বংশগত চাত্ৰত বহণ করে। নিউক্লিয়োগানে থাকে। के। नारधा এতে নিউক্লিটোটাইতের সংখ্যা অনেক বেশি। প্রোটিন সংগ্রেষ করা। ৯। জাগাধিক ওল্পন এনের আগ্রিক তলন নশ লগ হতে বহু ভোটি RNA সাধারণত বংশগত চতিত্র বহন তরে ব এতে নিউল্লিয়েটিইডের সংখ্যা এনেক ক্ষ এদের আগবিক ওজন কয়েক গলের বেশ

DNA অপুর প্রতিশিপন, থিতুন বা প্রতিরূপ সৃষ্টি (Replication of DNA) : DNA-এর প্রতিশিপন হয় তা অনেক আগে নেকেই জানা ছিল কিন্তু সঠিক প্রতিশিপন পদ্ধতি সম্বন্ধে জানা যায় অনেক পরে। প্রাথমিকভাবে DNA অপুর প্রতিশিপনের ডিনটি অনুকল্প প্রতাবিত হয় (১৯৫৬), এতলো হলো—

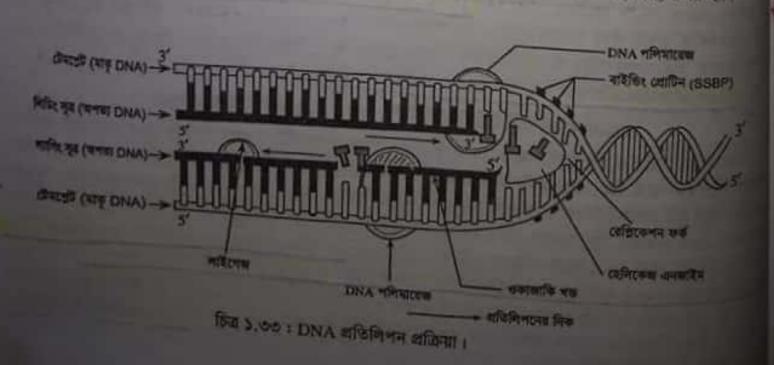
- (১) সংরক্ষণশীল অনুকল্প (২) অর্ধ-সংরক্ষণশীল অনুকল্প (৩) বিজ্বেপশীল অনুকল্প। নিম্নে প্রক্রিয়াতলোর সংক্ষিপ্ত বর্ণনা দেয়া হলো—
- (১) সংরক্ষণশীল অনুকল্প (Conservative hypothesis) : এ প্রক্রিয়ায় মাতৃ DNA-র অপুস্তা দুটো সম্পূর্ণভাবে পরস্পর থেকে পৃথক হবার পর প্রত্যেকটি ছাঁচ হিসেবে আলাদাভাবে দুটো নতুন অপুস্তা তৈরি করে। এরপর সৃষ্ট নতুন অপুস্তা ছাঁচ থেকে পৃথক হয়ে নতুন DNA অপু সৃষ্টি করে এবং মাতৃ অপুস্তা দুটো আলাদাভাবে সংরক্ষিত হয়।
- (২) অর্ধ-সংরক্ষণশীল অনুকল্প (Semiconservative hypothesis) : এ প্রক্রিয়ায় একটি মাতৃ

 DNA অণু থেকে দুটি নতুন DNA অণু সৃষ্টি হয়। নতুন সৃষ্ট DNA অণু দুটোর প্রত্যেকটিতে একটি

 মাতৃস্ত্র অন্যটি নতুন স্ত্র। এজনা একে অর্ধ-সংরক্ষণশীল অনুকল্প বা পদ্ধতি বলে।
- (৩) বিচ্ছুরণশীল অনুকল্প (Dispersive hypothesis) : এ প্রক্রিয়ায় মাতৃ DNA অণুর সূত্রধয় বিশ্লিষ্ট বা খণ্ডিত হয়ে প্রতিলিপি সৃষ্টি করে। এরপর বিভিন্ন পরিমাণের নতুন ও পুরাতন (মাতৃ) খণ্ডকের সংযুক্তির মাধ্যমে দুটো DNA অণু গঠিত হয়।

অর্ধ-সংরক্ষণশীল প্রক্রিয়ায় DNA অণুর প্রতিলিপন বা অনুলিপন

জীবকাষের সবচেয়ে গুরুত্বপূর্ণ বস্ত হলো তার DNA। বহুকোষী জীবের দেহ গঠনের জন্য জাইগোট কোষকে বারবার বিভাজিত হতে হয়। এককোষী জীবের প্রজনন তথা সংখ্যাবৃদ্ধির জনাও কোষ বিভাজিত হয়। একটি কোষে পরিণত হওয়ার আগেই মাতৃকোষের DNA ভাবল হেলিক্সটিকে দুটি ভাবল হেলিক্স হতে হয়। কোষ বিভাজন তরু হওয়ার আগে ইন্টারফেজ পর্যায়ে একটি DNA ভাবল হেলিক্স থেকে দুটি ভাবল হেলিক্স তৈরি হয়। এটিই হলো DNA অণুর প্রতিক্রপ সৃষ্টি বা রেপ্লিকেশন। বে প্রক্রিয়ায় মাতৃ DNA থেকে ভার অনুরূপ DNA ভিত্রের হয় ভাকে DNA প্রতিশিপন বা অনুরূপন বলে। কোষ চক্রের ৪ ধাপে DNA প্রতিশিদন সম্পান হয়। DNA অণুর অনুনিপন তলে। কোষ চক্রের ৪ ধাপে DNA প্রতিশিদন সম্পান হয়। DNA অণুর অনুনিপন তলা বেরিয়কেশন হয়ে থাকে অর্থ-সংরক্ষণশীল পদ্ধতিতে (Semi-conservative method) অর্থাৎ নতুন সৃষ্ট ভাবল ফেলিক্স-এর একটি হেলিক্স থাকরে পুরাতন এবং একটি হেলিক্স হবে নতুনভাবে সৃষ্ট। Mathew Messelson ও Franklin ১৯৫৮ সনে এটি প্রতিষ্ঠিত করেন।


আদি কোষের DNA ব্রাকার, এতে কোনো প্রান্ত বা মাঝ নেই, তাই যে কোনো এক জায়গায় প্রতিদিদ্ধ আদ কোৰের DNA প্রাক্তার, এতে চনতা বিধার মাঝামাঝি স্থানে মিলিত হয়ে দ্রুত প্রতিলিপন শেষ হয়। ব্যাকটেরিয়া DNA প্রতিলিপনে প্রতি মিনিটে(দশ লক্ষ্প পর্যন্ত বেসপেয়ার যুক্ত হতে পারে। প্রকৃত কোষের DNA লম্বা বুরা DNA বাঙালগনে বাঙ বিশানতে লা পাৰ সাত্তি বাংলা বিশান কৰি কম, মিনিটে ৫০০-৫০০০ পর্যন্ত বেন্তে হতে পারে। এ কারণে প্রকৃত কোষের প্রা সূত্রাকার DNA-এর কোনো প্রান্তেই প্রতিলিপন তক্ত হয় না, প্রতিনিপ্র সুকরে মাঝে একই সাথে বহু জারগার ড্রিসোফলাডে ৫০০০০ স্থানে)।

রে মাঝে অক্যু পারে বহু বারণার ক্রিটার (ii) অসংখ্য নিউক্লিয়োটাইড ট্রাইফসফেট (dATP, dGTP, d) dCTP: d = deoxyribose), (iii) নিউক্লিয়োটাইডের মধ্যে বভ সৃষ্টির জন্য প্রচুর শক্তি, যা ট্রাইফসফেট থেকে স্ক ত্তক্ষপূর্ণ কিছু এনজাইম ও সহযোগী প্রোটিন যাদেরকে একত্রে বলা হয় রেপ্লিকেশন কমপ্রেপ্প বা রেপ্লিনোম (Rep complex or replisome), রেপ্রিসোমের প্রধান এনজাইম হলো DNA পলিমারেজ) এ ছাড়াও আছে হেলিকেছ সিকেন স্ট্রান্ড বাইজিং প্রোটন (SSBP), গাইরেজ, এপিআইসোঁমারেজ ইত্যাদি। নিচে প্রতিশিপন প্রক্রিয়াটি সংক্ষেপে উপস্থাপন করা হলো :

- ১। DNA ভাবল হেলিজ-এর এক বা একাধিক বিন্দুতে প্রতিলিপন কাজের সূচনা ঘটে বাকে বলা হয় On replication অৰ্থাৎ 'অৱি' বা প্ৰতিলিপন সূচনা বিন্দু।
- ২। সূচনা বিন্দু থেকে ভাবল হেলিক্স-এর পাক খুলতে শুক করে এবং একই সাথে A=T, G = C নিউক্লিয়ে মধাকার হাইভ্রোজেন বন্ত বিচ্ছিল্ল হয়ে পড়ে। এর ফলে উক্ত স্থানে ডাবল হেলিক্স দুটি একক হেলিক্স-এ পরিণ্ড। হেলিকেল এনজাইমের কার্যকারিতায় এরূপ ঘটে থাকে। হেলিকেল এনজাইম ATP থেকে শক্তি নিয়ে হাইভোক্তে

প্রাত্ত gyrase) এনজাইম সম্মুখের DNA স্ট্রান্ড-এর প্যাচকে (twist) একত্র হতে দেয় নি) তবে অনুনিধন পেছনের অংশের পাাচ ভৈরিতে সহায়তা করে। প্রকৃত কোষে এ কাজটি করে <u>এপিআইসোমারেল এনজাইম।</u>

- ত। শৃথক হওয়া প্রতিটি একক হেলিক্স নতুন সম্পূরক হেলিক্স তৈরির ছাঁচ (template) হিসেবে ব্যবহৃত হয়।
- ৪। প্রতিটি সূচনা বিন্দুতে দুটি করে রেপ্লিকেশন কমপ্লেক্স থাকে। ভাবল হেলিক্স-এর জ্যোড়া ভেঙ্গে অগ্লস্ত হয় নাবে নাবে রেপ্রিকেশন কমপ্লেস্ত দৃটি, একটি অপরটির বিপরীত দিকে চলতে তরু করে। রেপ্লিকেশন কমপ্লেস্ত-এ লিট single strand binding protein পৃথক হওয়া সূত্র দৃটিকে পুনরায় সংযুক্ত হতে দেয় না। ভাবল হেনিছ-নিউক্লিয়োটাইড জ্রোড় ভেঙ্গে অমসর হওয়ার ফলে সেখানে Y-আকৃতির একটি রেপ্লিকেশন ফর্ক (fork) তৈরি হয়।

া প্রাইমেজ (Primase) এনজাইম পৃথকত্ত একটি সূত্রকে ছাঁচ হিসেবে ব্যবহার করে তার একটি অংশ কলি করে একটি প্রাইমার তৈরি করে দেয়। প্রাইমার হলো RNA-এর কয়েকটি জারকের সংক্রির নিকোয়েল। প্রাইমারে মৃক্ত ত'-OH এল বাকে। DNA পশিমারেজ এনজাইম-III একটি নিউক্লিয়োসাইড ট্রাইকসফেট এনে মৃত ত'-OH এলে সংস্কৃত করে প্রতিশিশন কাজের সূচনা করে। এ সময় ট্রাইকসফেটের একটি কসফেট নিউক্লিয়োসাইতের সাথে সংস্কৃত থেকে যায় (তাই নিউক্লিয়োটাইড) এবং অপর দৃটি পাইরোকসফেট হিসেবে মৃত হয়ে যায়। এ সময় অনেক শক্তি নির্গত হয়। পরে পাইরোকসফেট ভেঙ্গে দৃটি কসফেট আয়ন-এ পরিণত হয়। এ সময়ও শক্তি নির্গত হয়। DNA পলিমারেজ-III কেবলমার ত'-OH প্রান্তে নতুন নিউক্লিয়োটাইড যোগ করতে পারে। এ কারণেই নতুন সৃষ্ট DNA হেলিজ সবসময়ই হ'-প্রান্ত থেকে ত'-প্রান্তের দিকে বৃদ্ধি পেতে থাকে। প্রতিশিপন তক হওয়ার পর এক সময় DNA পলিমারেজ এনজাইম প্রাইমারকে পরিয়ে দেয়, কারণ DNA স্ট্রাত-এ RNA থাকতে পারে না।

তিই প্রতিনাম নিউক্লিয়োগাইত ট্রাইফসফোটার পেয় দৃটি ফসফোট পাইরোফসভেট হিসেবে ছান ত্যাপ করে, সংযুক্ত অপর ফসফেট জিজজিরাইবোজের সাথে সংযোগ ছাপন করে। প্রথম নিউক্লিয়োটাইভের ওঁ-OH এলপ বিজীয় নিউক্লিয়োটাইভের ওঁ-ফসফেটের সাথে মুক্ত হরে তাপার-ফসফেটা-আগার বছন তৈরি করে। বিভীয় নিউক্লিয়োটাইভের ওঁ-OH এলপের সাথে ভুতীয় নিউক্লিয়োটাইভের ওঁ-ফসফেট সংযুক্ত হয়। এছারে প্রতিশিক্ষা চপতে থাকে। মনে বাগতে হবে আগাত নিউক্লিয়োটাইভের ওঁ-ফসফেট পূর্বের নিউক্লিয়োটাইভের ওঁ-OH এলপের সাথে যুক্ত হয়। কোন নিউক্লিয়োটাইভের পর কোন নিউক্লিয়োটাইভের পরে কোন নিউক্লিয়োটাইভের পরে কোন নিউক্লিয়োটাইভের পর কোন নিউক্লিয়োটাইভের পর কোন নিউক্লিয়োটাইভ এনে যুক্ত হবে তা ছাচ হেলিক্স-এর তথোর উপর নিউর করবে। তবে অবস্থাই AT, GE ইণ্ডি অনুযায়ী হবে।

- ৬। পৃথককৃত দৃটি সূত্রের একটি তার প্রতিরূপ সৃষ্টি করে যা নিরবচ্ছিন্নভাবে ফর্ক-এর দিকে বৃদ্ধি পেতে থাকে। নতুন সৃষ্ট এই সূত্রকে বলা হয় আগামী সূত্র বা লিডিং সূত্র (leading strand)। অপর স্ত্রটি নিরবচ্ছিন্নভাবে প্রতিরূপ সৃষ্টি করতে পারে না। খণ্ড খণ্ডভাবে সৃষ্ট নতুন সূত্রকে বলা হয় ধীরগামী সূত্র বা ল্যাগিং সূত্র (lagging strand)। (তীর চিহ্নের মাধ্যমে প্রতিরূপ সৃষ্টির অধ্যসরমান দিক দেখানো হয়েছে।)
- ৭। লিভিং সূত্র নিরবচিছনভাবে তার প্রতিরূপ সৃষ্টি করে অগ্রসর হওয়ার কারণে ল্যাণিং সূত্রে জোড়াবিহীন নিউক্লিয়োটাইডের সারি তৈরি হয়। জোড়াবিহীন নিউক্লিয়োটাইডের সারিটি একটু লখা হলে প্রাইমেজ এনজাইম কার্যকরী হয় এবং একটি প্রাইমার তৈরি করে অর্থাৎ মুক্ত ৩-০া প্রান্ত সৃষ্টি করে দেয় ফলে প্রতিলিপন কাজ শুরু হয়। লিভিং সূত্রের মতো এখানে প্রতিলিপন নিরবচিছন হয় না— খণ্ড খণ্ড ভাবে হয়। প্রতিটি খণ্ডের জন্য একটি প্রাইমার ব্যবহৃত হয়। DNA প্রলিমারেজ-1, প্রাইমারকে DNA ছারা প্রতিস্থাপন করে দেয়, ফলে এখানে একটি ছোট গ্যাপ থেকে যায়।

ি ৮। DNA অণুর অনুলিপনে ল্যাণিং সূত্রের প্রতিলিপিত খণ্ডকে বলা হয় Okazaki খণ্ড (আবিদ্ধারকের নামানুসারে)।

পাইসেত্র এনজাইম Okazaki খণ্ডগুলোর মধ্যকার গ্যাপকে সংযুক্ত করে প্রতিলিপিত অংশকে নিরবচ্ছিনতা দান করে।

৯। একই সাথে DNA ভাবল হেলিক্স-এর বিভিন্ন স্থানে প্রতিলিপন কার্য তরু হওয়াতে অল্প সময়ের মধ্যেই পরিপূর্ণ ভাবল হেলিক্সটিই প্রতিলিপিত হয়ে দুটি ভাবল হেলিক্স-এ পরিণত হয় অর্থাৎ প্রতিলিপন সমাপ্ত হয়। প্রতিলিপন সমাপ্ত হয়ে রেপ্লিসোম (এনজাইম কমপ্লেক্স) বিচ্ছিন্ন হয়ে সরে যায়।

DNA প্রুক্ত রিডিং এবং DNA মেরামত

নতুন স্ট্রীন্ত তৈরিকালে ভূল নিউক্লিয়োটাইড সংযুক্ত হয়ে যেতে পারে। মানুযের প্রতি ১০০০ জিন এর মধ্যে এঞ্চি ভূল হতে পারে। যেমন A = T এর স্থলে A = C হয়ে যেতে পারে। DNA-এর নিজস্ব নিয়ন্ত্রণে ভূল ধরার জন্য প্রদান বিভিং বাবছা আছে। এ ধরনের ভূলকে বলা হয় Mismatch) ভূল ধরা পড়লে তা মেরামত করে নেয়ারও বাবছা আছে। যেমন A এর সাথে C যুক্ত হয়ে থাকলে, মেরামতের মাধ্যমে C-কে সরিয়ে দিয়ে T অন্তর্ভক্ত করে দেয়া হয়।

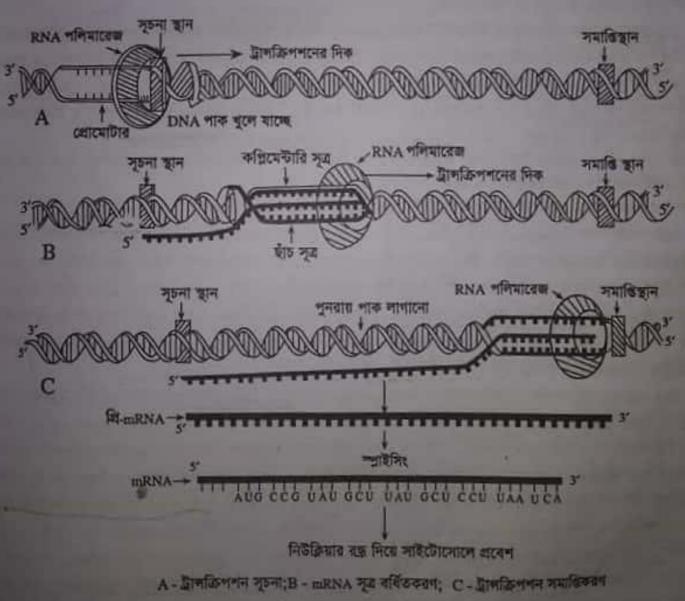
এছাড়া পরিবেশীয় বিভিন্ন উপাদানের কারণে (UV রশ্মি, বিষাক্ত মৌল, কারসিনোজেনিক পদার্থ ইডাাদি) DNA-এর উত্ত (damage) হতে পারে। এটিও মেরামডের ব্যবস্থা আছে। Mismatch-এর কারণে মানুষের এক ধ্বনের কোলন ক্যাপার হয়ে থাকে। মানুবের Xerodesma Pigmentosum) নামক এক প্রকার চর্মরোগ হয়ে থাকে। সাধারণ ধারা DNA এর যে কত হয় তা মেরামতের ব্যবস্থা কোনো ব্যক্তিতে না থাকলে রৌদ্রতাপে তার ক্ষিন ক্যাদার চ

রেন্তিকেশন কমরেক্স (Replication complex) : DNA প্রতিলিপনের সময় সৃষ্ট রেল্লিকেশন ফর্কের নিত্র কিছু এনজাইম ও শ্রোটন সমধিত হয়ে একটি জটিল আগ্রিক যান্ত্রিক গঠন সৃষ্টি করে, একে বলা হয় রেপ্লিক

डेशानान	DNA প্রতিশিপনে কাজ
<u> তিলো মাইসোমারেজ</u>	DNA অপুৰে অভিযাত্ৰাট পাচালো অবস্থা থেকে মুক্ত করে পাকে
DNA COURTON	AND STATE OF THE PARTY OF THE STATE OF THE S
ii. DNA পদিমারেজ —	বা শিক্ষা গঠন করে গাকে । চমান করে বি প্রান্ত নির্দেশিত পরি
v. সিজেল স্ট্র্যান্ত বাইভিং ব্যোটন SSBP)	DNA অপুর একক স্ট্র্যান্ডে সংযুক্ত হয় যাতে এরা পুনরায় ছি-ছা
नारेणम	ওকাজাকি খণ্ডকে পরিপূরক স্ট্রান্ডে যুক্ত করে।
थे. वाहेराज	RNA প্রাইমারকে স্ট্রাভের প্রাচে যাত করে।

RNA প্রাইমারকে ন্ট্রাভের প্রান্তে যুক্ত করে। জীবজনতে DNA শ্রতিশিপনের ভক্তত্ব অপরিসীম। কোষ বিভাজন এবং গ্যামিট সৃষ্টির জন্য DNA প্র অত্যাবশ্যক। অর্থাৎ দেহের বৃদ্ধি ও জনন এবং এর মাধামে বৈশিষ্ট্য পূর্ব পুরুষ থেকে উত্তর পুরুষে স্থানান্তর ইত্যানি DNA প্রতিলিপন বাধাতামূলক।

ট্রান্সক্রিপশন (Transcription) ি বি -> RNA ইতোমধ্যেই আমরা DNA এবং RNA-এর গঠন ও কাজ সম্বন্ধে প্রাথমিক ধারণা পেয়েছি। এখন DNA শ্বতি (encoded) রাসায়নিক সংকেত বা তথাগুলো কীভাবে DNA থেকে RNA-তে এবং RNA থেকে শ্রে লবাহিত হয় এ সময়ে প্রাথমিক ধারণা গাভ করবো। DNA অণুতে প্রবিত রাসায়নিক তথ্যগুলোকে RNA(ml অণুতে কপি করার প্রক্রিয়াকে বলা হয় ট্রাগক্রিপশন। (HIV-এর ক্ষেত্রে রিভার্স ট্রাগক্রিপশন ঘটে।) RNA বৈ প্রক্রিয়াটি DNA কর্তৃক নিয়ন্তিত। সহজভাবে বলা যায়, DNA থেকে RNA উৎপাদন প্রক্রিয়ার নাম হলো ট্রান্তি RNA থেকে প্রোটিন তৈরির প্রক্রিয়া হুলো ট্রান্সলেশন। ট্রান্সক্রিপশন নিউক্রিয়াসে) সংঘটিত হয় এবং এতে সৃষ্ট ল নিউক্লির ছিদ্রের মাধ্যমে সাইট্রোপ্লাজমে প্রবেশ করে। এ অক্রিয়াটির একটি সরগ রূপরেখা নিয়ে দেয়া হলো।


5'---- ACTGCCATTCCCGGCATAACG ---- 3' 3'---- TGACGGTAAGGGCCGTATTGC ---- 5' RNA প্রিমারেল II 5'---- ACUGCCAUUCCCGGCAUAACG ------ 3' mRNA

DNA অবুর 5'→ 3' আছিচির নাম সেল বা কোডিং বঁটাত, আর 3' → 5' বঁটাভিকে বলে এটি-সেল বঁ কোতিং ব্রান্ত। RNA এ পশিমারেজ II ভাবদ স্ট্রাভিত্ত DNA কে টেমপ্রেট বা ছাঁচ হিসেবে ব্যবহার করে সংক্রে এক ইয়াভবুক mRNA অপু। এটি DNA অপুর হবহু কপি হলেও T এর ছলে U থাকে। DNA থেকে আ লংগ্রেদণের সময় এভানে বংশগতি সংবাদ এর বিশক্তা বজায় থাকে।

ট্রাক্তিগ্রন চক হয় জ্যাল সাইট থেকে। প্রাক RNA এর S প্রান্তে ও মিখাইল চ্যানোসাইন যুক্ত হয়ে একে ট্রু লেয়। এরই নাম ক্যাপিং বা টুলি পরানো। তারপরে ট্রাপলেট হয় না এমন আয় একটু জায়গা খাকে। এর নাম ই লিকোমেন। তারপর অবছিত আরম্ম নিয়ন্ত্রক কোচনু, AUG। এটি ট্রাললেশন তরদর সংক্রেড দেয়। এব কোট

प्राथिकश्यास कना या शरपालन

- (i) DNA VIS (template)
- (ii) RNA-পণিমারেজ এনজাইম যা একাধিক রকম হতে পারে।
- (iii) মুক বাইবোনিউক্লিয়োটাইড ট্রাইফসফেট (ATP, GTP, CTP এবং UTP).
- (iv) রাসায়নিক শক্তি, ট্রাইফসফেট ভেঙ্গে নিউক্লিয়োটাইড এবং পাইরোফসফেট সৃষ্টিকালে মুক্ত হয়। পাইরোফসফেট ভেলে দুই আয়ন ফসফেট তৈরি কালেও কিছু অতিরিক্ত শক্তি পাওয়া যায়।
- (v) किषु महत्यांगी व्यापिन। ধকৃত কোষে ট্রাপক্রিপশন প্রক্রিয়া: ট্রালক্রিপশন প্রক্রিয়াকে প্রধানপ্র তিনটি পর্যায়ে ভাগ করা যেতে পারে; যথা-(i) সুল্লা (initiation), (ii) সূত্র বর্ষিতকরণ (elongation) এবং (jii) সমান্তিকরণ (termination),
- (i) ট্রান্সক্রিপশন সূচনা (initiation) : DNA-তে প্রতিটি জিনের জন্য একটি প্রোমোটার (promoter) থাকে (প্রোমোটার হলো জিনের রেওলেটরি অংশের বিশেষ সিকোয়েল বিশিষ্ট একটি অংশ।)। প্রথমে ট্রান্সক্রিপশন ফ্যাষ্টর নামক

চিত্র: ১.৩৪: ট্রান্সক্রিপ্সন প্রক্রিনা।

একদল প্রোটন প্রোমোটারে আবদ্ধ হয়। এরপর RNA-পলিমারেজ এনজাইম ট্রালক্রিপশন ফার্টর ও প্রোমোটার সংযুক্ত হয়। (আদি কোনে, যেমন ব্যাকটেরিয়াতে RNA-পলিমারেজ সরাসরি প্রোমোটারে সংযুক্ত হয়। কোনি কোনে, যেমন ব্যাকটেরিয়াতে RNA-পলিমারেজ সরাসরি প্রোমোটারে সংযুক্ত হবে এবং DNA ভালদ RNA-পলিমারেজ এনজাইমকে নির্দেশ দান করে কোথা থেকে ট্রালক্রিপশন শুরু করতে হবে এবং DNA ভালদ প্রাক্ত কোন ব্রীভি-এ ট্রালক্রিপশন হবে। প্রোমোটারে সংযুক্ত হবার পর RNA পলিমারেজ প্রথমে DNA-এর সলেম।

• সাধারণত প্রথমে কমপশ্বে ২০টি বেসপেয়ারের পাক খুলে যায়।

সাধারণত প্রথমে কমপন্দে ২০০০ বন তিক্ত জিন অবস্থিত সেই স্ট্র্যান্ডকে ছাঁচ (template) হিসেবে ব্যবহা

DNA ডাবল হোলজ-এর যে আতে না
 সামত না
 সামত বিশ্ব করা হর করা তর করে। অপর স্ট্রাভিতিকে বলা হয় কমপ্লিমেন্টারি স্ট্রাভ, যা ট্রান্সক্রাইব করা হয় না।

নির্দ্ধিপশন তর হয় ৫-৩ মুখী অবস্থায়। RNA পলিমারেজ-II (প্রকৃত কোষে তিন ধরনের RNA পশ্বির কিন্তু আদিকোমে এক ধরনের পলিমারেজ থাকে) ATP, GTP, CTP এবং UTP থেকে বেসপেয়ারিং নীতি ছাঁচে অবস্থিত নিউক্লিয়োটাইডের পরিপ্রকটি বেছে নিয়ে ছাঁচের সাথে সংযুক্তির মাধ্যমে RNA তৈরি সূচনা করে।
স্বচনা স্থান ও সমাঙি স্থান পূর্ব নির্ধারিত থাকে।

(ii) RNA স্ট্র্যান্ড বৃদ্ধিকরণ বা বর্ধিতকরণ (elongation): RNA পলিমারেজ এনজাইম বেসপেয়ারিং রীতি ক্রকটির পর একটি নিউক্লিয়োটাইড সংযুক্ত করতে করতে ছাঁচ স্ট্র্যান্ড ধরে ৩' থেকে ৫' প্রান্তের দিকে অমসর হতে উদাহরণ হিসেবে বলা যায় ছাঁচ স্ট্র্যান্ড-এ যদি ATTCGA সিকোয়েশে বেস সজ্জিত থাকে, তা হলে RNA-তে UAAG সিকোয়েশের বেসসমূহ সজ্জিত হয়। তৈরিকৃত RNA স্ত্রাটি হবে ছাঁচ DNA স্ত্রের অ্যান্টিপ্যারালাল কিন্তু কমন্ত্রিকে অনুরূপ, তধু T এর স্থলে U হবে। কারণ RNA-তে থাইমিনের পরিবর্তে ইউরাসিল থাকে।
DNA স্ত্রের খোলা অংশের ট্রান্সক্রিপশন সমাপ্ত হলে RNA পলিমারেজ পুনরায় সামনে থেকে আরেকটি অংশ বুলে এবং একই সাথে পেছনের অংশ সংযুক্ত করে পাক তৈরি করে দেয়।
এসব কাজে যে শক্তির প্রয়োজন হয় তা ফসফেট বিচ্ছিনুকরণ থেকে সরবরাহ করা হয়।

(iii) সমান্তিকরণ (termination): DNA-এর ছাঁচ স্ট্রান্ডে ট্রান্সক্রিপশন সমান্তিকরণ স্থান নির্দিষ্ট করা থাকে। মি পলিমারেজ ছাঁচ ধরে সামনে অগ্রসর হতে হতে সমান্তিকরণ স্থানে (DNA স্ক্রের একটি নির্দিষ্ট কেস সিকোরেল) গেলে ট্রান্সক্রিপশন সমান্ত হয়। কোনো কোনো জিন-এর ক্রেক্রে ট্রান্সক্রিপশন সমান্ত হলে তৈরিকৃত RNA স্কাটিসহ। পলিমারেজ এনজাইম এমনিতেই সরে পৃথক হয়ে যায়। কোনো কোনো জিনের জন্য একটি সাহায্যকারী প্রোটিন ট্রান্সকরা অংশটিকে (এবং RNA পলিমারেজ) টেনে পৃথক করে নিয়ে আসে। DNA প্রতিশিপির মতো এখানে প্রক্রির ও মেরামতের ব্যবস্থা নেই।

(iv) mRNA চূড়ান্তকরণ : ট্রাঙ্গক্রিপশনের মাধ্যমে যে mRNA সূত্রটি তৈরি হলো তাকে বলা হয় প্রি-mRNA।
mRNA চূড়ান্ত mRNA সূত্র থেকে দীর্ঘ। বিশেষ প্রক্রিয়াজাতকরণের মাধ্যমে প্রি-mRNA থেকে চূড়ান্ত mRNA।
হয়। (আদিকোষে সরাসরি চূড়ান্ত mRNA তৈরি হয় এবং সাথে সাথেই ট্রাঙ্গলেশন শুরু হয়।) প্রক্রিয়াজাতকরণ হলা
mRNA সূত্রে প্রয়োজন-বিয়োজন করা। প্রতিটি জিন-এ এমন কিছু অংশ থাকে যে অংশ থেকে ব্যা
ট্রাঙ্গলেশন হবে না। এই অংশসমূহকে বলা হয় introns (intervening sequence)। য়ে অংশতলো পেকে ট্রাঙ্গলেশন
ক্রে অংশতলোকে বলা হয় exons (expresed sequence)। স্পাইসিং (splicing) অর্থাৎ mRNA সূত্র থেকে ট্রাঙ্গলেশন
ক্রেশকর্ম্ব কেটে বাদ দিয়ে কেবল exons অংশ রোখে mRNA চূড়ান্ত করা হয়। চূড়ান্তকরণের পূর্বে mRNA-এর র্বা
চার্লিন নিউক্রিয়োটাইড বিশিন্ন ক্রাপ মুক্ত করা হয় এবং ও প্রান্তে পদি A (৫০-২৫০টি এডিনিন) লেনমুক্ত করা
ক্রাপে ও পেনা সংযুক্তির কারণে চূড়ান্তকৃত mRNA অধুটি নিউক্রিয়াস থেকে ছিল পথ দিয়ে দ্রুন্ড সাইটোল্লালয়ে
শারে, হাইন্রোন্টাইটিক এনভাইমের ফডিকারক ভূমিকা পেকে মুক্ত পাকে এবং সহজে রাইবোসোমে সংযুক্ত হাতে পারে

MRNA ব্রাপতিপশন ও প্রমেসিং হয় বিউক্রিয়াসে, আর ট্রাপলেশন হয় পাইটোপ্রাজমে। ট্রাপতিপশনের সময় সকল লেকে এনজাইমের সাহায়্যে কেটে অপসারণ করা হয় এবং পার্ধবর্তী এরানগুলোকে পুনরায় জোড়া দিয়ে সংযুক্ত করা এ ঘটনাকে বিন স্প্রাইসিং বলা হয়। mRNA স্প্রাইসিং করতে স্প্রাইসিয়োসোম (spliceosome) লাগে। কতওলো ল ও snRNA (= small nuclear RNA) মিলিডভাবে স্প্রাইসিয়োসোম গঠন করে।

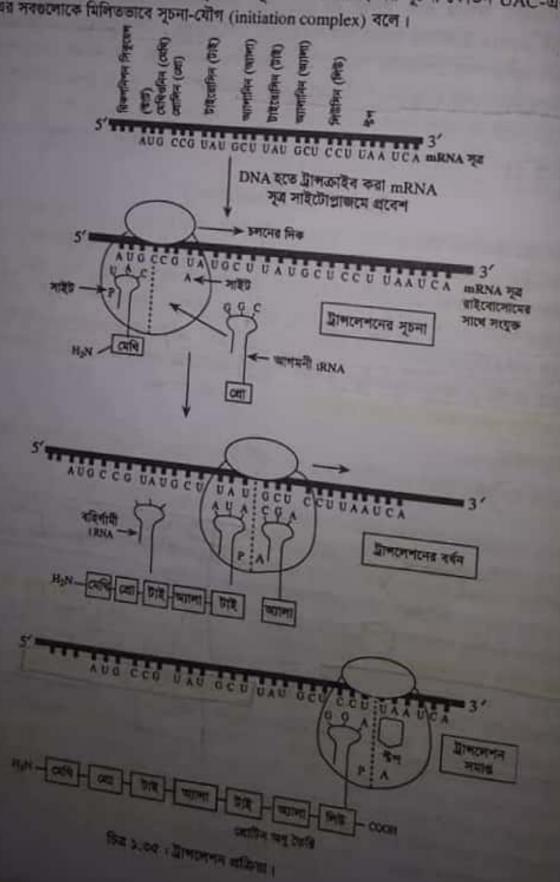
টাগজিপশন প্রক্রিয়াটি অত্যন্ত দ্রুত সম্পন্ন হয় (E. coli) ব্যাকটেরিয়ার একটি জিন থেকে একটি ১০০০ হয়োটাইড বিশিষ্ট mRNA ট্রাপত্রিপট করতে যাত্র সময় লাগে এক সেকেন্ড) জিনোমের (DNA-এর) যতটুকু অংশ চিছনুভাবে একটি RNA অণু ট্রাপত্রদাইব করে তাকে ট্রাপত্রিপশন একক বলা হয়। একটি ট্রাপত্রিপশন এককে বাটার, তরুর বিন্দু এবং শেষ বিন্দু-এই তিনটি অংশ আছে। আদিকোষ এবং প্রকৃতকোষের ট্রাপত্রিপশনে কিছুটা লা আছে। DNA- অণুর যে অংশ বিশেষ একটি পলিপেপটাইড চেইন এর সকল তথা সংবক্ষণ করে তাকে জিন বাল (cistron) বলে।

ট্রান্সলেশন (Translation)

জীবদেহে জিন-এর প্রকাশের জন্য প্রয়োজন DNA-এর জিন অংশ থেকে RNA (mRNA) সৃষ্টি করা, যাকে বলা হয় ক্রপশন, এবং mRNA থেকে পলিপেপটাইড চেইন তথা প্রোটিন সৃষ্টি করা, যাকে বলা হয় ট্রান্সলেশন। অর্থাৎ RNA শত পথে পলিপেপটাইড চেইন তথা প্রোটিন সংশ্লেষণের প্রক্রিয়াকে বলা হয় ট্রান্সলেশন। সহজ কথায় mRNA থেকে ন তৈরি প্রক্রিয়া হলো ট্রান্সলেশন। ট্রান্সলেশন হলো DNA-এর ভাষাকে mRNA-এর মাধ্যমে প্রোটিনের ভাষার দ বা রূপান্তর করা। DNA থেকে তথ্য বা নির্দেশ 'কপি' করে থাকে mRNA (transcription)। DNA এর ভাষাকে এর মাধ্যমে প্রোটিনের ভাষায় রূপান্তরিত করাকে বলা হয় ট্রান্সলেশন (translation)। ট্রান্সলেশন রাইবোসোমেটিত হয়। শৃত্যালিত পলিপেপটাইডই হলো প্রোটিন।

जनीय উপाদानসমূহ

(i)


- mRNA যা DNA থেকে জেনেটিক কোড বহন করে নিয়ে আসে। এটি প্রোটিন সংশ্লেষণের ছাঁচরূপে ব্যবহৃত হয়।
- ii) tRNA যা সুনির্দিষ্ট অ্যামিনো অ্যাসিড বহন করে আনে। প্রতিটি অ্যামিনো অ্যাসিডের জন্য কমপক্ষে একটি
 tRNA থাকে। tRNA অণু খুবই ছোট। এতে ৭৫-৮০টি নিউক্লিয়োটাইড থাকে। tRNA-এর ও প্রান্তে
 অ্যামিনো অ্যাসিড সংযুক্তির জন্য কোডন থাকে এবং মাঝামাঝি অবস্থায় বিপরীত দিকে mRNA-এর সাথে
 সংযুক্তির জন্য ৩ বেস-এর একটি অ্যান্টিকোডন থাকে।
- (iii) আমিনো অ্যাসিড সাধারণত বিশ প্রকার। বিশ প্রকার অ্যামিনো অ্যাসিডের জন্য ৬১ প্রকার কোডন থাকে।
- (iv) বাইবোসোম হলো IRNA বসার মন্ত। প্রতিটি রাইবোসোমে IRNA বসার জন্য দুটি স্থান থাকে, A-স্থান এবং P-স্থান। একটি রাইবোসোম যে কোনো mRNA-র সাথে এবং সকল IRNA-র সাথে সংযুক্ত হতে পারে।
- (१) আকৃতিভেটিং এনজাইম : এদেরকে সাধারণত আমিনো-আমিল IRNA সিছেটেছা (Aminoacyl-IRNA Synthetases) বলে। প্রতিটি আকৃতিভেটিং এনজাইম একটি আমিনো আসিত ও একটি IRNA-এর জন্য নির্দিষ্ট। প্রতিটি এনজাইমে তিনটি কার্যকরী সাইট থাকে: (i) একটি নির্দিষ্ট আমিনো আসিভের জন্য, (ii) একটি ATP-এর জন্য এবং (iii) একটি নির্দিষ্ট IRNA-এর জন্য। এনজাইম প্রথমে আমিনো আসিভ (AA) একটি ATP এর সাথে ক্রিয়া করে AA-AMP oond তৈরি করে এবং পাইকক্ষসফেট করে হয়ে যায়। এরণর এটি ও ATP এর সাথে ক্রিয়া করে AA-AMP oond তৈরি করে এবং পাইকক্ষসফেট করে হয়ে যায়। এরণর এটি ও মেসে সাথে যুক্ত হয়। দুটি আমিনো আসিভের মধ্যে পেপটাইড যন্ত সৃষ্টির শক্তি এ পর্যায় এবং পরে জানে। এনজাইমে রমেন বিদ্যায় এবং পরে আমিনা আসিভ সংযুক্তির পর AMP বের হয়ে যায় এবং পরে জানে। এনজাইমে রমেন-এর সাথে নির্দিষ্ট আমিনো আসিভ সংযুক্তির পর AMP বের হয়ে যায় এবং পরে

ট্রাদলেশন প্রক্রিয়া

নিনিই প্রথম জ্যামিনো-আসিভসই শক্তিকৃত (charged) tRNA এবং রাইবোসোমের কুদ্র একত mkn
সূচনা বিন্দুতে সংযুক্ত হয়। রাইবোসোমের কুদ্র এককটি mRNA সূত্রের স্বীকৃত সিকোয়েন্স-এ সংযুক্ত হ

সাধারণত তক্ত করার কোত হলো AUG, কাজেই প্রথম অ্যামিনো অ্যাসিভ হলে <u>মেপিপ্রিনি</u>) মেছিল

ইRNA-এর আটিকোডন mRNA সূত্রের সম্পূর্ক বেসপেয়ারিং-এর সূচনা কোডন UAC-এর সাথে জ্ব

- GTP থেকে শক্তি গ্রহণ করে ইনিশিয়েশন ফ্যায়র (initiation factor) নামক এক দল প্রোটিন mRNA, tRNA, রাইবোসোম ইত্যাদিকে এক সাথে এনে দেয়।
- সংযুক্ত হালে mRNA এবং tRNA সূত্রহয় আান্টিপ্যারালাল এবং বেস-পেয়ারিং কমপ্রিমেন্টারি বা সম্পূরক।
- আমিলো আাসিভকে সংযুক্ত করে tRNA সূচনা যৌগ থেকে সরে গিয়ে সাইটোসোল-এ (Cytosol = সাইটোপ্লাজমের তরল অংশ) চলে আসে এবং পুনরায় একই জাতীয় অপর আমিলো আসিভ আনার জন্য প্রস্তুত হয়।
- রাইবোসোম mRNA স্ত্রের ৫—ও মুখী অবস্থায় চলতে থাকে, ফলে একটির পর একটি অ্যামিনো অ্যাসিড পেপটাইড বন্ধনীর মাধ্যমে সংযুক্ত হয়ে পলিপেপটাইড তথা প্রোটিন অণু গঠন করে।

প্রক্রিয়াটি চলতে থাকলে

- (i) পরবর্তী শক্তিকৃত tRNA থালি A-সাইট-এ প্রবেশ করে।
- (ii) tRNA এর অ্যামিনো অ্যাসিড P-সাইট-এ এসে বর্ধিক্ পলিপেপটাইড চেইনের সাথে যুক্ত হয় এবং
- (iii) সম্পূর্ণ tRNA পলিপেপটাইড যৌগ, এর কোডনসহ নতুন করে শূন্য হওয়া P-সাইট-এ চলে আসে। Elongation factors বলে এক দল প্রোটিন এসব কাডো সহায়তা করে।
- রাইবোসোম mRNA বরাবর চলতে চলতে যখন স্টপ কোডন (UAA, UAG বা UGA)-এ প্রবেশ করে অর্থাৎ
 রাইবোসোমের A-সাইটে স্টপ কোডন প্রবেশ করে তখন ট্রাগলেশন বন্ধ হয়ে যায়। এসব কোডন কোনো
 আ্যামিনো অ্যাসিড বা কোনো tRNA এনকোড করে না, বরং এর পরিবর্তে একটি Protein release factor-এর
 সাথে সংযুক্ত হয়।
- নতুন সৃষ্ট প্রোটিন অণুটি তখন রাইবোসোম হতে মৃক্ত হয়ে যায়।
- ট্রাঙ্গলেশন প্রক্রিয়া নিয়য়্রণেরও ব্যবস্থা রয়েছে। পলিসোম (পলিরাইবোসোম) ট্রাঙ্গলেশনের গতি অনেক বাড়িয়ে
 দেয়।

বিভিন্ন আতিবায়োটিক ওযুধ ব্যাকটোইয়োগ ট্রাগলেশন প্রক্রিয়া (প্রোটন সংশ্লেষণ) ক্ষতিয়ন্ত করতে পারে। যানবদেহে রোগ সৃষ্টিকারী

াকটোইয়াহ প্রোটন সংশ্লেষণেও বিভিন্ন পর্যাতে বিদ্ন সৃষ্টি করে কতিপয় আন্দিহায়োটিক ওযুধ ব্যাকটোইয়াকে ধ্বনে করে এবং মানবদেহকে

রাগ থেকে যুক্তি দেয়া।

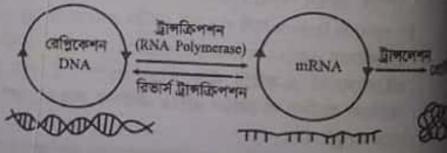
আতিবায়োটিক

ক্যাতিবায়োটিক

ক্যাতিবায়াটিক

ক্যাতিবায়াটি

এখানে উল্লেখযোগ্য যে mRNA ঘারা সরাসরি নির্ধারিত হয় প্রোটিন অপুর অ্যামিনো অ্যাসিডের সংখ্যা ও অনুক্রম। মার mRNA হচ্ছে DNA অপুর একটি অংশের ছবহ প্রতিচ্ছবি। তাহলে বোঝা যায় প্রোটিন অপুতে অ্যামিনো অ্যাসিডের নংখ্যা ও অনুক্রম পরোক্ষভাবে DNA ঘারাই নিয়ন্ত্রিত হয়।


আদিকোৰে নিউক্লিয়াস না থাকায় একই সাথে এক প্ৰান্তে ট্ৰাঙ্গ ক্রিপশন এবং অপর প্রান্তে ট্রাঙ্গলেশন চলতে থাকে।

হোটিন বড় অনুর জৈব রাসায়নিক পদার্থ, তবে মাত ২০ প্রকার অ্যামিনো অ্যাসিড বিভিন্ন অনুক্রমে সক্তিং দুটি আমিনো আসিড পেপটাইড বছনী দারা সংযুক্ত থাকে।

फु क्याण्न अन् गठन करत्। मूछ असायणा अस्तर्भ ग्रामकिन्यम	ট্রান্সলেশন		
১। DNA অণুতে এথিত রাসায়নিক তথাগুলোকে RNA (mRNA) অণুতে কপি করার প্রক্রিয়াকে বলা হয় ট্রাসক্রিপশন।	১। mRNA থেকে প্রোটন তৈরির প্রক্রিয়ারে ট্রান্সলেশন।		
। এ প্রক্রিনাটি কোষের <mark>নিউক্লিয়াদের মধ্যে সংঘটিত হয়ে</mark> থাকে।	২। এ প্রক্রিয়াটি <mark>সাইটোপ্রাজমে</mark> সংঘটিত হয়। (নিউক্রিয়ার বন্ধ দিয়ে বেরিয়ে সাইটোপ্লাজমে আ		
। ট্রাশক্রিপশন প্রক্রিয়াটি রাইবোসোমের সাথে সম্পর্কিত নয়।	ত। এক্ষেত্রে ট্রান্সলেশন প্রক্রিরাটি কোষের রাইর সাথে সংশ্লিষ্ট।		
র। এ প্রতিনার <mark>সর্বে পলিযারেজ </mark> এনজাইম তরুত্পূর্ণ ভূমিকা রাখে।	৪। এ প্রক্রিরায় অ্যাকটিভেটিং এনজাইম তরুত্ব পালন করে।		
া শ্রোমোটারে সংযুক্ত হওয়ার পর RNA পলিমারেজ প্রথমে DNA-এর পাক খুলে নেয়। জীববিদ্যার কেন্দ্রীয় প্রত্যের (Central Doenia of R	৫। এনজাইমে LRNA এর শাথে নির্দিষ্ট আামিনে সংযুক্তির পর AMP বের হয়ে যায় এই এনজাইমে মুক্ত হয়।		

জীববিদ্যার কেন্দ্রীয় প্রভায় (Central Dogma of Biology) : রেপ্লিকেশন (Replication), (Transcription) ও ট্রাপলেশন (Translation) এর মাধ্যমে DNA ও RNA এবং প্রোটিন এর মধ্যে একটি স

বিদামান। এ সম্পর্কটি হচেছ- এদের একটি থেকে অন্যাটির উৎপাদন (চিত্র ১.৩৬)। DNA থেকে RNA উৎপাদন, RNA থেকে প্রোটিন উৎপাদন এবং প্রোটিন (এনজাইম) দারা DNA ও RNA উভয়ের উৎপাদন নিয়ন্ত্রণ-এই হচ্ছে এ সম্পর্কের মূল কথা। এ ধারণা বা প্রত্যাটি জীববিজ্ঞানের একটি মৌল প্রত্যয়

চিত্র ১.৩৬ : জীববিদ্যার কেন্দ্রীয় প্রত্যয়।

(Dogma)। এ কারণে এ প্রত্যয়কে বলে জীববিজ্ঞানে র কেন্দ্রীয় প্রত্যয় (Central Dogma of Biology)। ওয়াটসন ক ১৯৫৮ সালে প্রথাবিত এ কেন্দ্রীয় প্রত্যয়টিকে ১৯৬৮ সালে কমনার (Barry Commoner) চাক্রিক (cyclic) কা করেন। ১৯৭০ এর দশকে জানা যায় যে, কোনো বেগনো কেয়ে RNA থেকে DNA তৈরি হতে পারে। এর নাম নি

জিন (Gene)

মেলেটি তার বাবার বৃদ্ধিয়তা পোরেছে বা মেয়েটি তার মায়ের চুল ও চোখ পোরেছে, এমন কথা আমরা বলতে ভ বাছৰে এমনটি দেখেও থাকি। কিন্তু কেমন কৰে ভাৱে মাধ্যমে বাবা বা মা থেকে তাদেৱ ছেলে–মেয়েতে বৈশিটিত স্থানারিত হলোঃ একটি নিষিক ভিষাপু থেকেই ঐ মেগুলিটি বা মেয়েটির জীবন তক্ষ হয়েছে। ঐ নিষিক ভিষাপুতে বা বানার প্রথমকা, না হিপ নাবের চোল না চুল কিন্তু এমান কিছু ছিল যা পরবাতীতে মারোর চোবের গড়ন, চুলের বৈশিট বাবাৰ প্ৰথমবাৰ বিকাশ ঘটিয়েছে। যাব মাধায়ে মা-বা বা থেকে ছেখে-মেয়েতে ঐ বৈশিষ্ট্যতলো এলেছে তার নামই বি সর্বাৎ ক্রীবের সাভিত্রিক গোলিয়া নিয়ন্ত্রণকারী ক্রুমান্তম এই চকতে জিল বলা হয়।

तामान त्यादान त्यादान (Gregor Johann Mend el, 1822–1884) प्रक्षित्रीक्षित्रा गरनपदा कहा नगरन (Эм-10 দশকে) উল্লিমের নৈশিক্টোর বাহককে ক্যা বা ফাটের বলে উল্লেখ করেছিলেন। প্রকারীয়ের যো

১৯০৯ সালে সর্বপ্রথম ঐ কণা বা ফ্যাইরকেই জিল (gene) হিসেবে অভিহিত করেন। ১৯১২ সালে 🖫 H. Morgan ক্রমান করেন যে, জিন কোষের ক্রোমোসোমে অবস্থিত। ভারতীয় বিজ্ঞানী Har Gobinda Khorana কৃতিম জিন সংশ্রেষণ করে ১৯৬৯ সালে লোবেল পুরছার পান।

ক্রোমোসোমের যে ছালে একটি জিন অবস্থান করে ঐ স্থানকে শোকাস (locus) বলে । কিন্তু জিন কী?

বাছপ এবং ট্যাটাম (George Beadle and Edward L. Tatum- 1941) Neurospora crassa নামক ছ্যাক নিয়ে দীর্ঘ গবেষণার পর বলেন যে, নির্দিষ্ট জিন নির্দিষ্ট এনজাইম তৈরির জন্য দায়ী। এর মাধ্যমেই (Garroot) 1908) সর্বপ্রথম 'এক জিন এক এনজাইম' মতবাদ চালু করেন। এর আগে থেকেই জানা ছিল এনজাইম মানেই প্রোটিন, তাই পরবর্তীতে উক্ত মতবাদ পরিমার্জন করে বলা হয় 'এক জিন এক পলিপেপটাইড চেইন' এখাং এনজাইম এবং প্রোটিন অণু জিন कर्डक मृष्टे।

সিক্ল সেল হিমোগ্লোবিন (৬০০) আামিনো আসিড নিয়ে গঠিত) নিয়ে কাজ করে Vernon Ingram (১৯৫৯) দেখান যে, এই প্রোটিনে ৬০০ আমিনো আসিড একটি নির্দিষ্ট সাজ (sequense) অনুযায়ী সজ্জিত। এ থেকেই প্রমাণিত হয় যে আমিনো আসিডের ভিন্ন ভিন্ন সাজ পদ্ধতির জন্যই বহু বৈচিত্র্যময় এনজাইম তৈরি হয় এবং এক একটি এনজাইম এক একটি সুনির্দিষ্ট জৈব রাসায়নিক বিক্রিয়ার জন্য দায়ী। তাই প্রোটিনকে বলা হলো জীবনের ভাষা (Language of life)।

ক্রোমোলোমে, বিশেষ করে সুগঠিত নিউক্লিয়াসের ক্রোমোসোমে প্রোটিন এবং DNA দু'টোই থাকে, এর কোনোটি জিন ?

Pneumococci নিয়ে গবেষণা করে Frederick Griffith দেখেন যে, এর ভাইরুলেন্ট প্রকরণের ক্যাপসূল সৃষ্টিকারী বেশিষ্ট্যটি স্থানান্তরযোগ্য। পরে O.T. Avery প্রমাণ করেন যে, এই ব্যাকটেরিয়ার ক্যাপসুল (দেহের চারদিকে পুরু সাবরণ) তৈরির বৈশিষ্ট্য স্থানান্তরিত হয় DNA দিয়ে। কাজেই বোঝা গেল DNA-ই হচ্ছে জিন।

আধুনিক ধারণা মতে, জিনকে বিভিন্ন একক রূপে প্রকাশ করা হয়। যেমন-রেকন, মিউটন, রেপ্লিকন ও সিস্টান।

মুক্তিন (Recon): এটি জিন রিকমিনেশন এর একক, DNA অণুর যে খুদ্রতম একক জেনেটিক রিকমিনেশনে সংশ গ্রহণ করে তাকে রেকন বলে। রেকন এক অথবা দুই জোড়া নিউক্লিয়োটাইড দিয়ে গঠিত।

e মাউটন (Muton): একে জিন মিউটেশনের একক বলা হয়। DNA অণুর যে কুদ্রতম অংশে মিউটেশন সংঘটিত য়ে, ভাকে মিউটন বলে। এক বা একাধিক নিউক্লিয়োটাইড যুগল নিয়ে মিউটন গঠিত হয়ে থাকে।

ত। রেপ্রিকন (Replicon): DNA-এর যে অংশ DNA-এর অনুলিপন নিয়ন্ত্রণ করে তাকে রেপ্রিকন বলে।

১৪ বিসমূল (Cistron): জিল কার্যের একক। DNA অণুর যে খণ্ডাংশ কোষীয় বস্তুর কার্যকলাপ নিয়ন্ত্রণ করে তাকে সস্ট্রান বলে। Escherichia coli ব্যাকটেরিয়ার একটি সিস্ট্রনে প্রায় ১৫০০টি নিউক্লিয়োটাইড যুগল থাকে। প্রতিটি সম্ট্রনে অনেক রেকন ও মিউটন থাকে। তাই রেকন ও মিউটন অপেক্ষা সিসট্রনের দৈর্ঘ্য অনেক বেশি। অধিকাংশ ক্ষেত্রে জন ও সিসট্রন প্রার সমতুল্য (equivalent) অর্থ বহন করে।

জিল হলো ক্রোমোলোমের লোকাসে অবস্থিত DNA অণুর সুনির্দিষ্ট সিকোয়েদ যা জীবের একটি নির্দিষ্ট 'কার্যকর াকেড' আবদ্ধ (encode) করে এবং প্রোটিন হিসেবে আত্মপ্রকাশ করে বৈশিষ্ট্যের বিকাশ ঘটার। অন্যভাবে বলা যায়, দিন ক্রোমোসোমস্থ DNA-এর একটি অংশ যা একটি কর্মক্রম পলিপেপটাইড শিকল গঠনের উপযুক্ত বার্চা বহন করে।

জিনের বৈশিষ্ট্যাবলি

- L জিল নিউক্লিক আাসিড দিয়ে গঠিত।
- ii. এরা প্রকৃত কোষের ক্রোমোলোমে অবস্থান করে এবং আদি কোষের নিউক্লিয় বস্তু বা প্রাসমিতে অবস্থান করে।

iii এটি জীবের প্রকরণ (variety) এবং পরিব্যক্তিতে (mutation) মুখ্য ভূমিকা রাখে।

iv. জিল জীবের বিশেষ কোনো বৈশিষ্ট্য বংশানুক্রমিকভাবে বহন করে।

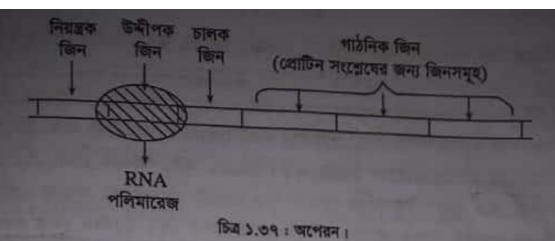
v. জীবের এক একটি বৈশিষ্টোর জনা একাধিক জিন দায়ী।

কোনো প্রজাতির কোষে বিদ্যমান সকল ধরনের এক সেট ক্রোমোসোমে বিদ্যমান সকল জিনের সম্প্রি বলে। জার্মান টাইদ বিজ্ঞানী Hans Winkler ১৯২০ সালে সর্বপ্রথম জিনোম শব্দটি ব্যবহার করেন। মানব জিন ৩০০০ মিলিয়ন কারক-যুগল (base pairs) থাকে যা 24 (22A + 1X + 1Y)টি ক্রোমোসোমে বণ্টিত থাকে। সুর জিলোমের গঠন ৯৯.৯ ভাগ একই রকম। জিলের গঠলের ০.১ ভাগ ভিনুতার কারণে বিশ্বে ভিনু ভিনু মানুষ দে মানব জিনোমে মাত্র ২ জাগ জিন বিভিন্ন বৈশিষ্ট্য প্রকাশে অংশগ্রহণ করে। বাকি ৯৮ ডাগ জিনই নিদ্রিয় থাকে। এচ DNA (junk DNA) বলে। মানুষের জিনোমের সাথে শিম্পাঞ্জির জিনোমের ৯৮ ভাগ এবং গরিলা জিনোমের ৯৭ ছ बतारह ।

জিনের প্রকৃতি: যে কোনো জিনেই মিউটেশন ঘটতে পারে যার মাধ্যমে একটি স্থায়ী ও বংশপরস্পরায় স্থানত নতুন প্রকরণ সৃষ্টি হয়। কখনো কখনো একাধিক জিন মিলে একটি বৈশিষ্ট্য নিয়ন্ত্রণ করে। যেমন- মানুষের উচ্চতা। কখনো একটি জিল অন্য জিনের প্রকাশকে পরিবর্তন করে দিতে পারে, অনেক জিনের প্রকাশ পরিবেশ দারা নিয়ত্তি পারে।

প্রাকৃতিক বা কৃত্রিম নিয়ামক দারা জিনের যে কোনো ধরনের পরিবর্তন ঘটতে পারে। জিনের বড় ধরনের পরি জীবের বৈশিট্যে প্রকাশ পায়। প্রকৃতকোষী জীবের জিনে কোডিং ও নন-কোডিং অংশ থাকে। এদেরকে যথাক্রমে (exon) প্রদান (intron) বলে। কেবল এক্সন প্রোটিন সংশ্লেষণে অংশগ্রহণ করে।

একটি স্থাপায়ী জীবের কোনে ৫০,০০০ এর অধিক জিন থাকতে পারে। প্রতিটি জিন একটি সুনির্দিষ্ট DNA নিয়ে গঠিত এবং এর নিউক্লিয়োটাইড সংখ্যা ও অনুক্রমও সুনির্দিষ্ট। সুনির্দিষ্ট কারক অনুক্রম সুনির্দিষ্ট তথ্য বা সা নির্দেশ করে। এ পর্যন্ত হিসাবকৃত কুদ্রতম জিনে ৭৫টি নিউক্লিয়োটাইড এবং বৃহত্তম জিনে ৪০,০০০টি নিউক্লিয়ে


প্রকৃতকোষী জীবের বিশেষ করে স্থলাগায়ী, সরীসৃপ ও পাখির জিনের সংকেত বহনকারী এক্সন (exon) মার্কে নাকেতবিহান উন্দ্রনা (intron) অংশ লক্ষ্য করা যায়। এমন ধরনের জিনকে ক্রিট জিন (split gene) বলে। হিউ জিনোম প্রোজেটের তথা অনুযায়ী ২০০৭ সালে মানুযের জিনোমে ২৯০০ মিলিয়ন নিউক্লিয়োটাইড এবং প্রায় ৩০,০ ঘজার জিন এর উপস্থিতি রেকর্ড করা হয়েছে।

আদি কোমে জিন প্রকাশ : জিন ক্রিয়ার নিয়ন্ত্রণ ব্যাখ্যার জন্য Jacob & Monad (1961) 'অপেরন মতেল' ত করেন। আদি কোবে (cg. E. coll) জিন প্রকাশের ইউনিটকে বলা হয় operon (অপেরন)। চারটি অংশ নিয়ে জা

১। গাঠনিক জিন (Structural gene) । যা এনজাইম সংশ্রেদ করে।

হা ঘোমোটার বা উদ্দীপক জিন (Promoter gene) : যেবানে RNA-পশিমারেজ এনজাইম সংযুক্ত হয়।

০ - বঁণারেটর বা চাদক জিন (Operator gene) : চালক জিন গাঠনিক জিনের <mark>খোটিন</mark> উৎপাদনকে নিয়ন্ত্রণ করে ্বারেরলেটর বা নিয়ন্ত্রক জিল (Regulator gene) : যা অপারেটর জিলকে নিয়ন্ত্রণ করে।

প্রতিটি আদিকোষী জীবে একাধিক অপেরন থাকে, যেমন- ল্যান্টোজ অপেরন, ট্রন্টোফ্যান অপেরন ইত্যাদি এলার্টোজ সপেরন ক্রিয়াশীল হয় ল্যান্টোজ-এর উপস্থিতিতে। আর ট্রপ্টোক্যান অপেরন কর্মশীল হয় ট্রপ্টোক্যান না থাকলে। নাজেজ অপেরনের গাঠনিক জিন তিনটি আর ট্রিন্টোফ্যানের গাঠনিক জিন পাঁচটি গাঠনিক জিনসমূহ এক সাথে পরপর বাকে এবং সবাই মিলে একই mRNA ট্রান্সক্রাইব করে। রেগুলেটর জিন অনেক সমর্য রিপ্রেসর প্রোটিন তৈরি করে যা

াদক্রিপশনে বাধা প্রদান করে, তখন অপেরন কর্মশীল থাকে না।

প্রকৃত কোষে জিন প্রকাশ : জীবদেহের সকল তথ্য জিন তথা DNA-তে সংরক্ষিত থাকে। প্রোটিন সংশ্লেষণের মাধামে এসব তথ্যের বহিঃপ্রকাশ ঘটে। যে প্রক্রিয়ায় জিন প্রোটিন সংশ্লেষণে অংশগ্রহণ করে তাকে জিনের ক্রিয়া (action of gene) বলে। প্রকৃত কোষে জিন প্রকাশ ঘটে যথাক্রমে (i) ট্রান্সক্রিপশন, (ii) mRNA প্রসেসিং, (iii) ট্রান্সলেশন, iv) ট্রা**ললেশন পরবর্তী প্রসে**সিং এবং (v) ফিড ব্যাক (feed back) ইনহিবিশন প্রক্রিয়ার মাধ্যমে।

ব্যাকটেরিয়ার ক্রোমোসোমে 'অপেরন' এর জিন ক্রিয়া-কৌশল চিত্রে দেখান হয়েছে। সুকেন্দ্রিক কোষের ক্রামোসোমস্থ জিনের ক্রিয়া-কৌশল অপেকাকৃত জটিল। ক্রোমোসোমের ইউক্রোমাটিন অংশের জিন ক্রিয়াশীল হয়, হটারোক্রোমাটিন অংশের জিন ক্রিয়াশীল হয় না।

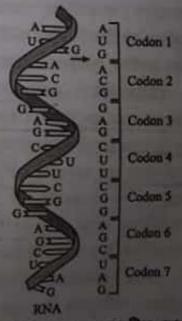
আদি কোষ ও প্রকৃত কোষের জিনগত কিছু পার্থক্য নিমুদ্রপ

- (i) আদি কোষে 'অপেরনের' মাধ্যমে নিকট সম্পর্কযুক্ত একাধিক জিন ট্রাপক্রাইব হয়ে থাকে। কিন্তু প্রকৃত কোষে জনসমূহ সাধারণত পূথক পূথকভাবে অবস্থিত থাকে। কাজেই প্রতিটি জিন-এ নিজস্ব নিয়ন্ত্রণ ব্যবস্থা থাকে। হরমোন-এ পাড়া দেয়া বিভিন্ন জিন (পৃথক পৃথকভাবে দূরে দূরে অবস্থিত) তাদের প্রোমোটারের কাছে বিশেষ সিকোয়েশ-এর হরমোন রম্পন এলিমেন্ট (Hormone response element) থাকে।
- (ii) ব্যাকটেরিয়া তথা আদি কোষে এক প্রকার RNA পলিমারেজ এনজাইম থাকে কিন্তু প্রকৃত কোষে ভিনু তিন প্রকার RNA পশিমারেজ এনজাইম থাকে। বিভিন্ন ধরনের পশিমারেজ বিশেষ ধরনের বিশেষ বিশেষ জিনকে ট্রালকাইব করে।
- (iii) আদি কোষে একটি পেপটাইড সাবইউনিটের সহায়তায় RNA পলিমারেজ প্রোমোটারকে পুনঃক্রিয়াশীল করে শাকে, কিন্তু প্রকৃত কোষে ট্রান্সক্রিপশনের সূচনা পর্বে বহু প্রোটিন সম্পূক্ত হয়।
 - (iv) প্রকৃত কোষে প্রোমোটার বহু ধরনের হয়।

জেনেটিক কোড (Genetic code)

শোভ অর্থ হলো গোপন সংক্তেত বা গোপন বার্তা। আমরা জানি যে উত্তরাধিকার সূত্রে প্রাপ্ত বৈশিষ্ট্য এক বংশধন শাক পরবর্তী বংশধরে স্থানাজরিত হয়। এক ধরনের কোড তথা গোপন সংকেতের মাধ্যমে বৈশিষ্ট্যের এই ছানাজর ঘটে শীক। শীবের বৈশিষ্ট্য স্থানান্তরকারী কোডকে বলা হয় জেনেটিক কোড। DNA-তে এই কোড অবস্থিত। আর ডিনটি টি বিশেষ বিন্যাস বা ট্রাইনিউক্লিয়েটিইডের অনুক্রমকে (sequence) কোচন বলে। DNA-এর নিউক্লরোটাইড বিন্যাসের সাথে প্রোটিনের অ্যামিনো অ্যাসিড বিন্যাসের মধ্যে সামঞ্জন্য প্রাথমিক তার সহকর্মীগণ (1964) । DNA-এর নিউক্লরের বিত্তার সহকর্মীগণ (1964) । DNA-এর নিউক্লরের বিত্তার সহকর্মীগণ (1964) এবং Yanoklei ও তার সহকর্মীগণ (1964) । DNA-এর নিউক্লরের এই বিত্তার করে । এওলা হলো অ্যাডিনিন (A), গুয়ানিন (G), সাইটোসিন (C) ও ছার্ম ধরনের নাইট্রোজিনাস বেস থাকে । এওলো হলো অ্যাডিনিন (A), গুয়ানিন (G), সাইটোসিন (C) ও ছার্ম ধরনের নাইট্রোজিনাস বেস থাকে । এওলো হলো অ্যাডিনিন কোড তৈরি করে । প্রতিটি কোড অ্যামিনো আসিডের যে কোনো একটিকে নির্দেশ করে । mRNA সৃষ্টির মাধ্যমে DNA অণু এই কে আমিনো আসিডের যে কোনো একটিকে নির্দেশ করে । mRNA সৃষ্টির মাধ্যমে DNA অণু এই কে আইটোপ্রাজমে প্রেরণ করে এবং সাইটেপ্রাজমে কোডের তথ্য অনুযায়ী এনজাইমসহ অন্যান্য প্রোটিন সংগ্রেষিত প্রোটিনের মাধ্যমেই জীবের চারিত্রিক বৈশিষ্ট্যসমূহ প্রকাশিত হয় । একাধিক কোড যখন একটি আসিভকে কোড করতে পারে তখন তাকে জেনেটিক কোডের অধাসামিতা বলে । কাজেই দেখা যায়, জেনে হলো নিউক্লিয়োটাইডের অনুক্রম (sequence) ও আমিনো আসিডের অনুক্রমের মধ্যে যোগাযোগের পদ্ধি। বিভাবে ব্যাখ্যা করা যায় :

DNA অণুতে পর্যায়ক্রমিকভাবে সজ্জিত প্রতি তিনটি নিউক্লিয়োটাইড-এর মধ্যে একটি গোপন কোত ব নিহিত থাকে। DNA অণু থেকে যখন mRNA ট্রান্সক্রাইব হয় তথন এই গোপন সংকেত mRNA অণুতে চান DNA-এর তিনটি নিউক্লিয়োটাইডের বিপরীতে যে তিনটি কমপ্লিমেন্টারি নিউক্লিয়োটাইড mRNA অণুতে সক্ষিত্র। তিনটিতে একত্রে বলা হয় ট্রিপলেট (triplet)। ফ্রান্সিস ক্রিক ও তার সহকর্মীবৃন্দ প্রমাণ করেন যে, জেনেটিক লো অকর বিশিষ্ট বা ট্রিপলেট কোড। mRNA অপুর এই ট্রিপলেটকে বলা হয় কোডন (codon)। Nirenberg ও Mai নহকর্মারা ১৯৬৪ সাল পর্যন্ত ২০ ধরনের অ্যামিনো অ্যাসিডের জন্য ৬৪ ধরনের ট্রিপলেট কোড আবিষ্কার করেন। ট্রপপেট একটি সুনির্দিষ্ট অ্যামিনো অ্যাসিডকে নির্দেশ করে। এই নির্দেশিত অ্যামিনো অ্যাসিড tRNA এই ট পলিপেপটাইভ চেইন-এ সংযুক্ত হয়ে প্রোটিন তৈরিতে অংশ নেয়। tRNA-তে তিনটি নিউক্লিয়োটাইডের যে 🛭 mRNA-এর সম্পূরক ট্রিপলেটের সাথে (কোডনের সাথে) সংযুক্ত হতে পারে তাকে বলা হয় অ্যান্টিকোডন (antico কোলবংশা RNA গঠনকারী চারটি নাইট্রোজেনঘটিত বেস-এর প্রতিনিধিত্বকারী অক্ষরের মাধ্যমে (A = আডিনির ইউরাসিলঃ C = সাইটোসিনঃ G = গুয়ানিন) প্রকাশ করা হয়। এই চারটি নাইট্রোজেনঘটিত বেস লেটার (A, U. G বিভিন্ন কমিনেশনে (৪ × ৪ × ৪ = ৬৪ ধরনের) ৬৪টি কোডন তৈরি করে। এর মধ্যে তিনটি কোডন (UAA-L UGA) কোনো আহিনো-আসিডকে নির্দেশ করে না, বরং ট্রাঙ্গলেশন বন্ধ করার নির্দেশ প্রদান করে। এদের উপটি গ্রোটিন সংশ্লেবণের সমান্তি ঘটে। বাকি ৬১টি কোডন-এর প্রতিটি কোনো না কোনো আামিনো-আাসিডকে নির্দেশ UAA, UAG ও UGA এ তিনটি কোডকে সমাপ্তি কোড (nonsence code) বলে। ৬১টি কোডনের মধ্যে A ্রাপলেশন তক্ত করার কোডন (starting codon)। এটি ট্রাপলেশন তক্ত করার নির্দেশ প্রদান করে এবং অ্যামিনো শ্রা মেবিপ্রনিম নির্মেশ করে। কোভ-এর ভাষা একমুখী (নিউক্লিক আসিড -> প্রোটিন


কোনো কোনো আমিনো আমিছের জন্য একটি সুনিনিষ্ট কোড থাকলেও অনেক অ্যামিনো আমিত ২, ৭ কিব জান এটি কোড থাকে। কোনো নিয়ে নির্দায়িত হয়। বেমন-লাইসিল এয় জন্য ২টি, ড্যালিন এয় জন্ম ৪টি, সালার অনি আনা নিয়েনবার্গ ও ভাগোরিশ থোৱালা লোকে। ১৯৬৬ সালে লোনেটিক কোডেয় সম্পূর্ণ অর্থ জানা সন্তব হয়। কেনেটিক কোডেয় গাটো

	8-		cornore f	ইটার অকর		
		U	C	A	G	21
	B	UUU) 作品和 UUC) 如何何 UUA) 何即用	UCU UCC UCA UCG	UAU UAC STREETSH UAA G	UGU UGC) MARIA UGA NOR PROMI UGGIBNISKANI	UCAO
SAID HAR DHISHES	0	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC CAA CAG)	CGU CGC CGA TISTAL	্ৰোজনের কুজীর
183	1	AUU AUC AUC AUA পিউসিব AUG তত্তর নির্দেশ মেধিগনিন	ACU ACC ACA ACA	A A U A A C A A A A A A B 阿克斯山	AGU AGC) orden AGA AGG) चार्टकनिन	UCAG
	6	GUU GUC GUA GUG	GCU GCC GCA GCA	GAU) আনপার্টক GAC) আদিত GAA) মুসমিক GAG) আদিত	GGU GGC GGA GGG	UCAG

তিন দিক থেকে তিনটি অকর মিলিতভাবে একটি কোডন তৈরি করে।

নাটক কোড বা কোডনের বৈশিষ্ট্যাবলি (Characteristics of genetic code)

- একাধিক কোডন একটি অ্যামিনো অ্যাসিডকে কোড বা নির্দেশ করে (যেমন-লিউসিন)
- হ। একটি কোডন কখনো একাধিক অ্যামিনো অ্যাসিডকে কোড করে না।
- ত। কোডন তৈরিতে নিউক্লিরোটাইড (এখানে letter বা অক্লর) কখনো অভারদেপ (overlap) করে না (non-overlapping) বরং ক্রমসজ্জা (sequence) অনুসরণ করে।
- 8.1 কোতনসমূহ সার্বজনীন (universal) অর্থাৎ বিশ্বের সকল প্রজাতির জন্য সমানভাবে প্রযোজ্য এবং সেই আদিকাল থেকে শত বিবর্তন ধারা অতিক্রম করে এখনো একই রকম আছে।
- ে। জেনেটিক কোড সর্বদা তিন অক্ষরবিশিষ্ট বা ট্রিপলেট কোড।
- UAA, UAG ও UGA দিয়ে চেইন সমান্তি বা শেব হয়।

চিত্ৰ ১.৩৮। জেনেটিক কোভ

৭। দুটি কোডের মধ্যে অতিরিক্ত নিউক্লিয়োটাইড থাকে না। আবার সমান্তি কোডন না আসা পর্যন্ত আমিনা আসিড সংযুক্তি চলতে থাকে।

প্রতি

পরির্চি

-1111

Mil

भार

100

(4

সামান্য ব্যতিক্রম বিশ্ব বিশ্

বংশগতি নির্ণয়ে DNA-এর ভূমিকা

আমরা জেনেছি মাতা-পিতার চারিত্রিক বৈশিষ্ট্য বংশানুক্রমে তাদের সন্তান-সম্ভতিতে স্থানান্তরিত হওরারে বংশাতি। বংশগতির ভিত্তি হলো বংশগতি বস্তু অর্থাৎ ক্রোমোসোম, DNA, RNA ইত্যাদি। কাজেই বংশগতি বি এদের ভূমিকা সরাসরি।

DNA-এর ত্মিকা: এখন সর্বজন খাঁকৃত যে ক্রোমোসোমে অবস্থিত জিনই জীবের বৈশিষ্ট্য নিয়ন্ত্রণ করে। মি পরীক্ষা-নিগ্রীক্ষার মাধ্যমে প্রমাণিত হয়েছে যে DNA-এর অংশবিশেষই জিন হিসেবে কাজ করে, অর্থাৎ DNA-ই চি DNA, ক্রোমোসোমের একমাত্র ছাগ্রী রাসায়নিক পদার্থ। কাজেই কেবলমাত্র DNA-ই বংশগতির বস্তু এবং বংশ বাসায়নিক ভিত্তি (chemical basis of heridity)। DNA-ই সরাসরি মাতা-পিতা হতে বৈশিষ্ট্য তার সন্তান-সম্ভতিত্তে করে নিয়ে আসে।

সার-সংক্রেপ

কোষ: জীবদেহ গঠনকারী একক হলো কোষ। জীবদেহের সকল কাজের কেন্দ্রবিন্দুও কোষ। কাজেই জীবদে গঠন ও কাজের এককই কোষ হিসেবে পরিচিত। ব্রিটিশ বিজ্ঞানী রবার্ট হক ১৬৬৫ সালে বোতলের কর্ক পরীক্ষাকালে মা অসংখ্যা পুদ্রাকার প্রকোষ্ঠ দেখতে পান এবং ঐ প্রকোষ্ঠকেই নাম দেন Cell, যার বাংলা করা হয়েছে কোষ। বে জিবির দেহ গঠন করে তাকে বলা হয় দেহকোষ, আবার জনন কাজের জন্য সৃষ্ট তক্রাপু ও ডিম্বাপু কোষকে বলা জননকোষ। ব্যাকটোরিয়া, সায়ানোব্যাকটোরিয়া ইত্যাদি জীবের কোষকে বলা হয় আদিকোষ, কারণ এদের কোষ প্রকৃতির, সুগঠিত নিউক্রিয়াসবিহীন। পুশ্পক উল্লিদ, মানুহ ইত্যাদি জীবের কোষ হলো প্রকৃত কোষ, কারণ এদের জিবিত মুক্তির, সুগঠিত নিউক্রিয়াসবিশিষ্ট।

কোমোনোম । কোমোনোম হলো কোষস্থ স্থাকার অস্থাপু যা সাধারণত নিউক্লিয়াসের ভেতরে অবহি কোমোসোমের মূল উপাদান হলো DNA, কাজেই কোমোসোমই বংশগতির ধারক ও বাহক। কোমোসোম আবিষ্ট মূল্য কারণ এবা কতথাো বেসিক রং ধারণ করতে পারে। প্রতিটি জীবগুজাতি একটি সুনির্দিষ্ট সংখ্যক কোমোসোম বংলা বিরুদ্ধের মার সংখ্যা প্রজাতিভেদে 2n=2 পেকে 2n=3600 পর্যন্ত জানা গেছে। প্রতিটি কোমোসোমে কমপকে ক্রিয়েরের থাকে এবং সের্ব্রোমিয়ার থাতে এবং সের্ব্রোমিয়ার বাতে এবং সের্ব্রোমিয়ার অবস্থানভেদে ক্রেয়োসোম প্রধানত চির্ন্তি প্রকার, যথা-মধ্যকেন্দ্রিক, উপ-রাস্থতেন্দ্রিক এবং প্রাপ্তকেন্দ্রিক। কোমোসোম প্রধানত চির্ন্তি প্রকার, যথা-মধ্যকেন্দ্রিক,

DNA : ভিত্তবিদ্যাইবাদিউদ্ভিক আসিউকে সংক্ষেপে DNA বলা হয়। প্রকৃতকোবের ক্রোমোসোমে অবস্থিত DNA বলা হয় কর্মবাবিশা। ভিত্তবিদ্যাইবোল শাগার, এক অনু ফসকোরিক আসিও এবং নাইটোলিনাস DNA বিভালনভাগে ক্রোমোসোমের বিভক্তির আগে DNA সূত্রের থিত্ন তথা প্রতিভিত্তন হয়। DNA প্র

লতিলিশিন হয় অর্থসংরক্ষণনীল উপায়ে। DNA-এর ভৌত গঠন মুরানো সিড়ির মতো, বিস্তুত যা ভবল হেলিক হিসেবে

RNA : রাইবোনিউক্লিক অ্যাসিডের সংক্ষিপ্ত নাম RNA. সরক জীবকোষেই RNA থাকে। রাসায়নিকভাবে রাইবোল পাগার, নাইট্রোজিনাস বেস এবং ফসফেট নিয়ে RNA গঠিত। এটি সুত্রাকার এবং একসূত্রক। সাধারণত পাঁচ প্রকার RNA লেখতে পাওয়া যায়, যথা- tRNA, mRNA, rRNA, gRNA এবং মাইনর RNA । DNA-এর ছাঁচ থেকে mRNA ্যাপঞ্জিন্ট হয় এবং প্রোটিন তৈরির ছাঁচ হিসেবে ব্যবহৃত হয়। tRNA আমিনো আসিডকে বহন করে mRNA এর ছাঁচের সাথে মুক্ত করে প্রোটিন সংশ্লেষণে সহায়তা করে। কিছু কিছু ভাইরাসে বংশগতির বন্ধ হিসেবে RNA কাজ করে।

জিন : জিন হলো ক্রোমোসোমের লোকাসে অবস্থিত DNA অণুর সুনির্দিষ্ট অংশ যা জীবের একটি নির্দিষ্ট সংকেত আবদ্ধ করে রাখে এবং প্রোটিন হিসেবে আত্মপ্রকাশ করে কোনো নির্দিষ্ট বৈশিষ্ট্যের বিকাশ ঘটার। জীবের বিভিন্ন বৈশিষ্ট্য ছিল কর্তৃক নিয়ন্ত্রিত এবং বংশপরম্পরায় স্থানান্তরতি হয়। প্রতিটি জিল-এ নিউক্লিওটাইড-এর সংখ্যা ও অনুক্রম সুনির্দিষ্ট। একটি জিলে পিটো থেকে ৪০,০০০ পর্যন্ত নিউক্লিওটাইড থাকতে পারে।

ট্রান্সক্রিপশন : DNA থেকে RNA তৈরি হয়। DNA থেকে RNA তৈরি প্রক্রিয়াকে বলা হয় ট্রান্সক্রিপশন। সাধারণত প্রোটিন তৈরির জন্যই DNA তার অংশবিশেষকে ছাঁচ হিসেবে ব্যবহার করে RNA তৈরি করে। প্রোটিন তৈরির জন্য mRNA এবং tRNA জরুরি। tRNA অ্যামিনো অ্যাসিড বহন করে mRNA-কে প্রদান করে এবং DNA কর্তৃক প্রদন্ত নির্দিষ্ট বার্তা অনুযায়ী mRNA প্রোটিন তৈরি করে।

जन्नी ननी

वहनिर्वाहिन थन (MCQ)

 ডি-অক্সিরাইবোজের কয় নয়র কার্বনে অক্সিজেন নেই? (위) 8 라는 ഥ (খ) ৩ নং-এ (क) र नश-ध

- ২। ক্লোরোপ্লাস্টের বৈশিষ্ট্য হলো-
 - (i) এরা সবুজ এবং খাদ্য তৈরি করতে পারে
 - (ii) লিউকোপ্লাস্ট হতে সৃষ্টি হয়
 - (iii) ফুলের পরাগায়নে সাহায্য করে

নিচের কোনটি সঠিক?

(4) i @ iii

(키) ii 영 iii (탁) i, ii 영 iii

-(*) i G ii

রহিমের দেহের সকল কোষে এমন একটি উপাদান আছে যা বংশগতির আণবিক ভিত্তি হিসেবে কাল করে এমং ভীবের বৈশিষ্ট্যসমূহ বংশপরস্পরায় অধ্যন্তন প্রজনো স্থানান্তর করে।

- উদ্বীপকের উপাদানটির বৈশিষ্ট্য হলো-
 - (i) বিস্ঞক
 - (ii) নাইট্রোজেন বেসে ইউরাসিল থাকে
 - (iii) अनुनिभित्र भाषास्य मश्या वृद्धि इत

দিতীয় অধ্যায় কোষ বিভাজন CELL DIVISION

ধ্যান শ্রসমূহ : লাইটোকাইনেগিস, কোষ চক্র, ক্রসিংওভার, সিন্যাপ্রস্প

সাধামিক শ্রেণির জীববিজ্ঞান বিষয়ে তোমরা কোষ বিভাজন সদক্ষে জেনেছ। এ অধ্যায়ে কোষ বিভাজন, বিশেষ করে কোষ চক্ত ও মায়োসিস সদক্ষে বিভারিত জানতে পারবে।

এ অধ্যায় পাঠ শেষে শিক্ষার্থীরা-

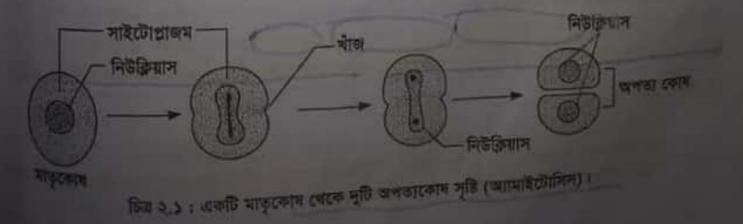
১ মাইটোসিস ব্যাখ্যা করতে পারবে।

- মির্বসিসের (মায়োসিস= প্রকৃত উচ্চারণ মায়োসিস) পর্যায়সমূহ বর্ণনা করতে পারবে।
- o, হিত্রসামের (মায়োসিস) পর্যায়সমূহের চিত্র অন্তন করে চিহ্নিত করতে পারবে।
- ৪, জীবসেহে মিওসিসের (মায়োসিস) তকত্ব বিশ্লেখণ করতে পারবে।
- জীহনের ধারাবাহিকতা রক্ষায় মিওসিস (মায়োসিস) কোষ বিভাজনের অবদান উপলব্ধি করতে পারবে।
- ৬ বাবহারিক : মাইটোসিস বিভাজন পর্যবেক্ষণ করে চিত্র অন্ধন করতে গারবে।

বিভারনের মাধ্যমে সংখ্যাবৃদ্ধি কোনের একটি খাভাবিক ও অতি ওক্তবৃপূর্ব বৈশিষ্ট্য। এককোয়ী জীবসমূহ, বেমনব্যাকটারিয়া, ঈস্ট প্রভৃতি বার বার বিভাজনের মাধ্যমেই একটি থেকে অসংখ্য এককোয়ী জীবে পরিণত হয়। বিশালনেরী
ক্রমট বটগাছের সূচলাও ঘটে একটি মাত্র কোষ (ভাইগোট = নিবিক্ত ভিছক) হতে। গাছ থেকে গাছের সৃষ্টি হয়, প্রাণী
থেকে সৃষ্টি হয় প্রাণী, আর তেমনি কোষ থেকেই কেবল কোষ সৃষ্টি হতে পারে। এককোয়ী নিমিক্ত ভিছক হতে কোষ
বিভালন প্রতিবাহা এক সময় কোটি কোটি কোটের সমন্বরে একটি পরিণত মানুষের সৃষ্টি হয়। জীবদেহে কোষ বিভাজন
ক্রমট মৌলিক ও অত্যাবশ্যকীয় প্রক্রিয়া, এর মাধ্যমেই জীবের দৈহিক বৃদ্ধি ও বংশবৃদ্ধি ঘটে। যে প্রক্রিয়ায় জীবকোষের
বিভক্তির মাধ্যমে একটি থেকে দুটি বা চারটি কোবের সৃষ্টি হয় তাকে কোষ বিভাজন বলা হয়। কোষ বিভাজনের ফলে সৃষ্ট
নতুন কোষকে বলে অপত্য কোষ (daughter cell) এবং যে কোষটি থেকে অপত্য কোষ সৃষ্টি হয় সে কোষটি হলো
মাতৃকোষ (mother cell)। Walter Flemming ১৮৮২ খ্রিস্টাব্দে সামুদ্ধিক স্যাণামান্ডার (Triturus maculosa) কোষে
বহুর কোষ বিভাজন লক্ষ্য করেন।

কোষ বিভাজনের প্রকার: জীব জগতে তিন প্রকার কোষ বিভাজন দেখা যায়। যথা:

ক্ষামাইটোসিস (Amitosis) বা প্রত্যক্ষ কোন বিভালন,


৯ মাইটোসিস (Mitosis) বা সমীকরণিক কোষ বিভাজন এবং

প্রামানোসিস (Meiosis) বাহ্রাসমূলক কোষ বিভাজন।

১। অ্যামাইটোসিস বা প্রত্যক্ষ কোষ বিভাজন

(Amitosis or Direct Cell Division)

বে লোৰ বিভাজন প্ৰক্ৰিয়ায় একটি মাতৃকোষের নিউক্লিয়াস ও সাইটোপ্লাজন কোনো জটিল মাধ্যমিক পর্যায় ছাড়াই সরাসরি বিভক্ত হয়ে দুটি অপতা (শিশু) কোষের সৃষ্টি করে তাকে অ্যামাইটোসিস বা প্রত্যক্ত কোষ বিভাজন বলে।

প্রক্রিয়া : আমাইটোসিন প্রক্রিয়ায় কোনো ধরনের জটিলতা ছাড়াই সরাসরি মাতৃকোষের বিভাজন ঘটে থাকে। নিউক্লিয়াসটি প্রত্যক্ষভাবে সরাসরি দু'অংশে ভাগ হয়। নিউক্লিয়াসটি প্রথমে লঘা হয় ও মাঝখানে ভাগ নিউক্লিয়ালে পরিণত হয়। পরে কোষটির মধ্যভাগে একটি চক্রাকার গর্ত ভেতরের দিকে চুকে গিয়ে পরিশেবে দুক্ত করে কেলে। ফলে একটি কোষ দুটি অপত্য কোষে (daughter cell) পরিণত হয়। প্রতিটি অপত্য কোষ ক্রমে ক্র মাতৃকোষের অনুরূপ <u>আকৃতি</u> লাভ করে। কতব স্বিস্ট, <mark>আামিবা ক্ল</mark>ভৃতি এককোষী জীবে এ প্রকার কোষ বিভাগ বার ব্যাকটেরিয়ার বি-ভাজন প্রক্রিয়াও কতকটা আমাইটোসিস এর মতোই। উভয় প্রক্রিয়া প্রায় সমার্থক।

আমাইটোসিস প্রক্রিয়ার তাৎপর্য

- (i) বিজ্ঞানী ব্র্রাসবার্জার (১৮৯২) এর মতে, অ্যামাইটোসিস প্রক্রিন্যা থেকেই জটিল ও উনুত কোষ বিভাল **उर्शिख इस्साइ**।
- (ii) কোনো কোনো এককোষী জীবের সংখ্যাবৃদ্ধির ক্ষেত্রে এ প্রক্রিয়াটি অত্যন্ত ফলপ্রসূ।

২। মাইটোসিস বা সমীকরণিক কোষ বিভাজন (Mitosis or Equational Cell Division)

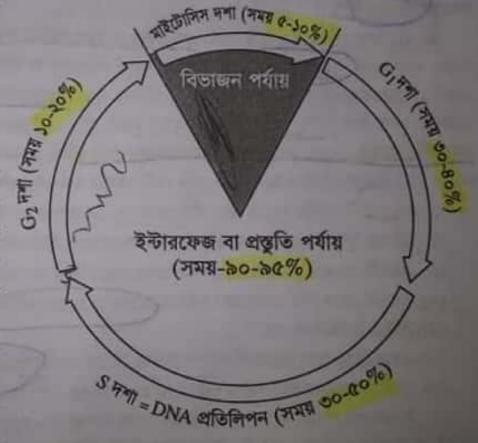
প্রকৃতকোষী জীবদেহ গঠনের কোষ বিভাজন হলো মাইটোসিস। মাইটোসিস কোষ বিভাজনে একটি প্রকৃত বে প্রতিটি ক্রোমোসোমের একটি করে ক্রোমাটিড দু'দিকে দু'মেরুতে সরে গিয়ে দুটি অপত্য নিউক্লিয়াসের সৃষ্টি করে। দুটি অপত্য নিউক্লিয়ানের মধাবতী স্থানে উদ্ভিদকোষে কোষপ্রাচীর সৃষ্টির মাধামে এবং প্রাণিকোষে প্লাজমামেমবেন ডেচ দিকে চুকে গিয়ে সাইটোপ্লাজম দু'ভাগে ভাগ হয়ে যায় এবং দুটি অপত্য কোনে পরিণত হয়। নিউক্লিয়াসের বিভাল বলা হয় ক্যারিওকাইনেসিস (karyokinesis) এবং সাইটোপ্লাজমের বিভাজনকে বলা হয় সাইটোকাইট (cytokinesis)। এ প্রক্রিয়ায় বিভক্ত কোষে ক্রোমোসোমের সংখ্যাগত, আকৃতিগত ও গুণগত কোনো পরিবর্তন ঘট অর্থাৎ নতুন দুটি কোষের প্রতিটিতে ক্রোমোসোমের সংখ্যা, গুণাগুণ ও গঠনাকৃতি মাতৃকোষের ক্রোমোসোমের সং ত্থাত্তর ও গঠনাকৃতির অনুরূপ থাকে। এ বিভাজন প্রক্রিয়ায় নিউক্লিয়াস ও ক্রোমোসোম উভয়ই একবার বিভাজিত হয়। কোষ বিভাজন প্রক্রিয়ায় একটি প্রকৃত কোষের নিউক্লিয়াস ও ক্রোমোসোম উভয়ই একবার করে বিভক্ত হয় য মাইটোসিস কোষ বিভাজন। অন্যভাবে, যে কোষ বিভাজনে একটি দেহ কোষের নিউক্লিয়াস বিভাজিত হয়ে সমআকু সমত্বসম্পন্ন দুটি অপত্য নিউক্লিয়াস সৃষ্টির মাধ্যমে দুটি অপত্য কোষে পরিণত হয় সেই কোষ বিভাজনই মাইটোল নিউক্লিয়াসের এরপ বিভাজন প্রথম দেখকে পান সাইখার (Schleicher-1879) এবং নাম দেন ক্যারিওকাইনেসিম। ভয়ান্টার ফ্রেমিং (Walter Flemming, 1882) এ প্রকার পূর্ব বিভাজনকে মাইটোসিস নামে অভিহিত করেন।

মাইটোসিস বিভালনে মাতৃকোষের প্রতিটি ক্রোমোসোম সেক্টোমিয়ারসহ লখালম্ভিত্রে সমান দু'অংশে ভাগ হয় ^এ প্রতিটি অংশ এর নিবটবর্তী মেরুতে গমন করে। ফলে সৃষ্ট নতুন কোষ দুটিতে ক্রোমোসোম সংখ্যা মতেবেটি ক্রোমোনোম সংখ্যার সমান থাকে। তাই মাইটোসিসকে ইকোরেশনাল বা সমীকরণিক বিভাজনও বলা হয়।

মাইটোসিন কোথায় ঘটে : মাইটোসিস প্রাণী ও উদ্ভিনের বিভাকন ক্ষমতাসম্পন্ন দৈহিক কোষে ঘটে থাকে, মে উত্তিদের কাও বা ভারত্বাধা-প্রশাধার শীর্থ মূলের বর্ষিয়া শীর্থ, জ্যাথিয়াম অভৃতি জ্বালে মাইটোলিল হয়ে ঘট লীবদেহের সকল আদ-প্রাচাদ মাইটোদিস প্রক্রিয়াবই ফল। জুননাসের গঠন এবং বৃদ্ধিও মাইটোসিস প্রক্রিয়ার মাধ্য यार्ट्याभित्मत् देवनिष्ठा

১। এ প্রক্রিয়ায় প্রতিটি ক্রোমোনোম লগাপথিতাবে তথা অনুদৈর্থ্যে দুটি ক্রোমাটিডে বিভক্ত হয়।

২। প্রতিটি ক্রেমাটিড তথা স্থপতা ক্রোমোনোম তার নিকটছ মেরণতে পৌছে দুটি স্থপত্য নিউক্লিয়াসের সৃটি ^{করে} কাজেই দুটি অপতা কোনেই কোনোলোম সংখ্যা সমান খাকে।


প্রশৃতা কোষ্ট্রলো মাতৃকোষের সমন্তবসম্পন্ন হয়, কারণ ঐ্বের বৈশিষ্ট্য নিয়ন্ত্রক জিনসমূহ বহনকারী কোনোপ্রোমন্তলোর অভিটি প্রদাপম্ভাবে বিভক্ত হয়ে দুটি অপ্তা কোনের নিউক্লিয়ালে যায়।
আপতা কোষের কোনোলোম সংখ্যা মাতৃকোষের কোনোলোম সংখ্যার সমান থাকে।
অপতা কোষ বৃদ্ধি পেরে মাতৃকোষের সমান আয়তনের হয়।

কোষ চক্ৰ ও ইন্টারফেজ (Cell Cycle & Interphase)

নাট সূত্র বর্ধিন্দু কোষের জীবন তক্র হয় মাতৃকোষের বিভাজনের ফলে তার সৃষ্টির মাধ্যমে এবং শেষ হয় বিভাজিত পত্য কোষ সৃষ্টির মধ্য দিয়ে। একটি কোষ সৃষ্টি, এর বৃদ্ধি এবং পরবর্তীতে বিভাজন তিনটি শাল্ল যে চত্তেলা সম্পন্ন হয় তাকে বলা হয় কোষ চক্র (Cell Cycle)। হাওয়ার্ড ও পেক্ক (Howard & Peic, 1953) এই কোম প্রভাব করেন। এই চক্রটি বার বার চলতেই থাকে। একজন প্রাপ্ত বয়ক্ষ ব্যক্তির দেহে ১০০ (১০³⁶) ট্রিলিয়ন কার থাকে। দেহকে সৃত্ত রাখতে হলে এর মধ্যে সঠিক সময়ে সঠিক কোষটিকে বিভক্ত হতে হবে। এ নর জনা প্রয়োজন অভ্যন্তরীণ ও বাহ্যিক প্রয়োজনীয় সিগনাল বা সংকেত। কিছু কোষ আছে যারা দ্রুত বিভাজনের শেষায়িত (যেমন জন কোষ, মূল ও কাণ্ডের শীর্ষ মেরিস্টেম কোষ); কিছু কোষ আছে প্রয়োজনীয় উনীপনা পেলে

ত হতে পারে: আবার অনেক কোষ আছে বিভক্ত হয় না, যেমন আমাদের পূর্ণাঙ্গ ত কোষ, পেশিকোষ, স্নায়ুকোষ, উদ্ভিদের মহসমূহ।

াষ চক্র দুটি প্রধান ধাপে বিভক্ত, যথাবিভাজনরত অবস্থাকে বলা হয় এম.
ditotic Phase) বা মাইটোসিস এবং দুটি
চল্ল-এর মধ্যবর্তী অবিভাজন অবস্থাকে
ইন্টারফেজ (Interphase)। এম. ফেজ
টারফেজ পর্যায়ক্রমিকভাবে পরপর এসে
ক্র সম্পন্ন করে। কোষ চক্রের মোট
মাত্র ৫-১০ ভাগ ব্যয় হয় এম. ফেজ-এ,
ক্রি ১০-৯৫ ভাগ সময় ব্যয় হয়
অবস্থায়। এখানে উল্লেখযোগ্য যে,
নিদিষ্ট সময়ে মাত্র অপ্লসংখ্যক কোষ
লৈ পর্যায়ে থাকে এবং অধিকাংশ সময়
বিকাষই ইন্টারফেজ পর্যায়ে থাকে।

চিত্ৰ ২.২: হাওয়ার্ড ও পেঙ্ক কোষ চক্র।

জনৈতিক প্রোপ্তাম দ্বারা কোষ চক্র নিয়ন্ত্রিত হয়। অভ্যন্তরীণ উদ্বীপনা প্রদান করে সাইক্রিন-Cdk যৌগ। বিভিন্ন ও গ্রেথ ফ্যান্টর (gf) বাহ্যিক উদ্বীপনা দান করে। আমাদের দেহের কোনো স্থান কেটে গেলে রক্তর অব্চক্রিকা থাও ফ্যান্টর তৈরি করে যার উদ্বীপনায় চারপাশের কোষ বিভাজিত হয়ে ক্ষতস্থান জোড়া লাগিয়ে দেয়। দেহের বিভাজিত বিভালি কাল দরকারি কোষসমূহ বিভাজিত হওয়ার জন্য খেত রক্তকণিকা একটি গ্রোও ফ্যান্টর তৈরি করে দেয়। ক্রেডেন জন্য দরকারি কোষসমূহ বিভাজিত হওয়ার জন্য 'কিডনি' erythroprotein ভৈরি করে। শাতেজ-তে লোহিত রক্তকণিকা কোষের সংখ্যা বৃদ্ধির জন্য 'কিডনি' erythroprotein ভৈরি করে। ইন্টারফেল অবস্থায় বিভাজন পর্যায়টিকে সুন্দরভাবে সম্পন্ন ইন্টারফেল অবস্থায় কোষের সংখ্যা ইন্টারফেল অবস্থায় কোষের বিভাজন পর্যায়টিকে ক্ষরভাবে সম্পন্ন হিন্টারফেল অবস্থায় নিউক্রিয়ানে বহু তর্কত্বপূর্ণ ক্রিয়া-বিক্রিয়া ঘটে থাকে। তাই ইন্টারফেল অবস্থায় কোষের

নিউক্তিয়ামকে হলা-হয় বিপাকীয় নিউক্লিয়াস। এক কথায় বলা যায় এম, ফেল্ড (মাইটোসিস)-কে সুসম্পন্ন ক শরনের এছতি এছণ করা হয় ইন্টারফেল অবস্থায়। ইন্টারফেল-কে সাধারণত ৩টি উপ-পর্যায়ে ভাগ করা হয়। रूप এবং G,। টাণেটি কোষের (যে কোষ বিভাঞ্জিত হবে) সার্ফেসে বিশেষ রিসেন্টর প্রোটিনের সার্থে গ্রোথ ক্যান্তর স্ব কোছ চক্ৰ ডক্ত কথাৰ নিৰ্দেশ দান কৰে।

L G: দশা (গ্যাপ) : একটি কোষ পরবর্তীতে বিভাজন প্রক্রিয়ায় অংশগ্রহণ করবে কিনা, ভার সিদ্ধান্ত দেয়া চ উপপর্যারে। Gj-এর প্রথমেই সাইক্লিন নামক এক প্রকার প্রোটিন তৈরি হয় যা Cdk (Cyclin dependent kina) সাথে যুক্ত হয়ে সমগ্র প্রতিন্যার গতি তুরান্বিত ও নিয়ন্ত্রণ করে। Cdk ফসফোরাইলেশন প্রতিন্যা নিয়ন্ত্রণ করে। এ প্রয়োজনীয় অন্যান্য প্রোটিন, RNA এবং DNA প্রতিলিপনের সকল উপাদান তৈরি হয়। যে কোষটি আর বিভাজি মা ভা এক সন্তাহ বা এক বছর অর্থাৎ আমৃত্যু G₁ উপপর্যায়েই আবদ্ধ হয়ে যায়। মোট কোষ চত্রেন্র তি০-৪০% সময় डेललगारा वाग दरा।

II. S দশা (সিন্থেসিস = S) : এই উপপর্যায়ের প্রধান কাজ হলো নিউক্লিয়াসে ক্রেন্মোসোমস্থ DNA স অভিলিপন। পরবর্তী উপ-পর্যায়ে প্রবেশের আগেই DNA প্রতিলিপন সম্পন্ন হয়। এই উপপর্যায়ে সময় ব্যয় হয় চ ममता उठ-१० जीता

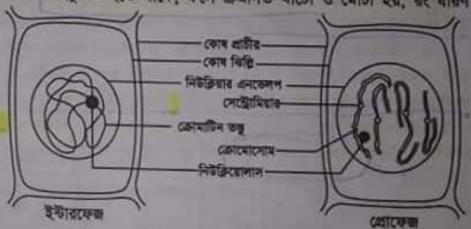
iii. G2 দশা (প্যাপ্ত): এটি হলো এম. ফেজ-এ (মাইটোসিস দশা) প্রবেশ করার প্রস্তুতি পর্যায়। এই উপপর্যা বধান কাজ হলে মাইত্রোটিউবিউল বঠনকারী পদার্থ সংশ্লেষণ যা দিয়ে মাইটোসিস পর্যায়ে স্পিডল তম্ভ তৈরি হ একটি সেক্টোসোম থেকে দৃটি সেক্টোসোম-এ পরিণত হয়। <u>সেক্টোসোম মাইকোটিউবিউল তৈরি সূচনা করে।</u> বিভা প্রক্রিয়ার জন্য প্রয়োজনীয় শক্তি (ATP) এখানে তৈরি হয়। G2 থেকে মাইটোসিস-এ প্রবেশ করতে **হলে ম্যাচুরে** জোমেটিং কাষ্ট্র (MPF) নামক পোটানের প্রয়োজন পড়ে। কিছু সংখ্যক কোষ G₂ উপপর্যায়ে এসেও আটকা পড়ে যা আর কথনো বিভাজন পর্যায়ে প্রবেশ করে না। মোট সময়ের ১০-২০ ভাগ সময় এ উপপর্যায়ে বায় হয়।

G₁ থেকে ১:উপপর্যায় এবং ১:উপপর্যায় থেকে G₂-তে স্থানান্তরের জন্য Cdk প্রোটিনের অ্যান্তিভেশন প্রয়োজন হয়। শ্বীব জীবনে ইন্টারফেজ-এর তরুত্ব : জীব জীবনে কোমের ইন্টারফেজ পর্যায় অতীব গুরুত্বপূর্ণ।

- (i) ভোষটি পরবর্তী কোষ বিভাজনে অংশগ্রহণ করবে বিদা তা ইন্টারফেজ-এর প্রথম দিকেই ঠিক হয়।
- (ii) পরবর্তী কোষ বিভাজনের জন্য প্রোটিন (RNA ও DNA প্রতিলিপনের স্কুল্ল উপাদান তৈরি হয়।
- (iv) কোৰ বিভাজনের প্রয়োজনীয় স্পিত্স তম্ন তৈরির জন্য ছাইক্রোটিউবিউলস সৃষ্টি হয়।
- (v) কোম বিভালনের প্রয়োজনীয় শক্তি (ATP) তৈরি হয়।
- (vi) ইন্টার্ফের পর্যায় না থাকলে বিভাজন পর্যায় সম্পন্ন হবে না। বিভাজন প্রক্রিয়া না থাকলে কোষের সংখ্যাবৃদ্ধি জীবের পূর্ণাঙ্গ গঠন ও বিকাশ হবে না, অর্থাৎ নতুন জীবই সৃষ্টি হবে না।

জীব জীবনে কোষ চক্রের তরুস্থ/তাৎপর্য : ইন্টারছেল ও মাইটোটিক কোষ বিভাজন পর্যায়ক্রমিকভাবে কোই চট সক্ষার করে। কোনচক্রের ভালতু অসাম।

- (i) জোগ চক্র না হলে এককোমী বা বহুকোমী কোনো জীবেরই বংশবৃদ্ধি হবে না।
- (ii) কোৰ চলের ইন্টারফেড-এর প্রমতির কানগেই মাইটোসিস হয়, আর মাইটোসিস বছরোগী ভীবের বৃদ্ধি ত दिक्तन परिता, सकामध्यक देवनि करत जारा कार्यन्त करत ।
 - (iii) ব্যক্তিটি ব্যাহারিক কোম চক্র এ গ্রীবের খাতারিক বৃদ্ধি সম্পন্ন করে।
- (iv) অখাচাৰিক অৰ্থাৎ অনিয়ান্তিত কোৰ চক্ৰা জীবনেহের ৰাভাবিক বৃদ্ধি ও বিকাশ ব্যাহত করে। এমনতি কাশান आग मृति नदद बाटक।

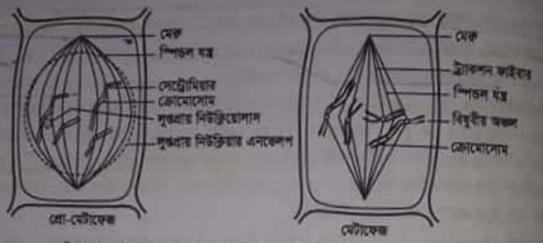

(ব) এম, ফেল (মাইটোসিস) : কোৰ চক্র G₂ ফেল্ল থেকে মাইটোসিস বা বিভাজন পর্যায়ে প্রবেশ করে। একটি बाहित अक्तिया। निউक्तिमाद्यत विভालन ७ प्नक्षाठेन, माইটোপ্লাজমের নতুন मूदे কোবে गमन, সেলমেমব্রেन এবং উखिन বোদে কোল প্রাচীর পঠনের মাধ্যমে পূর্ণাঙ্গ দৃটি অপতা কোষ সৃষ্টির মধ্য দিয়ে এম পর্যায় সমাপ্ত হয়। কোষ চক্রের মোট সমানে মাত্র ৫-১০ ভাগ সময় বায় হয় মাইটোটিক ফেজের জনা। এভাবেই ইন্টারফেজ —) এম ফেজ —) ইন্টারফেজ ক্রকারে চলতে থাকে। সম্পূর্ণ মাইটোসিস কোষ বিভাজন প্রক্রিয়া দৃটি প্রধান ভালে বিভক্ত; যথা- এক্যারিওকাইনেসিস (Karyokinesis)— নিউক্রিয়াসের বিভাজন ও (১৮ শহিটোকাইনেসিস (Cytokinesis)— সাইটোপ্লাজমের বিভাজন।

(i) ক্যারিওকাইনেসিস (Karyokinesis) : মাইটোসিস বলতে মূলত ক্যারিওকাইনেসিসকেই বোঝানো হয়ে থাকে। গুছটোলিস কোষ বিভাজনের যে বৃহৎ এবং জটিল পর্যায়ে একটি মাতৃকোষের অভান্তরে একটি নিউক্লিয়াস থেকে দুটি প্রতা নিউক্লিয়াস উৎপন্ন হয়, তাকে ক্যারিওকাইনেসিস বলে। কোষ বিভাজন একটি অবিচ্ছিন্ন বা ধারাবাহিক প্রক্রিয়া বলে একে বিভিন্ন পর্যায়ে ভাগ করা সঠিক নয়। তবুও বর্ণনা ও ধারাবাহিকতার সুবিধার জন্য মাইটোসিসকে প্রধানত পাঁচটি দশা

ল পর্বায়ে ভাগ করা হয়ে থাকে। পর্যায়গুলো নিমুরূপ :

(১) প্রোকেজ (Prophase) বা আদ্যপর্যায় : মাইটোসিস-এর প্রথম পর্যায়কে প্রোক্তের বলে। এ পর্যায়ে কোষের নিউক্লিয়াস আকারে বড় হয়। নিউক্লিয়াস, বিশেষ করে ক্রোমোসোমগুলোতে জল-বিয়োজন (dehydration) আরম্ভ হয়। ক্রমাণত জল বিয়োজনের ফলে ক্রোমোনোমগুলো সংকৃতিত হতে থাকে, ফলে ক্রমাণত খাটো ও মোটা হয়, বং ধারণ

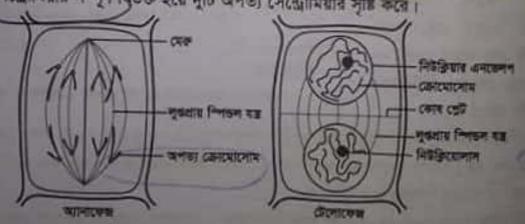
খনতা বৃদ্ধি পায় এবং স্পষ্ট হতে ল্টেডরভাবে দৃষ্টিগোচর হয়। এ পর্যায়ের नित्क निউक्रिसानाम धदर নিউক্লার এনডেলপের বিলুপ্তি ঘটতে বাতে। সাইক্লিন ডিপেনভেন্ট কাইনেজ (Cdk) প্রোটিনের ক্ষুক্রাইলেশনের কারণে ক্রোমোসোম সাকোচন তরু হয় এবং কতক প্রোটিনের ক্রকোরাইলেশনের কারণে নিউক্লিয়ার এনভেলপের বিলুপ্তি ঘটতে থাকে।



চিত্র ২.৩ : মাইটোসিস-এর ইন্টারফেল ও লোকেল পর্যায়।

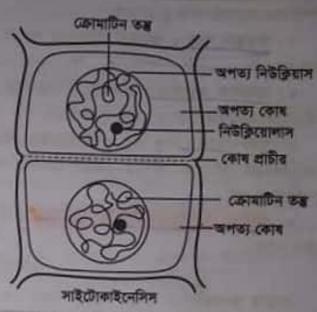
এ পর্যারে প্রতিটি ক্রোমোসোম সেন্ট্রোমিয়ার ব্যতীত লম্বালম্বিভাবে (অনুদৈর্ঘ্যে) দুটি সূত্রে বিভক্ত থাকে। প্রতিটি স্মরে কোমাট্রিড বলা হয়। ক্রোমোসোমগুলো আদাপর্যারে ক্রোমাটিডে বিভক্ত হলেও আলোক অণুবীক্ষণ যমে সাধারণত অবৈত্তই মনে হয়। এ পর্যায়ে স্পিডল তম্ভ সৃষ্টির সূচনা ঘটে।

(২) প্লো-মেটাফেজ (Pro-metaphase) বা প্রাক্-মধ্যপর্যায় : প্রোফেজ পর্যায়ের পরবর্তী এবং মেটাফেজ পর্যায়ের ব্যবহাঁ পর্যায়কে প্রো-মেটাফেজ বলে। প্রোফেজের একেবারে শেষদিকে উত্তিদকোৰে কতগুলো তন্তুময় প্রোটিনের সমস্বয়ে ইমিক্ষুড স্পিডল যন্তের (spindle apparatus) সৃষ্টি হয়। এই পর্যায়ের প্রথম দিকেই স্পিডল যন্তের ভত্তলোর আঘাতে শিউক্লিয়ার এনভেলপ বিলুপ্ত হতে থাকে এবং এক সময় বিলুপ্ত হয়ে যায়। এই পর্যায়ে নিউক্লিয়োলাদেরও বিলুপ্তি ফটে। াচল যাত্রের দু'মেরুর মধ্যবাতী স্থানকে <u>ইক্ষেটর বা বিশ্বীয় জন্মল</u> বলা হয়। স্পিডল যাত্রের ভয়তলো এক মেক হতে শীর মেরু পর্যন্ত বিস্তৃত। এদেরকে স্পিত্তল ফাইবার (spindle fibre) বলা হয়। প্রো-মেটাফেল পর্যায়ে কোনোসোমের ব্দিয়ার স্পিত্র যন্তের নির্দিষ্ট তম্বর সাথে সংযুক্ত হয়। এসময় ক্রোমোসোম একটু আন্দোলিত হয় যাকে বিলোমীয় নৃত্য বলা হয়ে থাকে। আসলে ক্রোমোসোমগুলো বিষুবীয় অভালের দিকে যেতে থাকে। ক্রোমোসোমের প্রিনিয়ার সংযুক্তকারী ভরকে <mark>ট্রাকশন ফাইবার (tra</mark>ction fibre) বলা হয়। ক্রোমোসোমগুলো এ সময় বিশ্বীয় জঞ্চলে ेर-५४ (हालान)-


বিনাম্ভ হতে থাকে। (প্রাণিকোষে স্পিতল যন্ত্র সৃষ্টি ছাড়াও পূর্বে বিভক্ত সেন্ট্রিয়োল দু'মেরুতে অবস্থান করে বছ হতে আস্টার তম্ভ বিজুরিত হয়।)

চিত্ৰ ২,৪ : মাইটোলিল-এর লো-মেটাকেল এবং মেটাফেল পর্যাত।

শিক্তশ ফাইবার সেন্ট্রোমিয়ারের কাইনেটোকোরের মটব প্রোটিনে সংযুক্ত হয়। এই প্রোটিন ATP ভেঙ্গে ADP।
সৃষ্টি করে এবং শক্তি নির্গত করে। এই শক্তি খরচ করে ক্রোমোসোম মাইক্রোটিউবিউপ ধরে চলতে প্রাকে।


(৩)মেটাফেল (Metaphase) বা মধ্যপর্যায় : এ পর্যায়ের প্রথমেই সমন্ত ক্রোমোসোম স্পিডল যন্তের বিহুবার প্রশ্নের প্রথমের প্রথমের করে। স্পিডল যন্তের দু'মেরুর মধ্যবর্তী ছানকে বিষুবীয় বা নিরক্ষীয় অঞ্চল বলা হয়। স্পিডর ম্বিবুরীয় অঞ্চল ক্রোমোসোমের বিনাপ্ত হওয়াকে মেটাকাইনেসিস বলে। এ পর্যায়ে ক্রোমাটিডভলো সবচেয়ে বেরির ঘাটো ও স্পাই দেখা যায়। এ পর্যায়ে কোমে ক্রোমোসোম সংখ্যা, আকার ও আকৃতি নির্ণয় করা যায়। মেটাফের প্রথমিক করা হারে। মেটাফের প্রথমিক করে।

চিত্ৰ ২.৫ : নাইটোলিল-এর আনাকেল ও টেলোকেল পর্যাত।

(৪) আনাক্ষে (Anaphase) বা গতিপর্যায় : সেন্ট্রোমিয়ার পৃথক হওয়ার সাথে সাথে আনাক্ষের পর্যায় তব হা পর্যায়ে অপতা ক্রোমোসেম্মর বিষ্বায় অকল থেকে মেরুমুখী চলতে হল করে। সেন্ট্রোমিয়ারের পূর্ব বিভক্তির প্রতিটি ক্রোমাটিভ এফটি অপতা ক্রোমোসোমে পরিণত হয় এবং প্রতিটি অপতা ক্রোমোসোম এনের মিরুছে প্রতিটি ক্রোমাটিভ এফটি অপতা ক্রোমোসোমের মেরু অভিমুখী চলনে সেন্ট্রোমিয়ারই অয়গামী বাকে এবং বাহুয়য় অনুগামী হয় প্রতিটিনিয়ারের অবহান অনুগায়ী ক্রোমোসোমগুলো ইংরেজি V (মেটাসেম্মিক), L (সাব্দেটাসেম্মিক), J (আক্রোমির্মারের বিশ্বামানিক) অক্রের মতো দেখায়। অগতা ক্রোমোসোমগুলো মেরুর কাছাকাই পৌহালেই ক্রাম্মতের প্রতিপ্রামের সমান্তি মন্টে।

- (৫) টেলেকেল (Telophuse) বা অন্তপর্যায় : কোম বিভালনের এ পর্যায়ে অপত্য কোমোলোমসমূহ দুই বিপরীত কেতে ছিল অবহান নেয়। এ পর্যায়ে কোমোলোমতলোতে আবার জলযোজন (hydration) মটে। ফলে এরা ক্রমান্তরে প্রাতিত হয়। কোমোলোমতলো ক্রমণ সক্র ও লঘা হতে থাকে এবং অদুশা অপত্র হতে থাকে। এ পর্যায়ের পেবের দিকে দুই ফেলেড কোমোলোমতলোর চারদিকে নিউক্লিয়ার এনভেলপ এবং স্যাট কোমোলোমর গৌণ কুজনে নিউক্লিয়োলাসের দুমার্জবির্নাধ মটে। ফলে দু'মেরুতে মুটি অপত্য নিউক্লিয়াসের সৃষ্টি হয়। শিশুভল ফাইবারওলো ধীরে ধীরে বিশুর হয়ে বার্যা।
- (ii) সাইটোকাইনেসিস (Cytokinesis) : টেলোকেন্দ্র কারের শেষের লিকে সাইটোকাইনেসিস আরম্ভ হয়। কিন্তুলরত কোষের সাইটোপ্রাক্তম দুক্তার্থে বিচক হওয়াই সাইটোকাইনেসিস। উদ্ভিদ কোষে সাইটোকাইনেসিস ঘটো কোর্মেটির কোষ প্রাচীর মাধামে। উদ্ভিদ কোষে শিপভল যারে বিদ্বীয় অঞ্চল ক্রমশ প্রশন্ত হয়ে কোষ প্রাচীরকে স্পর্শ হয়ে। স্কুতলো অদৃশা হয়ে যার। বিষ্বীয় অঞ্চলেই সাইসোসোমের লামে ক্র্যাগ্রমোসোম ক্রমা হয় এবং পরে এরা মিলিই হয়ে প্রাক্তমালেমা (plasmalema) লামক কিল্লির সৃষ্টি করে। এরা কোষপ্রেট স্টিতে সাহায্য করে। কোষপ্রেটের ওপর হেমিসেলুলোক ও অন্যান্য দ্রব্য ক্রমা হয়ে কোমপ্রটের গঠন করে। কোমপ্রটোর গঠনের ফলে মাতৃকোষটি পরবর্তীতে দুক্তাল ভাগ হয়ে দুটি অপত্য কোষের জন্ম হয়।

চিত্র ২.৬ : সাইটোকাইনেসিস প্রক্রিয়া।

থাণীর ক্ষেত্রে স্পিডল যশ্রের বিষ্বীয় অঞ্চল বরাবর কোষবিল্পিটি গর্তের নায় ভেতরের নিকে চুকে যায় এবং এ গর্ত সবদিক হতে ক্রমান্বয়ে গভীরতর হয়ে মাঝখানে একত্রে মিলিত হয়, ফলে কোষটি দু'ভাগে ভাগ হয়ে পড়ে। প্রোটিন action এবং myosin কোষবিশ্বির এই খাজ সৃষ্টিতে সহায়তা করে।

সাইটোকাইনেসিস না হলে (এবং ক্যারিওকাইনেসিস চলতে থাকলে) একই কোষে বহু নিউক্লিয়াসের সৃষ্টি হয়। একে লা হয় মুক্ত নিউক্লিয়ার বিভাজনের ফসল। কোনো কোনো শৈবাল, ছত্রাক ও প্রাণিকোষে ক্যারিওকাইনেসিস ঘটে কিন্তু সাইটোকাইনেসিস ঘটে না। এর ফলে একটি কোষে ব্য নিউক্লিয়াস উৎপন্ন হয়। এ ধরনের উদ্ভিদ কোষকে সিনোসাইটিক coenocytic) এবং প্রাণিকোষকে প্রাজমোডিয়াম (plaspodium) বলে।

স্ট্রিসিসের ওরুড্ (তাৎপর্য বা প্রয়োজনীয়তা)

জীবদেহে মাইটোসিস কোষ বিভাজন প্রক্রিয়ার তরুত্ব অপরিসীম। নিচে মাইটোসিস প্রক্রিয়ার তরুত্ব উপস্থাপন করা আ।

- ১। <u>দেহ গঠন ও দৈহিক বৃদ্ধি : বহু</u>কোষী জীবে জাইগোট নামক একটি মাত্র কোষের মাইটোসিস বিভাজনের মাধ্যমে ^{বিভো}ষী দেহ গঠিত হয় এবং এর দৈহিক বৃদ্ধি ঘটে।
- ই। <u>রংশবৃদ্ধি</u> : কতক এককোষী সুকেন্দ্রিক (eukaryotic) জীবে মাইটোসিস প্রক্রিয়ায় বংশবৃদ্ধি গটে (বেমন-
- া <mark>প্রদাস সৃষ্টি ও জনন কোষের সংখ্যা বৃদ্ধি :</mark> মাইটোসিস বিভাজনের ফগেই বহুকোথী জীবের জননাস সৃষ্টি হয়, শে অপবৃদ্ধির ক্রমধারা বজায় রাখতে পারে। জনন কোষের সংখ্যা বৃদ্ধি করতে হলে এই প্রক্রিয়া আবশাক।

- ৪। <u>নির্দিষ্ট আকার-আয়তন রক্ষা</u>: এ বিভাজন প্রক্রিয়ার ফলে কোমের স্বান্তাবিক আকার, আকৃতি, ক্রন্ত তথাত্ব বজায় থাকে।
- ৫। নিউক্লিয়াস ও সাইটোপ্রাজমের জারসায়া রক্ষা: সাইটোপ্রাজমে অবস্থিত বিভিন্ন কুদ্রাল (অলাণু) ত ।
 উপাদানের সাহায়ে। নিউক্লিয়াস কোষের বিপাক ক্রিয়া নিয়য়ণ করে। মাইটোসিস প্রক্রিয়ায় কোষ বিভাজনের করে
 কোষের নিউক্লিয়াস ও সাইটোপ্রাজমের মধাকার পরিমাণগত ও নিয়য়ণগত ভারসায়া রক্ষিত হয়।
- ৬। ক্রোমোসোমের সমতা রকা : মাইটোসিস কোষ বিভাজনের কারণে দেহের সব কোষে সমসংখ্য । সম্পন্ন ক্রোমোসোম থাকে।
- ৭। কতন্ত্রান পূরণ : বহুকোষী জীবদেহে সৃষ্ট যে কোনো কতন্ত্রান মাইটোসিস প্রক্রিয়ায় কোষ বিভাকরে। পূরণ হয়।
- ৮। ক্র<u>মাণত কয়পূরণ</u>় জীবকোষে কিছু কিছু কোষ আছে যাদের আয়ুকাণ নির্দিষ্ট। এসব কোষ বি মাইটোসিস প্রক্রিয়ার মাধ্যমে এদের পূরণ ঘটে।
- ১। পুনরুৎপাদন : কিছু কিছু অতিপ্রয়োজনীয় কোষের জীবনকাল অতি সীমিত (বেমন- মানুষের লোহিত হর এবং কর্নিয়ার বাইরের কোষ)। এতলো ক্রমাণত কয়প্রাপ্ত হয়। মাইটোসিস বিভাজনের মাধ্যমে এ ক্রের পুনরুৎপাদন ঘটে।
- ১০। ত্রুণত বৈশিষ্ট্রের দ্বিতিশীরতা ক্রমান এ প্রকার বিভাজনের ফলে জীবজগতের ত্রণগত বৈশিষ্ট্রের দ্বিদ্রি বজার থাকে।

অনিয়ন্ত্রিত মাইটোসিস

কোষের অভ্যন্তরীণ ও বাহ্যিক বিভিন্ন ক্যাইর দারা মাইটোসিস নিয়ন্ত্রিত হয়। কোনো কারণে এই নিয়ন্ত্রণ কর্মক হলে অনিয়ন্ত্রিত মাইটোসিস ঘটে থাকে, কলে চিউমার ও ক্যাপার সৃষ্টি হয়। ক্যাপার কোষে সাইক্রিন-Cdk নিয়ন্ত্রণ বাদ্ধ (মানুষ্টিত মাইটোসিস ঘটে থাকে, কলে চিউমার ও ক্যাপার সৃষ্টি হয়। ক্যাপার কোষে সাইক্রিন-Cdk নিয়ন্ত্রণ বাদ্ধ (মানুষ্টিত মাইটোসিস দাধারণত কোষকে বিভালন হতে বিরত রাখায় ভূমিকা রাখে। এটি defective (মানুষ্টের প্রায় অর্থেক সংখ্যক কোষেই defective P⁵³ আছে) কোর চক্র নিয়ন্ত্রণ হারিয়ে কেলে। এর ফলে কালা হয়। মানুষ্টের অধিক হারে ক্যাপার সৃষ্টি হওয়ার সম্ভবত এটি একটি কারণ। কোষ বিভালনের জন্য কিছু মোগ স্যাটিকরে। ক্যাপার কোষ তাদের মোথ ক্যান্টির নিজেরাই তৈরি করে নেয়, অথবা বিভালনের জন্য এদের কোনো মোই পালে না।

কোষের মৃত্যু : বহুকোষী জীবদেহে প্রতিদিন অনেক কোষের মৃত্যু ঘটে। কোম বিভাজনের মাধ্যমে তা পূরা হয়। মানব দেহে প্রতিদিন লক্ষ লক্ষ কোষের মৃত্যু ঘটে। দুটি উপায়ে কোষে মৃত্যু ঘটে। একটি হলো Necrosis হলো Apoptosis.

L Necrosis : প্রাচ্চ অভাব হলে অথবা বিধাক দ্রবোর কারণে ক্তিগ্রন্থ হলে কোম মরে যায়।

II. Apoptosis: এটি হলো জেনেটিকালি নিয়ন্তিত মৃত্যু। কোনো কোম জীবদেহ বা অঙ্গের জন্য এখন প্রমোল জাই এদের খালে হতে হয়। ফেনে মানুষের জনাবস্থায় পাতলা টিস্যু দিয়ে হাতের সকল অসুন লাগানো থাতে মানুখানের টিস্যু ফার্মের মাধামে বিপুত্ত হয়ে পাঁচটি আঙ্গুল পৃথক হয়। একটি কোষ যত বেশি দিন বঁচিকে জুলিকার (damage) ইওমার সন্ধাবনা দেখা দেয় যা খেকে সহজেই ত্যালার হতে পারে। তাই এদের ফারে বা ক্রিটিল লক্ষার। এটি সাধারণত আমাদের তক এবং অজের এপিছেলিয়াল কোমের ব্যালারে প্রযোজ্য, কারণ এবা প্রতিজ্ঞান্ত বিশাক পদার্থে উনুক্ত হয়। আমাদের দেহে প্রতিদিন যে লক্ষ্য লক্ষ্য কোমের মৃত্যু হয়, তার অধিকা

ত। মায়োসিস বাত্রাসমূলক কোষ বিভাজন (Meiosis or Reductional Cell Division)

মার্মানস কোব বিভাজন ডিপ্লয়েড জীবের জনন মাড্কোবে (অথবা হ্যাপ্লয়েড উত্তিদে জাইগোটে) ঘটে থাকে। এ এলন প্রক্রিয়াম একটি জটিল পরিবর্তনের মাধ্যমে দু'বার বিভক্ত হয় এবং বিভক্তির ফলে সৃষ্ট চারটি কোষে হোলোম সংখ্যা মাতৃকোবের জোমোসোম সংখ্যার অর্ধেক হয়ে যায়। তাই এ প্রকার কোষ বিভাজনকে মার্মোসিস বা ক্রেব বিভাজন বলে। এ প্রক্রিয়ায় নিউক্রিয়াস দু'বার এবং জোমোসোম একবার বিভক্ত হয়ে। যে কোষ বিভাজন ক্রাট নিউক্রিয়াস দু'বার এবং জোমোসোম একবার বিভক্ত হয়ে। যে কোষ বিভাজন ক্রাট নিউক্রিয়াস পর পর দু'বার এবং জোমোসোম মাত্র একবার বিভাজিত হয়ে মাতৃকোষের জোমোসোমের অর্ধেক ক্রেমোসোমযুক্ত চারটি অপত্য কোষ সৃষ্টি করে তাকে মার্মোসিস কোষ বিভাজন বলে। গ্রিক Meious (to lessengal) হতে Meiosis শব্দের উত্তব ঘটে।

স্হজ্ঞতাবে বলা যায়, যে কোষ বিভাজন প্রক্রিয়ায় মাতৃকোষ থেকে চারটি অপত্যক্রোষ সৃষ্টি হয় এবং নতুন সৃষ্ট বের ক্রোমোসোম সংখ্যা মাতৃকোবের ক্রোমোসোম সংখ্যার অর্থেক হয়ে যায় তা-ই মায়োসিস।

আবিষ্কার ও নামকরণ: বেনেডিন (E. V. Beneden) এবং হাউসার (Houser) Ascaris কুমির গ্যামিটে হ্যাপ্রমোড
রক ক্রোমোসোম আবিষ্কার করেন ১৮৮৩ সনে। স্ট্রাসবুর্গার (Strasburger) ১৮৮৮ সনে পুল্পক উদ্ভিদের জনন
ক্রোবের ক্রোমোসোমে হ্রাসমূলক বিভাজন লক্ষ্য করেন। ১৯০৫ সনে ফার্মার (J. B. Farmer) ও মুর (J. E. Moore)
রক্ষম হ্রাসমূলক বিভাজনকে Miosis (মিয়োসিস বা মিওসিস) বলেন। পরবর্তীতে গ্রিক মূল শব্দের (meioum= to
sen) ওপর ভিত্তি করে এর বানান করা হয় Meiosis অর্থাৎ মায়োসিস। এখন এটি মায়োসিস হিসেবেই উচ্চারিত।

কোথায় হয় ? মায়োসিস সর্বদা<u>জনন মাড়কোটে (meiocyte) সম্পন্ন হয়। কখনো দৈহিক কোষে হয় না এবং সর্বদাই</u> সংখ্যক ক্রোমোসোমবিশিষ্ট কোষে হয়। <u>নিমু শ্রেণির জীবে (হ্যাপ্রয়েড) মায়োসিস হয় নিষেকের পর ছাইলোটে, স্মার</u> চ শ্রেণির জীবে (ডিপ্লয়েড) মায়োসিস হয় নিষেকের পূর্বে জনন মাড়াকোন হতে গ্যামিট সৃষ্টিকালে।

নের ধারাবাহিকতা রক্ষায় মায়োসিসের অবদান

উচ্চ শ্রেণির জীবে মায়োসিসের ফলে একটি জনন মাতৃকোষ হতে চারটি জনন কোবের সৃষ্টি হয় এবং প্রত্যেক কোমে কোমের ক্রোমের ক্রোমের সংখ্যার অর্থেক সংখ্যক ক্রোমেরের গানি । আমরা জানি, দুটি জনন কোম (পুং জননকোষ এবং জনকাষ) একসাথে মিলিত হয়ে জাইগোট সৃষ্টি করে। জাইগোট পরে বার বার মাইটোটিক বিভাজনের মাধ্যমে একটি এবং শ্রুগের কোষগুলো আরও বিভাজিত হয়ে একটি পূর্ণাঙ্গ জীবের সৃষ্টি করে। কাজেই জননকোষগুলোতে মোসোম সংখ্যা হাস পেয়ে জনন মাতৃকোষের অর্থেক না হলে তাদের যৌন মিলনের ফলে সৃষ্ট জীবে ক্রোমোসোম খা ছিল হয়ে যারে। হ্যাপ্লয়েড জীবে (য়েমন- শৈবাল) দুটি গ্যামিটের যৌন মিলনের ফলে সৃষ্ট জাইগোটেও মোসোম সংখ্যা ছিল হয়। য়েহেডু ক্রোমোসোমই জীবের লক্ষণ নিয়ন্ত্রণকারী জিন (gene) বহন করে, সেহেডু মোসোম সংখ্যা ছিল্প হয়ে গেলে সন্তান-সন্ততি আর তার পিতা-মাতার গুণসম্পন্ন হবে না এবং প্রত্যেকটি প্রজাতিতে বি আমূল পরিবর্তন ঘটে যারে। পরিণামে জীবজগৎ ধ্বংস হয়ে যাবে। ডিপ্লয়েড জীবে গ্যামিট সৃষ্টিকালে জনন করে এবং হ্যাপ্রয়েড জীবের জাইগোটে মায়োসিস হয় বলেই প্রজাতিত বৈশিষ্ট্য বংশ পরম্পরায় টিকে থাকে এবং

নের ধারাবাহিকতা রক্ষা পায়। মারোসিসের বৈশিষ্ট্য: মায়োসিসের বৈশিষ্ট্যগুলো নিমুরূপ:

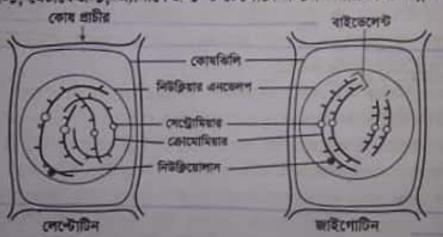
🎮 ভিপ্নয়েভ জীবে মায়োসিস সাধারণত জনন মাতৃকোষে হয়ে থাকে।

প্রা এ ধরনের কোষবিভাজনে নিউক্লিয়াস দু'বার বিভক্ত হয় কিন্তু ক্রোমোসোম মাত্র একবার বিভক্ত হয়। ফলে নতুন সৃষ্ট কোনে ক্রোমোসোম সংখ্যা মাতৃকোষে অর্থেক হয়।

ঞা লোফেজ-১ দীর্ঘস্থারী বিধায় একে ৫টি উপ-পর্যায়ে বিভক্ত করা চলে।

গ্রী হোমোলোগান ক্রোমোনোম জোড়া বেঁছে বাইডেলেন্ট সৃষ্টি করে।

পূল কারাজমা সৃষ্টি ও ক্রসিংওভার হয় বলে হোমোলোগান ক্রোমোনোমের মধ্যে জিন বিনিময় ঘটে।

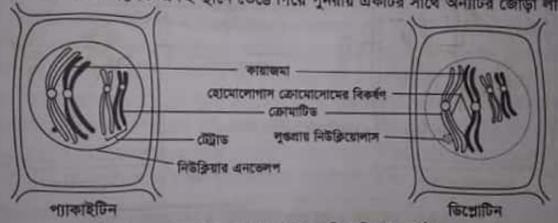

১ - একটি মাতৃকোষ (2n) হতে চারটি হ্যাপ্সয়েড (n) অপতা কোষের সৃষ্টি হয়।

- ৭। ক্রোমোসোমের শতস্থ বিন্যাস ঘটে। ৮। ক্রসিংওভার ও ক্রোমোসোমের শতস্থ বিন্যাস ঘটে বলে এ প্রক্রিয়ায় উৎপন্ন কোষগুলো কখনো মা
- ৮। ক্রাসংবভার ও জোনোলোলন সমগুণ সম্পন্ন হয় না। ৯। মারোসিস শেষে সৃষ্ট নতুন কোষে নতুন চারিত্রিক বৈশিষ্ট্রোর আবির্ভাব ঘটে। বংশগতিতে বিশেষ

১। মাঝোসন শেষে সৃষ্ট নতুন কোনে নতুন জীবসমূত্বে মধ্যে বৈচিত্রা সৃষ্টির একটি প্রধান উপায়।
সৃষ্টিতে এটি খুবই তাৎপর্যপূর্ব। মায়োসিস হলো জীবসমূত্বে মধ্যে বৈচিত্রা সৃষ্টির একটি প্রধান উপায়।
মায়োসিস প্রক্রিয়া: মায়োসিস একটি অবিজ্ঞিন ধারারাহিক প্রক্রিয়া। মায়োসিস প্রক্রিয়ার একটি কোর পর পর
বিভক্ত হয়। কোর, নিউক্লিয়াস ও কোনোসোনের বিভক্তির ওপর ভিত্তি করে মায়োসিস প্রক্রিয়াকে দৃটি প্রধান পর্যার করা হয়: যথা- (ক) মায়োসিস-১ এবং (ব) মায়োসিস-২। মায়োসিস -১-এ কোমোসোম সংখ্যা সমান থাকে। কে
করা হয়: যথা- (ক) মায়োসিস-১ এবং (ব) মায়োসিস-২। মায়োসিস-২-এ কোমোসোম সংখ্যা সমান থাকে। কে
করা হয়: যথা- (ক) মায়োসিস-১ এবং বিভাজন ও বলা হয়। মায়োসিস-২-এ কোমোসোম সংখ্যা সমান থাকে। কে
বিভাজন মূলত একটি মাইটোটিক বিভাজন প্রক্রিয়া। এজনা একে ইকোয়েশনাল বা সমীকরণিক বিভাজনও কা
প্রত্যেক পর্বকে প্রোক্তেক, মেটাক্তেক, আানাক্ষেক্ত এবং টেলোকেজ—এ চারটি পর্যায়ে ভাগ করা হয়। মায়োসিস প্র
ত্যাক পর্বকে প্রোক্তেন্ত এর পূর্বে। পলিপ্রয়েভ উত্তিদে মায়োসিস অত্যন্ত জটিল বলে এখানে ডিপ্লয়েছ (১)
উত্তিদের মায়োসিস প্রক্রিয়া বর্ণনা করা হলো:

(ক) মায়োসিস-১ (Meiosis-1) বা প্রথম মায়োসিস বিভাজন

মায়োসিস কোষ বিভাজনে মায়োসিস-১ই সবচেয়ে তাৎপর্যপূর্ণ। কারণ এ পর্যায়েই ক্রোমোসোম সংখ্যা অর্থনে পায় এবং সমসংস্থ ক্রোমোসোমের মধ্যে অংশের পারস্পরিক বিনিময় (ক্রসিং ওভার) ঘটে। মায়োসিস-১কে চারট ল ভাগ করা হয় মধা-প্রোফেজ-১, মেটাফেজ-১, অ্যানাফেজ-১ ও টেলোফেজ-১। পর্যায়গুলো নিমুরূপ:


চিত্র ২.৭ : মারোদিদ বিভাজনে মোফেজ-১ এর লেন্টোটিন ও জাইগোটিন উপ-পর্যায়।

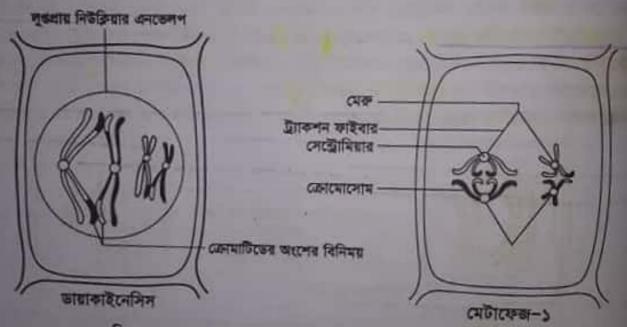
(১) প্রোক্তের-১ (Prophase-1): মায়োলিল-১ এর প্রথম পর্যায় হলো প্রোক্তের-১। প্রোক্তের পর্যায়টি অনেবি
হয়। মান্বের তক্রাপয়-এ মায়োটিক প্রোক্তের-এ সময় লাগে এক সন্তাহ বিভাজনটি সম্পন্ন হতে সময় লাগে প্রমা
মাল। প্রোক্তের তক্র হওয়ার আগেই DNA প্রতিলিপিত হয়, তবে দৃষ্টিগোচর হয় না। এ পর্যায়টি অত্যন্ত ভালি
তুলনামূলকভাবে নীর্যায়ী বিধায় একে পিচিটিউপ-পর্যায়ে ভাগ করা হয়েছে। প্রোক্তের-১ এর উপ-পর্যায়গুলো নির্মার

(খ) ভাইগোটিন (Zygotene : গ্রিক zygos = yoke-জোয়াল, জোড়া; tene = thread- সূতা) : এ উপ-পর্যায়ে
য়মোলোগাস ক্রোমোসোম (একটি 'মাতা' হতে আগত এবং অন্যটি 'পিতা' হতে আগত) একটি জোড়ার সৃষ্টি করে।
রমোলোগাস ক্রোমোসোমন্বয়ের মধ্যে পরস্পর আকর্ষণই এ জোড়া সৃষ্টির কারণ। জোড়া সৃষ্টি কার্য ক্রোমোসোমন্বয়ের
রক্ষান্ত হতে আরম্ভ হয়ে অন্যপ্রান্তে শেব হতে পারে, অথবা সেন্ট্রোমিয়ারন্বয়ের মধ্যে আরম্ভ হয়ে দু'দিকে ক্রমান্বয়ে বিজ্ঞার
ত করতে পারে, অথবা স্থানে স্থানে আরম্ভ হতে পারে।

দুটি হোমোলোগাস ক্রোমোসোমের মধ্যে জ্বোড় সৃষ্টি হওয়াকে সিন্যাপদিস (synapsis) বলে। প্রতিটি জ্বোড়বাধা ক্রামোসোম জ্বোড়াকে বাইভেলেন্ট (bivalent) বলে। কোষে যতগুলো ক্রোমোসোম থাকবে তার অর্ধেক সংখ্যক ইতিদেউ সৃষ্টি হবে। নিউক্লিয়োলাস এবং নিউক্লিয়ার এনডেলপ তখনো দেখা যায়।

প্রে ক্রোমিয়ার এবং চারটি ক্রোমাটিভ থাকে। এ অবস্থাকে তিট্রাভ বলে। প্রারাহিটনের পূর্বে প্রতিটি ক্রোমাটিভ বলে একই ক্রোমাসামের দুটি ক্রোমাটিভ বলে। এ উপ-পর্যায়ের ক্রোমাটিভ করে নন-সিস্টার ক্রোমাসামের ক্রোমাসামের ক্রোমাটিভ করে নন-সিস্টার ক্রোমাটিভ বলে। এ উপ-পর্যায়ের শেষের দিকে বাইভেলেন্টের প্রতিটি ক্রামাটিভ বলে এবং একই জ্যোজ্যর ক্রামাটিভ বলে এবং একই জ্যাজ্যর ক্রামাটিভ বলে একটার ক্রামাটিভ বলে এবং একই জ্যাজ্যর ক্রামাটিভ বলে একটার ক্রামাটিভ বলে একটার সাথে অন্যাটিভ ক্রাজ্য লাপে। ফলে ঐ

চিত্র ২.৮ : প্রোফেজ-১ এর প্যাকাইটিন ও ভিপোটিন উপ-পর্যায়।

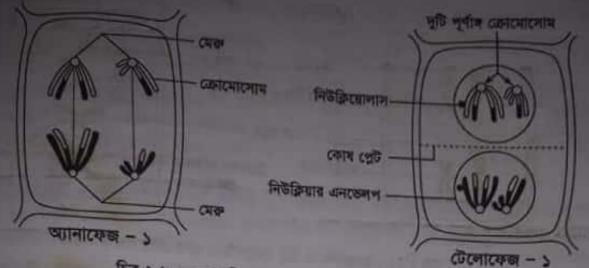

জোড়ার স্থানে একটি ইংরেজি 'X' আকৃতির বা ক্রস চিহ্নের মতো অবস্থা সৃষ্টি হয়। দুটি নন-সিস্টার ক্রোমাটিছে 'X'
ক্রির বা ক্রস চিহ্নের মতো জোড়াগুলকে একবচনে কায়াজমা (Gk. Chiasma = cross) এবং বহুবচনে কায়াজমাটা
ক্রি। নন-সিস্টার ক্রোমাটিডের মধ্যে পরস্পর জংশের বিনিময়কে ক্রিসিং ওতার বা ক্রস ওতার বলে। কোনো কোনো
বিভেলেটে (বিশেষ করে যদি খাটো হয়) কায়াজমা একবারেই উৎপন্ন না হতে পারে; আবার কোনো কোনো বাইতেলেটে
ক্রিশেষ করে যদি দীর্ঘ হয়) একাধিকও হতে পারে। কায়াজমাটা সৃষ্টির কলে যে ক্রসিং ওতার হয় তাতে ক্রোমোসোমে
ক্রিপেট পরিবর্তন সাধিত হয়। এ পর্যায়েও নিউক্লিয়োলাস এবং নিউক্লিয়ার এনভেলপ দেখা যায়।

পি) ডিপ্লোটিন (Diplotene : মিক Diplos = double-ভাবল; tene = thread- সূতা) : ক্রমাণত সংকোচনের ফলে ক্রমোসোমগ্রলো এ উপ-পর্যায়ে আরও খাটো ও মোটা হয়। বাইভেলেন্টের ক্রোমোসোমধ্যের মধ্যে পারস্পরিক বিকর্ষণ

নীয় বাবে আকাৰ, আকৃতি, কোনোহিয়াকে অবস্থান ও সাংখ্যা প্ৰকৃতি দিক যতে সৃষ্টি কোনোলোম এক বৰুম বাবে। কৰে একটকে অগাটিক মোনোলো বিশ্ব আকাৰ, আকৃতি, কোনোহিয়াকে অবস্থান ও সাংখ্যা প্ৰকৃতি দিক যতে সৃষ্টি কোনোলোমের যে কোনো নিনিত্র অবস্থান অবস্থিত কিন্দু প্রতি (এপিন) একট বিশিষ্ঠা কিন্দু স্থানিক কোনোহিয়াকে মধ্যে আকর্তন থটে।

তর হব। ফলে এরা বিপরীত দিকে সরে যেতে চেটা করে কিন্তু কারাজমাটার স্থানে বাধাপ্রাপ্ত হয়। এ বিক্রিক্র করে ছানে তরু হতে পারে। তবে সাধারণত সেন্ট্রোমিয়ারছয়ের মধ্যেই প্রথম এবং ব্যাপকভাবে বিক্রিক্রের ছলে দৃটি কারাজমাটার মধ্যবতী অংশে লুপের (loop) সৃষ্টি হয়। কায়াজমাটাগুলো স্পষ্ট হয় রবা প্রাপ্তের দিকে সরে যাওয়াবে প্রাপ্তীয়করণ terminalizati দিকে সরে যাওয়াবে প্রাপ্তীয়করণ terminalizati দিক সরে যাওয়াবে প্রাপ্তিমকরণ বাহ পরস্পর আবর্তনের (rotatory movement) ফলে পাশাপাশি লুপ্ত ৯০° কোণ করে ছব্ একটি মাত্র কায়াজমা থাকলে এটি(১৮০° হতে পারে।

(৪) ভায়াকাইলেসিস (Diakinesis: মিক Dia = across- অপর পাশে, বিপরীত দিকে; kinesis- সমাবেশ এ উপ-পর্যায়ে ক্রোমোসোমগুলো আরও খর্বাকৃতি ও মোটা হয়। প্রান্তীয়করণ তখনও চলতে থাকে। বাইজেলা ক্রোমোসোমর ওপর ধাত্র জমা হয় বলে তখন আর ক্রোমাটিডে বিভক্ত দেখা যায় না। এক সময় বাইজে নিউক্লিয়াসের কেন্দ্রস্থল হতে পরিধির দিকে চলে আসে। এ উপ-পর্যায়ের শেষ দিকে নিউক্লিয়োলাস অদৃশা হয়ে মিউক্লিয়ার এনভেলপ-এর অবলুপ্তি ঘটে এবং প্রাণিকোষে সেক্রিয়োল মেরুতে পৌছে যায়।


চিত্র ২.৯ : প্রোক্ষেত্র-১ এর ভায়াকাইনেসিস ও মেটাফেজ-১ পর্যার।

কাজ। শিক্ষার্থীদেয়কে পাঁচটি দলে ভাগ করে দিতে হবে। প্রত্যেক দলকে প্রোফেজ-১ এর পাঁচটি উপ-পর্যাত কোনো একটি নির্দিষ্ট করে নিতে হবে। পর্নদিন ক্লানে প্রত্যেক দল তাদের জন্য নির্দিষ্ট উপ-পর্যায় উপস্থাপন ব পোস্টার পেপারে একটি চার্টও করা যেতে পারে।

(২) মেটাফেজ-১ (Metaphase-1) : বাইডেলেন্টের প্রতিটি সেন্ট্রোমিয়ার স্থ-স্থ মেরুর দিকে এবং বিছুবীর হতে সমদ্রে অবস্থান করে। কতিপয় ট্রাঞ্জনন কাইবারের সাথে ক্রোমোসোমের সেন্ট্রোমিয়ার সংযুক্ত হয়। মাইটে মেটাফেজের মতো এ পর্যায়ে সেন্ট্রোমিয়ার বিভক্ত হয় লা। ক্রোমোসোমের মধ্যে পুপ সৃষ্টি হয়। ক্রোমোসোমগুলো গ্রাটো ও মোটা হয়। বাইডেলেন্টের ক্রোমোসোম্বার বিভক্ত হয় লা।

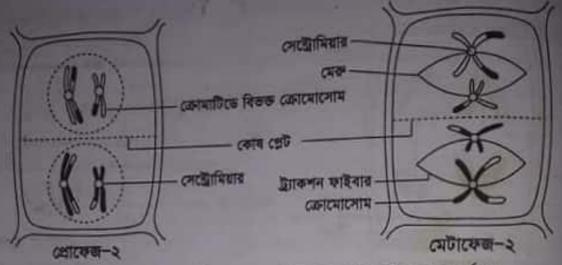
খাটো ত মোটা হয়। বাইভেগেন্টের ক্রোমোলামঘ্য ট্রাকশন ফাইবারের টানে পূথক হতে থাকলে এ পর্যারের সমারি ।

(৩) আনাক্ষেত্র-১ (Anaphase-1) : এ পর্যারে এসে হোমোলোগাস ক্রোমোসোম পূথক হয়ে ঘার বাইভেলেন্টের দুটি ক্রোমোসোম (দুটি ক্রোমাটিভ নয়) বিপরীতিমুখী দুটি মেরদা নিকে থাবিত হয়। ক্রোমোসোম সংক্রোমন, কার্ডদেবের রানারণ ও অন্যান্য কারণে ক্রোমোসোমের মেকমুখী চলন ঘটে। এরপ চলনকালে সেট্রোম্বারী এবং বার্থর অনুগামী হয়। ফলে ক্রোমোসোমতলোকে ইংরেজি ও (মেটালেন্ট্রিক), L (সারমেটাসেরিক) এবং I (টেলোসেন্ত্রিক) অকরের মতে। মেধায়। ট্রাকশন ফাইবারের দৈখা হাল পেতে থাকে।

চিত্র ২.১০ : মায়োসিস-এর আানাফেজ-১ এবং টেলোফেজ-১ পর্যায়।

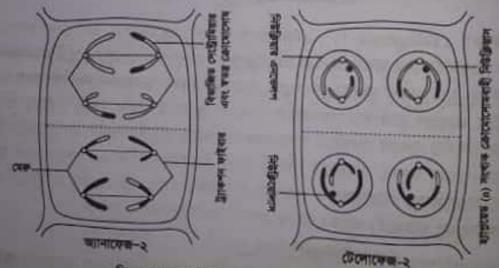
উলা মেকতে প্রতিটি বাইভেলেন্টের একটি অবিভক্ত পূর্ণাঙ্গ ক্রোমোসোম পৌছে বলে প্রতি মেকতে ক্রোমোসোম শুরা মাতৃকোষের ক্রোমোসোম সংখ্যার অর্ধেক হয়ে যায়। অর্থাৎ প্রতি মেকতে ক্রোমোসোম সংখ্যা দাঁড়ায় 2n এর

(৪) টেলোফেজ-১ (Telophase-1): টেলোফেজ-১ হলো মায়োসিস-১ এর শেষ পর্যায়। এ পর্যায়ে মেরুতে রবহিত ॥ সংখ্যক ক্রোমোসোমের চারদিকে আবার নিউক্লিয়ার এনভেলপ এবং অভ্যন্তরে নিউক্লিয়োলাসের আবির্ভাব ঘটে। নিউক্লিয়াসে জনযোজন ঘটে, ফলে ক্রোমোসোমগুলো ক্রমাপ্তরে সরু হতে থাকে। কাজেই রম্ভন ধারণ ক্রমতা হ্রাস পায় বলে ক্রমাপ্তরে দৃষ্টির আড়ালে চলে যায়। প্রজাতির বিভিন্নতা অনুসারে টেলোফেজ-১ পর্যায়ে সাইটোকাইনেসিস ঘটতে গায়ে পর্বাৎ কোষের বিষুবীয় অক্ষলে কোষপ্রেট সৃষ্টির মাধ্যমে কোষস্থ সাইটোপ্রাজম সমান দৃভাগে বিভক্ত হয়ে দৃটি অপত্য লেখে পরিণত হতে পারে। অথবা, কোষপ্রেট সৃষ্টি না হয়েই মায়োসিস-২ এর প্রোক্ষেজ পর্যায় গুরু হয়ে যেতে পারে। গানে উল্লেখ্য যে, মায়োসিসের টেলোফেজ-১ শেষে যে দৃটি অপত্য কোষ সৃষ্টি হয় তার প্রতিটিতে ॥ সংখ্যক ক্রোমোসোম


ভারতাইনেসিস (Interkinesis) বা সাইটোকাইনেসিস-১

মায়োসিস প্রক্রিয়ারের প্রথম ও বিতীয় বিভক্তির অন্তর্বতীকালীন বা মধ্যবর্তী সময়কে ইন্টারকাইনেসিস ব্দাঞ সময়ে প্রয়োজনীয় RNA, প্রোটিন ইত্যাদি সংশ্লেষিত হয়। DNA-র প্রতিরূপ বা অনুলিপন ঘটে না।

(৭) মারোসিস-১ (Meiosis-2) বা বিতীয় মায়োসিস বিভাক্তন


নায়োসিস-২ এর প্রধান তাৎপর্য হলো দৃটি কোষ হতে চারটি কোষের উৎপত্তি। <u>এটি মৃত্যুত মাইটোসিস বিজ্ঞান।</u>
নাইটোসিসের সময় DNA অণুর যে প্রতিরূপ সৃষ্টি হয় তা এখানে প্রয়োজন হয় না, কারণ প্রক্রিয়াটি প্রোক্তেজ-১ খাপের
নাগাই সম্পন্ন হয়ে যায়। মায়োসিস-২-কে প্রোক্তেজ-২, মেটাকেজ-২, অ্যানাক্তেজ-২ এবং টেলোকেজ-২ এ চারটি পর্যায়ে
সা করা হয়।

- (২) শ্রোফেজ-২ (Prophase-2) : জলবিয়োজনের ফলে ক্রোমোসোমগুলো পুনরায় সংকৃচিত হয়। ফলে খাটো ও দাটা হয়, রঞ্জক ধারণের ক্রমতা প্রাপ্ত হয় এবং দৃষ্টিগোচর হয়। প্রথম হতেই ক্রোমোসোমগুলোকে ক্রোমাটিছে বিশুক্ত শিখা দায়। এ পর্যায়ের শেখ দিকে নিউক্লিয়োলাস ও নিউক্লিয়ার এনছেলপ-এর বিশুপ্তি ঘটে বা অদৃশ্য হয়ে যায়।
- (২) মেটাফেজ-২ (Metaphase-2) : এ পর্যায়ে স্পিডল যম সৃষ্টি হয় এবং ক্রোমোসোমতলো বিদুরীয় অকালে এসে বিদ্যান করে এবং ট্রাকশন ফাইবারের সাথে যুক্ত হয়। তেনমোসোমতলো আরও খাটো ও মোটা হয়। শেষ পর্যায়ে স্থানিয়ার একেবারে বিশুক্ত হয়ে যায়।

চিত্র ২.১১ : মায়োসিস-২ এর প্রোফেজ-২ এবং মেটাফেজ-২ পর্যায়।

(৩) জ্বানাফেজ-২ (Anaphase-2) : সেন্ট্রোমিয়ারের পূর্ণ বিভক্তির ফলে প্রতি ক্রোমোসোমের দুটি ক্রোমাটির পৃথক হয়ে যায় এবং ট্রাকশন ফাইবারের সংকোচন ও কাওদেহের সম্প্রসারণের মাধ্যমে তেনমাটিডগুলো শ্বীর বিশরীত মেরুতে পৌছায় ৷ মেরুমুখী চলনকালে সেন্ট্রোমিয়ারের অবস্থান অনুযায়ী ক্রোমাটিডগুলোকে V, L, J আকৃতির দেখায়।

दिव २.১२ : बाद्यानित-३ वह ज्ञानात्कब-२ अवः स्टिमास्कब-२ गर्दाग्र।

(৪) উলোকেছ-২ (Telophase-2) : উলোকেজ-২ হলো মায়োসিস-২ প্রক্রিয়ার শেষ পর্যায়। মেরুতে ক্রো তথা ক্রোমোলোমগুলো ছির হয় এবং এদের চারদিকে নিউক্লিয়ার এনভেলপের আবির্ভাব ঘটে এবং সাটি ক্রোমে নিউক্লিয়োলাস সৃষ্টি হয়। কলে দুটি পুথক নিউক্লিয়াসের সৃষ্টি হয়। নিউক্লিয়াসে জলখোজন ঘটে, ক্লোমোসো সম্প্রসারিত ও সরু হয় এবং রঞ্জক ধারণ ক্ষমতার বিপুত্তি ঘটে, কলে আর দেখা যায় না।

সাইটোকাইনেসিস-২ : দুটি নিউক্লিয়াসের মাঝখানে কোষবিল্লি এবং উল্লিদ কোষে কোষবিল্লি ছাড়াও কোষ গঠন হয় এবং লাইটোপ্লাজন বিভক্ত হয় অর্থাৎ প্রত্যেকটি নিউক্লিয়াস তার চারপাশে সাইটোপ্লাজন, কোমৰি ক্ষেত্ৰাটার সহযোগে একটি সভন্ন কোনে পরিগত হয়। <u>যায়োসিসের মাধামে বিভাজন শেষে একটি মাত্</u>কোম হতে জোবের সৃষ্টি হয় এবং প্রতি কোনে কোনোসোম সংখ্যা মাতৃকোষের ক্রোমোসোম সংখ্যার অর্ধের হয়। সু

প্ৰদিনেত ককৰু (বা ভাংপৰ্য বা বাংয়াজনীয়তা)

বিষয়েতে মাজেসিসের ওক্সমু অপরিসীয়। কারণ, অধিকাংশ জীবের যৌন জনন প্রক্রিয়া এ পদ্ধতি অনুসা^{রণ} রার কলে ক্রশ সুক্রির মাধ্যমে নতুন জীব জনুলাত করে। তথে নিমুদ্ধেনির উত্তিদে স্পোর সুক্রির মাধ্যমে নতুন উত্তিসে হয়। মারোদিদের কলাতু নিচে উল্লেখ করা হলো।

ু। <mark>জননকোৰ সৃষ্টি :</mark> মায়োসিসের ফলে জননকোষ (গ্যামিট) উৎপন্ন হয়, তাই যৌন জননক্ষম জীবে মায়োসিস মা ৱালে বংশবৃদ্ধি অসম্ভব।

২। ক্রোমোসোম সংখ্য দ্রুবাখা : প্রজাতিতে বংশানুক্রমে ক্রোমোসোম সংখ্যা দ্রুব (constant) রাখা কেবলমাত্র এ ক্রিয়ার জনা সম্ভব হচ্ছে। হ্যাপ্লয়েড উত্তিদে জাইগোটে এবং ডিপ্লয়েড উদ্ভিদে জনন মাভূকোৰে মায়োসিস না ঘটগে নিজা-মাতা হতে সভান-সম্ভতিতে ক্রমাগতভাবে প্রুয়ানুক্রমে ক্রোমোসোম সংখ্যা বিহুণ, চার্তণ, আট্ডণ, খোল্ডণ ্রভাবে বৃদ্ধি পেয়ে জীবজগতে একটি আমৃল পরিবর্তন ঘটে যেতো এবং পরিণামে জীবজগৎ ধ্বংস হয়ে যেতো।

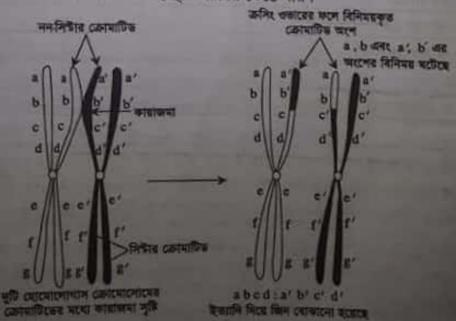
ত। ব্রজাতির স্কীয়তা ঠিক বাবা : ক্রোমোসোম সংখ্যা সঠিক রাখার মাধ্যমে বংশানুক্রমে প্রতিটি প্রজাতির স্কীয়তা

aভিত হতে ।

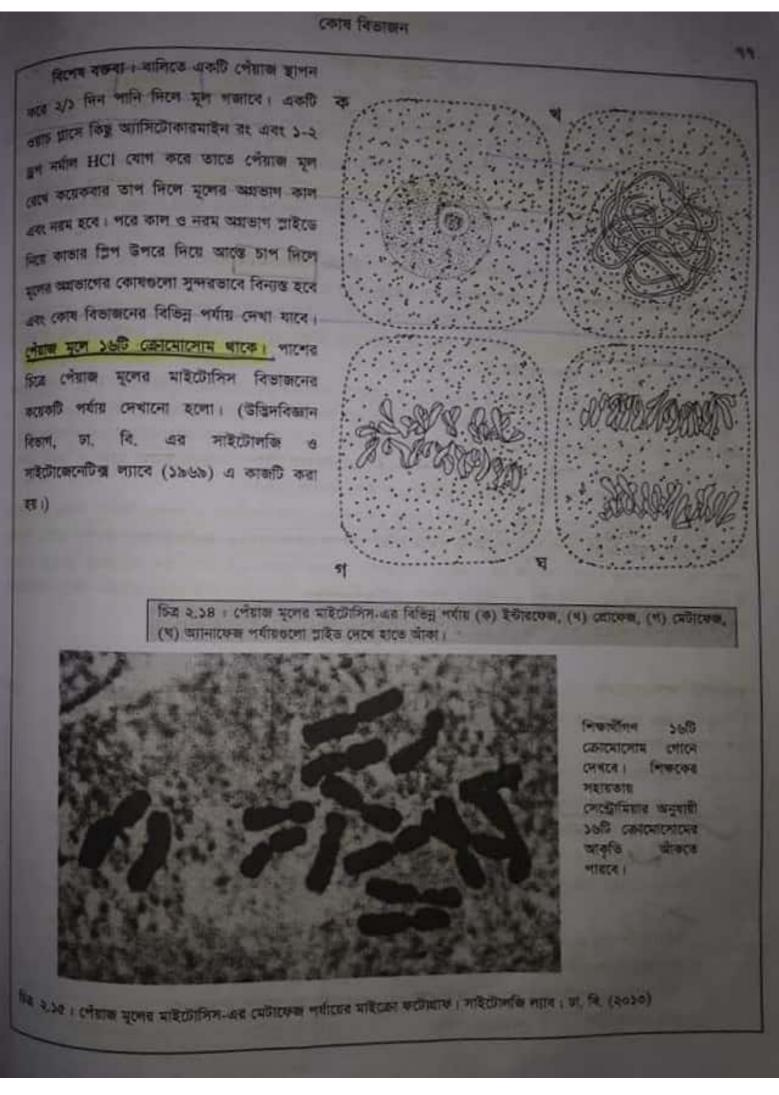
৪। বৈচিত্যের সৃষ্টি: যৌন প্রজননসম্পন্ন কোনো দুটি জীবই হ্বহ্ এক রকম হয় না। পৃথিবীর প্রায় সাত'শ কোটি ছানুহ একই প্রজাতিত্ত হয়েও একজন অন্যজন থেকে ভিন্নতর। মায়োসিস প্রক্রিয়ায় গ্যামিটে ক্রোমোসোমের স্বাধীন বিন্যাস এবং ক্রসিং ওভারের ফলে পৃথিবীতে এ বৈচিত্র্যের সৃষ্টি হয়েছে।

ে। অভিব্যক্তি : মায়োসিস আনে বৈচিত্রা, আরু বৈচিত্রা আনে অভিব্যক্তির ধারা ও প্রবাহ।

- গ্রামিট সৃষ্টি ও বংশবৃদ্ধি : ডিপ্লরেড জীবে মারোসিস প্রক্রিয়ার মাধামে সৃষ্টি হয় গ্রামিট। আর গ্রামিটের মিলনের श्रधासरे स्योन अकियास वरणवृक्ति घटि ।
 - ৭। জনুক্রম: যে সকল জীবের জীবনচক্রে জনুক্রম আছে সেখানে মায়োসিস প্রত্যক্ষ ভূমিকা পালন করে।


৮। মেভেলের সূত্র: মেভেলের সূত্রের ব্যাখ্যা দেয়া মায়োসিস ছাড়া সম্ভব নয়।

ক্রসিং ওভার (Crossing over)


মায়োসিস-১ এর প্যাকাইটিন উপ-পর্যায়ে এক জোড়া সমসংস্থ ক্রোমোসোমের দুটি নন-সিস্টার ক্রোমাটিভ-এর মধ্যে খালের বিনিমর হওয়াকে ক্রসিং ওভার বলে। ক্রসিং ওভারের ফলে ক্রোমোসোমের জিনসমূহের মূল বিন্যাসের পরিবর্তন ঘটে এবং লিছড জিনসমূহের মধ্যে নতুন সমস্বয় (combination) তৈরি হয়। প্রমাস হান্ট মর্গান (Thomas Hunt Morgan, 1866-1945) ১৯০৯ সালে ভূটা টুল্লিদে প্রথম ক্রসিং ওভার সম্পর্কে ধারণা দেন। ১৯৩৩ খ্রিস্টাব্দে তিনি নোবেশ পুরভার পান।

জিশং ওভারের কৌশল

রপমে দৃটি নন-সিস্টার ক্রোমাটিভ একই স্থান বরাবর ভেঙে যায়।

চিত্র ২ ১৩ : এক জ্যোড়া সমসংস্থ কোনোসোমের দৃটি নন-সিন্টার কোমাটিছের মধ্যে ক্রসিং গুড়ার।

সার-সংক্ষেপ

ক্রসিং ওভার : ক্রসিং ওভার হলো দুটি ক্রোমাটিডের মধ্যে অংশের বিনিময়। প্যাকাইটিন উপ-পর্যায়ে ভ ক্রোমোসোম লবালবিভাবে দুটি অংশে বিভক্ত হয়, এর প্রতিটিকে বলা হয় ক্রোমাটিভ। একই ক্রোমোসোহে। ক্রোমাটিভকে বলা হয় সিস্টার ক্রো<u>মাটিভ।</u> প্যাকাইটিন উপ-পর্যায়ে একজোড়া ক্রোমোসোম এক সাথে পাকে, ভাই জোড়া ক্রোমোসোমে ৪টি (দুই জোড়া) ক্রোমাটিড থাকে। একই জোড়ার দু'টি ভিন্ন ক্রোমোসোমের ক্রোমাটিডকে 😿 নন-সিস্টার জোমাটিড। জুসিং ওভার হয় দুটি নন-সিস্টার জোমাটিডের মধ্যে। ক্রসিং ওভারের মাধারে। ক্রোমোলোমের দৃটি ক্রোমাটিডের মধ্যে অংশের বিনিময় ঘটে। ক্রসিং ওভারের ফলেই মাতা-পিতার মিশ্র বৈশিয়া স্থ প্ৰকাশ পায়।

সিন্যাপসিস : মাঝোসিস কোষ বিভাজনের প্রোফেজ পর্যায়ের জাইগোটিন উপ-পর্যায়ে দুটি করে ক্রোফেল (এদেরকে বলা হয় হোমোলোগাস ক্রোমোসোম: এর একটি মাতা হতে আগত এবং অপরটি পিতা হতে আগত) কে করে অবস্থান নেয়। দুটি হোমোলোগাস ক্রোমোসোমের মাত্রে একপ জ্যোড় হওয়াকে বলা হয় সিন্যাপসিস। হোমোল জোড়াকে বলা হয় বাইভেলেন্ট। সিন্যাপসিস ঘটাই মায়োসিসের উল্লেখযোগ্য বৈশিয়্য এবং এখান থেকেই এসক বিভাজন তথা ক্রোমোসোম সংখ্যা অর্ধেক হওয়ার সূচনা হয়।

সাইটোকাইনেসিস : কোন বিভাজনের মুখ্য উদ্দেশ্য কোষকে বিভশুকরণ ও সংখ্যা বৃদ্ধিকরণ। কিন্তু নিউক্লিনে বিভাজনই এখানে মুখ্য ভূমিকা পালন করে থাকে। কোষের বড় অংশই সাইটোপ্লাজম, কাজেই কোষ বিভাজনের পে পর্যায়ে কোষের সাইটোপ্লাজমও বিভক্ত হয়ে পড়ে। একটি কোষের সাইটোপ্লাজম বিভক্ত হয়ে দুটি অপত্য কোষে অব্যুদ করাই সাইটোকাইনেসিস অথবা সাইটোপ্লাজমের বিঙজিই সাইটোকাইনেসিস। সাইটোপ্লাজম ভাগ না হলে কে নিউক্সিয়াসের বিভক্তির মাধ্যমে কোষ বিভাজন সমাত হবে না এবং ফলপ্রসূ হবে না।

কোষ চক্র : বিভাজনযোগ্য কোষ সব সময়ই বিভক্ত হতে থাকে। এই বিভক্তির কর্মকাজের বিভিন্ন পর্যায় চক্রাকাট চলতে থাকে। কোম বিভক্ত হওয়ার আগে একটু বিশ্রাম নােয়, তারপর কোবছ DNA অনুগিপন হয়, এরপর আবার বিশ্র নেয় এবং শেষ পর্যন্ত কোষ বিভাজন হয়। বিশ্রাম, অনুপিপন, আবার বিশ্রাম-এই কাজতলো চক্রাকারে চলতে বাবে বিভাজন ছাড়া বাকি তিনটিকে বলা হয় প্রস্তুতি পর্যায়। কোষ বিভাজন পর্যায় এবং বিভাজনের প্রস্তুতি পর্যায় পর্যায়কট চক্রোকারে চলতে থাকে এবং এ চক্রকেই বলা হয় কোষ চক্র।

ञनगोननी

व्छनिर्वाधनि वन्न (MCQ) :

2) casa regioneria Colle	नमाद्य द्यारमारमामकरन	বিশ্বীয় সঞ্চলে অবস্থান করে	7
(ক) হোফেন্স,	(শ) মেটাকেজ,	(গ) টেলোকেন্ড,	(ध) ज्यानाटकका

माइँक्विनिन प्रानाक्क-धन देनिहैं। इत्ना-

(i) অগত্য ক্রোমোসোম সৃষ্টি।

(ii) অপতা ক্রোমোসোমতলো মেকুমুখী চলতে তক করা।

(iii) নিউক্লিয়োলাল ও নিউক্লিয়ার এনভেলপ উপস্থিত।

নিচের কোনটি সঠিক।

(0) (0)

(#) i o iii

(M) ii @ iii

III & II 'I (A)

ছমাপকটি পড়ে ৩ ও ৪ নং কলের উত্তর দাও।

উল্লেজ্যাতের ক্সাসি উল্লি ভবি উৎপাদনে কোব বিভাজনের ভূমিকা ব্যাহে।

ত। উদীপ্তের উল্লিটি উৎপাদনে কোম বিভাজনের কোন পর্যায়ের ভূমিকা ভয়েছে।

(ই) বেন্টোটন

(খ) আইলোটিন

(१) विद्यापिन

(৬) প্যাকাইটিন

তৃতীয় অধ্যায় কোষ রসায়ন CELL CHEMISTRY

প্রধান শব্দসমূহ : কার্বোল্টর লিপিড, অ্যামিনো আর্চ প্রোটিন, সুকরোজ, এনছই

প্রতিটি জীবদেহ কতগুলা রাসায়নিক উপাদানে গঠিত। এসব রাসায়নিক উপাদানগুলো তোষনির্বর। কোষ্ট্র জৈব রাসায়নিক পদার্থ সম্বন্ধে তোমরা এ অধ্যায়ে জানতে পারবে।

এ অধ্যায় পাঠ পেষে শিকার্থীরা-

- জীবের রাসায়নিক উপানান সংলক্তে ব্যাখ্যা করতে পারবে।
- কার্বোয়াইছেট, প্রোটিন ও লিপিভের প্রেণিবিন্যাস বর্ণনা করতে পারবে।
- জীবদেহে কার্বোহাইক্রেট, প্রোটিন ও লিপিডের ভূমিকা বিশ্লেষণ করতে পারবে।
- ৪, উৎসেচক এর ক্রিনারে প্রকৃতি ব্যাখ্যা করতে পারবে।
- উৎসেচক এর শ্রেণিবিন্যাস বর্ণনা করতে পাববে।
- বিভিন্ন লৈবিক কার্যক্রমে উৎসেচকের ব্যবহার ব্যাখ্যা করতে পারবে।

बीद्दर्भाष्यद दात्राग्रनिक डेलानान (Biochemicals in Cell)

কোষ হলো জীবদেহের গঠন ও কাজের একক। কোমে জীবন ধারণের সব উপাদান তৈরি হয় এবং বিরাজ করে।
উদ্ভিদ্দেহও বিভিন্ন অক্ষৈব ও জৈব পদার্থের সমন্বয়ে গঠিত। উদ্ভিদের জীবন গঠন ও জীবন ধারণের জন্যে বহু রাস্ক্রের্মির পদার্থের প্রয়োজন হয়। এদের অনেকগুলোই দেহের অভান্তরে তথা কোখাভান্তরে সৃষ্টি হয়। বিজ্ঞানের যে শাখায় কোনে বিভিন্ন জৈব রাসায়নিক উপাদানগুলোর বর্ণনা, পঠন-পাঠন ও গবেষণা করা হয় তাকে জৈব রসায়ন (Biochemistry) কা হয়। সঞ্জীব উদ্ভিদ্দেহ বিশ্লেষণ করলে প্রধান যে উপাদান পাওয়া যায় তা হলো পানি। দেহের প্রায় শতকরা ৬০-৯০ জন হলো পানি। বাকি যে অংশ অবশিষ্ট থাকে তাকে কঠিন কম্ভ (solid matters) বলে (১৭টি মৌলিক পদার্থ, যেমন- C, H. O, N. P. K. Ca, Mg. Fe, Na, Cl, Mn, B, S, Mo, Cu ও Za মিলে সৃষ্টি করেছে অসংখ্য জৈব উপাদান। কৈর রাসায়নিক পদার্থকলোর মধ্যে কার্বোহাইত্রেট, গিপিড, আমিনো আসিড, প্রোটিন, নিউক্রিক আসিড, অন্যানা জৈব আসিড, বিভিন্ন এনজাইম ইত্যাদি প্রধান। অজৈব পদার্থের মধ্যে পানি অন্যতম। সাধারণত দৃক্ষজাত খাদ্য, মাহ, মান্ত, ডাল, শস্যাদানা, খাকসবজি, ফল্ম্ল ইত্যাদিতে প্রচুর পরিমাণে অজৈব লবণ বা খনিজ লবণ বিদ্যমান থাকে। নিড করেকটি জৈব পদার্থ স্বন্ধে সংক্রির বর্ণনা করা হলো। জীবদেহের প্রধান জৈব পদার্থ হলো কার্বোহাইত্রেট, গিপিড, প্রোটিন এবং নিউক্রিক আসিড।

কার্বোহাইড্রেট (Carbohydrates) বা শর্করা

জীবদেহের একটি তরুত্পূর্ণ গাঠনিক উপাদান ও সঞ্চয়ী উপাদান হলো কার্বোহাইট্রেট আমাদের খাদা তালিকর প্রধান উপাদানও কার্বোহাইট্রেট। কার্বোহাইট্রেট কী? সাধারণভাবে, কার্বন, হাইট্রেজেন ও অক্সিজেনের সমস্বয়ে গঠিত যৌগকে কার্বোহাইট্রেট বলে; যেখানে কার্বন, হাইট্রোজেন ও অক্সিজেনের অনুপাত ১২২:১) যেমন- গ্রুকোজ (C₆H₁₂O₆)। তবে অনেক যৌগ আছে যেখানে এমন অনুপাত না পাকলেও সেটা কার্বোহাইট্রেট; যেমন- সূক্রোজ (C₁₁H₁₂O₁₁)। আবার এমন অনুপাত থাকলেও সেটা কার্বোহাইট্রেট নাঃ যেমন- করম্যালভিহাইড (HCHO), আসিটিক আসিড (CH₃COOH) ইত্যাদি (কারণ এখানে অনুপাত ঠিক নেই)। আধুনিক ধারণা অনুসারে নাইট্রোজেন বা সালফার সমৃদ্ধ সামানা কিই যৌগকেও অন্যান্য বৈশিট্রের কারণে কার্বোহাইট্রেটের অন্তর্ভুক্ত করা হয়। তাই বর্তমান ধারণা অনুযায়ী, যে সকল আগেডিহাইড বা কিটোন জাতীয় যৌগে কতগুলা হাইট্রোক্রিল গ্রুপ থাকে অথবা যারা আর্দ্রবিশ্রেবিত হয়ে কত্তলো হাইট্রোক্রিল গ্রুপ থাকে কার্বোহাইট্রেট বলে।

ক্ষা অব কাৰ্বন' থেকে কাৰ্বোহাইছেট নামকরণ হয়েছে। এর অর্থ গাড়ার 'কার্বনের জনায়ন' অর্থাৎ এক অণু প্রতি এক অনু কার্বন (CH₂O) এই অনুপাতে গঠিত বিভিন্ন প্রকার যৌগ (Diverse compounds based on the রাইবালানির CH₂O are carbohydrates)। এই সাধারণ কর্মুলাটি কেবলমার মনোস্যাকারাইভ্স- এর কেরে প্রয়োগ্য ্রারিলান পুরোর, ইন্টোর ইত্যাদি)। একাধিক মনোস্যাকারাইড সহযোগে যে সন কার্বোহাইত্রেট পঠিত হয় ঐ সন ক্ষেত্রে ্রাজন মর্থনা প্রয়োজ্য নয়। যখন এক অণু যুকোজ ও এক অণু ফুটোজ গ্লাইকোসাইভিক বছনীর মাধ্যমে একত্র হয়ে লা ব্রুরোজ গঠন করে তখন এই সাধারণ কর্মুলা কার্যকারী হয় না, কারণ বছনী সৃষ্টিকালে এক অণু পানি (H₂O) রার, তাই সুকরোজ-এর ফর্মুলা দাঁড়ার C₁₂H₂₂O₁₁) অধিকাংশ উদ্ভিদদেহে তকনো ওজনের <mark>৫০-৮০</mark> ভাগ ি ্রেডেট থাকে। সারা বিশ্বে সকল জৈব বস্তুর মধ্যে কার্বোহাইছেট স্বচেয়ে বেশি পাওয়া যায় যা জীবদ্ধে গাঠনিক

নার (কার্বোহাইড্রেট) বৈশিষ্ট্য

্রাপ্রটি দানাদার (চিনি), তম্ভময় (সেলুলোজ) ও পাউভার জাতীয় পদার্থ।

াত্র খালে মিটি (সুক্রোজ) বা খাদহীন (সেপুলোজ)।

া তাপ প্রয়োগে অঙ্গারে পরিণত হয়।

্যাপনিতে অধিকাংশই দ্রবণীয় (সরল ও অলিগো কার্বোহাইড্রেট)

। এসিভের সাথে মিশে এস্টার গঠন করে।

া রো আলোক সক্রিয় ও আলোক সমাণ্তা প্রদর্শন করে।

ইয়েনহে কার্বোহাইড্রেট-এর কাজ: নিচে কার্বোহাইড্রেট-এর কাজ উল্লেখ করা হলো।

- ্যার্কীর দেহের শক্তির প্রধান উৎস হিসেবে কাজ করে এবং জারিত হয়ে শক্তি উৎপন্ন করে।
- ঃ উহিদের সাপোর্টিং টিস্যুর গাঠনিক উপাদান হিসেবে কাজ করে।
- e। ইরিদদেহ গঠনকারী পদার্থগুলোর কার্বন কাঠামো (carbon skeleton) ধদান করে।

্বাবিদেহে হাড়ের সন্ধিপ্তলে দ্বিকেন্ট হিসেবে ব্যবহৃত হয়।

।। ইরিদ দেহে সঞ্চয়ী পদার্থ হিসেবে বিরাজ করে।

- । আদাতিন চক্র, ক্রেবস্ চক্রের মতো গুরুত্বপূর্ণ চক্রে কার্বোহাইছেট সক্রিয়ভাবে অংশগ্রহণ করে।
- ।। বিভিন্ন প্রকার কো-এনজাইমের গাঠনিক অংশ হিলেবে থাকে। মেমন-ATP, NADP, FAD ইত্যাদি।

। সাটি আসিড ও অ্যামিনো আসিড বিপাকে সাহায্য করে।

গা নিউক্রিক অ্যাসিডের অন্যতম উপাদান রাইবোজ ও ডিঅক্সিরাইবোজ হলো পেন্টোজ জাতীয় শর্করা (কার্বোহাইডেট)

কার্বোহাইডেট-এর শ্রেণিবিভাগ

া খাদের ওপর ভিত্তি করে কার্বোহাইডেট দু' প্রকার, যথা- (১) শ্রাপার : এরা খাদে মিটি, দানাদার এবং পানিতে বিমন- গুকোজ, ফুরোজ, সুকরোজ ইত্যাদিঃ (২) নন-শাগার : এরা স্থাদে মিষ্ট নয়, অদানাদার এবং গানিতে

, বেন- স্টার্চ, সেলুলোজ, গ্রাইকোজেন ইত্যাদি। া বানায়নিক গঠন অণুর ভিত্তিতে কার্বোহাইড্রেটকে প্রধানত চার শ্রেণিতে ভাগ করা হয়। এওলো হলো- ১।

প্রিট্ড (Monosaccharides): ২। ভাইস্যাকারাইড (Disaccharides): ৩। অনিগোস্যাকারাইড Charides) এবং ৪। পলিস্যাকারাইড (Polysaccharides)। নিম্নে রাসায়নিক গঠন অনুযায়ী কার্বোহাইছেটের

শ বৰ্ণনা করা হলো।

১। মনোস্যাকারাইড (Monosaccharides) : গ্রিক mono = এক, saccharin = sugar বা চিনি) কার্বোহাইড্রেটকে হাইড্রোলাইসিস করলে আর কোনো সরল কার্বোহাইড্রেট একক পাওয়া যায় না সেত মনোস্যাকারাইড। মনোস্যাকারাইভ অন্যান্য জটিল কার্বোহাইড্রেট তৈরির গাঠনিক ইউনিট (building unit) হিসেত্রে করে। এর সাধারণ সংকেত হচ্ছে C₆H₁₀O₆। মনোস্যাকারাইডসমূহে একটি মুক্ত অ্যাপডিহাইড গ্রুপ (-CHO) বা কিচ ঞ্চপ (-CO-) এবং একাধিক হাইড্রোক্সিল (-OH) গ্রুপ থাকে। মনোস্যাকারাইডে কার্বনের সংখ্যা ৩-১০) কার্বনের স অনুযায়ী মনোস্যাকারাইডকে তিন কার্বনবিশিষ্ট ট্রায়োজ (triose), চার কার্বনবিশিষ্ট টেট্রোজ (tetrose), পাঁচ কার্বনহি পেন্টোঞ্জ (pentose), হয় কার্বনবিশিষ্ট হেক্সোজ (hexose), সাত কার্বনবিশিষ্ট হেপ্টোজ (Heptose) ইত্যাদি ভাগে ভাগ হ হয়। জীবদেহের অধিকাংশ মনোস্যাকারাইড অন্টিক্যাল আইসোমারের D সিরিজভুক্ত

মনোস্যাকারাইডহলোতে অ্যালভিহাইড গ্রুপ (–CHO) বা কিটোন গ্রুপ (>C=O) মুক্তভাবে থাকায় এরা বিচর (reducing) পদার্থ হিসেবে কাজ করে। কাজেই -CHO বা, >C=O ক্রুপ যুক্ত কার্বোহাইড্রেটকে ব্লিডিউসিং 🏧 (reducing sugar) বলা হয়। বেনেডিই দ্রবণের Cu(OH): (কিউপ্লিক হাইড্রোক্সাইড) উক্ত শুগারের −CHO বা, C =0 ঞ্জের সাথে বিক্রিয়া করে কিউপ্রাস অক্সাইড-এ (Cu₂O) পরিণত হয়, যা লাল বর্ণের অধঃক্ষেপ হিসেবে ভ্রম হা রিভিউসিং শ্রাগার পরীক্ষা করতে তাই এ পদক্ষেপ নেওয়া হয়। মনোস্যাকারাইডসমূহ সাধারণত মিষ্টি স্বাদবিশিষ্ট।

(triose, C3H6O3) : তিন কার্বনবিশিং মনোস্যাকারাইভকে বলা হয় ট্রায়োজ। <mark>গ্রিসার্যালভিহাইড</mark> এবং ভাইহাইছোক্সি আাসিটোন হলো দুটি সরল ট্রায়োজ। এরা দ্রবণীয় 0 C=0 মনোস্যাকারাইভ। উদ্ভিদে এরা ফসফেট এস্টার হিসেবে কাঞ্জ করে। ⊕H-C-OH গ্রিসার্যান্ডিহাইড-এর ১নং কার্বনে একটি কার্বনাইল অক্সিজেন যুক্ত হয়ে O CHOH একে আলভিহাইড ক্রপ নির্দেশ করে এবং ডাইহাইড্রোক্সি আসিটোনের ২নং তার্বনে কার্বনাইল অক্সিজেন যুক্ত হয়ে একে কিটোন গ্রুপ নির্দেশ গ্রিসার্যান্ডিহাইড ভাইহাইড্রোক্সি আসিটোন (আলডোক)

করে। কাজেই গ্রিসার্যান্ডিহাইড হলো একটি অ্যালডোজ (aldose) এবং ডাইহাইড্রোক্সি অ্যাসিটোন হলো একটি কিটের (ketose)। আগভিহাইড এবং কিটোন ফ্রপকে বলা হয় রিডিউসিং ক্রপ (reducing group) কারণ এরা সহজেই কভিশা যৌগের সাথে জারিত (oxidation) হয়ে যায় এবং ঐ যৌগ বিজারিত (reduction) হয়। তাই জ্ঞালডিহাইড ও কিটেন ফলযুক্ত চিনিকে বলা হয় রিডিউসিং শ্যুগার (reducing sugar) বা বিজারক শর্করা।

(ii) টেট্রাজ (tetrose, $C_4H_8O_4$) : চার কার্বনবিশিষ্ট মনোস্যাকারাইডকে বলা হয় টেট্রোজ। ইরিপ্রোজ)(erythrose) হলো একটি টেট্রোজ। উদ্ভিদে অধিকাংশ ক্ষেত্রে এটি ইরিপ্রোজ-4 ফসকেট হিসেবে

(iii) পেন্টোজ (pentose, $C_5H_{10}O_5$) : পাঁচ কার্বনবিশিষ্ট মনোস্যাকারাইডকে বলা হয় পেন্টোজ জাইলোজ, রাইবোজ, ডিঅক্সিরাইবোজ, রাইবুলোজ ইত্যাদি হলো পেন্টোজ শ্যুগার-এর উদাহরণ।

্ব ক্লেইবোজ (ribose) : এটি একটি অতি গুরুত্বপূর্ণ পাঁচ কার্বনবিশিষ্ট পেন্টোজ শাগার। ১৮৯১

সালে Emil Fisher এটি আবিস্কার করেন। এটি রাইবোনিউটি আসিভের (RNA) একটি গঠন একক। এর আণবিক CsH10Os I 070 একটি (-CHO) গ্ৰুপ থাকায় আলডোপেন্টোঞ্জ বলা হয়। রাইবোঞ্জ শর্করার গলনাত HCI এর সাথে বিক্রিয়া করে <u>ফারফিউরাল অ্যাসিড উৎপন্ন করে। RNA</u>-তে কেবলমাত্র রাইবোজ শাুগারই নিউক্লিয়েটাইড বা নি তৈরিতে অংশগ্রহণ করে। এটি নির্দিষ্ট পিউরিন বা পাইরিমিডিন বেল এই

O CH,OH

@ C=0

O CH,OH

C=0

H-C-OH

হরে একটি নিউক্লিয়োসাইড উৎপন্ন করে। নিউক্লিয়োসাইডের সাথে একটি অজৈব ফসভেট যুক্ত হয়ে। ্র বিশ্বতি পরিণত হয়। কার্বন বিজ্ঞারণের মাধ্যমে শর্করা তৈবি প্রক্রিয়াতেও বাইবোজ কৃষিকা লালন করে। ATP, NADI^M. FAD, Co-A ইত্যাদি জৈব অধুর সাথেও রাইবোজ যুক্ত থাকে। রাইবোজ কৃষিকা পালন করে। ATI

ভিত্তি (deoxyribose) : ভিত্তবিদ্ধাইবোল কতি ওক্তবুপূর্ব পেন্টোজ শাুগার। এর আণবিক ্রা (H₁₀O₄) এতে একটি আলডিহাইড (-CHO) ্রা বিজ্ঞান ক্রমতাসম্পন্ন) থাকায় একে ভিঅন্তি— ্রেশটোজও বলে। এটি রাইবোজ শ্রাগার-এর ু নাক্ষ্য তথু এই যে, এর ২নং কার্বনে –OH ক্রপের ক্রেল একটি হাইড্রোজেন (H) পরমাণু আছে। ক হলো অক্সিজেন ছাড়া (without oxygen)

D-2, ভিঅক্সিরাইরেজ (এইন ফ্রাক্সের) β-D-2, ভিতরিরেজক (জি ফ্রাক্সর)

্বিংল কার্বনে কোনো অক্সিজেন নেই। এর ১নং কার্বন অবস্থানে যে কোনো একটি পিউরিন বা পাইরিমিডিন বেস (A. (C) যুক্ত হলে একটি ভিঅক্সিনিউক্লিয়োসাইড সৃষ্টি হয়। এ অবস্থায় ৫নং কার্বন অবস্থানে অকৈব ফসফেট যুক্ত হলে ্র চিঅক্সিনিউক্লিয়োটাইড সৃষ্টি হয়। DNA-নিউক্লিক আসিডের নিউক্লিয়োটাইড গঠনের অংশ হিসেবে বিরাজ করে

ক্রিইবোজ শাগার। এই শাগার ছাড়া DNA গঠন সম্ভব নয়। ডিঅক্সিরাইবোজ বিজ্ঞারণ ক্ষমতাসম্পন্ন। जियमित्रहरियांच 5 मि0प न्त्रंकार विषय बाहरवाब C5H105 এটি হলো DNA এর অপরিহার উপাদান। এটি হলো RNA এর অপরিহার্য উপাদান। 1000 গাঢ় HCI আাসিতের সাথে বিক্রিয়া করে গাঢ় HCI আসিতের সাথে বিক্রিয়া করে হাসিত ফোরফিউরাল আসিড তৈরি করে। (लड्जिनिक आमिडे) द्वित द्वा 2

আগবিক গঠনে প্রতি অক্সিজেন পরমাণু খ্যাকে। আগবিক গঠনে ৫টি মক্সিজেন পরমাণু থাকে। া বরিকোন পরমাণু ২নং কার্বন পরমাণুর সাঙ্গে-OH ক্লপ থাকে না। হনং কার্বন পরমাণুর সাথে -OH গ্রন্থ থাকে। HAT নিউক্লিয়োটাইভ ও শর্করা তৈরিতে অংশগ্রহণ করে। ভিঅক্সিনিউক্লিয়োটাইভ গঠনে অংশগ্রহণ করে। । सन्त्रार्थ

(iv) হৈছোভ (hexose, $C_6H_{12}O_6$) । ও কার্বনবিশিষ্ট মনোস্যাকারাইডকে বলা হয় হেছোভ। গুকোভ, ফুটোভ, আৰু, গ্যালাক্টোজ হলো প্রধান প্রধান হেক্সোজ। এরা উদ্ভিদ কোষে মুক্ত অবস্থায় অথবা অনা জটিল কার্বোহাইট্রেট-এর

বিবিদেবে বিরাজ করে। সাধারণত গ্রুকোজ ও ফুরৌজকে মৃক্ত অবস্থায় সামান্য পরিমাণে পাওয়া যায়।

• ছকোজ (Glucose) : ত্রিকোজ বা ভেক্সটোজ প্রকটি উল্লেখযোগ্য মনোস্যাকারাইড। উদ্ভিদ কোষে দ্রবনীয় অবস্থায় ^{রে পা}প্সা যায়। এর আণবিক সংকৈত C₆H₁₂O₆। এটি একটি আলভোহেক্সেজ কারণ এতে আলভিহাইড গ্রুপ (– 🗝 আছে। এটি একটি রিভিউসিং শাগার।

বিলু প্রকার পাকা ফল ও মধুতে প্রচুর গ্রুকোজ থাকে। পাকা আপুরে গ্রুকোজের পরিমাণ শতকরা ১২-৩০ লাগ। ত সদত সময় মেইপ শাুগার (grape sugar) বা আঙ্গুরের শর্করা বলা হয়। উত্তিদে গ্রকোল কথনো সঞ্চিত পদর্শ

র বিয়ন্ত করে না। স্থসনের প্রাথমিক পদার্থ হলো গুকোল। নিশাদন ও প্রস্তুত প্রণালি : প্রকৃতিতে সবুজ উদ্ভিদ থেকে গ্রুকোজ উৎপাদিত হয়। আবার গ্রেহনাশারে

ক্রিমিন করে সুকরোজ ও স্টার্চ থেকে গ্রুকোজ ও ফুরোজ প্রস্তুত করা যায়। বিদ্যা: মুকেন্ডে সাদা দানাদার পদার্থ। স্বাদে মিটি এবং পানিতে সহজেই দ্রবণীয়। এটি আলক্ষেদে সামান্য

विक्रम देशाद्य अमुद्रशीय । শিক্ষে ব্যবহার : রোগীর পিথী হিসেবে গ্রুকোজ-এর বহুল বাবহার প্রচলিত। বিভিন্ন ফল প্রভেছরে গ্রুকোজ বাবহার শাদ্দিরাম প্রকোনেট হিসেবে ওর্ধ শিয়ে প্রকোজ বাবজত হয়। ডিটামিন সি' ভৈতি করার ক্ষাণ প্রকোজ विशास स्मार्थ থ। মুকোন্ত কার্বোহাইডেট বিপাকে চরুত্বপূর্ব ভূমিকা পালন করে।

গ্রহোজের কি স্টাক্চার এবং ৫/৪-০ গ্রকোজ: গ্রকোজের ১নং কার্বন এবং ৫নং কার্বন কাছাকাছি ক্রাধারণত কাছাকাছি আসে) এদের মধ্যে একটি অক্সিজেন সেতু তৈরি হয়। এর ফলে ১নং কার্বনে একটি -OH ক্রমান্ত কাছাকাছি আসে) এদের মধ্যে একটি অক্সিজেন সেতু তৈরি হয়। এর ফলে ১নং কার্বনে একটি -OH ক্রমান্ত করে। নতুন সৃষ্ট এই -OH ক্রমণ ১নং কার্বনের ৫ (আলফা) অথবা ৪ (বিটা) অবস্থানে থাকতে পারে। -OH ক্রমান্ত হয়। নতুন সৃষ্ট এই -OH ক্রমণ ১নং কার্বনের ৫ (আলফা) অথবা ৪ (বিটা) অবস্থানে থাকতে পারে। -OH ক্রমান্ত হয়। নতুন সৃষ্ট এই -OH ক্রমণ ১নং কার্বনের ৫ (আলফা) অথবা ৪ (বিটা) অবস্থানের পরিবর্তন ঘটে: বেমন- ৪-মুকোজ এবং ৪ অবস্থানের কারণে গ্রকোজের ভৌত, রাসায়নিক এবং জৈবিক বৈশিটোর পরিবর্তন ঘটে: ক্রমেন সম্প্রদী খানা করে সেকুলোজ, কিন্তু বিশ্বেতাক গঠন করে স্টার্চ ক্রমের গাঠনিক বস্তু এবং স্টার্চ ক্রমের সম্প্রদী খানা করে সেকুলোজ, কিন্তু বিশ্বেতাক গঠন করে স্টার্চ। সেকুলোজ ক্রেমের গাঠনিক বস্তু এবং স্টার্চ ক্রমের সম্প্রদী খানা

D এবং L গ্রুকোজ: গ্রুকোজের ৫নং কার্বনে সংযুক্ত (-OH) মূলক ভান দিকে থাকলে তাকে বলা হয় D-গ্রুকে
৫নং কার্বনে সংযুক্ত (-OH) মূলক বাম দিকে থাকলে তাকে বলা হয় L-গ্রুকোজ। D-গ্রুকোজ দক্ষিণাবর্ত (dextrorous)
হয় যাকে d বা '+' চিহ্ন দিয়ে বোঝানো হয়। L-গ্রুকোজ বামাবর্ত (laevorotatory) হয় যাকে l বা '-' চিহ্ন দি
বোঝানো হয়। দক্ষিণাবর্ত অর্থ হলো যৌগটি আলোক সক্রিয় এবং ঘূর্বনের দিক 'ভান'; বামাবর্ত অর্থ হলো যৌগটি অবং
সক্রিয় এবং ঘূর্বনের দিক 'বাম'। গ্রুকোজের d বা l ফর্ম optical rotation হাড়া অন্যান্য সকল ভৌত বৈশিটা এই
বকার। উদ্ভিদে সব সময়ই D-গ্রুকোজ থাকে।

মুটোজ (Fructose): গুকোজের নাায় ফুরোজও ৬ কার্বনবিশিষ্ট মনোস্যাকারাইড। এর আণবিক সংকেত C.H.এ (গুকোজের মতোই)। এটিও একটি রিডিউসিং শাগার। এর গঠনে রয়েছে একটি কিটো গ্রুপ (>C = 0)। এই কিটোছেরোজও বলা হয়। অধিকাংশ লাকা মিষ্টি ফল ও মধুতে ফুরোজ থাকে। তাই এর আরেক নাম ফুরের চিনি বার্ক শাগার (fruit sugar)। গুকোজ থেকে সহজেই ফুরোজ তৈরি হয় আবার সুকরোজ হাইড্রোলাইসিস-এর ফলেও ফুরা তৈরি হয়। এটি সুকরোজ এর একটি গঠন উপাদান। গুকোজের মতো ফুরোজও D এবং L দু'প্রকার আছে। প্রথম উপা ক্ষম থেকে শনাত করা হয়েছিল বলে নাম করা হয় ফুরোজ। ফুরোজ সমপরিমাণ গুকোজের সাথে যুক্ত হয়ে চিনি ক্রম করে। তাই একে বীট ও আখের কাও বলে প্রচুর পরিমাণে পাওয়া যায়।

বৈশিটা : এটি একটি সামা বর্ণের, মানাসার, কটিকাকার ও মিরি ছাতীয় পদার্থ। পানিতে সহক্ষেই প্রবর্ণীর। ব আমতাবাদ্ধর মুক্তীয়। মুকোল ও কুরোজের আগবিক সংক্ষেত এক হলেও এসের মধ্যে পার্থকা বিদ্যামান। ডাই এমে ক্ষাৰ প্ৰক্ৰিয়ায় ফুৰোঁজ তৈবি কৰে। সংক্ৰমণ প্ৰস্তুত কৰাৰ জন্য ফুৰোঁজ বাৰহাৰ কৰা হয়। সৰুজ ব্রিটার্ক্তর্যার প্রক্রিয়ার ক্ররোজ তৈরি করে। সুক্রোজকে অদ্রবিশ্রেষণ করলে সমপরিমাণে গ্রুকোজ ও ক্ররোজ

प्रकाम	मुखा ज
ত একটি আলভোহেক্সেক কারণ এতে আলভিহাইছ	১। এটি একটি কিটোবেল্লেফ কারণ একে কিটো এল
(CHO) STOE !	(<c 0)="" =="" td="" wice:<=""></c>
व्यक्ति भागाव वा व्यक्तिवय शक्या वना दस्	২। এবে ফুট শাগার বলা হয়।
লাকসংগ্রেমণ প্রক্রিনায় গ্রুকোঞ্জ উৎপদ্র হয়।	৩। সালোকসংগ্রেষণ প্রক্রিয়ার সরাসরি প্রক্রোক উৎপন্ন হয়।
ক্ষাৰ্যমক পদাৰ্থ হলো গ্ৰহোজ।	8। अमरम धुरकाक इरठ खुरडेक उर्भन्न इह ।
্রানর বিং স্ট্রাকচার <mark>পাইরানোজ হ</mark> রনের।	৫। এদের বিং স্ট্রাকচার ভিতরানোত ধরনের।

শ্বানের (Mannose) : ম্যানোজ একটি হেপ্সোজ। এর আণবিক সংকেত CoHigOo। এটি একটি আলভোজ শাসার।

্বালারৌজ (Galactose) : গ্যালারৌজ আর একটি হেক্সোজ। এর আণবিক সংকেত CaH₁₂O₆। এটিও একটি আলভোজ শাুগার।

কুলা কুরোজ, ম্যানোজ, গ্যালারোজ হলো গাঠনিক আইসোমার। এদের সবার গাঠনিক কর্মুগা CaHarOo কিছ ন ক্রমিক বিন্যাস ভিন্ন।

কি মিটতা : সুকরোজ-১০০: গ্রুকোজ-৭৪: ফুটোজ-১৭৩: মন্টোজ- ৩২: ল্যাটোজ- ১৬: সন্তারিন- ৫০০: TOTAL 2000 1

hi হেন্টোজ (heptose, C2H14O2): সাত কার্বনবিশিষ্ট মনোস্যাকারাইডকে বলা হয় হেন্টোজ। (সভোহেন্টোল া একটি হেন্টোজ শ্যুগার।

য় মাইস্যাকারাইড (Disaccharide) : দুটি মনোস্যাকারাইড একরে যুক্ত হয়ে যে কার্বোহাইড্রেট গঠনু করে তাকে লেবাইড বলে। সুকরোজ, সেলোবায়োজ, ম্যালটোজ, ল্যান্ডোজ ইত্যাদি হলো উল্লেখযোগ্য ভাইস্যাকারাইড। করাইভের সাধারণ সংকেত হলো C12H22O11

ইক্ষেল → পুকোল + ফুরোল মালটোল → পুকোল + পুকোল, লাকটোল → পুকোল + প্যালারোল ্রী মণু মনোস্যাকারাইডের মধ্যে ঘনীভবন বিক্রিয়ার ফলে দুটো –OH মূলক থেকে এক অণু পানি অপসারিত হলে

নিরাইড উৎপন্ন হয়। উৎপন্ন ভাইস্যাকারাইড অণুতে উভয় ব্যারাইভের C-O-C নতুন বন্ধন সৃষ্টি করে। সৃষ্ট বন্ধনকে (-O-) লাইভিক বন্ধনী (Glycosidic bond) বলে।

ी বুদরোজ (Sucrose) : উত্তিদের প্রধান ডাইস্যাকারাইড হলো । । এক অণু গ্লুকোজ এবং এক অণু ফুরোজ এক সাথে সংযুক্ত হয়ে পর এক অণু সুকরোজ। এতে এক অণু পানি সৃষ্টি হয়ে বেরিয়ে ছি ছলো একটি সাধারণ সুকরোজ। ইকু এবং বীট থেকে চিনি া। মুকোল এবং ফুরোজ উভয়ই রিভিউসিং শাগার, কিন্ত বিভিউসিং শাুগার নয়। কারণ সুকরোজ তৈরির সময় দুটি ারাইভের মুক্ত অ্যালডিহাইড ও কিটোন ক্রপের অন্তিত্ব নষ্ট হয়ে বিজ্ঞাবন ক্ষতা পুত হয়। সেজন্য এটিকে বিজারণ ক্ষমতাহীন

बाल्यकि जनकार्यम

িচিন বলে। সুকরোজ তৈরির সময় দুটি মনোস্যাকারাইভ তথা α-D-যুকোজের ১নং কার্বনের −OH এবং ৪-D-যুক্তার ২নং কার্বনের −OH থেকে এক অণু লানি অপসারিত হয়। ফলে কার্বন দুটির মধ্যে একটি গ্লাইকোসাইভিক কেই অক্সিজেন ব্রিজ (−O−) গঠিত হয়ে সুকরোজ সৃষ্টি হয়। সরুজ উল্লিদের পাতায় প্রস্তুত কার্বোহাইভেট সুকরোজ চিচ্ছা বিভিন্ন অলে পরিবাহিত হয়। মধুর প্রধান কাঁচামাল হলে সুকরোজ এর আণবিক সংকেত C₁₂H₂₂O₁।।

উৎপাদন প্রদালি: ইফুর রসে প্রায় ১৫% সুকরোজ, কিছু পরিমাণ জৈব আসিড, প্রোটিন ও ফসফেট জাতার করে বিদামান। সংগৃহীত রসকে পরিশ্রুত করার পর তার সাথে কলিচুন মিশানো হয়। তার ফলে দ্রবণ থেকে আসিত প্রশূর্ট হয়, ফসফেট অধ্যক্ষিপ্ত হয় এবং চিনির আর্দ্র-বিশ্লেষণ বন্ধ হয়। অতঃপর রসকে উত্তপ্ত করলে বেশির ভাগ ভেলাল কেন। অধ্যক্ষেপ আকারে আলাদা হয়ে যায়। পরিশ্রাবণ পদ্ধতিতে প্রাপ্ত পরিষ্কার রসকে নিমুচাপে ঘনীতৃত করলে সুকরোষ ক্রফটিক (চিনি) পাওয়া যায়।

বৈশিষ্ট্য বা ধর্ম : সুকরোজ সাদা দানাদার, মিটি খানযুক্ত কঠিন প্রদার্থ। খাদে মুকোজ থেকে বিশুপ মিটি, পাছির দ্রবনীয়, কিন্তু বিতত্ব আলকোলে ও ইথারে অদুবনীয়। এর গলনাথ ১৮৮ সেলসিয়াস। লঘু আসিডে সুকরোজের জন্ত্র প্রবন্ধ অদ্রবিশ্লেষিত হয়ে সমপ্রিমাণ গ্রকোজ ও ফুরোজ অপু গঠন করে।

কাজ : শ্বসনের উপাদান হিসেবে ব্যবহৃত হয়ে শক্তি উৎপন্ন করে। কোখের বিভিন্ন উপাদান, বিশেষ কর পশিস্যাকারাইড সৃষ্টিতে ব্যবহৃত হয়।

ব্যবহার : বিভিন্ন মিটান তৈরিতে ব্যবহার হয়। ক্রুফেকশনারিতে ব্যবহার হয়। পরীক্ষাগারে অক্রানিক আদি প্রতির জনা বাবহুত হয়। স্কুল সাবান তৈরিতে ব্যবহৃত হয়।

(ii) সেলোবায়োজ (Cellobiose): দুই অবু B-D গ্রুকোজ B-1, 4 লিংকেজ দিয়ে সংযুক্ত হয়ে এক অবু সেলোবায়েজ তৈরি করে। কাজেই সেলোবায়োজ একটি ডাইস্যাকারাইত। সাধারণত সেলুলোজ বা লিগনিন-এর আংশিক ভাঙ্গনের করে সেলোবায়োজ তৈরি হয়। দুটি সদৃশ গ্রুকোজ অবু যুক্ত হয়ে এক অবু সেলোবায়োজ গঠিত হয়। এর আব্দিক সুক্তের বিশ্বরিক্তি সিং শ্রুপার) কোয় স্ক্রিক স্ক্রিকার্ত বিভারণক্ষম চিনি (রিভিউসিং শ্রুপার) কোয় স

প্রাচীরের একটি গাঠনিক উপাদান সেলোবায়োজ। সেলুলোজকে আংশিকভাবে
আর্দ্রবিরেশণ করলে যে কুদ্র কুদ্র একক (ইউনিট) গঠিত হয় তাদের মধ্যে
অন্যতম যৌগ হলো সেলোবায়োজ। ইমালসিন এনভাইম ও আসিডের প্রভাবে সেলোবায়োজ ভেঙ্গে দুই অবু গ্লুকোজে পরিণত হয়। আবার ব্রোমিন পানি নিয়ে
সেলোবায়োজকে জারিত করলে সেলোবায়োনিক আসিভ তৈরি হয়।

কাজ i কোষ প্রাচীরের একর্ছি গাঠনিক উপাদান হিসেবে কাজ করে।

(iii) ম্যালটোজ (Maltose) : ম্যালটোজ আর একটি ডাইস্যাকারাইড। দুই
অপু α-D গ্রুকোজ α-1, 4 লিংকেজ নিরে সংযুক্ত হয়ে এক অপু ম্যালাটোজ গঠন করে। সাধারণত স্টার্চ-এর আর্থিক
ভাঙ্গনের ফলে ম্যালটোজ তৈরি হয়। এটি মার্থিক বিভিউসিং শ্যুগার। এর আণ্বিক সংকেত C₁₂H₂₂O₁₁।

ত। অলিগোস্যাকারাইড (Oligosaccharides): যে সব কার্বোহাইক্রেটকে হাইক্রোলাইসিস করলে ও থেকে ১০টি মনোস্যাকারাইড অনু পাওয়া যার তাদেরকে অলিগোস্যাকারাইড বলে (গ্রিক oligo = few বা স্বন্ধ, saccharin = sugar বা চিনি)। সাধারণত ও থেকে ১০টি মনোস্যাকারাইড এক একটি অলিগোস্যাকারাইড গঠন করে। একাধিক মনোস্যাকারাইড তাদের গ্রাইকোসাইডিক লিংকেজ (glycosidic linkage) দিয়ে পরস্পর সংযুক্ত থাকে। একটি মনোস্যাকারাইডের হাইক্রেজিল গ্রুপের সাথে অপর একটি মনোস্যাকারাইডের হাইক্রেজিল গ্রুপের সংযুক্তিকে গ্রাইকোসাইডিক লিংকেজ বলে।

OH II OH

কুড়ালোকে তাদের মধ্যে বিদামান মনোস্যাকারাইভের সংখ্যা নিয়ে ধোলিবিভাগ করা হয়; যেমন- তিনটি ্র বাকলে ট্রাইস্যাকারাইড বলে, চারটি থাকলে টেট্রাস্যাকারাইড বলে ইত্যাদি।

রাইড : যে সকল অলিগোস্যাকারাইডকে অপ্রবিশ্রেষণ করলে তিন অণু মনোস্যাকারাইভ পাওয়া যায়। (C₁₈H₃₂O₁₆) একে আর্দ্রবিশ্লেষণ করলে পাওয়া যাবে এক অণু মুকোল, এক অণু ফুরোজ এবং এক

 $C_{18}H_{32}O_{16} + 2H_{2}O \xrightarrow{H^{\bullet}} C_{6}H_{12}O_{6} + C_{6}H_{12}O_{6}$ গ্ৰকোঞ

্রানাকারাইড : যে সকল অলিগোস্যকারাইডকে অর্দ্রবিশ্রেখণ করলে চার অণু মনোস্যাকারাইড পাওয়া যায়। ্রিচর এটি ১ অণু গ্রুকোজ, ১ অণু ফুটোজ ও ২ অণু গ্যাপাটোজ নিয়ে গঠিত)।

্রিক (Polysaccharides) : অনেকতলো মনোস্যাকারাইড একরে প্রিমারস্ক (polymerised) হয়ে নিস্যাকারাইড (ফ্রিক Poly = many)। অন্যভাবে বলা যায়, যে কার্বোহাইভেটকে আদ্বিশ্লেষণ করলে দেশের অধিক) মনোস্যাকারাইড অণু পাওয়া যায় তাকে পলিস্যাকারাইড বলে। এরা উচ্চ আগবিক ওজন weight) বিশিষ্ট জৈব রাসায়নিক পদার্থ। পলিস্যাকারাইড সাধারণত পানিতে অনুবর্ণীয় এবং এরা মিষ্টি সেদুলোজ, গ্লাইকোজেন ইত্যাদি হলো তরুত্পূর্ণ পলিস্যাকারাইড। সেদুলোজ শ্রকৃতিতে সবচেয়ে বেশি পাওয়া কু পরিমাণ খিতীয় পর্যায়ে। প্রকৃতিতে কাজের চিত্তিতে পলিস্যাকারাইড দু'প্রকার :

কানিক পশিস্যাকারাইড : এরা জীবদেহে কাঠামো নির্মাণ বা গঠনের সাথে জড়িত থাকে। যেমন-সেলুলোজ, ক্রার, পেকটিন প্রভৃতি উদ্ভিদের কোষপ্রাচীর গঠন করে।

্রন্থী পশিস্যাকারাইড : এরা জীবদেহে সঞ্চিত বস্তু হিসেবে থাকে, যা পরে শক্তির উৎস হিসেবে ব্যয় হয়ে ক্ষেন্টার্চ, গ্লাইকোজেন প্রভৃতি শ্বসন কার্যে ব্যবহৃত হয়। লনে করেকটি পরিচিত পলিস্যাকারাইড-এর বর্ণনা দেয়া হলো।

$$(C_6H_{10}O_5)_n+H_2O \xrightarrow{\text{sug}[4]{\mathfrak A}{\mathfrak A}{\mathfrak A}{\mathfrak A}{\mathfrak A}} C_6H_{12}O_6$$

স্টার্চ পানি যুকোঞ্জ (অনেক জগু)

■ ফার্চ (Starch) : আমাইলোজ এবং আমাইলোপেকটিন নামক স্মানারাইডের সমস্বয়ে গঠিত পদার্থই হলো স্টার্চ। উভিদে স্টার্চ ^{9%}) সঞ্জিত পদার্থক্রপে বিরাজ করে। ফটোসিনথেসিস প্রক্রিয়ায় সৃষ্ট বিবাশেই পরিবর্তিত হয়ে স্টার্চ-এ পরিণত হয়। স্টার্চ সাধারণত

CH,OH স্মামাইলোজ-এর গঠন CH-OH

नामाद्रामालकविन-वाट गर्डन

धनीखंड माना हिस्स्रव (starch grain) डेव्रिम कार्स विश्वास करव এবং এদের দানার আকার ও আকৃতি বিভিন্ন উভিনে বিভিনু রকম। বীজ, ফল, কন্দ (tuber) প্রভৃতি স্থায়ী অঙ্গে স্টার্চ জমা থাকে। ধান, গম, আলু স্টার্চের প্রধান উৎস। সালোকসংগ্রেষণে তৈরি অধিকাংশ গ্রুকোঞ্জই স্টার্চে রূপান্তরিত হয়। বিভিন্ন স্টার্চের আকার-আকৃতিতে বিরাট পার্থকা দেখা যার। আয়োভিন দ্রবণে স্টার্চ গাঢ় নীলবর্ণ ধারণ করে। স্টার্চ হাইডোলাইসিসের কলে গ্রকোজ-এ পরিণত হয়।

অসংখা যুকোজ অবু নিয়ে ন্টার্চ গঠিত। আমাইলোজের যুকোজ অবৃতলো পরশ্পর কার্বনের । এ হানে স্থেক চ সাধারণত 200 থেকে 1000 যুকোজ অবু নিছে একটি আমাইলোজ তৈরি হয়। এর অবু-শৃত্যপ জ্যা আমাইলোপেকটিন সাধারণত 2000 থেকে 2,000,000 যুকোজ অবুবিশিট্ট হয়। আমাইলোপেকটিনের যুকোজ অবুকার কার্বনের । এ বছন ছাড়াও ৫০-1-৫ বছনে যুক্ত থাকে। এর অবু-শৃত্যশ শাবাধিত। আলু, ধান, গম, তুমী, যর ইত্যা কার্বনের । এ বছন ছাড়াও ৫০-1-৫ বছনে যুক্ত থাকে। এর অবু-শৃত্যশ শাবাধিত। আলু, ধান, গম, তুমী, যর ইত্যা কার্বনের । এই ভাগ আমাইলোজ এবং বিচ ভাগ আমাইলোপেকটিন থাকে। আমাইলোজ থাকায় স্টার্কের কার্যোজিন সামাটিন যোগ করলে কার্বর্গ (কাল্-নীল) ধারণ করে। কিন্তু আমাইলোপেকটিনের সাথে বিক্রিয়া করে আয়োজিন স্ব বা পার্পল বং প্রদান করে। স্টার্কের আগবিক সংকেত (C_cH₁₀O₁), স্টার্কের দীর্ঘ অবু বিভিন্ন আকৃতি ও আয়তনের ছা কবিকা গঠন করে থাকে। স্টার্চ অবুবীজ্গিক এবং প্রজাতি বিশেষে কণিকার গঠনে পার্থক্য থাকে। যেমন-শোদ অবুস্টার্চ কণিকা বৃহত্তম আর চালের স্টার্চ কণিকা ক্ষুত্রম। স্থিপিকটিন মিন্ত স্থিমিত সিম্বর্থ স্থিমিতী মিন্ত স্থিমিতী মিন্ত স্থিমিতী স্থিমিতী স্টার্চের ধর্ম (Properties of starch)

টার্চ গছরীন, কবিইন, খাদহীন এবং সাদা পাউতার জাতীয় জৈব-রাসায়নিক পদার্থ।

(ii) সাধারণ ভালমাত্রায় <u>স্টার্চ পানি,</u> ইপার ও <u>আলেকোহলে অলবণীয়।</u>

(iii) আয়োভিন প্রবণে স্টার্চ দীল বর্ণ ধারণ করে।

(iv) উচ্চ তাপমাত্রায় স্টার্চ তেখে ডেক্সট্রিন ও ম্যালটোজ হয়ে গ্রুকোজ-এ পরিণত হতে পারে।

(v) ফেলিং দ্রবদ স্টার্চ কর্তৃক বিজারিত হয় না।

কাজ: উভিদলেহে স্টার্চ প্রধানত সজিত খাদ্য হিসেবে বিরাজ করে।

পরীকা: আয়োভিন দ্রবণে স্টার্চ নীল বর্ণ ধারণ করে। কারণ স্টার্চের আমাইলোজ উপাদান আয়োভিন অপুকে আরু করে জটিল যৌগ গঠন করে। ফলে আয়োভিন পরমাপুতলোর ইলেকট্রন অরবিটালের পরিবর্তন ঘটে এবং সূর্যালোক শোষ করে নীল বর্ণ সৃষ্টি করে।

আর্রিরেমণ: লয় আসিভ ও এনজাইম যারা স্টার্চকে অর্দ্রবিরেমিত করলে প্রথমে ভেরাট্রন, পরে মাালটোর হ পেষে D-গ্রকোর উৎপন্ন হয়। যেমন- স্টার্চ $\frac{H_iO}{}$ ভেরাট্রন $\frac{H_iO}{}$ স্বালটোর $\frac{H_iO}{}$ D-গ্রকোর্জ

স্টার্চের ব্যবহার (Uses of starch) : স্টার্চ প্রধানত খাদ্য হিসেবে গৃহীত হয়। অনেক শিল্প প্রতিষ্ঠানে যেমন-গ্রুকেছ, আলকোহল ও চোলাই মদ তৈরিতে স্টার্চ ব্যবহৃত হয়।। স্টার্চ গ্রুকোজে পরিণত হয়ে জীবদেহে শক্তি ও কার্বন অবু সরবার করে ঘাকে। কাগজ ও আঠা প্রস্তুত করডেও স্টার্চ ব্যবহৃত হয়।

■ সেলুলোজ (Cellulose) : সেলুলোজ উদ্ধিদের একটি প্রধান গাঠনিক প্রচার্থ টিডিদের কোষ প্রাচীর সেলুলোই

দিয়ে গঠিত। অসংখ্য B-D গুকোজ অণু পরস্পর

B-1-4 কার্বন বছনে আবদ্ধ হয়ে সেলুলোজ তৈরি

করে। উদ্ভিনের অবকাঠামো নির্মাণে সেলুলোজ

তক্রতপূর্ণ ভূমিকা পালন করে। উদ্ভিদনেহে

থেহেডু কোলো কছাল নেই, সেহেতু উদ্ভিদের HO

ভার বহনের দায়িত্ব পালন করে সেলুলোজ।

তুলায় সেলুলোজের পরিমাণ ৯৪%, লিনেনে

১০% এবং কাঠে ৬০%। তুপপভায় ৩০-৪০%

আর জৈব বস্তু সমৃদ্ধ মাটিতে ৪০-৭০% থাকে। সেলুগোজ মন H₂SO₄ বা HCl বা NaOH খারা হাইছোলাইসিম বর্বে পুরেলের পরিণত করা যায়। মানুহের পরিপাক নালীর বিভিন্ন অংশে (মুখগরের পাতত্বলী ও অস্ত্র) সেলুলেজ এনজাইম ভ খাকায় সেলুলোজ পদার্থ ইজম হয় নাঃ তবে সেলুলোজ পরু-ছাগলে পুষ্টি হিসেবে কাজ করতে পাবে। বস্তু ও আসবাবশন শিক্ষের প্রধান উপাদান সেলুলোজ, আর তাই মানব সভ্যতায় এব দান অপরিসীম। পৃথিবীতে সরতেয়ে রেশি মনিশাব বিশ্বত

সেবুলোজের ধর্ম : সেবুলোজ বাদহীন, গছহীন, সাদা ও কঠিন জৈব-রাসায়নিক পদার্থ। এটি পানিতে জ্ঞাবনীয়, অবিলারত পদার্থ, আপবিক তর দুই লক্ষ থেকে কয়েক লক। এটি[মিটি বিব্র্তিত এবং বিজ্ঞারণ কমতাহীন। আয়োভিন দ্রবর্গ হয়েলে কোনো রং দেয় না। এটি ফাইবার সদশ ও শক।

সেপুলোজের কাজ : উত্তিদের গাঠনিক উপাদান হিসেবে কাজ করে। উত্তিদকে দৃঢ়তা ও সুরক্ষা প্রদান করে এবং ভার

श्यम करता।

সেপুলোজের ব্যবহার : নিমে সেপুলোজের ব্যবহার সম্পর্কে আলোচনা করা হলো।

(i) সেপুলোজ দিয়ে তম্ব তৈরি হয়, যা বস্ত্রশিল্পের প্রধান কাঁচামাল। একা নামি তেন্দ্রের প্রধান কাঁচামাল।

(ii) এটি <u>দাইটোট বিক্ষোরক হিসেবে বাবছত হয়।</u>

- (iii) এটি <u>আসিটেট ফটোপ্লাফিক</u> ফিলো ব্যবহার করা হয়। ফিল্টার পেপার, টিস্যু পেপার, ফটোগ্লাফিক ফিলা, পাাকেজিং এর দ্রবাসমূহ সেলুলোজ দিয়ে তৈরি হয়।
- (iv) নির্মাণ সামগ্রী ও আসবাবপত্র তৈরিতে সেলুলোজ প্রধান উপাদান হিসেবে যান্ত্রিক সাহায্য প্রদান করে থাকে।
- (v) কঠেখেকো কাঁটপতঙ্গের পৌত্তিকনালীতে বসবাসকারী এক ধরনের পরজীবী সেলুলেজ নামক উৎসেচক নিঃস্ত করে কাঠ হজমে সাহায্য করে।
- (vi) থিন লেয়ার ফ্রোমাট্রাফ্রাফিতে স্টেশনারি ফেল হিসেবে সেলুলোজ ব্যবহৃত হয়।
- (vii) ছ্বাক ও ব্যারেরিয়া থেকে উৎপাদিত সেলুলোজ বর্তমানে বায়োটেকনোলজিতে ব্যবহৃত হচ্ছে।
- (viii) গবাদি পতর প্রধান খাদ্য হিসেবে ব্যবহৃত হয়।

পার্বক্যের বিষয়	अंगर्ड	সেবুলোজ	
১। গ্লাইকোনাইভিক বছন	স্টার্চ অপুতে প্রার্ <u>ছ 1,200 খেকে 6,000 টু</u> কোজ একক α-গ্লাইকোসাইডিক বন্ধন দ্বারা যুক্ত থাকে।	সেলুলোজে প্রায় 300 থেকে 3,000 ছকোজ একক β-গ্লাইকোসাইভিক বছন ছারা মুক্ত থাকে।	
২। শশিমারের গঠন	স্টাৰ্চ অ <u>পু শাৰাখিত গু</u> কোজ পলিমার।	সেলুলোজ অণু <mark>অশাহাছিত অ</mark> র্থাৎ সরল শিকদ পলিমার।	
৩। সঞ্চিত খাদ্য	উদ্ভিদদেহে এটি পঞ্জিত খাদ্য হিসেবে থাকে।	উত্তিদদেহে এটি গাঠনিক উপাদান হিসেবে থাকে।	
8। वर्ग	আয়োডিনের সাথে বিক্রিয়া করে <mark>নাদ এর্ণ</mark> প্রদান করে।	আয়োভিনের সাথে বিক্রিয়া করে কোনো বর্ণ প্রদান করে না	
दे। द्वाम	এটি গক্ত-ছাগল ও মানুধ হজম করতে পারে।	এটি গ্ৰুছাগল হজম করতে পারলেও মানুষ ভা পারে না।	

■ গ্লাইকোজেন (Glycogen) : গ্লাইকোজেন হলো একটি পুটিজাত পলিস্যাকারাইড। এটি প্রাণিদেহের প্রধান সঞ্চিত শাদ্য উপাদান হলেও সায়ানোব্যাকটেরিয়া (নীলাভ সবুজ শৈবাল) ও কতিপয় ছত্রাকের (ঈস্ট) সঞ্চিত খাদ্য হিসেবে বিরাজ করে। গ্লাইকোজেনের মূল গাঠনিক একক হলো (X-D-গ্রুকোজ। আমাইলোপ্রেক্টানের মতো এর অণু শৃতলেও শাখাবিত। (৫-1.6) লিংকেজের মাধ্যমে শাখার সৃষ্টি হয়। প্রতি শাখায় সাধারণত ২০ থেকে ২০টি গ্রুকোজ অণু থাকে। হাইছ্রোলাইসিস শেষে গ্লাইকোজেন হতে কেবল α-D-গ্রুকোজ অণু পাওয়া যায়। এর আণবিক সংকেত (C₆H₁₀O₅), গ্রাণিদেহের যক্ত (শিতার) ও মাংস পেশিতে বেশি করে গ্লাইকোজেন জমা থাকে যা প্রয়োজনে গ্লুকোজে পরিণত হয়ে কার্বন ও শক্তি সরবরাহ বরে। এজন্য গ্রাইকোজেনকে প্রাণিত স্টার্চ বলে।

ग्राहेरकारक्षम अपूर धकारन (α-1, 4 निराक्क)। किंग्ब α-1, 6 निराक्क नावा निर्वासा इस नि।

प्राव्दकारवात्मः वर्ष (Properties of glycogen)

নে বেলার বন (Properties of glycogen)
(i) গ্লাইকোজেন পানিতে আর্থেনত দ্রবণীয়। (ii) এটি সাদা পাউভার জাতীয় জৈব-রাসায়নিক পদার্থ। (ii) হত দ্রবৰ প্রয়োগে লালতে বেগুনি বর্ণ দারণ করে। (iv) ঠাতা পানিতে এটি কলয়েড সাসপেনশন তৈরি করে। (v) হাশুর এর দাল বর্ণ চলে যায়। (vi) ঠাতা অবস্থায় কালো বর্ণ ফিরে আসে। আংশিক আর্দ্র-বিশ্লেষিত হয়ে ম্যালটোল, আং আর্দ্র-বিশ্লেষিত হয়ে αD-গ্রকোজ অণু প্রদান করে। (vii) গ্লাইকোজেন গ্লাইকোলাইসিস প্রক্রিয়ায় আর্দ্র-বিশ্লেষ্টি গ্রকোজ অণু সৃষ্টি করে।

ग्रीहिंदनात्करनात्र रावशेष (Uses of glycogen)

(i) পেশিতে সঞ্জিত <u>গ্রাইকোজেন পেশির কাজে শক্তি যোগায়।</u> (ii) যকৃতে গ্রাইকোজেন ভেঙ্গে গুকোজে প্র করে। (iii) এরা রক্তে গ্রুকোজের পরিমাণ নিয়ন্ত্রণ করে।

কাজ : সঞ্চিত খাদা হিসেবে কাজ করে।

কাজ: প্রকোজ, সুকরোজ এবং স্টার্চ এর গঠন ও কাজ শিক্ষার্থীদের একেক দল এক একটি উপস্থাপন করবে।

(গ) বিজারণ ক্ষমতার ভিত্তিতে : বিজারণ ক্ষমতার ভিত্তিতে কার্বোহাইড্রেট দু'প্রকার । যথা-

(i) রিডিউসিং শ্রাণার বা বিজারক শর্করা : যেসব কার্বোহাইড্রেটে কমপক্ষে একটি মুক্ত আলভিহাইড (-CHO) ই কিটোন (=CO) ঞ্বপ থাকায় ক্ষারীয় আয়নকে বিজ্ঞারিত করতে পারে তাদেরকে রিডিউসিং শ্রুগার বা বিজ্ঞারক শর্করা হয় যেমন-যুকোজ, ফুটোজ প্রভৃতি। এরা বেনেডিকটম বিকারক এবং ফেহণিং বিকারকের সাথে বিক্রিয়া করে।

(ii) নন-রিডিউসিং শাুগার বা অবিজারক শর্করা : যেসব কার্বোহাইড্রেটে একটিও মৃক্ত আলভিহাইড (-CHO) র কিটোন (=CO) গ্রুপ না থাকায় <u>কারীয় আয়</u>নকে বিজারিত করতে পারে না তাদেরকে নন-রিডিউসিং শ্রুগার বা অবিহর শর্করা বলে। যেমন পুকরোজ, ট্রেহালোজ বভ্তি। সুকরোজ α-D গ্রুকোজের ১ নং কার্বনের OH এবং β-D কুরেজ ২নং কার্বনের OH থেতে এক অণু পার্নি অপসারিত হয়ে একটি অক্সিজেন ব্রিজ (-O-) তৈরি হয়। এর ফলে এদের মূ -CHO বা C=O ঞ্বপ থাকে না। এদেরকে প্রাথমিক অবস্থায় আদ্বিশ্লেষণের প্রয়োজন হয়। এরপর অন্য যৌগরে বিজারিত করতে পারে।

্র হেমিসেবুলোজ (Hemicellulose) : উদ্ভিদের কোষ প্রাচীরে সেবুলোজ এবং পেকটিন পদার্থ ব্যতীত জনস পশিস্যাকারাইভকে হেমিসেগুলোজ বলে। যেমন- গ্রুকান, জাইলান ইত্যাদি।

্র কাইটিন (Chitin) : এটি <u>নাইটোজেনবিশিষ্ট</u> পলিস্যাকারাইড। এটি বিশ্বে প্রচুর পরিমাণে থাকা দ্রব্যের একটা ছ্ত্রাকের কোষ প্রাচীর এবং কাঁকড়া, লোবস্টার ইত্যাদির বহিঃকভাগে কাইটিন থাকে।

কাৰ্বোহাইভ্ৰেট ভেরিভেটিভূগ (Carbohydrate derivatives)

मूल गठेरन जामाद्यनिक अतिदर्जन वा कार्यना कार्यकत्र अन्त्र (functional group) युक रुखा किছू नजून धराउ কার্বোহাইছেটের উত্তব হয়। এরা হলো কার্বোহাইছেট ডেরিভেটিভ্স। ফুরোজ এর OH গ্রুপের সাথে ফসফেট যুক্ত হা ফুটোল ১, ৬-বিস কসকেট (শুগার কসকেট) হয়ে থাকে (যা গ্রাইকোলাইসিস প্রক্রিয়ায় ঘটে থাকে)। OH গ্রুপ আমিন (-NH2) यण्य बाजा व्यञ्ज्ञितिष्ठ इत्य धूरकामाभिन (Glucosamine), गामारज्ञामाभिन (Galactosamine) इत्य बार्ड ভক্তপাছির প্রধান দ্রব্য গ্যালার্ট্রোসামিন) গ্রুকোসামিন পলিমার হয়ে তৈরি করে কাইটিন (Chitin) যা পত্স, তাঁকি শোৰস্টার এবং ছ্যাক কোষ প্রাচীরের গাঠনিক পলিস্যাকারাইড। কাইটিন পৃথিবীতে প্রচুর পরিমাণে থাকা দ্রব্যের একটি।

জীবদেহে কার্বোহাইড্রেট-এর ভূমিকা (Role of Carbohydrate)

যে কোনো জীবদেহ নিয়ন্ত্রণকারী প্রধান জৈবরাসায়নিক পদার্থ হলো DNA। কোষ বিভাজন থেকে তক্ত করে সং ক্ষেত্রই এর নিয়ন্ত্রণে। DNA গঠনের একটি উপাদান ডিঅক্সিরাইবোজ নামক কার্বোহাইড্রেট। DNA থেকে বার্ডা নি লীবের বৈশিষ্ট্রের প্রকাশ ঘটায় RNA, এর একটি গঠন উপাদান হলো রাইবোজ নামক কার্বোহাইছেট। ৰুসন প্রতিদ্রু প্রাথমিক দ্রবা হিসেবে ব্যবহাত প্রকোজ, যা একটি কার্বোহাইছেট। জীবদেহের গাঠনিক বস্তু কাইটিন, সেপুর্যো মেদিসেলুলোজ ইত্যাদি সবই কার্বোহাইডেট। আনাদের দেহের শক্তি প্রদানকারী প্রধান খাদ্য উপাদান 🕬 কার্বেয়াইছেট। কর্বাৎ জীবনেহে কার্বোহাইছেট-এর ভূমিকা অত্যন্ত ওক্তবুপূর্ব।

আমিনো আসিড (Amino Acids)

अधिमा ज्यांत्रिक इरला व्याहित्सत मूल गाठेनिक अकका त्याद्यम भूतकात विकामी दिखानी Emil Fischer & Franz প্রাটালে 1902 খ্রিস্টাব্দে প্রোটিন অপুর গাঠনিক একক হিসেবে আমিনো আসিড আবিদ্ধার করেন। কোনো জৈব ্রাটার্টার বা একাধিক হাইড্রোজেন পরমাণু অ্যামিনো গ্রুপ (-NH₂) দারা প্রতিদ্বাপনের ফলে যে জৈব অ্যাসিড উৎপন্ন বি ব্যামিনো অ্যাসিড বলা হয়। প্রতিটি অ্যামিনো অ্যাসিডে ক্মপ্রে একটি অ্যামিনো ঞ্চল (-NH₂) এবং একটি ক্রুল (–COOH) থাকে। এতে জন্যান্য সক্রিয় কার্যকরী গ্রুপও থাকতে পারে। কাজেই অ্যামিনো অ্যাসিডের র্মার কার্বার বামিনো অ্যাসিড বিক্রিলাল করে তার্বার ওপার্বার । উদ্ভিদদেহে বিভিন্ন প্রকার অ্যামিনো অ্যাসিড আছে। ্রাধানি ধকার আমিলো আসিড বিভিন্নভাবে সমন্বিত ও সঞ্জিত হয়ে বিভিন্ন রকম প্রোটন তৈরি করে।

ত্রটিন গঠনকারী অ্যামিনো অ্যাসিভের সাধারণ গঠন আমিলো আসিত এর কার্বক্সিল গ্রুপ এর নিকটবর্তী কার্বন-ন্দ্রটিকে α-কার্বন বলা হয় এবং কার্বন্দ্রিল ক্রপটি α-কার্বনের

রং বৃচ ধাকলে তাকে α- অ্যামিনো অ্যাসিড বলা হয়।

ক্রমিনো অ্যাসিডের রাসায়নিক গঠন : অ্যামিনো অ্যাসিডের

णामित्ना जानिरङंड नाबादवं गरेन : "R—C—COOH °R-এচপ বিভিন্ন আমিনো আসিডে বিভিন্ন হয

রার রাসায়নিক সংকেত হলো R-CH.NH, COOH। এখানে R হলো একটি হাইভ্রোজেন পরমাণু বা কার্বনযুক্ত ক্রের যৌগ। আমিনো অ্যাসিডে একটি অ্যামিনো গ্রুপ (-NH₂), একটি কার্বোক্সিল গ্রুপ (-COOH) এবং একটি

্রেল ঞ্লপ (R) থাকে। তবে কোনো কোনো অ্যামিনো ক্রত ২টি অ্যামিনো গ্রুপ কিংবা ২টি কার্বোক্সিল গ্রুপ ্র সালফার থাকতে পারে। প্রকৃতিতে বেশির ভাগ R এখন H হলে গ্লাইসিন

িলা আসিডই ৫-আমিলো আসিড।

a.ডার্বনে সংযুক্ত R-গ্রুপ বিভিন্ন অ্যামিনো অ্যাসিতে विश्व रहा, त्यमन-

R4P9 CH2OH হলে অ্যামিনো অ্যাসিভ সিরিন R েল CH2SH হলে আমিলো আসিও সিস্টিন আমনো আসিডের বৈশিট্য

H NH2 н R-अन्म CH, इत्न ज्यानामिन NH₂

- মানবদেহে বিদ্যমান প্রায় সবওলো আমিনো আসিডই α-আমিলো আমিছ-।-
- ২। এরা পানিতে দ্রবনীয় কিন্তু আলকোহলে অদ্রবনীয়।
- া এরা স্বাদহীন, মিষ্টি বা তিক্ত পদার্থ।
- 🔋। এরা কহিীন, ক্ষটিকাকার পদার্থ।
- ং। মৃদু অ্যাসিভ বা ক্ষারে অ্যামিনো অ্যাসিড লবণ সৃষ্টি করে।
- । এরা উচ্চ গলনাড়বিশিট্ট।
- গ। বিতত্ব প্রোটিনকে কোনো রাসায়নিক পদার্থ কিংবা এনজাইম-এর সাহায্যে সম্পূর্ণ হাইড্রোলাইসিস করসে স্মামিনো অ্যাসিড পাওয়া যায়।
- । এক বা একাধিক ধরনের আমিনো আসিড পেপটাইড বন্ধনীর মাধ্যমে সংযুক্ত হয়ে প্রোটিন গঠন করে।
- া মাসিত ও কারবিশিষ্ট অ্যামিলো অ্যাসিডের মূলককে ভূইটার আরন (Zuitter Ions; Zuitter = hybrid) বলে। বিদ ও প্রাণী দেহ মিলে সর্বমোর্ছ ২৮টির মতে আমিনো আসিত রয়েছে। এওলোকে মোটামুটি ৩টি ভাগে ভাগ লে আদিডের শ্রেণিবিভাগ হবছে যথা-(১) আলিক্যাটিক আমিনো আসিড, (২) আরোমেটিক আমিনো আসিড, (৩) হেটেরোসাইক্লিক আ আসিড।

১। আশিক্যাটিক আমিলো আগিড : আমিলো আগিডের পার্বশিক্ষ গ্রুপটি (R-গ্রুপ) আগিক্যাটিক থৌতা

তাকে আলিফাটিক আমিনো আসিড বলে। বেমন গ্রাইসিন, অ্যালানিন, ভ্যালিন। ২। আরোমেটিক আমিনো আসিত : আমিনো আসিতের পার্শ্বশিকল ক্রপটি (R-ক্রপ) আরোমেটিক বৌচ্ছ

তাকে আরোমেটিক আমিনো আসিড বলে। যেমন-ফিনাইল আলানিন, টাইরোসিন। ৩। হেটেরোসাইক্রিক আমিনো আসিত : আমিনো আসিডে আলিক্যাটিক ও আরোমেটিক আমিনো আ

বিশরীত ধর্ম পরিদক্ষিত হলে তাকে হেটেরোসাইক্লিক আমিনো আসিত বলে। যেমন—ট্রিপটোক্ষ্যান, প্রোলিন, হিসিন্ত

সাধারণত ২০টি আমিলো আসিড বিভিন্ন প্রোটন গঠনে অংশগ্রহণ করে। এদেরকে বলা হয় শ্রোটন আ আসিত। এছাড়াও অনেক আমিনো আসিড আছে যেওলো প্রোটিন তৈরিতে অংশগ্রহণ করে না। এদেরতে ১ नन-ध्याप्ति आप्रित्ना आतिक । अविनिधिन (ornithine), त्राह्मिन (citruline), (श्राह्मितिन (haemoserine) स्व নন-লোটিন আমিনো আসিত এনের কিছু ইউরিয়া (যেমন-অরনিধিন) সংশ্লেষে বিশেষ ভূমিকা পালন করে; অবর (বেমন- হেমোসেরিন) প্রোটন আমিনো আসিড সংশ্লেষে ব্যবহৃত হয়। প্রোটনে <u>হাইডব্রিপ্রোপিনের</u> উপস্থিতি স गीमिक। अपि विद्रम् आमित्मा आभिक।

বিশটি আমিনো আসিড হলো: ১। বিউসিন, ২। আইসোলিউসিন, ৩। লাইসিন, ৪। মেথিওনিন, ৫। আদিন, সেরিন, ৭। প্রোলিন, ৮। প্রিওনিন, ৯। আলানিন, ১০। টাইরোসিন, ১১। হিস্টিডিন, ১২। আসপারাজিন, ১৩। সিঠ ১৪। আবজিনিন, ১৫। গ্লাইসিন, ১৬। ট্রিন্টোক্যান, ১৭। গ্রুটামিন, ১৮। গ্রুটামিক অ্যাসিড, ১৯। অ্যাসপার্টিক আন २०। किनारेन व्यानानिन।

আমিনো আসিভের কাল : ১। প্রোটন তৈরি তথা আমিষ সংশ্লেষণ করে। ২। জীবদেহ গঠনে ভূমিকা রাজ ৩। কিছু ভিটামিন, এনজাইম, ইনডোল হরমোন অ্যান্টিবভি সংশ্লেষণে সাহায্য করে। ৪। ইউরিয়া সংশ্লেষণে সাহায্য কর ৫। সেহের রোগ প্রতিরোধ ক্ষমতা বাড়ায়। ৬। সেহে pH নিয়ন্ত্রণে সহায়তা করে। ৭। মেলানিন রঞ্জক সৃষ্টিতে সহয়

প্রোটিন (Protein) বা আমিষ

ন্তি 'Proteios' হতে Protein শধ্যে উৎপত্তি। 'Proteios' অৰ্থ হলো সবচেয়ে তক্তপূৰ্ণ। প্ৰোটিন জীবনেট একটি অত্যন্ত তক্তবুপূৰ্ণ জৈব বাসায়নিক পদাৰ্থ। বিভিন্ন আমিলো আসিড বিভিন্নভাবে শৃক্ষাপিত হয়ে এক একটি শ্লেল গঠন করে। প্রোটন শব্দটি প্রথম প্রয়োগ করেন জি. মুন্ডার (G. Mulder) ১৮৩১ সালে।

শোটিন হলো অসংখ্য অ্যামিনো অ্যাসিত সমন্বয়ে গঠিত বৃহদাকার বৌলিক জৈব অপু। অন্যভাবে বলা যায়, শ্লেনি হলো উচ্চ আপৰিক জনবিশিষ্ট বৃহৎ অপুর জৈব রাসায়নিক পদার্থ যা হাইছ্যোগাইসিস প্রক্রিয়ায় অ্যামিলো অ্যাসিচ উৎট করে। অর্থাং আমিনো আাদিতের পশিমারকে ধ্বোটিন বা আমিষ বলে। একটি কোষের অভ্যন্তরে সারাক্ষণ শত শত প্রশ প্রোটিন তৈরি হয়।

क्षेत्र कामित्र कामित्र (अस्तिक स्टब्ब) क्ष काम 18 काब्रिक कामित्रह H (काव्रिक स्टब्ब) कुक हार वर्षि एव हरव वाव कर C-N कार्योक्ति क

্রীবদেহের প্রায় সর্বত্র প্রোটিন বিরাজমান। জীবদেহের সব অঙ্গে গাঠনিক বস্তু (structural elements) বিদায়ান। জৈব-ক্রিয়া-বিক্রিয়া নিয়ন্তগ্রারী এনজাইয়, আন্টিবভি, হরমোন এতলোও প্রোটিন। সব প্রাচন কিছ সব প্রোচিন এনজাইম নয়।

র । বিভিন্ন অ্যামিনো অ্যাসিড বিভিন্নভাবে শৃত্যালিত হয়ে এক একটি প্রোটন গঠন করে। একটি অ্যামিনো র কার্বেরিল ক্র'প (-COOH) অপর একটি জ্যামিলো জ্যাসিডের ৫-জ্যামাইলো ক্রপের সাবে যুক্ত হয়ে যে ্র ক্র পঠন করে তাকে পেপটাইড বন্ড (peptide bond) বলে। প্রতিটি পেপটাইড বন্ড তৈরিতে এক অণু পানি ্রা। পুটি ভিন্ন আমিনো আসিড যুক্ত হয়ে গঠন করে ভাইপেপটাইড, তিনটি যুক্ত হয়ে গঠন করে ট্রাইপেপটাইড, র দুলটি সংযুক্ত হয়ে গঠন করে অলিগোপেপটাইড। বিভিন্ন আমিনো আসিভের প্রায় ৫০টি অণু পেপটাইভ বছন হরে পলিপেপটাইড সৃষ্টি করে। প্রোটিন হলো পলিপেপটাইড যৌগ।

ক্ষা এতিটি জীবদেহে অসংখ্য ধরনের প্রোটিন থাকে। একটি জীবদেহে যতটি জিনের প্রকাশ ঘটে ঐ দেহে তত র মোটন থাকে। কাজেই হাজার হাজার ধরনের প্রোটন একটি জীবদেহে থাকতে পারে। আবার দৃটি প্রজাতির মধ্যে ক্রিনাত পার্বক্য থাকে, সেহেতু এদের মধ্যে প্রোটিনের ধরনগত পার্বক্যও থাকে। একই প্রজাতির দুটি জীবের ক্রি থাকতে পারে, কাজেই একই প্রজাতির দুটি জীবের মধ্যেও প্রোটিনের কাঠামোগত পার্বক্য থাকবে।

লকে ছান : কোৰস্থ <mark>রাইবোসোমে</mark> প্রোটিন সংশ্লেষিত হয়।

क्षेत्र दिनिष्ठा

- াল্লাটন কলয়েড প্রকৃতির, অধিকাংশ কেলাসিত।
- ্যারোটনকে অর্দ্র বিশ্লেষণ করলে আসিড, ক্ষার ও এনজাইম সহযোগে আমিনো আসিড পাওয়া যায়
- **াফ্রিখ ভৌত ও রাসায়নিক প্রক্রিয়ায় প্রোটিনের প্রকৃতির পরিবর্তন ঘটানো যায়।**
- Mailin পানিতে, লঘু অ্যাসিডে, ক্ষার ও মৃদু লবণের দ্রবণে দ্রবণীয় কিন্তু আলকোহলে অনুবণীয়।
- ো এটি কার্বন, হাইডোজেন, অক্সিজেন ও নাইট্রোজেন দিয়ে গঠিত। এছাড়াও এতে সালফার, আয়রন ও তামা शकएउ भारत ।
- ।। মাসিড প্রয়োগ করলে প্রোটিন তঞ্চিত (জমাট বাঁধা) হয়। এতে আণবিক গঠন পরিবর্তিত হয়।
- । দোটিন সাধারণত তড়িংধর্মী ও বাফার দ্রবণ হিসেবে কাজ করে।
- । বেটিনের মনোমার অ্যামিনো অ্যাসিডে কারীয় গ্রুপ (-NH₂) এবং অদ্রীয় গ্রুপ (-COOH) থাকে বলে এটি একই নাবে ছারীয় ও অদ্রীয় উভয় তণ প্রকাশ করে। এজন্য একে <mark>আফোটেরিক (amphoteric) প্রোটিন বলে।</mark>
- শাসনৰ শ্ৰেপিবিভাগ (Types of Protein) : Escherichia coli এর একটি কোষে তিন হাজার ধরনের প্রোটিন ব্রের দেহে প্রায় এক লক্ষ্ণ ধরনের প্রোটিন আছে যা E coli এর প্রোটিন থেকে আলাদা। প্রোটিনের বিশাল
- র্জারনামের ভিত্তি বিভিন্ন প্রকার।
- ি নৈবিক কার্যাবলির ভিত্তিতে : জৈবিক কার্যাবলির ভিত্তিতে প্রোটিন দু'ধরনের; যথা—
- শিক প্রোটিন (Structural protein) : এরা জীবদেহের বিভিন্ন অংশ গঠন করে। কোষ এবং টিস্যুর গঠনক ব। এ ধরনের প্রোটিন তুক, চুল, শিং, কুর, অভঃকভাল (অছি ও তরুণাছি), বোজক টিস্যু ইত্যাদিতে পাওয়া ক্রেটিন (তৃক, শিং, নব, জুর, পালক ইত্যাদি), কোলাজেন (অস্থি, টেনডন, যোজক টিসা ইত্যাদি),
- কি ও মাকড়সার জাল), স্কেরোটিন (পতঙ্গের বহিঃকড়াল), কুনড়িন (তরুণাছিতে), সেইন (অস্থিতে)। পরি বোটিন (Functional protein) : এরা জীবদেহে বিভিন্ন বিপাকীয় কাজে অংশগ্রহণ করে। এদেরকে বিশ্বটারি খ্রোটনত বলা হয়। বেমন- এনজাইম, হরমোন, ভিটামিন, শাসরপ্তক ইত্যাদি।

- (४) जाकृष्ठि जन्यायी : जाकृष्ठि जन्यायी श्राप्ति मृ'धवत्नवः यथा-(ব) আকৃতি অনুযায়া : আকৃতি অনুযায়া আোলন সু (i) তম্বয়া প্রোটিন (Fibrous protein) : যখন পলিপেপটাইডগুলো প্রোটিনে সমান্তরালভাবে একটি বিষ্
- (i) ভব্নময় প্রোচন (Fibrous protein) । বন্দ আকৃতির প্রোচিনকে ভব্নময় প্রোচিন বলে। যেন্দ্র- ক্রে কোলাজেন, ফাইবাইন ইত্যাদি। াজেন, কাহরাহন হত্যাাদ। (ii) শ্লোবিউলার শ্লোটিন (Globular protein) : যেসব প্রোটিনের গঠন গোলাকৃতির হয় তাদের শ্লোবিউলার
- বলে। যেমন- মারোগ্রোবিন, ইনস্যুলিন, হিমোগ্রোবিন ইত্যাদি। (গ) গঠন অনুসারে প্রোটিন চার প্রকার, ১। প্রাইমারি ২। সেকেন্ডারি ৩। টারশিয়ারি এবং কুয়াটারনারি।
 - (খ) ভৌত-রাসায়নিক তথাবলি ও দ্রবণীয়তার ভিঙিতে : আধুনিক তথ্য অনুসারে ভৌত-রাসায়নিক চলুক
- দ্রবণীয়তার ভিত্তিতে প্রোটনকে প্রধানত তিন ভাগে ভাগ করা হয়। যথা- (১) সরল প্রোটিন, (২) যুগ্য প্রোটিন ও (৩)% গ্রোটিন।
- ১। সরদ প্রোটিন (Simple protein) : যে প্রোটিনকে এনজাইম বা আাসিড দিয়ে অপ্রবিশ্লেষণ করলে যা আসিত ছাড়া অন্য কিছু পাওয়া যায় না, তাকে সরল প্রোটিন বলে। দ্রবণীয়তার (solubility) ওপর ভিত্তি করে। প্রোটিনকে আবার ৭ ভাগে ভাগ করা হয়েছে; যথা :
- (i) আগবিউমিন (Albumin) : যে সব প্রোটিন পানিতে সহজে দ্রবীভূত হয়ে ঘোলাটে দ্রবণ সৃষ্টি করে, ১ অ্যালবিউমিন বুলে। এরা পানিতে এবং লখু লবণ দ্রবণে দ্রবণীয়। তাপ দিলে এরা জমাট বাঁধে। যব ও বার্লি। আমাইলোজ, ডিমের সাদা অংশে ওভালবুমিন (১০-১২%), রক্তরস ও লসিকার সিরাম—আলবিউমিন (৪-৫%), চ শ্যাকটালবুমিন, গম বীজে লিউকোসিন, শিম বীজে লিওমেগিন, মাংসপেশির মায়ো-অ্যালবিউমিন ইত্যাদি আলবিউ প্রোটিনের উদাহরণ।
- (ii) গ্লোবিউপিন (Globulins) : এ জাতীয় প্রোটিন পানিতে প্রায় অদ্রবণীয়, তবে লঘু লবণ দ্রবণে দ্রবণীয়। যা এরাও জমাট বাঁধে। বাঁজে এ ধরনের প্রোটিন বেশি থাকে। বেমন-ডিমের কুসুম (অভ্যোগ্রেভিলিন), রক্তর (মি গ্লোবিউলিন), চোখের লেগ (ক্রিস্টালিন গ্লোবিউলিন), মাংসপেশি (মায়োসিন গ্লোবিউলিন) ইত্যাদি গ্লোবিউলিন প্রেক্ট উদাহরণ। শন, পাট, তুলা ইত্যাদি আঁশে এভেস্টিন, মটর বীজে পেগুলিন, চিনাবাদামে এরাচিন এবং আলুতে নিইনে
- (iii) হুটেশিন (Glutelins) : এরা পানি ও লবণে অনুবণীয়। লঘু অ্যাসিড বা লঘু ক্ষার দ্রবণে দ্রবনীয়। তালে ন জমাট বাঁধে না। শত্যদানায় এ জাতীয় প্রোটিন অধিক থাকে। গমের **মুটেনিন** (glutenin) এবং চালের জরইট
- (iv) ধোলামিন (Prolamins) : এরা পানি ও অ্যাবসল্ট ইথানলে (১০০%) অদ্রবর্ণীয়, কিন্তু ৭০-৮০% ইং দ্রবর্ণীয়। হাইড্রোলাইসিস শেষে যে প্রোটন প্রচুর প্রোলিন ও আমোনিয়া উৎপন্ন করে তা প্রোলামিন। ভূটার জেইন(টো গম ও বাইছের বিভাতিন (glisdin) এবং যব ও বার্লির হর্তিন (hordein) প্রোলামিন প্রোটিনের উদাহরণ। এরা ভা ইটি
- (v) হিস্টোন (Histones) : এ জাতীয় প্রোটিন পানিতে দ্রবদীয়। এদের মধ্যে বেশি পরিমাণে জারীয় । আমিনো আসিড (বেমন- আর্মিনিন, লাইসিন) থাকে। এরা তাপে জ্মাট বাঁধে না। এদের ক্রিক্রাসে এবং বিটি আসিভের সাথে বেশি দেখা যায়। উদাহরণ হিসেবে <mark>নিউক্লিয়োহিস্টোনের না</mark>ম বলা যায়।
- (vi) প্রোটামিন (Protamines) । এবা সরচেয়ে <u>ক্ষম প্রোটিন)</u> প্রোটামিনতলো পানি, লঘু অ্যাসিড এবং আহিল। হাইড্রবাইড-এ দ্রবণীয়। এতে জারীয় আমিলো আসিড ব্রোচন) প্রোচায়নতলো পানি, লঘু অ্যাসিড এবং আল বাহ এবং নিউক্তিক আসিডের সাথেও দেখা যায়। প্রোচায়িন এ সোনোজনিন) বেশি থাকে। এদেরকে নিউক্লিয়াস বাহ এবং নিউক্লিক আসিতের সাথেও দেখা যায়। প্রোটামিন-এ কোনো সাগকার, টাইনোসিন, ট্রেপটোকান থাকে । তাপে জমাট বাঁধে না। উদাহরণ : স্যামন মাজের তক্তব্তে সালমিন নামক প্রোটামিন প্রাক্তে।

্রেরারোটিন (Scleroproteins) : এরা পানি, মৃদু পরণ প্রবাধ প্রবাধি নয়। প্রাণিদেহের হাড়, চুল, নথ, তুক, ক্রিরাতে এই প্রোটিন বেশি থাকে। যেমন-শিং, নথ, খুর ও চুলে কেরাটিন; চামড়ায় কোলাজেন ও হাড়ে টেল্ডন এ

্য পা বা সংশ্লেষিত প্রোটিন (Conjugated proteins) : যে প্রোটনের সাথে কোনো অপ্রোটন অংশ (প্রোসংঘটিক prosthetic group) মৃত থাকে তাকে বলা হয় কনজুপেটেড প্রোটনের সাথে কোনো অপ্রোটন অংশ (প্রোসংঘটিক প্রাচিন তালে ভাগ করা হয়; যথা :

্যা নিউক্তরোগ্রোটিন (Nucleoproteins) : হাইড্রোলাইসিস করলে যে প্রোটন থেকে একটি সরল প্রোটন ও একটি আসিত পাওয়া যায় তা হলো নিউক্লিয়োগ্রোটন। এরা পানিতে দ্রবনীয় এবং ক্রোমোসোমে পাওয়া যায়।

্রা ক্লাকোলোটিন বা মিউকোপ্রোটিন (Glycoproteins or Mucoproteins) : প্রোটনের সাথে বিভিন্ন ধরনের বিভিন্ন ধরনের (বিশেষ করে মনোস্যাকারাইড) যুক্ত হলে ডাকে গ্লাইকোলোটিন বা মিউকোলোটিন বলে। সেলমেমপ্রেন-এ

্রা) দিশোশ্রোটিন (Lipoproteins) : এটি পিপিড ও সরদ প্রোটিনের সমন্বয়ে গঠিত একটি জৈব রাসায়নিক পদার্থ।
নিপিত অংশ গঠিত হয় কোলেন্টেরল ও ফসফোলিপিড দিয়ে। লিপিড সরল প্রোটিন অপুর সাথে সংযুক্ত থাকে। বিভিন্ন
প্রানা (নিউক্লিয়াস, মাইটোকন্রিয়া, ক্লোরোপ্লান্টের ল্যামিলী, ETC) গাঠনিক উপাদান হিসাবে এরা বিরাজ করে।
ক্রেরকের প্লাজমা প্রোটিনও লিপোপ্রোটিন জাতীয়। লিপোপ্রোটিন লানিতে দ্রবণীয়।

📭 : গাঠনিক উপাদান হিসেবে বিভিন্ন মেমব্রেন গঠনে পূর্বতা দান।

া) ক্রোমোপ্রোটিন (Chromoproteins) : সরল প্রোটিনে রঞ্জক পদার্থ যুক্ত হয়ে ক্রোমোপ্রোটন সৃষ্টি করে।
ক্রিয়াটন, বিশিপ্রোটিন, ক্যারোটিনয়েড প্রোটিন, ক্রোরোফিল প্রোটিন, হিমোগ্রোবিন প্রোটিন ইত্যাদি হলো
ক্রমোটন।

(i) মেটালোগোটিন (Metaloproteins) : অনেক এনজাইমে আান্তিভেটর হিসেবে কোনো ধাতু বা মেটাল (Fe, Mn. 626) থাকে। ধাতু বা মেটাল সম্বলিত এনজাইমগুলো হলো মেটালোগ্রোটিন। যেমন-সিভারোফিলিন ও সেলোপ্রাজিমিন।

(ii) ক্সফোশ্রোটিন (Phosphoproteins) : যে সকল প্রোটিনের সাথে প্রোসংঘটিক গ্রুপ হিসেবে ক্সফোরিক নিঃ বৃত্ব থাকে তাকে ক্সফোগ্রোটিন বলে। দুধের কেসিনোজেন, ডিমের ভাইটেলিন এ জাতীয় প্রোটিন।

গোঁ) সাভোপ্রোটিন (Flavoprotiens) : এ ধরনের প্রোটনগুলো ক্ল্যান্তিন যৌগ তথা FAD (Flavin Adenine accounted) এর সাথে যুক্ত অবস্থায় থাকে।

(riii) শৌহ-পোরফাইরিন প্রোটিন (Iron-porphyrin proteins) : এ ধরনের প্রোটিন Iron-porphyrin যৌগ তথা উক্রেম এর সাথে যুক্ত থাকে।

া উত্ত বা উৎপাদিত প্রোটিন (Derived proteins) : এসব প্রোটিন প্রকৃতিতে মুক্ত অবস্থায় থাকে না। তাপের বা নানায়নিক পদার্থের ক্রিয়া-বিক্রিয়ায় অথবা কৃত্রিম উপারে প্রোটিন অবু থেকে তৈরি হয়। উদাহরণবিটি (Peptides), প্রোটিয়োজ (Proteoses), পেপটোন (Peptone) ইত্যাদি। যেমন-মায়োসিন থেকে মায়োসান সৃষ্টি
বিশ্বমিন থেকে আলেবসাম সৃষ্টি হয়।

শার বশাত বৈশিষ্ট্যের ভিত্তিতে প্রোটিন দু'প্রকার : (i) প্রথম শ্রেণির প্রোটিন ও (ii) দ্বিতীয় শ্রেণির প্রোটিন।

্রিবর প্রেটিন : যেসব প্রোটিনে সবকরটি অ্যামিনো অ্যাসিড থাকে তাদের প্রথম প্রেণির প্রোটিন (সম্পূর্ব বিশেষ বেমন-মাছ, মাংস, ডিম, দুধ, বাদাম, সরাবিনসহ অধিকাংশ প্রাণিজ প্রোটিন।

নিবার প্রেণির প্রোটিন : যেসব প্রোটিনে সবগুলো অপরিহার্য আমিনো আসিড থাকে না এদের থিতীয় শ্রেণির বিশেষ বাদের থিতীয় শ্রেণির বিশেষ বাদের থিতীয় শ্রেণির বিশেষ বাদের থিতীয় শ্রেণির বিশেষ বাদের বিশেষ বাদের থিতীয় শ্রেণির বিশেষ বাদের থিতীয় শ্রেণির বিশেষ বাদের বিশেষ বাদের থিতীয় শ্রেণির বিশেষ বাদের থিতীয় শ্রেণির বাদের বিশেষ বাদের থিতীয় শ্রেণির বাদের বিশেষ বাদের প্রথম বাদের বিশেষ বাদের বাদের

আেটিনের বালায়নিক উপাদান বিশ প্রকার আমিনো আাসিতই প্রোটিনের প্রধান রালায়নিক উপাদান। শ্রোটিনে প্রোসংঘটিক ক্রপ হিসেবে দিশিউ, কার্বোহাইট্রেট, নিউক্লিক অ্যাসিড ইত্যাদি থাকে।

व्याप्टिनर कास

- ১। জীবদেহের গাঠনিক উপাদান হিসেবে কাজ করে।
- ২। কোখে প্রোটন সন্ধিত খাদ্য হিসেবে কাজ করে এবং প্রয়োজনে শক্তি উৎপাদন করে
- ৩। বিভিন্ন অঙ্গাণু এবং কোষ বিদ্ধি গঠনে কাজ করে।
- ৪। এনজাইম হিসেবে জীবদেহের ক্রিয়া-বিক্রিয়া নিয়ন্ত্রণ করে তথা জীবদেহকে সচল রাখে।
- ৫। এান্টিবভির গাঠনিক উপাদান হিসেবে দেহের প্রতিরোধ ক্ষমতা সৃষ্টি করে এবং দেহকে রোগমুক রাখে।
- ७। जीवरमस्त्र श्राक्षनीय स्वयान उर्शन करत।
- ৭। হিস্টোন প্রোটিন নিউক্রিয়াস এবং নিউক্রিক অ্যাসিডকে কার্যকর করে।
- ৮। কিছু প্রোটিন বিষাক্ত হওয়ায় অনেক জীব তা খেয়ে মারা যায় (সাপের বিষের প্রোটিন)।
- ৮। বে সক্ষ উদ্ভিদে বিষাক্ত প্রোটিন থাকে তারা অনেক পশু পাখির আক্রমণ থেকে রক্ষা পায়
- ১০। হিমোগ্রোবিন প্রোটিন প্রাণিদেহের সমস্ত কোবে O2 ও CO2 পরিবহন করে।
- ১১। মানবদেহের পেপটাইভ থেকে উৎপাদিত প্রোটিন ডিফেনসিভ (defensive) এন্টিবডি হিসেবে কাল করে।
- ১২। ইন্টারফেরন (interferon) একটি কোষীয় প্রোটিন। এটি ভাইরাস আক্রমণে স্বতঃস্কৃতভাবে সেহে তৈরিছ ধারণা করা হচ্ছে ইন্টারক্ষেরন ক্যান্সার ও ভাইরাসজনিত রোগ নিরাময়ে ব্যবহার করা যাবে।

জীবদেহে প্রোটিনের ভূমিকা (Role of Protein)

জীবদেহে প্রোটনের ভূমিকা অত্যাবশ্যকীয়ভাবে ওরুত্পূর্ণ। এটি দেহের গঠন উপাদানের একটি বড় অশে। এট ছাড়া দেহাস বা অঙ্গাপুর সঠিক গঠন সম্ভব নয়। সজীব দেহ কততলো রাসায়নিক ক্রিয়া-বিক্রিয়ার সমষ্টিমাত্র। আর এ ক্রিয়া-বিক্রিয়া এনজাইম কর্তৃক নিয়ন্তিত। সব এনজাইমই প্রোটিন। 'জিন'-এর বৈশিষ্ট্য প্রকাশ ঘটে প্রোটিনের মত আর বৈশিষ্ট্য প্রকাশ ছাড়া জীবের অন্তিত্ নেই। জীবদেহের বিভিন্ন কার্যক্রম নিয়ন্ত্রণে বিভিন্ন হরমোন বিশেষ বিশেষ ক্রি শালন করে থাকে (বেমন ইনস্থালিন, হিমোগ্নোবিন)। অধিকাংশ হরমোনই প্রোটিন। দেহের ইমিউন সিটেন শোটিননির্ভর। শ্রোটিন দেহের শক্তির উৎস হিলেবেও কাজ করে। কোষচক্র সম্পন্ন করতেও প্রোটিনের প্রয়োজন ৪ ট্রাদক্রিশশন সম্পন্ন করতেও প্রোটিনের প্রয়োজন হয়।

বিভিন্ন ধরনের আমার এর কারণ হিসেবে ভাইরাস চিহ্নিত হয়েছে। ইন্টারফেরন নামক বিশেষ প্রোটিন ভাই প্রতিরোধক হিসেবে রাভ ক্যালার নিরাময়ে ব্যবহৃত হয়। রোগ জীবাণু ধ্বংস ও নিয়ন্ত্রণের জন্য পোষক দেহে যে আনি তৈরি হয় তা সংশ্লেষ করতে প্রোটিন এর প্রয়োজন হয়। বিভিন্ন জীবের বিপাকীয় বিক্রিয়ায় প্রোটিন থেকে বিশ্বাভ উৎপদ্ম হয়। এসব পদার্থ জীবের আত্মরকার জন্য বিশেষ সহায়ক। বেমন-সাপের বিষ। মুপ্তিছে উৎপদ্ম এট ব্যানাশক হিসেবে অতি সম্প্রতি আবিষ্ঠ ঘুম আনয়নকারী s-factor বিশেষ ধরনের প্রোটিন বলে প্রমাণিত হয়েছে।

খাদ্য তালিকায় প্রোটিন

আনাদের খাদ্য তালিকায় প্রোটিন জাতীয় খাবার রাখা পরিহার্য্য, কারণ শরীর গঠনে প্রোটিনের ভূমিকা মুখা। বি ব্রকার বাদ্যে প্রোটনের পরিমাণ বিভিন্ন রকম। পরিমাণের দিক দিয়ে সবচেয়ে বেশি প্রোটন থাকে বিভিন্ন ভাগ নাৰে কিছ এর পরও পৃষ্টিবিজ্ঞানিগণ থাপিক খোটিনকে প্রাধান্য দিয়ে থাকেন।

শোটিন তৈরি হয় বিশ প্রকার আমিলো অ্যাসিড দিয়ে। গাঠনিক ইউনিট হিসেবে এই বিশ প্রকার আমিলো অ ব্রমান্ত্রীয়। সামবদেহের চাহিদা অনুসারে মান (আটটি অ্যামিনো অ্যাসিড (লিউসিন, আইসোলিউসিন, নেনিখনিন, বিজনিন, আলিন, কিনাইল আলানিন এবং ট্রিন্টোক্যান)কে অক্যাবল্যকীয় (essential) আমিনো ব

রার্থ হলো অন্য ১২টি অ্যামিনো অ্যাসিড আমাদের দেহাভাতরে সংশ্লেখিত হতে পারে কিন্তু উক্ত ৮টি অ্যামিনো ্রার্থন বিষ্ণার্থিত হয় না, খাদ্যের মাধ্যমে দেহে গ্রহণ করা হয়। শিতদের জন্য অরজিনিন এবং বিক্তিটিন গ্রা । অর্থাৎ শিতদের জন্য অত্যাবশাকীয় আমিনো আসিভ্ততাট্টি

্রাটনে সব আমিনো আসিড থাকে না, তাই যে সব প্রোটনে সবকটি অত্যাবশাকীয় আমিনো আসিড থাকে র ব্লোচন সেওলোই প্রাধান্য দেয়া উচিত। এদিক থেকে প্রাণিজ প্রোচনই (মাছ, মাংস, দুধ, ডিম ইত্যাদি) অশ্বণামী

্রার্থ উড়িজ প্রোটিন (যেমন ডাল) অনুগামী)

্রার্থিক প্রোটিনের মান বিচারে অত্যাবশ্যকীয় অ্যামিনো আসিতসমূহের উপস্থিতিই প্রধান বিবেচা বিষয় নয়। ক্রিচার আমিলো অ্যাসিডের একটিও যদি মিনিমাম আদর্শ পরিমাণের চেয়ে কম থাকে তা হলেই এর মান কমে প্রের সৈঠক পরিমাণে তা শোষণ করতে পারে না। মানের দিক থেকে উদ্ভিক্ষ প্রোটন পিছনে থাকার এটিই বার্নির পাওয়া যায় ডিম এবং দুধে। তাই এ দুটি আদর্শ খাবার। চালের প্রোটন এবং ভালের প্রোটন এক বালি একটির অভাব অপরটি কিছুটা পূরণ করে, তাই চাল-ডালের বিচুড়ির পুষ্টিমান ভাত এবং ভালের চেয়ে উপরে।

আদর্শ প্রোটিন : প্রতি ১০০ গ্রাম আদর্শ প্রোটিনে অ্যামিনো অ্যাসিভের পরিমাণ (এ

	আইসোপিউসিন	লিউসিন	লাইসিন	ফিনাইল আ্যালানিন	মেধিগুনিন	धिवनिन	দ্রিন্টোক্যান	ভ্যাশিন
10年 10年	8.0	8,8	8.0	2.30	2.0	4.5	3.8	8.0
31	4.8	0.6	৬.৩	6.0	0.3	0.0	2.9	9,8
H.FK	9,8	6.6	9.6	8.8	3.8	8,6	3,8	6.8
田田	4.2	4.6	6.5	8.5	0.6	0.6	0.5	0.0
77	9.0	3.6	0.6	8,8	0,2	8.9	3.2	6.0
100	0.2	9.5	b.6	6,0	2.9	8.8	3.0	6.5

🖟 🛱 এবং দুধ আদর্শ প্রোটিন। মাছ-মাংসে ট্রিন্টোফ্যান আদর্শ মাত্রার চেয়ে কম। ভালে মেথিওনিন ও ট্রিন্টোফ্যান ারের কম। কাজেই মাছ-মাংস প্রকৃত আদর্শ প্রোটিন নয়। ডালের প্রোটিন আরো নিমুমানের

লিপিড (Lipids) বা স্নেহজাতীয় পদার্থ

দি e প্রাণিদেহে বিদ্যমান একটি গুরুত্বপূর্ণ জৈব রাসায়নিক পদার্থের নাম লিপিড। কার্বোহাইড্রেটের মতো া মর্বন, হাইড্রোজেন ও অক্সিজেন নিয়ে গঠিত হয়। উত্তিদদেহে বিশ্রেষ করে ফল ও বীজে অধিক পরিমাণ লিপিড া মকে। কার্বন, হাইড্রোজেন ও অক্সিজেনের সমন্বরো গঠিত সেহজাতীয় পদার্থকে দিপিড বলা হয়। অন্যভাবে, তিতাবে আলকোহল ও ফ্যাটি আসিডের এস্টারকে লিপিড বলে। লিপিড প্রধানত স্নেহ ও তেলক্সপে বিদ্যমান বিধারণ তাপমাত্রায় কতিপয় লিপিড শক্ত থাকে এবং ২০° সেলসিয়াস তাপমাত্রায় কতিপয় লিপিড তরল এই ও কঠিন লিপিডকে স্নেহ বা চর্বি (fat) এবং তরল লিপিডকে তেল (oil) বলা হয়। লিপিডের নির্দিষ্ট কোনো tok.

ন বৈশিষ্ট্য

। দিশিত পানিতে প্রায় অদ্রবলীয়।

াবরা ইথার, অ্যালকোহল, বেনজিন, ক্লোরোফর্ম, অ্যাসিটোন, পেট্রোলিয়াম ইত্যাদি প্রবণে প্রবণীয় া ব্যাটি আসিডের এস্টার হিসেবে (actual or potential) বিরাক্ত করে।

শিত পানির চেয়ে হালকা; তাই পানিতে ভাসে।

আশাইসিস শেষে এরা ফ্যাটি অ্যাসিড ও গ্রিসারোলে পরিণত হয়।

্যান্তৰ আণ্ডিক ওজন বৃদ্ধির সাথে সাথে গগনাছ বৃদ্ধি পেয়ে থাকে।

- ৭। দিশিভের সাথে Sudan III দ্রবণ যোগ করলে লাল বর্ণ ধারণ করে।
- ৭। দিশিভের সাথে Sudan III দ্রবন যোগ করলে নান ব ৮। সাধারণ উদ্ধাতায় (20°C) কিছু দিপিভ (যেমন-তেল) তরল এবং কিছু লিপিভ (যেমন চর্বি) কঠিন অবস্থায় চ দিপিড-এর গঠন

ভ-এর গঠন সাধারণভাবে গ্রিসারোল ও ফ্যাটি আসিডের সমন্বয়ে লিপিড গঠিত হয়। কসফোলিপিড-এ গ্রিসারোল ও স সাধারণভাবে গ্রিসারোল ও ফ্যাটি অ্যাসভের সমর্বনে । গ্রাইকোলিপিড-এ ফ্যাটি অ্যাসিড, শ্যুগার (হেছেছা আসিত ছাড়া ফসকরাস এবং নাহ্মোজেন বেন বাবে। নাইট্রোজেনঘটিত পনার্থ থাকে। যোমজাতীয় লিপিড-এ গ্রিসারোল-এর পরিবর্তে আলকোহল বা কোলেস্টেরোল থাকে লিপিড-এর কাজ

- ৬-এর কাজ ১। চর্বি ও তেল জাতীয় লিপিত উদ্ভিদদেহে সঞ্চিত খাদ্য হিসেবে জমা থাকে। বিভিন্ন তেলবীজের (সরিষ্ চ সন্মাবিন ইত্যাদি) অনুরোদগমকালে লিপিড খাদারূপে গৃহীত হয়। এদের বিজারণকালে অধিক ATP হৈছি ह ২। ফসফোলিপিড বিভিন্ন মেমব্রেন গঠনে উপাদান হিসেবে কাজ করে।
- ৩। মোম জাতীয় লিপিড পাতার বহিরাবরণে স্তর (কিউটিকল) সৃষ্টি করে অতিরিক্ত প্রস্থেদন রোধ করে।
- ৪। কতিপয় এনজাইমের প্রোসংঘটিক গ্রুপ হিসেবে কসকোলিপিড কাজ করে। এছাড়া কসকোলিপিড আর বাহত হিসবেও কাজ করে।
- ৫। সালোকসংশ্লেমণে গ্লাইকোলিলিভ বিশেষ ভূমিকা পালন করে।
- ও। প্রোটনের সাথে যুক্ত হয়ে লিপোপ্রোটন গঠন করে এবং লিপোপ্রোটিন শক্তি উৎপাদন প্রক্রিয়ার সাথে জন্ম

দিপিড-এর শ্রেণিবিভাগ (Classification of Lipids)

- (ক) রাসায়নিক গঠন প্রকৃতি অনুসারে লিপিড প্রধানত তিন প্রকার; (Bloor 1943) যথা-
- ১। সরল লিপিড, যেমন- চর্বি, তেল, মোম ইত্যাদিঃ
- ২। যৌগিক লিপিড, যেমন- কসকোলিপিড, গ্লাইকোলিপিড, সালফোলিপিড ইত্যাদি;
- ত। উত্ত বা উৎপাদিত লিপিড, যেমন- স্টেরয়েড, টারপিনস, রাবার ইত্যাদি।
- (খ) আণবিক গঠন অনুযায়ী লিপিড প্রধানত পাঁচ প্রকার; যথা-
- (i) নিউট্রাল লিপিড, (ii) ফসফোলিপিড, (iii) গ্লাইকোলিপিড, (vi) টরপিনয়েডস এবং (v) মোম।
- ১। সরদ দিশিত (Simple lipids) : যেসব লিপিতের বিশ্লেষণে স্ক্রে পদার্থ ছাড়া অন্য কিছু পাওয়া যায় না ভাই সরল দিশিত বলে। সরল লিপিড দু প্রকার : (i) স্লেছদ্রব্য (চর্বি ও তেল) ও (ii) মোম।
- (i) স্থেক্তব্য (চর্বি ও ভেল) : ক্যাটি আসিভের গ্লিসারোল এস্টারকে বলা হয় স্লেহ্দ্রব্য। এতে তিন অণু ক্য আসিভের সাথে এক অণু গ্রিসারোল মুক্ত হয়। একে ট্রাইগ্রিসারাইড বা নিউট্রাল লিপিডও বলা হয়। ট্রাইগ্রিসারাই

চর্বি (Fat) : বে সর ট্রাইগ্রিসারাইড সম্পৃত (saturated) ফ্যাটি আসিড দিয়ে তৈরি এবং সাধারণ তাপমার্ক (২০° সে.) কঠিন বা অর্থকঠিন অবস্থায় বিরাজ করে তাকে চর্বি বলে। যেমন- উদ্ভিক্ত চর্বি ও পাম অয়েল। এর গলনা বেশি। নারিকেল তেলও চর্বি জাতীয়, নিমু তালমাত্রায় জমাট বাঁধে।

ভেল (Oil) : যে সব ট্রাইগ্রিসারাইড অসম্পূক্ত (unsaturated) ফ্যাটি আাসিড দিয়ে তৈরি এবং সাধারণ তাপমার্ক্ত (২০° সে.) তরল অবছার থাকে তাকে তেল বলো। যেমন- সাধারণ ভোজা তেল। এর গলনাত্ব খুব কম। চর্বি ও ভেলের কাজ: ১। ফল ও বীজে সন্ধিত খাদ্য হিসেবে জমা থাকে। ২। বীজের অমুবোদগমকার্ট কার্বোহাইছেট-এ পরিবর্তিত হয়ে বর্ষিকু চারার খাদ্য ও শক্তি যোগায়।

ট্রাইপ্রিসারাইড (Triglyceride)

এক অপু প্রিসারোগ-এর সাথে তিনটি কাটি আাশিত সংযুক্ত হয়ে তৈরি হয় এক অণু ট্রাইট্রিসারাইড। এ সময় তি অক পর চিলারের এটি হলো একটি ভিষাইছেশন বিক্রিয়া। মিসারোল হলো একটি লগে ভাল আল্লের্ড

বেখানে ৩টি কার্বন ও ৩টি হাইড্রোক্সি পার্শ্বগ্রনপ থাকে। ফ্যাটি আসিড হলো একটি হাইড্রোকার্বন ওছ বেখানে ৩টি কার্বন ও ৩টি হাইড্রোরি পাত্মন্দ খালে। মাধার একটি কার্বোক্তিল মুদপ থাকে। কার্বোক্তিল মুদপের ডিহাইড্রেশন বিক্রিয়ার মাধ্যমে OH সাইড ক্রুপের মাধায় একটি কার্বোক্সিল গ্রুপ থাকে। কার্বোপ্সশ মাধায় চেইন-এ কোনো ভাবল বভ না থাকলে তার বলা হয় এস্টার পিক্তেক (ester linkage)। ফ্যাটি আসিড চেইন-এ কোনো ভাবল বভ না থাকলে তার বলা হয় এন্টার লিক্টের (ester linkage)। ক্যাতি আসিডের হাইড্রোকার্বন চেইন-এ এক বা এক সাচুরেটেড ক্যাতি আসিড, যেমন- নিয়ারিক আসিড। ক্যাতি আসিডের হাইড্রোকার্বন চেইন-এ এক বা এক সাচুরেটেড ক্যাটি আসিড, যেমন- সিল্লারিক আসিড আসিড, যেমন- লিনোলিক (linoleie) আসিড, বিভ বাকলে তাকে বলা হয় আনস্যাচুরেটেড ক্যাটি আসিড, বিভাগের ক্রাট্রিকারের ক্রাট্রেকারের বঙ ধাকনে তাকে বলা হয় আনস্যাচুরেতেও ক্যাতি আলি চর্বিতে থাকে) আর্টারিগাত্রে জমা হয়ে রক্ত চলাচলে। (linolenic) আসিড। স্যাচুরেটেভ ফ্যাটি আসিড (যা প্রাণী চর্বিতে থাকে) আর্টারিগাত্রে জমা হয়ে রক্ত চলাচলে। করে দেয়, তাই হৃদরোগ হয়। আনস্যাচুরেটেড ফ্যাটি অ্যাসিডে তা হয় না।

মানুষ (এবং অন্যান্য জনাপায়ী প্রাণী) ক্যাটি আসিডের নবম কার্বনের পর কোনো ভাবল বভ তৈরি করে তাই আমাদের বাদ্যে সামান্য আনস্যাচুরেটেড ফ্যাটি আসিড যোগ করতে হয়। এ জন্যই linoleic এবং । আসিভবাকে আবশ্যকীয় (essential) ফ্যাটি আসিড বলা হয়। আমাদের খাদ্যে সাধারণত যথেষ্ট আনস্যাচ্রেট্র আাসিড থাকে, তাই পুষ্টিজনিত অসুবিধা দেখা দেয় না।

(ii) মোম (Wax) : ফ্যাটি আসিড, ট্রাইছাইদ্রিক আলকোহলের পরিবর্তে মনোহাইদ্রিক আলকোর উপাদানের সাথে এস্টারীভূত হলে তাকে মোম বলে। কোনো কোনো উদ্ভিদে প্রাপ্ত মোম ২৪ থেকে তা পরমাণুবিশিষ্ট। মৌচাক থেকেও প্রাকৃতিক মোম পাওয়া যায়। সাধারণ তাপমাত্রায় মোম কঠিন থাকে। মের অদ্রবীয় এবং রাসায়নিকভাবে নিষ্ক্রিয়, কারণ এদের হাইড্রোকার্বন চেইন-এ কোনো ভবল বভ থাকে না। এনে অত্যন্ত দীর্ঘকার। ক্যাটি আসিভের পরিসর C14 থেকে C36। তার আলকোহলের পরিসর C16 থেকে C36

মোম-এর কাজ: ১। উত্তিদ অঙ্গের উপরিতলে প্রতিরোধক হিসেবে কাজ করে। ২। মোম সাধারণত কং ह পাতা ও কলের ওপর প্রতিরোধক স্তর হিসেবে অবস্থান করে। ৩। মোম থেকে মোমবাতি তৈরি হয়। ৪। বিজিল শিক্ষেও মোম ব্যবহৃত হয়।

- ২। থৌশিক পিলিড (Compound lipids) : যে লিপিড সরল লিপিডের সাথে কিছু জৈব ও অজৈ কা সংমিশ্রণে তৈরি হয় তাকে বৌশিক শিশিড বলে। এটি স্লেহ ও অস্লেহ জাতীয় পদার্থের যৌগ। তিন রকম যৌগিক শি নিয়ে বর্ণনা করা হলো :
- (i) ক্সকোশিশিভ (Phospholipids) : গ্লিসারোল, ক্যাটি আসিড ও ক্সকেটের সমস্বয়ে গঠিত লিপিডকে কা ফসফোলিদিত। লেসিখিন (lecithin), সেফালিন (cephaline), প্লাক্তমালোজেন (plasmalogen) ইত্যানি কৰি ফসফোলিপিডের নাম। কসফোলিপিড-এর বিশেষ উপাদান হলো ফসফাটাইডিক অ্যাসিড। সেল মেমব্রেন, মাইটোক্র টনোপ্লাস্ট, এডোপ্লাক্সমিক রেটিকুলাম, নিউক্লিয়ার এনভেলপ ইত্যাদি ফসফোলিপিড সম্বলিত।

কাজ: ১। কোষ বিভিন্ন কোষ অস্থাপুর ঝিল্লির গাঠনিক উপাদান হিসেবে কাজ করে। ২। আয়ন বাংত গি কাজ করে। ৩। কতিপন্ন এনজাইমের প্রোসধেটিক ক্রুপ হিসেবে কাজ করে। ৪। ফুসকোলিপিড রক্ত জমাট বাঁধতে স করে। ৫। কোম্বের ডেলাতা ও পরিবহন প্রক্রিয়া নিয়ন্ত্রণ করে থাকে।

(ii) গ্লাইকোলিশিভ (Glycolipids) : সরল লিপিডের সাথে যখন কার্বোহাইডেট যুক্ত থাকে তথ্য হা গ্রাইকোলিপিড বলে। এতে কসকেটের পরিবর্তে গ্যালাকটোজ বা গ্রুকোজ থাকে। উত্তিদের ফটোসিনখেটি ক্ষসকোলিপিড অপেকা গ্লাইকোলিপিড বেশি থাতে। ক্রোপ্লাস্টের মেমব্রেনে গ্লাইকোলিপিড অধিক থাকে। গ্যালাকটোজ থাকলে তাকে গ্যালাকটোলিগিত বলে। ব্রিম্মী ও তুলার বীজ থেকে গ্রাইকোলিগিত সালত কর্ম মাইকোলোটন ও মাইকোলিপিডকে নিলিডভাবে মাইকোক্যালির বলা হয়।

কাল : ১। ফটোসিনথেটিক অসাণু গঠনে ভূমিকা রাখা। ২। ফটোসিনপ্রেসিস প্রক্রিয়ায় সাহায়া করা।

সালকোশিলিভ (Sulpholipids) : যে গ্লাইকোশিলিড সালফার প্লাকে তাকে সালফোশিলিভ বলে। উভিদে প্রচুর ্রা উৎপাদিত লিপিড (Derived Halds তিপছিতি সীমাবছ থাকে।

্রা উহপাদিত লিপিড (Derived lipids) : যৌগিক লিপিডের অর্ড বিশ্রেষণের ফলে যে লিপিড উত্ত হয়। জাইসোপ্তিন হলো ৫ কার্বনবিশিষ্ট সেন্ত্র (C.H.) প্রিমার দিয়ে গঠিত তাকে টারপিনয়েড রাল। <mark>আইসোপ্রিন হলো ৫ কার্বনবিশিষ্ট যৌগু স্টেরমেড, টারপিন্ন, রাবার</mark> ইত্যাদি টারপিনয়েড লিপিডের ক্রেন। নিমে এদের বর্ণনা করা হলো-

(৪) ক্রেরেড (Steroids) : চারটি ভিন্নতর কার্বন রিং-এর শিরদাড়া (backbone) এবং তাতে কার্বনের পাশ্বশিকস ্রি গাঁঠত লিপিড হলো স্টেরয়েড। <u>যে সব স্টেরয়েড-এ হাইড্রিল</u> (-OH) গ্রুপ থাকে, তাদেরকে বলা হয় স্টেরল ্রাট। ব্যাকটেরিয়া ও সায়ানোব্যাকটেরিয়া ছাড়া অন্যান্য উদ্ভিদে স্টেরল বিদ্যমান। এরা উদ্ভিদে মুক্ত অবস্থায় অথবা ক্রসাইড হিসেবে বিরাজমান থাকে। কোলেস্টেরল (cholesterol), স্টিগমাস্টেরল (stigmasterol), আর্গস্টেরল ্ত্রালাতা), β-সিটোস্টেরল (β-sitosterol), ডিজিট্যালিন প্রভৃতি স্টেরয়েডস্ এর উদাহরণ। হুদাপিতের চিকিৎসায় এক কানিন ব্যবহৃত হয়। নিউরোম্পোরা ও ঈস্ট এ আর্গস্টেরল পাওয়া যায়। আলু, চুপরিআশৃতে কোলেস্টেরল পাওয়া র। অধিক পরিমাণ কোলেস্টেরল প্রাণিদেহে পাওয়া যায়।

জালেস্টেরল : কোলেস্টেরল হলো সকল প্রাণীর চর্বিতে বিদ্যমান একটি সাধারণ স্টেরল যা প্রাঞ্জমামেমব্রেনের ক্রোজনীয় উপাদান, পিত্তের প্রধান উপাদান এবং ভিটামিন-ডি এর পূর্বসূচক।

জোলেস্টেরল দুই প্রকার; যথা- (i) লো-ডেনসিটি লিপোপ্রোটিন বা LDL এবং (ii) হাই-ডেনসিটি লিপোপ্রোটিন বা

IDL। মানুষের রক্তে কোলেস্টেরল বেশি থাকা ক্ষতিকর গ্রাবিক মাত্রা ০.১৫-১.২০%)। রক্তে HDL বেশি ক্লেমন নয় তবে LDL বেশি থাকা খুবই ক্ষতিকর। াত্তর রক্তে HDL বেশি থাকে এবং LDL কম হে। এজন্য পুরুষ লোক অপেক্ষা স্ত্রীলোকের হনরোগ ময়া। কোলেস্টেরল বেশি থাকলে রক্তনালি সরু হয়ে দয়ে রক্ত চলাচল কমে যায় ফলে করোনারি প্রযোসিস নক হদরোগ হয়। মানুষের রজে HDL এর মাত্রা M (40 <mg/dl) থাকা ভালো। তবে LDL এর মাত্রা

À 9

in

10

f

ō

চিত্র : কোলেস্টেরল এর গঠন।

<u>(cl00 mg/dl)</u> থাকা ভালো। सब : বিভিন্ন প্রকার চিকিৎসায় স্টেরয়েড ব্যবহৃত হয়। কিছু স্টেরয়েড হরমোন প্রাণীর যৌন বিকাশ নিয়ন্ত্রণ করে। कि रखम, চর্বি হজম, পানির ভারসাম্য রক্ষা, কোষ পর্দা গঠন প্রভৃতি কাজ বিভিন্ন প্রকার স্টেরয়েড করে থাকে।

(ii) টারপিন্স (Terpenes): ১০ থেকে ৪০টি কার্বন পরমাণুবিশিষ্ট আইসোপ্রিনয়েড যৌগকে টারপিন্স বলে। এর শাল সংক্রেত হলো (C5H8)n। পুদিনা, তুলসী ইত্যাদিতে উদ্বায়ী তেল হিসেবে টারপিন্স পাওয়া যায়।

नेव : সুগন্ধী প্রসাধনী সামগ্রী তৈরিতে ও বার্নিশের কাজে ব্যবহৃত হয়। (iii) রাবার (Rubber) : প্রায় ৩০০০-৬০০০ হাজার আইসোপ্রেন একক মুক্ত হয়ে রাবার তৈরি হয়। Hevea Euphorbiacese) থেকে প্রাকৃতিক রাবার (প্যারা রাবার) পাওয়া যায়। এছাড়া Ficus elastica, Paium gutta, Castilla elastica ইত্যাদি বৃক্ষের কম থেকেও সামান্য পরিমাণ রাবার সংগ্রহ করা যায়। প্রাকৃতিক

গাঙাও কৃত্রিম উপায়ে রাবার উৎপাদন করা হয়। এদেরকে গাম রাবার বলে। শিল : ট্রাক, বাস, মোটরগাড়ি, রিক্সা, সাইকেল ইত্যাদির টায়ার তৈরি করার জন্য রাবার ব্যবহৃত হয়। লিশিত-এর রাসায়নিক উপাদান
লিশিত সাধারণত কার্বন, হাইড্রোজেন ও অপ্সিজেন নিয়ে গঠিত। এতে ফ্যাটি অ্যাসিড ও গ্লিসারোল ছাড়া ক্রমন্ত্র
লাইট্রোজেন কারকও থাকতে পারে। মোমে গ্লিসারোল পাকেনা - এর পরিবর্তে আলকোহল বা কোলেকেন্দ্র দ্বাইট্রোজেন কারকও থাকতে পারে। মোমে গ্লিসারোল পাকেনা - এর পরিবর্তে আলকোহল বা কোলেকেন্দ্র দ্বাইট্রোজেনঘটিত পদার্থ থাকে।
গ্লাইকোলিপিতে ক্যাটি আসিড, হেস্মোল শূরণার ও নাইট্রোজেনঘটিত পদার্থ থাকে।

ভিন্নধর্মী পিপিড
কিছু দিপিভের রাসায়নিক গঠন ট্রাইগ্রিসারাইড্স ও ফসফোলিপিড থেকে আলাদা। নিচে কয়েকটি নিরে আদ্ধা বা হলো।

- ক্যারোটনরেভ্স (Carotenoids) : এরা আলোক শোষণকারী পিগমেন্ট। বিটা-ক্যারোটিন পাতায় আলেক
 শোষণ করে সালোকসংশ্লেষণে সহায়তা করে। এছাড়া বিটা-ক্যারোটিন আলোক অনুধাবন করে কটেট্রপিছর হা
 মানবদেহে বিটা-ক্যারোটিন তেকে দুই অপু ভিটামিন-এ তৈরি করে যা থেকে পরে রভোপসিন (rhodopsin) তৈরি ম
 রভোপসিন দৃষ্টিশক্তি (vision) দান করে। ভিমের কুসুম, গাজর, টমেটো ইত্যানি থেকে বিটা ক্যারোটিন পাওয়া য়য়।
- ক্রেরেড্স (Steroids) : Testosterone এবং estrogens হলো স্টেররেড হরমোন যা মেরুদণ্ডী প্রাদীতে চে
 বিকাশ নিয়ন্ত্রণ করে। Cortisol কার্বোহাইট্রেট ও প্রোটিন হলম, লবণ ভারসাম্য, পানি ভারসাম্য এবং যৌন বিকাশ
 অবদান রাখে। Cholesterol লিভারে তৈরি হয় এবং কোষীয় বিল্লির গঠনে সাহায্য করে, testosterone এবং করে
 স্টেরয়েড হরমোন সৃষ্টির সূচনা প্রব্য হিসেবে কাল করে। বাইল (bile) সল্ট তৈরিতেও সাহায্য করে যা খাদোর চর্বি হল
 অবদান রাখে। রক্তে অভিমান্ত্রায় কোলেস্টেরল ধমনীর লুমেন বছ করে দিতে পারে। রক্তে LDL (Low Denis
 Lipoprotein) বেশি পাকা ক্ষতিকর কিষ্ক HDL (High Density Lipoprotein) বেশি থাকা মঙ্গলজনক।

ভিটামিনসমূহ (Vitamins) : ক্যারোটিনয়েও এবং স্টেরয়েও-এর মাতা কতক ভিটামিনও আইসোপ্রেন (isoprate এর রাসায়নিক পরিবর্তন ও কোভেলেন্ট লিংকিং-এর মাধ্যমে তৈরি হয়। ক্যারোটিনয়েও থেকে ভিটামিন-ম তৈরি হয়। জভাব হলে ত্বক বছ হয়, রাতকানা রোগ হয় এবং বৃদ্ধি বহিত হয়। ভিটামিন-D অপ্রকর্তৃক ক্যালসিয়াম শোষণ নিয়া করে। এর অভাবে হাড়জনিত বিভিন্ন রোগ হয়। এক দল লিগিও ভিটামিন-E হিসেবে পরিচিত। এরা জারুম-বিজ্ঞার ক্ষতিকর দিক থেকে কোষকে রক্ষা করে। ভিটামিন-ম সবুজ শাকসবজিতে পাওয়া যায়। আবার আর বাাকটেরিয়াও তৈরি করে। এরা রক্ত জমাট বাঁধতে সাহায্য করে। পানিতে দ্রবনীয় ভিটামিন হলো B ও C এবং পরিচ অনুবনীয় ভিটামিন হলো A, D, E এবং K।

জীৰদেহে দিপিডের ভূমিকা (Role of Lipids)

জীবদেহে দিপিডের উল্লেখযোগ্য ভূমিকা রয়েছে। সেলমেমন্ত্রন থেকে তরু করে অধিকাংশ অপাণুর অন্ধা কসফোপিপিড দিয়ে গঠিত। কসফোলিপিড কেবল এদের গঠন উপাদান হিসেবেই কাজ করে না, দ্রব্যের আদান-প্রদাহে বিশেষ ভূমিকা রাখে। নিপিডের অভাবে যদি মাইটোকদ্রিয়া নামক অপাণুটি অকার্যকর হয়ে যায় তবে বায়বীয় জীব বাঁ থাকার শক্তি যোগাবে কে? নিপিডঘটিত ক্যারোটিনরেভস্, স্টেরয়েড হরমোন বা চিটামিন A, D, E, K প্রভৃতি জীবার্য তরুত্বপূর্ণ ভূমিকা রাখে। আমাদের খাদা তালিকায় লিপিডের ভূমিকা উল্লেখযোগ্য। এ থেকে অধিক শক্তি পাঙাা লি লিপিড তুকের তছতা দূর করে এবং তুক মস্থ রাখে। গ্লাইকোলিপিড সালোকসংক্রেয়ণে ভূমিকা রাখে। ফসফোলিগিট কোষের আয়নের বাহক হিসেবেও কাজ করে। টারপিনস জাতীয় লিপিড উদ্ভিদে সুগদ্ধি সৃষ্টি করে।

এনজাইম (Enzyme) বা উৎসেচক

এনজাইম হলো প্রোটিন জাতীয় পদার্থ। জীবকোষে এনজাইম অতি অস্তমাত্রায় বিদ্যমান থাকে। এনজাইম বিদ্রিয়ার অংশ এহণ করে বিক্রিয়ার হারকে ত্রাধিত করে এবং বিক্রিয়া শেষে অপরিবর্তিতভাবে মুক্ত হয়ে বার। গাঁ জীবনতত্বের (living system) গতিমায় প্রাণরাসায়নিক অবস্থা বচুপাংশে এনজাইম কর্তৃক নিয়াপ্রত। বিজ্ঞানী কুন (ম্

মু সালে সর্বপ্রথম এনজাইম শব্দটি ব্যবহার করেন। ইস্ট কোমে জাইমেজ আবিষ্ণুত হয় ১৮৯৭ সালে। Summer, 1926) প্রথম ইউরিয়েজ (urease) নামক এনজাইমটি কোম হতে পৃথক করেন এবং বলেন যে, ্রার্চ proteins"। যে প্রোটিন জীবদেহে অল্পনাত্রায় বিদ্যমান থেকে বিক্রিয়ার হারকে তুরাখিত করে কিন্ত ্রার্ট নিজেরা অপরিবর্তিত (শর্ত সাপেক্ষে) থাকে, সে প্রোটিনই এনজাইম। এনজাইমকে জৈব অণুখটকও বলা হয়ে থাকে। এনজাইম কার্বন, হাইড্রোজেন, অন্ধিজেন, নাইট্রোজেন ও সালফার মৌলে গঠিত। ্রাইমে ক্সফরাস, তামা, দত্তা, লোহা, ম্যাঙ্গানিজ, ম্যাগনেসিয়াম প্রভৃতি মৌল থাকে বলে জানা গেছে।

ব্যবহার বিশিষ্ট্য বা এনজাইমের ধর্ম IUB তানুযার্যা এনজাইরা এ ত্রিকার। লোইন হলো প্রধানত প্রোটিনধর্মী।

্রিকোরে এনজাইম কলরেড (colloid) রূপে অবস্থান করে।

্র কার্যকারিতা pH খারা নিয়ন্ত্রিত। সকল এনজাইমই pH 6-9 এর মধ্যে সবচেয়ে বেশি ক্রিয়াশীল।

্বার্ল ভাপ প্রবণ (heat sensitive) অর্থাৎ সাধারণত 35°C - 40°C ট্রাপমাত্রায় অধিক ক্রিয়াশীল। অধিক তালে ক্রেইম নট হয়ে যায়। কিন্তু কম তাপে নট হয় না।

দেরইম খুব অন্ন মাত্রায় বিদ্যমান থেকে বিক্রিয়ার হারকে ত্রান্বিত করে।

লেলাইম কেবলমাত্র বিক্রিনার হারকে ত্রান্থিত করে কিন্তু বিক্রিনার সাম্যাবছার (state of equilibrium) श्वेरर्दन करव ना ।

ন্ত্ৰেমের কাৰ্যকারিতা সুনির্দিষ্ট অর্থাৎ কোনো একটি নির্দিষ্ট এনজাইম তধুমাত্র একটি নির্দিষ্ট বিক্রিয়া বা নির্দিষ্ট ক্রিয় ক্লপকে প্রভাবিত করে, অন্য বিক্রিয়াকে নয়।

ামে রাসায়নিক বৈশিষ্ট্য : সব এনজাইমই প্রোটিন জাতীয়, তাই প্রোটিন গঠনকারী আমিনো আসিডই লনুহে মূল গাঠনিক উপাদান। একটি সুনির্দিষ্ট এনজাইমের অ্যামিনো আসিড সংখ্যা ও অনুক্রম সুনির্দিষ্ট। ভিন্ন ব্যমের আমিনো আসিডের সংখ্যা ও অনুক্রম ভিনু ভিনু হয়ে থাকে। এনজাইম অন্নীয় ও কারীয় উভয় ্রী ক্রিয়াশীল। কো-এনজাইম, কো-ফ্যাইর ইত্যাদির উপস্থিতিতে এনজাইমের ক্রিয়া তুরান্বিত হয়। এনজাইম বিদী, শ্রিসারল ও লঘু অ্যালকোহলে দ্রবণীয়। এখানে মনে রাখা প্রয়োজন যে, সর প্রোটিনই এনজাইম নয়।

^{নামের} নামকরণ : সাধারণত তিনটি পূথক বৈশিষ্ট্যের ওপর ভিত্তি করে এনজাইমের নামকরণ করা হয়। যথা-📆 🔄 ধরন অনুসারে ২। বিক্রিয়ার ধরন অনুসারে এবং ৩। সাবস্ট্রেট-বিক্রিয়ার মিলিত বৈশিষ্ট্য অনুসারে। বিষ্টে-এর ধরন অনুসারে : এনজাইম যার ওপর ক্রিয়া করে তাকে বলা হয় সাবস্টেট (substrate)। যে লাবে পদার্থের ওপর এনজাইম ক্রিয়া করে তার শেষে- 'এজ' (ase) যোগ করে এনজাইমের নামকরণ করা

এনজাইম मानदस्ति = সুকরেজ স্তান্ত-এর সাধে 'এজ' যোগ করে জীৱ-এর সাথে 'এজ' যোগ করে = इडितिस्बन ৰতিনিন-এর সাধে 'এজ' যোগ করে = আরক্তিনেজ ব্রাদিন-এর সাথে 'এজ' যোগ করে = টাইরোসিনেজ া-এর সাথে 'এজ' যোগ করে नार्भक অব সাধে 'এল' যোগ করে প্রোটিয়েল

২। বিক্রিয়ার ধরন অনুসারে । এনজাইম যে ধরনের বিক্রিয়াকে তুরাখিত বা প্রভাবিত করে সেই বিক্রিয়ার অথমাংশের সাথে 'এজ' যোগ করে এনজাইমের নামকরণ করা হয়। একটি ছকের মাধ্যমে এটি দেখানো হলো।

বিক্রিয়ার নাম	+ विश्व	এনজাইমের নাম
হিজোলাইসিস	+ 44	= হাইড্রোলেজ
প্রিভেশন	+ 40	= অক্সিডেন্ড
রভাকশ্ ন	+ 40	= রিভাকটেজ

ও। সাবস্থেট-বিক্রিয়ার মিশিত বৈশিষ্ট্য অনুসারে: সাবস্ট্রেটের সাথে এনজাইমের নাম যোগ করে এ জাতীয় নাম্ঞ ত। সাধারণত বিক্রিয়াকে নির্নিষ্ট করে বোঝাতে এ জাতীয় নামকরণ করা হয়। যেমন সাবস্টেট হেক্সোজ (ই্রেছ প্রমান্ত্র বিশ্বর্থিত ব্যক্তরাকে ব্যান্ত করে ব্যক্তিত ব্যক্তিক । গ্রকোজ থেকে গ্রকোজ-৬-কসকেট সৃষ্টিকার। এবং এনজাইম কাইনেজ, তাই যুক্ত নাম দেয়া হয়েছে হেলোকাইনেজ। গ্রকোজ থেকে গ্রকোজ-৬-কসকেট সৃষ্টিকার। এনভাইম কার্যকরী হয়। ক্সফোইনল পাইকুভিক আাসিড থেকে পাইকুভিক আাসিড তৈরির বিক্রিয়ার এনভাইরে র পাইকৃতিক আাসিত কাইনেজ। এমনইভাবে কসভেফুরোকাইনেজ, কসফোগুকো-আইসোমারেজ ইত্যাদি।

প্রোসম্বেটিক গ্রুপ; কো-ফ্যাষ্ট্রর, কো-এনজাইম

- সব এনজাইমই প্লোটিন। যে এনজাইম তথু প্লোটিন দিয়ে গঠিত তাকে বলা হয় সরল এনজাইম।
- কোনো কোনো এনজাইমে প্রোটন অংশের সাথে একটি অপ্রোটিন অংশ সংযুক্ত থাকে। এ ধরনের এনজইমা (তথা প্রোটনকে) বলা হয় কনজুগেটেড প্রোটন (conjugated proteins).
- কনজুগেটেড প্রোটিন এর প্রোটিন অংশকে অ্যাপোএনজাইম (apoenzyme) বলে 🎗
- ক্রভূগেটেড প্রোটনের অপ্রোটন অংশকে প্রোসংঘটিক গ্রুপ বলে। **ি**
- বোসবেটিক ক্লপ কোনো ধাতুর আয়ুন মেটার (metal) হলে তাকে কো-ফ্যাট্টর (co-factor) বলা হয়। পূ

কো-এনজাইম

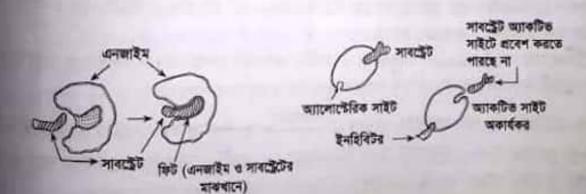
এনজাইমের প্রোসংঘটিক ক্লপটি কোনো জৈব রাসায়নিক পদার্থ হলে (organic compound) তাকে কো-এনছাই (co-enzyme) वणा दश: (वमन- FAD, NAD हैं ज्यानि

এনজাইনেটিক ক্রিয়াকালে কো-এনজাইম সাধারণত সাবস্থেট হতে যে এটম বিয়োজন হয় তার গ্রহীতা (accepted হিসেবে বা সাবস্টেট-এর সাথে যে এটম যোগ হয় তার দাতা (donor) হিসেবে কাজ করে। এনজাইম হতে কো-এনজাই অংশ পৃথক করে নিলে এনজাইমের কার্যক্ষমতা বহুলাংশে হ্রাস পায়। কয়েকটি গুরুত্বপূর্ণ কো-এনজাইম হলো-

- FADH₂ = Reduced Flavin Adenine Dinucleotide
- (ii) FMN = Flavin Mononucleotide (ভিটামিন B2-মনোকসকেট)
- (iii) NAD = Nicotinamide Adenine Dinucleotide NADH + H' = Reduced Nicotinamide Adenine Dinucleotide
- (iv) NADP = Nicotinamide Adenine Dinucleotide Phosphate NADPH + H* = Reduced Nicotinamide Adenine Dinucleotide Phosphate
- (v) CoA = Co-enzyme A
- (vi) ATP = Adenosine Triphosphate

धनकदिस्मत काटकत क्वेनन (Mechanism of enzyme action) वा कियाद धक्छि

জোনো নির্নিষ্ট এনজাইমের এক বা একাধিক সক্রিম স্থান (active site) থাকে। জার্মান রসায়নবিদ Emil Field (১৮৯৪) এনজাইমের আকটিত সাইট প্রভাব করেন। পলিপেপটাইত চেইনের ফলডিং-এর মাধ্যমে আকটিত সাইট শৃ


রাইট ও সাবস্টেটের সম্পর্ক হলো তালা-চাবির মতো সুনির্দিষ্ট। (১) প্রথমে সাবস্টেট অণু এনজাইমের প্রাকৃতিত সাইট'-এ সংযুক্ত হয়ে এনজাইম-সাবস্থেট যৌগ সৃষ্টি করে। (২) থিতীয় পর্যায়ে এনজাইম-র তথা বোগ ভেতে গিয়ে নতুন পদার্থ সৃষ্টি হয় এবং এনজাইম অপরিবর্তিততাবে পৃথক হয়ে যায়।

্রেইম + সাবস্টেট (A এবং B) → এনজাইম-সাবস্টেট যৌগ → এনজাইম + প্রোভাষ্ট (C এবং D) সুক্রেজ — সুক্রোজ যৌগ —> সুক্রেজ + গ্রুকোল (C) + ফুর্টোল (D)

কলে কেনো ক্ষেত্রে এনজাইমের অ্যাকটিভ সাইট-এ সাবস্টেট সঠিকভাবে 'fit' হয় না। এসব ক্ষেত্রে সাবস্টেট ্র সাইট-এ সংযুক্ত হলে পুরো এনজাইমের আকার পরিবর্তন হয়ে যায় এবং এনজাইম সাবস্ট্রেটকে সঠিকভাবে া সাইট-এ 'fit' করে নেয়। একে বলা হয় 'induced fit'। এ কারণে তালা-চাবি মতবাদ পরিত্যাজ্য বলে মনে

্লিক্তি পদার্থ এনজাইমের কাজে বাধাদান করে বা বিমু ঘটায়। এদেরকে ইনহিবিটর বলে। ইনহিবিটর (inhibitor) কাৰে জাকটিভ সাইট-এ আগেই সংযুক্ত হয়ে যায়, ফলে সাবস্টেট ঐ আকটিভ সাইট-এ আর যুক্ত হতে পারে না। ংক্রাইম কাজ করতে পারে না। আবার কতক ইনহিবিটর (বাধাদানকারী) আকটিভ সাইট ছাড়া অন্য কোনো ছানে দ্যা এনজাইমের অ্যাকটিভ সাইট নষ্ট করে ফেলে, কাজেই সাবস্ট্রেট সেখানে যুক্ত হতে পারে না। কিছু কিছু

এনজাইমের কাজের কৌশন।

বিষয়ে যাদের একাধিক সাবইউনিট থকে। এদের আকৃতি ও কাজ সহজেই পরিবর্তনশীল হতে পারে। এ ধরনের মার বলা হয় Allosteric enzymes। আলোস্টেরিক এনজাইমের কার্যকারিতা নিয়ন্ত্রণ করে Affector নালক । ইকেটর, এনজাইমের অ্যাকটিভ সাইট ছাড়া আলোস্টেরিক সাইট-এ সংযুক্ত হয়ে আটিভেটর হিসেবে অথবা

ন হিনেবে কাজ করে। িসা রাসায়নিক বিক্রিয়া সম্পন্ন করতে কিছুটা অতিরিক্ত শক্তির দরকার হয়। এই অতিরিক্ত শক্তিকে কার্যকরী া নালাইম-সাবস্টেট এর কার্যকরী শক্তি কম। তাই কম কার্যকরী শক্তিসম্পন্ন সাবস্টেট অণু এনজাইমের সাথে বিভিন্নার হার বেড়ে যায়।

শিশ এনজাইমের কাজের কৌশল বিষয়টি বোর্ডে উপছাপন করবে এবং বাাখ্যা করবে।

এনজাইমের শ্রেণিবিন্যাস : গঠন প্রকৃতির ওপর ভিত্তি করে এনজাইমসমূহকে শ্রেণিবিন্যপ্ত করা যায়।
ধরনের বিক্রিয়াকে প্রভাবিত করে তার ওপর ভিত্তি করেও এনজাইমসমূহকে শ্রেণিবিন্যপ্ত করা যায়।

- ক) গঠন বৈশিষ্ট্যভিত্তিক শ্রেদিবিন্যাস : গঠন বৈশিষ্ট্যভিত্তিক এনজাইম দু'প্রকার । যথা-
- ১। সরল এনজাইম (Simple enzyme) : যে এনজাইমের সম্পূর্ণ অংশই তথু প্রোটিন দিয়ে গঠিত হাছে। এনজাইম বলে। যেমন-সুকরেজ, অক্সিডেজ।
- ২। যৌগিক বা সংযুক্ত এনজাইম (Complex বা conjugated enzyme) : যে এনজাইমের প্রোটিন আছে। একটি অপ্রোটিন অংশ যুক্ত থাকে তাকে যৌগিক এনজাইম বা কনজুগোটেড এনজাইম বলা হয়। যেমন-<u>PAD, NAD</u>
- (খ) কী ধরনের বিক্রিয়াকে প্রতাবিত করে তার ওপর ভিত্তি করে এনজাইমসমূহকে নিমুলিখিত প্রকারে ক্রের করা হয়।
- ১1 ছবিতারিতাকটেছ (Oxido-reductase) এনজাইম : এ জাতীয় এনজাইম কোনো পদার্থের সাথে হাইছে ছবিতারিতাকটেছ (Oxido-reductase) এনজাইম : এ জাতীয় এনজাইম কোনো পদার্থের এগুলো বিযুক্ত করে। অক্সিজেন সাজে হাইছ্রোজেন কিবাজন বা ইলেকট্রন অপসারণকে বলা হয় ছবিতাকশন (oxidation) বা জারণ। আবার হাইছ্রোজেন সা বা ছবিতার বা ইলেকট্রন যোগ হলো রিভাকশন (reduction) বা বিজারণ। বাংলায় এদেরতে ছ (oxidation) বিজারণ (reduction) এনজাইম বলা হয়। যেমন- সাইটোজেনম অক্সিডেজ, কসফোল্লিসারাজ্যি ভিহাইছ্রেজিনেজ।

এখানে NAD বিজ্ঞারিত হয়ে (হাইড্রোজেন যুক্ত হয়ে) NADH + H° তে পরিগত হয়েছে এবং ৩-ফসফোণ্ডিসার্টার্মী হাইড্রোজেন হারিয়ে জ্ঞারিত (oxidized) হয়েছে।

্ব দ্বিশকারেজ (Transferase) এনজাইম : এ জাতীয় এনজাইম কোনো একটি পদার্থ হতে একটি গ্রুপতে (জ NH₂) অপসারিত করে অনা একটি পদার্থের সাথে সংযুক্ত করতে সহায়তা করে।

শ্রুটামিক অ্যাসিত + অক্সালো আসিটিক আসিত — টালফারেজ এক্ষেত্রে শ্রুটামিক আসিত হতে NH₂ গ্রুপ অপসারিত হয়ে অক্সালো আসিটিক অসিত্রের সাথে শুরু হতে গ্রু অ্যাসপারটিক আসিতে পরিণত করেছে এবং নিজে α- কিটোগ্রুটামিক আসিতে পরিণত হয়েছে।

ত। হাইন্দ্রোলাইটিক এনজাইম বা হাইন্দ্রোলেজ (Hydrolase) এনজাইম : এ জাতীয় এনজাইম কোনে পরি বিশেষ বন্ধের সাথে পানির অণু সংযুক্ত করে তাকে হাইন্দ্রোলাইনিস করতে সহায়তা করে। সুকরেজ, শ্রেমির ফুসাফেটেজ, এস্টারেজ ইত্যাদি এ জাতীয় এনজাইম।

সুকরোল + পানি সুকরেল গুকোল + ফুরোজ

৪। শাইয়েজ (Lyase) এনজাইম : এ শ্রেণির এনজাইম হাইড্রোগাইসিস ও জারণ-বিজারণ ছাড়াই প্রনা করি সাববৌটের মূলককে ট্রাগানার করে থাকে। এরা কার্বন-কার্বন, কার্বন-প্রস্থিতেন, কার্বন-নাইট্রোজেন প্রভৃতি মের্কির কার্চ করে। উনাহরণ- আগভোলেজ, আইসোনাইট্রেই গাইয়েজ।

L-মালেট L-মালেট হাইছোগাইয়েজ ফিউমারেট + পানি

(Isomerase) এনজাইম : এ জাতীয় এনজাইম আগড়োঞা (aldose) এবং কিটোলা (ketose) ক্রিমেরিক পরিবর্তন সাধন করে।

ফসফোযুকো-আইসোমারেল গুকোজ-৬-ফসফেট

(Lygase) এনজাইম : এ ভাতীয় এনজাইম ATP-এর সহায়তায় দুই বা ততোধিক সাবস্ফৌটকে সংযুক্ত প্রাসৃষ্টি করে। বেমন-

ত্ত্বিক আসিড + NH3 + ATP ্র্টামিক সিনথেটেজ ্র্টামিন + ADP + Pi

প্রতার (Carboxylase) এনজাইম : এ জাতীয় এনজাইম কোনো পদার্থের সাথে CO, অধু যুক্ত করতে ে বনাৰ্থ হতে CO: বিযুক্ত করতে সহায়তা করে।

জ্বালো সাকসিনিক অ্যাসিড কার্বোক্সিলেজ α- কিটোগ্রটারিক অ্যাসিড + CO2

প্রেরে (Apimerase) এনজাইম : এ জাতীয় এনজাইমসমূহ কোনো পদার্থতে এর এপিমারে পরিণত করতে ব্য। এপিমার অপুণ্ডলো কেবলমাত্র একটি কার্বন এটমের কনফিগারেশন দিয়ে পার্থক্যমণ্ডিত।

ক্ষাবিশেষ (Phosphorylase) এনজাইম: এ জাতীয় এনজাইম কোনো পদার্থের সাথে ফসফেট গ্রুপ যুক্ত ্রানা পদার্থ হতে ফসফেট গ্রুপ বিভিন্ন করতে সহায়তা করে।

গ্রকোজ + ATP ক্সফোরাইলেজ (হেল্লোকাইনেজ) গ্রকোজ-৬-ফসফেট + ADP

া ।।। জনুসারে এনজাইম প্রথম ৬ প্রকার।।)

্য কৰ্মকারিতার প্রভাবকসমূহ

INGE : 40' সে. এর উপরে এবং 0' সে. বা তার নিচের তাপমাত্রায় এনজাইমের কার্যকারিতা দারুগভাবে কমে IC - 40° C তার্মাত্রায় এনজাইমের বিত্রিবারে হার সবচেয়ে বেশি। তাই এই তাপমাত্রাকে পরম তাপমাত্রা alemperature) বলা হয়।

🚻 : অতিরিক্ত অমু বা অতিরিক্ত কার-এ এনজাইমের কার্যকারিতা নই হয়। এক একটি এনজাইমের এক একটি ा डगार Hq बारक

	এনজাইম	অপটিমাম pH
**	পেপসিন	2.0 ~
	ইনভারটেজ	8.0
	<u>সেলুবায়েজ</u>	2.0
	इस्तिरमञ	9.0
	ট্রিপসিন	b.0 V

ন। বেষে পরিমিত পানির উপস্থিতিতে এনজাইমের কার্যকারিতা স্বাভাবিক থাকে। করনো বীজে পানি না াই নিষ্ট্রনা থাকে।

ি কোনো কোনো ধাতুর (যেমন- Mg**, Mn**) উপস্থিতি এনজাইমের কার্যক্ষমতা বাড়িয়ে দেয়। আবার

বিষ্ণান Ag. Zn. Cu) উপস্থিতি এনজাইনের কর্মকমতা কমিয়ে দিতে পারে।

বিশ্বর মন্ত : সাবস্টেট-এর মনতের ওপরও এনজাইমের কর্মক্ষতা নির্ভরশীল। সাবস্টেটের মনত্ শা তর্মক্ষতা বাতে এবং ঘনত ক্ষালে কর্মক্ষমতা তমে।

শ্বির মনত্ব । এনজাইমের ঘনতের ওপরও এদের কর্মক্ষমতা নির্ভরশীল।

- ৭। আেডাই-এর খনতু: প্রোডাই-এর পরিমাণ বেড়ে গেলে বিক্রিয়ার হার কমে যেতে পারে।
- ৮। আকটিতেটর: আকটিতেটরের উপস্থিতিতে এনজাইমের বিক্রিয়ার হার বাড়ে।
- । প্রতিরোধক (ইনহিবিটর): এর ছারা এনজাইমের কার্যকারিতা বাধ্যপ্রস্ত হয়।

ক্র বিক্রিয়ার পরে অপরিবর্তিত থাকে। স্বল্প পরিমাণ এনজাইম প্রচ্ন পরিমাণ সাবস্থেটিকে প্রোডারে পরিণত করে। ক্রিয়ার পরি অপরিবর্তিত থাকে। স্বল্প পরিমাণ এনজাইম প্রিয়াণীল। এটি বিক্রিয়ার গতিকে বাভ্রুত বিক্রিয়ার পরে অপরিবর্তিত থাকে। স্বল্প পরিমাণ এনজাইম প্রচ্যাণীল। এটি বিক্রিয়ার গতিকে বাভ্রুত বিক্রিয়ার পরে অপরিবর্তিত থাকে। স্বল্প পরিমাণ এনজাইম প্রচ্ন পরিমাণ সাবস্থেটকে প্রোডারে পরিণত করে। ক্রিজার পরে অপরিবর্তিত থাকে। স্বল্প পরিমাণ এনজাইম প্রচ্ন পরিমাণ সাবস্থেটকে প্রোডারে পরিণত করে। ক্রিজার বিভিন্ন প্রয়োজনীয় রাসায়নিক দ্রবা সংশ্লেষ করে।

জৈবিক কার্যক্রমে এনজাইমের ব্যবহার

১। সেপুলেজ (Cellulase) : যে এনজাইম সেনুলোজকে হাইট্রোলাইসিস করে সেনুবায়োজ-উৎপন্ন করে হা
সেপুলেজ বলে। উদ্ভিদদেহের প্রধান গাঠনিক পলার্থ হলো সেপুলোজ। মৃত উদ্ভিদদেহ পচে না গেলে সমস্ত পৃথিব হা
মৃত উদ্ভিদ দিয়ে ভরা থাকত। সেপুলেজ এনজাইমের কার্যকারিতায় এরা ক্রমান্থরে পচে মাটির সাথে মিশে য়য়। জ্বাভা
প্রাণীদের পৌষ্টিক তম্ব থেকে সেপুলেজ এনজাইম ক্ষরণ হয় বলে তারা কাঁচা উদ্ভিদ পরিপাক করতে পারে। মুনুন
পৌষ্টিকতম্ব থেকে সেপুলেজ এনজাইম ক্ষরণ হয় না।

- ২। শ্রোটিয়েজ (Protease): যে এনজাইম প্রোটিনকে তেঙে আমিনো আসিতে পরিণত করে তাকে শ্রোটিয়ে বলে। বীজের সঞ্জিত প্রোটিন অন্থরোদগমের সময় প্রোটিয়েজ এনজাইমের কার্যকারিতায় তেঙে যায় এবং তা ক্রন্ত জা নাজারিত হয়ে প্রয়োজনান্যায়ী নতুন প্রোটিন তৈরি করে। আমরা যে প্রোটিন জাতীয় খাবার খাই তাও শ্রোটিয়ে এনজাইমের কার্যকারিতায় হজম হয়: ফলে আমাদের দেহ গঠিত হয়। প্রোটিয়েজভুক্ত এনজাইমতলো হচ্ছে- প্রেটিয় ভিশ্বসিন ও পয়শেইন।
- ত। আমাইলেজ (Amylase) : স্টার্চ-এর প্রধান উপাদান হলো আমাইলোজ। কোনো কোনো স্টার্চ-এর সর্বার্থী আমাইলোজ নিয়ে তৈরি। গ্রকোজ একক সোজা চেইন-এর পলিমার সৃষ্টি করে স্টার্চ গঠন করে। যে এনজাই আমাইলোজের ওপর কার্যকর ভূমিকা পালন করে তাকে আমাইলেজ বলে। আমাইলেজ দু'ধরনের : হথা- আম্বর্টালেজ ও বিটা আমাইলেজ। (ধ্-আমাইলেজ সাবস্টেটকে তেঙে প্রথমে ডেক্সট্রিনে পরিণত করে। ৪-আমাইলো
- 8। ক্যাটালেজ (Catalase) : প্রায় প্রতিটি জীবকোষেই ক্যাটালেজ এনজাইম পাওয়া যায়। এরা হাইট্রার্ট্র পারঅক্সাইড (H_2O_2) কে ভেঙে পানি (H_2O) এবং অক্সিজেন (O_2) উৎপন্ন করে। এক অপু ক্যাটালেজ এনজাইম সময়ে লক্ষ্ণ লক্ষ্য H_2O_2 অপুকে বিজারিত করে পানি ও অক্সিজেন-এ রূপান্তরিত করতে পারে।

৫। জাইমেজ (Zymase) : কতক হুত্রাক, বিশেষ করে ইস্ট (yeast) জাতীয় হুত্রাক কোষে জাইমেজ এনরই বিদামান। জাইমেজ এনজাইম একটু জটিল প্রকৃতির। ইস্ট জাতীয় হুত্রাকে বিদামান যে এনজাইম শর্করাকে জার্মিজ প্রক্রিয়ায় ইঘাইল আলকোবল ও CO₂-এ পরিণত করে তাকে জাইমেজ বলে। আলকোবল উৎপাদন ও বেকারি শির্ক জাইমেজ এনজাইম ব্যাপকভাবে রাবহৃত হয়।

- রাবদে এনজাইমের প্রয়োগ : আমাদের দৈনন্দিন জীবনে এনজাইমের ব্যবহার বছবিধ। নিম্নে এনজাইমের ব্যবহার উল্লেখ করা হলো।
- ত্র বস তৈরি (Preparing fruit juice) : আম, কমলালেবু, আপেল, আঙ্গুর প্রকৃতি ফলের রস তৈরিতে করের করা হয়। এসব ফলের রস তৈরিকালে পেকটিন নামক এনজাইম ব্যবহার করলে রসের ঘোলাটে অবস্থা ব্যবহার বস পরিষ্ঠার ও স্থানযুক্ত হয়।
- া কৈ তৈরি (Making cheese) : পনির তৈরিতে এমজাইম রেনিন বাবহুত হয়। রেনিন দুখের ননীকে জমাট বাবহুত্বা করে এবং পরে ননী থেকে পনির তৈরি করা হয়।
- া মাণড়ে দাপ মোচন (Destaining of fabrics) : কাপড়ের দাগ উঠাতে আজকাল এনজাইম ব্যবহার করা হয়। লে প্রকোরে উঠে যায় কিন্তু কাপড়ের কোনো ক্ষতি হয় না।
- া সমতা লোমমুক্তকরণ (Dehairing of hide) । ট্যানারিতে গেদার তৈরি করার সময় কাঁচা চামড়া থেকে লোম লাকতে এনজাইম ব্যবহার করা হয়।
- াত্ত নিরামর (Wound healing) : চামড়ার সৃষ্ট পোড়া ক্ষত নিরামরে এক ধরনের এনজাইম ব্যবহার করা হয়।
 । ইন্তম সংশোধন (Correcting digestion) : শরীরে এনজাইমের পরিমাণ কমে গেলে হজমে সমস্যা দেখা যায়।
 । ইন্তম এই ঘাটতি পূরণ হলে হজমে অনিয়ম দূরীভূত হয়। পেপসিন, অ্যামাইলেজ, পেলেইন ইত্যানি এনজাইম
 রসহয় করে।
- া বাদ-রাসায়নিক বিশ্লেষণ (Analyzing biochemicals) : বর্তমানে ক্লিনিক্যাল বিশ্লেষণে এনজাইম ব্যবহার করা চে ইউরিয়া ও ইউরিক অ্যাসিড শনাক্তকরণে ইউরিয়েজ ও ইউরিকেজ নামক এনজাইম ব্যবহার করা হয়।
- া চেখের ছানির অস্ত্রোপচার (Cataract surgery) : আমেরিকার চকু চিকিৎসক ড, যোসেফ স্পিনা ১৯৮০ সালে বিদ্বাসিন প্রয়োগ করে চোখের চানির অস্ত্রোপচার করেন। ড, যোসেফ স্পিনার অস্ত্রোপচার পদ্ধতিতে সৃষ্ণ সুঁচ করে প্রনায় একটি সৃষ্ণ ফাঁপা সুঁচের সাহায়ে অতি সামান্য পরিমাণ ট্রপসিন চোখের লেলে জ্বনে। ট্রপসিন চোখের অন্যান্য অংশের কোনো ক্ষতি না করে লেলের খোলা অংশ গলিয়ে কেলে। এরপর এই ক্রিটে খোলা অংশ বের করে অস্ত্রোপচার সম্পন্ন করা হয়।
- । ছয়ট ব্ৰু গলানো (Dissolving blood clod) : মন্তিছ ও ধমনীর জমাট ব্ৰক্ত গলাতে ইউরোবাইলেজ নামক

	গ্লপানে সফলতা পেয়েছে। এনজাইম	কো-এনজাইম
वर्गाः वर्गाः	এনজাইম একটি বড় প্রোটিন অণু। অর্থং প্রোটিনধর্মী।	কো-এনজাইম প্রোটিন <u>অণুর একটি আপ্রোটিন অংশ</u> (জৈব রাসায়নিক যৌগ)।
শ্ৰম্ম প্ৰজন	এনজাইমের আগবিক ওজন	কো-এনজাইম অংশের আগবিক ওজন অনেক কম (৫০০ ডাল্টন-এর কাছাকাছি)।
re .	১২০০০-১০,০০,০০০০ ভান্টন। এনজাইম স্বতস্ত্ৰভাবে কান্ধ করতে পারে।	কো-এনজাইম সভস্কাবে অবীৎ প্রোটন অংশ ব্যতীত কাজ করতে পারে না।
मित्र शहर	50°C-60°C তাপমাত্রায় এনজাইমের কার্যকারিতা থাকে না। অর্থাৎ তাপে নষ্ট হয়।	কো-এনজাইমের তাপমাত্রা সহন ক্ষমতা অনেক বেলি। তাই ঐ তাপমাত্রায় কো-এনজাইম অকেলো হয় না।
THE STATE OF THE S	এটি ভারালাইসিস করা যায় না।) কোন ভিটামিন এনজাইম হিসেবে কাজ করে	এটি ভাষালাইসিস করা যায় অনেক ভিটামিন কো-এনজাইম হিসেবে কান্ত করে।
-	না। প্রোটিয়েক লাইপেল ইড্যাদি।	ATP, NAD, FAD Builte i

भार-मश्टक्ष

কার্বোহাইছেট : কার্বোহাইছেট হলো জীবদেহের উল্লেখযোগ্য জৈব রাসায়নিক পদার্থ। কার্বন-হাইছেজেন ক্রিক্রাপে কার্বোহাইছেট গঠিত হয়। কার্বোহাইছেটকে বাংলায় শর্করা বলা হয়। জীবদেহে শক্তির প্রধান ইপ্রকাশিক্ষাইছেট। কার্বোহাইছেট মিটি বাদবিশিট, যেমন- গ্রুকোজ, ফুরৌজ, সুকরোজ (চিনি), আবার কতক কার্বেছাইছেট। কার্বোহাইছেট মিটি বাদ, যেমন- স্টার্চ, সেলুলোজ। কার্বোহাইছেটকৈ মনোস্যাকারাইজ, ভাইস্যাকারাইজ, প্রলিগোস্যাকারাইজ পরিস্যাকারাইজ হিলেবে ভাগ করা যায়। DNA, RNA গঠনকারী পেন্টোজ শুগোরও কার্বোহাইছেট। কোষপ্রাচীর ক্ষম ক্রেলোজও কার্বোহাইছেট। কার্বোহাইছেট আমাদের প্রধান বাদ্য উপাদান। চাল, গম, আলু এসবই কার্বোহাইছেট প্রধান উৎস।

আমিনো আসিত : প্রোটন (আমিষ) গঠনকারী একক হলো আমিনো আসিত। আমিনো আসিতে, আমিনো জ্বা NH: এবং কার্বোক্সিল প্রুপ -COOH অবশ্যই বিদ্যমান থাকে। প্রধানত বিশ্ব প্রকার অ্যামিনো আসিত বিজিন্ন অনুক্র সঞ্জিত হয়ে জীবদেহের সকল প্রোটন (সকল এনজাইমসহ) গঠন করে থাকে। এই প্রোটনের মাধ্যমেই জিন হয়।
নিয়ন্তিত বৈশিষ্ট্য জীবদেহে প্রকাশিত ও ছানাভবিত হয়।

শ্রোটিন : প্রোটিনের বাংলা করা হয়েছে আমিষ। আমানের খাদ্য তালিকায় মাছ, মাংস, ভাল রাখা হয়েছে শ্রেটিনের উপস্থিতি অপরিহার্য। জীবদেহের DNA গঠনেও প্রোটিন প্রয়োজনীয়, মন্ত্র এনজাইমই প্রোটিন। এনজাইম না থাকলে জীবকোষের সকল ক্রিয়া-বিক্রিয়া বন্ধ হয়ে যাবে, প্রোটিন না থাকলে ছিম্ন

সুকরোজ : ডিনি হলো সুকরোজ-এর উদাহরণ। এটি একটি <u>ডাইস্যাকারাইড কার্বোচাইডেট।</u> উরিদদেহে প্রক্রাজ ব্যাপার হলেও সুকরোজ বিভিত্তিসং শাগার নয়। পাতায় প্রস্তুত কার্বোচাইডেট সুকরোজ হিসেবে বিভিন্ন অত্যে প্রবাহিত মা
এর আগরিক সংক্রেড C₁₂H₁₂O₁₁

মার্লিজ বিভিন্ন বিভিন্ন

প্রনার্ভিত থাকে। ব্রুল প্রনাজাইমই প্রাচিন। সাধারণত কোনো নির্মিষ্ট প্রনাজাইম জীবদেহে কিন্তার পর বিক্রিয়ার পর বিক্রেয়ার পর বিক্রিয়ার পর বিক্রিয়ার পর বিক্রিয়ার পর বর্ম অনুসারে বা বিক্রিয়ার ধরন অনুসারে বা সাবস্থেতি-বিক্রিয়ার মিলিত বৈশিষ্ট্য অনুসারে এনজাইমের নামকরণ করা হয় গঠন বৈশিষ্ট্য অথবা বিক্রিয়ার ধরন অনুসারে এনজাইমের কার্যকারিতা তাপমারে। দুর্দি

जनगीन नी

वस्निर्वाष्ट्रित थन्न (MCQ)

- ১। নিচের কোনটি রিভিউসিং খাগার ? (ক) শ্লুকোন্স (খ) স্টার্চ
 - লিপিডের বৈশিয়্য হলো

- (গ) সেলুগোঞ
- (ম) গ্লাইকোজেন

- ()) পানির চেয়ে হালকা
- (ii) হাত্তের সন্ধিছলে লুব্রিকেট বিসেবে কাল করে
- (III) জ্যাটি আাসিড ও গ্লিসারল যারা গটিত

চতুর্থ অধ্যায় অণুজীব

প্রধান শব্দসমূহ: ভাইরাস, া ফায়, ব্যাকটেরিয়া, ক্রাস দ্বি-ভাজন, মেরোজাইগোট

MICRO-ORGANISM / MICROBE

যে সব জীব খুবই কুদ্রাকায় এবং ইলেকট্রন অণুবীক্ষণ যন্ত্র ছাড়া ভালো দেখা যায় না তাদেরকে অণুজীব (Microbes বলা হয়। জীববিজ্ঞানের যে শাখায় অণুজীব সদক্ষে আলোচনা করা হয়, সে শাখাকে অণুজীবতত্ত্ব বা মাইক্রোবায়োলির বলা হয়। জীববিজ্ঞানের যে শাখায় অণুজীব সদক্ষে আলোচনা করা হয়, সে শাখাকে অণুজীবের অন্তর্ভুক্ত। অণুজীববিদশ্য (Microbiology) বলা হয়। ব্যাক্টেরিয়া, মাইকোপ্লাজমা, আাকটিনোমাইসিটিস প্রভৃতি অণুজীবের অন্তর্ভুক্ত। অণুজীববিদশ্য ভাইরাসকেও অণুজীব বলতে চান। মাধ্যমিক শ্রেণিতে তোমরা ব্যাকটেরিয়া ও সায়ানোব্যাকটেরিয়া সমক্ষে কিছুটা জেনেছ ভাইরাসকেও অণুজীব বলতে চান। মাধ্যমিক শ্রেণিতে তোমরা ব্যাকটেরিয়া ও ম্যালেরিয়ার জীবাণু সমক্ষে বিস্তারিত্ব এ অধ্যায়ে তোমরা অতি-আণুবীক্ষণিক ভাইরাস এবং আণুবীক্ষণিক ব্যাকটেরিয়া ও ম্যালেরিয়ার জীবাণু সমক্ষে বিস্তারিত্ব জানতে পারবে।

এ অধ্যায় পাঠ শেষে শিক্ষার্থীরা-

- ভাইরাসের বৈশিষ্ট্য, গঠন ও গুরুত্ব বর্ণনা করতে পারবে।
- ২, ব্যাকটেরিওফায ভাইরাসের সচিত্র জীবন চক্র বর্ণনা করতে পারবে।
- ভাইরাসজনিত রোগের লক্ষণ, প্রতিকার ও প্রতিরোধের উপায় বিশ্লেষণ করতে পারবে।
- ৪. কোষের আকারের ভিত্তিতে ব্যাকটেরিয়াকে বিভিন্ন শ্রেণিতে বিন্যস্ত করতে পারবে।
- ব্যাকটেরিয়ার গঠন ও জনন চিত্রসহ বর্ণনা করতে পারবে।
- ৬. ব্যাকটেরিয়ার গুরুত্ব বিশ্লেষণ করতে পারবে।
- ৭, ব্যাকটেরিয়াজনিত রোগের লক্ষণ ও প্রতিরোধের উপায় চিহ্নিত করতে পারবে।
- ৮. ব্যবহারিক
- ১০ ব্যাকটেরিয়া শনাক্ত করতে ও চিত্র অন্ধন করতে পারবে।
- a. Plasmodium vivax (ম্যালেরিয়ার পরজীবী) এর জীবন চক্র চিত্রসহ বর্ণনা করতে পারবে।
- ১০. মানবদেহে ম্যালেরিয়ার পরজীবীর সংক্রমণ ও প্রতিকার ব্যাখ্যা করতে পারবে।

ভাইরাস (Virus)

সাধারণ সর্লি, ইনফুয়েঞ্জা, ডেম্ব, চিকুনগুনিয়া, জলাতদ্ধ, গুটিবসন্ত, জলবসন্ত, বার্ড ফু, ভাইরাল হেপাটাইটিস ইতালি রোগের কথা প্রায়ই তনে থাকি; কখনো নিজেরাই আক্রান্ত হই। এগুলো সবই ভাইরাসঘটিত রোগ অর্থাৎ ভাইরাস ঘারা এ রোগগুলো হয়ে থাকে। মানুষের নায় অন্যান্য জীবজন্তর (গরু, ভেড়া, মহিষ, ছাগল, ইনুর, মুরগি), এমনকি গাছপালারও ভাইরাসঘটিত রোগ হয়। তাহলে ভাইরাস কী? ভাইরাস হলো রোগসৃষ্টিকারী বস্তু। ভাইরাস একটি ল্যাটিন শব্দ যার অর্থ হলো বিষ । ভাইরাস আকারে এতোই ছোট যে ইলেরট্রন অণুবীক্ষণ যদ্ভের সাহায়েয় দেখতে হয়, সাধারণ অণুবীক্ষণ যন্ত্র দেখা যায় না। তাই ভাইরাসকে বলা হয় অতি-আণুবীক্ষণিক (ultra-microscopic); অর্থাৎ ভাইরাস হলো রোগসৃষ্টিকারী অতি-আণুবীক্ষণিক বস্তু। ভাইরাসের দেহ বাইরের প্রোটিন আবরণ এবং অভ্যন্তরস্থ নিউক্রিক আাসিড (DNA অথবা RNA) এই দু'টি অংশ নিয়ে গঠিত। কাজেই ভাইরাস হলো নিউক্রিক আাসিড ও প্রোটিন দিয়ে গঠিত রোগসৃষ্টিকারী অতি-আণুবীক্ষণিক সস্তা। ভাইরাস জীবদেহের অভ্যন্তরে প্রবেশ করে সংখ্যাবৃদ্ধির মাধ্যমে রোগ সৃষ্টি করে থাকে কিন্তু জীবদেহের বাইরে নিছিত অবস্থায় থাকে।

তাইরাস হলো নিউক্লিক অ্যাসিড (কেন্দ্রীয় অংশ) ও প্রোটিন (আবরণ) দিয়ে গঠিত অকোষীয়, অতি-আণুবীক্ষণিক সন্তা, বাধ্যতামূলক পরজীবী জৈবকণা যা জীবদেহের অভ্যন্তরে সক্রিয় হয়ে রোগ সৃষ্টি করে কিন্তু জীবদেহের বাইরে নিটিয় অবস্থায় বিরাজ করে

ভাইরাসকে জীবাণু (বা অণুজীব) না বলে 'সত্তা' হিসেবে আখ্যায়িত করা হলো কেন? কারণ, আমরা জানি জীবদেই কোষ দিয়ে গঠিত, কিন্তু ভাইরাস অকোষীয়। তাছাড়া এরা জীবদেহের অভ্যন্তরে বংশবৃদ্ধি করতে পারলেও জীবদেহের বাইরে একেবারেই নিচ্ছিয় রাসায়নিক পদার্থ হিসেবে বিরাজ করে। সত্যিকার অর্থে এরা অণুজীব নয়, অণুজীবের মতো ভাইরাস দেহে কোষীয় বৈশিষ্ট্য তথা কোষ প্রাচীর, কোষঝিল্লি ও সাইটোপ্লাজম নেই, তাই ভাইরাসকে অকোষীয় বলা হয়।

UK

আবিষ্কার: গুটিবসন্ত, পীত জুর ইত্যাদি ভাইরাসঘটিত রোগ পৃথিবীতে বহু আগে থেকেই ছিল কিন্তু ভাইরাস সম্বন্ধে কোনো ধারণাই মানুষের ছিল না। বিজ্ঞানী Edward Jenner (এডওয়ার্ড জেনার) ১৭৯৬ সালে প্রথম ভাইরাসঘটিত বসভ রোগের কথা উল্লেখ করেন। এরপর সর্বপ্রথম আবিষ্কৃত ভাইরাস হলো টোবাকো মোজাইক ভাইরাস অর্থাৎ TMV. ্ল্যান্ডের বিজ্ঞানী Adolf Mayer ১৮৮৬ সালে তামাক গাছের পাতার ছোপ ছোপ দাগবিশিষ্ট রোগকে টোবাকো মোজাইক বোগ হিসেবে উল্লেখ করেন। পরে ১৮৯২ সালে রাশিয়ান বিজ্ঞানী Dmitri Ivanovsky (দিমিত্রি আইভানোভসকি) প্রমাণ করেন যে, রোগাক্রান্ত তামাক পাতার রস ব্যাকটেরিয়ারোধক ফিন্টার দিয়ে ফিন্টার করার পরও সুস্থ তামাক গাছে রোগ গুটি করতে সক্ষম। তাই তিনি বলেন যে, তামাক গাছের মোজাইক রোগজীবাণু ব্যাকটেরিয়া থেকে কুদ্র এবং এই রোগ-হিছকে ভাইরাস হিসেবে আখ্যায়িত করেন কিন্তু কোনো ভাইরাস শনাক্ত করতে পারেননি। তবুও তাঁকেই ভাইরাসের আবিষারক হিসেবে চিহ্নিত করা হয়। তারও পরে ১৮৯৮ সালে আরেক হল্যান্ড বিজ্ঞানী Martinus Beijerinck ্মার্টিনাস বিজারিক্ক) তামাকের মোজাইক রোগের ভাইরাসকে টোবাকো মোজাইক ভাইরাস বা TMV হিসেবে উল্লেখ ক্রেন। Walter Reed (ওয়ান্টার রিড) ১৯০১ সালে সর্বপ্রথম মানবদেহের পীত জ্বর (yellow fever) সৃষ্টিকারী ভাইরাস অবিষার করেন। ১৯৩৫ সালে আমেরিকান বিজ্ঞানী Wendel Meredith Stanley TMV কে পৃথক করে কেলাসিত করেন, যে কারণে তিনি ১৯৪৬ সালে নোবেল পুরস্কার লাভ করেন। Stanley মোজাইক আক্রান্ত ১ টন তামাক পাতা থেকে মাত্র এক চাম্চ পরিমাণ ভাইরাস কৃস্টাল সংগ্রহ করেন। ১৯৩৭ সালে ইংল্যান্ডের দুজন বিজ্ঞানী F. C. Bawden (বাভেন) এবং N. W. Pirie (পিরি) বলেন যে, TMV নিউক্লিক অ্যাসিড এবং প্রোটিন দিয়ে গঠিত। ১৯৫১ সালে R. S. Shafferman (শেফারম্যান) এবং M. E. Morris (মরিস) নীলাভ-সবুজ শৈবাল (সায়ানোব্যাকটেরিয়া) ধ্বংসকারী ভাইরাস সায়ানোফায আবিষ্কার করেন। ভাইরাস জড় না জীব এর সঠিক উত্তর আজ পর্যন্ত জানা সম্ভব হয়নি। কারণ ভাইরাসের দেহে জড় ও জীব উভয় বৈশিষ্ট্য বিদ্যমান। ভাইরাসের দেহে জড় ও জীবের স্বতন্ত্র কিছু বৈশিষ্ট্য থাকার কারণে জ্রাঙ্গের নোবেল বিজয়ী A. M. Lwoff ১৯৫২ সালে ভাইরাসের প্রকৃতি সম্বন্ধে বলেছেন, ভাইরাস ভাইরাসই। এটি জীবীয় বছও নয় আবার জড় রাসায়নিক বস্তুও নয়। জীবীয় ও জড় বস্তুর মধ্যবর্তী পর্যায়ের কোনো একটি কিছু। ১৯৮৪ সালে Gallow (গ্যালো) মানুষের মরণব্যাধি এইডস রোগের ভাইরাস HIV আবিষ্কার করেন। ১৯৮৯ সালে Hervey J. Alter হোরতে জে, অন্টার) মানুষের নীরব ঘাতকব্যাধি হেপাটাইটিস-সি ভাইরাস আবিষ্কার করেন। F. C. Bawden এবং N. W. Pirie ভাইরাসের রাসায়নিক প্রকৃতি বর্ণনা করেন। এ পর্যন্ত প্রায় ৫০০০ ধরনের ভাইরাসের বর্ণনা করা হয়েছে

আবাসস্থল: উদ্ভিদ, প্রাণী, ব্যাকটেরিয়া, সায়ানোব্যাকটেরিয়া, ছত্রাক, আকটিনোমাইসিটিস প্রভৃতি জীবদেহের সজীব কোনে ভাইরাস সক্রিয়া অবস্থায় সব জড় মাধ্যমে ভাইরাস অবস্থান করে। কাজেই বলা যায়, জীব ও জড় পরিবেশ উভয়ই ভাইরাসের আবাস। পরীক্ষার মাধ্যমে শেখা গেছে ১ চামচ সমুদ্রের পানিতে ১ মিলিয়ন ভাইরাস থাকে। ভাইরোলজি (Virology) বিজ্ঞানের একটি অত্যস্ত্রাপূর্ণ শাখা যেখানে ভাইরাসের আকার, গঠন, বংশবিস্তার, রোগতত্ত্ব ইত্যাদি নিয়ে আলোচনা করা হয়। W. M.

Stanley-কে ভাইরোলজির জনক বলা হয়ে থাকে।

পায়তন (Size) : ভাইরাস অতি-আপুরীক্ষণিক এবং ইলেকট্রন অপুরীক্ষণ যন্ত্র ছাড়া এদেরকে দেখা যায় না।
চাইরাসের গড় ব্যাস 8-300 nm (ন্যানোমিটার)। ভাইরাস সাধারণত ১২ nm (যেমন- পোলিও ভাইরাস) হতে ৩০০

।।।। (যেমন-তামাকের মোজাইক ভাইরাস) পর্যন্ত হয়ে থাকে। গবাদী পত্তর ফুট আভ মাউথ রোগ সৃষ্টিকারী ভাইরাস

নবচেয়ে কুল্র (৮-১২ nm)। ব্যাকসিনিয়া ও ভেরিওলা চাইরাস (২৮০-৩০০ nm)। গোলআলুর মোজাইক ভাইরাস, গোলারের ভাইরাস আরও বৃহলাকৃতির হয়।

আকৃতি (Shape) : ভাইরাস সাধারণত নিমুলিখিত আকৃতির হয়ে থাকে। দথাকার, বর্তুলাকার, ব্যাঙ্গাচি আকার, ^{বৈকার} (সিলিড্রিক্যাল), গোলাকার, ভিমাকার, পাউরুটি আকার, বহুতুজাকৃতি প্রভৃতি আকৃতিবিশিষ্ট।

^{) (}m) (m)

⁼ ২০০০ মিলিম্মিটার (mm)

⁾ माइटामायाम (μm) =) माइटामा (μ)

[े] विकित्यागर (mm)

⁼ ३००० माहरकाविज्ञात (µm) ना माहकम

১ ল্যালেমিটার (nm) = ১ মিলিমাইক্রন (mu)

⁾ महेटकामिणेड (µm)

⁼ ২০০০ ন্যালোমিটার (nm) বা মিলিমাইঞ্জ (mp)

চিত্র ৪.১ : বিভিন্ন আকৃতির ভাইরাস।

ছাইরাসের গ্রকৃতি (Nature of virus) : ভাইরাসের প্রকৃতি নির্ণয়ের ব্যাপারে বিজ্ঞানীরা এখনো বিধাবিভক্ত। বিজ্ঞানী Lwoff ১৯৫২ খ্রিস্টাব্দে মন্তব্য করেন- ভাইরাস জীবও নয়, জড়বন্তুও নয়; ভাইরাস ভাইরাসই। নিরপেক্ষভাবে বলা যায়-ভাইনাস সজীব ও জড়বন্তুর মধ্যবর্তী পর্যায়ের কোনো একটি সন্তা। ১৯৬২ খ্রিস্টাব্দে বিজ্ঞানী Stanley ও Valens বলেন-ভাইরাস এমনিতেই জড়বছর ন্যায়। কিন্তু যে মুহুর্তে ভাইরাস কোনো সঞ্জীব কোষকে আক্রমণ করার সুযোগ পায় সে মুহুর্তে এতে প্রাণের সঞ্চার হয়। ১৯৭৪ খ্রিস্টাব্দে বিজ্ঞানী Salle বলেন-ভাইরাস রাসায়নিক অণু ও সঞ্জীব কোষের মধ্যবর্তী পর্যায়ের এক প্রকার বস্তু।

ভাইৱাসের বৈশিষ্ট্য (Characteristics of virus): ভাইরাসের বৈশিষ্ট্যসমূহকে দু'ভাগে ভাগ করা যায়; যথা-জড়-রাসায়নিক বৈশিষ্ট্য এবং (খ) জীবীয় বৈশিষ্ট্য।

(ক) ভাইরাসের জড়-রাসায়নিক বৈশিষ্ট্য

- ১। ভাইরাস অকোষীয় ও অতি আণুবীক্ষণিক। এদের সাইটোপ্লাজম, কোষঝিল্লি, কোষপ্রাচীর, রাইবোসোম, মাইটোকভিয়া এসব নেই।
- ২। এদের নিজম্ব কোনো বিপাকীয় এনজাইম নেই এবং খাদ্য গ্রহণ করে না ফলে পুষ্টি ক্রিয়াও নেই।
- ৩। ভাইরাস জীবকোষের সাহায্য ছাড়া স্বাধীনতাবে প্রজননক্ষম নয়।
- 8। ব্যাকটেরিয়ারোধক ফিল্টারে ভাইরাস ফিল্টারযোগ্য নয়।
- ৫। ভাইরাসকে কেলাসিত করা যায়, সেন্ট্রিফিউজ করা যায়, ব্যাপন করা যায়, পানির সাথে মিশিয়ে সাসপেনশন
- ও। জীবকোষের বাইরে ভাইরাস রাসায়নিক কণার মতো নিষ্কিয়।
- ৭। ভাইরাসের দৈহিক বৃদ্ধি নেই এবং পরিবেশের উদ্দীপনায় সাড়া দেয় না।
- ৮। তাইবাস রাসায়নিকভাবে প্রোটিন ও নিউক্লিক অ্যাসিডের সমাহার মাত্র।
- তাইরাস আাসিড, ক্ষার ও লবণ প্রতিরোধে সক্ষম এবং আন্টিবায়োটিক এদের দেহে কোনোরূপ প্রতিক্রিয়া সৃষ্টি

(খ) ভাইরাসের জীবীয় বৈশিষ্ট্য

- ১। পোষক কোষের অভ্যন্তরে ভাইরাস সংখ্যাবৃদ্ধি (multiplication) করতে পারে।
- ২। নতুন সৃষ্ট ভাইরাসে মাতৃ ভাইরাসের বৈশিষ্টা বজায় থাকে, অর্থাৎ একটি ভাইরাস তার অনুরূপ ভাইরাস জনী
- ও। তাইরাসের দেহ জেনেটিক বস্তু DNA বা RNA এবং প্রোটিন দিয়ে গঠিত।

- ৪। ভাইরাস সুনির্দিষ্টভাবে বাধ্যতামূলক পরজীবী।
- ৫। ভাইরাস পরিব্যক্তি (mutation) ঘটাতে এবং প্রকরণ (variation) তৈরি করতে সক্ষম।
- ৬। এদের অভিযোজন ক্ষমতা রয়েছে।

৭। এদের জিনগত পুনর্বিন্যাস (genetic recombination) ঘটতে দেখা যায়।

প্রাণ-রসায়নবিদগণ ভাইরাসের জড়-বৈশিষ্ট্যসমূহকে প্রাধান্য দেব, আর অণুজীব বিজ্ঞানিগণ ভাইরাসের জীব বৈশিষ্ট্যসমূহকে প্রাধান্য দেন। এজন্য ভাইরাসকে জীব ও জড়ের সেতৃবন্ধন বলে।

ভাইরাসের গঠন (Structure of virus) : ভাইরাসের গঠন কৈশিষ্ট্যকে ভৌত ও রাসায়নিক গঠন হিসেবে ভাগ করা

যেতে পারে।

ভাইরাসের ভৌত গঠন : ভাইরাসের ভৌত গঠন নিমুরূপ :

্য কেন্দ্ৰে অবস্থিত কেন্দ্ৰীয় বস্তু তথা নিউক্লিক জ্যাসিড যা DNA অথবা RNA দিয়ে গঠিত (একসাথে উভয়টি নয়)। ্ ্রাকেন্দ্রীয় বস্ত্রকে ঘিরে অবস্থিত ক্যাপসিড তথা প্রোটিন আবরণ। ক্যাপসিডের প্রোটিন অণুর বিন্যাসই ভাইরাসের আকার-আকৃতি নিয়ন্ত্রণ করে। প্রোটিন অণু সজ্জিত হয়ে দন্তাকৃতির হেলিক্স এবং গোলাকৃতির পরিহেজন কাঠামো গঠন করে। ক্যাপসিড কতগুলো সাবইউনিট নিয়ে গঠিত। সাবইউনিটকে বলা হয় **ক্যাপসোমিয়ার** (capsomere)। ক্যাপসোমিয়ারের সংখ্যা ও ধরন বিভিন্ন প্রকার ভাইরাসে বিভিন্ন রকম হয়ে থাকে। ক্যাপাসভের বহিস্থ আবরণ মসৃণ, কখনো কণ্টকিতও হতে পারে।

৩। কোনো কোনো ভাইরাসে ক্যাপসিডের বাইরে ক্যাপসিডকে ঘিরে অপর একটি আবরণ থাকে।

ভাইরাসের রাসায়নিক গঠন : রাসায়নিকভাবে ভাইরাস প্রধানত দুই প্রকার বস্তু দিয়ে গঠিত, যথা : নিউক্লিক অ্যাসিড (কেন্দ্রীয় বন্ধ) এবং প্রোটিন (ক্যাপসিড)।

🟏। নিউক্লিক অ্যাসিভ (কেন্দ্রীয় বম্ভ) : ভাইরাসের কেন্দ্রে অবস্থিত নিউক্লিক অ্যাসিড। নির্দিষ্ট ভাইরাসে নিউক্লিক আসিড DNA অথবা RNA এর যে কোনো এক ধরনের হয়। কখনো একই সাথে DNA ও RNA অবস্থান করে না অন্যান্য জীবদেহে একই সাথে DNA ও RNA অবস্থান করে। সাধারণত অধিকাংশ উদ্ভিদ ভাইরাসে RNA

অধিকাংশ প্রাণী ভাইরামে DNA থাকে।

্ব্রাটিন (ক্যাপসিড) : প্রোটিন অণু দিয়ে ক্যাপসিড গঠিত। ক্যাপসিড সাধারণত জৈবিক দিক দিয়ে নিষ্ক্রিয়। ক্যাপসিডের প্রধান কাজ হলো নিউক্লিক অ্যাসিডকে রক্ষা করা, তবে এরা পোষক দেহে সংক্রমণেও সহায়তা করে। ক্ষেত্র বিশেষে ক্যাপসিডে প্রোটিনের সাথে লিপিড ও স্টার্চ থাকে। ক্যাপসিড ভেতরের বস্তুকে (DNA বা RNA) সুরক্ষা করে এবং এটি স্থ্যান্টিজেন হিসেবেও কাজ করে। সর্দিজ্বর এটি হাঁচির উদ্রেক করে।

বহিছু আবরণ : কোনো কোনো ভাইরাসে (যেমন-ইনফুয়েঞ্জা ভাইরাস, হার্পিস ভাইরাস, HIV ইত্যাদি) ক্যাপসিডের বাইরে জৈব পদার্থের একটি আবরণ থাকে। এটি রাসায়নিকভাবে সাধারণুত লিপিড, লিপোগ্রোটিন, শর্করা বা ব্লেৎ জাতীয় পদার্থ দিয়ে গঠিত। লিপিড বা লিপোপ্রোটিন স্তুরের একককে পেপলোমিয়ার বলা হয়। লিপোপ্রোটিন

আবরণবিশিষ্ট ভাইরাসকে লিপোভাইরাস বলা হয়।

ভাইরাসের প্রকারভেদ : গঠন বৈশিষ্টোর ভিত্তিতে ভাইরাসকে নিমুলিখিত বিভিন্ন উপায়ে ভাগ করা হয়ে থাকে।

১। আকৃতি অনুযায়ী : আকৃতি অনুযায়ী ভাইরাসকে নিমুলিখিত বিভিন্ন ভাগে ভাগ করা যায়, যথা :

দত্তাকার (Rod-shaped) : এদের আকার অনেকটা দণ্ডের মতো। উদাহরণ- টোবাকো মোজাইক ভাইরাস (TMV), আলফা-আলফা মোজাইক ভাইরাস, মাম্পস ভাইরাস।

গোলাকার (Spherical) : এদের আকার অনেকটা গোলাকার। উদাহরণ— গোলিও ভাইরাস, TIV, HIV, ডেম্ব ভাইরাস।

ঘনক্ষেত্রাকার/বহুভূজাকার (Cubical/Polygonal) : এসব ভাইরাস দেখতে অনেকটা পাউরুটির মতো। ষেমন- হার্পিস, ভ্যাকসিনিয়া ভাইরাস।

- (iv) ব্যাঙ্গাটি আকার (Tadpole shaped) : এরা মাথা ও লেজ- এ দুই অংশে বিভক্ত। উদাহরণ- T2, T4, T6 ইত্যাদি।
- (v) সিলিব্রিক্যাল/সূত্রাকার (Cylindrical/Thread shaped) : এদের আকার লম্বা সিলিভারের মতো। যেমন- Ebola virus ও মটরের স্ট্রিক ভাইরাস।
- (vi) ডিমাকার (Oval shaped) : এরা অনেকটা ডিমাকার। উদাহরণ- ইনফুয়েঞ্জা ভাইরাস।

 । নিউক্লিক আানিতের ধরন অনুযায়ী । নিউক্লিক আানিতের ধরন অনুযায়ী ভাইরাস দু' প্রকার; য়থা । (i) DNA BERGE WITCOM RNA BERTH I

DNA ভাইরাস : যে ভাইরানে নিউক্লিক আাসিড হিসেবে DNA থাকে তালেরকে DNA ভাইরাস কর হয়। উদাহনদ- T, ভাইনাদ, আকসিদিয়া, ভ্যাবিওলা, TIV (Tipula Iridiscent Virus), এভিনোহারির লিমহোত্ম ইড্যাদি ভাইবাস। Parvoviridae পোৱের (фX₁₇₄ ও M₁₃ কলিফাথ) ভাইবাসের DNA

RNA ভাইবাস : যে ভাইবাসে নিউক্লিক আাসিড হিসেবে RNA থাকে তাদেরকে RNA ভাইবাস কল হয়। উদাহরণ- TMV, HIV, ডেম্বু, পোলিও, মাম্পদ, ন্যাবিদ ইত্যাদি ভাইরাদ। Reoviridae গোরে

(বিজ্ঞাইবাস, খানের বামন রোগের ভাইরাস) ভাইরাদের RNA হিস্তুক।

৩। বহিছু আবরণ অনুযায়ী ভাইরাল গুই লকার; যথা। ্যাবিছু আবরণহীন ভাইরাস; যেমন— TMV, T2 ভাইরাস; ্তা বহিছ আৰৱণী ভাইৱাসঃ যেমন- ইনফুয়েঞ্জা ভাইৱাস, হার্পিস, HIV ভাইরাস।

৪। পোষকদেহ অনুসারে ভাইরাস নিমুলিখিত প্রকারের হয়ে থাকে :

্রে উত্তিদ ভাইরাস : উত্তিদদেহে রোগ সৃষ্টিকারী ভাইরাসকে উত্তিদ ভাইরাস বলে। যেমন— TMV, Bean Yellow Virus (BYV)। ব্যতিক্রম—ফুলকপির মোজাইক ভাইরাস (DNA)।

ুবা) আণী ভাইরাস : আণিদেহে রোগ সৃষ্টিকারী ভাইরাসকে প্রাণী ভাইরাস বলে। যেমন—HIV, ভ্যান্তিনিয়

ठाइँदाम ।

(M) ব্যাকটেরিওফায় বা ফায় ভাইরাস : ভাইরাস য়য়ন ব্যারেরিয়ার উপর পরজীবী হয় এবং ব্যারেরিয়াকে প্রয়ে করে ভখন তাকে ব্যাকটেরিওফায় বলে। যেমন- ${
m T_2}$, ${
m T_4}$, ${
m T_6}$ ব্যাকটেরিওফায়।

🔫 সায়ানোফায : সায়ানোব্যাকটেরিয়া (নীগাভ সবুজ শৈবাল) ধ্বংসকারী ভাইরাসকে সায়ানোফায বলে। যেমন—LPP₁, LPP₂ (Lyngbya, Plectonema ও Phormidium নামক সায়ানোব্যাকটেরিয়ার প্রথম অক্ষর দিয়ে নামকরণ করা হয়েছে।)

৫। পোষক দেহে কীভাবে সংক্রমণ ও বংশবৃদ্ধি করে তার উপর ভিত্তি করেও ভাগ করা হয়। যেমন-সাধারণ ভাইরন

ও বিটোডাইবাস। HIV একটি বিটোডাইবাস। এখানে ডাইবাল RNA থেকে DNA তৈরি হয়।

৬। জন্যান্য ধরন: যে সব ভাইরাস ছত্রাককে আক্রমণ করে থাকে তাদের মাইকোকায (Mycophage) বলে। ১৯৪৮ খ্রিস্টাব্দে Holmes ব্যারৌরিয়া আক্রমণকারী ভাইরাসকে Phaginae, উদ্ভিদ আক্রমণকারী ভাইরাসকৈ Phytophaginae এই প্রাণী আক্রমণকারী ভাইরাসকে Zoophaginae নামকরণ করেন।

	RNA ভাইরাস ও DNA ভাইরাস ও	এর মধ্যে পার্থক্য
শার্থকোর বিষয়	RNA ভাইরাস	DNA ভাইরাস
১। আকৃতি	এরা সাধারণত দথাকার বা সূথাকার।	এরা সাধারণত গোলাকার, ব্যাঙ্গাটি আকার ব পাউরুটি আকতি।
২। নিউক্লিক আদিভ	এদের নিউক্লিক আসিড কোর RNA	এদের নিউক্লিক অ্যাসিড কোর DNA
৩। আক্ৰান্ত জীব	অধিকাংশ উভিদ তাইরাস ও সায়ানোফায়ওলো RNA ভাইরাস।	অধিকাংশ প্রাণী ভাইরাস ও ব্যাকটেবিত- ফাযতলো DNA ভাইরাস।
৪। সূত্ৰক	অধিকাংশ ভাইরাসের RNA একসূত্রক; ধানের বামন বোগ ও বিও ভাইরাসের RNA দ্বিস্ত্রক।	অধিকাংশ ভাইরাসের DNA ছিস্ত্রক; ϕX_{PA} M_{11} কলিকায় ভাইরাসের DNA একসূত্রক 1
৫। রোগ সৃষ্টি	অধিকাংশ RNA ভাইরাস উত্তিদদেহে রোগ সৃষ্টি করে।	অধিকাংশ DNA ভাইবাস প্রাণিনেহে রোগ সৃষ্টি
ও। এনতেলপ	সাধারণত এনতেলপ থাকে দা।	ক্যাপসিভের বাইরে সাধারণত এনতেলপ থাকে।
৭। উদাহরণ	টোবাকো মোজাইক ভাইরাস, (TMV), পটেটো X ভাইরাস, শুগোরকেন মোজাইক, টারনিপ মোজাইক, আলফা-আলফা মোজাইক, রেবিস, মানুযের পোলিও, ভেলু, লীত স্থর, মাম্পস, মিজনস, ইনফুরেলা-B, এনসেফালারটিস ইত্যামি ভাইরাস HNA ভাইরাস।	T ₂ ভাইরাস, ভ্যাকসিনিয়া, ভ্যাবিওলা, TIV (Tipula Iridescent Virus), এভিনোহর্ণিস সিমল্লেক্স ইজ্যানি ভাইরাস DNA ভাইরাস।

ভাইরাসের পরজীবিতা (Parasitism of virus) । পরজীবী হিসেবে বেঁচে গাকার চরিত্রকৈ পরজীবিতা বলে। ভাইরাস রাধাতামূলক পরজীবী (obligate parasite)। এটি একটি আদি বৈশিষ্ট্য। অর্থাৎ ভাইরাস তার বংশবৃদ্ধি তথা জীবনের লক্ষণ প্রকাশ করার জন্য সম্পূর্যভাবে অনাজীবের সজীব কোষের ওপর নির্ভরশীল। অন্য কোনো জীবের (মানুষসহ অন্যান্য প্রাণী, ডার্ডিদ, ব্যাকটেরিয়া, শৈবাল ইত্যাদি) সজীব কোষ ছাড়া কোনো ভাইরাসই জীবের লক্ষণ প্রকাশ করতে পারে না, বংশবৃদ্ধি করতে পারে না। কোনো আবাদ মাধ্যমে ভাইরাসের বংশবৃদ্ধি করা বিজ্ঞানীদের পক্ষেত্ত আজ পর্যন্ত সম্ভব হয়নি।

ভাইবাসের পরজীবিতা সাধারণত সুনির্দিষ্ট অর্ডাৎ সুনির্দিষ্ট প্রকারের ভাইরাস কোনো সুনির্দিষ্ট জীবদেহে পরজীবী হয়।

হে সব ভাইরাস আদি কোষকে আক্রমণ করে, আর যে সব ভাইরাস প্রকৃত কোষকে আক্রমণ করে তারা ভিন্ন প্রকৃতির।

প্রকৃতপক্ষে কোনো ভাইবাসের প্রোটিন আবরণটিই নির্দিয় করে তার আক্রমণের সুনির্দিষ্টতা (specificity)। পোষক কোষে

কোনো ভাইবাস- প্রোটিনের জন্য রিসেন্টর সাইট (receptor site) থাকলে তবেই ঐ ভাইরাস ঐ পোষক কোষকে আক্রমণ

করতে পারবে। এ জন্যই ঠাণ্ডা লাগার ভাইরাস (cold virus) শ্বাসতপ্রের মিউকাস মেমব্রেন কোষকে আক্রমণ করতে পারে,

চিকেন পত্র ভাইরাস তুক কোষকে আক্রমণ করতে পারে, পোলিও ভাইরাস উর্ম্বাতন শ্বাসনালী ও অক্রের আবরণ কোষ,

কথনো হ্রায়ু কোষকে আক্রমণ করতে পারে। চিকেন পত্র ভাইরাস শ্বাসনালীকে আক্রমণ করতে পারবে না। কারণ

শ্বাসনালী কোষে এর জন্য কোনো রিসেন্টর সাইট নেই, ঠাণ্ডা লাগার ভাইরাস তুক কোষকে আক্রমণ করতে পারবে না,

কারণ তুক কোষে এই ভাইরাসের জন্য কোনো রিসেন্টর সাইট নেই।

ফায ভাইরাস কেবল ব্যাকটেরিয়া কোষকেই আক্রমণ করে। ফায ভাইরাসের মধ্যে T_2 -ব্যাকটেরিওফায E. coli ব্যাকটেরিয়াকেই আক্রমণ করে। TMV ভাইরাস কেবল তামাক গাছকেই আক্রমণ করে। এমনই ভাবে সুনির্দিষ্ট ভাইরাস সুনির্দিষ্ট প্রকার-পোষক কোষকেই আক্রমণ করে থাকে।

ইমার্জিং ভাইরাস (Emerging virus): ভাইরাসের পরজীবীতা অত্যন্ত সুনির্দিষ্ট কিন্তু কিছু কিছু ভাইরাস কখনো কখনো বাভাবিক পোষক প্রজাতি থেকে সম্পর্কহীন অন্য পোষক প্রজাতিতে ছড়িয়ে পড়তে পারে। ফু (Flu) বা ইনফুয়েপ্রা ভাইরাসের প্রকৃত পোষক ছিল পাখি যা পরবর্তীতে সরাসরি মানুষে রোগ বিশ্বার করে। ১৯১৮-১৯১৯ সালে পৃথিবীতে ২১ মিলিয়নের বেশি মানুষ এই ফুতে মারা যায়। বিজ্ঞানীদের ধারণা HIV-এর প্রকৃত পোষক বানর, যা পরে মানুষে ছড়িয়ে পড়ে। আদি পোষক থেকে পরে নতুন পোষক প্রজাতিতে রোগ সৃষ্টিকারী এসব ভাইরাসকে বলা হয় ইমার্জিং ভাইরাস (emerging virus) স্বাহরণ— HIV, SARS, Nile virus, Ebola.

্রতিরয়ন (Virion) : নিউক্লিক আাসিড ও একে ঘিরে অবস্থিত ক্যাপসিড সমন্বয়ে গঠিত এক একটি সংক্রমণ তমতাসম্পন্ন সম্পূর্ণ ভাইরাস কণাকে ভিরিয়ন বলে। সংক্রমণ ক্রমতাবিহীদ ভাইরাসকে বলা হয় নিউক্লিয়োক্যা শ্বিচ

হতিটি তিরিয়নে সর্বোচ্চ ২০০০ হতে ২১৩০টি ক্যাপসোমিয়ার থাকে।

ত্রিছেড্স (Viroids): ভিরয়েড্স হলো সংক্রামন RNA) Theodore Diener (US এথিকালচার ডিপার্টমেন্ট) এবং W. S. Rayner ১৯৬৭ খ্রিস্টান্দে ভিরয়েড্স আবিদ্ধার করেন। ভিরয়েড্স হলো এক সূত্রক বৃত্তাকর RNA অপু যা কয়েক শত নিউক্লিয়েটিইড নিয়ে গঠিত এবং কুদ্রতম ভাইরাস থেকেও বহুতথে কুদ্র। কেবলমাত্র উদ্ভিদেই ভিরয়েড্স পাওয়া যায়। এরা উদ্ভিদ থেকে উদ্ভিদে এবং মাতৃ উদ্ভিদ থেকে সম্ভান সম্ভতিতে স্থানান্তরিত হয়ে থাকে। উদ্ভিদ পোষকের এনজাইম ব্যবহার করে এরা সংখ্যাবৃদ্ধি করে। বিজ্ঞানীগণ এখন ধারণা করছেন হেপাটাইটিস-ডি এর কারণ ভিরয়েড্স। বিশ্বাভ নারিকেল গারে ক্যাভার রোগ তৈরি করে।

প্রিয়নস (Prions): সক্রোমন গ্রোটিশ ফাইব্রিল হলো প্রিয়নস। এটি নিউক্লিক আসিভবিহীন প্রোটিন আবরণ মানুষের কেন্দ্রীয় স্নায়ুতপ্রের Kuru এবং Cremzfeldi রোগঃ ভেড়া ও ছাগলের Scrapie রোগ প্রিয়নস দিয়ে হয়ে থাকে। বহুল আলোচিত 'য্যান্ত কার্ড' রোগ সৃষ্টির সাথে প্রিয়নস-এর সম্পৃক্ততা পাওয়া যায়। ১৯৮২ সালে প্রথম Stanley B. Prusiner অতি ভূম প্রকৃতির প্রিয়নস এর অন্তিত্বের কথা বলেন এবং ভেড়ার স্ক্র্যাপি (Scrapie) রোগে প্রথম পর্যবেক্ষণ (study) করা

হয়। এজন্য তাকে ১৯৯৭ খ্রিস্টাব্দে নোবেল পুরস্কারে ভূষিত করা হয়।

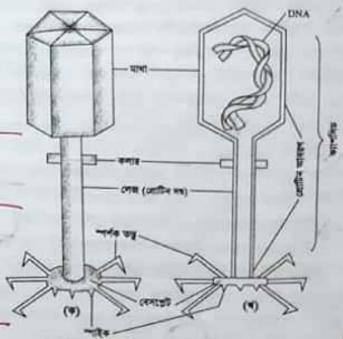
তাইরাদের গঠন

্ব তোৰাকো মোজাইক ভাইরাস বা TMV (Tobacco Mosaic Virus) : এটি দ্যাকৃতির ভাইরাস। এটির দৈর্ঘ্য ধার্য স্ব তল। TMV এর দৈর্ঘ্য ২৮০ nm—৩০০ nm এবং প্রস্থ ১৫ nm—১৮ nm (RNA এবং প্রোটিন দিয়ে TMV গঠিত। এর বাইরে একটি পুরু প্রোটিন আবরণ আছে। প্রোটিন আবরণকে ক্যাপসিত বলে। ক্যাপসিত বহু উপ-

একক দ্বারা গঠিত। উপ একককে ক্যাপসোমিয়ার বলে। ক্যাপসোমিয়ার কতগুলো আঙ্গুরের থোকার ন্যায় পরপর সজ্জিত থাকে। TMV-তে প্রায় ২১৩০—২২০০টি ক্যাপসোমিয়ার থাকে। প্রতিটি ক্যাপসোমিয়ারে ১৫৮টি আমিনো অ্যাসিড থাকে। ক্যাপ্রসিডের অভ্যন্তরে একস্এক RNA কোর (core) আছে। RNA সূর্যটি ৬৫০০টি নিউক্লিয়োটাইড দ্বারা গঠিত। তল্কন হিসেবে এর শতকরা প্রায় ৯৫ ভাগই প্রোটিন। TMV এর আণবিক ওজন ৩৭ মিলিয়ন ডাল্টন এবং RNA এর আণবিক ওজন ২.৪ মিলয়ন ডাল্টন। প্রত্যেকটি প্রোটিন সাবইউনিটের আণবিক ওজন ১৭০০০ চাল্টন।

ফার কীর ফার (Phage) একটি গ্রিক শব্দ যার অর্থ হলো 'to cat' বা ভক্ষণ করা। প্রকৃত অর্থে ফার হলো ঐ সব ভাইরাস থারা জীবদেহে অবস্থিত রোগ সৃষ্টিকারী ব্যাকটেরিয়াকে ধ্বংস করে দেয়। ফার-এর জেনেটিক বন্ধ ব্যাকটেরিয়ার দেহে প্রবেশ করে এবং একসময় ব্যাকটেরিয়া কোষটি ধ্বংস হয়ে যায় প্রি সমস্ত ভাইরাস ব্যাকটেরিয়াকে আক্রমণ করে এবং ব্যাকটেরিয়াকে ধ্বংস করে ক্রম তাদেরকে ব্যাকটেরিওফার বলে। ১৯১৭ খ্রিস্টাব্দে বিজ্ঞানী দ্য হেরেলি ফেলিক্স

চিত্র ৪.২ : TMV ভাইরাসের গঠন।


(d' Herelle Felix) এ ভাইরাসকে ব্যাকটেরিওফায বা ব্যাকটেরিয়া ভাইরাস বা ফায নামে অভিহিত করেন। বিজ্ঞা Twort আকটেরিওফায ভাইরাস তথা T_2 আবিষ্কার করেন।

২। T2 ব্যাকটেরিওফায (T2 Bacteriophage) : এটি একটি সর্বাধিক পরিচিত ভাইরাস। এর গঠন সম্বন্ধে

অপেকাকৃত ভালোভাবে জানা গেছে। T_2 ভাইরাসের দেহকে দুটি প্রধান অংশে ভাগ করা চলে, যথা: মাথা এবং লেজ।

মাধা: মাধাটি কীত ও ষড়ভুজাকৃতির প্রিজমের ন্যায় এবং প্রোটিন অণু দিয়ে তৈরি। এর দৈর্ঘ্য প্রায় ৯৩-১০০nm এবং প্রস্থ ৬৫nm। থলি আকৃতির এ ক্ষীত অংশের ভেতরে রিং আকৃতির দ্বি-সূত্রক একটি DNA অণু প্যাচানো অবস্থায় থাকে ৬০,০০০ ভ্রোদ্রা নিউক্লিয়োটাইড দিয়ে এই DNA গঠিত। এতে প্রায় ১৫০টি জিন থাকে। মাথার অধিকাংশ স্থানই ফাঁপা বলে মনে হয়। 12 ফার্যের DNA হিস্ত্রক এবং মোট ওজনের প্রায় ৫০%।

লেজ : মাথার পেছনে সরু অংশটির নাম লেজ। লেজটির দৈর্ঘ্য প্রায় ৯৫-১১০ nm এবং ব্যাস প্রায় ১৫-২৫ nm। লেজের উপরিভাগে সুস্পষ্ট চাকতির মতো একটি কলার আছে এবং লেজের প্রধান অংশটি একটি ফাঁপা নলের মতো। এর অভ্যন্তরে কোনে DNA নেই। নিচের দিকে ১টি বেসপ্লেট, কাঁটার মতো করোকটি পাইক এবং ছয়টি স্পর্শক তম্ম আছে। লেজ, কলার, বেসপ্লেট, স্পাইক এবং স্পর্শক তম্ম সাছে। লেজ, কলার,

টির ৪.৩ : T_2 বাকটেরিরভাব এর বঠন ι (ক) পূর্বার বঠন, (খ) সমাজন

এতে নিউক্লিয়াস, কোষবিজ্ঞি, সাইটোপ্লাজম, কোষ প্রাচীর ও অন্য কোনো ক্ষুদ্রাস, ইত্যাদি নেই। ভাইরাসের সংখ্যাবৃদ্ধি বা বংশবৃদ্ধি (Replication of virus) : বিশেষ উপায়ে ভাইরাসের সংখ্যাবৃদ্ধি হয়ে থাকে এবং প্রতিটি নতুন ভাইরাস দেখতে হবচ একই রকম হয়। একটি পরিপর্ব ফাইবাস

তাইরাসের সংখ্যাবৃদ্ধি বা বংশবৃদ্ধি (Replication of virus) : বিশেষ উপায়ে ভাইরাসের সংখ্যাবৃদ্ধি হয়ে থাকে এবং প্রতিটি নতুন ভাইরাস দেখতে হরহ একই রকম হয়। একটি পরিপূর্ণ ভাইরাস কখনো পূর্বস্থিত (Pre existing) কোনো ভাইরাস থেকে সরাসরি উত্ত হয় না। এছাড়া ভাইরাস অকোষীয় অর্থাৎ এরা সত্যিকার অর্থে জীব নয়। তাই নতুন তাইরাস সৃষ্টি প্রক্রিয়াকে জীবন চক্র বলা হয় না, বলা হয় সংখ্যাবৃদ্ধি প্রক্রিয়া। ব্যাকটেরিওফায়-এর সংখ্যাবৃদ্ধি দৃ'ভাবে ঘটে থাকে; য়থার্থক) সহিটিক চক্র বা ভাইকলেন্ট চক্র এবং খ্যে সাহিসোজেনিক চক্র বা টেমপারেট দশা। Τৃসরিজভক্ত ফায়ে এ দৃ'ধরনের সংখ্যাবৃদ্ধি প্রক্রিয়া বর্ণনা করা হলো :

ক) লাইটিক চক্র (Lytic cycle) : যে প্রক্রিয়ায় কায় ডাইরাস পোষক ব্যাকটেরিয়া কোষে প্রবেশ করে সংখ্যাবৃদ্ধি স্বল্য করে এবং অপত্য ডাইরাসগুলো পোষক দেহের বিদারণ ঘটিয়ে নির্গত হয় তাকে লাইটিক চক্র বা বিগলনকারী চক্র বল। Escherichia coli (E. coli) নামক ব্যাকটেরিয়া কোষে T_2 ব্যাকটেরিওফায়ের লাইটক চক্র নিম্নলিখিত ধাপসমূহে সংঘটিত হয়।

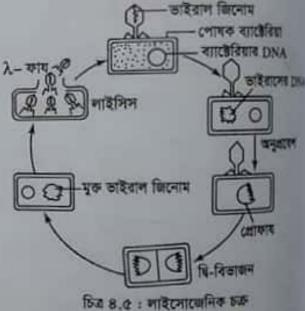
্রিল-১ : সংযুক্তি বা পৃষ্ঠপন্নীভবন (Attachment / Landing) : T₂-ব্যাকটেরিওফায় সাধারণত Escherichia coli (E coli) ব্যাকটেরিয়াকে আক্রমণ করে থাকে। E. coli ব্যাকটেরিয়ামের কোষ প্রাচীরে ফাযপ্রোটিনের জন্য রিসেন্টর সাইট (Ecopior site) থাকে। রিসেন্টর সাইটের প্রোটিনের সাথে ফায ক্যাপসিডের স্পর্শক তন্ত্রর প্রোটিনের রাসায়নিক ক্রিয়ার হলে ব্যাকটেরিয়ামের প্রাচীরে T₂-ফায দৃড়ভাবে সংযুক্ত হয়ে যায়। এটি হলো আক্রমণের সূচনা।

চিত্র $8.8:T_2$ ব্যাকটেরিওফায-এর পাইটিক চক্র।

ধাপ-২ : ফায DNA অপু প্রবেশ (Penetration) : ব্যাকটেরিওফাযের দতাকৃতি পেজটি সংকৃচিত হয়ে বিশেষ শক্তি হৈছে গের মাধ্যমে সংযোগ স্থানের প্রাচীরে ছিদ্র তৈরি করে এবং ফায-DNA কে E. coli ব্যাকটেরিয়ামের কোষ মেমব্রেন করে সাইটোপ্লাজমে প্রবেশ করিয়ে দেয়। শৃন্য প্রোটিন আবরণটি বাইরেই থেকে যায়। আমাদের দেহে রোগ সৃষ্টিকারী করে গাইবাদের সম্পূর্ণ দেহটিই পোষক কোষে প্রবেশ করে। পরে পোষক কোষের এনজাইম প্রোটিন আবরণটিকে বিগলিত করে ফেলে এবং ইনিস্ নিউক্তিক আসিত (DNA বা RNA) মুক্ত হয়। এসব ক্ষেত্রে গাইটিক চক্র ৬টি ধাপে সম্প্রা হয়।

ধাপ-৩ : অনুশিপন (Replication) : কায DNA পোষক কোষের অভান্তরে প্রবেশ করার পর তার নিজস্ব প্রোমোটার বিশেষ হারা পোষক কোষের RNA পলিমারেজ ব্যবহার করে কায় কিন্তু হারা পোষক কোষের RNA পলিমারেজ ব্যবহার করে কায় ক্রিমের হারা পোষক কোষের RNA পলিমারেজ ব্যবহার করে কায় ক্রিমের তৈরি করে। কায় mRNA পরে প্রোটন তৈরি করে এবং একটি বিশেষ প্রোটন (প্রকৃতপক্ষে এনজাইম) E coli DNA-কে হও বিহও করে নষ্ট করে দেয়। কাজেই পোষক কোষে কায় DNA-এর কোনো প্রতিযোগী থাকে না। কাষ্য DNA নিউক্রিয়োটাইড (E. coli কোষের বিগলিত DNA থেকে মুক্ত হওয়া) কোষের রাইবোসোম, IRNA, আমিনো বার্লিট ইত্যাদির কর্তৃত্ব গ্রহণ করে এবং নিজের ইচ্ছেমতো নতুন কায় DNA প্রতিশিপন করে নেয় এবং কায় কোট

শ্রোটিন (coat protein) তৈরি করে। কোট প্রোটিন মাথা, লম্মা লেজ, স্পর্শক তন্তু, স্পাইক ইত্যাদি অংশ হিসেই


তাবে তৈরি হয়। ধাল-৪ : বিভিন্ন দেহাংশ একত্রিত হওয়া (Assemble) : পোষক কোষের অভ্যন্তরে প্রতিটি ফাষ DNA এই ১৬ ধাপ-৪ : বিভিন্ন দেহাংশ একত্রিত হওয়া (Assemble) । তার অংশের সাথে লেজ, লেজের শেষ প্রান্তে স্পৃতি হ

স্পাইক ইত্যাদি সংযুক্ত হয়ে পূর্ণাঙ্গ ব্যাকটেরিওফায় হিসেবে আত্মপ্রকাশ করে। কে হত্যাদি সংযুক্ত হয়ে পূণাঙ্গ ব্যাকটোরওফার হেলেবে আন্তর্জান্তরে প্রচুর সংখ্যক ব্যাকটেরিওফার তৈরি ইন্তার হ ধাপ-৫: নতুন ভাইরাস মুক্তি (Release): পোষক কোষের অভ্যন্তরে প্রচুর পাচীর বিদীর্গ হয়ে যায় ষাপ-৫: নতুন ভাইরাস মুক্তি (Release): পোনক কোনের প্রায়ক কোষের প্রাচীর বিদীর্ণ হয়ে যায় এবং নতুন ফায় একটি সুনির্দিষ্ট এনজাইম তৈরি করে যার কার্যকারিতায় পোষক কোষের প্রাচীর বিদীর্ণ হয়ে যায় এবং নতুন বাকটেরিওফায়সমূহ মুক্তভাবে বেরিয়ে আসে। মুক্ত হওয়া প্রতিটি ফায় একটি নতুন E. coli ব্যাকটেরিয়ামকে হয়। করতে সক্ষ। পোষক কোষে বংশগতীয় বস্তু প্রবেশের পর ভাইরাসের সংখ্যাবৃদ্ধি ঘটতে পারে এবং পোষক ক্ষেত্র অনেকজলো ভিরিয়ন মুক্ত হয়। ভাইরাসের এ ধরনের সংখ্যাবৃদ্ধি প্রক্রিয়াকে লাইটিক চক্র বলে। যেমন্ত্র আক্রমণকারী T2- ফাষ। এমন প্রকৃতির ফায়কে লাইটিক ফায় বা ভিরুলেন্ট ফায় (virulent phase) বলে। কেন্ত্র বিদীর্ণ হওয়াকে লাইসিস (Lysis) বা বিগলন বলে। লাইটিক চক্রের মাধ্যমে মাত্র ৩০ বিনিটে প্রায় ৩০০টি নতুন ক্ষম

হয়ে থাকে। নির্গত নতুন ফায় নতুন পোষক কোষে সংক্রমণ সৃষ্টি করে। পোষক ব্যারৌরিয়াকে আক্রমণ করার পর থেকে যে সময় পর্যন্ত পূর্ণাঙ্গ অপত্য ভাইরাস সৃষ্টি না হয় সেই ফ্র কালকেই ইকলিপস কাল বলে।

(খ) লাইসোজেনিক চক্ত (Lysogenic cycle) : যে প্রক্রিয়ায় ফায ভাইরাস ব্যাকটেরিয়ার কোষে প্রবেশের পর ভাইরাল DNA-টি ব্যাকটেরিয়াল DNA অণুর সঙ্গে সংযুক্ত হয় এবং ব্যাকটেরিয়াল DNA-র সঙ্গে একত্রিত হয়ে প্রতিলিপি গঠন করে কিন্তু পূর্ণাঙ্গ ভাইরাসরূপে ব্যাকটেরিয়া কোষের বিদারণ বা লাইসিস ঘটিয়ে মুক্ত হয় না তাকে লাইসোজেনিক চক্র বলে। ল্যামডা ফায (A-ফায), P₁ ফাব, M₁₃ ফাব ইত্যাদি ভাইরাস Escherichia coli (E. coli) ব্যাকটেরিয়া কোষে লাইসোজেনিক চক্র সম্পন্ন করে। এ ধরনের চক্রে ফায ভাইরাস পোষক কোষকে ধ্বংস না করেই সংখ্যাবৃদ্ধি করে থাকে। লাইসোজেনিক চত্রের ধাপগুলো নিমুদ্ধপ:

১। পোষক ব্যাকটেরিয়ায় সংযুক্তি এবং ফায DNA-এর অনুপ্রবেশ : লাইটিক চক্রের মতোই প্রথমে কায় ভাইরাস পোষক

কোহপ্রাচীরকে ছিদ্র করে DNA অপুকে পোষক কোষে প্রবিষ্ট করায় এবং শূন্য প্রোটিন আবরণটি পোষক কোমে ই থেকে যায়।

২। ব্যাকটেরিয়া DNA এর সঙ্গে ভাইরাস DNA এর সংযুক্তি : এ পর্যায়ে নিউক্লিয়েজ এনজাইম বাজ DNA-তে একটি জায়গায় কেটে ফেলে। এই কাটা স্থানে ফায DNA-টি গিয়ে সংযুক্ত হয়। এ ধরনের সংযুক্তিতে ই এনজাইম বিশেষ ভূমিকা রাখে। ব্যাকটেরিয়ার DNA-র সঙ্গে সংযুক্ত ভাইরাস DNA-টিকে (প্রাফার্য)(prophage) এটি ব্যাকটেরিয়ায় সৃত্তাবস্থায় থাকে। ফায DNAসহ Escherichia coli (E. coli) ব্যাকটেরিয়া দি-বিভার্জ সংখ্যাবৃদ্ধি বা বংশবৃদ্ধি করতে থাকে। ভাইরাস ও ব্যাকটেরিয়ার জিনোম একসাথে একটি নতুন জিনোম তি প্রত্যেকবার সংখ্যাবৃদ্ধির সময় ব্যাকটেরিয়াল DNA-এর অনুরূপ ভাইরাল DNA অণুটিরও প্রতিলিপি গঠিত হবি এভাবে প্রতিটি অপতা ব্যাকটেরিয়ায় ভাইরাস DNA-র একটি কপি সংযুক্ত হতে থাকে। তবে প্রয়োলন ইটি DNA থেকে ফান DNA পৃথক হয়ে লাইটিক চক্রের মাধামে সংখ্যাবৃদ্ধি ঘটাতে পারে।

de

লাইটিক চক্র ও লাইসোজেনিক চক্রের মধ্যে পার্থক্য

লাইটিক চক্ৰ	লাইসোজেনিক চক্র
এ চক্রে ফায় ভাইরাস ব্যাকটেরিয়া কোয়ে প্রবেশ করে সংখ্যাবৃদ্ধি ঘটায় ও ব্যাকটেরিয়া কোয়ের বিদারণ ঘটিয়ে থাকে।	এ চক্রে ফায় ভাইরাস ব্যাকটেরিয়া কোষে প্রবেশ করার পর ভাইরাল DNA অণুটি ব্যাকটেরিয়াল DNA অণুর সাথে যুক্ত হয় এবং একত্রিত হয়ে অনুলিপি গঠন করে।
পূর্ণাঙ্গ ভাইরাসক্রপে ব্যাকটেরিয়া থেকে বিদারিত হয়।	পূর্ণাঙ্গ ভাইরাসরূপে ব্যাকটেরিয়া থেকে বিদারিত হয় না।
T-সিরিজযুক্ত ফাযে লাইটিক চক্র দেখা যায়।	λ (ল্যামডা)-সিরিজযুক্ত ফাথে লাইসোজেনিক চক্র দেখা যায়।
লাইটিক চক্র একবার সম্পন্ন হলে অনেকগুলো ভাইরাসের সৃষ্টি হয়।	লাইসোজেনিক চক্র একবার সম্পন্ন হলে মাত্র দুটি ভাইরাস জিনোমযুক্ত ব্যাকটেরিয়ার সৃষ্টি হয়।
এ চক্রে ভাইরাসের সংখ্যাবৃদ্ধি ভাইরাস দ্বারা নিয়ন্ত্রিত হয়।	এ চক্রে ভাইরাসের DNA এর সংখ্যাবৃদ্ধি পোষক ব্যাকটেরিয়া হারা নিয়ন্ত্রিত হয়।
গঠিত হয় না।	গঠিত হয়।
আক্রমণের প্রকৃতি তীব্র বা ভিন্নলেন্ট	পোষক কোষের মৃত্যু ঘটে না তাই আক্রমণ মৃদু বা টেম্পারেট।
	এ চক্রে ফায় ভাইরাস ব্যাকটেরিয়া কোয়ে প্রবেশ করে সংখ্যাবৃদ্ধি ঘটায় ও ব্যাকটেরিয়া কোষের বিদারণ ঘটয়ে থাকে। পূর্ণাঙ্গ ভাইরাসরূপে ব্যাকটেরিয়া থেকে বিদারিত হয়। T-সিরিজয়ুক্ত ফায়ে লাইটিক চক্র দেখা যায়। লাইটিক চক্র একবার সম্পন্ন হলে অনেকগুলা ভাইরাসের সৃষ্টি হয়। এ চক্রে ভাইরাসের সংখ্যাবৃদ্ধি ভাইরাস ঘারা নিয়জিত হয়। গঠিত হয় না।

ভাইরাসের অর্থনৈতিক শুরুত্ব (Economic Importance of Viruses) : মানবকুলের জন্য ভাইরাস যত না উপকারী তার চেয়ে বেশি অপকারী। ভাইরাস আক্রমণের ফলে মানুষের অন্ধত্ব, পঙ্গুত্ব, এমনকি অকাল মৃত্যু পর্যন্ত হতে পারে। নিম্নে ভাইরাসের অর্থনৈতিক গুরুত্ব সম্বন্ধে সংক্ষিপ্ত বর্ণনা করা হলো।

ভাইব্রাসের অপকারিতা: ভাইরাস উদ্ভিদ, প্রাণী ও মানবকুলের অনেক ক্ষতি করে থাকে। যেমন-

ভাইরাস মানবদেহে বসন্ত, হাম, পোলিও, জলাতক, ইনফুয়েঞা, হার্পিস, ভেঙ্গু, চিকুনগুনিয়া, ভাইরাল হেপাটাইটিস, ক্যাপোসি সার্কোমা প্রভৃতি মারাত্মক রোগ সৃষ্টি করে থাকে।

িবিভিন্ন উদ্ভিদের রোগ সৃষ্টিতে যেমন-সিমের মোজাইক রোগ, আলুর লিফরোল (পাতা কুঁচকাইয়া যাওয়া), পেঁপের লিফকার্ল, ক্লোরোসিস, ধানের টুংরো রোগসহ প্রার্থ ৩০০ উদ্ভিদ রোগ ভাইরাস দ্বারা ঘটে থাকে। এতে ফসলের উৎপাদন বিপুলভাবে ব্রাস পায়।

গরুর বসন্ত; গরু, ভেড়া, ছাগল, শৃকর, মহিষ ইত্যাদি প্রাণীর 'ফুট এয়াভ মাউথ' রোগ অর্থাৎ এদের পা ও মুখের বিশেষ ক্ষতরোগ (খুরারোগ) এবং মানুষ, কুকুর ও বিড়ালের দেহে জলাতক্ক (hydrophobia) রোগ ভাইরাস দিয়েই সৃষ্টি হয়।

৪। ফার্য ভাইরাস মানুষের কিছু উপকারী ব্যাকটেরিয়াকেও ধ্বংস করে থাকে।

বহল আলোচিত 'এইডস্' রোগের কারণ হিসেবেও বিজ্ঞানিগণ ভাইরাসকে দায়ী করেছেন। HIV (Human Immunodeficiency Virus) দিয়ে AIDS (Acquired Immune Deficiency Syndrome বা Acquired Immuno Deficiency Syndrome) রোগ হয়। AIDS হলো Acquired (অর্জিড) Immune (ইমিউন বা রোগ প্রতিরোধ ক্ষমতা) Deficiency (হাস) Syndrome (অবস্থা) এর সংক্ষিত্ত রূপ। অর্থাৎ বিশেষ কোনো কারণে রোগ প্রতিরোধ ক্ষমতা হাস বা কমে যাওয়াকে এইড্স (AIDS) বলে। HIV দিয়ে আক্রান্ত হলে শরীরের রোগ প্রতিরোধ ক্ষমতা থাকে না। এর ফলে রোগীর অকাল মৃত্যু অবধারিত। বাংলাদেশে ক্রমেই এইড্স্ রোগীর সংখ্যা এবং এ রোগে মৃতের সংখ্যা বাড়ছে। বর্তমান বিশ্বে AIDS রোগীর সংখ্যা প্রায় ৫ কোটি।

া ইবোলা ভাইরাস (Ebola virus) : ইবোলা ভাইরাস একসূত্রক RNA দারা গঠিত। আফ্রিকার ভায়ার-এ Ebola virus-এর আক্রমণে মহামারী দেখা দেয়। Ebola ভাইরাসের আক্রমণে দেহের কোষ কেটে যায়। Ebola একটি মারাত্রক মারণ ভাইরাস। এই ভাইরাস দারা আক্রান্ত হয়ে ১৯৭৬ সালে আফ্রিকার কঙ্গোর ইবোলা নদীর তীরে প্রথম এক কৃষক মারা জীব-১ম (হাসান)-১৮

যায়। উক্ত রোগী মান্দ্র সির্ঘোছল চোখ, নাক, কান ও গলায় রক্তক্ষরণ হয়ে। তখন উক্ত নদীর নামানুসারে ও করেরানের নামকরণ করা হয়েছিল ইবোলা ভাইরাস। স্পর্শের মাধ্যমেই নতুন ব্যক্তি আক্রান্ত হয় এবং আক্রান্ত হওয়ার ২-২১ দিনের মধ্যে রোগীতে লক্ষণ প্রকাশ পায়। ২০১৪ সালের শেষ এবং ২০১৫ সালের ১ম প্রান্তে পশ্চিম আফ্রিকার গিনি, সিয়েরালিওন, লাইবেরিয়া ও তৎসংলগ্ন এলাকায় মহামারী আকারে ইবোলা ছড়িয়ে পরে এবং ২৫০ স্বাস্থ্যকর্মীসহ প্রান্ত এগারো হাজার লোক মারা যায়। এর ব্যবস্থাপনায় বিশ্ব স্বাস্থ্য সংশ্বা (WHO) সম্পূর্ণভাবে ব্যর্থ হয়েছে।

৭। জিকা ভাইরাস (Zika virus): জিকা ভাইরাস একটি লাভিভাইরাস। এটি Flaviviridae গোত্রের একটি RNA ভাইরাস যা ১৯৫২ সালে বাদরের রক্ত এবং ১৯৫৪ সালে নাইজারিয়ায় মানুষের দেহ থেকে পৃথক করা হয়।। ১৯৪৭ সালে উপাভার Zika Forest-এ বসবাসকারী রেসাস বানরের দেহে এ ভাইরাস প্রথম ধরা পরে। উপাভার ভাষায় Zika অর্থ Overgrown। বর্তমানে Acdes aegypti, A. albopictus মশকীর মাধ্যমে এই ভাইরাস সম্প্রতি ব্রাজিলসহ লাভিন আমেরিকার কয়েকটি দেশে ব্যাপকহারে ছড়িয়ে পড়েছে। এতে মৃত্যু হার কম কারণ এর দ্বারা সাধারণত মন্তিষ্ক, হদপিও, কুসকুস, লিভার, কিভনি আক্রান্ত হয় না। এটি ছোয়াচে রোগ নয়। জিকাবাহী মশকী উড়ে একদেশ থেকে পার্শ্ববর্তী দেশে চলে যেতে পারে, তাই এটি একটি দুন্দিন্তার কারণ হয়ে দাঁড়িয়েছে। প্রতিকার-প্রতিরোধ ভেঙ্গুর মতোই। এ ভাইরাঙ্গের আক্রমণে শরীরে সামানা জ্বর, রয়শ, জয়েন্টে জয়েন্টে বাথা, চন্দু লাল হওয়া, মাংসপেশিতে ব্যথা, মাথা বাথা, দেহে কুসকুড়ি ওঠা ইত্যাদি উপসর্গ দেখা দেয়। গর্ভবতী নারীদের দেহে জিকার সংক্রমণ হলে নবজাতক শিশু অপেকাকৃত ছোট আর অপরিণত মন্তিষ্ক নিয়ে জন্মায়। চিকিৎসকের ভাষায় এ ক্রটিকে মাইক্রোসেন্টালি বলা হয়। ব্রাজিলে সম্প্রতি এ ক্রটিযুক্ত নবজাতক জন্মানোর তথ্য সবচেয়ে বেশি পাওয়া গেছে।

জিকার সংক্রমণের খুঁকিতে থাকা এলাকাগুলোর মধ্যে সবচেয়ে এগিয়ে রয়েছে দক্ষিণ আমেরিকার দেশগুলো। এই অঞ্চলে এরই মধ্যে মহামারি আকারে ছড়িয়ে পড়েছে ভাইরাসটি। এছাড়া আফ্রিকা ও এশিয়া মহাদেশের অধিবাসীরাও সংক্রমণের ঝুকিতে রয়েছে। ২০১৬ সালের মার্চ মাসে বাংলাদেশের চট্টগ্রাম জেলায় ৬৭ বছর বয়সী এক মহিলার রঙে জিকা ভাইরাসের সন্ধান পাওয়া গেছে। যুক্তরাষ্ট্রের পুয়ের্তো রিকো অঞ্চলে জিকা ভাইরাসে আক্রান্ত ৬০০ জন রোগীর মধ্যে প্রথম একজন রোগী ২০১৬ সালের ফেব্রুয়ারি মাসে মৃত্যুবরণ করেছেন।

৮। নিপা ভাইরাস (Nipah virus) : নিপা ভাইরাস Paramyxoviridae পরিবারভুক্ত একটি RNA ভাইরাস যার গণ কাম Henipavirus ১৯৯৯ লালে মালয়েশিয়ায় শৃকরের খামারে প্রথম ধরা পড়লেও দ্রুন্ত দক্ষিণ এশিয়ায় ছড়িয়ে পরে। বাদুর এই ভাইরাসটির বাহক এবং কাঁচা বেজুরের রসের মাধ্যমে এ ভাইরাস মানবদেহে সংক্রমিত (অনুপ্রবেশ) হয়। এ ভাইরাসের আক্রমণে শ্বসন জটিলতায় মানুষসহ গৃহপালিত পত্তপাখির মৃত্যু ঘটে।

সম্প্রতি SARS (Severe Acute Respiratory Syndrome) ভাইরাসের কারণে চীন, তাইওয়ান, কানাডা প্রতৃতি দেশে বহু লোকের মৃত্যু হয়েছে। MERS (Middle East Respiratory Syndrome) ভাইরাসও একটি মারাত্মক ভাইরাস। বার্ড ফ্রু-একটি ভাইরাসজনিত রোগ। ২০০৮ সালে বাংলাদেশ ও পশ্চিমবঙ্গে বার্ড ফু মহামারী আকারে হয়েছিল। বর্তমানে বাংলাদেশে প্রতি বছরই হাজার হাজার মুরগি এই রোগে আক্রান্ত হয়ে মারা যায়। অ্যাভিয়ান ইনফুয়েলা ৸ৣয়। (Hemaglutinin types-5-Neuraminidase type-1) ভাইরাসের আক্রমণে হাস-মুরগিতে বার্ড ফু নামক মারাত্মক রোগের সৃষ্টি হয় যা পোল্টি শিল্পকে ধ্বংস করে।

ুধ সোয়াইন ফ্লু- Swine Influenza virus (SIV) ছার সৃষ্টি হয়। ২০০৯ সালের এপ্রিল মাসে সোয়াইন ফ্লু শনার্চ করা হয়। ইনফুয়েজা ভাইরাসের Subtype (H₃N₁) ও H₁N₁) (Hemaglutinin type-1-Neuraminidase type-1) এর কারণে এই ফ্লু ঘটে থাকে। এ ভাইরাস ঘারা মানুর ব শুকুরা আক্রান্ত হয়। ২০১৫ সালের কেক্রেয়ারি মাসেই ভারতে বই লোক (২১০০) মারা যায় এবং ৩৪,০০০ মানুর আক্রান্ত হয়। বিশ্বায়নের যুগে এ রোগের দ্রুত বিস্তার ঘটেছে মেক্সিকো থেকে সারা বিশ্বে।

হেপাটাইটিস-বি ভাইরাস দিয়ে মানুষের লিভার ক্যান্সার, পেপিলোমা ভাইরাস দিয়ে এনোজেনিটাল (জরাইর মুখ) ক্যান্সার, হার্পিস সিমপ্লেক্স দিয়ে ক্যাপোসি সার্কোমা ইত্যাদি মারাতাক রোগ হয়ে থাকে বলে ধারণা করা হছে।
১৩। মানুষের অসুস্থ হওয়ার একটি সাধারণ কারণ হলো সর্দিজ্ব (common cold)। বিভিন্ন প্রকৃতির অনেক্তলো
ভাইরাস এর জন্য দায়ী; ভাই এর জন্য কোনো ভ্যাক্সিন তৈরি করা সম্ভব ক্রান্তি।

১৪/ চিকুনগুনিয়া (Chikungunya) : এটি এক প্রকার RNA ভাইরাসজনিত জুর। এ ভাইরাস α গোঁএভুক। Aedes α বিশ্বা এবং A. albopictus মশকী ধারা ভারতীয় উপমহাদেশে এ রোগ ছড়ায়। এ ভাইরাসটি প্রথম আবিশ্বিত হয় ১৯৫২ সালে আফ্রিকার তানজানিয়ায়। ২০০৮ সালে বাংলাদেশে প্রথম এ রোগ ধরা পড়ে। ২০১৭ সালে এপ্রিল-মে মাসে মর্লোদেশে চিকুনগুনিয়া ভাইরাসের ব্যাপক বিস্তার লক্ষ করা যায়। এ রোগে উচ্চ জুর, জয়েটে জয়েটে বাপা, শরীরে য়াশ ওঠা, মাথা বাথা, দুর্বলতা ইত্যাদি লক্ষণ দেখা দেয়। অনেকের জুর কমে গেলেও বাপা ৩–৪ মাস পর্যন্ত পারে।

্রা হিউম্যান হার্লিস ভাইরাসেস : এটি Rhadino গণের এবং DNA ভাইরাস। এর দারা ক্যাপোসি সারকোমা
(HIV সম্পর্কীত রোগীদের তৃক ক্যান্ধার) রোগ হয়।

ভাইরাসের উপকারিতা : বিজ্ঞানিগণ ভাইরাসকে বিভিন্নভাবে মানুষের কিছু উপকারে আনতে সক্ষম হয়েছেন। যেমন :

- সেন্ত, পোলিও, প্লেগ এবং জলাতক্ষ রোগের প্রতিষেধক টিকা ভাইরাস দিয়েই তৈরি করা হয়।
- ্ব্য ভাইরাস হতে 'জভিস' রোগের টিকা তৈরি করা হয়।
- কলেরা, টাইফয়েড, আমাশয় ইত্যাদি রোগের ওযুধ তৈরিতে ব্যাকটেরিওফায ভাইরাস ব্যবহার করা হয়।
 - ৪। ভাইরাসকে বর্তমানে বহুল আলোচিত 'জেনেটিক প্রকৌশল'-এ বাহক হিসেবে ব্যবহার করা হয়।
 - ৫। ক্ষতিকারক ব্যাকটেরিয়া নিয়ন্ত্রণে ভাইরাস ব্যবহার করা হয়।
- ৬। কতিপয় ক্ষতিকারক কীটপতঙ্গ দমনেও ভাইরাসের ভূমিকা উল্লেখ করার মতো। যুক্তরাট্রে NPV (Nuclear Polyhydrosis Virus) কে কীট পতঙ্গনাশক হিসেবে প্রয়োগ করা হয়।
 - ৭। ফায ভাইরাস ব্যাকটেরিয়াকে ধ্বংস করে ব্যাকটেরিয়াজনিত রোগের হাত থেকে মানুষকে রক্ষা করে থাকে।
 - ৮। টিউলিপ ফুল: লাল টিউলিপ ফুলে ভাইরাস আক্রমণের ফলে লখা লখা সাদা সাদা দাগ পড়ে। একে ব্রোকেন টিউলিপ বলে। এর ফলে ফুলের সৌন্দর্য বৃদ্ধি পায় এবং ফুলের মূল্য বেড়ে যায়।
 - ৯। অস্ট্রেলিয়ার খরগোসের সংখ্যা অস্বাভাবিকভাবে বেড়ে যাওয়ায় ফসলের চরম ক্ষতি হচ্ছিল। Myxovirus-এর সাহায্যে খরগোস নিধন করে তাদের সংখ্যা কমান্ত্রা হয়েছে।

ভাইরাস রোগ নিয়ন্ত্রণ : ভাইরাস রোগ নিয়ন্ত্রণের দুটি চপায় আছে, যথা (১) ভ্যাক্সিনেশন বা টিকা প্রদান। এর মাধ্যমে মানব দেহের ইমিউন সিস্টেম শক্তিশালী করা হয়। টিকা প্রদান হলো প্রতিরোধ ব্যবস্থা (prevention), (২) আতিভাইরাল ঔষধ যা দিয়ে রোগের অপ্রযাত্রা রোধ করা যায়। ইন্টারফেরন একটি আন্টিভাইরাস ড্রাগ। অনেক উদ্ভিদেও আতিভাইরাল উপাদান আছে। ইন্টারফেরন ভাইরাসকে নিষ্কিয় করতে প্রারে।

ভাইরাস দেহে কোনো মেটাবলিজমের ব্যবস্থা নেই, তাই অ্যান্টিবায়োটিক দিয়ে এটি প্রতিরোধ করা যায় না। কিছু তাইরাল এনজাইমকে অ্যান্টিভাইরাল ওমুধ হিসেবে ব্যবহার করা শুরু হয়েছে।

কয়েকটি উদ্ভিদ ভাইরাস রোগের নুমে, পোষকদেহ এবং ভাইরাসের নাম

नृष्टिकार नाम	ट्यायकटम ब्	ভাইরাদের নাম	
তামাকের মোজাইক রোগ	ভামাক	টোবাকো মোজাইক ভাইবাস (Tobacco Mosaic Virus)	
শিমের মোজাইক রোগ	সিম	বীন মোজাইক ভাইবাস (Bean Mosaic Virus)	
ট্যেটোর বুশিস্টান্ট রোগ	डिटमटी	বুশিন্টান্ট ভাইবাস (Bushystant Virus)	
गारमव प्रस्ता त्वाम	क्षान	पूर्वा कादेवान (Tungro Virus)	
কলার বানচি টপ রোগ	কলা	ৰানচি টপ ভাইরাস (Banchy Top Virus)	
গোলআৰুৰ মোজাইক বোগ	रशासकाम्	পট্যাটো মোজাইক ভাইবাস (Potato Mosaic Virus)	

পূর্বনি কয়েকটি ব্য	्रमाणकरमय्	লাথকদেহ এবং ভাইবাদের মাম ভাইবাদের মাম
न्य (स्टाराव गाम AIDS (स्टाराव गाम, शक्त मार्थि) स्वकृत्यामी कृष बार्ड कृ डिकृमकरिया Swine flue SARS	यानुष यानुष ई।म-धूर्वान, नावि यानुष यानुष, मृकद यानुष	HIV आहेदान prifit प्राहेदान (Plavi virus) हमाइटावां (H ₁ N ₁) शहिदान हिन्दानिका शहिदान हमाइटावां (H ₁ N ₁) शहिदान शमाइटावां (H ₁ N ₁) शहिदान Nipals virus
स्तरका चाँड नगढ (small pox)	शनुष शनुष	লাবিদ ভাইবাদ (Rabis virus) ভোইতদা ভাইবাদ (Variola virus) Varicella-Zoster virus
জানসভা (chicken pox) ভাইবাদ নিউঘোনিয়া কোমের দাইদিস (lysis)	হানুধ্ লয়পাধি হানুধ হানুধ	Adeno virus Ebola virus
ল্যখাল স্থি	श्रानुष	Rhino virus
ল্যখ	शतुष	कृष्टिकमा साहेदान (Rubeola virus)
শোলিতমাইলাইটিদ	यानुष	শোলিও ভাইবাস (Polio virus)
ইনফুরোমা	यानुष	ইনসুহেকা ভাইবাস (Influenza virus)
शुनित्र	भागूष	হানিস ভাইবাস (Herpes virus)
व्यक्ति/गिवाद काणार	भागूष	হেলাটাইডিস-বি ভাইবাস (Hepatitis B)
নীত জ্ব	মানুষ	ইচেলো জিলাৰ ভাইবাস (Yellow Fever virus)
ব্য-ব্যবস্থ	পঞ	ভাৰেদিনিয়া ভাইবাস (Vaccinia virus)
গ্ৰ ও মুখের ক্ষন্ত (সূতি আন্ত মাটাণ)	सक/दशहा/कामन/परिष	'কুট আৰু মাটৰ' ভাইবাস (Foot and Mouth virus
পুৰের টিউমার	विभूद	পলিকমা ভাইবাস: (Polioma virus)
ব্যাপেনি সার্বেমা	main.	যাপিন নিমপ্লেক (Herpes simplex)

কাজা ।; কাহ-এর গঠন চিত্রের একটি লোম্টার অন্ধন কর এবং ক্লাসে উপস্থাপন কর। উপক্রব : লোম্টার পেপার, পেশিল, ইরেজার, রং পেশিল ইজ্যানি।

मानुष

क्रांचारणनियान कारनार

ভাইরাসঘটিত রোগসমূহ (Viral diseases)

পেশিলোমা আইবাদ (Pepiloma virus)

ভাইরাস বলতেই রোগ সৃষ্টিকারী বন্ধ বোঝাত। মানুষ, গাছপালা, পতপাধির বহু রোগ ভাইরাস ছারা হয়ে ভাকে। এছানে কয়েকটি ভাইরাসমন্তিত রোগের সংক্ষিত্র পরিচিতি দেয়া হলো।

(ক) ভাইরাল হেপাটাইটিল (Viral Hepatitis): সাধারণত লিতার প্রদাহকে হেপাটাইটিল বলা হয়। তাইবাল ছারা আক্রান্ত হরে লিভার প্রদাহ হলে ভাকে ভাইরাল হেপাটাইটিল বা সংক্ষেপে হেপাটাইটিল বলা হয়। এটি জডিলের অন্যতম প্রধান কারণ। পৃথিহীর মোট জনসংখ্যার প্রান্ত ৩% এবং বাংলাদেশে প্রায় ৪০ লক্ষ লোক এ রোগে আক্রান্ত। ৮৫% ক্ষেত্রে এ ভাইরাল লিভারে ছারী আক্রমণ গাড়ে হোলে, যা ২০-২৫ বছরের মধ্যে জটিলভা দেখা দেয়।

বোগের কারণ। হেপাটাইটিস রোগের কারণ হেপাটাইটিস-৪ কাইবাম (HBV)। এছাড়া হেপাটাইটিস-৪ ভাইবাস (HAV) হেপাটাইটিস-৫ ভাইবাস (HCV) যাকে বলা হয় ছিমের আন্তর্ম (HEV) নিরব ঘাতক এবং আক্রম্ভ রোগী মুচিকিৎসার অভাবে অবিকাশ সময় মারা যায়। বেপাটাইটিস-৪ ভাইবাস (HDV) ব হেপাটাইটিস-৪ ভাইবাস (HBV) দিয়েও লিভার রালাহ হয়ে থাকে। অবিকাশ হেপাটাইটিস-৪ ভাইবাসের আক্রমণে ঘটে থাকে। হেপাটাইটিস-৫ অবশ্য হেপাটাইটিস-৪ অংশক্ষা অবিক মারাহ্রত (হেপাটাইটিস-৪ ভাইবাসে একটি DNA ভাইবাস। এব DNA বিস্তৃত্বক এবং বৃহ্বাকার। এই ভাইবাসে প্রোটিন আবরণের তলর আর একটি আবরণ থাকে। এ ভাইবাস বিভিন্নভাবে ছভাতে পারে। স্বেম্ন-

- আক্রান্ত মায়ের বুকের দুধপানের মাধ্যমে শিত আক্রান্ত হতে পারে।
- আক্রান্ত ব্যক্তির ইনজেকশনের সিরিজের মাধামে সৃষ্ট্ ব্যক্তির দেহে এ ভাইরাস প্রবেশ করতে পারে।
- অনিরাপদ যৌন মিলনের মাধ্যমেও এ ভাইরাস সংক্রমিত হতে পারে।

এছাড়া মাইটোমেখালো ভাইরাস, এগিস্টেইন বার ভাইরাস, হার্লিস সিমপ্লেক্স, হার্লিস জোস্টার ভাইরাস কোনো সময় শিক্তর হেপাউ্ট্রিস সৃষ্টি করে। নিম্নে হেপাটাইটিস ভাইরাসের প্রধান প্রধান বৈশিষ্ট্যসমূহ উল্লেখ করা হলো।

र्शनिक्षा	HAV	HBV	HCV	HDV	HEV
কুইবাস ফ্রন্স	এন্টারো ভাইরাস	হেপাডিএনএ ভাইরাস	ফ্র্যান্ডি ভাইরাস	অসম্পূর্ণ ভাইরাস	ক্যালিসি ভাইরাস
নিষ্টক্রিক অ্যাসিভ	RNA	DNA	RNA	RNA	RNA
হা য়তন	२9 nm	82 nm	೨०-৩৮ nm	oe nm	29 nm
সুরিকীল	১৪-২৮ দিন	8৫-১৮০ দিন	১৪-১৮০ দিন	২১-৪৯ দিন	২১-৫৬ দিন

রোগের লক্ষণ: রক্তের মাধ্যমে এই রোগ দেহে প্রবেশ করে এবং লিভারে নীত হয় ও লিভারকে আক্রমণ করে। এই কর্তৃক আক্রান্ড হওয়ার পর প্রথম দিকে কোনো লক্ষণই প্রকাশ পায় না। এর ইনকিউবেশন পিরিয়ভ (সুপ্তিকাল) ৪৫-১৮০ দিন। ক্রমশ জ্বর, মাথা ব্যথা, পেট ব্যথা, ক্র্ধামন্দা, খাবারে অরুচি, বমি বমি ভাব, দুর্বল বোধ, পাতলা সমাসানা, হাড়ের গিটে ব্যথা ইত্যাদি লক্ষণ প্রকাশ পায়। পরবর্তীতে প্রস্রাব হলুদ হয়, চোথের সাদা অংশ এবং সমস্ত শরীর হলুদ বর্ণ দেখায়, পেটে ও পায়ে পানি জমা হতে পারে। আক্রান্ত ব্যক্তি সবসময় অস্বপ্তি অনুক্রব করে। শেষ পুর্মন্ত বিভার সিরোসিস, লিভার ক্যান্সার হেপাটাইটিস B ও C ভাইরাসের সংক্রমণে হয়ে থাকে। রক্তে বিলরুবিনের এক SGPT এর মাত্রা বৃদ্ধি। এ দুটি প্রবীক্ষর মাধ্যমে রোগ সঠিকভাবে নির্ণয় করা যায়। হেপাটাইটিস B নির্ণয়ের জন্য রক্তের প্রহৃচবি সারক্ষেস আান্টিজেন (HBsAg) পরীক্ষা করতে হয়।

নিয়ন্ত্রণ/প্রতিকার : রোগলক্ষণ প্রকাশ পেলে অভিজ্ঞ চিকিৎসকের পরামর্শ নেয়া দরকার। সাধারণত এর কোনো কার্যকরী চিকিৎসা নেই। নিয়মিত চিকিৎসায় সুস্থ থাকা যায় কিন্তু সম্পূর্ণ আরোগ্য হওয়া যায় না। এর মূল চিকিৎসা হলো রোগীকে ১০-১২ নিন পূর্ণ বিশ্রামে রাখা। গ্রুকোজের সরবত খাওয়ালে উপকার পাওয়া যায়। অভ্রহড় পাতা, ভূই আমলার পাতা ইত্যালির রস খাওয়ায়ে উপকার পেয়েছেন বলেও অনেকে দাবি করেছেন। Amoxycillin, Metronidazole, ভিটামিন-সি প্রভৃতি ওষুধ খাওয়াতে হবে।

প্রতিরোধ : প্রতিরোধের একমাত্র উপায় হলো প্যান্টান্ড্যান্সেন গ্রহণ করা। হেপ্রাটাইটিস-৪-এর ভ্যাকসিন ভার ৪টি প্রথম ৩টি একমাস পরপর এবং ৪র্থটি প্রথম ডোজ থেকে এক বছর পর। পাঁচ বছর পর বুস্টার ডোজ নিতে হয়। এর মাধ্যমে শরারে হেপাটাইটিস-৪ ভাইরাসের বিপক্ষে প্রতিরোধ ব্যবস্থা গড়ে ওঠে। রক্ত পরীক্ষা করে এইচবি নারকেস আন্টিজেন (HBsAg) পজিটিভ হলে ৪-ভাইরাস আক্রান্ত বলে ধরে নেয়া হয় এবং তাকে ভ্যাকসিন দেয়া যায় না। মা থেকে শিততে এই রোগ ছড়াতে পারে, তাই সাবধান হতে হবে। রক্ত দেওয়া-নেওয়ায় সাবধান হতে হবে। আক্রান্ত ব্যক্তির সাথে বৌন মিলন করা যাকে না। সর্বক্ষেত্রে ডিসপোজিবল সিরিঞ্জ ব্যবহার করা। সেলুনে সেভ করা পরিহার করতে হবে। প্রতিজনের জন্য আলাদা আলাদা ব্লেড ব্যবহার করা উচিত। ব্যক্তিগত টয়লেট্রিজ দ্রব্য যেমন ট্রুথব্রাশ, রেজার, নেইল কটার ও রক্ত গ্রহণের যঞ্জপাতি অন্য কেউ ব্যবহার না করা।

(খ) ডেবু জুর (Dengue Fever)

রোগের কারণ: ভেঙ্গু প্রকৃত উচ্চারণ ডেঙ্গী) একটি ভাইরাসঘটিত রোগ। এই ছাইরাসের জীবাণুর নাম ফ্ল্যাভিভাইরাস বা ভেঙ্গী ভাইরাস। এটি একটি RNA ভাইরাস। এই ভাইরাসের বাহক হর্পো Aedes aegypti L. ও Aedes albopictus নামক মশকী (প্রী মশা) আর এর পোষক দেহ হলো মানুষ। প্রতি বছর সারা বিশ্বে প্রায় ১০ কোটি মানুষ ভেঙ্গু জুরে আক্রান্ত হয়।

জ্বাসের লক্ষ্ণ : (i) সাধারণ ভেঙ্গু জ্বর : প্রথমে শীত শীত ভাব হুমে হঠাৎ প্রচণ্ড জ্বর দেখা দেয়। ভার ১০৬-১০৫০ (ডিম্রি) ফারেনহাইট হয়ে থাকে। সাধারণত স্ত্রী ডেম্থু মশা কামড়ানোর (২-৭ দিন পর জুর দেখা দেয়। ডেম্থু জুরে রোগীর উব্রি মাধা বাধা, চোখের পেছনে বাধা, পেট বাধা, কপাল বাধা ও গলা রাধা কার বাধা এই বোগের বিশেষ স্ব কোমর, ঘাড়, হাড়ের জোড়ায় জোড়ায়) বাখা হয়। মেরুদধ্যের বাধাসহ কোমরে বাধা এই রোগের বিশেষ লক্ষণ। এত্র হাড়ভাঙ্গা স্কুর বলে। শরীরে লালতে বছরে র্যাশ (ফুসকুড়ি) দেখা দিতে পারে। বমি বমি ভাব ও থাবারে অরুচি হতে পারে। মারাজ্যক পর্যায়ে পৌছালে রককরণ (bleeding) হয়।

(ii) হেমোরেজিক ভেষু জ্ব : সাধারণ ভেষু জ্বর অটিলতা থেকে হেমোরেজিক ভেষু জ্বর দেখা দেয়। এতে কয়েকদির পর বোগার নাক, মুখ, দাতের মাড়ি ও তুকের নিচে রক্তজ্বর দেখা দেয়। পায়খানার সাথে রক্ত যেতে পারে, রক্ত বহি হতে পাবে, চোখের কোণে রক্ত জমাট হতে পারে। রক্তে প্রেটিলেট (অণুচক্রিকা) ভীষণ হ্রাস পায় এবং রক্ত জমাট বাঁধতে

পারে না। সঠিক চিকিৎসা না হলে মৃত্যু ঘটতে পারে।

(iii) ভেসু শক্ সিভ্রোম : হেমোকনসেনট্রেশন ঘটতে দেখা যায়।

তিন ধরনের ডেকু জ্বের মধ্যে হেমোরেজিক ডেকু জ্ব ও ডেকু শক সিড্রোম অত্যন্ত মারাত্মক।

রোগ নির্বয় সেরোলজি : রক্ত পরীক্ষায় IgM আন্টিবডি উপস্থিত থাকতে পারে অথবা তীব্র সংক্রামিত রক্তে আান্টিবভির পরিমাণ চার গুণ)পর্যন্ত বৃদ্ধি পেতে পারে

প্রেটিকেট পরীক্ষা : রভের অনুচক্রিকার সংখ্যা (১৫০০০০) mm³ এর অনেক নিচে নেমে আসে।

সেল কালচার : রক্ত কণিকা কালচার করেও <u>ভাইরাস শনাক্ত</u> করা যায়।

প্রতিকার/চিকিৎসা : ভেঙ্গু জ্বে রোণীকে এসপিরিন জাতীয় ওষুধ দিজে মারাত্মক পরিণতি দেখা দিতে পারে, তাই এসপিরিন জাতীয় ওষ্ধ দেয়া যাবে না। ব্যথা ও জ্ব কমানোর জন্য প্রারিসিটামল জাতীয় ওষ্ধ দিতে হবে। রজের সামাতা রক্ষার জন্য প্রেটিলেট ট্রান্সফিউশন এর প্রয়োজন পড়ে। রোগীকে প্রচুর পানি, ফলের রস ও তরল খাবার দিতে হবে। মাথায় পানি ঢালা, গায়ের ঘাম মুছে দেয়া, ভেজা কাপড় দিয়ে শরীর স্পল্প করে দেয়া রোগীর জন্য ফলদায়ক হয়। দুল্ধ পোষ্য শিকদের অবশাই মায়ের দুধ খাওয়াতে হবে। এছাড়া গর্ভবতী মায়েদের ডেঙ্গু হলে অন্যান্য রোগীর মতোই যুত্ নিতে হবে। রোগীর অবস্থা জটিল হলে অবশাই হাসপাতালে নিতে হবে।

প্রতিরোধ : ভেঙু মশা নিধন করাই প্রতিরোধের প্রধান উপায়। এই মশা দিনের বেলায় কামড়ায়, কাজেই দিনের বেলায় মশার কামড় থেকে বাঁচতে হবে। রোগ প্রতিরোধে দিনের বেলায় মশারী টানিয়ে ঘুমানো, মশার কয়েল অধবা ইলেকট্রিক ভ্যাপার ম্যাট ব্যবহার করতে হবে, যাতে মশা কামড়াতে না পারে। এই মশা ময়লা পানিতে জন্মায় না, বাজি আশপাশে বিভিন্ন কনটেইনারে (ফুলের টব, ভাঙ্গা হাঁড়ি পাতিল, ডাবের খোসা, ড্রাম ইত্যাদি) রক্ষিত বা সঞ্জিত পরিচর পানিতে জন্মায়, তাই পানির এসর উৎস ধ্বংস করতে হবে অর্থাৎ পানি জমতে না দেয়া। পূর্ণাঙ্গ মশা নিধনের জন্য নিয়মিত পতঙ্গনাশক শেপ্র করে রোগ প্রতিরোধ করা যায়। সম্প্রতি আমেরিকার ফ্লোরিডাতে জেনেটিক ইঞ্জিনিয়ারিং প্রযুক্তিতে পতঙ্গনাশক ছাড়াই ডেকু মশা নিধনের ব্যবস্থা আবিষ্কৃত হয়েছে।

(গ) পেঁপের রিস্পেট বা মোজাইক রোগ (Ringspot or mosaic disease of Papaya) : পৃথিবীর অনেক দেশেই একটি উল্লেখযোগ্য অর্থকরী ফসল হিসেবে পেঁপের চাষ হয়। বর্তমানে বাংলাদেশেও একটি অর্থকরী ফসল হিসেবে পেঁপের চাৰ তক্ত হয়েছে। পেঁপের রোগ-বালাই অপেকাকৃত কম হলেও কখনো কখনো ক্ষেতের পুরো ফসলই নট হয়ে থেতে পারে। পেঁপের সবচেয়ে ক্ষতিকারক রোগ হলো ভাইরাসঘটিত রিংস্পট রোগ। বাংলাদেশসহ ভারত, চীন, থাইলাচ ত কিলিপাইনে এ রোগের প্রাদুর্ভাব বেশি। এছাড়া দক্ষিণ আমেরিকা এবং যুক্তরাষ্ট্রের ফ্রোরিডা, হাওয়াই ও টেক্সাসসহ বেশ কয়েকটি অঙ্গরাজ্যে পেঁপে গাছে এ রোগ মহামারী আকারে দেখা দেয়। উদ্ভিদ রোগতত্ত্বিদ (জনসন)১৯৪৯ সালে এ

লোজের কারণ : একটি ভাইরাস দারা পেঁপের রিংস্পট রোগ হয়। ভাইরাসটি সাধারণভাবে Papaya ringspot virus PRSV नेट्स পরিচিত। এর গণ Potyvirus, গোত্র Potyviridae, PRSV কতকটা দ্বাকৃতির, এটি ৭৬০-৮০০ গণ

জ্বাসের লক্ষ্ণ : (i) সাধারণ ভেঙ্গু জ্বর : প্রথমে শীত শীত ভাব হুমে হঠাৎ প্রচণ্ড জ্বর দেখা দেয়। ভার ১০৬-১০৫০ (ডিম্রি) ফারেনহাইট হয়ে থাকে। সাধারণত স্ত্রী ডেম্থু মশা কামড়ানোর (২-৭ দিন পর জুর দেখা দেয়। ডেম্থু জুরে রোগীর উব্রি মাধা বাধা, চোখের পেছনে বাধা, পেট বাধা, কপাল বাধা ও গলা রাধা কার বাধা এই বোগের বিশেষ স্ব কোমর, ঘাড়, হাড়ের জোড়ায় জোড়ায়) বাখা হয়। মেরুদধ্যের বাধাসহ কোমরে বাধা এই রোগের বিশেষ লক্ষণ। এত্র হাড়ভাঙ্গা স্কুর বলে। শরীরে লালতে বছরে র্যাশ (ফুসকুড়ি) দেখা দিতে পারে। বমি বমি ভাব ও থাবারে অরুচি হতে পারে। মারাজ্যক পর্যায়ে পৌছালে রককরণ (bleeding) হয়।

(ii) হেমোরেজিক ভেষু জ্ব : সাধারণ ভেষু জ্বর অটিলতা থেকে হেমোরেজিক ভেষু জ্বর দেখা দেয়। এতে কয়েকদির পর বোগার নাক, মুখ, দাতের মাড়ি ও তুকের নিচে রক্তজ্বর দেখা দেয়। পায়খানার সাথে রক্ত যেতে পারে, রক্ত বহি হতে পাবে, চোখের কোণে রক্ত জমাট হতে পারে। রক্তে প্রেটিলেট (অণুচক্রিকা) ভীষণ হ্রাস পায় এবং রক্ত জমাট বাঁধতে

পারে না। সঠিক চিকিৎসা না হলে মৃত্যু ঘটতে পারে।

(iii) তেতু শক্ সিভ্রোম : হেমোকনসেনট্রেশন ঘটতে দেখা যায়।

তিন ধরনের ডেকু জ্বের মধ্যে হেমোরেজিক ডেকু জ্ব ও ডেকু শক সিড্রোম অত্যন্ত মারাত্মক।

রোগ নির্বয় সেরোলজি : রক্ত পরীক্ষায় IgM আন্টিবডি উপস্থিত থাকতে পারে অথবা তীব্র সংক্রামিত রক্তে আান্টিবভির পরিমাণ চার গুণ)পর্যন্ত বৃদ্ধি পেতে পারে

প্রেটিকেট পরীক্ষা : রভের অনুচক্রিকার সংখ্যা (১৫০০০০) mm³ এর অনেক নিচে নেমে আসে।

সেল কালচার : রক্ত কণিকা কালচার করেও <u>ভাইরাস শনাক্ত</u> করা যায়।

প্রতিকার/চিকিৎসা : ভেঙ্গু জ্বে রোণীকে এসপিরিন জাতীয় ওষুধ দিজে মারাত্মক পরিণতি দেখা দিতে পারে, তাই এসপিরিন জাতীয় ওষ্ধ দেয়া যাবে না। ব্যথা ও জ্ব কমানোর জন্য প্রারিসিটামল জাতীয় ওষ্ধ দিতে হবে। রজের সামাতা রক্ষার জন্য প্রেটিলেট ট্রান্সফিউশন এর প্রয়োজন পড়ে। রোগীকে প্রচুর পানি, ফলের রস ও তরল খাবার দিতে হবে। মাথায় পানি ঢালা, গায়ের ঘাম মুছে দেয়া, ভেজা কাপড় দিয়ে শরীর স্পল্প করে দেয়া রোগীর জন্য ফলদায়ক হয়। দুল্ধ পোষ্য শিকদের অবশাই মায়ের দুধ খাওয়াতে হবে। এছাড়া গর্ভবতী মায়েদের ডেঙ্গু হলে অন্যান্য রোগীর মতোই যুত্ নিতে হবে। রোগীর অবস্থা জটিল হলে অবশাই হাসপাতালে নিতে হবে।

প্রতিরোধ : ভেঙু মশা নিধন করাই প্রতিরোধের প্রধান উপায়। এই মশা দিনের বেলায় কামড়ায়, কাজেই দিনের বেলায় মশার কামড় থেকে বাঁচতে হবে। রোগ প্রতিরোধে দিনের বেলায় মশারী টানিয়ে ঘুমানো, মশার কয়েল অধবা ইলেকট্রিক ভ্যাপার ম্যাট ব্যবহার করতে হবে, যাতে মশা কামড়াতে না পারে। এই মশা ময়লা পানিতে জন্মায় না, বাজি আশপাশে বিভিন্ন কনটেইনারে (ফুলের টব, ভাঙ্গা হাঁড়ি পাতিল, ডাবের খোসা, ড্রাম ইত্যাদি) রক্ষিত বা সঞ্জিত পরিচর পানিতে জন্মায়, তাই পানির এসর উৎস ধ্বংস করতে হবে অর্থাৎ পানি জমতে না দেয়া। পূর্ণাঙ্গ মশা নিধনের জন্য নিয়মিত পতঙ্গনাশক শেপ্র করে রোগ প্রতিরোধ করা যায়। সম্প্রতি আমেরিকার ফ্লোরিডাতে জেনেটিক ইঞ্জিনিয়ারিং প্রযুক্তিতে পতঙ্গনাশক ছাড়াই ডেকু মশা নিধনের ব্যবস্থা আবিষ্কৃত হয়েছে।

(গ) পেঁপের রিস্পেট বা মোজাইক রোগ (Ringspot or mosaic disease of Papaya) : পৃথিবীর অনেক দেশেই একটি উল্লেখযোগ্য অর্থকরী ফসল হিসেবে পেঁপের চাষ হয়। বর্তমানে বাংলাদেশেও একটি অর্থকরী ফসল হিসেবে পেঁপের চাৰ তক্ত হয়েছে। পেঁপের রোগ-বালাই অপেকাকৃত কম হলেও কখনো কখনো ক্ষেতের পুরো ফসলই নট হয়ে থেতে পারে। পেঁপের সবচেয়ে ক্ষতিকারক রোগ হলো ভাইরাসঘটিত রিংস্পট রোগ। বাংলাদেশসহ ভারত, চীন, থাইলাচ ত কিলিপাইনে এ রোগের প্রাদুর্ভাব বেশি। এছাড়া দক্ষিণ আমেরিকা এবং যুক্তরাষ্ট্রের ফ্রোরিডা, হাওয়াই ও টেক্সাসসহ বেশ কয়েকটি অঙ্গরাজ্যে পেঁপে গাছে এ রোগ মহামারী আকারে দেখা দেয়। উদ্ভিদ রোগতত্ত্বিদ (জনসন)১৯৪৯ সালে এ

লোজের কারণ : একটি ভাইরাস দারা পেঁপের রিংস্পট রোগ হয়। ভাইরাসটি সাধারণভাবে Papaya ringspot virus PRSV नेट्स পরিচিত। এর গণ Potyvirus, গোত্র Potyviridae, PRSV কতকটা দ্বাকৃতির, এটি ৭৬০-৮০০ গণ

নধা এবং এর ব্যাস ১২ nm। পেঁপে ছাড়াও এ ডাইরাস কুমড়া জাতীয় উদ্ভিদে মোজাইক রোগের সৃষ্টি করে। ক্যাপসিডের হাইবে এর কোনো আবরণ নেই। এটি একটি RNA ডাইরাস। PRSV এর দুটি প্রকরণের (PRSV-p এবং PRSV-w) হথে PRSV-p দিনে প্রেপের বিশেষট রোগ হয়।

সক্রেমণ জাব পোকা প্রাদা মাছি (Melon Aphid- Aphid gossypii and Peach Aphid- Myzus persicae) ছারা গেল গাছে পেঁপের রিংস্পট রোগের ভাইরাস সংক্রমিত হয়। কোনো আক্রান্ত উদ্ভিদ থেকে জাব পোকা থাদ্যগ্রহণ করলে ১৫ সেকেন্ডের মধ্যে ভাইরাস পোকার দেহে চলে আসে এবং সাথে সাথে কোনো সুস্থ উদ্ভিদে বসলে উহা ভাইরাস ছারা সংক্রাহিত হয়। পোকার দেহে এ ভাইরাস সংখ্যাবৃদ্ধি করে না। যদি পেঁপে বাগানের গাছগুলো পোকার খুব কাছাকাছি রবস্থান করে এবং বাগানে জাব পোকার সংখ্যা খুব বেশি থাকে তাহলে এ রোগ খুব দ্রুত ছড়ায় এবং ৪ মাসের মধ্যে সম্পূর্ণ বাগান এ রোগ ছারা আক্রান্ত হয়। গাছ ছাঁটার সময় যান্ত্রিকভাবে এ রোগ বিস্তার ঘটতে পারে।

বোগ লক্ষ্ম (Symptoms) : রোগের নাম থেকেই লক্ষণ অনুমান করা যায়। Ring = বৃত্ত, Spot = দাগ অর্থাৎ বৃত্তিম দাগ প্রকাশ পায়। বৃত্তাকার দাগের প্রকৃতি হলো কেন্দ্রাভিমুখী (Concentric)। রোগাক্রান্ত গাছে নিমুলিখিত লক্ষণ প্রথা।

- উদ্ভিদ জন্মের সাথে সাথে এ রোগের সংক্রমণ ঘটতে পারে। সংক্রমণের ৩০–৪০ দিনের মধ্যে প্রথম রোগ

 লক্ষণ প্রকাশ পায়।
- (ii) ক্রোরোপ্লাস্ট নষ্ট হয়ে পাতায় হলদে-সবুজ মোজাইকের মতো দাগ পড়ে।
- কাঙ, পাতার বোঁটা ও ফলে তৈলাক্ত বা পানি-সিক্ত গাঢ় সবুজ দাগ, স্পট বা রিং সৃষ্টি হয়।
- (iv) অপেকাকৃত কম বয়সের পাতায়ই রোগ লক্ষণ প্রথম প্রকাশ পায়।
- আক্রমণ প্রকট হলে পাতায় বহুল পরিমাণে মোজাইক সৃষ্টি হয়, পাতা আকৃতিতে ছোট ও কুকড়ে য়য়, গাছের
 মাখায় বিকৃত আকৃতির জুদ্রাকায় কিছু পাতা লক্ষ্য করা য়য়। অন্যান্য পাতা ঝরে পড়ে। কখনো কখনো পাতার
 কেবল শিরাগুলো থাকে।
- (vi) আক্রান্ত ফলের উপর পানি ভেজা গোলাকার দাগ পড়ে এবং দাগের মধ্যবর্তী স্থান শক্ত হয়ে যায়।
- (vii) পেঁপে হলুদ হয়ে যায়, রিংস্পট লক্ষণ প্রকাশিত হয়, আকার ছোট হয়ে যায়। অনেক সময় পুষ্ট হবার আগেই বারে যায়।
- (viii) পেঁপের মিউতা ও পেপেইন<u>ক্রা</u>স পায়।
- ্দ্রী ফলন শতকরা ৯০ ভাগ পর্যস্ত<u>হা</u>স পেতে পারে।

ঘতিকার/নিয়ন্ত্রণ

- জমিতে রোগ লক্ষণ প্রকাশ পেলে সাথে সাথেই রোগাক্রান্ত গাছ উঠিয়ে মাটি চাপা দিতে হবে বা পুড়িয়ে ফেলতে
 হবে।
- ২। জাল (net) দিয়ে পুরো জমি (পেঁপের গাছসহ) ঢেকে দিতে হবে যেন এফিড নামক পতঙ্গ দ্বারা নতুন গাছ আক্রান্ত না হতে পারে।
- একিভ নামক পতন্ত নিধনের জন্য পেন্টিসাইড শেপ্র (রগর বা রক্তিয়ন বা পারফেকথিয়ন 40 ইসি অথবা মেটাসিসটক্র 25 ইসি কীটনাশক 2 মিলিলিটার/1লিটার পানিতে মিশিয়ে) করা যেতে পারে।
- 8। চারা লাগানোর প্রথম থেকেই নিয়নিত পেস্টিসাইড স্প্রে করলে এফিড পতঙ্গ দ্বারা রোগ ছড়ায় না।
- ে রোগাক্রান্ত জমিতে পেঁপে গাছের প্রুনিং (পাতা কাটা, ছাঁটা ইত্যাদি) বন্ধ রাখতে হবে, কারণ কাটা-ছেড়া স্থান দিয়ে রোগাক্রম ঘটে থাকে।
- ৬। বাংলাদেশি বিজ্ঞানি ড, মাকসুদুল আলম কর্তৃক জিন প্রযুক্তির মাধ্যমে আবিশ্কৃত নতুন জাতের ক্রস প্রোটেকশন করে আবাদ করলে রোগমুক্ত ফল উৎপাদন করা সম্ভব। এখানে উল্লেখ্য যে, ড, মাকসুদুল আলম আমেরিকার হাওয়াই বিশ্ববিদ্যালয়ে পেঁপের জিনরহল উন্মোচন করেছেন। (এখন তিনি প্রয়াত।)

প্রতিরোধমূলক ব্যবস্থা

- ১। যে এলাকাতে রোগ ছড়িয়ে পড়েছে সে এলাকায় পেঁপের চাষ বন্ধ করে দিতে হবে এবং দূরে নতুন এলাকায় রোগয়ুক্ত চারা দিয়ে চাষ তরু করতে হবে।
- ২। ক্রস-প্রোটেকশন পদ্ধতিতে উদ্ভাবিত চারাগাছ থেকে ভালো ফলাফল পাওয়া যায়। মৃদু প্রকৃতির PRSV জীবাণুকে প্রাণিদেহে ভাইরাল টিকাদানের মতো পোষক উদ্ভিদে প্রবেশ করিয়ে গাছকে ভাইরাস প্রতিরোধী করা।
- ৩। PRSV সাধারণত বীজের মাধ্যমে স্থানান্তরিত হয় না, তবে প্রকটভাবে আক্রান্ত পেঁপের বীজ ব্যবহার করপে তা ইনোকুলামের উৎস হিসেবে কাজ করতে পারে। কাজেই ঐ ধরনের বীজ ব্যবহার না করা।
- ৪। ট্রাঙ্গজেনিক জাত ব্যবহার সবচেয়ে নিরাপদ। জিনগান পদ্ধতি ব্যবহার করে PRSV'S Coat protein জিনকে জ্রণ টিস্যাতে সংযুক্ত করে নতুন ট্রাঙ্গজেনিক জাত উদ্ভাবন করা হয়েছে ১৯৯৮ সালে। ট্রাঙ্গজেনিক জাত দুটি হলো PRSV মুক্ত রেইনবো (Rainbow) ও সানআপ (Sunup)। এই ট্রাঙ্গজেনিক জাত (GMO) PRSV দ্বারা আক্রান্ত হয় না।

ব্যাকটেরিয়া (Bacteria, একবচনে Bacterium)

প্রিক শব্দ Bakterion = little rod থেকে ব্যাকটেরিয়া শব্দটির উৎপত্তি। ব্যাকটেরিয়া (একবচনে ব্যাকটেরিয়াম) এক ধরনের ক্ষুদ্র আণুবীক্ষণিক জীব। ওলন্দাজ বিজ্ঞানী (হল্যান্ড) অ্যান্টনি ভ্যান লীউয়েনহুক (Antony Van Leeuwenhoek, 1632—1723) ১৬৭৫ খ্রিস্টাব্দে তাঁর নিজের আবিষ্কৃত সরল অণুবীক্ষণ যন্ত্রের নিচে এক ফোঁটা বৃষ্টির পানিতে ব্যাকটেরিয়ার উপস্থিতি পর্যবেক্ষণ করেন। তিনি এগুলোর নাম দেন animalcule বা ক্ষুদ্র প্রাণী। ১৬৮৩ খ্রিস্টাব্দের ১৭ সেপ্টেম্বর লভন রয়াল সোসাইটিতে প্রদন্ত তার অন্ধিত ছবিতে তিন আকৃতির ব্যাকটেরিয়ার উপস্থিতি দেখা যায়। সর্ব প্রথম আণুবীক্ষণিক সমীক্ষার আণুবীক্ষণিক ক্ষুদ্র জীবের অন্ধিত্ প্রমাণের জন্য তাকে ব্যাকটেরিগ্রালি ও প্রোটোজুওলজির জনক বলা হয়ে থাকে। জার্মান বিজ্ঞানী এরেনবার্গ (Christian Gottfried Ehrenberg) ১৮২৯ খ্রিস্টাব্দে এসব ক্ষুদ্রজীবদের ব্যাকটেরিয়া নামকরণ করেন। ফরাসি বিজ্ঞানী লুই পাস্তর (Louis Pasteur) ১৮৬৯ খ্রিস্টাব্দে ব্যাকটেরিয়ার ওপর ব্যাপক গবেষণা এবং ব্যাকটেরিয়া তত্ত্বকে (germ theory of disease) প্রতিষ্ঠিত করেন। ব্যাকটেরিয়া তত্ত্ব প্রতিষ্ঠার কারণে লুই পাস্তরকে অনেকেই আধুনিক ব্যাকটেরিওলজির জনক বলতে চান। জার্মান ডাজার রবার্ট কক (Robert Koch) অনেক পরীক্ষানিরীক্ষা ছারা প্রমাণ করেন যে, প্রাণীর বহু রোগের কারণ হলো ব্যাকটেরিয়া। তিনি যক্ষা রোগের জন্য দায়ী Mycobacterium tuberculosis ব্যাকটেরিয়া আবিষ্কার করেন এবং এজন্য তাকে ১৯০৫ সালে নোবেল পুরন্ধার প্রদান করা হয়

মানুষের দেহে যতগুলো কোষ আছে তার চেয়ে ১০ গুণ বেশি ব্যাকটেরিয়া আছে। মানুষের অন্ত ও তুকে সর্বাধিক সংখ্যক ব্যাক্টেরিয়া থাকে। এদের বেশিরভাগই কোনো ক্ষতি করে না। মানুষের দেহে ব্যাকটেরিয়া দ্বারা সৃষ্ট রোগের মধ্যে যক্ষা রোগ বেশি ভয়ানক এবং এ রোগে আক্রান্ত হয়ে বিশ্বৈ প্রতি বছর প্রায় ২ মিলিয়ন মানুষ মারা যায়। যুক্তরাট্রে AIDS সংক্রমণে যত মানুষ মারা যায় তার চেয়ে বেশি মারা যায় Methicillin-resistant Staphylococcus aureus (MRSA) নামক ব্যাকটেরিয়ার সংক্রমণে।

বিজ্ঞানের যে শাখায় ব্যাকটেরিয়ার গঠন, আবাস, রোগতত্ত্ব, বংশবিস্তার ইত্যাদি নিয়ে অধ্যয়ন ও গবেষণা করা হয় তাকে ব্যাকটেরিওলজি বলে।

ব্যাকটেরিয়া আদিকোষী (Prokaryotic) জীব। আদিকোষী জীবের বৈশিষ্ট্য হলো এদের কোষে কোনো ঝিরিবন্ধ অঙ্গাণু থাকে না, যেমন নিউক্লিয়ান, মাইটোকব্রিয়া, ক্লোরোপ্লাস্ট, এভোপ্লাজমিক রেটিকুলাম, গলগি কমপ্লেক্স, লাইসোজোম, সাইটোক্ষেলেটন নেই। কেবলমাত্র রাইবোসোম থাকে। কোষে একটি ছিস্ত্রক অখণ্ড, কার্যত বৃত্তাকার DNA অণু থাকে, যা ক্রোমোসোম হিসেবে পরিচিত। এতে হিস্টোন-প্রোটিন থাকে না। ব্যাকটেরিয়া অত্যন্ত ক্ষুদ্রাকায়, অণুবীক্ষণ যন্ত্র ছাড়া এদের দেখা যায় না। এদের কোষে জড় কোষ প্রাচীর থাকে। তাই এরা উন্তিদের সাথে মিল সম্পন্ন।

অণুঞাব

হলেও অথে খাকটেবিয়া বদতে আর্কবাকটেবিয়া (মিত mehane = ancient বা আদি), ছউব্যাকটেবিয়া, সায়ানোবাকটেবিয়া, ক্রাকটিনেতাকটেবিয়া ইকালি মুলতে বোঝাছ। বর্জমানে Mycoplasma-কেও ব্যাকটেবিয়া হিলেবে গলা হয়। এব মধ্যে আর্কব্যাকটেবিয়া ক্রাল প্রশান থাকে আলাল ঘরনের। ১৯৭০ সালের আলে আর্কিব্যাকটেবিয়া এবং ব্যাকটেবিয়ার ক্রেমন পার্থকা জানা সম্পর হয়নি, ১৯৯৬ সালে এক আক্রাকটেবিয়ার জিনোম সিকুয়েলিং করার পর এগের মধ্যকার প্রকট পার্থকা প্রতিষ্ঠিত হয়। এতে দেখা যায় মোট ১৭৩৮টি জিনের প্রতিক্রের বেলি জিন ব্যাকটেবিয়ামহ অন্যান্য সকল লীব পোলী খেকে সম্পূর্ণ পৃথক। করে এনের স্বেমন-এর বেল সিকুয়েলনেস ব্যাকটেবিয়ার প্রথমের ঘনিইতা সুস্থা করে। এজনাই অনেক বিজ্ঞানী জীবরাজ্যকে ভিনটি Domain বা অধিরাজ্যে ভাগ করতে চান।

करियामा-३ : Archaea : योका Archaebacteria करियामा-३ : Bacteria : शाका Eubacteria

wieres o : Enkarya : Cittl Protista, Pungi, Plantae, Animalia

(विविधः	আর্কিব্যাকটেরিয়া	व्याक्टोनिया
১ কোন্দ্রাচীর	শেপতিয়েরা গ্লাইকান নেই	প্রধান বন্ধ পেণটিজোল্লাইকান
২। মেমন্ত্রেন লিপিড	ইঘার দিংক্ড, শাধাধিত	এস্টার লিক্ডে, অশার্থ
o EMERGE IRNA	মেখিলনিন	ফরমাইল মেপিওনিল
8 I RNA পণিমাবেজ	একাধিক	এক ধরনের
e। ফটোলিনভেটিক লিগমেন্ট	Bacterio rhodoosin	Bacterial chlorophyll, chloroph

আউলাকটোটা সহায়েই প্ৰতিকৃপ পৰিবেশে বাস করে। এদের কতক Salt lover (Halophiles), কাক Heat lover (Thermophiles) কতক Heat and acid lover (Thermoscidophiles) এবং কাক Methane generater (Methanogens).

Methonograms ১১০° সে, তাপমাত্রায়ত টিকে থাকে, তালো বৃদ্ধি ঘটে ৯৮° সে, তাপমাত্রায়, কিন্তু তাপমাত্রা ৮৪° সে, এর কম হলে মরে হয়। Methonograms প্রতি বছর বায়ুমঙলে দুই বিশিয়ন টন মিখেন গ্যাস মুক্ত করে।

ছাইছোক, এ পুস্তকে কেবলমাত্র প্রকৃত ব্যাকটেরিয়া সম্বন্ধ আলোচনা করা হলো। Encyclopedia of Flora and Fauna of Bangladesh পুস্তকে বাংলাদেশ থেকে সর্বমোট ৪৭২ প্রজাতির ব্যাকটেরিয়া লিপিবদ্ধ করা হয়েছে। এর মধ্যে ৩০০ প্রজাতির সায়ানোব্যাকটেরিয়া, ৬০ প্রজাতির প্রোটিওব্যাকটেরিয়া, ৪২ প্রজাতির ফির্মিকিউট্স এবং ৭০ প্রজাতির আকটিনোব্যাকটেরিয়া।

ব্যাকটেরিয়া হলো জড় কোষপ্রাচীর বিশিষ্ট, এককোষী, আণুবীক্ষণিক, আদিকেন্দ্রিক অণুজীব যা সাধারণত ক্লোরোফিল বিহীন এবং প্রধানত ছি-ভাজন প্রক্রিয়ায় বংশবৃদ্ধি করে। ৩৬০ কোটি বছর পূর্বে আর্কিওজোইক যুগে আদি কোষী জীবের উংগত্তি ঘটেছিল। নিচে ব্যাকটেরিয়ার সাধারণ বৈশিষ্ট্য দেয়া হুল্লোন

ব্যাকটেরিয়ার সাধারণ বৈশিষ্ট্য

- ঠ। ব্যাকটেরিয়া অত্যন্ত ছোট আকারের জীব, সাধারণত (০.২-৫.০ মাইক্রোমিটার পর্যন্ত হয়ে থাকে, অর্থাৎ এরা আপুরীক্ষণিক (microscopic)।
- ২। এরা এককোষী জীব, তবে একসাথে অনেকগুলো কলোনি করে বা দল বেঁধে থাকতে পারে।
- ত। ব্যাকটেরিয়া আদিকেন্দ্রিক (প্রাককেন্দ্রিক = Prokaryotic)। কোষে 70S রাইবোসোম থাকে; অন্য কোনো

্বিল্লিবছ অঙ্গাণু থাকে না।
ব্যাকটেরিয়ার কোষ প্রাচীরের প্রধান উপাদান পেপটিডোগ্লাইকান বা মিউকোপ্রোটিন, সাথে মুরামিক অ্যাসিড
(Muramic acid) এবং টিকোয়িক অ্যাসিড (Teichoic acid) থাকে।

- গ্রাকটেরিয়্রাল ক্রোমোসোম হিসেবে পরিচিত। এটি সাইটোপ্লাজমে অবস্থিত, এতে ক্রোমোসোমাল হিস্টোনপ্রোটিন থাকে না। ব্যাকটেরিয়া কোষে DNA অবস্থানের অঞ্চলকে নিউক্লিয়য়েড বলা হয়।
- ৬। এদের বংশবৃদ্ধির প্রধান প্রক্রিয়া ছি-ভাজন (binary fission)। ব্যারেরিয়ার ছিভাজন প্রক্রিয়ায় সাধারণত ৩০ মিনিট সময় লাগে।
- ৭। এদের কতক পরজীবী ও রোগ উৎপাদনকারী, অধিকাংশই মৃতজীবী এবং কিছু খনির্ভর (autophytic)।
- ৮। এরা সাধারণত বেসিক রং ধারণ করতে পারে (গ্রাম পঞ্জিটিভ বা গ্রাম নেগেটিভ)।
- ১। ফায ভাইরাসের প্রতি এরা খুবই সংবেদনশীল।

- ১০। এদের অধিকাংশই অজৈব লবণ জারিত করে শক্তি সংগ্রহ করে।
- ১১। বাজেরিয়া প্রতিকৃল পরিবেশে টিকে থাকার জন্য একোম্পোর বা অন্তরেণু গঠন করে। এ অবস্থায় এরা ৫০ বছর পর্যন্ত টিকে থাকতে পারে।
- প্ররা -১৭ ডিম্মি থেকে ৮০ ডিম্মি সেন্টিয়েড তাপমাত্রায় বাঁচে।
 ১৩। ক্রোমোলোম না থাকায় মাইটোসিস ও মায়োসিস ঘটে না।
- প্রদের কতক বাধ্যতামূলক অবায়বীয় (obligate anaerobes) অর্থাৎ অক্সিজেন থাকলে বাঁচতে পারে না। উদাঃ

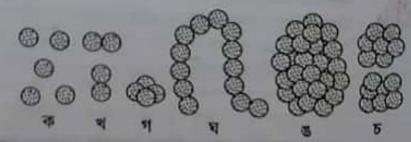
 Clostridium। কতক সুবিধাবাদী অবায়বীয় (facultative anaerobes) অর্থাৎ অক্সিজেনের উপস্থিতিতেও

 বাঁচতে পারে। কতক বাধ্যতামূলক বায়বীয় (obligate aerobes) অর্থাৎ অক্সিজেন ছাড়া বাঁচতে পারে না। উদাঃ

 Azotobacter beijerinckia।

বাক্টেরিয়ার বিস্তৃতি ও আবাসস্থল: ব্যাকটেরিয়া মাটিতে, পানিতে, বাতাসে, জীবদেহের বাইরে এবং ভেতরে অর্থাৎ প্রায় সর্বত্রই বিরাজমান। মানুষের অস্ত্রেও ব্যাকটেরিয়া বাস করে। এর মধ্যে Escherichia coli (E. coli) আমাদেরতে ভিটামিন বি-কমপ্রেক্স সরবরাহ করে থাকে। প্রকৃতিতে প্রচও ঠাণ্ডা অর্থাৎ —17°টে তাপমাত্রা থেকে ওরু করে ৪০°টে তাপমাত্রা পর্যন্ত বাকটেরিয়া বেঁচে থাকে। মাটি বা পানিতে যেখানে জৈব পদার্থ বেশি ব্যাকটেরিয়ার সংখ্যাও সেবারে বেশি। জৈব পদার্থ সমৃদ্ধ আবাদি মাটিতে ব্যাকটেরিয়ার সংখ্যা সবচেয়ে বেশি। মাটির যত গভীরে যাওয়া যাবে, মাটিতে জৈব পদার্থের পরিমাণও তত কমতে থাকে এবং সাথে সাথে ব্যাকটেরিয়ার সংখ্যাও কমতে থাকে। জৈব পদার্থসমৃদ্ধ জলাশয়েও বিপুল সংখ্যক ব্যাকটেরিয়া বাস করে। বায়ুতেও ব্যাকটেরিয়া আছে তবে বায়ুন্তরের অনেক উচুতে ব্যাকটেরিয়া থাকে না। এক গ্রাম মাটিতে প্রায় ৪০ মিলিয়ন এবং এক মিলিলিটার মিঠা পানিতে প্রায় ১ মিলিয়ন ব্যাকটেরিয়া থাকে। অসংখ্য ব্যাক্টেরিয়া উদ্ভিদ ও প্রাণীদেহে পরজীবী হিসেবে বাস করে। আবার অনেকে প্রাণীর অন্তে মিথোজীবী হিসেবে বাস করে।

ব্যাকটেরিয়ার শ্রেণিবিভাগ (Classification of Bacteria)


ব্যাকটেরিয়াকে তাদের কোষের আকৃতিগত পার্থকা, জৈবিক প্রক্রিয়া, পৃষ্টির তারতম্য, ফ্ল্যাজেলার বিভিন্নতা, রপ্তন গ্রহণের ক্ষমতা, স্পোর উৎপাদন ক্ষমতা ইত্যাদি বৈশিষ্ট্যের ওপর ভিত্তি করে বিভিন্নভাবে প্রেণিবিন্যাস করা হয়ে থাকে। নিম্নে এদের মধ্য থেকে তিন প্রকার শ্রেণিবিন্যাস পদ্ধতি উপস্থাপন করা হলো:

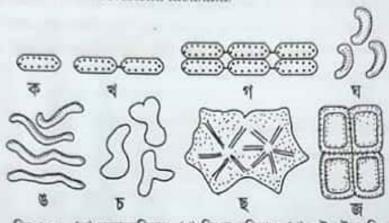
ক্রে আকৃতিগত শ্রেণিবিভাগ

কোষের আকৃতি অনুসারে ব্যাকটেরিয়াকে নিমুলিখিতভাবে শ্রেণিবিন্যাস করা হয়, যথা- ১। ক্কাস, ২। ব্যাসিলাস, ৩। কমাকৃতি, ৪। স্পাইরিলাম, ৫। বহুরূপি, ৬। স্টিলেট বা তারকাকার এবং ৭। বর্গাকৃতির।

১। করাস (Coccus) বিহুবচনে করাই, Pl. Cocci): যে সব ব্যাকটেরিয়া কোষের আকৃতি প্রায় গোলাকার তাদেরকৈ করাস বলে। করাসকে আবার ছয়ভাগে ভাগ করা হয়েছে। যথা-

- (ক) মাইজোকভাস বা মনোকভাস (Micrococcus): যেসৰ ব্যাকটেরিয়া গোলাকার এবং একা একা থাকে ভাদেরকে মাইজোকভাস বা মনোকভাস বলে; উদাহরণ- Micrococcus denitrificans.
- (খ) ভিপ্লোক্জাস (Diplococcus) : দেখতে গোলাকার এবং এ বাাকটেরিয়াসমূহ জোড়ায় জোড়ায় থাকে: উদাহরণ- Diplococcus pneumoniae.

ভিত্ৰ ৪.৬ । বিভিন্ন প্ৰভাবের ব্যাকটোরিয়া (৩) মাইফোকরাস, (৩) ডিপ্লোকরাস, (গ) টেট্রাকরাস, (খ) ডেইপটোকরাস, (৪) স্ট্রাফাইলোকরাস এবং (১) সার্থসিনা।


(গ) ট্রেকিকাস (Tetracoccus) : যখন চারটি গোলাকার ব্যাকটেরিয়া একই তলে একত্রে বাস করে; উদাহরণ-

- (ম) স্ট্রেপটোককাস (Streptococcus) : এরাও দেখতে গোলাকার এবং চেইন (chain) বা মালার মতো সাজানো লকে; উদাহরণ- Streptococcus lactis.
- (৪) স্ট্যাফাইলোককাস (Staphylococcus) : এওলো গোলাকৃতি ব্যাকটেরিয়া এবং অনিয়মিত গুজাকারে সাজানো লক্ষে, যা দেখতে অনেকটা আঙ্গুরের খোকার ন্যায় দেখায়; উদাহরণ- Staphylococcus aureus.

(১) সারসিনা (Sarcina) : এগুলো দেখতে গোলাকার। কর্কাস জাতীয় ব্যারেরিয়াগুলো একরে সমান সমান দৈর্ঘ্যে, প্রাই ও উচ্চতায় একটি ঘনতলের মতো গঠন তৈরি করে তখন তাকে সারসিনা বলে; উদাহরণ- Sarcina lutea.

- ২। ব্যাসিলাস (Bacillus) বিহুবচনে ব্যাসিলি Pl. bacilli] : দ্যাকৃতির ব্যাট্টেরিয়াকে ব্যাসিলাস ব্যাকটেরিয়া বলে: हनाहरण- Bacillus albus, Clostridium botulinum, Pseudomonas tabaci ইত্যাদি। ব্যাসিলাস ব্যাকটেরিয়া নিম্নিখিত ধরনের-
 - মনোব্যাসিলাস (Monobacillus): যখন ব্যাসিলাস ব্যাকটেরিয়া এককভাবে থাকে তখন তাকে মনোব্যাসিলাস বলে; উদাহরণ- Bacillus albus, Escherichia coli.
 - ডিপ্লোব্যাসিলাস (Diplobacillus) : দুটি ব্যাসিলাস ব্যাকটেরিয়া একত্রে যুক্ত অবস্থায় থাকলে তাকে ভিপ্লোব্যাসিলাস বলে; উদাহরণ- Moraxella lacunata.

চিত্র ৪.৭: (ক) মনোব্যাসিলাস, (খ) ডিপ্লোব্যাসিলাস, (গ) স্ট্রেপটোব্যাসিলাস.
(য়) কমাকৃতি, (৯) স্পাইরিলাম, (চ) বহুরপি, (য়) তারকাকার এবং (য়) বর্গাকৃতির।

- ্র স্ট্রেপটোব্যাসিলাস (Streptobacillus): দুইয়ের অধিক ব্যাসিলাস ব্যাকটেরিয়া একত্রে যুক্ত হয়ে লম্বা সূত্রাকার গঠন তৈরি করে তথন তাকে স্ট্রেপটোব্যাসিলাস বলে; উদাহরণ- Streptobacillus moniliformis.
- ক্রোব্যাসিলাস (Coccobacillus): যখন ব্যাকটেরিয়াগুলো সামান্য লঘা বা কতকটা ভিঘাকার হয় তখন তাকে করোব্যাসিলাস বলে; উদাহরণ-Salmonella, Mycobacterium.
- প্যালিসেভ ব্যাসিলাস (Palisade bacillus): কখনো কখনো ব্যাসিলাস জাতীয় ব্যাকটেরিয়াগুলো পাশাপাশি
 সমান্তরালভাবে অবস্থান করে অলীক টিস্যুর ন্যায় গঠন তৈরি করে তখন তাকে প্যালিসেভ ব্যাসিলাস বলেঃ
 উদাহরণ-Lampropedia sp.

ত। কমাকৃতি বা ভিব্রিত (Comma or Vibrio) : যেসব ব্যাকটেরিয়া সাধারণত কমা চিহ্নের ন্যায় তাদের কমা আকটেরিয়া বলা হয়; উদাহরণ- Vibrio cholerae.

- ৪। স্পাইরিলাম (Spirillum) বিহুবচনে স্পাইরিলা Pl. spirilla । বা সর্পিলাকার : পাঁচানো বা সর্পিলাকার বাকটেরিয়াকে স্পাইরিলাম বলে; উদাহরণ- Spirillum minus.
- ৫। বহুরাপ (Pleomorphic) : সুনির্দিষ্ট আকারবিহীন ব্যাকটেরিয়াকে বহুরূপি ব্যাকটেরিয়া বলা হয়; উদা,
 - ৬। স্টিলেট বা তারকাকার (Stellate or Star shaped) : এরা দেখতে অনেকটা তারকার ন্যায়; যেমন-Stella sp.
- ৭। বৰ্ণাকৃতির (Square shaped) : চার বাহুবিশিষ্ট ব্যাকটোরিয়াকেই বর্ণাকৃতির ব্যাকটোরিয়া বলা হয়; যেমন-Haloquadratum walsbyi.

৮। ফিলামেন্টাস (Filamentus) : এদের গঠন যখন সূত্রাকার হয় তখন তাকে ফিলামেন্টাস বলে, যেমন

Candidatus savagella 1

(খ) বঞ্চনজিত্তিক শ্ৰেণিবিজাণ (গিলেবাস বহিন্দৃত কিন্ত জানা জকবি)

১৮৮৪ সালে আনিশ ডিকিংগক Hans Christian Gram ব্যাকটোরিয়ার জন্য একটি রঞ্জন পছতি উদ্ভাবন করেন, য়াকে বলা হয় Gram

staining বা বাম বঞ্জন লছকি i

মাইতে ব্যাকটোবিয়া শিলার (Smear) নিয়ে ভাতে ক্রিন্টাল ভারোলেট বং নিতে হবে, এরপর আয়োভিন নিতে হবে। এরপর এই আলকোহলে হুয়ে সায়োদিন-এর লাল হং-এ কাউন্টার স্টেইন করতে হবে। যে সব ব্যাকটেরিয়া ভারোলেট বং ধরে রাখবে তারা হলো হার শক্তিত ব্যাকটোরিয়া (দেখতে ব্লু থেকে পারণদ হবে)৷ যেমন-Bacillus subtillis. যে সব ব্যাকটোরিয়াতে ভায়োলেট বাং পুরে চলে যারে ক্ সাম্রোনিনের লাল বং ধরে রাখবে ভারা হলো গ্রাম নেগেটিক ব্যাকটেরিয়া (দেখতে পিছ থেকে লাল হবে): যেমন-Salmonella typhi.

চিকিৎসা ক্ষেত্ৰে গ্ৰাম স্টেইনিং অত্যন্ত প্ৰয়োজনীয়। পেনিসিলিন বা পেনিসিলিন জাতীয় আন্টিবায়োটিক গ্ৰনুধ গ্ৰাম পজিটিত ব্যাকটোৱন কোৰ প্ৰাচীত উপাদান পেপটিডোগ্নাইকান উৎপাদন বছ করে দেয়, ফলে নতুন সৃষ্ট কোষ টিকে থাকতে পারে না। আবার ইন্টোনাইক্রি ক্রেন্টোমাইসিন জাতীয় ভযুধ গ্রাম নেগেটিভ ব্যাকটেবিয়ার গ্রোটিন সংক্রেষণ বন্ধ করে দেয়, তাই নতুন সৃষ্ট কোষ টিকে থাকতে পারে না। এডাং রোগ্যী জ্বারোগ্য হয়।

শ্যাকটিক আসিত ব্যাকটোবিয়া, ক্লমট্রভিয়াম, স্ক্রেন্টোকজাস, স্ট্যাফাইলোকজাস, আকটিনোব্যাকটোবিয়া ইত্যাদি গ্রাম প্রিটিড

-ক্ৰিবোৰাকটোৰিয়া, সকল সায়ানোৰাাকটোৰিয়া, শিগেলা, সালমোনেলা, ৱাইজোবিয়াম, ভিব্ৰিও, ই. কোলাই ইত্যাদি গ্ৰাম নেগেটিভ। আমানের নিজৰ গ্ৰেষণায় প্রমাণিত হয়েছে বাংলাদেশে বহু গাছপালা আছে যাদের নির্যাস গ্রাম পজিটিভ এবং গ্রাম নেগেটিভ ব্যাকটেরিছর ৰিক্তছে কাৰ্যকৰ। পাৰ্গপ্ৰতিক্ৰিয়া বিশিষ্ট আন্টিবায়েটিকের পরিবর্তে এসব উদ্ভিদ নির্যাস ব্যবহার করা যায়। Polygonum lapathifolium এফ

একটি আগাছা। প্রয়োজন ছাড়া কোনো একটি আগাছাও যেন আমহা নাই না কঠি।

(গ) ফ্ল্যাজেলাভিডিক প্রেণিবিভাগ (সিলেবাসের অন্তর্ভুক্ত নয়)

১। আট্রিকাস (atrichous) : এদের কোমে কোনো क्रमारकारा याटक मा। डिमाइडल-Corynebacterium diptheriae.

২। মনোট্রকাস (monotrichous) : এনের কোনের এক প্রাত্তে একটি মাত্র ফ্ল্যাজেলাম থাকে: যেমন- Vibrio cholerae.

ত। আছিট্রকার (amphitrichous) : এনের কোমের পুই প্রাক্তে একটি করে ফ্রাজেলাম খাকে; যেমন- Spirillum minus I

(১) আট্রকাস (২) মনোট্রকাস (৩) আঞ্চিট্রকাস

(8)

(৪) সেফালোট্রকাস(৫) লফোট্রকাস (৬) পেরিট্রকাস।

৪। সেফালোট্রিকাস (cephalotrichous) : এনের কোষের এক প্রান্তে একচছে ফ্রাকেলা থাকে ; যেমন-Pseudomonia fluorescens (

৫। শংকাট্রিকাস (lophotrichous) : এনের কোবের দুই লাজে দুইওচ্ছ ফ্লাকেলা থাকে: যেমন-Spirillum volutans ।

৬। পেরিট্রকাস (peritrichous)। এসের সেহের সবদিকেই ফ্লাজেলা থাকে; যেমন- Salmonella typhi।

একটি আদর্শ ব্যাকটেরিয়ামের গঠন (Structure of a Typical Bacterium)

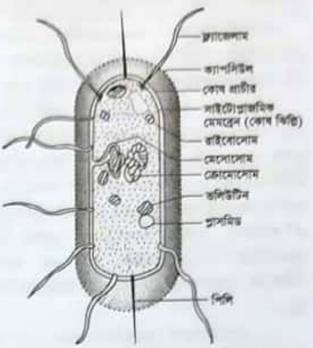
ব্যাকটেরিয়ার বাহ্যিক আকার-আকৃতি ও প্রকৃতিতে যেমন উল্লেখযোগ্য পার্থক্য আছে, এদের কোষীয় গঠন বৈশিটোট তেমনই উল্লেখযোগ্য পার্থক্য বিদ্যমান আছে। সবতলো বৈশিষ্ট্যকে একত্র করে একটি আদর্শ ব্যাকটেরিয়ামের গঠন হিসেই

ত কোষ প্রাচীর : প্রতিটি ব্যাকটেরিয়াম কোষকে মিনে একটি জড় কোষ প্রাচীর থাকে। কোষ প্রাচীরের প্রধন উপাদান মউকোপ্রোটিন জাতীয় যাবে মিউরিন স পেপটিডোগ্রাইকান বলে। পেপটিডোগ্রাইকান একটি কার্বোহাইটেই পদিমার। পেলটিভাগ্নাইকানের সাথে কিছু পরিমাণ ব্রিমিক জ্যাসিত এবং টিকোয়িক জ্যাসিতও থাকে। গ্রাম পঞ্জিটিত ব্যাকটেরিয়াতে পেপটিভোগ্নাইকান তরটি বেশ পুরু থাকে যা ক্রিস্টাল ভায়োলেট রহ ধরে রাখতে পারে। গ্রাম নেগেটি ব্যাকটেরিয়াতে পেণটিভোগ্নাইকান তরটি পাতগা থাকে এবং এর উপর ফসফোলিপিড বা লিপোপলিসেকারাইড-এর এইটি

প্রতলা তর থাকে। এজনা এরা ভায়োলেট রং ধরে রাখতে পারে না। মাইকোপ্লাজমাতে জড় প্রাচীর নেই বললেই চলে।

এরা খুদ্রতম ব্যাকটেরিয়া। লাইসোজাইম এনজাইম দ্বারা এর কোদ প্রাচীর বিগলিত হয়।

২। ক্যাপসিউল : বছ ব্যাকটেরিয়াতে কোষ প্রাচীরকে খিরে


ছটিল কার্বোহাইড্রেট বা পলিপেপটাইড দিয়ে গঠিত একটি পুরু স্তর

হাতে ব্যাক ক্যাপসিউল বলে। একে সাইম স্তরপ্ত বলা হয়।

প্রতিক্রা অবস্থা থেকে ব্যাকটেরিয়াকে রক্ষা করাই এর প্রধান কাজ।

ত। ফ্ল্যাজেলা : অনেক ব্যাকটেরিয়াতে একটি ফ্ল্যাজেলাম বা একাধিক ফ্ল্যাজেলা থাকে। ব্যাকটেরিয়ার ফ্ল্যাজেলা নলাকার রডবিশেষ। ফ্ল্যাজেলির নামক প্রোটিন দিয়ে ফ্ল্যাজেলা গঠিত। প্রতিটি ফ্ল্যাজেলামের তিনটি অংশ থাকে। যথা- (i) সূত্র (ii) সংক্ষিপ্ত হক এবং (iii) ব্যাসাল বভি। ব্যাসাল বভি ফ্ল্যাজেলামকে কোষের ক্ল্যামেমত্রেনের সাথে সংযুক্ত রাখে। ফ্ল্যাজেলা ব্যাকটেরিয়ার চলনে অংশ্রহণ করে।

৪। পিলি: কতগুলো গ্রাম নেগেটিভ ব্যাকটেরিয়ায় অপেক্ষাকৃত কুদ্র, দৃদ্ধ ক্রায় অধিক লোম সদৃশ অঙ্গ থাকে যাকে পিলি বলে। পিলি, পিলিন (Pilin) নামক এক প্রকার প্রোটিন দিয়ে তৈরি।

চিত্ৰ ৪.৯ : একটি আদৰ্শ ব্যাকটেবিয়াম কোষ (আংশিক ফেশিক দৃশ্য)।

শোষক কোষের সাথে সংযুক্তির কাজ করে থাকে পিলি। গনোরিয়া ব্যাকটেরিয়া পিলি দ্বারা পোষক কোষের সাথে সংযুক্ত

হয়।

৫। প্লাজমামেমব্রেন: সাইটোপ্লাজমকে বেষ্টন করে সজীব প্লাজমামেমব্রেন অবস্থিত। এটি সরল শৃঙ্খালের ফসফোলিপিড বাইলেয়ার হিসেবে অবস্থিত, এর সাথে মাঝে মাঝে প্রোটিন থাকে। এতে কোলেস্টেরল থাকে না। ব্যাকটেরিয়ার প্লাজমামেমব্রেন অনেক মেটাবলিক কাজ করে থাকে। বায়বীয় ব্যাকটেরিয়ার প্লাজমামেমব্রেন বহু শ্বসনিক ও ফসফোরাইলেটিক এনজাইম থারণ করে (মাইটোকব্রিয়ার অনুরূপ)। ফটোসিনথেটিক ব্যাকটেরিয়াতে প্লাজমামেমব্রেন ভেতরের দিকে ভাঁজ হয়ে থাইলাকয়েত সদৃশ গঠন সৃষ্টি করে। ব্যাকটেরিয়াতে মাইটোকব্রিয়া নেই, তবুও কিছু ATP তৈরি হয় সাবস্টেট লেভেল ফসফোরাইলেশন প্রক্রিয়ায়, কারণ ব্যাকটেরিয়ার প্লাজমামেমব্রেন ফসফোরাইলেটিক এনজাইম থাকে।

৬। মেসোসোম : ব্যাকটেরিয়া কোষের প্লাজমামেমব্রেন কখনো কখনো ভেতরের দিকে ভাঁজ হয়ে থলির মতো গঠন সৃষ্টি করে যাকে মেসোসোম বলে। অনেকের মতে মেসোসোম কাষ বিভাজনে সাহায্য করে থাকে। স্ত্রামীন

৭। সাইটোপ্লাজম : সাইটোপ্লাজমিক মেমব্রেন দিয়ে পরিবেষ্টিত অবস্থায় সাইটোপ্লাজম অবস্থিত। সাইটোপ্লাজম কর্মিন, স্বাছ। এতে বিদামান থাকে ছোট ছোট কোষ গহরর, চর্বি, শর্করা জাতীয় খাদা, প্রোটিন, খনিজ পদার্থ (লৌহ, ক্সকরা স্ক্রেকার ইত্যাদিন। গহররগুলো কোষরস দিয়ে পূর্ণ থাকে। সাইটোপ্লাজমে অবস্থিত উল্লেখ্যবাদ্ধ অসাণু হলো মূল বহুবেলাসে এবং পলিরাইবেসাম। সালোকসংগ্রেষণকারী ব্যাকটেরিয়ার সাইটোপ্লাজমে ক্রেম্যাটোখোর থাকে। তক্রম বাজেরিয়ার সাইটোপ্লাজমে ক্রম্যাটোখোর থাকে। তক্রম বাজেরিয়ার সাইটোপ্লাজমে ক্রম্ব দানা কোষ গহরে ছানাজরিত হয়।

৮। ক্রোমোসোম : কোবে সুগঠিত নিউক্লিয়াসের পরিবর্তে কেবল মাত্র একটি ক্রোমোসোম থাকে, যা সাইটোপ্লালমে অবস্থিত। প্রকৃতপক্ষে এটি একটি ছিস্ত্রক DNA অণু। এটি কার্যত বৃত্তাকার এবং নগ্ন অর্থাৎ এতে ক্রোমোসোমাল হিস্টোন প্রোটিন থাকে না। ক্রোমোসোমকে যিরে কোনো নিউক্লিয়ার আবরণ থাকে না। সাইটোপ্লাজমস্থ DNA সমৃদ্ধ অঞ্চলকে নিউক্লিয়রেড (nucleoid) বলে।

৯। প্লাসমিভ : বহু ব্যাকটেরিয়াতে বৃহৎ ক্রোমোসোম ছাড়াও একটি কুদ্রাকায় ও প্রকৃত বৃত্তাকার DNA অণু থাকে, যাকে বলা হত প্রাসমিভ প্রাসমিভ প্রবিভাজন ক্ষমতাসম্পন্ন এবং এতে স্বয়্ন সংখ্যক জিন থাকে। ভেরর হিসেবে ব্যবহৃত হত। কাজ। একটি আদৰ্শ ব্যাকটোরিয়াম কোষ জন্ধন কর এবং এর বিভিন্ন অংশ চিহ্নিত কর। উপকরণ : পোস্টার পেণার, পেলিল, বংপেলিল, ইরেলার ইজ্যাদি।

ব্যাকটোর্যার জনন (Reproduction of Bacteria) : ব্যাকটোরিয়ার প্রধান জনন পক্ষতি হলো ছি-ভাজন পৃষ্ঠতি এটি একটি অযৌন সছতি। কুঁড়ি তথা মুকুলোদগম প্রক্রিয়ায় কোনো কোনো ব্যাকটেরিয়াতে সংখ্যাবৃদ্ধি হতে পারে। 🚜 সৃষ্টি পদ্ধতিকে **অমজ জনন পদ্ধতি** বলা যেতে পারে।

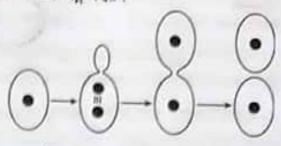
🗅 ছি-ভাজন (Binary fission) : একটি কোয সমান দুই ভাগে ভাগ হওয়ার নাম ছি-ভাজন। অন্যভাবে বলা যায় ছি-তাজন হলো আদি কোষের অযৌন জনন প্রক্রিয়া যেখানে নিউক্রিয়ার বস্ত্র (DNA) সমান দুই ভাগে বিভক্ত হয়। খি-ভাজন পদ্ধতিই ব্যাকটেরিয়ার সংখ্যাবৃদ্ধি তথা প্রজননের প্রধান উপায়। এ প্রক্রিয়ায় একটি ব্যাকটেরিয়াম কোষ বিভক্ত হয়ে সমআকাবের দুটিতে পরিবত হয় এবং এভাবেই দ্রুত সংখ্যাবৃদ্ধি ঘটতে থাকে। প্রক্রিয়াটি নিমুলিখিত উপায়ে সম্পন্ন दश ।

১। ব্যাকটেরিয়াল ক্রোমোসোম তথা DNA ব্যাকটেরিয়া কোষের দুই প্রান্তের মাঝামাঝি অবস্থান নেয় প্লাজমামেমব্রেনের সাথে সংযুক্ত হয়।

২। প্রাজমামেমব্রেনের সাথে সংযুক্ত অবস্থায় DNA-অণুর প্রতিলিপন হয়।

- ত। এ অবছার কোষটি লখার বৃদ্ধি পার। কোষপ্রাচীর এবং প্রাজমামেমব্রেনের বৃদ্ধি কোষের দুই প্রান্তের মাঝখানে घटी शादक।
- ৪। কোমপ্রাচীর ও প্লাজমামেমবেন পদায় বৃদ্ধির কারণে DNA রেল্লিকা দুটি দুই দিকে পৃথক হয়ে যায়।
- ৫। পদায় বৃদ্ধিপ্রাপ্ত কোষের মাঝখানে প্রাজমামেমব্রেন ক্রমশ ভেতরের দিকে বৃদ্ধিলার হতে থাকে এবং একই সাথে ঐ অংশে কোমপ্রাচীর সংশ্লেষিত হতে থাকে। এক সময় একটি কোখ দুটি কোষে পরিণত হয়।
- ৬। শেষ পর্যায়ে টার্গার প্রেসারের কারণে নতুন সৃষ্ট অপত্য কোষ দুটি পরস্পর হতে পৃথক হয়ে যায়।

৭। পৃথক অপতা কোষ দুটি বৃদ্ধি পেয়ে মাতৃকোষের সমান আকারের হয় এবং পুনরায় ছি-ভাজন প্রক্রিন্যায় অংশগ্রহণ করতে পারে। চিত্র ৪.১০ : দি-ভাজন প্রক্রিয়ায় ব্যাকটেরিয়ার বংশবৃদ্ধি।


পরিবেশ উপযুক্ত হলে আমানের অন্তের E. coli ব্যাকটোরিয়া প্রতি বিশ মিনিটে সংখ্যা দ্বিত্ব করতে পারে। এ প্রক্রিয়া চলতে থাকলে এই নিলে E. coli-এর ৭২টি জেনারেশন সৃষ্টি হতে পারে (৪.৭ সেক্সট্রিলিয়ন ব্যাকটেরিয়া, যার ওজন এক লক্ষ পাউড)। কিম্ব বাস্তবে তা হয় না, কর্মে ক্তেক জেনাবেশন বৃদ্ধির পরই এসের খাবার খাটার দেখা দেয় এবং এনের বর্জা পরিবেশকে বিয়াক্ত করে ফেলে, তাই দ্বিভাজন প্রক্রিয়াটি বছ ইট যাত। সংক্রামক ব্যাকটোইয়ার ক্ষেত্র পোষক সেহের ইমিউন সিস্টেম শ্বারা ব্যাকটোইয়ার অব্যাহত দি-ভাজন প্রক্রিয়া বন্ধ হয়ে যায়। প্রমেশ্র

মাতৃকোধ কোৰ বাটাৰ वकिंग नाकरेंग्वियाम रका DNA STRAIGHTON नारम नरपुक सरका কোণ প্রাচীর বর্বিতকরণ দুই রেপ্রিকা দুর্বদিকে সরে নিয়েছ দুই বেল্লিকার মাকখানে কোষ প্রাচীর গঠন

কাজ : যাতৃকোষ থেকে নতুন দুটি কোন সৃষ্টির ধাপসমূহ নিজ ভাষায় বর্ণনা কর ।

কিছু প্রজাতির ব্যাকটেরিয়া অনুকৃষ পরিবেশে মুকুলোদগম প্রক্রিয়ায় অঙ্গজ জনন সম্পন্ন করে।

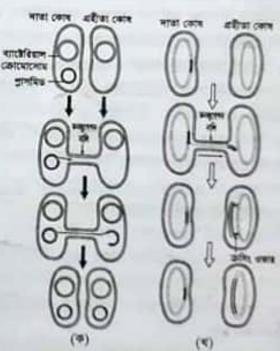
্র মুকুলোদখম (Budding) : (i) কোনো কোনো ব্যাকটেরিয়াতে হুকুলোদগম তথা কুঁড়ি সৃষ্টির মাধামে সংখ্যাবৃদ্ধি ঘটে। প্রথমে এক পাশে ্রকটি ছোট কুঁড়ি বের হয়। (ii) পরে একদিকে কুড়িটি ধীরে ধীরে বড় হয় এবং অপর দিকে মৃশ ব্যাকটেরিয়ার নিউক্লিয়য়েড বস্তুটি দৃই খণ্ডে বিভক্ত হয়। (iii) নিউক্লিয়য়েড বস্তুর একটি খণ্ড মুকুলে প্রবেশ করে। (iv) মুকুলটি গ্রতকোষের প্রায় সমান হলে পৃথক হয়ে যায়।

চিত্ৰ ৪,১১। ব্যাকটেরিয়ার মুকুপোদগম

্র অযৌন জনন (Asexual reproduction) : প্রতিকৃল পরিবেশে ব্যাকটেরিয়া গনিভিয়া বা এভোম্পোর সৃষ্টির মাধ্যমে প্রজনন সম্পন্ন করে। এই পদ্ধতিকে অযৌন জনন পদ্ধতি বলা হয়।

া পনিডিয়া : Leucothris জাতীয় সূত্রাকার ব্যাকটেরিয়ার অগ্রভাগ হতে গনিডিয়া ন্মক অযৌন একক সৃষ্টি হয় যা একসময় পৃথক হয়ে যায় এবং অনুকৃল পরিবেশে পূর্ণাঙ্গ হাকটেরিয়া হিসেবে আজ্রপ্রকাশ করে।

্রা) এভোস্পোর বা অন্তরেণু উৎপাদন : সাধারণত Bacillaceae গোত্রের ব্যাকটেরিয়া বছরেণু উৎপন্ন করে থাকে। একটি ব্যাক্টেরিয়াম হতে একটি অন্তরেণু উৎপন্ন হয় তাই এর মহামে বংশবৃদ্ধি ঘটে না, প্রতিক্ল অবস্থা অতিক্রম করে মাত্র। অন্তরেণু গোলাকার বা



ভিদাকার এবং অত্যন্ত পুরু প্রাচীরে আবৃত থাকে। অনুকূল পরিবেশে অন্তরেণু অন্তুরিত হয়ে একটি মাত্র ব্যার্টেরিয়া কোব সূত্রি করে। এটি প্রকৃতপক্ষে জনন প্রক্রিয়া নয়।

্র বৌন জনন (Sexual reproduction) : প্রকৃতপক্ষে বাক্টেরিয়াতে কোনো যৌন জনন ঘটে না। এখানে কোনো গ্যামিট সৃষ্টি হয় না, কোনো মায়োসিস বিভাজন হয় না, কোনো ডিপ্লয়েড কোষ তৈরি হয় না, কোনো জাইগোটও তৈরি হয় না। তবে বংশগতীয় বস্তু (genetic material) স্থানান্তর হয়। বংশগতীয় বয় (ব্যাকটেরিয়াল ক্রোমোসোম বা DNA) তিনভাগে স্থানান্তরিত যতে পারে।

(i) কনজুগোশন নালিপথে : একটি দাতা কোষ ও একটি গ্রহীতা কোষের মধ্যে একটি ফাঁপা নলের মতো কনজুগেশন নালি সৃষ্টি হয়। এই নালিপথে দাতা কোষ থেকে সাধারণত প্রাসমিভ গ্রহীতা কোষে হানান্তরিত হয়। প্রথমে প্লাসমিভ অনুলিপিত হয়, একটি দাতা কোষ থেকে যায়, অপরটি নালিপথে এহীতা কোষে স্থানান্তরিত হয়। **বহু** ব্যাকটেরিয়া এভাবে প্রচলিত ওধুধের প্রতি প্রতিরোধ্য হয়ে পড়ে।

অতি বিরল ক্ষেত্রে দাতা কোষের আংশিক ক্রোমোসোমও এই শালিপথে গ্রহীতা কোষে স্থানাঞ্জরিত হতে পারে। সাধারণত ক্রোমোলোমের কিয়াদংশ প্রহীতা কোষে প্রবেশের পর নালির সংযোগ নিছিল হলে যায়। গ্রহীতা কোষের কোমোসোমের সাথে দাতা

চিত্র ৪.১৩ : ব্যাকটেরিয়ার বংশগভীয় বস্তুর স্থানান্তর (ক) প্লাসমিভ ছানাছব, (খ) মূল ক্রোমোসোমের আংশিক স্থানান্তর ও রিকার্থনেশন

গোৰের আংশিক ক্রোমোসোমের রিকম্বিনেশন ঘটে। অতিরিক্ত অংশ বিগলিত হয়ে যায়। গবেষণাগারে এটা ঘটানো সম্ভব ^{হলেও} প্ৰকৃতিতে খুবই কম ঘটে থাকে।

শ্রিবেশ থেকে অন্য <u>ব্যাকটে</u>রিয়ার (সাধারণত মৃত ব্যাকটেরিয়ার) DNA গ্রহীতা কোষে প্রবেশ করে রিকম্বিনেশন গীতে পাৰে। একে বলে এপফরমেশন (Transformation)।

(iii) কৰে কাইবাদের মাধামে এক আৰক্ষিবান জিলোম, কথনও কাম জিলোম, অন্য ব্যাকটোরিয়াতে প্রবেশ করে

ত্তিকবিচনশন ঘটাতে শাতে। একে বলে বিশ্বসকশন (Transduction)।

हिट्टापा त्य, Joshua Lederberg अया Edward Tatum विकामीयत 1958 जाएम Escherichia coli नाएक बार्ट्सानाह

খৌন প্রবণতা আবিষ্ণার করার স্বীকৃতিসক্ষণ ১৯৫৮ সালে ঘেডিসিনে নোবেল পুরস্কার লাভ করেন। ব্যাকটেবিয়ার অর্থনৈতিক করাত্ব (Economic Importance of Bacteria) : ব্যাকটেবিয়া আমাদের উপকার এর অপকার পূই-ই করে থাকে। উভয় গুণাবলির জন্য ব্যাকটোরিয়া বিশেষ গুরুত্বপূর্ণ।

ব্যাকটেরিয়ার উপকারিতা

(ক) ব্রিকিলা কোরে:

তা আতিবাছোটিক বনুৰ তৈবিতে : ব্যাকটোবিয়া হতে সাবটিলিন (Bacillus subtilis হতে), পলিমিক্সিন (Bacillus

মন্ট্রাল্ড করে) প্রভৃতি ভক্তবুপূর্ণ আভিবাহোটিক ওমুধ প্রস্তুত করা হয়।

ষ্ট্ৰপৰ্যাত্তিৰখক টিকা তৈতিতে : ব্যাকটোবিয়া হতে কলেবা, টাইফয়েড, যক্ষা প্ৰতৃতি বোগের প্ৰতিৰেখক প্ৰস্তুত করা হয়। ডি,শি,টি, (ডিক্সেরিয়া, হ্শিকেশি ও ধনুসম্কোর) রোগের টিকা বা প্রতিষেধকও ব্যাকটেরিয়া হতে প্রস্তুত করা হয়। Corynebacterium dipiheriae (D), Bordetella pertussis (P) ant Clostridium tetani (T) 555 DPT (Da Diphtheria, P= Pertussis, T= Tetanus) मास्कल कवा इरवरह ।

(४) कृषि (कारा ।

৩। মাটির উর্বরতা বৃদ্ধিতে। মাটির উর্বরতা বৃদ্ধিতে ব্যাকটেরিয়ার অবদান অনেক। মাটির জৈব পদার্থ সরহে ব্যাকটেরিয়ার প্রতাক্ষ ভূমিকা আছে। ব্যাকটেরিয়া মাটির উপাদান হিসেবেও কাজ করে। নানাবিধ আবর্জনা হতে পার অফিয়ার ফ্রনামে ব্যাকটোরিয়া ভৈত সার ও জৈব গ্যাস প্রস্তুত করে থাকে।

ি নাইটোজেন সংক্রেনে : Azotobacter, Pseudomonas, Clostridium প্রকৃতি ব্যাকটেরিয়া সরাসরি বাহু হয়ে লাইটোজেন গ্রহণ করে নাইটোজেন দৌম লুনার্থ হিসেবে মাটিতে স্থাপন করে, ফলে মাটির উর্বরতা বৃদ্ধি পায়। Rhizobian আক্টেরিয়া দিয় জাতীর উরিদের মূলের মডিউলে নাইট্রোজেন সংবন্ধন করে থাকে। বাংলাদেশে মসুর ভালের মূল ৰভিত্তৰ হৈছি কৰে Rhizobium গলৈৱ তিনটি প্ৰজাতি। একলো হলো R. bangladeshense, R. bine এবং R. lentis বংলাদেশ পরমাণু কৃষি গবেষণা ইনস্টিটিডট (বিনা)-এর তরুণ বিজানী ড, মোঃ হারুন-অর রশিদ এই নতুন ব্যাকটেরিল

্ত নাইট্রিফিকেশন : আমোনিয়াকে (NH₁) নাইট্রেট-এ (NO₃) পরিণত করাকে বলা হয় নাইট্রিফিকেশন। সাধানত নুটি উপধাপে এটি সম্পন্ন হয়। প্রথম উপধাপে Nitrosomonas, Nitrococcus ইত্যাদি স্থপক্ষ ব্যাকটেরিয়া আমেদিয়াক ছিত্ৰত-ত (NO) পৰিণত কৰে এবং ছিতায় উপধাপে Nurobacter নাইট্ৰিইটকে নাইট্ৰেটে (NO) পৰিণত কৰে। apreco व्यक्तिकारेर (nitrifying) दाक्किका दला रहा। [NH3→NO,→NO]]

্ভ প্ৰস্নাপক বিসেবে। কতিপৰ ব্যাকটোরিয়া (বেমম-Bacillus thuringiensis) বিভিন্ন প্রকার পত্তস নিয়ন্ত बार्यस्था करा हु।

৭। গত ৰাদ্য বা সিলেজ তৈরি। কৃষিক্ষেত্রে এবং দুগু শিল্পে পত্র অবদান উল্লেখযোগ্য। পতথাদ্য হিসেবে বাবছত গ আত্রীয় পদার্থতে বত বত করে কেটে পানি মিশ্রিত করে Lactobacillus sp. এর কার্যকারিতায় পত্যাদা বা সিলের তৈনি যয়। Yest মিশ্রিত খাদ্য খাওয়ালে গাড়ীর দুখের ওপশত মান বৃদ্ধি পায়।

্রুলিক বৃদ্ধিতে : বিজু বিশেষ ব্যাকটোরিয়া প্রয়োগ করে ধানের উৎপাদন শতকরা ৩১.৮ তাগ এবং গমের উৎপাদ পুৰ্বনা ২০৮ ভাগ ৰাড়ানো সমূৰ হচেতে।

(H) PRECHEE:

৯ চো, কণি, তামাক অক্রিয়াজাতকরণে : চা, কন্ধি, তামাক প্রকৃতি প্রক্রিয়াজাতকরণে Bacillus megaterium নাম্ব ব্যক্তিটারিয়া এক ভক্তত্বপূর্ণ ভূমিকা দাদন করে থাকে।

১৭ পুৰুজাত শিলে। Strephococcur lactis, Locsobacillus জাতীয় ব্যাকটোরিয়ার সহায়তায় দুগু হতে মাখন, দই,

১) শ্লেট শিল্পে। ব্যাকটেরিয়ার পচনক্রিয়ার ফলেই পাটের আঁশগুলো পূথক হল্পে যায় এবং আমরা সহক্ষেই পাটের লাভ থেকে আঁশ হাড়াতে পারি। কাল্পেই আমাদের অর্থনীতিতে ব্যাকটেরিয়ার ভূমিকা কুলনাহীন। এ ব্যাপারে Clostridium লাভীত ব্যাকটেরিয়ার ভূমিকা যথেষ্ট।

্র কমিড়া শিল্পে : চামড়া হতে লোম ছাড়ানোর ব্যাপারে ব্যাকটেরিয়ার ভূমিকা অপরিদীম। এক্ষেত্রে Bacillias এর বিভিন্ন প্রজাতি চামড়ার লোম ছাড়ানোর কাজে ব্যবহাত হয়।

১৩। বাংয়াশ্যাস বা জৈব গ্যাস তৈরিতে: জৈব গ্যাস তৈরিতে এবং হেডী মেটাল (ভারী ধারু) পৃথকীকরণেও ব্যাকটোরিয়া তকাত্পূর্ণ ভূমিকা পালন করে।

১৪। টেন্টিংসন্ট গ্রন্থতিতে : টেন্টিংসন্ট গ্রন্থতে ব্যাকটেরিয়া ব্যবহার করা হয়। খাদ্যপ্রবাদে সুখাদু ও মুখরোচক কাতে এ সন্ট বাবহাত হয়।

্বা বাসায়নিক পদার্থ প্রস্তুতকরণে । ডিনেগার (Acetobacter xylinum দিয়ে), ল্যাকটিক আসিত (Bacillus latitudes)। লিয়ে), আসিটোন (Clostridium acetoburylicum দিয়ে) প্রভৃতি রাসায়নিক দ্রব্য প্রস্তুতকরণের জনা পিছতের বাকটেরিয়া ব্যবহার করা হয়।

(घ) यानर क्वीवटम :

১৬। সেলুলোজ হজমে: গ্রাদি প্র ঘাস, খড় প্রভৃতি থেয়ে থাকে। এদের প্রধান উপাদান সেলুলোজ। গ্রাদি পর্বর আরু অবস্থিত এক প্রকার ব্যাকটেরিয়া সেলুলোজ হজম করতে প্রত্যক্ষভাবে সাহায্য করে থাকে। তাই পর্বপাদন সহজ্ঞ হয়।

িটামিন তৈরিতে : মানুষের অন্তের Escherichia coli (E. coli) ও অন্যান্য ব্যাকটেরিয়া ভিটামিন-বি, ভিটামিন-বি, ভেটমিন-বি, জোলিক আাসিভ, বায়োটিন প্রভৃতি পদার্থ প্রস্তুত ও সরবরাহ করে থাকে।

১৮। জিন প্রকৌশলে : জিন প্রকৌশলে অনেক ব্যাকটেরিয়াকে (E. coli, Agrobacterium প্রস্কৃতি) বাহক হিসেবে সর্থানভাবে ব্যবহার করা হয়।

(६) गरिएवन विद्वस्म :

১৯। আবর্জনা শচনে : উত্তিদ ও প্রাণীর যাবতীয় মৃতদেহ, বর্জা পদার্থ ও অন্যান্য জল্পাল পচন প্রক্রিয়ায় ব্যাকটেরিয়া মতাত ভালত্বপূর্ণ ভূমিকা পাগন করে থাকে। পরিবেশের সুরক্ষায় গুরুত্বের জন্য ব্যাষ্টেরিয়াকে 'প্রকৃতির আভুদার' বলে।

২০ শ্বর্থনিক্ষাপনে : জৈব বর্জা পদার্থকৈ দ্রুত রূপান্তরিত করে ব্যাকটেরিয়া পদার্থনালিকে সৃষ্ঠু ও চালু রাখে: বিবৰ-Zooglea ramigera।

্য তেল অপসরেশে । সমূত্রের পর্নিতে ভাসমান তেল অপসারণে তেল-খাদক ব্যাকটেরিয়া ব্যবহার করা হয়; শেল-Pseudomanas aeruginosa ।

ि व्यक्तिमान देशमान : Bacillus, E. coli, Clostridium, Methanococcus ।

ত্যুক্ত ব্যাকটেরিয়ার অপকারিতা

মানুষের বোগ সৃষ্টি। মানুষ্টে নারাহাক বোগছলোই বাকেটেরিয়া দিছে হয়ে থাকে। মানুষের মখা
(Microbacterium suberculosis দিয়ে), নিউমেনিয়া (Diplococcus pneumoniae দিয়ে), টাইকয়েড (Salmonella topic দিয়ে), কলেয়া (Vibrio cholerae দিয়ে), ডিল্পেরিয়া (Corynehacterium diptheriae দিয়ে), আমাশয়
(Bacillus dissenteri দিয়ে), ধনুস্টকোর বা ডিটেনাস (Clostridium tetuni দিয়ে), ছলিকোনি (Bordetella pertussis দিয়ে) ইবাদি বাকেটেরিয়াখটিক রোগ। এ ছাড়াও এনপ্রাক্ত, মেনিনজাইটিস, সেপর্যান (কুঠ রোগ), আনভিউলেটেড
ভিতর ইবাদি বাকটেরিয়াখটিক রোগ। এ ছাড়াও এনপ্রাক্ত, মেনিনজাইটিস, সেপর্যান (কুঠ রোগ), আনভিউলেটেড
ভিতর ইবাদি বোগও ব্যাকটেরিয়া দিয়ে হয়ে থাকে।

সৌনবাহিত বোগ (Sexually Transmitted Diseases = STD) । যেসব বোগ যৌন মিগুনের সময় সক্রেমণের স্থানে এক বাজি বেকে জন্ম অভিতে ছড়িছে লড়ে দেসব রোগকে যৌনবাহিত রোগ বগে। যেমন- গুনোরিয়া ও

সিঞ্জিলিস। Neisseria gonorrhaeae নালাভিত্ত খ্যান্তেরিয়ামের সংক্রমণে সৃষ্ট খৌনবাহিত রোগকে শনেবিয় (Genombea) বলে। পর্তকালীন আটলতা ছাড়াও নারী-পুরুষ উচ্চের বস্থা হয়ে মেতে পারে। Treponema polliday নামক ব্যাষ্টেবিছামের সংক্রমণে সৃষ্ট বৌনবাহিত বোগকে সিঞ্চিনিস (Syphills) বলে। এ বোণে দেহে দীর্ঘকালীন জড়িশুরা भिरक नाटव करा अप्रैक डिकिस्सा मा क्वारम मुकाव दटक नाटव ।

২। অন্যান্য বাগীর বোগ সৃষ্টি। গল-মহিলের যাগা (Mycobacterium bovis), আনডিউপেটেড কিন্তার , তেড়ার करहा (Bacillus authracis), देभूरवत ८प्रम, द्रीम-पूर्वनित करणता (Bacillus avisepticus), मनारकाना द्रान्

(Pamewella multocida) देखापि त्यापक आकर्णिया पिट्य द्दा पाइक ।

ত ভবিমের বোগ সৃষ্টি। বিভিন্ন জগদী উরিমের অনেক রোগ ব্যাকটোরিয়া দিয়ে হয়ে পাকে। এতে ফসলের ক্ষান্ত অনৈত কমে যায়। গমের টুকুলোগ (Agrobacterium tritici নিয়ে), ধানের পাতা কলো (leaf blight) জেন (Xamborovan orygan निरम), आरच्य आंश्रेश्यमा (साम (Xamborovan vasculorum निरम) इन्डामि द्याम इस्ट शास्त्र क राक्षा लावून काह्नाम (Xanthamanas citri), जानून काल (Streptomyces scables), उट्याउन्त काहान Corynebacterium michiganese). आरणरमङ कामान द्वादेश (Erwinus amylovora), जामारकत द्वादेश (Pseudomora) mbacci), िरम्ब निष् 🗝 (Xanthomonas matracearum) स्तापक वाकरणितशा निरंग द्या ।

্ত্ত আন্দ্রব্যার শহন ও বিয়াজকরণ । ব্যাকটেরিয়া নানা রকম টাটকা ও সংরক্ষিত খাদ্যদ্রব্যে পচন ঘটিয়ে আমানের মানুৰ অখিত কৰি সাধন কৰে। Clostrulium botulinum নামক ব্যাকটেরিয়া খাদো botulin নামক বিধাক পদার্থ হৈছি

करत बारक । बारक मानूरवर मुका घंछरत भारत बारक तर्नेमिक्स (botulism) नरन ।

🕻 🕫 । শানি দূষণ । কলিজনম ব্যাকটেরিয়া (সাধারণত মল নিয়ে দৃষিত) পানিকে পানের অযোগ্য করে।

🖢 । শানির উর্বরতা শক্তি বিনাইকরণ : নাইট্রেট ভাতীয় উপাদান মাটিকে উর্বর করে থাকে। কিন্তু কতিপয় ব্যাকটেরিয়া (বেল্ফ Bacillux dentirificans) নাইট্রিফিকেশন প্রক্রিয়ায় মাটিছ নাইট্রেটকে ভেডে মুক্ত নাইট্রোজেনে পরিগত করে এয়া মানির উর্বল্পতা শক্তি, প্রাদ করে, কলে কসপের উৎপাদন করে যায়।

শিকাবাবহার প্রবোধ ক্ষতি সাধন ৷ ব্যাকটেরিয়া কাপড়-চোপড়, লোহা, কাঠের আসবাবপক্ষেত্র অনেক প্রবোধ

ক্ষতি সাধন কৰে থাকে। যেমন-Desulfovilleto sp. লোহার লাইপে কতের সৃষ্টি করে লানি সরবরাহে বিম্ন।

৮। বছ্যাটোরেরিজম বা জৈব সন্থাস। ভতিকারক জীবাপুকে যুদ্ধে বাবহার করা হয়ে থাকে যাকে বায়োটোরেরিজম বলে।

আনবাহনের দুর্ঘটনা । Clostridium sp. বিয়ানের জ্বালানিতে জন্মালে বিমান দুর্ঘটনা ঘটতে পারে।

कार्देदान च साकरणेदियाद मरश्रा भार्यका नार्यद्वात विशव करिंदाम गाक्छितिया वहा चाकामीत । वहत भिवेदिकाम स्मेरे । 2 1 MORES এবা ভোগীয়। আনি প্রকৃতির নিউক্রয়াস থাকে। दश कडि-कानुरीकतिक, 0.05 शहर 0.5 2 I TOTAL आगुरीक्षिक, 441 17.5 দাইকোমিটার। मकीन द्वादार नामद्र नामुक्ति करदक माद्र मा। O I RESPO দলীৰ তোহেও বাইতে বংশবৃতি করতে পারে। কেলদির করার পর সজীব কোপে বাবেশ B. I CONTRIBUTE (TEXT কেলাসিক কবলে আৰু জীবনের লক্ষণ প্রকাশ करान चुनदाव क्षेत्रात स्थम स्वान करत । 0956 करत मा नामादिक कामामा करा। कटक अहिटीशिक्षम व विविध कृतीय त्माहे 章 | 整数式as 自和2019 set feville faveto crest site at i এতে সাইটোলাজন ও বিভিন্ন কুদ্রাল আছে এবং विशास किया पटी। O I FREEDING অইবানের নিউল্লিক আলিভ ক্যাপনিত-এর MINTERSON. SOR HITTH HOSE ব্যাকটেরিয়ার নিটক্রিক আসিড সাইটোপ্লাক্ত megin ere i THE PERSONS CATCH DINA III RINA OF COMPIL agelete fatiges union size : CORR DNA SI RNA SOU STATE PURE elejen sagtwen i v SERVICE ALCO ! THE CASE CREATE WHEN SHE ASSESSED. WORLD CHEE WHILE ALCO !

ব্যাকটেরিয়াজনিত রোগ

ব্যাকটেরিয়া দিয়ে মানুষ, পশু এবং গাছপালার অসংখ্য রোগ সৃষ্টি হয়ে থাকে। এর মধ্যে কভিপয় রোগ ফসল ও চনুখ্য মানাত্মক কৰি কৰে থাকে, গোশের অৰ্থনীতিকে নিপর্যন্ত করে। ব্যাকটেরিয়া দানা আক্রান্ত হতে উল্লিসে সাধারণত ুবুট, প্রকৃত, নাম ও বট (blight, wilt, gall, rot) বোগ হয়ে থাকে। এখানে ব্যাকটেরিয়ায়নিত থানের ব্লাইট বোগ এবং মনুবের কলের। রোগ সম্বন্ধে সংক্ষিত্র আলোচনা করা হলো।

giইট (Blight) । গাছের ফুল, গাতা ও কাতের টিসুরে ক্যানারি (মধ্যে যাওয়া বা চকিতে যাওয়া) মওয়াকে ব্লাইট বলা हुइ। এখানে ধান গাছের ব্লাইট (খনেনা) বোগ নিয়ে আলোচনা করা হলো।

(ক) দান পাছের ক্লাইট বোপ (Blight disease of rice) : ধানের মারাজক বোপচলোর মধ্যে ব্যাকটেরিয়াল ক্লাইট ক্রতিম। প্রায় পৃথিবীব্যাপীই এর বিজ্তি। শ্রীম্মগ্রধান অঞ্চলের প্রকরণটি (strain) শীতগ্রধান অঞ্চলের প্রকরণ অশেকা ছবিত কতিকাৰক। আপানেৰ কৃষকেরা সর্বপ্রথম এ বোগের সন্ধান পান বলে ধারণা করা হয়। Takaeshi ১৯০৮ সালে sৰ্ত্তম প্ৰমাণ করেন যে, ব্যাকটোরয়ার আক্রমণে এ বোগটি হয়।

মেণ্টিবাণু (Pathogen/Causal organism) । ধান পাছের ব্যাকটেরিয়াাল ব্লাইট নামক বোপ সৃষ্টিকারী हान्दर्शिक्षांत्र माम Xanthomonas orygae pv. arygae (Ishsyama) Swings et al. अपि महाकृष्टिन, ३.२ × ०.० - ०.० 📖 অৰেজাকৃত মোটা ও খাটো। এবা সাধারণত এককভাবে থাকে, কখনো দৃটি এক সাথে থাকতে পাবে, তবে চেইন গ্রী করে না। এরা গ্রাম নেগেটিভ ব্যাকটেরিয়া এবং শেশার তৈরি করে না। এদের কোনো ক্যাপসিউল নেই, তবে একটি pাকেলাম বাকে। আগার মাধ্যমে ব্যাকটেরিয়া গোলাকার, মস্ব, মোমের ন্যায় হলুদাত ও চকচকে কলোনি উৎপন্ন করে। রহা বিভিন্ন মাস (Leersia oryzoides., Leptochloa dubia. Cyperus roundus, C. difformis) ও বদ্য ধানকে (Oryto প্রতিস্কৃতন O. australiensis) বিকল্প পোষক হিসেবে গ্রহণ করে বেচে পাকে।

রোগাক্রমণ (Infection) : একাধিক উৎস থেকে রোগাক্রমণ ঘটতে পারে, যেমন- রোগাক্রান্ত বীঞ্চ, রোগাক্রান্ত গড়, জনিতে পড়ে থাকা রোগাক্রান্ত পদ্যের অবশিষ্টাংশ ইত্যাদি। পাতার কত স্থান, কাটা স্থান (পাগানোর আলে অনেক সময় চারর পদা পাতার আগা কেটে দেয়া হয়), হাইডাগোড বা পররন্ধের মাধামে জীবাণু গাছের অভাস্তরে প্রবেশ করে এবং লেখানে সংখ্যাবৃদ্ধি করে। পরে জীবাণু শিরার অভান্তরে প্রবেশ করে। মূদের অভান্তরে প্রবেশ করলে পানি প্রবাহ বছ হয়ে যাত এবং পাছ নেতিয়ে পড়ে। অপেকাকৃত উচ্চ তাপমাত্রা (২৫–৩০) সে.), উচ্চ জ্পীয় বান্দ, বৃষ্টি, জমিতে অধিক শানি লেশাক্রমণে সহায়তা করে। অধিক পরিমান সার প্রয়োগত রোগ বিভারের অনুক্ল হয়। কড়ো বাতাস পাতায় ভত সৃষ্টি বরে বাক্সেন্স্রান্ত ক্রিক ছান দিয়ে রোগজীবাণু তেতরে প্রবেশ করে রোগ সৃষ্টি করে।

হো লক্ষ্য (Sign and Symptoms) : সাধারণত রোগ লক্ষ্য পাতায়ই সীমিত থাকে। প্রক্ষসমূহ নিয়ুক্স :

প্রারণত আগস্ট-সেপ্টেমর মাসের দিকে এ রোগের সূচনা হয়।

- ব। শাতার কেজা (Water-soaked), অর্থপথ্যে ও লখা লখা দাণের সৃষ্টি হয়। অধিকাংশ ক্ষেত্রে দাগ লাতার শীর্ষে তক **13**
- ত। দাগ ক্রমণ দৈর্ঘো ও প্রছে বড় হতে থাকে এবং ডেউ খেলানো নাম বিশিষ্ট হয়।
- ৪। দাগতলো ক্রমণ হলুদ বা হলদে সাদা শুসর বর্ণের হয়।
- । সকলে দুখের মতে। সাদা বা অর্থপঞ্জ রস আক্রান্ত ছান বেকে বাবে প্রবাহিত হয়।
- গেৰ পৰ্যন্ত বিভিন্ন স্যালোকাইটিক ছত্ৰাকের আক্রমণে ক্ষত স্থান দুসর বর্ণের হয়।
- ওঁ। আক্রমণ তেশি হলে পাতা দ্রুত তকিছে যায় এবং গাছটি মরে যায়।
- া শাশানোর ১-৩ সভাহেত মধ্যে চারাও লাথমিকভাবে আক্রান্ত হতে পারে। আক্রমণ বেশি হলে চারা চলে পড়ে।

বানের হড়া বছা। হয়, তাই ক্ষম ৬০% পর্যন্ত তম হতে পারে।

- ⁵⁰। धारमत मीर्ट्स क्लारमा कलम इस ना।
- ১১। আক্রাম্ব গাছের অধিকাংশ ধান চিটার্য পরিগত হয়।

श्रारंश्य व्यक्तिकात च वाकिरदाय

্ব। লক্ষ্যতে কাৰ্ক্য হলে বোদ প্ৰতিবোধক্ষ প্ৰকৰণ মাধ কৰা। ক্ষিত্ৰই বোদ প্ৰীৰাপুৰ প্ৰধান বাহন। প্ৰিটিং লাইডাৰ (১০০ mg/ml) প্ৰবং বিচ্ছ সালকেট (২%) দিয়ে বীক্ষ শৈক্ষ

ত। কণাত খৌল, আন্টোৰায়োটিক বা অন্যান্য বাদায়নিক প্ৰবা ব্যবহাৰ ভালো সুকল আনে না, কিছুটা উপকাৰ হয়।

- ৪। অভিনে জনশাই আগাছাত্মক বাৰতে হবে। এছাড়া গানের শড়, নিজ খেতে গজানো চারা সরাতে হবে। ত। শীলতশাহ পানি কম বাবলে হবে, অভিনৃতির সময় পানি সরানোর বাবছা রাখতে হবে। তারা থেকে ভারার দুর্
- শাইন খেকে দাইদের দ্বাত্, সাত প্রয়োগ (বিশেষ করে ইউরিয়া) বিজ্ঞানসম্মত হতে হবে।
- ও। উল্লাক্ত ভাষা পাশানোর আংশ লখিতে ভাগোলাবে ক্তাতে হবে, পরিত্যক গড় ও আবর্জনা পুড়িছে লেখ্ছ
- %। রোলদের সময় মারাগাছের পারা ছাটাই করা যাবে না।
- भावैद्धारणम् भाव द्वनि वावश्य कवा शहर मां।
- শাছ আক্রান্ত হলে ক্ষেত্রত হেইর প্রতি ২ কেলি ব্রিচিং পাউভার ব্যবহার করতে হবে।
- ক্রিক্রাইল সাবভিত্তবিক আসিটেড এম, ক্রোরামফেনিকল ১০-২০ লিটার পরিমাণে মিশিয়ে আক্রান্ত জেন্ত विशिद्ध तथा निषक्ष इस ।
- ১১। বীক্ষ বশদের আগে ০,১% নিবিদান দ্রবলে ৮ ঘনীা ভিজিয়ে রাখলে বীজবাহিত সংক্রমণ রোধ হয়।

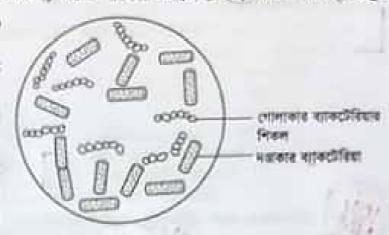
(খ) কংগরা (Cholera)

জোশজীৰাপু । Vibrio cholerae নামক আকটেরিয়া। এ ব্যাকটেরিয়ার আকৃতি একটু বাঁকা, কমার মতো। এই সৈ 3-৫ মাইজন ক্রেক্স ০,৪-০,৬ মাইজন। এর একপ্রান্তে একটি ফ্ল্যাজেলাম থাকে। কলেরা একটি আম নেলাঁচ ব্যাকটেরিয়া। বিবাট কর্চ সর্বল্পম কলেরা রোগের জীবাণু আবিষ্কার করেন। কলেরা রোগের জীবাণু নেহে পুরুয়ে ভিত্ততালের সাঁচৰ স্পের্গ যায় এবং কলেরাজেন (Choleragen) নামক টাক্সিন মিশ্রিত করে। কলেরাজেন একট ত্রকীরেটিছিল। বিভিন্ন কলেরার মধ্যে এশিয়াটিক কলেরা সবচে<u>য়ে মা</u>রাজুক।

লোপ লক্ষ্ম : কলেরা রোপের প্রধান লক্ষ্ম হলো প্রবল(উলরাময় (ভাররিয়া)। পার্যখানার প্রথম নিকে মল থাকে, শ্র লালবালা লানির মতো নির্গত হয়। রোগীর দেহে জুর থাকে এবং বমি ইতে পারে। নাড়ীর গতি খুব ফীণ হয়। শরীর জ হাত যাত। বক্ত প্ৰবাহ কমে মন্তিমে O) এব খাটতি দেখা দেয় ও বোগী অচেতন হয়ে পড়ে। দেহে মাংসপেশীৰ সংক্ষেদ (cramp) এ রোগের একটি প্রধান লক্ষণ। বহি এবং খন খন পানির ন্যায় পায়খানার ফলে রোগীর দেহে পানি শূনাতা দেই লিতে পাৰে, একই কাৰণে বস্তাধ বন্ধ হয়ে গেতে পাৰে। বোগীর প্রচও পিপাসা, খিচুনি দেখা দেয়া, রক্তচাপ কমে হাছ, গে ঠাতা হছে আলে। লোগের প্রচন্দর রোগীর চৌধ বলে যায় এবং দেহ বিবর্ণ হছে যায়। চামড়া কুঁচকে যায়। বাশা পরিয়ালে পরীয় বেকে পানি ও ইলেকটোপাইট হারানোর কলে রকে ধ্যোটিলের মাত্রা বেড়ে যায়। কলে রোগী মারা ফৌ

প্রতিকার। কলোরা বোপীর দেহ থেকে অভিযান্তায় পানি ও পরণ বের হয়ে যায়, তাই পানি ও পরণ সমস্বাহের জা িলাছ সেপাইন সেয়া হলো উল্লেখ চিকিৎসা। সামে ভাবের পানি ও খাবার সেপাইন (Oral Rehydration Salist লেয়া যোৱ পাৰে। লোগাঁকে মুখ্য হাসপাতালে স্থানান্তম করতে হবে। ভাতাতের পরাইবেল আ্যান্টিবায়োটিক ইন্যাক্ত লেয়া থেতে পাৰে। মেটি কথা বোগাঁব সেহে খেন পানিপুৰাজা দেখা না দিতে পাৰে ভাব বাবস্থা করতে হবে।

বাভিৰোধ। কলেবা একটি পানিবাহিত বোগ, তাই বিজন্ধ পানি পানেব ব্যবস্থা করতে হবে। মুখিত পানি, বাসি ধ্বাই ও উন্তুত্ত বাধার ও পানীয় বর্জন করতে হবে। বোগীর সেমে কটি ভাজাৰ উনুক্ত বাধাৰ ও পানীয় বৰ্জন কৰতে হবে। বোগীর চেম-ব্যথি যেতে মাছির সাহায়ে। গৌণ সংক্রমণ ঘটে, ব ভালার সব সময় মেকে রাখারে হবে। বোগারি পরিষেত্র কাপাড়, বিছানা-পান্ত পুকুর বা নানী নালায় না পুরে সিদ্ধ করে রেটি ভালতে হবে। লাচৰ হাল জোগাঁকে পৃথক ঘৰে ভালতে হবে। কোনো এলাকায় কলেৱা দেখা নিলে স্বান কলেৱা কেটি (টিবা) নিয়ে হবে। কলো বোগীকে বছুৰ পৰিমাণে ভাবের পানি ও কলোরা দেখা দিলে স্বার কলের। ৮ ইলেট্রেলাইটের খাটার রাজ পূরণ হয়।


बावशदिक : एक महै त्यत्क वााकरणियेवा नर्गरवचन धवर जबन।

তত্ত্ব : কতিপয় ব্যাকটেরিয়ার জৈব ক্রিয়াকলাপের ফলে দুধ, দই-এ পরিশত হয়, তাই দই-এ প্রচুর ব্যাকটেরিয়া থাকে। তুপকরণ : কিছু পরিমাণ টক দই সাসপেনশন, অপুরীক্ষণ যয়, কাচের পরিষার তকনো প্রাইড, পাঠিত পানি (পরিসূত্

লানি), দ্রপার, নিডল, তুলি, স্যাম্নানিন বং, স্পিরিট ল্যাম্প, ক্রিকাাল ক্লান্ড, একটি টেস্টটিউর।

কার্যপঞ্জতি : ১। প্রথমে একটি কনিকাল ফ্রাজে সামানা পরিমাণ টক দই নিজে হবে এবং ভাতে পরিমাণ ঘতো পরিমুক্ত পানি মিশিয়ে ভালোভাবে কিছুক্তন ঝাকাতে ধবে।

২। এবার ক্লাকটিকে স্পিরিট ল্যাম্পের ওপর কিছুক্ষণ বরে রেখে হালকা গরম করতে হবে এবং ঠাওা হওয়ার ধনা ১০-১৫ মিনিট রেখে লিতে হবে। ১০-১৫ মিনিট পর দেখা যাবে লই-এর খন অংশ তলানি হিসেবে নিচে জমা হয়েছে আর জলীয় অংশ ওপরে রয়েছে। জলীয় অংশটুকু

চিত্ৰ ৪,১৪ : অধুৰীক্ষণ যছে দৃষ্ট টক দাই-এ ব্যাকটেরিয়া

একটি টেস্টটিউবে ডেলে নিতে হবে। এই জলীয় অংশই ব্যাকটেরিয়ার নমুনা।

 টেস্টটিউব থেকে ভ্রপার দিয়ে এক ভ্রপ নমুনা একটি পরিষ্কার স্লাইভের মাকবানে রাখতে হবে এবং নিতবের সাহাযো তরণ নমুনাটুকু প্লাইতে ছড়িয়ে দিতে হবে।

৪। নমুনট্রিকু বাতাসে তর্কিয়ে গেলে লাইভকে শিপরিট ল্যাম্পের আগনের ওপর দিয়ে কয়েকবার আনা-নেওয়া কয়লে নমুনার আন্তরটি লাইভের সাথে ভালোভাবে পেশে য়াবে।

৫। এবারা লাইভের ওপর তকনা নমুনাতে সাফোনিন দ্রবণ দিয়ে ফেকে দিতে হবে এবং ২/৩ মিনিট পর হালকা করে পরিছার পানি ফেলে নিলে অতিরিক্ত রং পানির সাথে চলে যাবে এবং কিছুক্তণের মধ্যে লাইভটি তকিয়ে যাবে। লাইভটি পর্যবেশগের জন্য লাজত হয়ে গেল।

পর্যবেক্ষণ । প্লাইডটি অপুরীক্ষণ যপ্তের উচ্চক্ষমতা সম্পন্ন অবজেকটিত-এর নিচে রেখে নিরীক্ষণ করলে লাল রং-এ রঞ্জিত দল্লকার ব্যাকটেরিয়া ও কুদ্র পুঁতির মালার মতো গোলাকার ব্যাকটেরিয়া দেখা যাবে।

সিদ্ধান্ত : সরবরাহকৃত টক দই-এ গোলাকার (Streptococcus) ও দত্তাকার (Lactobacillus) ব্যাকটেরিয়া থাকে। (টক দই-এর ব্যাকটেরিয়া মানুষের জন্য উপকারী, অপকারী নয়। কাজেই টক দই খেতে অসুবিধা নেই।)

অন্ধন । অপুরীক্ষণ যত্তে দেখা দৃশাটি ব্যবহারিক খাতায় যথাযখতাবে আঁকতে হবে।

ম্যালেরিয়া পরজীবী (Malarial Parasite)

যালেরিয়া বিদ্বে প্রাচীনতম রোগতলোর অন্যতম। খ্রিস্টপূর্ব ২৭০০ অন্যের তকতে চীন দেশে এটি 'অনুপম প্রযাবৃত্ত ছব' (unique periodic fever) হিসেবে দলিকুক ছিল। প্রাচীন রোমান সাম্রাজ্য এ রোগের কারণে কারণে কারণের হয়েছিল বলে একে 'রোমান জ্বর' বলা হতো। মধামুগে একে 'জলা জ্বর' (marsh fever) বলা হতো। "Malaria" শদটি সর্বপ্রথম বাবহার করেন বিজ্ঞানী Torti (1753)। দুটি ইতালিয় শব্দ Mai (অর্থ-দৃষ্ঠিত) ও aria (অর্থ-নায়ু) হতে Malaria শব্দটি ইপেরি লাভ করেছে, যার আভিধানিক অর্থ দৃষ্ঠিত রায়ু। তখনকার দিনে এই ধারণা প্রচলিত ছিল যে "দৃষ্ঠিত রায়ু লেবনে নালেরিয়া রোগ সৃষ্ঠি হয়।" ফরাসি ডাকার Charles Laveron (1880) ম্যালেরিয়া আক্রান্ত রোগীর লোহিত রক্ত কবিকা থিকে ম্যালেরিয়ার পর্য্যারী আরিষ্কার করলে প্রায় শতবছরের এ হান্ত ধারণার অবসান ঘটে। এজনা তাঁকে ১৯০৭ বিস্টাব্দে ফরিলেলিছ ও মেডিসিনে নোবেল পুরস্কার প্রদান করা হয়। ১৮৯৭ বিস্টাব্দে ভারতে কর্মরত বৃটিশ সেনাবাহিনীর মাজার Sir Ronald Ross আবিষ্কার করেন যে Anopheles গণস্কুক মশ্বনীরা এ রোগের জীবাণু একদেহ হতে অন্যানেহে পিতা মালেরিয়া হছে Anopheles মশ্বনীবাহিত (মশা নহ) এক ধরনের জ্বরোগ। এ বোণে রক্তের পোহিত কশ্বকা

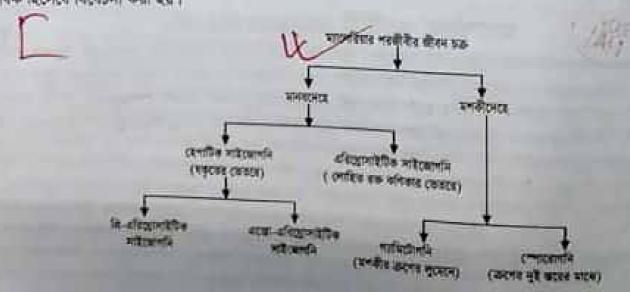
ধ্বংস হয়, তাই বক্তসমতাসহ (apacmių) বিভিন্ন উপসৰ্গ দেখা দেয়। উপযুক্ত চিকিৎসা না পেলে বোণীর মৃত্যুত হছে পারে। Plasmodium শুলুর প্রায় ৬০টি প্রজাতি মানুষসহ বিভিন্ন মেরুদভী প্রাণীতে এ রোগ সৃষ্টি করে। মানবদেহে এ পর্যন্ত রোগ সৃষ্টিকারী ৪টি প্রজাতির সন্থান পাওয়া গেছে

শ্রেণিবিন্যাসলত অবহান :

Levin et al. (১৯৮০) অনুসরণে ম্যাদেরিয়ার পরনীবীর শ্রেণিবিন্যাস নিমুক্তপ :

Kingdom : Protista Subkingdom: Protozoa Phylum : Apicomplexa

> Class: Sporozoa Order: Haemosporidia Family: Plasmodiidae


> > Genus: Plasmodium Species : P. vivax

লহে রোগ সৃষ্টিকারী পরজীবীতলোর নাম, সৃষ্ট রোগের নাম ও জ্রের প্রকৃতি নিমুরূপ:

ম্যাপেরিয়ার পরজীবীর নাম	রোগের নাম	ল্বনে প্রকৃতি
2. Plasmodium vivax	বিনাইন টারশিয়ান মাালেরিয়া	48 ঘন্টা পর পর জুর আসে
2. Plasmodium malariae	दकावावरोर्न भारतविद्या	72 ঘণ্টা পর পর জ্বর আসে
o, Plasmodium ovale	মৃদু টারশিয়ান ম্যালেরিয়া	48 ঘন্টা পর পর জুর আনে
B. Plasmodium falciparum	ম্যাণিপন্যান্ট টারশিয়ান ম্যাণেরিয়া	36-48 ঘণ্টা পর পর জুর আনে

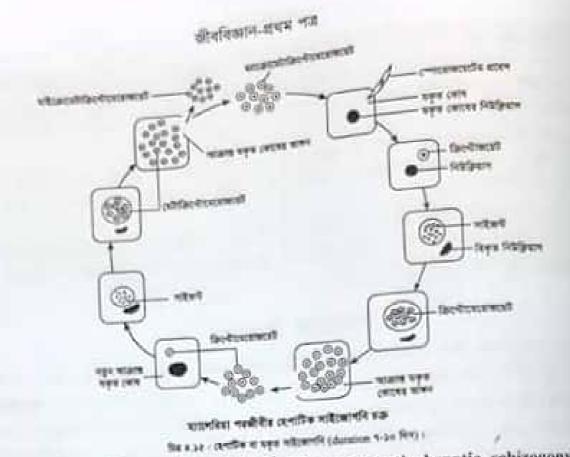
জीवन ठळ (Life Cycle)

কোন জীব তার অনুরূপ সৃষ্টি করতে যে সকল প্রাথমুখ্য অভিক্রম করে, তাদের সমষ্ট্রিকে জীবন চক্র বলে। Plasmodium vivax धत कीवन ठक अण्यम कदर्छ पृष्ठि श्रेभायरकत श्रद्धाक्षन इस, यथा-मानुस ও मन्की। श्रव्हित সংজ্ঞানুষায়ী মানুষ ম্যালেরিয়া পরজীবীর মাধ্যমিক (intermediate) বা গৌণ (secondary) পোষক (host), কাল মানবদেহে এ পরজীবীর যৌন জনন হয় না। অপরদিকে মণকী এ পরজীবীর নির্দিষ্ট (definite) বা মুখা (primary) পোষক, কারণ মশকীর দেহে এ পরজীবীর যৌন পরিপক্তা তৈরি হয় ও যৌন জনন সম্পন্ন হয়। কিছ গোটোজোয়া–পতঙ্গ–মেক্সন্তী সম্পর্কিত পরজীবী পোষক চক্রে প্রজননের গুরুত্ব না দিয়ে অর্থনৈতিক ক্ষতির বিধা বিবেচনা করে প্রাথমিক ও মাধামিক পোষক নির্ধারণ করা হয়। তাই মানুযকে এ পরজীবীর মুখ্য পোষক ও মশকীকে দৌ পোষক হিসেবে বিবেচনা করা হয়।

কি তা (i) পুট পোশত কোন প্ৰয়োজন্য-নিমুক্তেনিক জীবনায় বাত বাত অধ্যান পাছতিকে কংশ বিভাগত কাৰণে আনত জীবনীপকি প্ৰাপ লয়। আই কাল আৰু মান্ত মান্ত যোগ কাৰ্যত আৰম্ভ হয়ে জীবনীপতি পুনৱজ্ঞাৰ কয়ে। এটি নিমুক্তেনিক জীবনাৰ Repolationary অভিযোজন। Financiam এই লীবনেও এমনটি মান্তে। আই ভাৱা একটি পোষ্টকের মান্তমে (মেহেছু মৌন জনন মপনীতে ও অধ্যান জনন মানবানহয়) প্রথম চক্ত সম্পন্ন করাত্ত পাবে না।

(B) জেলপথার জী Anopheles খ্যালেরিয়া খোল ছয়ার কেনঃ স্থী সপানীর চিখানুর পরিস্থানের জন্য উব্ধ রকার্যনিক্ত রালির রালীর রক্ত প্রচল্পনার করি কেলেয়ের মশানীয়াই (মানা লয়) বক্ত পান করে এবং জীবাপুত বিভাব খটায়। পুরুষ মলারা মুলের মনু বা মল্যানা উৎস করে প্রচর সমায় করে মানুহকে মানান করে না।

লগানিকৈ Cules বা Acules বাছতি হপানীয় পরিপারভাচে বিশেষ গানের এনালাইন আছে, যা জীবনুর প্যানিটোমাইটারপোতে এই ভারে সম্মন আই এবা এ জীবানুর বিভার ঘটাতে পারে দা। ভিত্ত Anopheles তথা সোহে একপ এনজাইম না পাকায় প্রানিটোমাইটিরলো স্থানিক থাকে ও বোগের বিভার ঘটাছ।


যানবদেহে জীবন চক্র

রনুবের হকৃত ও লোহিত রক্ত কণিকায় ম্যালেরিয়ার পরাজীবী অযৌন গছাতিতে জীবন চক্র সম্পন্ন করে। এ জীবন চক্রে সাইছার্ট নামক বহু নিউক্রিয়াসবিশিষ্ট একটি বিশেষ দশা বিদ্যমান থাকে। এ ধরনের জীবন চক্রকে সাইজোপনি বলে। হানদেহে সংঘটিত সাইজোপনিকে দুলি ভাগে ভাগ করা যায়। যাত (১) হেপাটিক সাইজোপনি (Hepatic schizogony) হ হকৃত সাইজোপনি এবং (২) এরিভ্রোসাইটিক সাইজোপনি (Ezythrocytic schizogony) বা গোহিত রক্ত কণিকায় সাইজোপনি।

দেশকি সু মুকুত সাইজোগনি

বিজ্ঞানী Shortt এবং Gamham (1948) মানুষের যকৃতে ম্যালেরিয়ার পরজীবীর হেপাটিক সাইজোগনি চক্রের বর্ণনা মে। হেশাটিক লাইজোগনি নিমুলিখিত দুটি পর্যায়ের মাধ্যমে সংঘটিত হয়
(ক) প্রি-এরিছোসাইটিক হেপাটিক সাইজোগনি।

- (ক) প্রি-এরিপ্রোসাইটিক হেপাটিক সাইজোগনি (Pre-erythrocytic hepatic schizogony) এ চক্রের ধাপতলো নির্ভূত
- 2 | Anopheles মণবাঁর লালায়ছিতে অবছিত Plasmodium-এর প্রশারেজনৈট (দৈর্ঘা 10-14 µm এবং বছ ০.০5-1 µm) দশার পরিণত জাঁরাণু মশকাঁর দংশনের মাধ্যমে মানবদেহে প্রবেশ করে এবং বছসোতের মাধ্যমে ঘরিত হতে কেমোট্যাক্সিল এর কারণে মকৃতে এলে অশ্রেয় নেয়। মানবদেহে প্রবেশের প্রায় ৩০-৪৫ মিনিটের মধ্যে উল্বেগণে হক্তের প্যারেনকাইমা কোমের অভ্যন্তরে প্রবেশ করে।
 - ই। হকুত কোদ খেকে খাদ্য গ্রহণ করে মাকুআকৃতির স্পোরোজয়েটভলো গোলাকার ক্রি**-টাজভেটে** পরিবত হয়।
- গতিটি ক্রিটোজয়েটের নিউক্রিয়াস ক্রমাণত বিভক্ত হয়ে কয়েকদিনের মধ্যে বহু নিউক্রিয়াস (য়জাতিতেদে প্রায়
 ১০০-১২০০) বিশিষ্ট দশায় পরিশত হয়। পরজীবীর এ দশাকে সাইজেট বলে।
- ৪। শরবর্তী শর্মায়ে সাইজবেঁর প্রতিটি নিউক্রিয়াসের চারপাশে কিছু পরিমাণ সাইটোপ্রাজম ও প্রাজমামেমরেন সৃষ্টি ইং। শরকীরির ও দশাকে ক্রিকেটামেরোজয়েট বলে।
- ^{৫। চত্তের পেয় পর্যায়ে হেপাটোসাইট ভেছে যায় এবং ক্রিন্টোমেরোজয়েটকলো যকুতের সাইনুসয়েতে আশ্রয় নেয় জে ওখান থেকে পরবর্তী চক্র করে।}

- (খ) এক্সো-এরিস্রোসাইটিক হেপাটিক সাইজোগনি (Exo-erythrocytic hepatic schizogony) ৷ # হয় ধাপতলো নিয়ন্ত্রশ :
- ১। বি-এরিছোগাইটিক সাইজোগনি চক্রে উৎপন্ন ক্রিন্টোমেরোজয়েটিচলো নতুন হেপাটোসাইটকে আক্রমণের মা এ চক্রের সূচনা করে।
- মাইজট : পরিণত ক্রিন্টোমেরোজয়েউছলো নতুন যকৃত কোখে প্রবেশ করে নিউক্রিয়াসের বারবার বিজ্ञা
 মাধামে বহু নিউক্রিয়াসরিপিট সাইজট দশায় পরিণত হয়।
- ত। মেটাক্রিক্টোমেরোজয়েট : সাইজন্টের প্রতিটি নিউক্লিয়াসের চারপাপে সাইটোপ্লাজম জমা হয়ে ফেন নার্টা সৃষ্টি করে তাদেরকে মেটাক্রিক্টোমেরোজয়েট বলে।
- ৪। আক্রান্ত থকৃত কোষের ভাঙন : মেটাক্রিন্টোমেরোজয়েটিছলো পরিণ্ড হলে আক্রান্ত থকৃত কোষ বিশ্বী বেরিছে আদে এবং নতুন নতুন থকৃত কোষকে আক্রমণ করে এ চক্রের পুনরাবৃত্তি ঘটায়। এ অরহায় মানুষের বৃত্তী মেলেজয়েট পাওয়া য়য়। আকারের ভিত্তিতে এদেরকে দুই ভাগে ভাগ করা য়য়-(১) মাইক্রো-মেটাক্রিন্টেমেরে

 (২) মাক্রো-মেটাক্রিন্টোমেরোজয়েট। প্রথমোভছলো অপেজাকৃত ছোট এবং পেযোজছলো অপেজাকৃত বৃত্তী বৃত্ত আকৃতির মেরোজয়েটিছলো নতুন যকৃত কোষকে আক্রমণ করে এবং ছোট মেরোজয়েটিছলো য়কৃত কোষকে পরিবর্তে রভারোতে চলে সাক্রম এবং মানুষের লোহিত রভা কণিকায় প্রবেশ করে। স্পোরোজয়েট থেকে এ কর্মা পৌছতে পরজীবার প্রায় ৭-২০ দির সময় লাগে। মেরোজয়েটছলো ম্যালেরিয়ার কোনো লক্ষন প্রকাশ করা য়য়েট পর বছর যতে যকৃত কোকে আইকোগানি চালিয়ে যেতে পারে।

এরিপ্রোসাইটিক সাইজোগনি বা লোহিত রক কণিকায় সংঘটিত সাইজোগনি

প্রি-পাটেন্টকাল (বক্তে আন্তর্যকাশ করার পূর্ব পর্যন্ত সময়) অতিক্রমের পর পরজীবী লোহিত রক্ত ক্রিক্টে^র) আক্রমণ করার মাধ্যমে এ চক্রের সূচনা করে।

>। মাইকো-মেটাকিন্টোমেরোজয়েটকলো দক্ত কোষ খেকে লোহিত রক্ত কলিকায় প্রবেশ করে এর করে কাট ক কোলাকার হয়। এই দশাকে বিষোজয়েট দশা বলে। এ অবস্থায় জীবাপুর সেহে ক্ষুদ্র একটি কে

- ২। কোৰ গহৰেন্দ্ৰ বীকে শ্বীৰে বড় হয় ও নিউজিয়াসটি একপাশে সতে যায়, কলে জীৰাণুটি একটি আংটি আকৃতি লাভ হবে। এই অবছাৰে সিণনেট দিং বলা হয়।
- ০। প্রায় ৮ খণ্টার মধ্যে পরামীবীল অভাছ গহরে অদুশা হয়ে যায় এবং পরামীবীটি কণপদবিশিই Amoreba এর প্রাকৃতি প্রান্ত হয়, তাই এ দশাকে আমিবছেও ট্রফোজছেট বলেনার সময় লোহিত রক্ত কণিকাটি আকারে ক্ষীত হয় এবং এর সাইটোল্লালমে ক্ষুদ্র ক্ষুদ্র মানা বেখা যায়। এ ওলোকে সাফনার্স দানা (কণা) বলে। রক্ত কণিকায় সাফনার্স দানার রশছিতি দেখে মালেরিয়া রোগ শনাক্ত করা হয়।

৪। আমিবটোত ট্রকোজটোট দশার ক্রেক্ট নিউক্লিয়াস বারবার বিভাজনের মূব্যমে হব-২৪টি অপতা নিউক্লিয়াস সৃষ্টি
 লাই কর নিউক্লিয়াস বিশিষ্ট এ অবস্থাকে সাইজট বশা হয়। এর সাইটোপ্লাজমে হিমোজয়েন নামক বর্জা পদার্থ জমা হয়।
 কাইজট দশার প্রতিটি নিউক্লিয়াস সায় 45 ঘটা পর সাইটোপ্লাজম ও প্লাজমানমধ্যেনসহ বিভাজ বছে ২২-১৮টি নোজালা - এ পরিপত হয়। মেরোজয়েটতলো গোলাপের পাপড়ির নায় দুই প্ররে সক্ষিত হয়। এ দশাকে রোজেট বলে।
 লাগবর্তী অবস্থায় লোহিত রক্ত কণিকা ভেঙ্গে মায় এবং মেরোজয়েটওলো প্লাজমায় বের হয়ে আসে। মেরোজয়েট
 লাকে চুকে থেকে রক্তর কে কণিকাওলো আকে প্রতিরোধ করতে চেটা করে। এসময় রক্তে প্রচুর পরিমাণে
 তিরাজের নামক রালায়নিক পদার্থ জমা হয় এবং এর প্রভাবেই দেয়ে জ্বর্ম অসে। সময় এরিখ্রোলাইটিক সাইজোগনি
 তিরাজের নামক রালায়নিক পদার্থ জমা হয় এবং এর প্রভাবেই দেয়ে জ্বর্ম অসে। সময় এরিখ্রোলাইটিক সাইজোগনি
 তিরাজের বাবে প্রায় ৪৮-৭২ ঘণ্টা সময় লাগে।

৭। নুক মেরোজরেট নতুন লোহিত বক্ত ক্ষিকাকে আক্রমণ করে এবং একইভাবে চক্রটি পুনরাবৃত্তি ঘটায়।

৮। কতিপয় মেরোজনেট গ্রামিটোলাইটে পরিণত হয়। গ্রামিটোলাইট দুই প্রকার। পূর গ্রামিটোলাইট বা মারেনাগ্রামিটোলাইট এবং স্থা গ্রামিটোলাইট বা মারেনাগ্রামিটোলাইট । পূর গ্রামিটোলাইটওলো আকারে ছোট কিন্ত এর মারিনোগ্রামিটোলাইটওলো আকারে বড় কিন্ত এব নিউক্তিয়াল ছোট হয়। স্থা ও পূর গ্রামিটোলাইটওলো নাইকিয়াল বড় এবং স্থা গ্রামিটোলাইটওলো আকারে বড় কিন্ত এব নিউক্তিয়াল ছোট হয়। স্থা ও পূর গ্রামিটোলাইটওলো নাইকিয়াল করে প্রামিটোলাইটওলো আকা কোনো পরিবর্তন সংঘটিত হয় গোলত দেবের প্রাম্ভীয় বক্তনালীতে অবস্থান করে। মানুমের বক্তে গ্রামিটোলাইটি বা শ্রেমিলা শ্রামিটালাইটি মানুমের বক্তে গ্রামিটোলাইট ব নিবের মানুমের মানুমের বক্তে গ্রামিটোলাইট ব নিবের মানুমের মানুমের বক্তে গ্রামিটোলাইট ব নিবের মানুমের বিশ্বের মানুমের বক্তে গ্রামিটোলাইট ব নিবের মানুম্বর বিশ্বের মানুমের বক্তে গ্রামিটোলাইট ব নিবের মানুম্বর বিশ্বের মানুমের বক্তনামিটোলাইট ব নিবের মানুম্বর বিশ্বের মানুমার মানুমের বক্তে গ্রামিটোলাইট ব নিবের মানুম্বর বিশ্বের মানুমার বিশ্বের মানুমার বিশ্বের মানুমার মানুমার বিশ্বের মানুমার বিশ্বের মানুমার বিশ্বের মানুমার বিশ্বের মানুমার মানুমার বিশ্বের মানুমার মানুমার বক্তনামার মানুমার বিশ্বের মানুমার মানুমার বক্তনামার মানুমার মানুমার মানুমার মানুমার মানুমার মানুমার মানুমার বক্তনামার মানুমার মানুমা

क्रीवरिकान-संचय प्रज

WC90-W	রিপ্রাসাইটিক (হেশাদিক) এরং এরিপ্রাসাইটিক সা	এবিশ্রোলাইটিক সাইজোগনি
শাৰ্থকোর বিষয়	CEMILING ALFORDA	MINICAGE CALLEGE SOLIMIN MOST
५ व्यापात प्राप्त	মানুবের মৃত্তে সংগতিত হয়।	प्रत्याक्षरकार, जिलादमार विष, नावेक्षर क
২, দ্বাবতী ধাশসমূহ	डिट्नेशक्तार्थे, डिस्टेशरमाब्द्रस्थे रस्टेडीक्ट-श्रेरमरमाबद्धये मामक बानसमूद नावधा	ट्यालाबहारि शानसमूद स्मर्थ वाष्
	ALE 1	्रम्थ मिटक विस्मानस्थान मृत्रि दश ।
O. FECKTORENH	विश्वत रह मा।	o sus बमाकारम मानवरमध्य कीनुविभक्ष
#. শোষণাসংহ প্রতিক্রিয়া	এ চক্র চলাকালে মাধুনের স্বান হয় না।	প্ৰ হয়। সাইজান্টের বাইবে সাক্ষমার-এর জান
è, माक्सल-अब माना	সেখা যায় শা।	भावमा पाम । जैल्लुमिमहरूपात सूत हम ।
७. मून	चुत रह मा।	

মশকীর দেহে ম্যালেরিয়া জীবাণুর জীবন চক্র

মাপেরিয়া রোগে আক্রান্ত কোনো মানুষের রক্ত মপরী কর্তৃক গৃহীত হলে গ্যামিটোনাইটসহ বিভিন্ন দশার জীবলু মশকীর ক্রণের পুমেনে রাবেশ করে। Anapheles বার্ডীত অন্যানা মশকীর পরিপাকতভ্রের এনজাইম সব দশার জীবালুওলোকে ধ্বংস করে কেললেও, Anapheles মশকীর পৌছিকতত্ত্বে গ্যামিটোসাইটওলো ধ্বংস করার এনজাইম সা থাকায় এওলো বেঁচে থাকে। বরং Anapheles এর ক্রপে উপস্থিত এনজাইমের উদ্দীপনায় গ্যামিটোসাইটওলো পরবর্তী হলে করাত উদ্দীত হয়। মশকীর সেহে এ জীবালুর গ্যামিটোগনি ও শোরোগনি পর্যায় সম্পন্ন হয়।

গ্যামিটোগনি (Gametogony)

মশ্বী জিলের অভান্তরে গ্যামিট সৃষ্টির মাধ্যমে ম্যাপেরিয়ার জীবাদুর দৌন জননকে গ্যামিটোগনি বলে। গ্যামিটোগনি কমেকটি নিনিষ্ট বালে ঘটে। যথা।

- ১। शामिष्ठे वा क्षमनाकाश मृष्टि वा शामित्प्रात्करमनिम (Gametogenesis)ः शामित्प्रातकतनिम भृ'क्षकातः। वधा-
- (ক) শুলামীটোজেনেসিস এবং (খ) উওজেনেসিস।
- ্রেক) "পার্মাটোজেনেদিন (Spermatogenesis-sperm=তক্তাপু, gen = গঠন, sis = পছতি) : মাইকোগ্যামিটোলাইট থেকে মাইকোগ্যামিট বা তক্তাপু বা প্রেলন কোম গঠন প্রক্রিয়াকে "পার্মাটোজেনেদিন বলে। এ প্রক্রিয়া কয়েকটি উপপুন্ধ মটে। যথা :

্রের বাহ ক্রের প্রাথিটোলাইটের হ্যাপ্রয়েত (n) নিউক্লিয়ানটি মাইটোলিস পদ্ধতিতে বিভক্ত হয়ে ৪ – ৮টি কুল্রাকার হ্যাপ্রকের (n) নিউক্লিয়াসে পরিণত হয়। এ সময় জীবাণু কয়েকটি কোণা (৪ – ৮টা) বিশিষ্ট হয়।

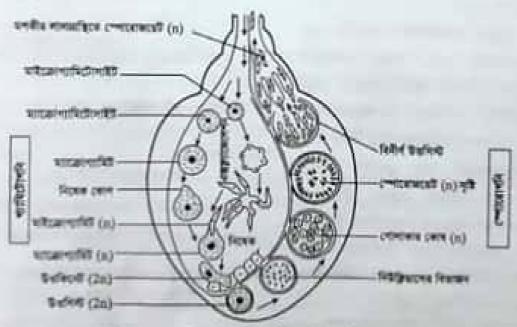
(ii) প্রতিটি কোণার মধ্যে একটি করে পুসু নিউক্লিয়াস প্রবেশ করে এবং নিউক্লিয়াসের চারনিকে সাইটোল্লালম লয় ময়। একলেকে সাইটোল্লালমীয় অভিকেশ বলে।

্রের পরপরই জীবাধুর দেহটি কতগুলো ফ্লাজেলা আকৃতির সরু মাকুর মতো মাইক্রোগ্যামিটে বা ক্রাপুর প্রতিশ্ব হয়। ক্রিপের গরেরে তালের তারতমার দরুন এই প্রক্রিয়া ঘটো। ক্রেপে গরেরে ম্যালেরিয়া জীবাধুর শ্লামাটোজেনেসিলের এ বিশেষ অক্রিয়াকে এক্স্যাজেলেশন (Exflagellation) বলে।

(iv) মাইকোণামিটপুলো ধাৰমে একসাথে থাকে, পরে এবা মাতৃকোধ থেকে এক্সফ্রাজেপেশন প্রক্রিয়ায় পর-পর থেকে পুণুক্ত করে যায় এবং ডিখাপুকে নিবিক্ত করার জন্য সাঁতার কাউতে থাকে ৷

্বি) উভজেনেদিস (Oogcorsis -Oo = ভিম্মাণু , gen = গঠন, sis = পছডি) : ম্যাক্রেম্যামিটেলেইট ছেন্টে ম্যাক্রেম্যামিট বা ভিম্মাণু বা প্রীজননকোষ গঠন প্রক্রিয়াকে উত্তেলেদিস বলে। এ প্রক্রিয়া কয়েকটি উপনালে ঘটে। হব-

(i) প্রদান প্রতিটি ম্যাক্রোগ্যামিটোসাইট-এর হ্যাপ্সফেড (n) নিউক্রিয়াসটি বিভক্ত হয় ও একটি করে সক্রিয় গোলাকার ম্যাক্রোগ্যামিটে বা ডিম্বাণুতে পরিবত হয়। এ হড়ো পোলার বঙি নায়ক আর একটি কোষের আবির্ভাব ঘটলেও শীয়েই প্র (ii) এর পরপরই ম্যাক্রোগ্যামিটের একপ্রাপ্ত বিশ্বটা উছু হয়ে গুঠে। এ অঞ্চলকে নিষেক পজু/কোন (Fertilization তেতা) রা অঞ্চর্থনা শাকু (Reception cone) বলে। ভিস্থাপুর নিউক্রিয়াস এ পাকুর কাছে অবস্থান করে।


্ব নিষ্কেও জাইপোট গঠন (Fertilization and the formation of zygote) । মুক্ত মাইকোগ্যামিটপুলো এরপর পুরুক পুরুক্তাবে ম্যাকোগ্যামিটের বা ডিম্বাপুর নিষ্কেক শতকুর দিকে আগের হয় এবং প্রতিটা ডিম্বাপুতে একটি করে ভক্তপু মবেশ করে এবং নিষ্কেক স্থপন্ন করে। নিষ্কিক ডিম্বাপু হতে পরে গোলাকার জাইগোট (ডিপ্লয়েড) গঠিত হয়।

্র উওকিনেট গঠন : মশকী রক্ত শোখণের ১২-১৪ ঘণ্টা পর গোল ও নিশ্চল জাইগোটটি সচল হয় এবং কিছুটা লখাবৃতি ধারণ করে উওকিনেট-এ পরিগত হয়। এগুলো লখায় ১৮-২৪ মাইকোমিটার এবং প্রস্তে ৩-৫ মাইকোমিটার।
৪৬কিনেট ১৭ ঘণ্টার ভেতরেই মশকীর ক্রংপর অভ্যন্তাচীত তথা করে বহিঃখাচীরের নিচে এসে পৌছায় এবং 40 ঘণ্টার
হামে হিন্দী আবরণ ছারা আবৃত হয়ে গোলাকার উওসিসেট (Occyst) পরিশত হয়। আক্রান্ত একটি মশকীর ক্রংপ
০০-৫০০টী পর্যন্ত উওসিস্ট দেখা যায়। উওসিস্ট পরিশত হতে ১০-২০ দিয়া সময় লাগে।

বাহ্র শেণারোগনি (Sporogony)

হশকীর ক্রপের দুই জরের মাতে সংলগ্ন থাকা অবস্থায় উওসিস্ট দশার জীবাণু যে জননের মাধামে স্পোরোজয়েট লগর জীবাণু সৃষ্টি করে ভাকে স্পোরোগনি বলে। স্পোরোগনিকে অনেকে অযৌন জনন বলেন। প্রকৃতপক্ষে এটি যৌন জনবেই পরবর্ত্তী অথস্থা যার মাধ্যমে জীবাণুটি সক্রিয় স্পোরোজয়েট দশায় পরিণত হয়।

্ব তিনিদেটর নিউক্লিয়াস বিভাজন : ক্রণের গায়ে সংগগ্ন অবস্থায় প্রতিটি উত্তসিদেটর (2n) নিউক্লিয়াস প্রথমে মার্যাসিদ পঞ্চতিতে ও পরে বারবার মাইটোসিস পঞ্চতিতে বিভাজিত হয়ে বহু সংখ্যক হ্যাপ্লয়েও (n) নিউক্লিয়াসে পরিশত হয়। । ক্রণের প্রাচীরে একই সাবে ৫০—৫০০টি উত্তসিদেট গারেও পারে। উত্তসিদেটর এই মার্যাসিক্ষরেক পোন্ট জাইগোটিক মার্যাসিদ (Post predict inciosis) বলে। । পরিশত উত্তসিদেটর আকার প্রথম অবস্থা থেকে ৪—৫ জা বড় হয়। উত্তসিদ্টি পরিশত হতে প্রার ১০—২০ জিন সময় লাগে।

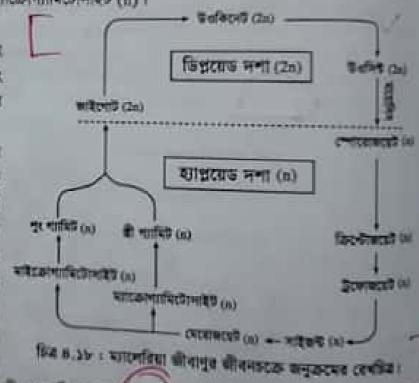
क्रिस स.३५ । यनबीय त्मदर सात्मविता नवसीवीय त्यीम सक ।

শতিকুটনত উবলিন্ট । নিন্ট প্রাচীরে আবদ থাকা অবহায় জীবাপুর প্রতিটি নিউক্লিয়াসকে থিবে প্রথমে নিউক্লিয়াসকে থিবে প্রথমি নিউক্লিয়াসকে থিবে প্রথমি নিউক্লিয়াসকা করিছে নিউক্লিয়াসকা বিশ্বমিক্লিয়াসকা করিছে নিউক্লিয়াসকা করিছে নিউক্লিয়াসকা বিশ্বমিক্লিয়াসকা করিছে নিউক্লিয়াসকা বিশ্বমিক্লিয়াসকা করিছে নিউক্লিয়াসকা করিছে নিউক্লিয়াসকা করিছে নিউক্লিয়াসকা বিশ্বমিক্লিয়াসকা করিছে নিউক্লিয়াসকা করিছে নিউক্লিয়াসকা বিশ্বমিক্লিয়াসকা করিছে নিউক্লিয়াসকা বিশ্বমিক্লিয়াসকা করিছে নিউক্লিয়াসকা করিছে নিউক্লিয়াসকা বিশ্বমিক্লিয়াসকা করিছে নিউক্লিয়াসকা করিছে নিউক্লিয়াসকা বিশ্বমিক্লিয়াসকা করিছে নিউক্লিয়াসকা করিছেয়াসকা করিছেয়াসক

কোনো মানুখের বক্ত পাল করলে জীবাপুখলোর প্রকর্ম ১০% সালারসের লামে মানবদেরে স্থানাপ্রতিক হয় এবং ম্যালেরিয় त्वाम मृति करत । घणकीव गामामाब्दिक र नारवामस्ययकरमा वाहि । मान कृतवान करत ।

महारमविद्या जीवानुत जीवन हरक जनूकम बााना

কোনো লীবের লীবন চক্তে হ্যাপ্তরের ও বিপ্রয়োর দশার পর্যায়ক্রমিক আন্তনিকে অনুক্রম (alternation of generation) বলে। মালোরমা জীবাপু একটি অস্তঃশবাসীধী লোটোজোয়া বাদী। এদের জীবন চত্তে অনুক্রম ঘটে। CONTRACTOR (m) HYTH


िमारहाक्यरकी मना (n) । मनजीत त्यदर त्यारातामधित कटम अहि इस द्रमारताक्यरकी मना (n)। दह েশারোজরোটবারী মশ্রী মানুষকে দংশন করার সময় লালা নিঃসরণ করে। এ লালা এন্টিকোয়াওলেন্ট হিসেবে কাছ করে, জাহণাটিকে অবপ ও পিডিংল করে। আর এ লাগার সাথে জীবাণু মানুষের দেহে প্রবেশ করে।

মাইকো-মেটাকিং-টামেরোজয়েট (n) : েলারোজয়েট (n) মানুবের যক্তকে আক্রমণ করে সেখানে ছেলট্র সাইজোগানি চক্র সমপর করে। হেশাটিক সাইজোগানির কলে সৃত্তি হয় মাইতেল-মেটাক্রিনেটামেরোজয়েট (n)। মাইতেল-মেটাকিং-টামেরোজয়েট মানুযের লোহিত রক কবিকাকে আক্রমণ করে এরিপ্রোসাইটিক সাইজোগনি চক্র সম্পন্ন করে। এর ক্ষে সৃত্তি হয় মাইকোণ্যামিটোসাইট (a) ও ম্যাকোণ্যামিটোসাইট (a)।

विश्वारक (2n) मना ।

व्यविष्याप्ति प्रभा (2a) : म्रमकीश स्मरह গ্যামিটোগানির ফলে সৃত্তি হয় শ্রী গ্যামিট ও পুং প্যামিট। শত্ৰী ও পুং প্যামিটের মিগনের কলে আইগোট (2n) সৃষ্টি হয়।

উল্লেক্টে (2n) : লাইগোট ব্ৰপান্তবিত হয়ে मृति करव উश्वविद्रमण (2n)। भरत उश्वविद्रमण উভসিস্ট (2n)-এ পরিশত হয়। ভিপ্লয়েভ (2n) উভসিটো মাহেদিস প্রতিতে বিভারিত হতে ব্যাপ্রবেদক (a) স্পোলোজবেট সৃষ্টি করে। এ मान्तरपण रच्चारवाणराहे सना प्रशब्देश मानाव মাধ্যমে মানবলেরে প্রবেশ করে। উপরোক্ত আলোচনা খেতে দেখা যায় যে, মালেবিয়া জীবাবুৰ कीरम इटक शासरक व विस्तरक भग

পর্বায়ক্তিকভাবে আবর্তিত হয়। সূতরাং ম্যালেরিয়া জীবাপুর জীবন চত্তে সুস্পায় জানুক্তম বিদ্যামান। अनुकृत्यत कारण्य (Significance of Alternation of Generation)

- अनुकटम की बालूब सकारिक बातादक प्रकृत बादब ।
- ३ । कनुक्रम सीमानुस कीमीनकि विस्तित घाटन ।
- ত। জনুক্তম জীবাপুর বিমুখিতে সহায়তা করে।
- ৪। জনুক্তম জীবালুর জীবন চক্ত সম্পূর্ণ করে।
- ৫। জনুক্রম প্রজাতিকে বৈতিয়া আনে কলে প্রকরণ সৃষ্টি হয়।

मारमविद्या नवसीवीत प्रदर्शन च त्यीन उटकत प्रदेश नार्थका

অবেটন চক্র (সাইজোগনি)	যৌন চক্ৰ (স্পোচৱাগনি)	
	মপানীর ক্রন্তের মধ্যে এবং বিমোপিলে।	
cucarment, Scorment, retwit, funcial fat	ন চক্রে গ্যামিট, জাইগোট, উর্বভিনেট, উর্বদিন্ট র শেশাবোজতেট দেখা যার।	
गार्विस्टिमाइव ।	CONTORINGED I	
এ চক্রের শেষের নিকে হিমোলারেন সৃষ্টি হয়।	কখনোই হিমোজনেন সৃত্তি হয় না।	
বাঁপুনিসহ জ্ব, সে সঙ্গে জনানা উপসর্গ।	তেমন কোনো প্ৰতিক্ৰিকা দেখা যায় না।	
NGI I	भरी ना ।	
लुडि इश मा :	সূরী হয় ৷	
যেহেতু গ্যামিট সৃষ্টি হয় না তাই জাইগোট উৎপদ্ৰ হওয়ার কোনো সম্ভাবনা দেই।	পুং ও স্ত্রী খ্যামিটের মিলন খড়িরে জাইগোট সৃষ্টি করে।	
	ত বোজেট এ চাক্রার মধাবারী ধাপ। গামিটোসাইট। এ চাক্রার পোষের দিকে হিমোজারেন সৃষ্টি হয়। বিপুনিসহ জ্বা, সে সঙ্গে অন্যান্য উপসর্গ। ঘটে। সৃষ্টি হয় না। যেহেতু গামিট সৃষ্টি হয় না তাই জাইগাটে উৎপদ্র	

খ্যালেরিয়া জীবাণুর সুকাবছাকাল বা সুক্তিকাল (Incubation period)

লোনা পোষক সেহে কোনো রোগের জীবাণু প্রবেশের সময় থেকে সেই পোষকের সেহে উন্ন রোগের লক্ষণ প্রকাশ হল্যা পর্যন্ত সময়কে রোগের সূত্রবিছাকাশ বলে। যেমন : মালেরিয়া জীবাণু মানবদেহে প্রবেশ করার সাথে সাবে হল্যানাই জ্বের লক্ষণ প্রকাশিত হয় না। জীবাণু মানবদেহে প্রবেশ করার কয়েকদিন পর মানুষের দেহে মালেরিয়া লোগে গছণ প্রকাশ পায়। মালেরিয়া জীবাণু মানুষের দেহে প্রবেশ করার সময় থেকে মানুষে মালেরিয়া স্থারের লক্ষণগুলা প্রকাশ হত্যা পর্যন্ত সময়কে মালেরিয়া রোগের সূত্রবিছাকাশ (Latent period or Incubation period) বা সুরিকাশ বলে। কোনো রোগের জন্য সুরিকাশ সাধারণভাবে নির্দিষ্ট।

মালেরিয়া জীবাণুর বিভিন্ন প্রজাতির সুরাবস্থার সময়কাল :

的 Plasmodium vivax >2-20 年中

(त) Plasmodium falciparum ४-३¢ मिन

(अत) Plasmodium ovale ১১-১५ लिन

(is) Plasmodium malariae ३५-८० मिन

মালেরিয়া রোগের লক্ষ্ণ : ম্যালেরিয়া জ্ব-এর লক্ষণসমূহ নিমুরূপ :

ি বা হাথমিক পর্যাতে মাধাধরা, জুধামন্দা, বমি বমি ভাব, কোষ্ঠ কাঠিনা, অনিদ্রা ইড্যাদি লক্ষ্য দেখা দেয়।

(ii) বিভীয় পর্যারে রোগীর শীত অনুকৃত হয় এবং কাঁপুনি দিয়ে জ্ব আসে। জ্ব ১০৫"—১০৬ জারেনহাইট পর্যন্ত হতে গরে। করেক ঘণ্টা পর জ্ব কমে যায় ৪৮ মন্ত্রী পর পর কাঁপুনি দিয়ে জ্ব আসাই Plasmodium, vivax জীবাপু ছারা সৃষ্ট নাসবিয়ের প্রধান পঞ্চন।

(iii) তৃতীয় পর্যায়ে রোগীর দেহে জীবাপুর সংখ্যা অসম্ভবভাবে বেক্তে যাওয়ার কারণে দ্রুত রক্তের গোহিত কণিকা ^{জাতে} যাকে, কলে রক্তপুন্তো দেখা দেয়া, প্লীহা, যকৃত ও মন্তিম আক্রাম্ভ হয়ে রোগীর মৃত্যু ঘটাতে পারে।

ম্যালেরিয়ার সংক্রমণ (Transmission of Malaria)

ই Anopheles মণ্টাই ম্যালেরিয়া রোগের বিভার ঘটানোর একমাত্র মাধ্যম। পৃথিবীতে রাম মু'শত প্রজাতির Anopheles মণ্টা থাকলেও মূলত ওটি প্রজাতিই এ রোগের ব্যাপকভাবে বিভার ঘটার বলে তথ্য প্রকাশ শেছে। ক্রিক্রিলা হলে- Anopheles cultificates, A. stephensi, A. fluviatilis, A. dirus, A. sundaicus, I. মন্তানার মাধ্যমের মাধ

ধাপের মাধ্যমে অবশেষে স্পোরোজয়েট উৎপন্ন করে মশকীর লালাগ্রন্থিতে অবস্থান করে। এ মশকী কোনো মানুষকে দক্ষে করলে মানুষ এ জীবাণু দ্বারা সংক্রমিত হয়। এভাবে ম্যালেরিয়ার সংক্রমণ ঘটে এবং ম্যালেরিয়া জন-জনান্তরে ছড়িয় পড়ে।

ম্যালেরিয়ার প্রতিরোধ ও নিয়ন্ত্রণ (Prevention & Control of Malaria)

ম্যালেরিয়া যেহেতু মশকী বাহিত একটি রোগ তাই মশকী প্রতিরোধের মাধ্যমে এ রোগ হতে মুক্ত থাকা সমুহ। ম্যালেরিয়া প্রতিকার তিনভাবে হতে পারে; যথা- (ক) মশকী নিধন, (খ) মশকী হতে আত্মরক্ষা এবং (গ) চিকিৎসা।

ক) মশকী নিধন: মশককুলের বংশ পরিবেশ হতে নির্মূল করা প্রায় অসম্ভব। কিন্তু নিমূলিখিত পছা অবলম্বন করে এদের বিস্তার রোধ করা যায়-

- (i) প্রজননক্ষেত্র ধ্বংস : মশকীরা বদ্ধ পচা পানিতে ডিম পাড়ে। তাই বাড়ির আশেপাশের পরিত্যক্ত ভোবা, নালা পরিকার রাখা, যেখানে সেখানে পানি জমতে না দেয়া, বাড়ির আশেপাশের ঝোপ-ঝাড়, জঙ্গল কেটে ফেলার মাধায়ে মশকীর বসবাস-ও প্রজননক্ষেত্র ধ্বংস করা সম্ভব।
- (ii) লার্ভা ও পিউপা ধ্বংস করা : পচা পানিতে ডিম ফুটে মশকীর লার্ভা ও পিউপা দশা সৃষ্টি হয়। পানিতে কেরোসিন বা পেট্রোল জাতীয় পলার্থ ছিটিয়ে দিলে এরা অক্সিজেনের অভাবে মারা পড়ে। এছাড়া বিএইচসি (BHC), ভায়েলজিন (dieldrin) ইত্যাদি কীটনাশক ওযুধ তেলের পানিতে ছিটিয়ে দিলে মশকীর লার্ভা ও পিউপা মারা যায়। পানিতে ছিটেয়ে দিলে মশকীর লার্ভা ও পিউপা মারা যায়। পানিতে ছিটেয়ে দিলে মশকীতে রূপান্তরিত হতে পারে না।

উপরোক্ত সবগুলো পছতিই কমবেশি পানি তথা পরিবেশ দূষণের জনা দায়ী। তাই যে সকল জলাশয়ে লাভা বা পিউপা সৃষ্টি হওয়ার সম্ভাবনা থাকে ঐ সকল জলাশয়ে গান্তি, কই, শিং, খলসে, তেলাপিয়া, পুঁটি, টাকি ইত্যাদি জাতীয় লার্ভিডোরাস মাছ চাষ করলে এরা মশকীর লাভা ও পিউপাণ্ডলোকে ভক্ষণ করে। এতে মশকী নিধনের পাশাপাশি পরিবেশও থাকে দূষণমুক্ত।

- (iii) পূর্ণাঙ্গ মশককুল নিধন : ফগিং মেশিনের মাধ্যমে সালফার ভাই-অক্সাইভের ধোয়া সৃষ্টি করে মশা তাড়ানো বা মেরে ফেলা সম্ভব। এছাড়া বিভিন্ন রাসায়নিক পদার্থ ছিটিয়ে বা রেডিয়েশন এর মাধ্যমে বন্ধ্যাত্ব সৃষ্টি করে মশকীকুলকে ধ্বংস করা যায়।
 - (iv) অধিকাংশ শহর এলাকাতে মশা নিয়ন্তগের জন্য কীটনাশক বাবহার করা হয়।
- (খ) মশকীর দংশনের হাত হতে আত্মরক্ষা : ঘরের দরজা-জানালায় মাশকীরোধী ঘন তারের নেট ব্যবহার করে মশকীর দংশন হতে আত্মরক্ষা করা যায়। এছাড়া কয়েল বা বিভিন্ন ধরনের স্প্রে ব্যবহার করা বা দেহের অনাবৃত অংশ বিশেষ ধরনের ক্রিম বা লোশন লাগানোর মাধ্যমে মশকীর দংশন হতে বাঁচা যায়। শয়নের সময় মশারি ব্যবহার এবং সক্ষমা ধূপের ধোঁয়া প্রয়োগ করা।
- (গ) ম্যালেরিয়াগস্থ রোগীর চিকিৎসা (Treatment) : ম্যালেরিয়া রোগীকে অবশ্যই উন্নত চিকিৎসা প্রদান কর আবশ্যক। রোগ শনাজ করা ও উপযুক্ত চিকিৎসা প্রদান করলে ম্যালেরিয়া রোগ হতে পরিক্রাণ পাওয়া যায়। দিনকোল গাছের বাকল হতে তৈরি কুইনাইন ম্যালেরিয়া নিরাময়ের মূল ওয়ৄধ। এ কুইনাইন য়ারাই বাণিজ্যিক ভিত্তিতে বিভিন্ন বার্লির ওয়ৄধ তৈরি হয়েছে। যেমল-জোরোকুইন, নিভাকুইন, কেমোকুইন, আভলোক্রোর, ম্যাপাক্রিন, প্যালুদ্রিন ইত্যাদিলই ম্যালেরিয়া পরজীবী ধ্বংসের ভালো মানের বেশ কিছু ওয়ৄধ বাজারে পাওয়া যায়। এছাড়া আক্রান্ত রোগীকে যাতে মশ্রী দংশন করতে না পারে সেদিকে বিশেষ দৃষ্টি দেয়া আবশ্যক, নতুবা দ্রুত রোগের বিস্তার ঘটতে পারে।

বি. দ্র. সুহদেহে সিনকোণা রস কম্পজুর সৃষ্টি করে। কম্প জুরে (ম্যাপেরিয়া) সিনকোণা রস সেবনে রোগ আরোগা হয়। এ থেকে হোমিও চিকিৎসা পৃথতি আবিষ্কার হয়েছে।

ম্যাপেরিয়ার টিকা (Malarial Vaccine) : দীর্ঘ প্রায় ৩০ বছর গবেষণার পর অবশেষে আবিশকৃত হত্তেছে বিশে প্রথম ম্যাপেরিয়া প্রতিষেধক টিকা "Mosquirix" (II RTS,S) নামেও পরিচিত। European Medicine Agency (EMA) হুতামধ্যেই এ Vaccine-কে প্রীকৃতি দিয়েছে। গ্ল্যাজোম্থিকাইন ও PATH Malaria নামক প্রতিষ্ঠানম্বয় এ যুগান্তকারী র্বিকারে নেতৃত্ব দিয়েছে চার ঠচাজের এ টিকা Plasmodium falciparum জীবাণুর বিরুদ্ধে কার্যকর আন্টিবডি প্রধাদনে সক্ষম। উল্লেখ্য যে, আফ্রিকার সাব-সাহারান অঞ্চলের শিতরা এ পরজীবী কর্তৃক সবচেয়ে বেশি আক্রান্ত হয় এবং এতে এদের মৃত্যুর হারও বেশি। তবে বাংলাদেশ, ভারত, মায়ানমার প্রভৃতি সাবটুপিক্যাল অঞ্চলের দেশঙলো এ

দ্দর্গত কাজ: ম্যালেরিয়া জীবাদুর জীবন চক্রটি অন্তন করে ক্লাসে উপস্থাপন কর।

সার-সংক্ষেপ

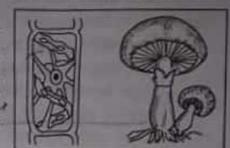
ভাইরাস : ভাইরাস হলো নিউক্লিক অ্যাসিড (DNA অথবা RNA) ও প্রোটিন দিয়ে গঠিত রোগসৃষ্টিকারী অতি ব্রাদুবীক্ষণিক অকোষীয় বস্তু। এরা জীবকোষের অভ্যন্তরে সংখ্যা বৃদ্ধি করতে পারে, আবার জীবকোষের বাইরে নিষ্ক্রিয় জড় ব্রুর অবস্থায় বিরাজ করে। ভাইরাস দণ্ডাকার, গোলাকার, ঘনক্ষেত্রাকার, ব্যাভাচি আকার বা ভিম্বাকার হতে পারে। TMV লইরাস দঙাকার, HIV ভইরাস গোলাকার, T_2 ভাইরাস ব্যান্তাচি আকার। কতক ভাইরাসের নিউক্লিক অ্যাসিড RNAয়েন- TMV, মানুষের পোলিও ভাইরাস, ডেঙ্গু ভাইরাস। কতক ভাইরাসের নিউক্লিক আসিড DNA যেমন- T2 ভাইরাস, IIV, এভিনোহার্পিস সিমপ্লেক্স ইত্যাদি। উদ্ভিদ, প্রাণী (মানুষসহ), পতপাখির বহু রোগের কারণ ভাইরাস। HIV দিয়ে দন্দে AIDS রোগ, ফ্ল্যাভি-ভাইরাস দিয়ে ডেঙ্গুজ্বর, র্যাবিস ভাইরাস দিয়ে জগাতঙ্ক, ভেরিওলা ভাইরাস দিয়ে গুটিবসস্ত

 T_2 -ফায $:T_2$ ব্যাকটেরিওফায় সর্বাধিক পরিচিত ভাইরাস। মাঘা ও লেজ নামক দুটি অংশ নিয়ে T_2 -ফায-এর দেহ গঠিত। এর নিউক্লিক অ্যাসিড দ্বিসূত্রক DNA যা ৬০,০০০ জোড়া নিউক্লিয়োটাইড দিয়ে গঠিত। এরা ব্যাকটেরিয়াকে মাত্রমণ ও ধ্বংস করে বলে এদের নাম হয়েছে ব্যাকটেরিওফায।

ব্যাকটেরিয়া : এক বচনে ব্যাকটেরিয়াম। এরা কোষীয়, আণুবীক্ষণিক এবং আদিকোষী। এরা দলবেঁধে থাকতে পারে, হবে এককোষী। ব্যাকটেরিয়ার সংখ্যাবৃদ্ধির প্রধান উপায় হলো ছি-ভাজন প্রক্রিয়া। মাটিতে, পানিতে, বাতাসে, জীবদেহের বইরে এবং ভেতরে এদের আবাসস্থল। এদের দেহে ফ্লাজেলা থাকতে পারে, আবার নাও থাকতে পারে, তবে জড় কোষ খাচীর আছে। ব্যাকটেরিয়া বহু রোগের কারণ, যেমন- কলেরা, ভায়রিয়া, আমাশয়। ব্যাকটেরিয়া থেকে তৈরি হয় মাণিবায়োটিক ওমুধ, প্রতিষেধক টিকা। মাটির উর্বরতা বৃদ্ধিতে, দুধ থেকে দই তৈরি, পনির তৈরিতেও ব্যাকটেরিয়া रादश्ड इस् ।

ব্রাস : গোলাকার ব্যাকটেরিয়াকে বলা হয় ক্কাস। একা একা থাকে মাইক্রোক্কাস বা মনোক্কাস, জোড়ায় ^{জোন্ম} থাকে ডিপ্লোককাস, চেইনের মতো থাকে স্ট্রেণ্টোককাস।

ছি-ভাজন : ছি-ভাজন কোষ বিভাজনের একটি প্রক্রিয়া। এই প্রক্রিয়ায় একটি কোষের নিউক্লিয়ার বস্তু এবং ^{সাইটোপ্লাজম} দু^{*}ভাগে ভাগ হয়ে যায় এবং একটি কোষ থেকে দুটি কোষের সৃষ্টি হয়। ব্যাকটেরিয়ার সংখ্যাবৃদ্ধির প্রধান ^{हैপার} হলো দ্বি-ভাজন। এটি একটি অযৌন জনন প্রক্রিয়া।


মেরোজাইগোট : দ্রী এবং পুং জনন কোষের যৌন মিলনের ফলে যে কোষের সৃষ্টি হয় তাকে বলা হয় জাইগোট। ^{চাইগোটে} স্ত্রী ও পুং জনন কোষের পূর্ণাঙ্গ অংশ মিলিত হয়। ব্যাকটেরিয়ার যৌন জনন প্রক্রিয়ায় দাতা কোষের (পুং জনন ^(কিন্তু) আংশিক ক্রোমোসোম গ্রহীতা কোষে (প্রী জনন কোষ) প্রবেশ করে, তাই গ্রহীতা কোষ দাতা কোষের পূর্ণ বংশগতীয় ^{বু থাংগ} করতে পারে না। আংশিক ক্রোমোসোম গ্রহণের মাধ্যমে যে জাইগোট তৈরি হয় তাকে বলা হয় মেরোজাইগোট। ^{্ট্ট} যৌন জনন প্রক্রিন্মা, তবে এতে কোনো সংখ্যাবৃদ্ধি ঘটে না।

পঞ্চম অধ্যায় শৈবাল ও ছত্ৰাক ALGAE AND FUNGI

প্রধান শব্দসমূহ : শৈবাল, ছ্যাক, লাইকেন

নাশের চিত্র দু'টির প্রতি লক্ষা কর। এমন চিত্র কোধাও দেখেছ কি? মাধ্যমিক শ্রেণিতে এ সম্বন্ধে তোমরা কিছুটা

াাধ্যমিক শ্রেণিতে তোমরা Spirogyra শৈবাল এবং Agaricus ছ্যাক সম্বন্ধের ধারণা লাভ করেছ। এরা উভয়ই অপুশ্পক উদ্ভিদ, তবে এদের মধ্যে অমিলও ব্লার বাল উদ্ভিদে ক্রোরোপ্রাস্ট থাকে, তাই এরা সালোকসংশ্লেষণ প্রক্রিয়ায় বাল প্রকার খাদ্য প্রস্তুত করতে সক্ষম এবং কভোজী। ছ্যাক-উদ্ভিদে ক্রোরোপ্লাস্ট থাকে না, তাই, কলা প্রকার খাদ্য প্রস্তুত করতে পারে না এবং এরা মৃতজীবী বা পরজীবী। নিচে ধারা ও ছ্যাক সম্বন্ধে পৃথকভাবে আলোচনা করা হলো।

- ্র শৈবদের বৈশিষ্ট্য, গঠন ও জনন বর্ণনা করতে পারবে।
- ২ Ulothrix এর আবাস, গঠন ও জনন বর্ণনা করতে পারবে।
- ७, गुरश्तिक
 - o Ulothrix এর স্থায়ী প্রাইড পর্যবেক্ষণ করে শনাক ও অঙ্কন করতে পারবে।
- ৪ ছত্রকের বৈশিষ্ট্য, গঠন, প্রজনন ও গুরুত্ব বর্ণনা করতে পারবে।
- C. Agaricus এর গঠন চিত্রসহ বর্ণনা করতে পারবে।
- ৬. ব্যবহারিক
 - o Agaricus এর ফুটবভি শনাক করতে পারবে।
- ৭ ছ্যাকঘটিত রোগের কারণ, লক্ষণ ও প্রতিকার বর্ণনা করতে গারবে।
- b. শৈবাদ ও ছ্যাকের সহাবস্থান বিশ্লেষণ করতে পারবে।

শৈবাল (Algae)

পৃথিবীতে বহু প্রকার শৈবাল জন্মে থাকে। এদের কতক এককোষী, কতক বহুকোষী। এদের মধ্যে কতক স্থলজ, বহুক প্রধায়বীয় এবং প্রধিকাংশই জলজ। এরা মিঠা পানিতে এবং লোনা পানিতে জন্মাতে পারে। শৈবালের হাজার জার প্রজাতির মধ্যে আকার, আকৃতি, গঠন ও স্বভাবে প্রচুর পার্থক্য আছে। আকার, আকৃতি ও গঠনে বহু পার্থক্য বহুলেও কতিপয় মৌলিক বৈশিষ্ট্যে এরা সবাই একই রকম, তাই এরা সবাই শৈবাল বা শেওলা নামে পরিচিত। সম্পূর্ণ ক্রমান শৈবালকে বৈশিষ্ট্যে এরা সবাই একই রকম, তাই এরা সবাই শৈবাল বা শেওলা নামে পরিচিত। সম্পূর্ণ ক্রমান শৈবালকে হাইটোপ্লাকেটন বলে। জুলাশুয়ে পানির নিচে মাটিতে আবদ্ধ হয়ে যে শৈবাল জন্মায় তাদেরকে বেনবিক শ্রেমান গৈবালকে গায়ে জন্মানা শৈবালকে পিলোকাইট বলে। উচ্চ শ্রেমির টীস্যভান্তরে জন্মানো শৈবালকে তাজাইট বলে। প্রশিক্ষাইট বলে। প্রশিক্ষাইট হিসেবে এরা অন্য শেরমের গায়েও জন্মায়। শৈবাল বিষয়ে আলোচনা, পর্যালোচনা, বিশ্বাল ও গবেষণা করাতে বলা হয় ক্ষাইকোলজি phycology)। মিক Phykos অর্থ seaweed ও শ্রেমার বিশ্ব প্রায় ত০,০০০ প্রজাতির শৈবাল আছে বলে করা হয়। সারা বিশ্বে প্রায় ত০,০০০ প্রজাতির শৈবাল আছে বলে করা হয়। করা হয়। সারা বিশ্বে প্রায় ত০,০০০ প্রজাতির শৈবাল আছে বলে করা হয়। করা হয়।

Characteristics of Algae)

- শৈবাল <u>সালোকসংগ্রেখ</u>ণকারী বভোজী অপুল্পক উদ্ভিদ।
- ২। এয়া সুকেন্দ্রিক, এককোষী বা বহুকোষী। শৈবালে কখনও সত্যিকার মূল, কাও ও পাতা সৃষ্টি হয় না, অর্থাৎ এরা স্মান্দেহী (খ্যালয়েড)।
- ত। এদের দেহে ভাকুলার টিসু নিষ্ট। এদের জননাল এককোমী, বহুকোমী হলে তা কোনো বন্ধ্যা কোমাবরণ দিয়ে বেটিত নয়।

- ৪। এদের স্পোরাভিয়া (রেণুথলি) সর্বদাই এককোমী
- হে। এদের জাইগোট খ্রীজননাঙ্গে থাকা অবস্থায় কখনও বহুকোষী ভ্রূণে পরিণত হয় না।
- ৬। শৈবালের কোষ প্রাচীর প্রধানত সেলুলোজ নির্মিত।
- ৭। শৈবালের যৌন জনন আইসোগ্যামাস, অ্যানাইসোগ্যামাস অথবা উগ্যামাস।
- ৮। দু'একটি ব্যতিক্রম ছাড়া অধিকাংশ শৈবাশের সঞ্চিত খাদ্য শৈক্রা শৈবাশের দৈহিক গঠন (Structure of Algae) : পৃথিবীতে বহুধরনের শৈবাল আছে। এদের আঞ্চা
- গঠনগত পার্থক্য বিদ্যমান। এরা হতে পারে--
 - ১। আপুবীক্ষণিক (যেমন- Prochlorococcus) থেকে দীর্ঘদেহী (যেমন- Macrocystis, প্রায় ৬০ মিটার পরি চ
 - ২। সচল এককোষী, যেমন- Chlamydomonas । এদের ফ্র্যাজেলা থাকে।-
 - ७। সচল कलानियान, त्यमन-Volvox, Pandorina, Eudorina। এরা দিনোবিয়াম। বিশেষভাবে সালি
 - ৪। নিকল এককোষী, যেমন- Chlorococcum, Chlorella। এদের ফ্ল্যাজেলা নেই।
 - ৫। বহুকোষী এবং পাতার মতো, যেমন (Ulva) 12 वह्दारी এবং किनायन्छान, अभाष, त्यमन- Ulothrix, Spirogyra বহুকোষী এবং ফিলামেন্টাস, শাখান্বিত, যেমন- Chladophora, Chaetophora বহুকোষী এবং হেটেরেট্রাইকাস (শয়ান ও খাড়া অংশে বিভক্ত), যেমন- Chaetophora.

(a) Contract (b) Chlamydomonas; (c) Valvas; (c) Spirogyra; (ii) Charlegh, in (e) Caulerpa; (b) Polyriphonia (or to tree); (4) Zygnema; (b) Alavicula (tree or tree).

(b) Spreature (west team). (50) Cham (b, b wast try separation age team).

- ্। সাইফলের মতো (নলাকার), বেমন- Vaucheria. এরা সিনোসাইটিক আছি কোন অসংখ্য নিউক্লিয়াস নিশিষ্ট।
- ৮। দেহ পর্ব-মধ্যপর্ব সাদৃশা, বেমন- Chara
- ১। দেহ বাহাত মূল, কাও ও পাতার নাায়, বেম্ন Sargassum

yo। এদের ফ্রোরোপ্লাস্ট হতে পারে সুর্বিলাকার (Spirogyra), পেরালার ন্যায় (Chlamydomonas), থালার মতো colerpa), জালিকাকার (Oedogonium), গার্ডল আকৃতির (Ulothrix), তারকার মতো (Zygnema)।

লেবালের কোষীয় গঠন (Cell structure) : সব শৈবালই সুকেন্দ্রিক (eukaryotic)। (আদিকেন্দ্রিক নীলাভ-সবুঞ সংগ্রের বর্তমানে সায়ানোব্যাকটেরিয়া হিসেবে অভিহিত করা হয়।) শৈবাল কোবের গঠন মোটামুটিভাবে উচ্চ শ্রেণির কুলকোষের মতোই। কোষের বাইরে সেলুলোভ (প্রধান বস্তু) নির্মিত জড় কোষপ্রাচীর, কোষপ্রাচীর দিয়ে পরিবেটিত রব্যা কোষঝিল্লি, কোষঝিল্লি দিয়ে পরিবেষ্টিত অবস্থায় সাইটোপ্লাজম থাকে। সাইটোপ্লাজমে বিদ্যমান আছে সুস্পষ্ট গ্লন্ত্রনাস, বৃহৎ ক্লোরোপ্লাস্ট, মাইটোকব্রিয়া, পাইরিনয়েড, রাইবোসোম ইত্যাদি অঙ্গাণু এবং সঞ্চিত খাদ্য। কোনো গোনো শৈবালের দেহ নলাকার, শাখাখিত, প্রস্থ প্রাচীরবিহীন এবং কোষে বহু নিউক্লিয়াস যুক্ত থাকে। এরূপ শৈবাল দেকে সিনোসাইটিক (coenocytic) শৈবাল বলে; যেমন- Vaucheria, Botrydium.

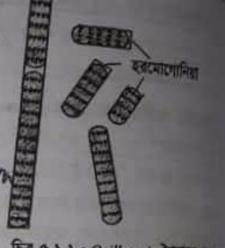
শৈবাশের একটি বড় অংশই এককোষী। Pyrrhophyta, Euglenophyta, Chrysophyta এবং বহ Chlorophyta ক্ষেম্বারী। Rhodophyta-এর অধিকাংশই বহুকোষী, Phaeophyta বহুকোষী বৃহৎ শৈবাল নিয়ে গঠিত।

কতিপয় শৈবাল শ্রেণির সংক্রিন্ত পরিচিতি:

<u> 연</u> 역	পিগমেন্ট	সঞ্জিত খাদ্য
hlorophyta (সবুজ শৈবাল)	ক্লোরোফিল এ, বি এবং ক্যারোটিনয়েড	अंग्रिक बामा
Chrysophyta (গোডেন ব্রাউন শৈবাল) নিবাণ- Navicula	ক্লোরোফিল এ, সি এবং অতিমাত্রায় ক্যারোটিনয়েড	কাইসোল্যামিনারিন
yrrhophyta (অগ্নি শৈবাল) শাংক্রণ- Gymnodinium	ক্লোরোফিল এ, সি ও ক্যারোটিনয়েড	প্যারামাইশন
nacophyta (বাদামী শৈবাল)	ক্লোকেল এ, সি এবং ফিউকোজ্যাছিন	ল্যামিনারিন, ম্যানিটল, এল্যান
Rhodophyta (লোহিত শৈবাপ) লামেণ্- Polysiphonia	ক্লোকেল এ, ফাইকোসায়ানিন, ফাইকোইরেণ্ডিন	ক্রেদরিডিয়ান স্টার্চ, এগার- এগার, ক্যারাজীনান

শৈবাল পৃথিবীর মোট ফটোসিনখেসিস-এর প্রায় 👀 ভাগ করে থাকে, বাকি ৪০ ভাগ উচ্চ শ্রেমির উদ্ভিদ করে থাকে। াত শৈবাল থেকে উচ্চ শ্রেণির উত্তিদের আবির্ভাব হয়েছে বলে মনে করা হয়।

িবলীয় অধ্যাদে সাগরের পানিকে আলোভিত করলে আন্তন বৃপতে দেয়া যায় যাতে 'Bioliminelector' বলে। Trophyla বৈবাদের জন্য এমন হয়ে থাকে। এদের খারাই বৈড টাইট (red tide) হয়ে থাকে। এমর বৈবাদে ভরাইও filetterin. তথ্য কলকোরাইলোটেড হয়, সুষ্ট বস্ত luciferase এনজাইমের উপস্থিতিতে অস্থিতোনের সাথে বিজিলা করে সালোকস্থিত ু করে। Pychophyia শৈবাস একটু ব্যক্তিক্রমধর্মী। এদের বেশকিছু হেটেরোট্রাফ। এদের জোমোসোমে নোটিদ কম পাতে, ইয়ার অন্তেম্পণের সাথে জোমোসেন যুক্ত থাকে, মাইটোলিন এই লন্য নিউচিনার এন্তেমণ বিশলিত হয় মা, এয়ন ভি া মাত দুটি হয় দা।

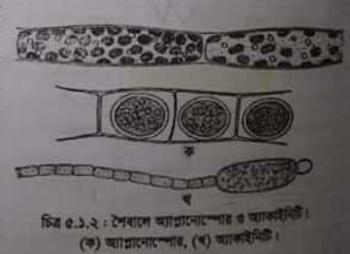

শৈবালের জনন (Reproduction of Algae) : বিভিন্ন প্রক্রিয়ায় শৈবালের প্রজনন হরে পাকে। দিয়ে ৰ স্ক সংক্রিপ্ত আলোচনা করা হলো।

ও আপোচনা করা হলো। ১। অঙ্গন্ত জনন (Vegetative reproduction) : দৈহিক অঙ্গের মাধ্যমে এ প্রকার জনন হয়ে খাকে। ছবি (spore) বা গ্যামিট (gamete) সৃষ্টি ব্যতিরেকে যে জনন প্রক্রিয়ায় জীবের দৈহিক অঙ্গ থেকে নতুন জীবের সৃষ্টি য়া

(i) কোষের বিভাজন (Cell division) : এককোষী শৈবালে মাতৃকোষটি দু'ভাগে ভাগ হয়ে দু'টি অপত্য কোষ (daughter cell) তৈরি করে এবং প্রতিটি অপত্য কোষ এক একটি পূর্ণাঙ্গ শৈবাল কোষে পরিণত হয়। উদা.-Euglena.

(ii) খতারন (Fragmentation) : বহুকোষী ফিলামেন্টাস শৈবালে যে কোনো কারণে বা যে কোনো ভাবে ফিলামেন্টটি ভেঙ্গে গেলে প্রতিটি খণ্ড ক্রমে একটি পূর্ণ শৈবালে পরিণত হয়। উদা- Nostoc, Ocillatoria I Spirogy/

(iii) টিউবার সৃষ্টির মাধ্যমে (By formation of tuber) : কোনো কোনো শৈবালের রাইজয়েড বা মাটির নিচের অংশে টিউবার তৈরি হয়, যা পরে পৃথক হয়ে পূর্ণাঙ্গ শৈবালে পরিণত হয় (Chara শৈবালে এরপ হয়।


চিত্র ৫.১.১ : Ocillatoria শৈবাদে পরা

(iv) कुँड़ि मृष्टि (Budding) : कुँड़ि (bud) मृष्टित भाषात्म कारना कारना देनवाल (त्यमन-Protosiphon) नड्नका পূর্ণাঙ্গ শৈবাল দেহ সৃষ্টি হয়।

(৮) হরমোণোনিয়া (Hormogonia) : সূত্রাকার <u>নীলাদ্র-স</u>বুজ শৈবালের ট্রাইকোম খডিত হলে প্রতিটি কর হরমোগোনিয়া বলা হয়। আঘাত পেপারেশন ডিব্র হা হেটারোসিস্ট তৈরির ফলে হরমোগোনিয়া তৈরি হয়। হরমোগেনি অছুরিত হয়ে নতুন সূত্র তৈরি হয়; যেমন Nostoc, Ocillatoria,। বর্তমানে এরা সায়ানোব্যাকটেরিয়া ইমেবে পরিচিত।

२। अत्योन जनन (Asexual reproduction) : (न्नात मृष्टित माधारम अत्योन छनन घटि वाटक। अत्योन जनान

একক হলো রেণু বা স্পোর বিভিন্ন ধরনের রেণু তৈরির মাধামে যে জনন প্রক্রিয়া সম্পন্ন হয় তাকে অযৌন জনন বলা হয়। যে কোনো একটি অঙ্গন্ত কোষ স্পোরাঞ্জিয়া**ম** (sporangium) হিসেবে কাজ করে এবং এক থেকে অসংখ্য স্পোর তৈরি করে। স্পোর ফ্র্যান্সেলাবিশিষ্ট ও সচল হলে তাকে চলরেণু বা জুশোর (zoospore) বলে; যেমন-Ulothrix I) জুশ্পোরগুলো সাধারণত ২-৪ ফ্র্যাজেলাবিশিষ্ট হয়, তবে কোনো কোনো ক্ষেত্রে অধিক ফ্ল্যাজেলা থাকতে লারে। স্পোর ফ্র্যাজেলাবিহীন নিশ্চল হলে তাকে অচলরেণু all williams (aplanospore) Microspora। इतम शिक्ल পরিবেশে অর্থাৎ দীর্ঘ उक

পরিবেশে আপ্রানোশোর পুরু প্রাচীরবেষ্টিত হলে তাকে হিপনোশোর (hypnospore) বলে। মাত্রোবের অনুরুষ্ট বৈশিয়াসম্পন্ন অচন নেপুৰে অটোলেশার (autospore) বলে; যেমন- Chlorella । কতক শৈবালে ভোগের প্রতি ঘোটোপ্লান্ট খান্য সম্ভায় করে এবং পুরু প্রাচীর বেষ্টিত হয়, তখন তাকে আকাইনিটি বলে। অনুকৃষ পরিবেশে আকাইনি অমুরিত হয়ে নতুন শৈবালে পরিণত হয়, যেমন-Pithophora, Cladophora। ভায়াটম জাতীয় শৈবালে বিশেষ ধর্মে तान् मृतित माथास्य मरबाान्धि घटि । अस्मनदक व्यद्मादन्तात वरमः व्यथम- Navicula ।

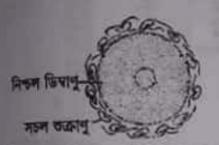
७। (पीन अनन (Sexual reproduction) । गापिए भृष्ठि छ पु'ि गापिएन मिनानत माधारम त्य जनन घटि छ। খৌন জনন বলে। শৈবাদের খৌন জননের সক্ষমতা অনুসারে এদেরকে দু'ভালে ভাগ করা হয়ে থাকে, মধা-

(ক) হোমেন্যালিক (Homothalic) : একই লেহে বিগরীত যৌনধর্মী জননবোৰ উৎপন্ন হয় এবং নিনিত হা কাইগোট উংগদ্র করে তাকে হোমোগাগিক শৈবাল বলে। যেমন- Spirogyra-র কতক প্রজাতি।

(খ) হেটারোধ্যালিক (Heterothalic) : পুং ও স্ত্রী

ক্রেকার ভিন্ন ভিন্ন দেহে উৎপন্ন হলে তাদেরকে ভিন্নবাসী বা

ক্রোরোধ্যালিক শৈবাল বলে। জনন কোষের ভিত্তিতে শৈবালে


ক্রেরের যৌন জনন ঘটে থাকে।

(i) আইসোণ্যামি (Isogamy) : এ ক্ষেত্রে দু'টি গ্যামিট বু-পুরুষ বা +, -) বাহ্যিক বৈশিষ্ট্যে হ্বহ্ একই রকম হয়। ধরনের গ্যামিটকে আইসোণ্যামিট্স বলে; উদা- Ulothrix।)

(ii) জ্যানাইসোগ্যামি (Anisogamy) : একেরে একটি নাটি (পুং গ্যামিট) অপেক্ষাকৃত জুদ্রাকার হয় এবং একটি

চিত্র ৫.২ : শৈবালের বিভিন্ন প্রকার যৌন জনন।

चि १.२.३ : Fucus-এর উগ্যামাস জনন।

গ্যামিট (গ্রী গ্যামিট) অপেকাকৃত বৃহৎ হয়। এ ধরনের গ্যামিটকে আনাইসোগ্যামিটস বলে: উদা- Pandorina।

(iii) উপ্যামি (Oogamy) : এক্ষেত্রে ব্রী গ্যামিটটি বড় ও নিক্ষ হয় এবং সাধারণত স্ত্রী যৌনাঙ্গে অবস্থান করে। পুং গ্যামিট অপেক্ষাকৃত ছোট ও সচল হয় এবং ব্রী জননাঙ্গে ব্রী গ্যামিটকে নিষিক্ত করে। এরা হেটেরোগ্যামিটস: উদা- Fucus ।

এ তিন প্রকার বৌন জননের মধ্যে আইসোগ্যামি আদি প্রকৃতির এবং উগ্যামি উন্নত প্রকৃতির।

Genus: Ulothrix (数时间第)

বাসস্থান: Ulothrix সাধারণত: মিঠা পানির পুকুর, খাল, বিল, হাওড়, নদীনাগ প্রভৃতি জলাশয়ে জন্মে থাকে। খাড়া পাহাড় বা অনুরূপ স্থান যেখানে সর্বদাই
পানি পড়ে সেখানেও এরা জন্মে থাকে। Ulothrix শৈবালের ৬০টি প্রজাতির মধ্যে
বিকাশেই মিঠা পানিতে জন্মে থাকে, তবে কতক প্রজাতি সামৃদ্রিক।

দৈহিক গঠন : Ulothrix একটি কিলামেন্টাস স্ক্রমন্ত) এবং অশাখ সবুজ শৈবাল।
ইয় সসীম বৃদ্ধি সম্পন্ন। এর দেহ এক সারি ঘর্ষ ও বেলনাকার কোষ দ্বারা গঠিত। এর
গাড়ার কোষটি লখাকৃতির, বর্ণহীন এবং নিচের নিকে ক্রমণ সরু, একে হোজকান্ট
গাড়ার কোষটি লখাকৃতির, বর্ণহীন এবং নিচের নিকে ক্রমণ সরু, একে হোজকান্ট
গালে। হোজকান্ট দ্বারা শৈবালটি (বিশেষ করে কচি অবস্থায়) কোনো বস্তুর সাথে আবদ্ধ
গালে। ফিলামেন্টের প্রতিটি কোষের একটি সুনির্দিষ্ট কোষপ্রাচীর আছে। হোজকান্ট হাড়া
গালে। ফিলামেন্টের প্রতিটি কোষের একটি সুনির্দিষ্ট কোষপ্রাচীর আছে। হোজকান্ট হাড়া
গালে কোষে একটি নিউক্লিয়াস আছে, একটি বেল্ট বা ফিতা আকৃতির (girdle
গালেক কোষে একটি নাড়ির কোরোপ্রান্ট আছে এবং রোরোপ্লান্টে এক বা একাধিক
গালিকতা আছে। পাইরিনয়েভ হলো প্রোটিনন্তানীয় পদার্থের চকচকে দানা, যার
গালিকতা আছে। পাইরিনয়েভ হলো প্রোটিনন্তানীয়া পদার্থের চকচকে দানা, যার
গালিক অনেক সময় স্টার্চ থাকে। কোরোপ্লাস্টটি কোষকে আংশিকভাবে অববা
স্থাজাবে বেন্টন করে রাখে। হোজকান্ট ছাড়া অনা যে কোনো কোষ গ্রন্থে বিভক্ত হতে
শাল, ফলে ফিলামেন্ট সৈর্ঘে। বৃদ্ধিপ্রান্ত হয়।

বালোদেশ থেকে U. simplex. U. tenerrima এবং U. variabilis নামক তিনটি ঘলতি বৰ্ণিত হয়েছে। এর মধ্যে U. simplex এব আবিছারক প্রকেসর এ.কে.এম।
সম্প্রমান (১৯৬৯)। এটি সম্প্রত বাংগাদেশে এডেমিক।

শ্রেণিবিন্যাস

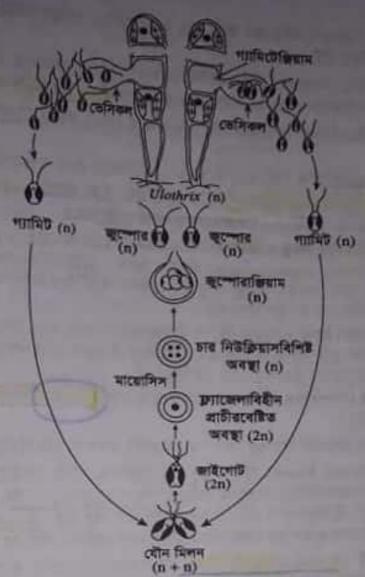
Division: Chlorophyta
Class: Chlorophyceae
Order: Ulotrichales
Family: Ulotrichaceae
Genus: Ulothrix

(SEE 0.0 : Uthersta brown : (with the promises and season and community)

জনন : Ulothrix অঙ্গল অ্যোন এবং যৌন পদ্ধতিতে বংশবৃদ্ধি করে থাকে।

অসল বংশবৃদ্ধি । প্রায়নের মাধ্যমে এর অসল বংশবৃদ্ধি হয়ে থাকে। দৈবক্তমে ফিলামেন্টটি তেছে করেছে পরিণত হলে প্রত্যেক খণ্ড কোষ বিভাজনের মাধ্যমে বৃদ্ধিপ্রাপ্ত হয়ে এক একটি নতুন Ulothrix দ্বলে আত্র্যন্ত্র করে

अत्योन जनन : जुल्लात अष्ठित भाषास्य Ulothrix-এत अत्योन জনন সম্পন্ন হয়। কথনো কখনো আপ্র্যানোম্পোর সৃষ্টির মাধ্যমেও অযৌন জনন হয়ে থাকে। জুস্পোরগুলো সাধারণত চার ফ্রাজেলা যুক্ত। যে কোষ হতে জুস্পোর উৎপন্ন হয় তাকে জুস্পোরাজিয়াম বলে হৈভেফাস্ট ছাড়া অন্য যে কোনো কোষ হতে জুস্পোর সৃষ্টি হতে পারে। প্রজাতির ওপর নির্ভর করে প্রত্যেক জুম্পোরাঞ্জিয়াম হতে ১- ৩২টি জুস্পোর সৃষ্টি হয়। একটি মাত্র জুস্পোর সৃষ্টি হলে কোষের সম্পূর্ণ প্রোটোপ্রাস্টই একটি জুম্পোরে রূপান্তরিত হয়। একাধিক জুস্পোর উৎপন্ন হলে জুস্পোরাঞ্জিয়ামের প্রোটোপ্লাস্ট একটু সংকৃচিত হয় এবং লখালমিভাবে দু'ভাগে বিভক্ত হয়। প্রজাতির ওপর নির্জন করে ৩২টি অপত্য প্রোটোপ্রাস্ট সৃষ্টি পর্যন্ত এই বিভাজন চলতে পারে। প্রতিটি অপত্য প্রোটোপ্রাস্ট তখন চার ফ্র্যাজেলা যুক্ত জুস্পোরে রূপান্তরিত হয়। সরু কোমের প্রজাতি হতে সৃষ্ট সকল জুম্পোর একই প্রকার হয় কিন্তু মোটা কোষের প্রজাতি হতে দুই उरमन হয়-(3) মাইক্রেল্ড্রেপার-এর আইস্পট মধ্যখানে থাকে এবং একটি



किंद Q.8 : Ulothrix नाउ करवीन कनन ।

জুস্পোরাজিয়াম হতে ৮-৩২টি জুস্পোর উৎপন্ন হয়: (২) বৃহদাকৃতির বা মেগাজুস্পোর-এর আইস্পট সম্মুধনণে আ এবং একটি জুস্পোরাঞ্জিয়াম হতে ১-৪টি জুস্পোর উৎপন্ন হয়। জুস্পোরগুলো নাসপাতি আকৃতির। একটি ভেদিকা জ পরিবেষ্টিত অবস্থায় জুস্পোরতলো জুস্পোরাঞ্জিয়াম প্রাচীরের গায়ে উৎপন্ন ছিদ্রপথে বের হয়ে আসে এবং তেনিকার অবশুন্তির পর এরা মুক্তভাবে ভেসে বেড়ায়। ১০৬ দিন সন্তরণের সোঁতার কাটার) পর জুল্পোরের ফ্লান্ডেন মাথাটি কোনো জলজ বস্তর সাথে আবদ্ধ হয়। আবদ্ধ হওয়ার পর এরা আন্তে আন্তে ফ্র্যাক্রেলাবিহীন হয়, এর সমনির এकि। श्री श्री कर्त करत अवर करम मीर्थ र्य ও विভाजनत माधरम नजून Ulothrix किलारमण मृष्टि करत ।

প্রতিকুল পরিবেশে জুস্পোরগুলো জুস্পোরাজিয়াম হতে নির্গত হয় না, অধিকন্ত এদের চারদিকে একটি প্রাচীর শাস করে আপ্রানোম্পোরে পরিণত হয়। কখনো কখনো কোনো একটি কোষের সম্পূর্ণ প্রোটোপ্লাস্ট গোলাকার হব 🕰 চারপাশে একটি পুরু প্রাচীর গঠন করে অ্যাকাইনিটিতে পরিণত হয়। একে হিপনোশ্বোরও বলা হয়। প্রচুর সঞ্চিত্র 😭 সম্বলিত যে শোরের মাধ্যমে জীব তার প্রতিকৃল অবস্থা অতিক্রম করে তাকে রেস্টিং শোর বলে। অনুকৃল পরিবংশ 📲 এদের পুরু প্রাচীর বিদীর্ণ করে বের হয়ে আসে এবং অন্ধুরায়ন ও বিভাজনের মাধ্যমে নতুন ফিলামেন্টে পরিণত হয়।

বৌন জনন : Utothrix একটি ভিন্নবাসী বা হেটেরোখ্যালিক শৈবাল (প্রী ও পুরুষ জননকোষ আদাদা দেহে 👯 হয়)। Ulothrix শৈবাল এর যৌন মিলন আইসোগ্যামাস। হোল্ডফাস্ট ছাড়া যে কোনো একটি কোষেও প্রোটোর বিভাজনের মাধ্যমে ৮–৬৪টি অপত্য প্রোটোপ্রাস্ট সৃষ্টি করে। প্রতিটি অপতা প্রোটোপ্রাস্ট একটি নাসণাতি অপতা বাহিস্যাজিলেট গ্যামিটে রূপান্তরিত হয়। গ্যামিটতলো ভ্রেপার হতে সুদ্রাকৃতির। এদের আইশট স্থতার —রি। এক তেসিকল ছারা পরিবেটিত অবস্থায় এরা জননকোষাধার বা গ্যামিটেজিয়াম (যে কোষ হতে গ্যামিট সৃষ্টি হয়) এর প্রতি পুট ছিত্রপথে বের হয়ে আসে এবং ভেসিকদের অবপুত্তির পর মুক্তভাবে সাঁতরে বেড়ায়। মু'টি ভিন্ন ফিলামেট হকে ছ বিল্লামান্ত (÷, -) গ্যামিট সেহের বাইরে এসে যৌন মিলন সম্পন্ন করে এবং একটি চার ক্ল্যাজেলায়ুক ভিশ্নতে (১০) পারিগোট সৃষ্টি করে। জাইগোট কিছুকাল সচল থাকে, পরে প্রদানেলাবিহান হয়ে পুরু প্রাচীরবিশিষ্ট হয় কর্ম वामकान (resting stage) किया । दिशासित पूर्व जता शहन चाम। जनाम करत जतर अवस्थित जाती वाणित आ व्याचनम्म त्यारम् आहरः भारतात्रिम् विकासन दश अवर् ४-५५६ द्याद्यस्य (n) सूर्यन्ति (ब्राटिन्म व्यवहार व्याद्यारम

डिज ए.ए । Ulothrix-बद (यीन जनन)

বৃষ্টি করে। জাইগোট প্রাচীর বিদীর্ণ হওয়ার মাধ্যমে জুস্পোরগুলো (অথবা আপ্নানোস্পোর) বের হয়ে আসে এবং ব্রুরারন ও বিভাজনের মাধ্যমে নতুন উত্তিদে পরিণত হয়। Ulothrix এর জীবন চক্র Haplontic সর্থাৎ বছকোয়ী গাহিট্যকাইটিক জনুর সাথে এককোষী স্পোরোফাইটিক জনুর জনুক্রম ঘটে।

শিমেশা দশা (Palmella Stage) : Palmella নামক একটি সবুজ শৈবাল একটি জেলাটিনের সাধারণ আবরণ হারা আবছ ব্যয় সোজেলাবিহীন অসংখ্য কোনের কলোনি নিয়ে গঠিত। অনা যে কোনো শৈবাদে একণ অবছার সৃষ্টি হলে তাকে পামেলা দশা পা হয়। সাধারণত Chlamydomonas শৈবালে এ অবস্থা দেখা যায়। আবাসহুলে পানির অভাব দেখা দিলে স্পোর মুদাজেলা তৈরি ত হরে আপ্নালোপেনার-এ পরিবত হয়। একটি জেলাটিলের সাধারণ আবরণী খারা আবৃত অবস্থায় উপর্যুপরি বিভাজনের ফলে বর্ লেমের সৃষ্টি হয়। আবাসস্থলে পানির প্রবাহ ফিবে এলে জেলাটিনের আবলেটি গলে যায় এবং প্রতিটি কোম ফ্লাভেনা সৃষ্টি করে েশার গঠনের মাধ্যমে পূর্বান্ধ নতুন শৈবালে পরিণত হয়। Ulothric এ পামেশা দশা হতে পারে। এটি একটি জেয়ারারিক জ্যোন ৰান বাকিলা। বহুকোথী ভিপ্তয়েভ জনুর সাথে এককোণী হ্যাপ্লবেভ (গ্যামিট) জনুর অনুক্রম ঘটণে তাকে Diplomic জীবন চন The Surger Fueur, Sargarrum

Ulothrix-এর তরুত্ : এরা পরিবেশতমে উৎপাদক হিসেবে ভাল করে, বাযুমণ্ডলে 🔾 যোগ করে এবং CO, শোষণ 17.7

শৈবাদের অর্থনৈতিক গুরুত্ব : শৈবাদের উপকারী নিক বেশি, কিন্ত অপকারী দিকও আছে।

উপকারিতা : শৈবালের উপকারী দিক বেশি। কয়েকটি উপকারী ভূমিকা নিয়ে উল্লেখ করা হলো।

ই। বাহুমতশে অক্সিজেন যোগ : শৈবালের সবচেয়ে উলকারী দিক হলো বায়ুমতলে অক্সিজেন সংযোগ। সফ সক্ষ বছর ীয় ৰাত্মকলে কোনো অক্সিজেন ছিল না। <u>নীলাভ সবুলা শৈবাল প্ৰথম সালোকসংশ্ৰেমণ্ড চক্ৰ কৰে</u> এবং লক্ষ লক্ষ বছরের

সাপোকসংশ্লেষণের ফলে বায়ুমওলে অক্সিজেন জমা হতে হতে বর্তমান পর্যায়ে (প্রায় ২০ ভাগ) আনে। বং শ

- রার ভাত্তদ ও প্রাণার উত্তব খতে। ২। পরিবেশ দূষণ রোধ : সমুদ্রের বিপুল পরিমাণ শৈবাল সালোকসংশ্লেষণের মাধামে বায়ুমকা থেওে তি, করে এবং বায়ুমণ্ডলে O্ত্যাগ করে। মোট সালোকসংশ্লেষণের শতকর ৩০ ভাগই শেবালে ঘটে থাকে।
- ७। উৎপাদক दिस्मर्थ : विভिन्न क्रमानस्य (यामू शानि এবং লোনা পাनि) देनवान मुख छहेन-वन सुक्ष क्र হিসেবে কাজ করে।
- ৪। ব্যোক্তবেল (Biofuel) তৈরি: Biofuel বা Biodiesel তৈরির জন্য বর্তমানে শৈবালকে বেয়ে দেয় হ তাই শৈবালকে second generation biofuel নামে অভিহিত করা হয়েছে। Botryococcus brustil
- ৫। গোয়েন্দা সাবমেরিন-এর অবস্থান নির্ণয় : নীলাভ সবুজ শৈবালে অবস্থিত phycobilin protein নাম 🛫 রম্ভক কণিকা (C-phycocrythrin, C-phycocyanin) দৃশামান আলোর বাইরের আলোকরশি শোষণ করে শার ক্রিকে প্রায়েশ্য সাবমেরিন হতে বিকরিত বিভিন্ন রশ্যি এরা শোষণ করে নেয় এবং এই শোষিত রশ্যির পরিক্র ক্
- ৬। সমুদ্রে মাছের অবস্থান নির্ণয় : সমুদ্রের বিশেষ বিশেষ অধালে সময় সময় শৈবাদের অধিক বৃদ্ধি ঘট এই দ প্রান্তির আশায় মাছ ঐ অঞ্চলে ছুটে আসে। স্যাটেলাইট পর্যবেক্ষণে ঐ অঞ্চলতলো নির্ণয় করে মাছ ধররে ইগারত কর নির্দেশ করা হয়, ফলে প্রচুর পরিমাণ মাছ অল্পময়ে ধরা সম্ভব হয়।
- ৭। মাটির বয়স নির্ণয় : জলাশয়ের তলদেশে মাটির ভরে জমাকৃছি ভায়াটম বৈথালস এর কার্বন ভেটিং উৎপত্তির বয়স নির্ণয় করা হয়।

অপকারিতা : শৈবালের অপকারী দিক খুব বেশি নয়। কয়েকটি অপকারী ভূমিকা নিম্নে উল্লেখ করা হলো।

- ১। ভয়াটার ব্রুম ((Water bloom) সৃষ্টি: পুকুর বা জলাধারে পৃষ্টির পরিমাণ বেড়ে গেলে কিছু নীগাত জ্ শৈবাশের (বর্তমানে সায়ানোব্যাকটেরিয়া) সংখ্যা অতিমাত্রায় বৃদ্ধি পায়, যাকে ওয়াটার ব্লম বলে। এতে জনাধারে ব দৃষিত হয়, খাবার ও ব্যবহারের অনুপ্যোগী হয়। ঐ জলাধারের মাছ মরে যায়। Ocillatoria, Nostoc. (Morre ধরনের শৈবাল। অবশা বর্তমানে এতলোকে সায়ানোব্যাকটেরিয়া নামে অভিহিত করা হয়। MW
- ২। উত্তিদের রোগ সৃষ্টি: Cephaleuros virescens নামক প্রজাতি চা, কফি, ম্যাগনোলিয়া গাছে রোগ সৃষ্টি হয় এতে চা এবং कथित कलन करम यारा।
 - ৩। মাছের রোগ সৃষ্টি: কোনো কোনো শৈবাল (যেমন- Oedogonium) মাছের ফুলকা রোগ সৃষ্টি করে।
 - 8। স্থাপনার ক্ষতি: দেয়ালে শৈবালের অতিবৃদ্ধি দালানের বেশ ক্ষতি করে থাকে।
- রাজাঘাট পিচ্ছিলকরণ : পাকা নদীর ঘাট, পুকুর ঘাট, বাধরুমের মেঝ, পায়ে ইটার রাজায় জনানো নিয়ত লা শৈবালের মিউসিলেজ আবরণ অত্যন্ত বিপদজনক হতে পারে। এতে পা পিছলে পড়ে অছিভাঙ্গা থেকে সুকু পরি চা

ব্যবহারিক : Ulothrix এর প্রাইড পর্যবেক্ষণ।

উপ্করণ : Utathrex এর তাজা নমুনা অথবা ছায়ী লাইড, অপুরীক্ষণ যন্ত্র, কাচের বাটি, গ্লিসারিন, লাইড, কাজা লিং পানি, ব্যবহারিক মিট, পেনিল ইজাদি।

কাৰ্যপ্ৰতি ৷ তাজা নমুনা সংগ্ৰহ করা সমূহ হলে শিক্ষক কাচের সাইতে গ্রিসারিলে নমুনা ছাপন করে ভাতে কাচার লি

অগুরীক্ষণ যত্তে ছাপন করে দিবেন এবং শিকার্থীদেরকে তা পর্যবেক্ষণ করে থাতার ভাকতে বশবেন। তাজা নমুনা সংগ্রহ করা সমূব না হলে উপযুক্ত প্রতিষ্ঠান থেকে স্থায়ী প্রাইড কিনে নিতে হবে। যাবহারিক স্লাস অনুনিত্ স্থানী সকলে সংগ্রহ স্থায়া প্রাইড স্থাপন করে শিক্ষাবীদেরকে পর্যবেজন করতে বলবেন। শিক্ষাবীদান প্রাইড পর্যবেজন করে ব্যবহারিক নিউ ল मिया महिक क्रिय जाकरत । क्रियोरे अवशाय क्रिक्टिड इएड इस्त ।

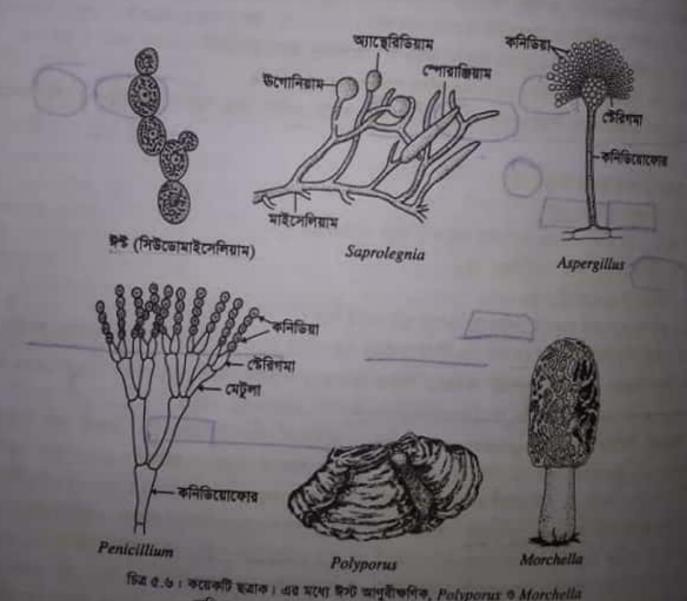
(I) অটি অশাপ, লখা সূতাকার ও সতুল মর্থের, (ii) জোধুওখো পিপাকৃতির, সৈর্থের জুগনায় রাছে বছ, (iii) জেন্দ্রের পোলা বা আটে আকৃতির, (iv) কোনোগ্রাসেট একাধিক পাইরিনয়েড বিদ্যান্ত (v) সূত্রের নিচের কোন্টে বর্তিন, সক্র কর্তি ব্যাসক্র সাতে ব

বেলের। যাকে হেল্ডফার্নট বলে।

मितिक कर्म । क्रिमिक्किट्राचिक देविनकाम्बद्धक कान्नाम जानक महानामि क्रिएकाम्बद्धिः दर्भाव साम्बन्धाः देविन

रूपाक (Fungi)

প্রকৃতি শ্রেণিবিন্যাস পত্ততিতে ছ্যাক প্যালোকাইটার অন্তর্গত কিন্তু পঞ্চ রাজ্য (five kingdom) শ্রেণিবিদ্যাসে ছ্যাক ্রাভিসমূহ পূথক fungi রাজ্যের অন্তর্গত। Fungi (একবচনে fungus)-এর বাংলা প্রতিশব্দ করা হয়েছে ছ্যাক। ্রাকার ছ্ব্রাক হলো বহুকোষী, অভাকুপার, হাইফিসমূত মাইসেলিয়াম গঠিত হেটেরেট্রফিক সুকেন্দ্রিক জীব যারা শোষণ ্রিরার খাদা গ্রহণ করে। ছত্রাক সম্বন্ধে স্টাডি করাকে বলা হয় **মাইকোলজি (**Mycology) বা **ছত্রাকতন্ত্** (Gk. Mykes = ্বিল্লেটা = ছত্ৰাক, logos = knowledge = জ্ঞান)। এ পৰ্যন্ত পৃথিৱীতে প্ৰায় ৯০,০০০ প্ৰজাতির ছ্যাক পাওৱা গিয়েছে। হ্লাকের জন্য সম্ভোষজনক পরিবেশ হলো অর্দ্রতা, উষ্ণতা,অর্গানিক বাদাসমূহ হায়াবৃক্ত বা অহুকারাছের অবস্থা। আক্রে বৈশিষ্ট্য পার্স


- ্য ছত্রাক ক্লোরোফিলবিহীন, অসবুজ, সালোকসংশ্লেষণে অক্ষম অপুস্পক উদ্ভিদ।
- ২। এরা মৃতজীবী, পরজীবী বা মিথোজীবী হিসেবে বাস করে।
- ত। এরা সুকেন্দ্রিক অর্থাৎ এদের কোষে সুগঠিত নিউক্লিয়াস ও বিভিন্ন অঙ্গাণু বিদ্যমান।
- ৪। ছ্ঞাকের কোষপ্রাচীর কাইটিন ১এক প্রকার জটিল পলিস্যাকারাইড) নির্মিত।
- ৫। ছ্রাকের সঞ্জিত খাদা প্রধানত গ্লাইকোজেন তেলবিন্দু কখনো কখনো কিছু পরিমাণ ভলিউটিন
- ও। ছত্রাকদেহে ভাকুলার টিসা নেই
- ৭। এদের জননাঙ্গ এককোষী
- ৮। খ্রী জননাঙ্গে থাকা অবস্থায় জাইগোট বহুকোষী ভ্রুণে পরিণত হয় না।
- » (शाश्रदाङ) ट्ल्लात मिरा वर्शविखात हरा।
- ३०। बाहरणाउ-० मात्याभिभ इस ।
- 33 । अधिकार्ण क्यांक अमआई (लावरणत\मानारम शृष्टि मध्यर करत ।
- ১২। তীব্ৰ অভিযোজন ক্ষমতা (কতক 5°C নিমুভাপমান্ত্ৰায় এবং কতক 50°C এর উপর তাপমান্ত্রায় জন্মতে পারে)। মাগুলিস কিংডম ফানজাইকে পাঁচটি ফাইলামে বিভক্ত করেছেন। ফাইলাম পাঁচটি হলো : ১। Zygomycota, ২। Ascomycota, । Basidiomycota, 8 । Deuteromycota अवर ए । Mycophycophyta.

ছ্যাকের দৈহিক গঠন (Vegetative structure) : অধিকাশে ছ্যাকই বহুকোরী। এদের দেহ সুন্নাকার (filamentous), শাখান্বিত এবং আপুরীক্ষণিক। ছ্ত্রাকের সূত্রাকার শাখাকে একবচনে হৃছিকা (hypha) এবং বহুবচনে ৰাষ্টি (hyphae) বলা হয়। এক একটি হাইফা সকু, যতে ও নলাকার। কোনো কোনো ছত্রাকে হাইফা প্রস্থগাচীর বিশিষ্ট। ইট্ফার গ্রন্থলাচীরকে সেন্টা (septa) বলে। সেন্টাতে ছিন্ন থাকে। কোনো কোনো ছত্রাকে হাইকা প্রস্থলাচীরবিহীন হয়। ছয়াকের যে দৈহিক অংশ যা অসংখ্য শাখা-প্রশাখা বিশিষ্ট সূত্রাকার হাইকি ছারা গঠিত তাকে **মাইসেশিয়াম** (mycelium) বলে। মাইসেলিয়ামে অবস্থিত অনেকগুলো হাইকি যখন প্রস্থগাচীরবিহীন এবং বহু নিউক্লিয়াসবিশিষ্ট হয় তখন তাকে শিলোনাইটিক মাইনেশিয়াম বলে; যেমন-Saprolegnia sp । কোষে বা হাইফাতে এক বা একাধিক নিউক্লিয়াস থাকতে শবে। কোনে একাধিক নিউক্লিয়াল থাকলে তাকে সিনোসাইট বলে। পরজীবী ছত্রাক পোষক দেহের তেভরে বিশেষ ধরনের যহিকা অবেশ করিয়ে সেখান থেকে খাদা শোষণ করে নেয়। পোয়ক দেহ থেকে খাদা শোষণকারী হাইকাতে হস্টোরিয়াম नित्र (सम्-(Phytophthora) शतित्वत त्याक यामा त्यामनवाती शरेकारक प्रतिकृतक नत्न । त्वात्मा केळालांस स्थारक महित्तिशियाम लेख तानत मटला गठेन भृति करत मारक (glaces)मर्ग (rhizomorph) नरना रचमक-Agaricar ने खेडिरनड सक শূপ বা মুপলোমের চারপিকে বা জন্তাপ্তরে নিগিট ছ্তাক জাগের মাতো বেটন করে বাবে। এলেবকে মাইকোনাইজাল মুনাক

বলে; যেমন- Saprolegnia sp । উদ্ভিদ মূল ও ছ্লাকের মধ্যকার এই এলোসিয়েশাকে বলা হয় হত (Mycorrhiza, pl. Mycorrhizae)। উচ্চ শ্রেণির উদ্ভিদের জন্য এই মাইকোরাইজাল এসোসিয়েশন শ্র মিথোজীবী। এর উপর ভিত্তি করেই স্থলজ উদ্ভিদের উদ্ভব ঘটেছে।

ছ্যাকের কোষীয় গঠন (Cell Structure) : কিছু নিমুশ্রেণির ছ্যাক ছাড়া অধিকাংশ ছ্যাকের কেন কু বিভক্ত—কোষপ্রাচীর ও প্রোটোপ্লাস্ট।

১। কোষপ্রাচীর: বিভিন্ন শ্রেণির ছত্রাকের কোষপ্রাচীরে পার্থক্য থাকলেও অধিকাংশ ছত্রাত কোমের কোষত্রীত উপাদান কাইটিন জাতীয় পদার্থ। কাইটিন হলো এক প্রকার জটিল পিলিস্যাকারাইড প্রোটোপ্রাস্টকে সম্ভেল ক প্রধান কাজ। এটি পানি ও অন্যান্য দ্রবণের জন্য ভেদ্য।

চিত্ৰ ৫.৬ : করেকটি ছত্রাক। এর মধ্যে ইস্ট আপুনীকণিক, Polyporus o Morchella বালি তোৰে ভালো দেখা যায়; জন্য তিনটি লেমি অনুনীভণিক।

<u>২। লোটোপ্রাস্ট : কোনপ্রাচীরের ভেতরের সমুদয় জীবিত পদার্থই লোটোপ্রাস্ট নামে পরিচিত। কো</u> करणाचीक्रम विनाविक्रमान विता क्रवाटकत स्थाटिनचान्छ शिक्षक दरम शिक्ष वर्षमा अर्थकत वर्षमा स्था करणा (ক) কোৰাইট্রি: কোমপ্রাচীরের তেত্তরে দিকে অবস্থিত এটি একটি গাতলা পর্দা যা কোমপ্রাচীরের সামে নিক্রিক नाटा बाटक। हजारकत द्वायविक्षित जवाम डिलाामूर्व व्यष्ट्रण्डांकारी। देवावविक्षित द्वारमा द्वारम इस बार्क কারে ভাল খারে লোমাভোম সাঠন করে থাকে।

 শাইটোপ্রাজম : কোষঝিল্লির ভেতরের দিকে জেলির ন্যায় পদার্থটির নাম সাইটোপ্লাজম । তরুল মাইসেলিয়াম ও ্রির পার্যদেশে সাইটোপ্লাজম ঘন দানাদার ও সমস্বত্ব। কিছু পরিণত মাইসেলিয়ামে সাইটোপ্লাজম অপেকাকৃত পাতলা ্রের্যুক্ত থাকে। সাইটোপ্লাজমের ভেডরে এভোপ্লাজমিক রেটিকুলাম, মাইটোকড্রিয়া, কোষ গহরে প্রকৃতি থাকে, তবে ্ট্রিড থাকে না। সাইটোপ্লাজমে সঞ্চিত খাদ্য হিসেবে গ্লাইকোজেন, ভলিউটিন, তৈলবিন্দু ও চর্বি প্রভৃতি বিদ্যমান।

 ল) নিউক্লিয়াস : ছ্ত্রাকের সাইটোপ্লাজমে এক বা একাধিক গোলাকার বা উপবৃত্তাকার নিউক্লিয়াস থাকে। প্রতিটি ক্রিয়াসে একটি নির্দিষ্ট ও সচ্ছিদ্র নিউক্লিয়ার মেমব্রেন থাকে। নিউক্লিয়াসের কেন্দ্রীয় অঞ্চলটি অপেকাকৃত ঘন থাকে। জানা কোনো ছত্রাকবিদ এ কেন্দ্রীয় অঞ্চলটিকে নিউক্লিয়োলাস হিসাবে গণ্য করে থাকেন।

লোকে ডাইমর্ফিজম (Dimorphism) : ভিন্নতর পরিবেশের কারণে নিজের আকৃতি পরিবর্তনের যোগাতাকে ক্রাভিত্তম বলে। Histoplasma capsulatum মাটিতে স্ত্রাকার এবং মানুবের কুসকুসে কোষপিত হিসেবে অবস্থান হর। এটি হিস্টাপ্রাজমোসিস রোগ সৃষ্টি করে।

আকের খাদ্যগ্রহণ : শোষণ (absorption) প্রক্রিয়ায় ছতাক খাদ্য গ্রহণ করে। ছাইফি তার চারপাশে খাদ্যদ্রবো নরিপাকীয় এনজাইম নিঃসরণ করে খাদ্য পরিপাক করে। এই পরিপাককৃত খাদ্য হাইফির অভ্যন্তরে ব্যাপ্ত হয় অথবা ক্রিভাবে কোষাভান্তরে স্থানান্তরিত হয়। এই কার্যটি সাধারণত হাইফির শীর্ষের দিকেই হয়ে থাকে। খাদ্যদ্রব্য পরে ছেটোপ্রাজমিক প্রবাহের (cytoplasmic streaming) মাধ্যমে দেহের পুরাতন অংশে ছড়িয়ে পড়ে। পরজীবী ছ্ত্রাক লোহক কোষের অভ্যন্তর থেকে হস্টোরিয়ার মাধামে খাদা শোষণ করে। শর্করা, ফ্যাটি আসিড, আমিনো আসিড, খনিজ হল ও ডিটামিন ছত্রাকের প্রধান খাদা।

আবের বৃদ্ধি : বৃদ্ধিকালে অধিকাংশ বিকালীয় কার্যাবলি হাইফির শীর্ষে ঘটে থাকে। অধিকাংশ নিউক্লিয়াস, ঘটটোকপ্রিয়া, অন্যান্য অঙ্গাণু বর্ষিকু শীর্ষের পেছনেই জড় হয়। ছাইকির মাথাকে ভোম (dome) বলা হয়। ডোম অঞ্চলে বহুন সৃষ্ট ভেসিকল (vesicle) জড় হয় যা কোষঝিল্লি ও কোষ প্রাচীর তৈরির উপাদান ও এনজাইম বহুন করে থাকে।

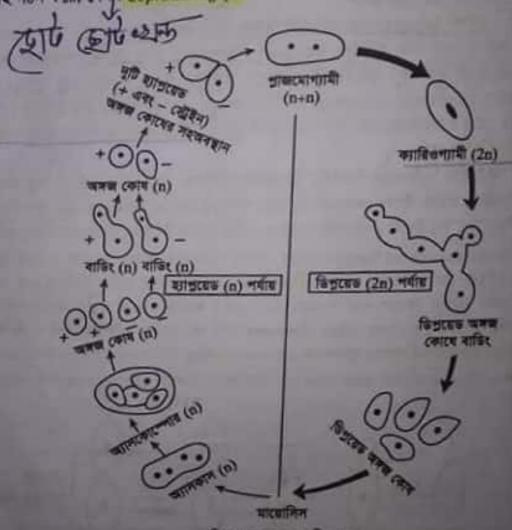
চ্যাকের জনন (Reproduction of fungi) : ছ্য়াক প্রজাতি সাধারণত অঙ্গজ, অঘৌন ও যৌন উপায়ে জননকার্য সম্পন্ন করে থাকে। কোনো কোনো ছত্রাক প্রজাতির সমস্ত দেহকোষটিই জনন কাজে ব্যবহৃত হয়, ফলে এ ধরনের আকের দৈহিক ও জনন অঙ্গের কোনো পার্থকা থাকে না। এরপ ছ্যাককে বলা হয় হলোকারণিক ছ্যাক: বেমন-Buchytrium. । আবার অধিকাংশ ছ্রাকের দেহের অংশবিশেষ হতে জনন্যপ্তের সৃষ্টি হয়, অন্য অংশ স্বাচাবিক থাকে। ত্ত্বপ ছত্রাককে বলা হয় ইউকারপিক ছত্রাক; যেমন- Saprolegnia L নিয়ে এদের সম্পর্কে আলোচনা করা হলো:

১। অসজ জনন : দেহাঙ্গের মাধ্যমে অঙ্গজ জনন হয়। নিমুলিখিত উপায়ে ছ্যাকের অঙ্গজ জনন হয়ে থাকে।

किंव १.9 : मिल्लेंड बार्लिश

(i) শৈহিক খবারন (Fragmentation) : ছ্যাক সেহটি একাধিক থবে বিডক হয় এবং প্রতিটি খব একটি বতম ছয়াক प्रमाण इस द्यमन- Rhizopus, Penicillium !

(iii) দি-ভাজন (Binary fission) : লৈছিক কোৰটি বিলেষ প্ৰক্ৰিয়ায় দু'টি অপত্য কোষের সৃষ্টি করে এবং প্রডিটি শিখা কোন একটি শুক্তম ছব্ৰাক কোনে পরিণত হয়। ইস্ট (Saccharomycer) ছব্ৰাকে একণ দেখা যায়।


(iii) কৃতি সৃষ্টি (Budding) : কোনো কোনো ছত্রাকের দেহ থেকে কৃতি সৃষ্টি হয় এবং কৃতিটি পৃথক হয়ে জারিক ছত্রাকের সৃষ্টি করে। সুস্ট (Saccharomyces) ছত্রাকে এরুপ দেখা যায়।

২। অধীন জনন : হ্যাকের অধীন জননের প্রধান প্রক্রিয়া হলো শোর উৎপাদন ব্যক্তিয়া হলে।

উৎপাদন অপকে শোরাজিয়াম (বহুবচনে শোরাজিয়া) বলে। শোরাজিয়ামের ভেডরে একাধিক নিশ্বন আগ্রাকের কিন্তিয়া করে।

বা সচল জুশোর উৎপন্ন হয়। আবার হাইফার মাথায়ও শোর উৎপন্ন হতে পারে, এরূপ শোরকে ক্রিটিয়া করা করে।

শোর পুরু আবরণ নিয়ে আবৃত থাকলে তাকে ক্রামাইডোশোর বলে। শোরকলো উপযুক্ত পরিবেশে মুর্নির হত্তর হ্যাক উল্লিফের জন্ম দের (চিত্র ৫.৬ এ Penicillium এবং Aspergillus এ কনিভিয়া উৎপাদন দেবালো হতে বতার ছ্যাক উল্লিফের জন্ম দের (চিত্র ৫.৬ এ Penicillium এবং Aspergillus এ কনিভিয়া উৎপাদন দেবালো হতে স্কর্যাক উল্লিফের জন্ম দের (চিত্র ৫.৬ এ Penicillium এবং Aspergillus এ কনিভিয়া উৎপাদন দেবালো হতে স্কর্যাক উল্লেখনের মাধ্যমে অধ্যৌন জনন হয়। হ্যাকের হাইফাওলো প্রস্থপ্রচীর সৃত্তির মাধ্যমে হেও চের ও বিক্তক হয়। এ সকল বভকে অয়েডিয়া (oidia) বলে। অয়ুডিয়া শোরের ন্যায় আবরণ তৈরি করে অক্রেনেগালেয়া নতুন হ্যাক দেহ গঠন করে; যেনী Coprinus togopus।

त्रित १.৮ : सतारका सीवन ठळ ।

ত। যৌন জনন : मৃটি গাামিটের মিলনের মাধামে যৌন জনন ঘটে থাকে। হ্যাকের জননাততে গাামিটারিক (বছনতনে- গাামিটারিকাা) বলা হয়। গাামিটারিকামে গাামিট লৃষ্টি হয়। পুং এবং ত্রী (বা +,-) গাামিট রক্তই হতর (কোনো গার্বতা বোরা যায় না) হলে ভাতে আইলোগাামিট বুরে। পুং এবং ত্রী গাামিট পুরুষ যোগা হলে সাবালাই গাঁ গাামিটারিকামে এবং ত্রী গাামিটার জনন কোনের বিশ্বনিক্তির প্রতি ভাল কোনের আইলোগাার এবং এই গ্রামিকার প্রতি ভাল কোনের বিশ্বনিকার প্রতি ভাল কোনের বিশ্বনিকার প্রতি ভাল কোনের বিশ্বনিকার প্রতি ভাল প্রতি ভাল কোনের বিশ্বনিকার প্রতি ভালে মার্টে মার্ল

লা ব্য ক্যারিওগ্যামী। ক্যারিওগ্যামীর মাধ্যমে জাইগোট সৃষ্টি হয়। গ্যামিট সৃষ্টি, প্রাজমোগ্যামী ও ক্যারিওগ্যামী এই পর্যায় শেষে ছ্নাকের যৌন জনন সম্পন্ন হয়। জাইগোটের মায়োসিস বিভাঞ্জনের মাধ্যমে ছ্রাকটি পুনরায় হ্যাপ্রয়েড ্লা ভ্ৰহ্মপ্ৰাপ্ত হয়। (চিত্ৰ ৫.৬ এ Saprolegnia-তে উণোনিয়াম ও আছেরিভিয়াম দেখানো হয়েছে।)

আদকোমাইকোটা বা স্যাক ফানজাই-তে আসকাস নামক নদের ভেতরে ৪-৮টি আসকোশোর তৈরি হয়। লাসিভিতমাইকোটা বা ক্লাব কানজাই-তে ব্যাসিডিওকার্প-এ সৃষ্ট ব্যাসিডিয়ামের মাধায় ব্যাসিডিওশোর উৎপন্ন হয়। কতক রাকের বৌন জনন প্রক্রিয়ায় দৃটি mating type-এর (+ এবং -) সাইটোপ্লাজম প্রথম একসাথে মিশে যায় কিন্তু প্রক্তিয়াস দৃটি বছ পরে মিলিত হয়। কাজেই নিউক্রিয়াস দৃটি মিলিত হওয়ার (ক্যারিওগাামী) পূর্ব পর্যন্ত এই হাইফার ভেরে বংশগতীয়ভাবে দুই প্রকার দুটি হ্যাপ্লয়েড নিউক্লিয়াস বিরাজ করে। বংশগতীয়ভাবে দুই প্রকার দুটি হ্যাপ্লয়েড নিউক্লিয়াস বিশিষ্ট কোষ বা হাইফাকে dikaryotic কোষ বা হাইফা বলা হয়। পুরো মাইসেলিয়াম এরূপ হলে তাকে akaryotic মাইসেলিয়াম বলা হয়। দুটি(নিউক্রিয়াস)থাকে বলে এটি ডিইক্যারিয়ন)(dikaryon), আবার দুই প্রকার (+, -) ক্লিক্সিল থাকে বলে এটি হেটেরোক্যারিয়ন।

হ্রাকের তরুত্ (Importance of fungi) : হ্রাকের গুরুত্ অপরিসীম। হ্রাক আমাদের জীবন ও কার্যাবলির সাথে গুরোপ্রোভভাবে জড়িত থাকলেও এদের উপকারিতার বিষয়ে আমরা যেমন অনুভব করি না তেমনি অপকারিতার বিষয় সম্পর্কের আমরা সচেতন নই।

ছৱাকের উপকারিতা

১। খাদ্য হিসেবে ছত্রাক : মাশক্তম (mushrooms-Agaricus, Volvariella), মোরেল (morels-Morchella, ট্রাক্স (truffles-Tuber) প্রতৃতি নামে পরিচিত বিভিন্ন প্রজাতির হত্রাক বাংলাদেশসহ পৃথিবীর বিভিন্ন দেশে খাদা হিসেবে যাবহারের উদ্দেশ্যে চাষ করা হয়। Agaricus bisporus এবং A. campestris ধজাতির মাশক্রম স্বক্তি হিসেবে ব্যবহৃত য়া। এখলোর পুষ্টিগণও উচ্চমানের।

২। তবুধ তৈরিতে : পৃথিবীর প্রথম বাণিজ্ঞাকভাবে উৎপাদিত আান্টিবায়োটিক পেনিসিলিন Penicillium chrysogenum गरमत क्याक त्थरक रेजित क्या Claviceps purpured क्याक त्थरक ergot रेजित क्या या अपूध हिरमत বাদকভাবে ব্যবহার করা হয়, বিশেষ করে সম্ভান প্রসাবের পর রক্তম্বণ বন্ধ করতে। মৃতিকাবাসী ছ্যাক থেকে (Tolypocladium inflatum) माइँद्धार नाविन (cyclosporine) अष्ट्र देशी इस या मानुस्वत त्य द्यामान्य পাতে ব্যাপকভাবে ব্যবহৃত হয়।

৩। জৈব অ্যাসিড ও উৎসেচক তৈরিতে : বিভিন্ন প্রজাতির ছত্রাক থেকে বাণিজ্যিকভাবে ব্যবহৃত বিভিন্ন জৈব অ্যাসিড য উৎসেচক তৈরি করা হয়। যেমন-Saccharomyces cerevisiae ছত্রাক থেকে ইনভারটেজ নামক উৎসেচক পাওয়া ৰাছ। ভাষাস্টেক্স ও জৈব অ্যাসিভ তৈরি করতে Aspergillus ছত্রাত ব্যবহার করা হয়।

৪। পরিবেশ সংরক্ষণে : ছত্রাক পরিবেশ থেকে বিয়াক্ত দৃষক পদার্থ বিশ্লিষ্ট (decompose) করে পরিবেশকে বিয়াক লার্থ থেকে দুখপমুক্ত করে। এই প্রক্রিয়ারে বায়োরিমেডিয়োপন (bioremediation) বলে। বর্জা পদার্থ বিশ্বিষ্ট করে ছবাক শরিবেশে কার্বন ও অন্যান্য মৌল ফিরিয়ে দেয় যা পরবর্তীতে উল্লিদ পুনরায় ব্যবহার করতে পারে।

थ । द्वरमान : Gibberella fujikuroi नामक छ्वाक थ्यरक खिद्वराणिन नामक छेडिएनड वृद्धि इतसान नाउद्या गाव ।

৬। কৃষিতে ব্যবহার : ছ্রাকের বহুদুখী ব্যবহার কৃষিতে লক্ষ্য করা যায়। মাটির উর্বরতা বৃদ্ধিতের ছ্রাকের অবদান মাছ। এক একর উর্বর জমির উপরের ৮ ইঞি মাটিতে এক টন পরিমাণ ক্লাক ও ব্যাকটোরিয়া বাকতে পারে। মুক্ত বিদেহ ও জৈব বৰ্জা পচনের মাধ্যমে জৈব সার তৈরিতে ছত্রাকের যথেট ভূমিকা আছে।

ও। মৌশিক গবেষণায় : আগবিক জীববিজ্ঞানের উচ্চতর গ্রেষণার কাজে Saccharomyces cerevisiae এর AH

109, PJ 69-4 alpha, Y187 ইত্যাদি আত বাবহার করা হয়।

ক্র কোম্প্রাচীর, নিক্সতা, খাদ্যগ্রহণ ও স্পোর উৎপাদন সংক্রান্ত মিলের কারণে ছ্যাক এক সময় উত্তিদরাজ্যের ক্রি । এখন ছ্যাক পৃথক রাজ্যের অন্তর্ভুক্ত। কারণ—

(i) ছাইটোসিস-এর সময় নিউক্লিয়ার এনডেলল বিলুভ হত না।

(ii) মাইটোটিক স্পিতল নিউক্লিয়াসের তেকরে হয়।

(iii) ক্রোমোসোমে খুব অন্ত পরিমাণে হিস্টোন প্রোটিন থাকে।

(iv) কোনো দেক্সিয়োল থাকে না।

(iv) কোষপ্রাচীর কাইটিন নির্মিত, সেলুলোজ নির্মিত নয়।

বৰ্তমান গবেষণায় দেখা যায় ছত্ৰাক প্ৰাণিজগতের সাথে অধিক মিলসম্পন্ন, যেমন-

১। দেহ কোনোফিদবিহীন।

২। এরা মৃতভোজী বা পরভোজী অর্থাৎ পরনির্ভর।

ও। সন্দিত খাদা গ্লাইকোনেন।

8। (कार्यकृष्टि ergosterol अपूर्व।

ও। কোৰ প্ৰাচীর কাইটিন নিয়ে গঠিত যা পক্তস হৃৎপত বহিংকজালের

জধিকৃত জায়গা (আয়তন) হিসেবে পৃথিবীর সবচেয়ে বড় প্রজাতি Armillaria ostoyae যা যুক্তরাষ্ট্রের অরিগন বনে আছে। এর দখলকৃত জায়গার পরিমাণ ১৬৬৫ টি ফুটবল খেলার মাঠের চেয়েও বেশি।

Genus: Agaricus (এগারিকাস)

শ্রেণিবিন্যাস

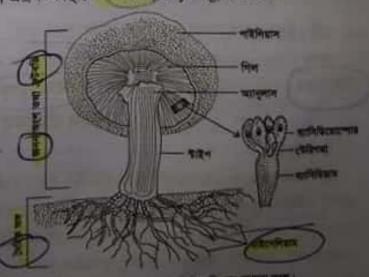
Kingdom: Fungi

Division: Basidiomycota Class: Basidiomycetes

Order: Agaricales

Family: Agaricaceae Genus: Agaricus

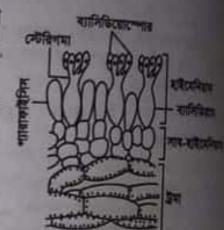
বাংলাদেশ থেকে নথিভুক প্রজাতি ROTT A. bisporus (Leg.) Sing. 410 হোয়াইট বাটন মাশক্ষম


পরিচিত।

বর্ষাকালে বাড়ির আশপাশ বা মাঠে ময়দানে পাশের চিত্রটির ন্যায় কোন বস্তু কখনও দেখেছ কি? সাধারণ মানুষের কাছে এওলো 'ব্যাঙের ছাতা' নামে পরিচিত। আসলে এটি এক ধরনের ছ্ঞাক, যার সাধারণ নাম মাশক্রম, আর বৈজ্ঞানিক নাম Agaricus। এখানে Agaricus ছত্রাক সম্বন্ধে সংক্ষিপ্ত আলোচনা করা হলো।

আবাসস্থল : Agaricus ভেজা মাটিতে, মাঠে-ময়দানে বা গোবর, খড় ইত্যাদি পচনশীল জৈব পদার্থের উপর জন্মার। ধ্যা মৃতজীবী (saprophytic)। সাধারণত এদের বায়বীয় অংশ খাড়া হয়ে উপরে বৃদ্ধি পায় এবং পরিণত অবস্থায় অনেকটা ছতার মতো দেখায়। তাই এদেরকে 'ব্যাভের ছাতা' বলা হয়। মাইসেলিয়াম খেকে ছাতার ন্যায় বায়বীয় অংশ সৃষ্টিকে তুৰ্ণিটিকেশন (fructification) বলা হয় এবং ঐ বায়বীয় অংশকে Agaricus উৱিদের ফুট বঙি (fruit body বা fruiting body) বলা হয়। এরা 'মাশরুম' (mushroom) নামেও পরিচিত। অনেক সময় লুনে (Lawn-খালি জায়গা) অনেকওলো মাক্রম বৃত্তাকারে বা চক্রাকারে অবস্থান করতে দেখা যায়। এরপ অবস্থাকে প্রীচক্র (fairy ring) বলা হয়।

দৈহিক गठेन : একটি পূর্ণাস Agaricus হ্রাকের দেহকে দু'টি অংশে ভাগ করা যেতে পারে। <u>দৈহিক অং</u>শ ব্যা মাইনেশিয়াম (mycelium) এবং জনন অংশ তথা ইট বভি। মাইসেলিয়াম অত্যন্ত শাখা-প্রশাখা বিশিষ্ট ও ব্যকরে: মাটি বা জৈব বস্তর একটু ভেতরে অবস্থান ত্র। হাইকিওলো প্রস্থপ্রাচীর দিয়ে বিভক। হাইকিওলো বৰ বৰ্ণের, এরা আবাসস্থল থেকে খাদ্য শোষণ করে। ব্রকার কোরতলোতে দানাদার প্রোটোপ্রাক্তম, একাধিক শিক্ষাদ, ছোট ছোট কোষ গছরর, সঞ্চিত খাদা ছিলেবে লে বিন্দু খাকে। হাইফিডলো পৃথক থাকতে পাবে, ব ৰ ন্বৰত একসাথে জড়াজড়ি করে গড়ির মতো তৈরি Agaricus এव पहिला शतका कृष्टिमान परणिक



ক্ষেত্ৰ (thizomorph) বলা হয়। একদিনে একটি মাশকম এক কিলোমিটার দার্থ হাছকি তৈরি করতে পাৰে।

জনন অংশ তথা ফুটবডি (fruiting body) মাটি বা আবাদ মাধ্যম থেকে উপরে বাড়তে থাকে। পরিদ্র মধ্য দৃটি অংশ থাকে। গোড়ার দিকে কাণ্ডের ন্যায় অংশকে স্টাইপ (stipe) বলা হয় এবং উপরের দিকে ছাতার নায় পাইলিয়াস (pileus) বলা হয়। পাইলিয়াসের নিচের দিকে ঝুলন্ত অবস্থায় পর্দায় ন্যায় অংশকে শিল (gills) কু (lamellae) বলে। স্টাইপের মাথায় একটি ক্রিকার অংশ থাকে যাকে অ্যানুলাস (annulus) বলে। স্যামিনীতে ভ ব্যাসিডিয়া (Basidia) সৃষ্টি হয়। প্রতিটি ব্যাসিডিয়াম উর্বর এবং ব্যাসিডিয়ামের শীর্ষে আঙ্লের ন্যায় চারটি অশে একটি করে ব্যাসিডিয়োস্পোর (basidiospore) উৎপন্ন হয়। স্পোরগুলো অনুকৃল পরিবেশে অদ্বুরিত হয়ে স

গিলের অন্তর্গঠন : গিল পাতলা পাতের মতো। গিলের অন্তর্গঠন বেশ জটিল প্রকৃতির। প্রস্থচেছদ করলে একে তিনন্তরে দেখা যায়, যথা-ট্রমা, ञावहाइरमिनवाम ७ हाइरमिनवाम।

- (i) ট্রমা (Trama) : গিলের কেন্দ্রীয় বন্ধ্যা অংশকে ট্রমা বলে। চিলাভাবে জড়াজড়ি করে সক্ষিত গৌণ মাইসেলিয়াম দিয়ে ট্রমা অংশ গঠিত। এর কোষগুলো ডাইক্যারিওটিক।
- (ii) সাবহাইমেনিয়াম (Subhymenium) : ট্রমার উভয় দিকের অংশকে সাবহাইমেনিয়াম বলে। কোষগুলো আকারে ছোট গোলাকার এবং ২-৩ নিউক্লিয়াসবিশিষ্ট। এরূপ কোষবিন্যাসক্ প্রোজেনকাইমা খুলে। এ অন্তল থেকে জির ৫.১০ : গিলের চিনটি ছর ট্রেমর এক व्यामिषिग्राम উৎপन्न इरय थारक।

পাৰ্শের অংশ দেখালো হরেছে।।

(iii) হাইমেনিয়াম (Hymenium) : গিলের উভয় পাশের বহিস্থ তারকে হাইমেনিয়াম বলে (উর্বর ৯ তারে ক্ষেত্রে সাবহাইমেনিয়াম হতে উত্থিত এবং তলের সাথে লমভাবে সাজানো থাকে। এ স্তরেই গদাকার ব্যাসিভিয়াম উৎপদ্ধ হয়।

ব্যাসিডিওকার্প (Basidiocarp) : ব্যাসিডিওমাইসিটিস শ্রেণির ছ্ত্রাকের ফুট বডিকে ব্যাসিডিওকার্প বনে। করে Agaricus-এর ফুট বভিকেও ব্যাসিডিওকার্প বলা হয়। Agaricus-এর ব্যাসিডিওকার্প গোড়ায় দক্ষে নাম ক্ষ্মি স্টাইপের মাথার দিকে আানুলাস এবং মাথা<u>য় ছা</u>তার ন্যায় পাইলিয়াস নিয়ে গঠিত। এছাড়াও এতে আছে দিন বা শা^{নিনী} গিলে অসংখ্য ব্যাসিডিয়া এবং প্রতিটি ব্যাসিডিয়ামের মাথায় ৪টি করে ব্যাসিডিওস্পোর ভ্নিমুছ মাইসেলিয়াম অংশ কর উপরে ব্যাভের ছাতার ন্যায় অংশটুকুই Agaricus-এর ব্যাসিডিওকার্প।

পুষ্টি: জৈব পদার্থ শোষণ করে পুষ্টির চাহিদা পুরণ করে।

জনন : Agaricus প্রধানত যৌন জনন প্রক্রিয়ায় জনন কার্য সম্পন্ন করে। যৌন স্পোর উৎদাদনকরী আম ব্যাসিডিয়াম (basidium) এবং স্পোর এর নাম ব্যাসিডিয়োস্পোর)

মাশরুম ছত্রাকের অর্থনৈতিক গুরুত্

উপকারিতা :

১। খাদ্য হিসেবে: 'মাশক্ষম' বিভিন্ন ভিটামিন সমূদ্ধ হওয়ায় পৃথিবীর বহুদেশে এটি সুহিন খাদা হিসেবে প্রিটি এজনা পৃথিবীর বহুদেশে এর চায় হয়। বর্তমানে বাংলাদেশেও এর ব্যাপক চায় তরু হয়েছে। এটি টাটকা ও স্থানিক ট্রতা অবস্থায় বাজারে বিক্রি হয়। বাংলাদেশের বড় বড় হোটেলগুলোডে খাদা হিসেবে, বিশেষ করে সাণু জৈনিছে ^{মান্তুর} উত্তয়ে হয়। তালি ত্বত হয়। বর্তমানে আমাদের গ্রামীপ সমাজেও মাশক্ষম ব্যবহার জনগ্রিয় হলে উঠেছে। বাদ্য হিচাসে বাংলাসেই Volsariella ও Pletarotus শুণভূত করোকটি মাশক্ষম প্রজাতির চাম হছেছ এবং আমেরিকা ও ইউলোল একাশ

promescens (= A. bisporus) মাশরুম প্রজাতির ব্যাপক চাব হয়। যুক্তনাট্রে প্রতিবছর ৭৮০ মিলিয়ন পাট্ড mushroom হংপাদিত হয়।

- ২। <u>মৃতিকার পুষ্টি বৃদ্ধিতে</u> : মাশক্রম (Agaricus) মৃতজীবী তাই বিভিন্ন ধরনের জটিল দ্রবাকে ভেঙে মৃতিকার পুষ্টি कि दल थारक।
 - ত। শিল্প ও বাণিজ্যো: 'মাশকুম' এর চাষ বেশ লাভজনক কৃটির শিল্পে পরিণত হলেছে। 8। जब्भि छन :
 - (i) এতে আঁশ বেশি থাকায় এবং শর্করা ও চর্বি কম থাকায় ভায়াবেটিস রোগীর জন্য একটি আদর্শ খাবার।
- (ii) এতে শর্করা, প্রোটিন, চর্বি, ভিটামিন, খনিজ লবণ (Ca, K, P, Fe ও Cu) এমন সমন্বরে আছে বা শরীরের ইমিউন সিস্টেমকে ব্রুত করে। যার ফলে গর্ভবতী মা ও শিতরা এটি নিয়মিত খেলে দেহের রোগ প্রতিরোধ ক্ষমতা বেড়ে যায়।
 - (iii) এতে প্রচুর উৎসেচক (এনজাইম) আছে যা হজমে সহায়ক, খাবারে রুচি বাড়ে এবং পেটের পীড়া নিরাময় করে।
- (iv) এতে লোভাস্টানিন, এনটাডেনিন ও ইরিটাডেনিন থাকে যা শরীরের কোলেস্টেরল কমানোর জন্য ত্রনাতম উপাদান। মাশরুম নিয়মিত খেলে উচ্চ রক্তচাপ ও হৃদরোগ নিয়ম্ভিত থাকে। ক্যান্ধার ও টিউমার প্রতিরোধ করে।
- ৫। বৈদেশিক মুদ্রা অর্জনে : বিশ্বের অনেক দেশে মাশক্রম অত্যন্ত দামি খাবার। ব্যাপক্তাবে মশক্রম চায় ও রব্রানির মাধ্যমে আমরা অনেক বৈদেশিক মুদ্রা অর্জন করতে পারি।

অপকারিতা :

- ১। বিষাক্ততা: অপরিচিত বুনো মাশরুম খাওরা ঠিক নয়, কারণ কিছু কিছু প্রজাতি (Agaricus xanthodermus) বেশ বিষাক্ত। সবচেয়ে বিষাক্ত হলো Amanita virosa এবং A. phalloides প্রজাতি। বিষাক্ত মাশরুম খাদ্য হিসেবে গ্রহণ কালে মানুষ ও প্রাণীর মৃত্যু হতে পারে।
 - ২। বিনাশী কার্য: মাশরুম কাঠের গুড়ি, খড়, বাঁশ প্রভৃতির ফতি সাধন করে থাকে।
 - ত। জৈব বস্তুর ঘাটিতি: মাশরুম যেখানে জন্মায়, সেখানে জৈব বস্তুর অভাব দেখা দেয়।

বিষাক্ত মাশক্তম চেনার উপায় : ১। বেশির ভাগ উজ্জাবর্ণের প্রজাতিওলো বিষাক্ত হয়ে থাকে। ২ জন্তুগর বিষাক্ত প্রজাতিগুলো বিষাক্ত। ৩। বিষাক্ত প্রজাতিগুলোর ব্যাসিডিগুস্পোর বেচনি রঙের। ৪। বিষাক্ত মানক্রম কর্মনা ন্মার্থনা। । কাঠের উপর জন্মায় এমন প্রজাতিতলো বিষাক।

ख ताज जन्मार ना।	क्र क्रिक कराइ कराइन	ह्यांव
পার্থক্যের বিষয়	শৈবাশ	কোষে ক্রোরোঞ্চিল নেই
)। বৰ্ণ কণিকা	কোষে কোরোফিল আছে। কোমে কোরোফিল আছে।	
ই। খালা তৈরি	কোৰে কোরোধন পাত্র সালোকসংশ্রেষণ প্রক্রিয়ার মাধ্যমে নিজের খাদ্য নিজে তৈরি করে, তাই বভোলী	প্রভোগী। খাদ্যের জন্য জনা জীবদেহ বা জৈব বয়র উপর নির্ভৱশীল।
S. I. Williamson C. Co. or	এদের জন্য আলো অভ্যাবশ্যক (সালোকসংগ্রেহণ	এদর জন্য আলো অত্যাবশ্যক নয়।
। আলোক নির্ভরতা	করে বলে)। এদের কোয় প্রাচীর প্রধানত সেপুলোজ দিয়ে গঠিত।	এদের কোষ প্রাচীত কাইটিল ছিলে গঠিত।
। त्याम व्यक्तीत	এদের কোন প্রাচার করে।	এদের স্থানত খাদা গ্লাইকোজেন ও কোলে।
া সঞ্জিত খাদ্য	এদের সঞ্জিত খালা বেশ	যৌন জনমাস জটিল অবস্থা হতে জন্মানত সরস্তর অবস্থায় প্রাত হয়েছে।
* FIFTH	বৌন জননাপথতা। জাটিল অবস্থায় পরিণত হয়েছে। জাটিল অবস্থায় পরিণত হান করে।	এনের অধিকাশে ছেলে স্থাস করে।
A Marian	COURT SERVER THINKS	

ব্যবহারিক : Agaricus-এর ফুটবডির বাহ্যিক গঠন পর্যবেদণ।

উপকরণ : Agaricus-এর ফুটবডির তাজা নমুনা/গ্রাস জার-এ রক্ষিত নমুনা/ওকনো নমুনা, ব্যবহারিক সিট, পেন্সিল ইত্যাদি।

কার্যপদ্ধতি : প্রদন্ত নমুনাটি পর্যবেক্ষণ করে চিহ্নিত চিত্র আঁকতে হবে এবং শনাক্ত করতে হবে।

সিদাভ: প্রদত্ত নমুনাটি Agaricus-এর ছ্ত্রাকের ফুটবডি, কারণ-

১। নমুনাটি ছাতার ন্যায় আকৃতি বিশিষ্ট।

২। এটি অসবুজ।

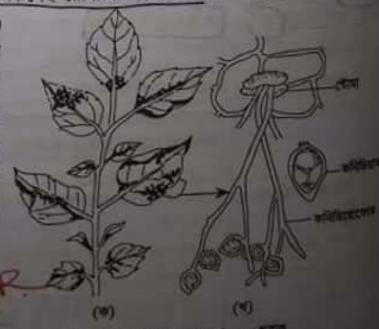
৩। দেহ দুখাকার স্টাইপ এবং প্রসারিত পাইলিয়াস-এ বিভক্ত।

৪। স্টাইপের মাধায় এবং পাইলিয়াসের নিচে চক্রাকার আানুলাস

৫। পাইলিয়াসের নিমুতলে ঝুলর্জ গিল আছে।

for q.30,3 Agaricus File-ce 30 de

ছত্রাকঘটিত রোগ


ছুত্রাক দ্বারা উদ্ভিদ ও প্রাণীর অনেক প্রকার রোগ সৃষ্টি হয়ে থাকে। এর ফলে দেশের অর্থনীতির ব্যাপক ছতি হ নিচে দু'টি ছ্ত্রাকঘটিত রোগ সম্বন্ধে সংক্ষিপ্ত আলোচনা করা হলো।

আলুর বিলম্বিত ধ্বসা রোগ (Late blight disease of potato) : গাছের পাতা, কাও, ফুল ইডাছি জ ক্ষত হয়ে তকিয়ে যাওয়াকে বলা হয় ধ্বসা বা ব্লাইট (blight)। আলু গাছে দুই ধরনের ব্লাইট রোগ হয়ে থাকে; একটি লে লেট ব্লাইট, অপরটি হলো আর্লি ব্লাইট যা Alternaria solani দিয়ে হয়ে থাকে। আলু গাছের সবচেয়ে ক্ষতিকারক জ হলো লেট ক্লাইট, যা বাংলায় বিলম্বিত ধ্বসা রোগ হিসেবে পরিচিত। মড়ক আকারে দেখা দিলে লেট রাইটো কল আলুর ফলন সম্পূর্ণভাবে বিনষ্ট হয়ে যেতে পারে।

এ রোগটি সম্ভবত প্রথমে দক্ষিণ আমেরিকাতে তক্ত হয়েছিল। পরে উত্তর আমেরিকা, কানাডা, ইউরোপের বিভিন্ন দে হয়ে বিশ্বের প্রায় সব অঞ্চলেই ছড়িয়ে পড়ে। শীতপ্রধান অঞ্চলেই রোগটির প্রকোপ বেশি। আপুর লেট ব্লাইট জেল

কারণে ১৮৪০ দশকের মাঝের দিকে (১৮৪৩-১৮৪৭) আয়ারন্যাতে ভয়াবহ আইরিশ দুর্ভিক্ষ (Irish Famine) দেখা भिन्न, यात करण आग्र मर्ग लक्ष लाक ना त्थरत माता याग्र এবং অভাবে পড়ে আরো ২০ লক্ষ লোক দেশ ত্যাগ করে। ঐ সময় ইউরোপের প্রায় সব দেশেই আলুর মড়ক দেখা দিরোছন কিয় অধিক ক্তিয়ান্ত হয়েছিল আয়ারল্যাভ, কারণ [frish Lumper] নামক একটি মাত্র প্রকরণই তারা অধিক চাম করতো। লেট ব্লাইট রোগে আপুর ফসলহানির কারণে লামানিতেও ৭ লক লোক মারা বিয়েছিল।

রোগর্জাবাণু (Pathogen) : আপুর বিপথিত ধ্বসা বোগের কারণ হলো আগু গাতে Phytophthora infestans भाषक प्रजादका आक्रमण | Phytophthora, Phycomycetes শ্রেদির ছবাক। ছবাক দেহ মাইলেনিয়াম সংখ্যাইতিক। এলা পোদক লেবেরে আন্তকোষীয় ফাঁকে

for C.33 : Physophiliana inferiors 1275 ক) আক্রাম কালু পাহা, (খ) কালভিয়েকের ব অনুভিয়া।

অবস্থান করে এবং হস্টোরিয়া (haustoria) নামক বিশেষ হাইফার মাধ্যমে পোষক কোষ থেকে খাদারদ শোষণ করে বেঁচে বারে। পরবর্তীতে আডকোর্যীয় হাইকা থেকে বার্যবীয় শাখা পাতার নিমুত্কের স্টোম্যাটা দিয়ে গুচ্চাকারে বের হয়ে আসে। বারে। পরবর্তীত প্রাণাকে কনিডিয়োফোর বলে। কনিডিয়োফোর শাখাখিত এবং প্রতি শাখার মাথায় একটি কনিডিয়াম বার্যবীয় এ কাডিয়া) উৎপন্ন হয় (কনিডিয়াম হলো অযৌন স্পোর)। কনিডিয়া দেখতে কতকটা উপবৃত্তাকার বা ডিমাকার, বেইবার্টন কনিউয়া) পাতলা ও অর্থপ্রছে। প্রতিটি কনিডিয়ামে একাধিক নিউক্লিয়াস, প্রচুর দানাদার প্রোটোপ্লাজম পুরুরার্টীর বিশিষ্ট কিন্তু মাথাটা পাতলা ও অর্থপ্রছে। প্রতিটি কনিডিয়ামে একাধিক নিউক্লিয়াস, প্রচুর দানাদার প্রোটোপ্লাজম এবং বিশ্বিত খালা (তেলবিন্দু) থাকে।

P. infestans ডিপ্লয়েড, ক্রোমোসোম ১২ (১১ - ১৩), এর জিনোম সিকুয়েসিং সম্পন্ন হয়েছে ২০০৯ সালে। এতে

নেসপেয়ার আছে ২৪০ মিলিয়ন, জিন শনাক্ত করা হয়েছে ১৮,০০০ চ

ভাগমাত্রা অপেকাকৃত বেশি এবং বাতাসে জলীয় বাশ্প কম থাকলে কনিভিয়া সরাসরি অঙুরিত হয়ে নতুন টিস্থা বা
নতুন গাছকে আক্রমণ করে। তবে তাপমাত্রা অপেকাকৃত কম এবং বাতাসে জলীয় বাশ্প অধিক থাকলে (মেঘলা
আবহাওয়া, ঘন কুয়াশা, বৃষ্টি ইত্যাদি সময়ে) প্রতিটি কনিভিয়াম থেকে অনেকগুলো ছিয়্ল্যাজেলাযুক্ত জুস্পোর উৎপন্ন হয়
এবং পানির সাহাযো বা বাতাসের সাহাযো আশপাশের জমিতে ছড়িয়ে পড়ে। এভাবে রোগটি দ্রুত ছড়িয়ে পড়ে এবং
কসলে মড়ক আকারে দেখা দেয়।

বাংলাদেশে কথনো কথনো এ রোগটি হতে দেখা যায়। শীতকালে তাপমাত্রা অধিক নিচে নেমে এলে এবং বাতাসে জনীয় বাস্প অধিক থাকলে (সাধারণত কিছুদিন ধরে ঘন কুয়াশা বা মৃদু বৃষ্টিপাত, হালকা বাতাস থাকলে) এ রোগটি ফুসলের ফতির কারণ হয়ে দাঁড়ায়।

রোগ লক্ষ্ণ (Symptoms) : আপুর বিলম্বিত ধ্বসা রোগের লক্ষ্ণগুলো নিমুরূপ :

- ১। প্রথম পাতায় সবুজ-ধৃসর বর্ণের ফুদ্র ফুদ্র দাগ (spot) দেখা যায়। দাগওলো পরে অপেকাকৃত বড় হয়ে হালকা বাদামি বর্ণের হয় এবং শেষ পর্যন্ত লালচে কালো বা কালো-বাদামি বর্ণের হয়। গাছের বয়স্ক পাতার কিনারায় বা অগ্রভাগে পানি ভেজা দাগ প্রথম প্রকাশ পায়। পরে কালচে ভেজা দাগসহ পচন সৃষ্টি হয়।
- ২। পরে আক্রান্ত স্থানে সৃদ্ধ মখমলের মতো আত্তরণ সৃষ্টি হয়। এ সময় আক্রান্ত পাতার নিমু ত্তকর পরারক্ত দিয়ে কনিডিয়োক্ষাের বের হয়। অণুবীক্ষণ যন্ত্রে কনিডিয়োকাের দৈখে ছত্রাক আক্রমণ নিশ্চিত হওয়া যায়।
- ত। আবহাওয়া মেঘলা ও আর্দ্র থাকলে ছত্রাকটি দ্রুত বিস্তার লাভ করে এবং পুরো পাতা, এমনকি কাওও আক্রান্ত হয়। এ সময় গাছটি ঢলে পড়তে দেখা যায় এবং দেখতে অনেকটা সিদ্ধি গাছের মতো মনে হয়।
- ৪। আক্রমণের প্রকটতায় মাটির নিচে আপুও আক্রান্ত হতে পারে। আক্রান্ত আপুর ত্বকের নিচে লালচে-বাদামি কালো ছোপ দেখা যায়। এটি পরে সেকেন্ডারি ইনফেকশনের মাধ্যমে ব্যাকটেরিয়াল রট (পচন)-এ পরিণত হয় এবং আপু পচে যায়। কোনো কোনো রোগাক্রান্ত আপু দৃশ্যত ভালো দেখা গেলেও কোল্ডন্টোরেজ-এ পচে য়য়।
- ৫। ছত্রাক আক্রমণ তীব্র হলে আক্রান্ত আলু গাছ থেকে পচা ডিমের ন্যায় দুর্গদ্ধ বের হয়। রোগাক্রান্ত আলুবীক্র থেকে রোগের প্রাথমিক সংক্রমণ ঘটে। কনিডিয়া ও জুস্পোর দিয়ে রোগের সেকেন্ডারি সংক্রমণ ঘটে।
- ৬। গাছের পাতা পরীকা করণে রোগাক্রান্ত পাতার নিমৃতলে সাদা সূতার মতো (সূত্রাকার) মাইসেলিয়াম দেখা যায়। অভিকার/রোগ নিয়ন্ত্রণ:
- ১। রোগ লক্ষণ প্রকাশ পাওয়ার সাথে সাথেই ছ্য়াকনাশক শেপ্র করতে হবে। প্রথমেই ১% (বার্নেমিশর) (Bordeux mixture : কুপার লাগকেট, লাইম ও পানি) ছিটিয়ে বা কপার-লাইম ডাস্ট প্রয়োগ করে রোগের বিজায় রোধ করা সায়।
- শানি ও পানি প্রবাহ রোগের সেকেভারি বিস্তার ঘটায়। তাই পানি সেচ সীমিত রাখতে হবে। নাইটোজেন সারও নীমিত ব্যবহার করা দরকার।
- া আৰু চাৰের জনা সৃষ্ট ও জীবাণু মৃক বীজ ব্যবহার করতে হবে। অবশাই রোগমুক্ত এলাকা থেকে বীজ আৰু সংগ্রহ করতে হবে। কোন্ডস্টোরেজ-এ রাখা বীল ব্যবহার অপেক্ষাকৃত উত্তর। মনে রাখকে হবে রোগাকোন্ত নীল থেকেই রোগের প্রাথমিক আক্রমণ ঘটে।

জীববিজ্ঞান-প্রথম প্র

- ৪। জমি থেকে আলু ফসল উঠানোর পর সব পরিত্যক্ত আবর্জনা পুড়িয়ে কেলতে হবে।
- ৪। জাম থেকে আপু কলল ওঠালোর শর শব । ৫। একই জমিতে প্রতি বছর আলু চাষ না করে ১/২ বছর পর পর চাষ করলে রোগের বিস্তান্ত তম হতে শতে।
- ৭। আগাম জাত চাষ করলে রোগ আক্রমণের আগেই কসল তুলে নেয়া যায়।
- প । আগাম জাত চাধ করণে মোন আত্রন্ধনের ৮। এলাকা ও জমির ধরন অনুযায়ী জাত নির্বাচন করতে হবে। স্থানীয় জাত ফলন কম হলেও সাধারণত জাত
- ৯। পাতা থেকে আগুতে যাতে রোগ সংক্রমণ না হয়, সেজন্য আলু সংগ্রহের পূর্বে সাইনকা বা সাক্র
- ১০। যে সব স্থানে এ রোগ হয় সেখানে গাছ ৮-১০ আঙ্গুল বড় হলেই ভায়থেন এম-৪৫ বা বোর্লো হিছাত 🖘

पापदर्शि (Ringworm) 27 (०३ मीर्स ने Tirea Many

দাদরোগ একটি ছোঁয়াচে চর্ম রোগ। উষ্ণ ও আর্দ্র পরিবেশে এ রোগটি দ্রুত বিস্তার লাভ করে। বাংলাদেশে একেই দেশের সব অঞ্চলেই বিস্তৃত। একে সংস্কৃত ভাষায় দদ্র রোগ, আর ইংরেজি ভাষায় ringworm বুলা হয়। যদিও এ কোনো worm দারা ঘটিত রোগ নিয়া দাদরোগ সব বয়সের লোকেরই হতে পারে, তবে ছোট ছেলে মেরেটে হল সংখ্যায় আক্রান্ত হয়। হাসপাতাল, এতিমখানা বা হেফজখানা, যেখানে ছোট ছেলেমেয়েরা অন্ন জায়গায় অধিক সংখ বাস করে সেখানে দাদরোগ দ্রুত বিস্তার লাভ করে।

রোগের কারণ : দাদ ছত্রাকঘটিত রোগ। উদ্ভিদ পরজীবী ঘারা হয় বলে চিকিৎসা শাস্ত্রে একে tinea শলে। অবিকর্ ক্ষেত্ৰই Trichophyton (T. rubrum, T. verrucosum) নামক ছত্ৰাক বাবা এই রোগ হয়ে থাকে। তাই রোগট া 🗷 trichophytina বা trichophytosis নামেও পরিচিত। এছাড়া Microsparum (M. canis), Epidermophyton (E. <u>রিতেতেরum)</u> গণের ছত্রাক দিয়েও দাদরোগ হতে পারে। ও তিনিটোক হিটেপ্রিয়

সংক্রমণ: সাধারণত ঘামে ভেজা শরীর, অপরিছার-অপরিচছনু শরীর, দীর্ঘ সময় ভেজা থাকে এমন শরীর, স্থাক স্থান আছে এমন শরীর সহজে এই ছত্রাকের স্পোর (বা হাইফা) ছারা আক্রান্ত হয়। এই রোগ জীবাশুর সুন্তিকাশ 🔄 দিন। সাধারণত আক্রান্ত হওয়ার ৩-৫ দিন পর রোগ লক্ষণ প্রকাশ পায়। দেহের যে কোনো অংশেই দাদরোগ হতে ক তবে মুখমণ্ডল এবং হাতে অধিক দেখা যায়। উক্ত, মাধার খুলি, নখ ইত্যাদিও আক্রান্ত হয়। মাধার খুলির মালতে অপেক্ষাকৃত মারাজ্যক। আক্রান্ত স্থানের নামানুসারে ভাক্তারি পরিভাষায় দাদরোগটি ভিন্ন ভিন্ন নামে পরিচিত হয়।

রোগ সক্ষণ

- ১। প্রথমে আক্রান্ত স্থানে ছোট লাল গোটা হয় এবং সামান্য চুলকায়।
- ২। পরে আক্রান্ত স্থানে বাদামি বর্ণের আইশ হয় এবং স্থানটি বুন্তাকারে বড় হতে থাকে।
- ত। ক্রমে সুনির্দিষ্ট কিনারসহ বৃত্তের আকার বৃদ্ধি পেতে থাকে এবং মাঝখাদের তৃত স্বাভাবিক হয়ে আসে। সুন্ধ विक लाग्र।
- ৪। চুলকানোর পর আক্রান্ত স্থানে জ্বালা হয় এবং জাঠালো রস বের হয়।
- ৫। মাধার হলে ছানে ছানে চুল উঠে যায়, নখে হলে দ্রুত নখের রং বদলায় এবং তকিয়ে খত খত হয়ে ছেলে বেল

রোগ বিঞ্জার : এটি ছোঁয়াড়ে রোগ। অতিসহজেই রোগী থেকে সৃত্ব দেহে বিস্তাব লাভ করতে পারে। রোগীর চিট্টি তোয়ালে, বিছানা ইন্তাদি ব্যবহারের মাধ্যমে রোগটি দ্রুত সৃষ্টদেহে ছড়িয়ো গড়ে। রোগাক্রান্ত লোখা বিভাসের স্থানি অধিক ছতায়। উষা ও তেজা ছালে জীবাপুর সংক্রমণ বেশি হয়।

व्यक्तिकार

- ১। আক্রান্ত স্থান পরিষ্কার ও তকলো রাধতে হবে।
- ২। প্রতিদিন রোগীর বিছানাপত্র ও আমাকাপড় লোডা পানি দিয়ে সিছ করে যুক্ত হবে।
- ৩। এমন কাগড় পরা যাবে না হা আক্রন্ত ছানে ধর্মন করে।

g। চিক্তিংসকের পরামর্শ অনুযায়ী এন্টিফাংগাল ক্রিম বা ড্রাইপাওডার ব্যবহার করতে হবে।

ে মোণাক্রান্ত পোষা প্রাণী থেকে সাবধান থাকতে হবে।

্রাধার দাদ হলে মাধা ন্যাড়া করেসেলিসাইলিক আসিড ঘটিত মলম কিছুদিন ব্যবহার করতে হবে।

্ব। স্বীরের অন্যান্য স্থানে দাদ হলে আয়োডিন, বেনজোয়িক অ্যাসিড । তবহার করা ভালো।

চ্রিবসা : চিকিৎসকের পরামর্শ অনুযায়ী ওযুধ বাবহার করতে হবে। সাধারণত ৩-৪ সপ্তাহের মধ্যেই দাদরোগ আরোগা হয় এবং এ রোগে সাধারণত এন্টিফাংগাল ক্রিমই (Terbinafine/Miconazole ক্রিম) ব্যবহার করা হয়। মাধার দাদ চিকিৎসা অপেক্ষাকৃত সময় সাপেক। মলমজাতীয় ওযুধে রোগ না সারলে খাবার ওযুধ (Griscofulvin/Itraconazole নাবদেট) বাবহার করতে হতে পারে। আক্রান্ত স্থান ভালো করে চুলকিয়ে দাদ মর্দন (Cassia alaky) গাছের পাতার রস বা মন্ত লাগালে ২/৩ দিনেই দাদ ভালো হয়। এটি পরীক্ষিত।

১। পরিষ্কার পরিচহনু থাকতে হবে। ২। ত্বক যেন ভেজা না থাকে তার প্রতি লক্ষ্য রাখতে হবে। ৩। রোগীর ব্যবহৃত চিক্লনী, তোয়ালে, বিছানা, জামা-কাপড় ব্যবহার করা যাবে না। ৪। চুল কাটার পর নিয়মিত মাথা পরিষ্কার রাখতে হবে ও তকনো রাখতে হবে। ৫। পোষা প্রাণীর দেহের ন্যাড়া স্থান থেকে সাবধান থাকতে হবে। ৬। গেঞ্জি ও জাঙ্গিয়া নিয়মিত পরিচার করে ব্যবহার করা দরকার।

জটিলতা : চুলকানো স্থানে ব্যাকটেরিয়্যাল ইনফেকশন হয়ে জটিলতার সৃষ্টি হতে পারে। ব্যাকটেরিয়া ধারা সংক্রমিত হলে আক্রান্ত স্থান ফোলে যায়, পূঁজ সৃষ্টি হয়, জুর হতে পারে, পূঁজ বা রস গড়িয়ে পড়তে পারে। এমন অবস্থায় আন্টিবায়োটিক ওমুধের প্রয়োজন হতে পারে।

লাইকেন (Lichen)

আমরা শৈবাল ও ছত্রাক সম্বন্ধে জেনেছি। উদ্ভিদজগতে এরা পৃথক রাজ্যের বাসিন্দা হলেও প্রকৃতিতে শৈবাল ও ছ্মাককে একই সাথে সিমবায়োটিক সহসবস্থানে দেখা যায়। শৈবাল ও ছ্ত্রাক মিলিতভাবে সম্পূর্ণ পৃথক ধরনের একজাতীয় উদ্ভিদের সৃষ্টি করে যাকে বলা হয় লাইকেন। লাইকেন হলো ছত্রাক (স্যাক কানজাই বা ক্লাব কানজাই) এবং <u>একাকোষী শৈবাল বা সায়ানোব্যাকটেরিয়া</u>র অত্যন্ত ঘনিষ্ঠ এসোসিয়েশনে সৃষ্ট বিশেষ প্রকৃতির খ্যালয়েভ গঠন। লাইকেন স্বয়ংসম্পূর্ণ) (বিষমপৃষ্ঠ) জ্যালরেড) অপুস্পক উদ্ভিদ। সারা পৃথিবীতে প্রায় ৪০০টি গণ এবং (১৭,০০০) লাইকেন প্রজাতির সদান পাওয়া গিয়েছে। শৈবাল ও ছত্রাক পরস্পর মিথোজীবী বা অন্যোন্যজীবী রূপে (symbiotically) বসবাস করে। এ থকার বন্ধনে উভয়েই একে অপরের বারা উপকৃত হয়। লাইকেনে তাদের অবস্থান ও সম্পর্ককে মিথোজীবিতা এবং জীব দৃটিকে মিখোজীবী জীব বলে। লাইকেনের মোট ভরের ৫-১০% শৈবালের। (Lichen শব্দটি এসেছে ল্যাটিন Leichen থেকে যার অর্থ হলো "শৈবালতুলা ছত্রাক বিশেষ।")

শাইকেনের বাসস্থান: লাইকেন এমন একটি সম্প্রদায় যারা এমন সব পরিবেশে জন্মতে পারে, যেখানে অন্য কোনো খীব বেঁচে থাকতে পারে না। যেমন- অনুর্বর, বন্ধ্যা, বালু বা পাথরের মতো আবাসে এরা স্বাচ্ছন্দো জন্মতে পারে। এরা শাছের বাকল, সঞ্জীব পাতা, বন্ধ্যা মাটি, পাকা দেয়াল, ক্যাপ্রান্ত কাঠের হুড়ি ইত্যাদি বস্তুর উপর হালে। পাতে। তুন্তা অঞ্চল, মারু অঞ্চল, নীরস পর্বতগাত্রসহ সমস্ত প্রতিকৃল অবস্থানে এরা জন্মাতে পারে। তাই লাইকেনকে বিশ্বস্থান উরিদ रणा इस ।

শাইকেনের বৈশিষ্ট্য: লাইকেনের বিশেষ কিছু বৈশিষ্ট্য বিদ্যমান। সেগুলো নিমুরূপ:

- ১। লাইকেন একটি ছৈত সংগঠন। কারণ একটি শৈবাল ও একটি ছগ্রাক সদস্য মিলিডভাব এ সংগঠন তৈনি করে।
- ২। ছ্যাক থ্যালাসের কাঠামো তৈরি করে এবং কাঠামোর ভেতরে শৈবাল আবৃত অবস্থায় থাকে।
- ত। আকৃতিগতভাবে লাইকেন ঝালয়েড, চ্যান্টা, বিষয়পুঠ অথবা শাখা-প্রশাখা যুক্ত হয়।
- ৪। এরা অধিকাশেই দুসর বর্ণের তবে সাদা, কালো, কমলা, হলুদ ইত্যাদি বর্ণেরও হরো গাড়ে।
- ৫। এরা খণ্ডোরা তাই খবংসম্পূর্ণ।

- ৬। লাইকেনের উভয় জীবে অঙ্গজ ও অযৌন জনন ঘটে। কিন্তু যৌন জনন তথুমাত্র আক সদসোর মাট। ৭। লাইকেন অনুর্বর বন্ধ্যা মাধ্যমেও জনো, যেখানে অন্য কোন জীব সম্প্রদায় জন্মতে পারে না।
- ৮। মাটি গঠনে এরা অগ্রদ্ত হিসেবে ভূমিকা পালন করে।
- ৯। থ্যালাদের নিচের দিকে রাইজয়েডের মতো রাইজাইন থাকে, যা দিয়ে পানি শোষণ করে।

১০। এরা বায়ুদ্দণের প্রতি উচ্চমাত্রায় সংবেদনশীল।

লাইকেনের গঠন এবং ছত্রাক ও শৈবালের পারস্পরিক নির্ভরশীলতা

লাইকেন সমান্তদেহী, এদের অধিকাংশই ধুসর বর্ণের; তবে সাদা, কমলা-হলুদ, সবুজ, পীতাত-সবুজ অধ্য করে ইত্যাদি বর্ণের। এরা অত্যন্ত ক্দ্রাকার হতে কয়েক ফুট পর্যন্ত দীর্ঘ হতে পারে। একটি লাইকেন দুটি জীবীয় উপাদান দিয পঠিত। একটি শৈবাল যাকে <mark>ফটোবায়োন্ট</mark> (photobiont) বলে। এরা নীলাভ-সবুজ শৈবাল বা সবুজ শৈবালের অভ্রত, স মিজোফাইসি (Myxophyceae) শ্রেণির অন্তর্ভুক্ত। অপরটি ছব্রাক যাকে <mark>মাইকোবায়োন্টী</mark> (mycobiont) বলে। বল বেশিরভাগ ক্ষেত্রেই আসকোমাইসিটিস শ্রেণির এবং কিছু কিছু ব্যাসিডিওমাইসিটিস শ্রেণির অন্তর্ভুক্ত। লাইকেনে বৈবাদ s ছ্ঞাক উভয়ই উপকৃত হয় এবং কেউ কারও অপকার করে না। এরূপ উপকার ভিত্তিক সম্পর্ককে মিমেজিবিয়াক অন্যোনাজীবিতা (symbiosis) বা মিউচুয়ালিজম (mutualism) বলে।

লাইকেনে শৈবাল যেভাবে উপকৃত হয়-

শৈবাল ছত্রাকের দেহে আশ্রয় গ্রহণ করে। ছত্রাক পরিবেশ থেকে পানি, খনিজ লবণ, জলীয়বাল্প ইত্যাদি কেল করে শৈবালকে প্রদান করে। ছত্রাক চারদিক থেকে শৈবালকে খিরে রাখে অর্থাৎ ছত্রাকের দেহে অবস্থানের কালে শৈবালের দৈহিক নিরাপত্তা নিশ্চিত হয়। ছত্রাকের দেহে শারীরবৃত্তীয় কাজের ফলে সৃষ্ট CO, ও পানি শৈবদ সালোকসংশ্রেষণ প্রক্রিয়ার কাঞ্চে লাগায়।

লাইকেনে ছ্যাক খেডাবে উপকৃত হয়—

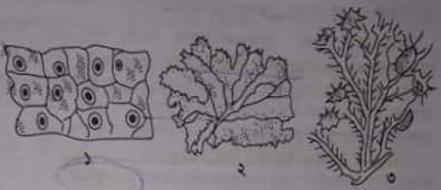
ছ্তাক নিজ দেহে আশ্রাদানের বিনিময়ে শৈবাল কর্তৃক উৎপাদিত খাদা হস্টোরিয়ামের সাহায়ে গ্রহণ করে বেঁচ থাকে অর্থাং শৈবালের প্রস্তুত্ত খাদ্য উভয়েই ভাগ করে গ্রহণ করে। ছ্যাকের শারীরবৃতীয় তাজের ফলে সূই বর্মা ভ জলীয়বাম্প দেহ থেকে অপসারণের জন্য ছত্রাককে কোনো ধরনের শক্তির অপচয় করতে হয় না।

শাইকেনে ছ্ত্রাকের চেয়ে শৈবালের ওরুত্ব অনেক বেশি। কারণ শাইকেনে ছ্ত্রাক সদস্য এককভাবে বেঁচে থাকার পারে না। কিন্তু শৈবাদ সদস্য এককভাবে বেঁচে থাকতে পারে। দাইকেনে শৈবাদের চেয়ে ছব্রাক বেশি সুবিধাভোগ করে এবং অনাদিকে শৈবালটি ছ্যাকের কৃত্রদাস হিসেবে অবস্থান করে বলে কোনো কোনো উভিদবিজ্ঞানী এরপ সহাবস্থানত বিশেষ ধরনের মিখোঞ্জীবিতা বা (হেলোটিজম (helotism) বলে আখ্যায়িত কনেছেন। অধিকাংশ লাইকেনের ক্ষেত্রে ছব্রাক সদসাটি শৈবাল কোষের অভ্যন্তরে হস্টোরিয়া নামক শোষক অণুসূত্র প্রেরণ করে পুটি সংগ্রহ করে বলে এরপ সহাবস্থানকৈ সাধিশক পরজাবিত্রাপালে উল্লেখ করেছেন।

শাইকেন্দ্ৰৰ শেবিবিস্তাগ

ক) বাসছানের ভিবিতে লাইকেনের শ্রেণিবিভাগ :

- ১। কটিকোলাস (corticolous) : এরা গাছের বাকল বা কাভের উপরে জন্মে। যেমন- Graphis, Parmelia ।
- ২। টেবিকোলাস (terricolous) : উবা ও অর্দ্র অভালের মাটিতে জলো। যেমন- Collema tenax, Cora pavonia
- ত। সাজিকোপাস (sexiculous) : শীতপ্রধান অভালে পাথরের বা শিলাখতের উপর জনায়। যেমন- Coloplacia Xanthoria 1
 - ৪। বিশ্বনিকোপাস (lignicolous) ; এরা সরাসরি ভেজা আঠের উপর জন্মায় । বেমন- Calicicum, Piproponis ।
- ৫। স্বমনিকোশাল (omnicolous) : বিভিন্ন প্রকার মাধ্যমে লন্মে। অপাৎ হাড়, চাম্চা, পৌহ, কাচ, চল, নিজ रहातिक हेल्ड चान् । द्यम्म- Lecanora dispersa ।
- ত (মোলিকোপান (Colicolous) : এরা ফার্ন বা সপুস্থক ইতিবের পাতার উপর করে। বেনন- ফার্নের পাতার SMER POTTING OPPOSITION OF I


(a) গঠনাত শেণিবিন্যাস : ইত্যোপূর্বে লাইকেনের মাত্র তিন প্রকার মৌলিক গঠনের কথা জানা যায়। সেগুলো হলো ক্রাসটোর প্রেলিয়োর এবং ফ্রিটিকোর)। কিন্তু লাইকেনের ব্যাপক গবেষণার ফলে বিজ্ঞানী হরওয়ার্থ এবং হিদ (Hawsworth & Hill) ১৯৮৪ সালে লাইকেনকে পাঁচ ভাগে বিভক্ত করেন। যথা—

্বালাজ সাইকেন (Leprose lichen) : খ্যালাসের মধ্যে এটাই সরচেয়ে সরগতম প্রকৃতির। একেরে ছ্যাকের লাইছি প্রথাম ১টি অথবা কুন্র, একহাছে শৈবালের কোষকে আবৃত করে রাখে। তবে সুনির্দিষ্ট কোন ছতাকের স্থার সম্পূর্ণ

প্রাণের কোষতলোকে ডেকে রাখে না। যেমন- Lapraria incana.

্ৰাক্তাৰ ৰাইকেন (Crustose lichen) ১ একপ সাইকেন চ্যাণ্টা, শুদ্রাকার এবং পোষক বস্তুর সাথে (গাছের বাকল, পরাতন দেয়াল, পাধর, পর্বতগাত্র ইত্যাদি) निविज्ञास लाग थारक। समन- Graphis scripta. Strigula, Cryptothecia rubrocinta, Diploicia canescens ষ্টভ্যাদি।

ত ফোলিয়োজ লাইকেন (Foliose lichen : এ ধরনের লাইকেন দেখতে

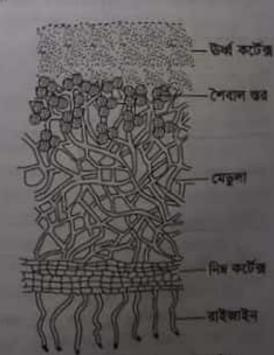
চিত্র ৫,১২ : (১) ক্রাসটোজ, (২) কোলিভোজ, (৩) ফুটিকোজ পাইকেন।

অনেকটা বিষমপৃষ্ঠ পাতার মতো। এদের কিনারা খাজকাটা ও আন্দোলিত। এর নিমুতলে রাইজয়েড তুলা রাইজাইন রের इत्र । अपन- Flavoparmelia caperata, Parmotrema tinctorum, Xanthoria, Peltigera, Parmelia देखानि ।

8। জুটিকোল লাইকেন (Fruticose lichen) : এ ধরনের লাইকেন চ্যান্টা বা দত্তের মতো, অধিক শাখা-প্রশাখাযুক্ত এবং কেবল পোড়ার অংশ দিয়ে নির্ভরশীল বস্তুর গায়ে লেগে থাকে। এ ধরনের লাইকেন অনেক সময়ই কুলে থাকে, যাড়া হয়েও থাকতে পারে। যেমন- Letharia columbiana, Usnea, Cladonia leporina ইত্যাদি।

৫ প্রোকার লাইকেন (Filamentous lichen) : কিছু সংখ্যক লাইকেনে শৈবাল অংশটি সূত্রাকার, পূর্ণ বিকশিত এবং প্রকটা এরা সামানা করেকিট হাইফি খারা আবৃত থাকে। যেমন- Ephebe (Racodium)।

(গ) শাইকেন গঠনকারী ছ্ত্রাকের উপর ভিত্তি করে লাইকেন প্রধাসত দু' প্রকার। যথা-


(i) আসকোলাইকেন (Ascolichen) : লাইকেন গঠনকারী ছত্রাক আসকোমাইসিটিস শ্রেণির হলে তাকে আসকোলাইকেন বলে। अधिकार्ग माইक्मिटे आामकामाईक्मि।

(ii) ব্যাসিডিয়োলাইকেন (Basidiolichen) : লাইকেন গঠনকারী ছব্রাক ব্যাসিভিয়োমাইসিটিস শ্রেণির হলে তাকে ব্যাসিভিয়োগাইকেন वाला ।

শাইকেনের অন্তর্গঠন : লাইকেনকে গ্রন্থছেদ করলে একাধিক গঠনগভ স্তর দৃষ্টি গোচর হয়। একটি ফোলিয়োজ লাইকেনের অন্তর্গঠন निश्चल्यः

(i) উর্চ্চ কর্টেন্স (Upper cortex) : ঘন সন্নিবেশিত ছত্রাকীয় হাইকি যারা এই প্রর গঠিত। এ প্ররে সাধারণত ফাঁত থাকে না, থাকলেও মিউসিলেজ দারা পূর্ণ থাকে।

(ii) শৈলাৰ ভাৰ (Algal layers) : এই ভবে ছ্যাকের হাইছিল भारक केंग्रिक देनवाल व्यवश्चित । अहे अति अध्यक्षत । अकिंग्रि निर्मिष्ठ া হব শাইকেনে তদ্ এক ধরদের শৈবাদই থাকে। পূর্বে এ জরকে Charles and all seen a

চিয়া ৫,১৩ : জোলিয়োজ সাইকালের সভাবিদ

- (iii) মেডুলা (Medulla) : অত্যন্ত ফাঁকা ফাঁকাভাবে অবস্থিত ছ্ঞাকীয় হাইকি ছায়া এই তব প্ৰতি বা অপেক্ষাকৃত পুরু। হাইফি থ্যালাসের প্রান্তের দিকে বেশ পাতলা কিন্তু কেন্দ্রীয় অধালে ঘনতাবে সমিবিত। শৈলে ছা নিচে এটি অবস্থিত। এ অঞ্চলের হাইফির শাখা-প্রশাখা বিভিন্ন দিকে বিস্তৃত।
- (iv) নিমু কর্টেন্স (Lower cortex) : মেড্লার নিচে ঘন সন্নিবেশিত ছত্রাকীয় হাইফি ধারা এই তর গঠিত। এই মা নিমু পৃষ্ঠে বহু এককোষী রাইজাইন (রাইজয়েড তুলা) থাকে যা গাইকেনকে নির্ভরশীল বস্তুর ব্রেক্তর বহু ইত্যাদি) সাথে আটকিয়ে রাখে এবং খাদ্যরস শোষণ করতে সাহায্য করে। রাইজাইন হলো সেহের নিয়ালে ফুল্র 👟 একটি অঙ্গ, যা মূলের মতো কাজ করে থাকে।

লাইকেনের জনন : লাইকেন অঙ্গজ, অযৌন এবং থৌন উপায়ে বংশবৃদ্ধি করে খাকে। খালামে (fragmentation) ও ক্রমাগত মৃত্যু ও পচন (progressive death & decay) প্রক্রিয়ায় পাইকেনের অসত চন চন থাকে। সোরেডিয়া (Soredia, একবচনে-Soredium) ও ইসিডিয়া (Isidia, একবচনে- Isidium) এর প্রিনিভিত্ত মাধ্যমে অযৌন জনন হয়ে থাকে। সোরেডিয়াম হলো একটি শৈবালকৈ ছত্রাক দারা চারদিক থেকে যিরে গালা দুন্ত দেহ যা বাতাসে চারদিকে ছড়িয়ে পড়ে এবং উপযুক্ত পরিবেশে লাইকেন হিসেবে আত্রপ্রকাশ করে।

ইসিডিয়া হলো লাইকেনের উর্ধ্ব কর্টেন্স ধারা আবুত, জুদ্রাকার, সরণ বা শাখাবিত প্যাপিশির নাম অবৌন স্কেখ বৃদ্ধিপ্ৰাপ্ত ও রূপান্তরিত হয়ে লাইকেন গঠন করে পুলক্ষনিভিয়া (Pycnidia) হলে ফ্লাঙের সায় গঠনহত হলে হার ক লাইকেনের কিছু ছত্রাক দেহে (যেমন- Cladonia sp.) শঠিও হয়। পিকনিভিয়ার অভ্যন্তরে পিকনিভিত্তপার গঠিত হয়। পিকনিডিওস্পোর অন্ধুরোদগমের মাধ্যমে নতুন ছ্ত্রাক অণুসূত্র গঠন করে। নতুন গঠিত ছ্ত্রাক অণুসূত্র উপযুক্ত গতিক শৈবালের সংস্পর্শে এলে নতুন লাইকেন গঠন করে।

লাইকেনে যৌন জনন মূলত ছত্ৰাক হারা সীমাবদ্ধ থাকে। আন্তোলাইকেনে যৌন জনন সম্পাদিত হয় আছেত (ascocarp) দিয়ে। এছাড়া প্লাজমোগ্যামির মাধ্যমেও লাইকেনের যৌন জনন সম্পন্ন হয়ে থাকে। প্লাজমোগ্যামি হগে, র প্রক্রিয়ায় যৌন মিলনের পর ভ্রাকের দুটি জনন কোষের প্রোটোপ্রাজম মিলিত হয় কিন্তু নিউক্রিয়াস দুটি মিলিত ফ্র

বাংলাদেশে লাইকেন শিক্ষা : বাংলাদেশে লাইকেন নিয়ে উল্লেখযোগ্য কোন গবেষণা হয়নি এখানে কত এজনি লাইকেন আছে তাও তালিকাভুক্ত করা সম্ভব হয়নি। অতি ধীরগতিতে বৃদ্ধিপ্রাপ্ত হয় বলে গ্রেমণাধর্মী (experimental কোনো কাজ করতেও কেউ উৎসাহিত বোধ করেন না।

লাইকেনের তক্তত্ব (Importance of lichen) : দৈনন্দিন জীবনে লাইকেন অত্যন্ত গুরুত্পূর্ণ ভূমিকা পালন করে। উপকারী দিক (Beneficial role) : নিচে লাইকেনের কয়েকটি উপকারী দিক উল্লেখ করা হলো—

- (১) মকুল ক্রমাণ্মন : মকু অঞ্চলে যেখানে অনাকোন জীব ভানাতে পারে না তেমন জায়গায় লাইকেন লক্ষ্য ধীর গতিতে মাটি গঠনে সহায়তা করে। সেখানে লাইকেনের মৃতদেহাবশেষ থেকে হিউমাস গঠিত হয়। এসব হিউম পাধরের সাথে মিশে মাটি গঠন করে। এরপর সেখানে পর্যায়ক্রমে অন্যান্য জীব সম্প্রদায় জন্মতে আরম্ভ করে। এর লাইকেন জেরোসিরি পর্যায়ের সচনা করে।
- (২) মানুষের বাদ্য হিসেবে : অধিকাংশ লাইকেনে 'লাইকেনিন' নামক এক প্রকার কার্বোহাইছেট থাকার করে কতক প্রজাতি মানুষের খাদ্য হিসেবে ব্যবহৃত হয়। নরওয়ে, সুইডেন ও আইসল্যান্ডের অধিবাসীরা Cetrana ista নামক লাইকেনটি খাদ্য হিসেবে গ্রহণ করে থাকে। ভারতের মাদ্রাজে Parmelia, মিশরে Evernia এবং কর্মত Endocarpon नामक णाइँदक्त मानुरवत बाना विस्तर तातकड इस ।
- (৩) পশুর খাদ্য হিসেবে : তুন্দ্রা অঞ্চলের কিছু গাইকেন Reindeer মস (Cadonia rangiferma) নামে পশুরু এখনো বদগা ধনিব ও গৰাদি পত্তৰ প্ৰিয় খাদা। কাঁট পতপ্ৰের <u>পার্চার</u> খাদা হিলেবেও গাইকেন ব্যবহুত হলে খাক।
 - (৪) আন্টিবায়োটিক হিসেবে : লাইকেন থেতে উৎপর্ ডিসনিক আনিক্যাম পলেটিত ব্যাকটেরিয়ার করে আৰু
- (৫) টিউমার (ক্যালার) রোগে : লাইকেন জাত Usno এবং Evosin নামক আন্তিলেণটিক জিল টিডার প্রতিলোধী ৰাগা নিয়াময়ক এবং ভাইনাস প্ৰতিরোধক। কিছু লাইকেন Lichenin ও Isolichenin পুটি করে। এবা চিত্রমান প্রতিরোধক।
 - (6) AHERIOL: GREEKH HING MINISTER SHEET ROCCHE MONINGER COM SEME PLYING THE TO

(৭) বিভিন্ন বোগে: জলাতভের তথুধ হিসেবে Peltigera, ছপিং কফ রোগে Cladonia পুৰং মাধার তদুধ হিসেবে (৭) শোল্প নাবহার করা হয়। এছাড়াও জডিস, ডায়ারিয়া, অবিরাম জ্ব এবং নানাবিধ চর্মরোগেও লাইকেন আত ওমুধ ব্যবহার করা হয়।

(৮) ভবিদ রোগ নিরাময়ে : লাইকেন থেকে প্রাপ্ত সোভিয়াম উসনেট টমেটোর ক্যাঞ্চার রোগ এবং লিকানোরিক

আদিত তামাকের মোজাইক রোগ নিরাময়ে ব্যবহৃত হয়।

(৯) পিটমাস পেপার প্রস্তৃতিতে : রসায়নাগারে লিটমাস পেপার আসিত বা কার নির্ণয়ে ব্যবহৃত হয়। Rocella monjulguei থেকে নির্গত রাসায়নিক উপাদানই লিটমাস পেপার তৈরিতে ব্যবহৃত হয়।

(১০) সুগন্ধি ও প্রসাধনী সামগ্রী তৈরিতে : Evernia, Ramalina ইত্যাদি লাইকেন বিভিন্ন প্রসাধনী সামগ্রী ও সুগন্ধি

তৈরিতে ব্যবহৃত হয়।

(১১) রং ও ট্যানিন উৎপাদনে: Cetraria, Lobaria ইত্যাদি লাইকেন হতে ট্যানিন পাওয়া যায় যা চামড়া ট্যানিংছে ব্যবহৃত হয়। Rocella montaignei হতে এক ধরনের রং সংগ্রহ করা হয় যা উলেন ও সিল্ক জাতীয় কাপড় রং করতে বাবহুত হয়।

(১২) উত্তেজক পদার্থ তৈরিতে : রাশিয়া, ফ্রান্স, সুইচেন ইত্যাদি দেশে ইস্টের পরিবর্তে Usnea, Ramalia প্রভৃতি

লাইকেন আলকোহল, বিয়ার ইত্যাদি তৈরিতে ব্যবহৃত হয়।

खमाना : नाहेरकन नाहेर्द्धारलन সংবদ্ধনে, ताभाग्रनिक भमार्थ উৎপाদনে (निकातातिक आभिन्न, উসনিক आभिन्न), দ্যদের সূচকরপে প্রভৃতি কাজে ব্যবহৃত হয়। এছাড়া কিছু লাইকেন থেকে ন্যাপথালিন, কর্পুর জেরানিয়ল, বর্দেশ্রল ইত্যাদি डेबारी भवा भाउरा यारा।

অপকারী দিক (Harmful role) : লাইকেন বৃক্ষ, পুরাতন ইটের দেয়াল, মার্বেল পাধরের তৈরি সৌধ ইত্যাদির কিছুটা ক্ষতি সাধন করে থাকে। কতক লাইকেন বিয়াক। এসব লাইকেন ভক্ষণ করে অনেক গ্রাদি পত এমনকি মানুষও অনেক সময় মারা যায় Cladonia, Usnea গড়ার কোনো কোনো প্রজাতি তাদের অশ্রয়দাতা উত্তিদের কঠি সাধন করে। মার্বেদ পাবরের তৈরি মূল্যবান ভাকর্য, স্মৃতিসৌধ ইত্যাদিতে বসবাসকারী লাইকেন পাধরের কয়সাধন করে এবং সৌন্দর্য नष्टे करत रकरण।

Letharia vulpina নামক লাইকেনে বিষাক্ত পদার্থ থাকার কারণে ঐ লাইকেন নেকড়ে নিধনে ব্যবহার করা হয়। পুরাতন কাচের উপর লাইকেন জন্মানোর ফলে কাচ অখচছ হয়ে যায়। Evernia, Usnea প্রভৃতি পাইকেন মানুদের দেছে চর্মরোগ, এলার্জি ও হাঁপানি রোগ সৃষ্টি করে। Usnea জাতীয় লাইকেন এক গাছ থেকে অন্য গাছের মাথা পর্যন্ত বিস্তৃত থাকে। কোনো কারণে দেখানে দাবানল হলে ঐ লাইকেনের মাধ্যমে এক গাছ থেকে অন্য গাছে আগুন ছড়িয়ে পড়ে।

বিষ্ণাত শ্ব (Parmelia sp.).

বেনভিয়াত মস Cladonia rangiferina) ইত্যাদি কতিপন্ন লাইকেনের বিশেষ নাম।

পরিবেশ দূষণ নির্দেশক : লাইকেন বাতাস বা বৃষ্টির পানি থেকে অভিদ্রুত তার প্রয়োজনীয় বস্তু সংগ্রহ করতে পারে। একইভাবে সালফার ভাই-অক্সাইড, হেডি মেটাল, রেডিও আকটিড বস্তুও দ্রুত শোষণ করে থাকে। এসব দুষিত বস্তু শোষণের ফলে এদের মৃত্যু ঘটে। কাজেই <u>বায়ু দুখণের একটি নির্দেশক</u> (indicator) হিসেবে লাইকেনকে ধরা হয়। অধীৎ বায় দূৰণ অঞ্চলে লাইকেন কম পাওয়া যাবে।

শাইকেনের পরিবেশীয় গুরুত্ব (Ecological significance of Lichen)

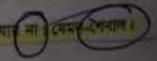
শাইকেন একটি অতি সাধারণ ও নিমু শ্রেণির গ্যালয়েড উদ্ভিদ হলেও ভূমি ও বায়ুমতলে যথেটি চক্তবুপুর্ব ভূমিকা শালন न्छ या निष्ठ डिप्तार्थ क्या द्वा :

১। পাধর থেকে মাটি তৈরি : লাইকেন নির্গত CO2 জলীয়বাল্প বা বৃষ্টির পানি বা কুয়াশার লাখে মিশে যে কার্যনিক আদিত তৈরি করে তা পাধর বা শিলা খণ্ডকে কর করে ছোট ছোট মাটি কদায় পরিণত করে এবং মক্তর ক্রমান্যদের বুচনা করে যা এক সময় বনশ্রম সৃষ্টিতে ভূমিকা রাখে। ২। নাইটোজেন সংবদ্ধন : পাইকেনের দেহ গঠনকারী সাধানোবাকটেরিয়া (Nastoc, Anabama) শৈবাদ বায়ুত মুক্ত

N; আদকে উন্নিদের গ্রহণ উপযোগী NH2. NO, NO, ইত্যাদিতে পরিগত করে।

- ও। মাটির পানি ধারণ ক্ষমতা : লাইকেন সৃষ্ট হিউমাস মাটির পানি ধারণ ক্ষমতা বৃদ্ধি করে এবং মাজি বিশ্ব
- ৪। উনুক্ত পাহাড় ও গাছের বাকলে লাইকেন জন্মে তাদের দৃষ্টিনন্দন করে।
- ৫। পরিবেশ দৃষণের ইন্ডিকেটর হিসেবে কাজ করে।
- ও। গাছের গুড়ি, পুরাতন ইটের দেয়াল ও ছাদে লাইকেনের দীর্ঘ অবস্থানের ফলে আবাসস্থল কয় ও সালেনার হা

দলগত কাজ : পরিবেশ থেকে বিভিন্ন ধরনের লাইকেন সংগ্রহ করে শনাক্ত করতে হবে। কোনটি লোন গাহের সংগ্ পাওয়া গিয়েছে তা শিখতে হবে। সারাবছরই ঐ গাছে এটি থাকে কি না তা পর্যবেক্ষণ করতে হবে। কেন্দ্রা পাতে লক্ষ করলে তা খাতায় লিপিবন্ধ করতে হবে। সবশেষে একটি প্রতিবেদন শিক্ষকের কাছে উপস্থাপন করতে হবে।


সার-সংক্রেপ

শৈবাল : Algae (একবচনে Alga)-এর বাংলা প্রতিশব্দ করা হয়েছে শৈবাল। শৈবাল সালোকসংক্রেকানী সভেত অভাকুলার, অপুশ্পক উদ্ভিদ। এদের জাইগোট খ্রীজননাঙ্গে থাকা অবস্থায় কর্মনও বহকোষী ভ্রাণে পরিণত হয় না টেকে এককোষী হতে পারে, বহুকোষীও হতে পারে। এককোষী শৈবাল এককভাবে বাস করতে পারে, আবার কলেনি করঙ বাস করতে পারে। এরা মিঠা পানিতে, লবণাক্ত পানিতে, মাটিতে, এমনকি গাছের বাকল ও গাতায় বাস করতে গাতা ক্রোরোফিলযুক্ত এককোষী বা বহুকোষী সরল প্রকৃতির অভাপুলার এবং সমাপদেয়ী উভিদগোচীকে শৈবাল বলে। আছ অযৌন ও যৌন এসব প্রক্রিয়ায় এদের বংশবৃদ্ধি ঘটে। অধিকাংশ শৈবালই সবুজ, কতক শৈবাল বাদামি এবং কতক শৈকে লাল বর্ণের। নীলাভ-সরুজ শৈবালকে বর্তমানে সায়ানোব্যাকটেরিয়া বলা হয়, কারণ এরা আদিকোষী; জনা সং কৈজ প্রকৃতকোষী। বাস্ততন্ত্রের খাদাশৃত্ধলে উৎপাদনকারী হিসেবে শৈবাল অতীব গুরুত্পূর্ণ। মানুষ ও পজা খাবার থেকে জ করে শৈবালের আরও অনেক গুরুত্ব আছে।

ছ্মাক : Fungi (একবচনে fungus)-এর বাংলা প্রতিশব্দ করা হয়েছে ছ্যাক। ছ্যাকে কোরোজিব বা ক্লাকে ফটোসিনথেটিক পিগমেন্ট না থাকায় এরা সালোকসংশ্লেষণ প্রক্রিয়ায় খানা প্রস্তুত করতে পারে না। তাই ছব্রাক মৃত্যুবী ই পরজীবী। বহুকোষী ছ্যাকের সূত্রকে হাইফি বলে। হাইফিওলো একত্রিত হয়ে মাইসেলিয়াম গঠন করে। হত প্রকৃতকোষী, অসবুজ, অভাকুলার এবং অপুস্পক উদ্ভিদ। ক্লোরোফ্রিপবিহীন এককোষী বা বহুকোষী সরু বর্গন অতাকুপার, সমাক্ষেত্রী উন্তিদগোলীকে ছ্যাক বত্বে সমাক্ষ্য এবং যৌন উপায়ে এদের জনন হয়ে থাকে। ক্যাল অসংখ্য রোগের কারণ ছত্রাক। আবার মানুষের খীমুরু হিসেবে (যেমন-Agaricus), ওযুধ তৈরিতে, (যেমন-Aspergalla), শিল্পে (যেমন- Yeast) ছ্যাকের ব্যাপক ব্যবহার হয় 🕽

শাইকেন : প্রকৃতিতে সহঅবস্থানের এক উজ্জ্ব দৃষ্টান্ত লাইকেন। দৃটি মিথোজীবী জীবের (শেবাল ভ হতে) সহবস্থানের ফলে লাইকেন সৃষ্টি হয়। ছত্রাক পরিবেশ থেকে পানি, খনিজ লবণ ইত্যাদি শোষণ করে শৈবাদকে প্রদান করে আর শৈবাপ তা দিয়ে সাপোকসংশ্রেষণ প্রক্রিয়ায় খাদা প্রস্তুত করে। প্রস্তুতকৃত খাবার শৈবাল এবং ছ্তাক উভাই আ ক্রে এইণ করে।

নমাসদেহী উদ্ভিদ : উদ্ভিদক্ষণতের এমব উদ্ভিদকে মূল, কাও ও পাতায় বিভক্ত করা যাই না

ञनुशोजनी

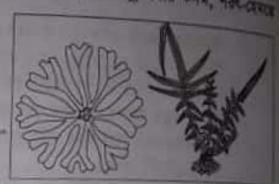
वहनिर्वाहिन धन्न (MCQ)

ম্যালেলাযুক্ত শেলারকে বলে—

(३) शृतनात

(अ) व्याचारमार~नाव

(গ) হিপলোল্যার


(4) Asptach

ষষ্ঠ অধ্যায়

ব্রায়োফাইটা ও টেরিডোফাইটা BRYOPHYTA AND PTERIDOPHYTA

আমরা সারা বৃত্রই কোনো না কোনো গাছে ফুল ফুটতে দেখি। গ্রীখে খর্ণচাপা, সোনাপু, বর্গায় কলম, শব্দ হেন্দ্র

শেফালি, শীতে গোলাপ, সূর্যমুখী, ডালিয়া, বসন্তে পলাশ, শিমুল ইত্যাদি। এসব উদ্ভিদ হলো পুস্পক উদ্ভিদ (flowering plants). এদেরকে ফ্যানেরোগ্যামস (phanerogams)ও বলা হয়। আবার অনেক উন্তিদ আছে যাদের কখনোই ফুল হয় না। এসব উন্তিদকে বলা হয় অপুস্পক উদ্ভিদ (non-flowering plants). এরা ক্রিক্টোগ্যামস (cryptogams) নামেও পরিচিত। ব্রায়োকাইটা ও টেরিডোফাইটা গ্রন্থের উদ্ভিদসমূহ হলো অপুষ্পক উদ্ভিদ। পঞ্চম অধ্যায়ে আলোচিত শৈবাল

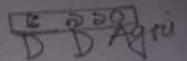
এবং ছুব্রাকণ্ড অপুস্পক উদ্ভিদ। শৈবাল ও ছুব্রাক হলো লোয়ার ক্রিন্টোগ্যামস (lower cryptogams) এবং ব্রায়োক্ষরি ও টেরিভোফাইটা গ্রন্থের উদ্ভিদ হলো হায়ার ক্রিপ্টোগ্যামস (higher cryptogams), কারণ এরা গঠনগত বৈশিষ্ট্যে দৈকে ভ ছুত্রাক অপেকা উনুত ও জটিল প্রকৃতির। এ দু'টোর মধ্যে আবার টেরিডোফাইটা উনুত। ব্রায়োফাইটা ও টেরিডোফাইটা মধ্যে বাহাক মৌলিক পার্থকা হলো ব্রায়োফাইটা উদ্ভিদসমূহকে সভাকার মূল, কাও ও পাতায় বিভক্ত করা যায় ন কি টেরিভোকাইটা উদ্ভিদসমূহকে সত্যিকার মূল, কাও ও পাতায় বিভক্ত করা চলে। এছাড়া ব্রায়োকাইটা অভায়ুগার कি টেরিভোঞাইটা ভাকুলার। অপেকাকৃত কম উনুত থ্যালোফাইটা (শৈবাল ও ছত্রাক) এবং উনুত টেরিভোফাইটার মতে मरयाग मुडिकाती मधावर्जी अन्य करणा द्वारमाकावेजा।

উপরে পাশাপাশি দু'টি উদ্ভিদের চিত্র দেয়া হলো, একটি ব্রায়োফাইটা উদ্ভিদ, অপরটি টেরিডোফাইটা উদ্ভিদ। সেন্ট

ব্রায়োকাইটা আর কোনটি টেরিভোফাইটা চিনতে পার কি? চিনতে পারলে চিত্রের নিচে নাম পেখ।

এ অব্যাহ পাঠ পেষে শিকার্থীরা-

- ব্রায়োভাইটার বৈশিষ্ট্য বর্ণনা করতে পারবে।
- Riccia এর আবাস, গঠন ও শনাক্তকারী বৈশিষ্ট্য বর্থনা করতে পারবে।
- টেরিভোফাইটার বৈশিষ্ট্য বর্ণনা করতে পারবে।
- 8. Pteris এর আবাস, গঠন, জনুক্রম বর্ণনা করতে পারবে।
- ৫. ব্যবহারিক
- o Pteris এর স্পোরোফাইট শনাক্ত করতে পারবে।


ব্রায়োফাইটা (Bryophyta) বা মসবর্গীয় উদ্ভিদ ্রু 🕳

(Gk. Bryon = মস এবং phyton = উঞ্জিদ)

প্রচলিত শ্রেণিবিন্যাস অনুযায়ী ব্রায়োকাইটা একটি বিভাগ। Margulis এর শ্রেণিবিন্যাস অনুযায়ী ব্রায়োকাইটা একটি মেভ এবং ফাইলাম (বিভাগ)। Wallace, Sanders ও Ferl-এর Biology (১৯৯৬) অনুরায়ী ব্রারোকাইট্স-এর বক্তির সংখ্যা ১৫,৬০০ যার অধিকাংশই স্থলা, কিছু জলতা। স্থাক প্রজাতিগুলোরও জীবনচক্র, বিশেষ করে নিষেকজিনা সংগ্র কাতে পানির প্রবোজন হয়। তাই প্রায়োখাইটা উভচর উদ্ভিদ হিসেবে পরিচিত। বিজ্ঞানী ব্রাউন (Braun) ১৮৬৪ বল ব্রায়োক্তাইটা সামটি বাবহার করেন। Bryophyta বর্গের উদ্ভিদকে Bryophytes (ব্রায়োকাইট্স) ব্রয়ে। বাংলাদেশ থেকে ্ বিশালের অন্তর্গত তপ্তটি গোলের ৭৪টি গাণের ২৪৮টি প্রজাতি প্যাক্ত করা হয়েছে। ব্রায়োকাইটার সর প্রজাতিত नहानिएक जाबादन देवनिष्ठा निमामान ।

State State (Characteristics of Bryophyta) ু এবা বহুকোনী উদ্বিদ। এবা অপুশাক ও অবীলী।

अपना त्यर मामिट्राकाहेड (gametophyte) ज्या (हाभटराई) मामिट्राकाहेड अर्थमार्ड ४७५ व पट्टाकी डेडिंग ।

ত। সেই ধ্যালয়েড অর্থাৎ দেহকে সত্যিকার মূল, কাও ও পাতায় বিভক্ত করা যায় না, তবে মস ভাতীয় উল্লিদকে সরম কাও ও পাতার' মতো অংশে চিহ্নিত করা যায়।

এদের মূল নেই, তবে মূলের পরিবর্তে এককোষী রাইজয়েত এবং কোনো কোনো প্রজাতিতে বহুকোষী কেল

৫। এদের দেহে কোনো ভান্ধুলার টিসু(নেই) দেহ প্যারেনকাইমা টিসুা দিয়ে গঠিত।

৬। এদের জননাঙ্গ বহুকোষী এবং বন্ধ্যাকোষাবরণ দিয়ে আবৃত।

৭। যৌন জনন উপ্যামাস প্রকৃতির অর্থাৎ বড় নিশ্চল প্রী গ্যামিটের (ডিমাণু) সাথে কুদ্র ও সচল পুং গ্যামিটের (ভক্রাণু) মিলন ঘটে।

৮। এদের ভ্রণ বহুকোষী, ভ্রণ স্ত্রী জননাদের অভ্যন্তরে থাকে।

১। স্পোরোকাইট গ্যামিটোকাইটের উপর পূর্ণ বা আংশিক নির্ভরশীল এবং সর্বদাই গ্যামিটোকাইটের সাথে সংযুক্ত বাকে। উৎপন্ন স্পোর একই আকার আকৃতি বিশিষ্ট অর্থাৎ হোমোস্পোরাস

১০। জীবনচক্রে গ্যামিটোকাইট প্রধান এবং স্পোরোকাইট গৌণ

ব্রায়োকাইটা নামটি এসেছে দু'টি গ্রিক শব্দ হতে। গ্রিক Bryon অর্থ মস এবং phyton অর্থ উদ্ভিদ। মস এবং এর সাথে মিল সম্পন্ন উদ্ভিদসমূহ ব্রায়োফাইটা বিভাগের অন্তর্গত। এ বিভাগের উদ্ভিদসমূহকে তিনটি শ্রেণিতে বিন্তু করা হয়েছে; যথা:ন্য হেপাটিকি (Hepaticae), ii) আছেসিরোটি (Anthocerotae) এবা iii) মাসাই (Musci).

ব্রায়োমাইটের আদি বৈশিষ্ট্য : 🖂 উদ্ভিদ হ্যাপ্রয়েড, 😂 শ্রমিকাংশই ধ্যালয়েড, 😂 এদের সত্যিকার মূল নেই,

(A ভাঙ্গলার টিস্যু নেই, (৫) এরা হোমোম্পোরাস)

ব্রায়োফাইটের উনুত বৈশিষ্ট্য : Anthoceros উত্তিদের ক্যাপসিউলে অবস্থিত কুলোমেলা, স্টোম্যাটাযুক্ত এপিডার্মিস,

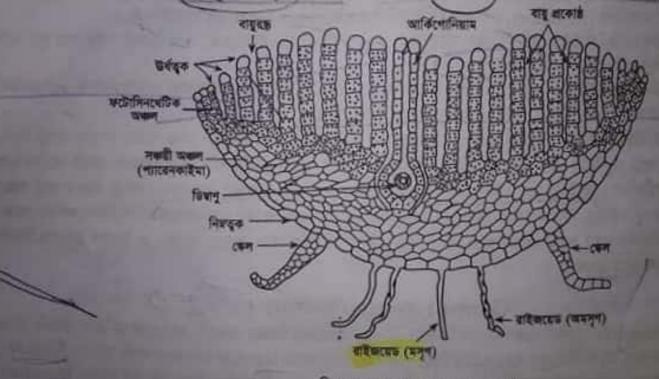
ক্যাপসিউলের গোড়ায় ভাজক টিসার অবস্থান এগুলো হলো উনুত বৈশিষ্টা।

ব্রায়োফাইটা উভচর উদ্ভিদ: এদের অনেক সদস্যই আর্দ্র স্থলজ পরিবেশে জন্মায়। কিন্তু পানির সাহায্য ছাড়া জনন, বৃদ্ধি ও বিকাশ ঘটে না, তাই এরা উভচর উদ্ভিদ। স্থলজ পরিবেশে জন্মালেও এদের জীবন চক্রের একটি বিশেষ ধাপ পানির উপর নির্ভরশীল। অর্থাৎ এদের যৌন জননের জন্য পানির উপস্থিতি একান্তই প্রয়োজন। জীবন চক্র সম্পন্ন করার সময় এদের তক্রাণু পানিতে সাঁতার কেটে ডিমাণুর নিকট উপস্থিত হয় এবং পানির উপস্থিতিতে নিষেকক্রিয়া সম্পন্ন করে। এরাও জলজ উদ্ভিদের ন্যায় পানি শোষণ করে এবং দেহে জলজ উদ্ভিদের ন্যায় বায়ুরন্ত্র থাকে। এ কারণে ব্রায়োঞ্চাইটাকে উভচর উদ্রিদ বলা হয়ে থাকে।

Genus : Riccia (त्रिकनिया) 45 /200

Riccia, Hepaticae শ্রেণির অন্তর্গত একটি গণ। Riccia উদ্ভিদের বিভিন্ন প্রজাতি বাংলাদেশের প্রায় সর্বত্রই জন্মে থাকে এবং বর্ষাকালে প্রচুর পরিমাণে পাওয়া যায় কিন্তু কুদ্রাকার বলে আমরা এদেরকে সাধারণত লক্ষা করি না, চিনিও না। এদের সাথে আমরা তেমন পরিচিত নই। Riccia একটি বড় গণ। প্রায় ২০০টি প্রজাতি নিয়ে এই গণ গঠিত। Hepaticae

শ্রেণির সদস্যদেরকে লিভারওয়ার্ট (Liverwort) বলে। এদের দেহ অর্থাৎ গালাদের আকৃতি মানুষের লিভার-এর সাথে কিছুটা মিল সম্পনু হওয়াতে अक्रम नामकदमे कता इत्स्रह्म। वाश्नातम (पदक Riccia भएनत (80%) श्रजाि শনাক্ত করা হয়েছে। নতুন প্রজাতির মধ্যে R. bengalensis, R. dhakensis,


R chittagonensis उद्भाषाना । আবাসস্থশ : Riccia গণের বিভিন্ন প্রজাতি স্যাতসেঁতে মাটিতে, আর্দ্র খাজীরের গায়ে জনো থাকে। নদীতীরে বালিতে Riccia জন্মিতে দেখা যায়। Riccia fluitans আট ছোট ভোৱা-প্করের পানিতে ভাসমান অবস্থায় দেখা

নায়। বুর্গাকালেই Riccia অধিক জন্মায়।

বাহ্যিক গঠন বৈশিষ্ট্য : Riccia গ্যামিটোকাইটিক উল্লিদ। এদের দেহ শালমেত অর্থাৎ দেহকে মূল, কাও ও পাতায় বিভক্ত করা যায় না। পাালাসটি সবুজ, শায়িত এবং বিষয়পুট। পাালাস ছাগ্র শ্বাবিশিষ্ট। সাধারণত কতভ্যো Riccia খ্যালাস একতে গোলাপের পাপড়ির মড়ো গোলাকার চক্ত করে অবস্থান করে। এই অবস্থাকে রোজেট বলে। থ্যালাসের উপর পৃষ্ঠে লখালখিভাবে মধ্যশিরা আছে এবং শিরা বরাবর দল বীত । এই অবস্থাকে রোজেচ বলে। খ্যালালের তার বুল furrow) আছে। খ্যালাসের প্রতিটি শাখার শীর্ষে একটি খাজ আছে, একে অগ্রস্থ খাজ (apical notch) বলে। ধালা furrow) আছে। খ্যালালের আতাচ শামার নিজ নিচের পৃষ্ঠ থেকে বহুকোষী স্কেল এবং এককোষী রাইজয়েড সৃষ্টি হয়। রাইজয়েড মসুণ এবা সমস্থ গোলাচ নেচের পৃষ্ট থেকে বহুকোর। এবং নাটের সাথে আটকিয়ে রাখা এবং মাটি থেকে পানি ও খনিজ শ্রণ শেষ্ট ক্ষেল ও রাইজয়েড এর কাজ।

অভ্যন্তরীপ গঠন বৈশিষ্ট্য : প্রস্থচেহদে খ্যালাসকে তিনটি পৃথক অম্বালে বিভক্ত দেখা যায় : (i) উপজে নিয় ক্লোরোপ্লাস্টযুক্ত ফটোসিনথেটিক বা আন্তীকরণ অঞ্চল, (ii) নিচের দিকে বর্ণহীন সঞ্চয়ী অঞ্চল এবং (iii) নিমুক্ত।

(i) ফটোসিনথেটিক বা আন্তীকরণ অঞ্চল (Photosynthetic or assimilatory zone) : গ্যালাসের উপজে 🔯 ক্রোরোপ্লাস্টযুক্ত খাড়া কোষের সারি নিয়ে এ অঞ্চল গঠিত। এই অঞ্চলে ফটোসিনথেসিস হয় এবং খানা ভৈদি হা কোরোপ্লাস্টযুক্ত এ সারিগুলোকে আশ্রীকরণ সূত্র বলে। এসব আশ্রীকরণ সূত্রের মধ্যবর্তী সরু ও পদা নাশীর নায় বহু স্থানকে বায়ু প্রকোষ্ঠ বলে। প্রতিটি বায়ু প্রকোষ্ঠ একটি ছিদ্রপথে বাইরের সাথে উন্মুক্ত থাকে। এ ছিদ্রপথকে ব্য (airpore) বলে। আন্ত্রীকরণ সূত্রের বাইরের কোষগুলো কিছুটা বড় ও ক্রোরোপ্রাস্টবিহীন থাকে। বদহীন এ ক্রোডা প্র্যালাসের উপরিভাগে একটি অসম্পূর্ণ উর্ধ্বত্ক গঠন করে। বর্ণহীন প্রক্রসারি কোষ দিয়ে প্রালাসের উর্ধ্বত্ক গঠিত।

कित ७.२ : Riccia महामाटमव दाष्ट्रायम ।

(ii) সম্বাদী অঞ্চল (Storage zone) : গ্যালাসের ফটোসিনথেটিক অঞ্চলের নিচে এ অঞ্চল অবস্থিত। এ অঞ্চল করেক সারি বর্ণহান প্রারেনকাইমা কোষ হারা গঠিত এবং সাধারণত আন্তঃকোষীয় ফার্ক(বিব্রন্তি) এ সকল কোষে 📭 খেতবার কণা সঞ্জিত থাকে।

(III) নিমুত্ক । একসারি কোষ দিয়ে নিমুত্ক গঠিত। নিমুত্ক সুগঠিত। নিমুত্ক থেকে বছ এককোরী বাইজ্যে (মসুণ এবং অমসুণ) ও বছকোয়ী শব্দ বা কেল নিগতি হয়।

তক্ষর : মাটিতে ক্রের পদার্থ সংযোজনে কিছুটা ভূমিকা পালন করে। পুরিবেশ দুঘণের সূচক ছিসেবে কাল করে। বিবর্তন ধারা বিষয়ে প্রথম রুণার ডিডিনের বৈশিয়া সম্পর্কে ধারণা দিতে সহায়তা করে।

১। সেই খ্যালুকেই অৰ্থাৰ মূপ, কাৰ ও পাত্ৰক বিচ্ছক নয়। Ra आमार (मन्य) निविद्य (काम्य) जन विभवनके

ও। খ্যালাস হল শামানিশিই এইং প্রতি শামার মাধায় থাকযুক।

। बाानात्मक निवानुदर्भ मुद्दे क्रकात अन्यकाची मनुग च क्रमनुग वादेशदयस अवस रहाकारी (कण (शक) विभागात ।

व्यनिविन्धांत्र

Kingdom: Plantac Grade: Bryophyta Division: Bryophyta Class Hepatica Order Marehinitales Family, Ricciacoac Grant Ricerat

ে। বলাইনৈ তিস্থা উপরের পৃষ্ঠের দিকে দ্বাকার (ফাঁকে ফাঁকে বাযু একোচযুক্ত) ফটোসিয়েটিক অধাল এবং নিচের পৃষ্ঠের নিবে অবিচিন্ন কোষের সক্ষয়ী অঞ্চলে বিভঙ।

নিক্তি আর্কিগোনিয়াম পুং জননাস আছেরিডিয়াম এবং স্পোরোফাইট হোমোস্পোরাস।

ও। আকিশোনিয়াম দেখাতে ফ্রান্ডের মতো এবং আছেরিডিয়ামের আকৃতি নাসপাতির মতোঃ গোলাকার, ডিগাকার বা বেলনাকার। টেরিডোফাইটা (Pteridophyta) বা ফার্নবর্গীয় উদ্ভিদ

(Gk. Pteron = ফার্ন এবং phyton = উজিদ)

ন্ত্ৰক শব্দ Pieron (পক্ষল বা ভানা এবং phyton (উত্তিদ) থেকে Pteridophya শব্দের উৎপত্তি। এর আভিযানিক জুর্ব হলো পক্ষল বা ডানাবিশিষ্ট উদ্ভিদ। বিভিন্ন শোভাবর্ধনকারী ফার্ন (fem)-এর সাথে আমরা অনেকেই পরিচিত। ট্রেকিশাকও (Depopteris) এক ধরনের ফার্ন। সকল ফার্ন ও ফার্ন জাতীয় উদ্ভিদ টেরিডোফাইটা বিভাগের অন্তর্গত, তাই টেরিডোফাইটাকে ফার্নবদীয় উদ্ভিদ বলা হয়ে থাকে। এরা অপুদ্পক ও দেহে ভাস্কুলার টিস্যু থাকায় এদেরকে ভাস্কুলার ক্রিটোগ্রামস বুলা হয়। Wallace, Sanders ও Ferl-এর Biology (১৯৯৬) অনুযায়ী পৃথিবীতে প্রায় ১১ হাজার তেইশটি (১১০২৩) প্রজাতির টেরিডোফাইট উল্লিদ আছে। Pteridophyta বিভাগের অন্তর্গত উদ্ভিদ(সমূহ)কে Pteridophytes (টেরিডোফাইটস) বলা হয়। বাংলাদেশ থেকে ৪১ গোত্রের ১৯৫)প্রজাতির টেরিডোফাইট নথিভুক্ত করা হয়েছে। অধিকাংশ প্রজাতিই স্থলজ, কতক জলজ ও কতক পরাশ্রমী প্রজাতি আছে। এই ফপের উদ্ভিদই প্রথম স্থল ভাগে প্রাধানা বিস্তার লাভ করেছিল প্রায় ৪০০ মিলিয়ন বছর পূর্বে।

টেরিভোফাইটার বৈশিষ্ট্য

১। এরা অপুস্পক ও অবীজী উদ্ভিদ।

 গামিটোফাইট পর্যায়কে প্রোথ্যালাস বলে, যা থ্যালাস প্রকৃতির।

৫। এদের ভাঙ্কুলার টিস্যু আছে।

৭। অধিকাংশ প্রজাতিতে কাওরাইজামে রূপান্তরিত হয়।

১। এদের জননাস বহুকোষী এবং জননাঙ্গের চারদিকে বদ্যাকোষের বেষ্টনী থাকে।

১১।এদের প্রীগ্যামিট নিক্তল এবং আর্কিগোনিয়ামে উৎপন্ন रुग्र।

২। এরা স্পোরোফাইটিক উদ্ভিদ অর্থাৎ ডিপ্রয়েত্র।

৪। এদের দেহকে মূল, কাও ও পাতায় বিভক্ত করা यास ।

७। जन मृहि द्या।

৮। স্পোরোফাইটে স্পোর উৎপুর হয়, যা সম (homosporous) বা অসম (heterosporous) আকারের হতে পারে।

১০। এদের পুংগ্যামিট সচল এবং আছেরিভিয়ামে

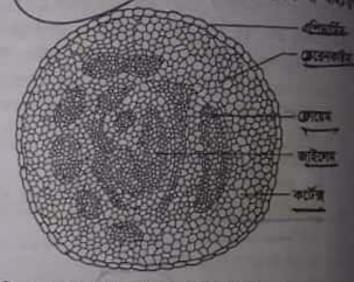
छि९भग হয়।

১২। জীবনচক্রে সুস্পর্ট হিটারোমরফিক জনুক্রম বিদ্যমান।

Genus: Pteris (টেরিস) ি /০৪০

বাংলাদেশে Pteris উদ্ভিদ একটি পরিচিত ফার্ন উদ্ভিদ। রোদে জনাতে পছন্দ করে বলে Pterix উদ্ভিদ সানফার্ন নামে পরিচিত। বাংলাদেশে Pteris এর প্রায় ১৬টি প্রজাতি জনো থাকে। যেমন-Pteris vittata. P. longifolia ইত্যাদি। সৰচেয়ে বেশি জন্মায় Pteris vittata

আবাসস্থল (Habitat) : Pteris সাধারণত পুরাতন ও ভাঙা শাতদেতে প্রাচীরের গায়ে জনায়। পুরাতন ইটের স্থূপেও এরা वाला कमाय। श्राठीतित गाता जवर रहिन स्ट्ल कमाय वरण जना মাজারহীয় বা মার এরিয়াল। Pieris গণের প্রায় ২৫০টি প্রজাতি SCHOOL !


Pteris-वाद देनिक् शर्तन (Vegetative structure of Plants) : Previs धार श्रधान छिडिम दान्धत वा द्र्यादाकारेणिक ना ত্রমান । এদের দেহ মুগ, কাও এবং পাতায় বিভক্ত। কাও

রাইজোম (রূপান্তরিত ভূনিমুস্থ কাও) জাতীয় এবং আবাসভূমির করেক সেন্টিমিটার গভীরে জনায়। এটি দেখতে সং এর বৃদ্ধি অনিদিন্ত্র রাইজোমের নিমুতিল হতে সৃক্ষ স্বপ্ত শাখাযুক্ত অস্থানিক মূল গুড়হাকারে বের হয়। পাতা চির স্কু পক্ষল যৌগিক স্থাৰ্থের পাতাকে ফ্রন্ড (frond) বলে। মুকুল অবস্থায় পাতা কীভাবে বিনান্ত থাকে তাকে বলা হা ভ্রু বা মুকুলপত্র বিন্যাস। ফার্নের পাতা মুকুল অবস্থায় কুওলী পাকানে অবস্থায় পাকে যাকে বলা হয় সার্বিনেট ভার কুওলিত কচি পাতাকে ক্রোজিয়ার (crozier) বলে। পত্র যৌগপত্র এবং প্রতিটি পত্রকখন্তকে পিনা (pinna) বলে পিনা প্রায় অবৃত্তক, সাধারণত অপজিট কখনো কখনো কিছুটা একান্তরভাৱে অবৃত্তি থাকে। প্রতিটি পিনা অবৃত্ত लपाटि (linear shaper) এবং किनाता प्रमुण । शीर्षक जिना मर्वाधिक लगा जिला प्रदात नीपिक निमुधात धरा हारे हार প্রকার অসংখ্য বাদামি রঠের শঙ্কপত্র দিয়ে আবৃত থাকে। শঙ্কপত্র্যুক র্যামেন্টাম বলে 🍳 অভ্যন্তরীণ গঠন (Internal structure)

রাইজাম (কাও) : রাইজোম কাণ্ডের সূর্ববাইরে প্যারে কাইমা কোষের একস্তর বিশিষ্ট এপিভার্মিস বা বার্যান অবস্থিত। বহিঃতৃক দিয়ে পরিবেষ্টিত অবস্থায় দুস্তর বিশিষ্ট হাইপোডার্মিস (অধঃতুক) এবং হাইপোডার্মিস দিয়ে পরিবেষ্টিত অবস্থায় বহুত্তর বিশিষ্ট কর্টেক্স অবস্থিত। কর্টেক্স-এ একাধিক ভাস্কুলার বাঙল আছে। ভাস্কুলার বাঙল হ্যাদ্রোসেট্রিক অর্থাৎ কেন্দ্রে জাইলেম এবং এর চারদিকে ফ্রোয়েম অবস্থিত।

র্যাকিস : র্যাকিসের প্রস্থচ্ছেদে বাইরে এপিডার্মিস, এপিডার্মিস দিয়ে পরিবেটিত অবস্থায় ক্লেরেনকাইমা কোষের হাইপোভার্মিস (অধঃত্ক) অবস্থিত। হাইপোভার্মিস দিয়ে পরিবেষ্টিত অবস্থায় বহুস্তর বিশিষ্ট কর্টেকা অবস্থিত এবং কর্টেক্স টিসাতে অবক্ষরাকৃতির স্টিলি (পরিবহন কলাগুছে) অবস্থিত। ভাস্কুলার বাভল্ হ্যাড্রোসেন্ট্রিক।

किंद्र ७.8 : Pieris-धव वावेरलाम कारक श्रहरून।

जनन (Reproduction) : Pieris উদ্ভিদ अञ्चल, अयोग এবং यৌन जनमের মাধামে বংশবৃদ্ধি করে। এলের আ েপারোফাইট উত্তিদে অঙ্গন্ত ও অযৌন জনন প্রক্রিয়া ঘটে থাকে এবং গ্যামিটোফাইট উদ্ভিদে যৌন জনন প্রক্রিয়া 💟 थारक।


১। অঙ্গঞ্জ জনন (Vegetative reproduction) : অনেক সময় পরিণত রাইজোমের অংশ বিশেষ মরে মার এই অপরিণত শাখাতলো বিচ্ছিত্র হয়ে পড়ে। বিচ্ছিত্র শাখাতলো নতুন মূল ও পাতা সৃষ্টির মাধ্যমে পৃথক স্পোরোকাইটি উত্তিদে পরিণত হয়।

২। অযৌন জনন (Asexual reproduction): Pteris উদ্ভিদে স্পোর সৃষ্টির মাধ্যমে অযৌন জনন সম্পন্ন হ Pieris উদ্ভিদ পরিণত বয়ত্ব হলে এর পত্রক বা পিনার নিমৃতলের দু'কিনারা বরাবর ভূম ভূম ভূম পোরাজিয়া (sperangia একবচনে sporangium) উৎপন্ন হয়। স্পোরাভিয়ামের অভ্যন্তরে রেণু বা স্পোর (spore) নামত অনৌন স্থান বেল (asexual reproductive bodies) উৎপন্ন হয়। স্পোরাছিয়াগুলে গুড়াকারে অবস্থান করে এবং সোরাছিয়াগুলে কর্মট লোরাস (sorus, বহুবচনে sori) বলা হয়। প্রতিটি সোরাস দেখতে বাদামি বর্ণের প্রকাকার দ্বা টিস্যু হতে শোরাছিয়া উৎপদ্ম হয় সে টিসাকে প্লাসেন্টা (placenta) বা অমরা বলে। পত্রক বা পিনার কিনারা ভেতরের দিকে একট্র থেকে এটা সোৱাইকে ভেতে রাখে। ফল্ক প্রান্তের এ চাকনি অংশকে ফলস্ ইভূসিয়াম (false indusium) মলা হয়। সেত্রস্থান্তারী পাতাবে ক্রেয়াকের উংপদ্রকারী পাতাবে স্পোরোক্ষিক) spotophyll) বলে। পরিগত স্পোরাছিয়াম একটি বৃত্ত (স্পোরাছিয়ামে প্রস্থামি স্পার্থমান স্প জপুরাকার আলুসিউপ জনে নিয়ে গঠিত। বুরের মাগ্রায় ত্যাগমিউপ অবস্থিত । ত্যাগমিউপ নিমুপিকিড অংশ নিয়ে গঠিত।

্রি ব্যানুকার (Annulus) : ক্যাপানিটের প্রাচীরের অধিকাংশ কাইটিনযুক্ত ও পুরু এক কোমতর বিশিট আনোলে অনুত্র স্বাহিত্যক আরম্ভাত্ত স্থাপানিটের প্রাচীরের অধিকাংশ কাইটিনযুক্ত ও পুরু এক কোমতর বিশিট আনোলে অনুত্র बारको कर मुक्त धानवनरक ध्यामुमान बरम । अहि भानिधादी

total units affarmance mental experiences Plantae etents are Abbrownible wards food feater and areas forth tam Filtersophymene weeks i Marguilla cefelfenness Prezidophym som exten fearm, and or cefe e-t if

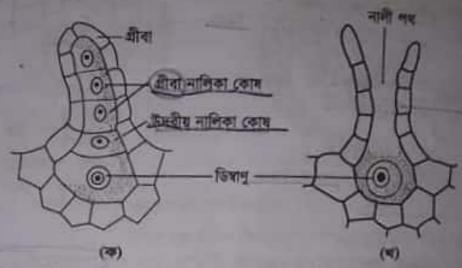
ক্টামিয়াম (Stomium) : ক্যাপসিউলের বৃত্ত সংলগ্ন কিছু অংশে প্রতেলা প্রাচীরবিশিষ্ট)বলয়াকার কোষ থাকে, এ আংশকে ক্লোমিয়াম বলে। স্পোর নির্গমনের সময় স্টোমিয়াম বরাবর স্পোরাছিয়াম ফেটে যায় এবং স্পোর নির্গমন হয়।

চিত্র ৬.৫ : সোরাস বরাবর ফার্ন পত্রকের প্রস্থাক্ষেদ ও স্পোরাঞ্জিয়াম।

(iii) বৃত্ত (Stalk) : স্পোরাঞ্জিয়ামের গোড়ায় একটি খাটো বৃত্ত আছে।

স্পোর উৎপাদন ও বিস্তার: ক্যাপসিউলের ভেতরের টিস্যুকে বলা হয়(স্পোরোজেনাস টিস্যু, কারণ এ টিস্যু হতে স্পোর মাতৃকোষ উৎপন্ন হয়। স্পোর মাতৃকোষ ডিপ্লয়েড (2n)। <u>মা</u>শ্লোসিস বিভাজনের মাধ্যমে স্পোর মাতৃকোন হতে হাপ্রিয়েড (n) স্পোর উৎপন্ন হয়। একটি স্পোরাঞ্জিয়াম থেকে (৬৪টি) স্পোর সৃষ্টি হয়। পরিণত স্পোরগুলা গাড় বাদামি বর্ণের এবং একই বৈশিষ্ট্যের। স্পোর সৃষ্টি হওয়ায় স্পোরাজিয়ামে পানি ধারণ ক্ষমতা কমে যায় কলে স্পোরাজিয়াম অভ হয়ে যায়। স্পোরাঞ্জিয়াম তহু হয়ে গেলে এর পশ্চান্তাগের আানুলাসে টান পড়ে এবং স্টোমিয়াম আড়াআড়ি কেটে যায়। আর্দ্র আনুলাস পুনরায় পূর্বস্থানে ফিরে আসে। আানুলাসের এদিক-ওদিক চলাচলের ফলে স্পোরান্তিয়াম হতে স্পোরের বিস্তার ঘটে এবং বাইরে ছড়িয়ে পড়ে।

গ্যামিটোফাইট (Gametophyte) : Pteris এর স্পোরোফাইট থেকে সৃষ্ট স্পোর বা রেণু হলো লিমধ্র বা গুমামিটোকাইটের প্রথম কোষ। হ্যাপ্রয়েড স্পোর অনুক্ল পরিবেশে কোনো আর্দ্র বস্তুর সংস্পর্শে আসলে অভুরিত হয় এবং


ক্রমাণত (মাইটোটিক) বিভাজনের মাধ্যমে হুর্পেরাকার সুবুজ অঙ্গের সৃষ্টি করে। এটি ফার্নের গ্যামিটোফাইট। হুর্থপরাকার এ গ্যামিটোফাইটকে প্রোপ্যালাস (prothallus) বলা হয়। প্রোপ্যালাসের নিমুপুষ্ঠের নিমাংশ হতে অনেক এককোষী রাইজয়েড উৎপন্ন হয়। রাইজয়েডগুলো প্রোখ্যালাসকে মাটির নাবে সংযুক্ত করে এবং মাটি হতে প্রোখ্যালাসকে খাদ্যরস শরবরাহ করে। প্রোধ্যালাসের উপরের দিকে একটি গভীর নাজ আছে। একে অহাছ খাজ (apical notch) বলো। গ্রোপ্যালার সবুজ বর্ণের বহুকোধী, সভন্ত ও সভোজী উদ্বিদ। প্রোত্থালাস উতলিদ জর্মাৎ একই দেহে পুং ও স্ত্রী সনন অন্ধ অবস্থান করে। প্রোপ্যালাসের অধীয়তলে খাঁজের কাছে জীজননাস (আর্কিলোনিয়াম) এবং রাইজয়েডের সাথে নিবিত অবস্থায় পৃংজননাস (আছেরিভিয়াম) উৎপর হয়।

ত। বৌৰ জনন (Sexual reproduction)

ডিট ৬.৬ : কার্ন (গ্যামিটোপ্রায়) লোকালালের নিচুত্তর ।

গোলাাপালে গৌন জনন সম্পন্ন হয়। এর নিন্নতলে খাজের পায়বাছি ছালে আর্কিলোনিয়াম (গ্রীজননাস) উৎপন্ন হয়। যে অংশ হতে রাইকুয়েড উৎপন্ন হয় সে অংশে আছেবিভিয়াম (ব্যালাস) উৎপদ্ধ হয়, কালেই <mark>লোগাসাস সহবাসী।</mark>

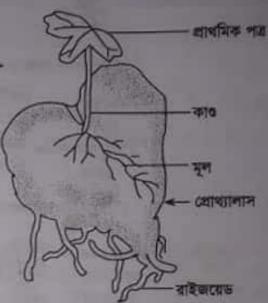
আর্কিগোনিয়াম (Archegonium) : প্রীজননাঙ্গকে আর্কিগোনিয়াম বলে। আর্কিগোনিয়াম ক্রান্ত আকৃত্রির প্রাবা (neck) এবং একটি উদর (venter) সহযোগে গঠিত। উদরের নিমাংশে একটি ডিখাণু (egg or cumples) এবং ডিখাণুর উপর একটি উদরীয় নালিকা কোষ (ventral canal cell) আছে। গ্রীবায় ক্রিনিস্টি নালি নালিকা কোষ এবং উদরীয় নালিকা কোষ নিগলিত হলে গ্রীবা নালিকা কোষ এবং উদরীয় নালিকা কোষ বিগলিত হলে প্র গঠন করে এবং উদরে তথু ভিষাণু থাকে।

ভিত্ৰ ৬.৭: Pteris আৰ্কিগোনিয়াম (ক) বিভিন্ন অংশ, (গ) নিমেকের জন্য প্রস্তুত্ব।

আছেরিডিয়াম (Antheridium): পুংজননাগকে আছেরিডিয়াম বলে। আছেরিডিয়াম গোলাকুডির তার জ্যের বিকেশের পরিবেটিত থাকে। আবরনটি ক্রের কিয়ে পরিবেটিত থাকে। আবরনটি ক্রের পরিবেটিত থাকে। আবরনটি ক্রের পরিতে। গোড়ায় ইটি রিং কোষ (ring cell) এবং উপরে ১টি চাকনা কোষ (cover cell) থাকে। প্রতি হল মাতৃকোষ রূপান্তরিত হয়ে প্যাচানো দভাকার বহু ফ্ল্যাজেলাযুক্ত তক্রাপুতে (antherozoid) পরিণত হয়। আছেরিজ্যান শীর্ষের আচ্ছাদনকারী চাকনা কোষ বিদীর্ণ হয় এবং তক্রাপৃতলো বের হয়ে ফ্ল্যাজেলার সাহায়ে পানিতে সাত্রর বের ছানান্তরিত হতে পারে।

किंक ७.৮ : Pteris फार्ट्संड आरम्बिकिशाम अवर कळालू मृति।

নিবেক (Fertilization) । শিশির বিন্দু বা বৃষ্টির পানির সাহায্যে তক্রাপুসমূহ আর্তিগোনিয়ামে গরিরাইত হয়। আর্কিগোনিয়াম কর্তৃক ম্যালিক আসিন্ত) নিঃসৃত হয়, ফলে তক্রাপু ডিঘাপুর প্রতি আকৃট হয়। অনেক তক্রি আর্কিগোনিয়ামের গ্রীবা নালা দিয়ে ডেভরে প্রবেশ করলেও একটি তক্রাপু ডিঘাপুর সাথে মিলিত হয়ে নিকেটিট নালা করে। নিমেকজিনার কলে ডিগ্লয়েড (2n উল্পোর)oospore) উৎপন্ন হয়। এভাবে নিমেকের ফলে উল্পোর তিক্রামোজাম সংখ্যা কিরে আসে এবং সাথে সাথে ডিগ্লয়েড এবং স্পোরোখাইটিক পর্যায় তম্ব হয়।


নতুন স্পোরোফাইট উদ্ভিদ (Regeneration of sporophyte) বু ভাইগোট বা উল্পোন স্পোরোফাইটের রন্তম প্রায় পুনঃ পুনঃ মাইটোটিক কোম বিভাজনের মাধ্যমে বহুকোধী শুন সৃষ্টি করে। শুন জমল বিকশি হয়ে স্থা কাচ ও শাকাবিশিষ্ট নতুন স্পোরোফাইট উল্লিসের জন্ম নেয়। মূল মাটিতে প্রবেশের পয় বোধালাল করিয়ে না হয়ে মা। Plants ভবিদের অনুক্রম বা জীবন চক্ত (Alternation of generation of Pteris)

জোনো জীবন চক্র সম্পন্ন করার জন্য পর্যায়ক্রমে ডিপ্লয়েড (2n) স্পোরোফাইটিক বা রেপুধর এবং হ্যাপ্লয়েড (a) গারিটোফাইটিক বা লিক্ষধর জনুর আবির্ভাবকে জনুক্রম বলে। Pteris উদ্ভিদের জীবন চক্রে সুস্পন্নভাবে দৃটি জনুর পর্যায়ক্রমিক আবর্তন ঘটে। একটি হলো স্পোরোফাইটিক জনু এবং অপরটি গ্যামিটোফাইটিক জনু।

েপারোফাইটিক জনু (Sporophytic generation) : Pteris এর উদ্ভিদ দেহ স্পোরোফাইটিক অর্থাৎ ডিপ্লয়েড

(2n)। স্পোরোফাইট প্রজনন ঋতৃতে পত্রক কিনারা বরাবর সোরাস ভংগর করে। সোরাস হলো স্পোরাজিয়ামের গুছে। প্রতিটি স্পোরাজিয়ামের ক্যাপসিউলের ভেতরে (১৬টি ভিদ্ধয়েত স্পোর-মাতৃকোর (2n) পাকে। স্পোর-মাতৃকোর মামোসিস প্রক্রিনাার বিশ্রাজিত হয়ে ৬৪টি আপ্রয়েভ স্পোর (n) উৎপর করে। স্পোর সৃষ্টির পর ক্যাপসিউলের প্রাচীর বিদীর্গ করে স্পোরগুলো বেরিয়ে আসে। এভাবে স্পোরোফাইটিক জনুর সমান্তি ঘটে।

গ্যামিটোফাইটিক জন্ (Gametophytic generation): স্পোর-মাতৃকোর মারোসিস প্রক্রিয়ায় বিভাজিত হয়ে হ্যাপ্সয়েত (n) স্পোর উৎপন্ন করে যা গ্যামিটোফাইটের প্রথম ধাপ। এই হ্যাপ্সয়েত স্পোর অঙ্গরিত হয়ে হ্যাপ্সয়েড প্রোথ্যালাস নামক হতপ্র গ্যামিটোফাইটিক পর্যায়ের সৃষ্টি করে। প্রোখ্যালাসে সৃষ্ট আর্কিগোনিয়াম, আছেরিভিয়ম এবং এনের ভেতরে সৃষ্ট ভিষাপু ও তক্রাপু সবই হ্যাপ্সয়েত। এনের মধ্যে নিষেকের ফলে সৃষ্টি হয় ভিপ্লয়েড উস্পোর (2n) যা

শোরোফাইটিক পর্যায়ের প্রথম ধাপ। উপোর অন্ধৃরিত হরে এবং চিত্র ৬.৯: Pieris-এর নতুন শোরোফাইট। ক্রমাগত মাইটোসিস প্রক্রিয়ায় বিভাজিত হয়ে সৃষ্টি করে জগ ও পূর্ণাঙ্গ শোরোফাইটিক Pieris উদ্ভিদ। Pieris-এর জীবনচক্রের শোরোফাইট পর্যায় বেশ দীর্ঘ গ্যামিটোফাইট পর্যায় বেশ সংক্ষিপ্ত এবং উভয় পর্যায় আকার-আকৃতিতে ভিন্ন প্রকৃতির ও স্বতন্ত্র। তাই এরপ জনুক্রমকে বিদ্যাকৃতির বা হিটারোমরফিক জনুক্রম (heteromorphic alternation of generation) বলে।

যে জনুক্রমে বেণুধর বা শেপারোফাইটিক এবং লিছধর বা গ্যামিটোফাইটিক, দুটি দশাই সমান তাকে ডিপ্লোবায়োতিক জনুক্রম বলে। আবার যে ডিপ্লোবায়োতিক জনুক্রমে রেণুধর ও লিছধর দশারূপে আকৃতিগতভাবে ভিন্ন ধরনের হয় ভাকে ইটারোবায়োতিক জনুক্রম বলে।

অর্থনৈতিক শুরুত্ : ১। Pteris উত্তিদ শাক হিসেবে খাওয়া যায়। ২। ঘর সাজানোর কাজেও ব্যবহার করা হয়।
৩। সার হিসেবে ব্যবহার করা যায়।

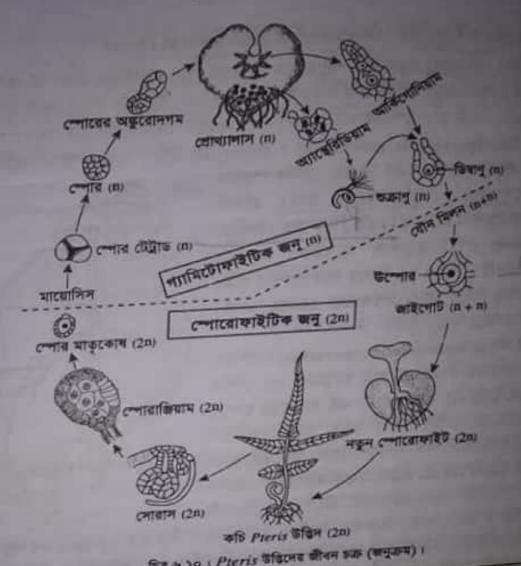
Pteris-এর শনাক্তকারী বৈশিষ্টা

- ১। দেহ মূল, কাও ও পাতায় বিভঙ।
- ২। কাও রাইজোমে রূপান্তরিত হয়।
- ৩। রাইজোম ব্যামেন্টা দিয়ে আছাদিত থাকে।
- ৪। পাতা যৌগিক, কচি অবস্থায় কুওলিত থাকে।
- ৫। সব স্পোর একই রকম (হোমোস্পোরাস)।
- ৬। শোরাভিয়া একতিত হয়ে পত্তকের কিনারায় সোরাস গঠন করে।
- ৭। শোরাভিয়াম ফলস্ ইতুসিয়াম দিয়ে ঢাকা থাকে।
- ৮। প্রোধ্যালাস (গ্যামিটোকাইট) সবুজ, ফুর্পেচাকার এবং সহবাসী।
- ে । বৃতিবোদের নিচে অছানিক মূল বের হয়।
- ১০। পাস্তাম রাম্ভিস থাকে। \

æिनिविन्साम

Kingdom: Plantae

Grade: Tracheophyta


Division: Filicinophyta

Class : Filicineae

Order: Filicales

Family : Polypodiaceae

Genus : Pieris

চিত্ৰ ৬.২০ : Pteris উদ্ভিদের জীবন চক্র (জনুক্রম)।

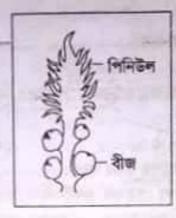
পূর্ণান্ত Pieris উদ্ভিদই স্পোরোকাইট। একটি উদ্ভিদ সংগ্রহ করে হার্বেরিয়াম সীট করে রাখণেই শন্তকরণের মধুনা হিলেক ব্যবহার করা যাবে। পাওয়া গেলে ভালা নমুনা সংগ্রহ করেও ডা পর্যবেক্ষণ ও শনাক্ষরণ করা যাবে। নমুনাটিতে শোহায় থাকলে ভালো। শনাজকরণের জন্য কেবল বাহ্যিক বৈশিষ্ট্য উল্লেখ করতে হবে। ব্যবহারিক খাতায় একটি Paris শহুন প্রকাশ বিভিন্ন অংশ চিহ্নিত করতে হবে। কী কারণে এটি Pieris উদ্ভিদ তা শিশতে হবে। (এটি মূল, তাও ও পাডায় বিচ্ছ। কু বাইজোম। পাতা ক্রন্ত জাতীয় পত্রক (পিনা) পমা, শীর্মপত্রক অধিক লগা। এতে সুল, ফল বা বীন্ধ নেই। হবুল গাতিক ভুগলিক:()

ব্রায়োফাইটা : উত্তিদ দেহ লিগধর (n)। রোগুধর উত্তিদ (2n) সবসময় লিগধর উত্তিদের সাথে মুক্ত থাকে। ব্রায়োক ইটার স বাকে না। এর পরিবর্তে রাইজয়েড ও শত থাকে। প্রায়োজাইটার স্পোরোজাইট গ্যামিটোজাইটের উপর সম্পূর্ণ নির্ভাষ্ট

শোখালাস : কাৰ্য উদ্ভিত্যৰ গ্যামিটোফাইটকৈ গোখালাস বলা হয়। হ্যাপ্লকে শেষা অনুবানশবের মাধানে লোগালত গ্রীক্ষ বুছনা হয়। পূৰ্ণাত লোখানাস সৰুৱা, চ্যাণ্টা, বিষমপুষ্ঠ এবং ছেৰ্থপথাকাৰ) প্ৰোধানাসের অধীনতলে বানের কাছে প্রাথনাত এবং বাইজনোত্তর সালে বিভিন্ন হোলোলেশারান। লবং বাইসংঘাতের সালে মিকিড অবস্থায় পুলেননাম সৃষ্টি হয়। পুলেনু ও প্রীনেনুত যৌদ মিগনের মাধানে প্রীয়াননাম করিছ

লৰ । গ্ৰেছিছোড়াইট) গ্ৰহণৰ স্থানিকত হৈপিয়া উদ্ভিদসমূহকে সাধারণভাবে কর্ম বুলা হয়। তার ক্লেণ্ডেইটিক টিক ক্লেণ্ডে হল, সাধু ও সংস্কৃতি বি কেনা হয় এবং আইলোট বেকে হূপ সৃষ্টির মাধানে কেলারোফাইটের বৃদ্ধি হলে জোলালান করিছে যায়। তে হল, কাম ও লাজনা বিভাক কলা চলে। কাৰ্ম উভিদ অপুশাক হিছা ছাছুলান) স্থান ছাইনোৰ লাজ কৰা ই আম সাহাৰত কৰি লাচন এক ৰসে। কৰি পাতা কুমনিয়ে অবস্থায় থাকে। আমু ভাইন আমুপাক ক্ষেত্ৰ ভাইনায়ে পাল কৰে। বাংলামোৰে কা কৰ বিশ্বাস মহল কৰা কৰি পাতা কুমনিয়ে অবস্থায় থাকে। আনোহ প্ৰামিটোপাইনিকে লোগালালৈ কৰে। বাংলামোৰে কা কৰ करणा तुम्म कर्ण करणकर । प्रदेशीय क जिल्लाकी यहत हुम्म कार्य गावणा साथ । शुमान गहा प्राप्तान साथ नायर विकास महत्वा कर्ण

সপ্তম অধ্যায়


নগুবীজী ও আবৃতবীজী উদ্ভিদ

GYMNOSPERMS AND ANGIOSPERMS

প্রধান শব্দসমূহ : সাইকাস, জীবত জীবাশা, প্রাসেন্টেশন, পুশ্প প্রতীক,

ন্মুবীজী এবং আবৃতবীজী উভয় প্রকার উদ্ভিদে বীজ হয়।
নুমুবীজী উদ্ভিদে কোনো ফল হয় না, কেবল বীজ হয় কিয়
আবৃতবীজী উদ্ভিদে ফল এবং বীজ উভয়টি হয়। ফল হয় না বলে
নুমুবীজী উদ্ভিদের বীজ বাইরে থেকে দেখা যায়, বীজ ফলের
ভেতরে থাকে বলে আবৃতবীজী উদ্ভিদে বীজ বাইরে থেকে দেখা
যায়(না)

পাশের উপস্থাপিত চিত্র দু'টি দেখে বলতে পার কিঃ কোনটি নমবীলী উদ্ভিদ, আর কোনটি আবৃতবীলী উদ্ভিদঃ এদের মধ্যে আরও অনেক পার্থকা আছে, ধীরে ধীরে সে সবও জানতে পারবে।

এ অধ্যায় পাঠ পেয়ে শিক্ষার্থীরা-

- নপ্রবীজী উত্তিদের বৈশিষ্ট্য বর্ণনা করতে পারবে।
- २. Cycas-धार गर्टम ७ मनाककारी दिगिष्ठा वर्गमा कराउ भागतः।
- ত. Poaceae গোরের শনাককারী বৈশিল্প বর্ণনা করতে পারবে।
- 8. Malvaceae গোত্রের শনাক্তকারী বৈশিষ্ট্য বর্ণনা করতে পারবে।
- ৫. ব্যবহারিক : Malvaceae গোর শনাক করতে পাববে।

নগুবীজী উদ্ভিদ (Gymnosperms)

পৃথিবীতে এক সময় (ভেতোনিয়ান যুগে উৎপত্তি এবং মেসোজোয়িক যুগে বিভূতি) নমুবীজী উদ্ভিদের আছিল থাকণেও বর্তমানকালে এদের সংখ্যা আবৃতবীজী উদ্ভিদের তুলনায় অনেক কম। Gymnosperm উদ্ভিদের বাংলা প্রতিশ্ব করা হয়েছে নমুবীজী উদ্ভিদ। মিক Gymnos অর্থ হলো naked = নগ্ন এবং spermos অর্থ হলো seed = বীজ। অর্থং জিমনোম্পার্ম শব্দের অর্থ হলো naked seed বা নমুবীজী। উদ্ভিদবিজ্ঞানের জনক থিওফ্রাস্টাস তার Enquiry into Plants নামক প্রছে সর্বপ্রথম Gymnosperm শব্দতি ব্যবহার করেন। এক সময় নমুবীজী উদ্ভিদকেও পুস্পক উদ্ভিদ বলা হতো বিশ্ব বর্গমানে বলা হয় না, কারণ এদের স্পোরোফিল পুস্পের সাথে মিলসম্পন্ন নয় বরং স্ট্রোবিলাসের সাথে মিল সম্পন্ন। ছেমর উদ্ভিদের ফুলে গর্ভাগয় থাকে না বলে ফল উৎপন্ন হয় না এবং বীজ নগ্ন অবস্থায় জন্মে তাদেরকে নমুবীজী উদ্ভিদ বলে।

বাংলাদেশে প্রায় ৪০০০ প্রজাতির আবৃত্বীজী উদ্ধিদ থাকলেও মাত্র পাঁচ প্রজাতির নগুরীজী উদ্ধিদ প্রাকৃতিকভাবে অবে থাকে। প্রজাতিওলো হলো Cycas pectinata যা চট্টগ্রামের বাড়িয়াডালা পাহাড়ি এলাকার পাওয়া যায়ঃ Podocarpus neriifolius, বাংলাদেশে এটি বাঁশপাতা নামে পরিচিত এবং চট্টগ্রাম, কল্পবাজার ও সিলেট বনাঞ্চলে এখনো পাওয়া যায় এবং Gnetum নামক একটি কাছল লতানো উদ্ভিদ যা সিলেট, চট্টগ্রাম, পার্বত্য চট্টগ্রাম ও কল্পবাজার জেলার বিভিন্ন বল পাওয়া যায়। বাংলাদেশে Gnetum (নিটাম) এর ২/৩টি প্রজাতি আছে বলে ধারণা করা হয়। প্রজাতিওলো হলো Gnetum montenum, G. oblongum এবং G. latifolium। সবওলো প্রজাতি বিলুত্তির আশ্বায় আছে। এলেরকে রক্ষা করার কর্ম সবাইকে এগিয়ে আসতে হবে। লাগানো অবস্থায় বাগানে Cycas revoluta, Thuja, Aurucaria, Pinus ইত্যাদি নামুক্তি

পৃথিবীতে নগুৰীজী উভিনে ৮৩টি গণ এবং ৭২১টি প্ৰজাতির সদান পাওয়া গেছে। এনের অধিকাংশই বৃদ্ধ বা বৃষ্ট জাতীয়, কতিপয় ওলা বা কাৰ্চল আরোহী। বর্তমানে জীবন্ত নগুৰীজী উভিদ প্রজাতিসমূহ চারটি বিভাগের অন্তর্ভুক্ত। বিভা চারটি হলো Ginkgophyta, Cycadophyta, Gnetophyta এবং Coniferophyta.

Ginkgo biloba নামক একটি মান প্রজাতি এখন Ginkgophyta-র অন্তর্গুক, বাকি সবই বিপুর। Ginkgo bilob একটি জীবন্ধ ফসিল। প্রায় ২০০ মিলিয়ন বছর পূর্বের Cycadophyta বর্তমানে মাত্র ১০০ প্রজাতি নিয়ে গঠিত। এ ক্রের উক্তিনের উক্তাপু ফ্র্যাজেলাযুক্ত। প্রায় ৫৫০টি প্রজাতি নিয়ে গঠিত Coniferophyta. শীতলবান উত্তর গোলাবীয় ক্ষাৰ্থতলো কৰিফার প্রজাতি দিয়ে গঠিত। বাশিয়াতেও বড় কৰিফার বন রহেছে। পৃথিবীয় সবচেয়ে উচু বৃক্ষ Sequela ampervirens (S. gigantea) একটি কনিফার জাতীয় উদ্ভিদ। গড় ৩০০ বছর ব্যাপী এটি বৃদ্ধি পাছে। বিশ্বের সবচেয়ে লাগিব বৃহু (বয়স ৫০০০ বছর) হলো আমেরিকার নাভাড়া ও ক্যালিকোর্নিয়ায় বিদ্যামান ব্রিসল কোন পাইন। বিশ্বেত সংচেত্তে বৃহৎ কনিফার বনাঞ্জল সাইবেরিয়া অভালে অবস্থিত যেটি বিশ্বের সর্ববৃহৎ বায়োম। আবৃতবীকী উল্লিখের সামে প্রথিকতর ঘনিষ্ঠ নগুবীজী উদ্ভিদ হলো (Gnetophyta) বিভাগের উদ্ভিদ। প্রায় ৭০টি প্রজাতি এই বিভাগের অন্তর্ক। আহুত্রীলী উত্তিদের মতো এদের শুক্রাণু ফ্ল্যাজেলাবিহীন। এদের কাজের টিস্যুতে তেসেল আছে। Gnetum এর পাতা প্রাবৃত্তবীলী উত্তিদের মতো। নামিবিয়া মরুভূমিতে এতেমিক Welwitschea-র পুর্কোন দেখতে ফুলের মতো। এই উত্তিদের হাত্ৰ ২টি পাতা থাকে। Ephedra উদ্ভিদে দিনিষেক দেখা যায়। Ephedra থেকে শাসকটোৰ ওদুধ ইফেছিন পাওয়া যায়। ত্তা বিশ্ববিদ্যালয়ের বোটানিক্যাল গার্ডেনে Ephedra উত্তিদ আছে। নগুবীজী উত্তিদসমূহ বীক্তং, তল্ম, আরোহী বা বৃক্ষ ছাই ছোক না কেন সুনির্দিষ্ট কতিপয় বৈশিষ্ট্যে এরা সবই এক রকম। Leaf scar নমুবীজী উদ্ভিদের একটি চিনুধর্মী বৈশিষ্টা। পাতা কড়ে পড়লেও নগ্নবীজী উদ্ভিদের কাতে বিশেষ চিহ্ন থেকে যাওয়াই হলো Leaf scar। নিচে বৈশিষ্টাওলো উপস্থাপন করা হলো-

नगुरीकी উদ্ভিদের বৈশিষ্ট্য

- ১। উত্তিদ বহুবর্ষজীবী, চিরসবুজ, স্পোরোফাইট অসমরেণুপ্রস্ (heterosporous) অর্থাৎ মাইক্রোম্পোর ও মেণাস্পোর (পুং ও স্ত্রী লিঙ্গধর উদ্ভিদ) তৈরি করে।
- ২। রেণুপত্র অর্থাৎ স্পোরোফিলগুলো ঘনভাবে সন্নিবেশিত হয়ে স্টোবিলাস বা কোন (cone) তৈরি করে।
- ত। মেগালেপারোফিল-এ (স্ত্রীরেণুপত্র) কোনো গর্ভাশয় তৈরি হয় না অর্থাৎ এদের গর্ভাশয়, গর্ভদত ও গর্ভমুক্ত নেই। এর ফলে পুরাগায়নকালে প্রাগ্রেণু স্রাস্ত্রি ভিম্বক রঞ্জে পতিত হয়।
- 8। ভিম্ক মেগাস্পোরোফিলের কিনারে নগু অবস্থায় থাকে।
- ৫। পূর্বাশয় নেই তাই এদের কোনো ফল সৃষ্টি হয় না।
- ৬। ফল সৃষ্টি হয় না বলে বীজ (নিষিক ডিম্মক) নগু অবস্থায় থাকে।
- ৭। নমুবাজী উদ্ভিদে দ্বিনিষেক ঘটে না (ব্যতিক্রম Ephedra), তাই শাস (endosperm) হাল্পমেড এবং নিষেকের পূর্বে मृष्टि इस्।
- ৮। ছাইদেম চিস্যুতে সত্যিকার ভেসেল কোষ থাকে না (ব্যতিক্রম Gnetum) এবং ফ্রোয়েম টিস্যুতে সঙ্গীকোষ থাকে না।
- ৯। সকলেই বায়ু পরাগী।
- ১০। জীবনচক্রে(অসম) আকৃতির (heteromorphic) জনুক্রম বিদ্যমান।
- ১১। সাধারণত আকিগোনিয়া সৃষ্টি হয়।

Genus: Cycas (সাইকাস) বাতা(মার ব্লা প্ৰাসায়ন

व्यमिदिनग्राम

Kingdom: Plantae

Division: Cycadophyta Class; Cycadopsida Order: Cycadales

Family: Cycadaceae Genus : Cyear

স্বভাব এবং আবাসভূমি : Cycas উভিদ। সাধারণত वहवर्षकीयी नग्नवीकी পাহাটের উপর তম স্থানে বালে থাকে। অবশ্য সমতল ভূমিতে চায় করণেও এরা বেশ বৃদ্ধি লাভ করে। উষ্ণ ও আর্থ্র আবহাওয়া এদের বৃদ্ধির জন্য ভালো।

ভৌলোলিক বিভার: পৃথিবীর উষ্ণ এবং উপ-উষামওলীয় (subtropical) এলাকায় Cycas উদ্ভিদের বিত্তার দ্ব বায়। অস্ট্রেলিয়া, চীন, জাপান, ভারত এবং বাংলাদেশে Cycas উদ্ভিদ জন্মে থাকে। বাংলাদেশের চইগ্রামের শাল অঞ্চলে Cycas pectinata প্রাকৃতিক পরিবেশে জন্মায়। শেরপুরের গজনি বনাঞ্চলেও এদের জন্মাতে দেখা যায়। এছার্থা circinatis এবং C. revoluta বাংলাদেশে বিভিন্ন বাগানে আলক্ষারিক উদ্ভিদরূপে লাগান হয়। ধারণা করা হয় প্রায় ক্রিটি বছর পূর্বে Cycas জাতীয় উদ্ভিদত্তলা আবির্ভ্ত হয়েছিল।

গঠন বৈশিষ্ট্য : অন্যান্য বীজযুক্ত উদ্ভিদের ন্যায় Cycas উদ্ভিদটিও স্পোরোফাইট। স্পোরোফাইটটি মূল, কাত এই পাতায় বিভক্ত। কাত খাড়া, সাধারণত অশাখ, স্থুল, বেলনাকার (cylindrical)। কাতগাত্র স্থায়ী পত্রমূল দিয়ে আফ্রাফিবলে অমসূন। কাত ৮ হতে ১৪ ফুট পর্যন্ত উচু হতে পারে। কোনো কোনো প্রজাতি, যেমন- C. media আরো উচু হত পারে। সাধারণত শাখাবিহীন, তবে শীর্যমুকুল ভেঙে গেলে কাত শাখাযুক্ত হয়। পাতা কাতের অমভাগে মুকুটের না অবস্থান করে। প্রতিটি পাতা পক্ষল যৌগিক। কাতের মাধায় যৌগপত্রগুলো সর্পিলাকারে সাজানো। কচিপাতা ফার্নের না কুর্বলিত মুকুল পত্রবিন্যাসযুক্ত (circinate vernation)। Cycas উদ্ভিদে যৌগপত্র বা পর্বপত্র (foliage leaves) ছাড়া আরু এক প্রকার বাদামি বর্ণের শক্ষপত্র (scale leave) আছে। সূত্রাং পাতা দু'ধরনের। শক্ষপত্রগুলো যৌগপত্রের মুকুলনে আবৃত করে রাখে। পাম উদ্ভিদ এবং ফার্ম-এর পাতার সাথে সাইকাসের পাতা কিছুটা মিলসম্পন্ন বলে অনেক সময় ত্রেক্ত পামফার্ম বলা হয়। যৌগপত্রের প্রতিটি পত্রকথও গাঢ় সবুজ বর্ণের, মসুণ, চর্মবৎ, রেখাকার হতে লেন্স আকৃত্রি। পত্রকথও একটিমাত্র মধ্যশিরা (midrib) থাকে, কোনো প্রকার শিরা (vein) বা উপশিরা (veinlet) স্পন্ট নয়। পত্রকথপ্র সংখ্যা এক প্রজাতি হতে অন্য প্রজাতিতে ভিন্নতর হয়।

প্রাথমিক পর্যায়ে Cycas-এর প্রধান মূল পাকে। তবে ইহা স্বল্পস্থায়ি কারণ অল্পনাল পরেই প্রধান মূল নাই হয়ে যায়। পরে সেখানে অস্থানিক মূল সৃষ্টি হয়। অস্থানিক মূল কখনো কখনো মাটির ঠিক নিচে বৃদ্ধি পায়। সেখানে ভূমিতলের উপর অসংখ্য খাটো খাটো ঘায় শাখার সৃষ্টি করে। ভূমির উপরিতলে ঘায় শাখাবিশিষ্ট এ সকল মূল এক প্রকার ব্যাকটেরিয়া ঘারা আক্রান্ত হয়। মূলের মধ্যে ব্যাকটেরিয়ার বৃদ্ধির সাপে সাপ্তে Nostoc, Anabaena নামক সায়ানোব্যাকটেরিয়া ঘারাও আক্রান্ত হয়। ফলে আক্রান্ত মূলিলো যাভাবিক সক্র না হয়ে বিকৃত আকৃতি ধারণ করে। সে কারণে সামুদ্রিক প্রবাল বা কোরালের মতো দেখায়। এমন মূলকে কোরালয়েড মূল (coralloid root) বা কট টিউবারকল (root tubercle) বলে। কোরালয়েড মূলর অন্তর্গঠনে মধ্যকটেরে Anabaena ও Nostoc অবস্থান

हिंदा १.२ : Cycas-धन्न द्वानामा मून।

জীবন্ত জীবাশু (Living fossil) : বর্তমানকালের কোনো জীবিত উদ্ভিদের বৈশিষ্ট্য অতীতকালের কোনো জীবাশ উদ্ভিদের বৈশিষ্ট্যের সাথে মিলসম্পন্ন হলে তাকে জীবন্ত জীবাশ্ম বলা হয়। Cycas একটি জীবন্ত জীবাশ্ম।

Cycas-Co छोरा जीवाणा वनाव कावन निमुद्रन :

कता, अ अरगद्य निवान खत्र ग्रीन

Cycas উত্তিদ Cycadales বর্ণের অন্তর্গত। প্রাথমিক মেসোজোয়িক যুগে Cycadales বর্ণের অনেক উঠিদ পৃথিবীব্যাপী বিস্তৃত ছিল। এদের অনেকই এখন বিশৃত্ত। এদেরকে পাওয়া যায় জীবাশা (fossil) হিসেতে। এ বর্ণের Cyca সহ ৯টি গণের প্রায় ১০০টি প্রজাতি এখনো পৃথিবীর বুকে টিকে আছে। এদের অনেক বৈশিষ্ট্য সেই আদি কালের বিশৃত্তি জীবাশা সাইকাড্স-এর বৈশিষ্ট্যের অনুরূপ এবং আদি প্রকৃতির। এজনাই Cycas সহ বর্তমানকালের সকল সাইকাড্সতে (Cycadales বর্ণের সদস্যদেরকে সাধারণভাবে Cycada বলা হয়) জীবালা (Living fossil) বলা হয়।

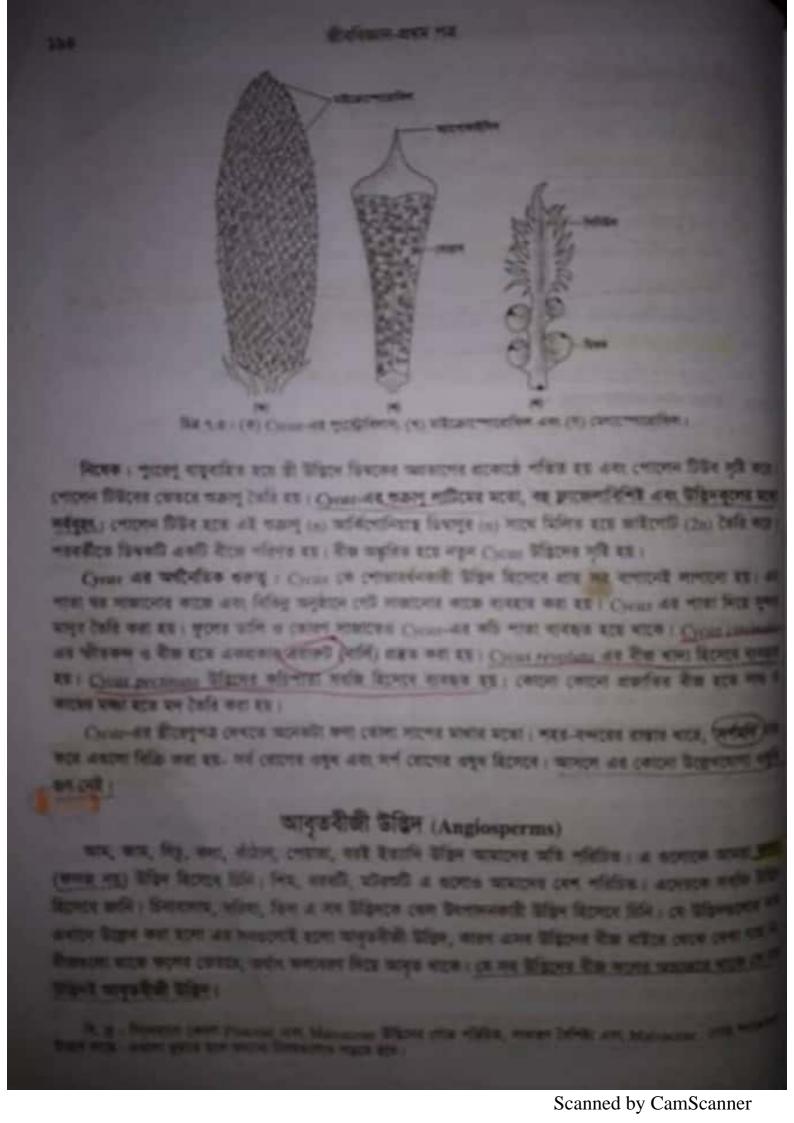
Gear উত্তিদের শনাক্তকারী বৈশিষ্ট্য 🛠 🛧 🔆

- ১। Cycas উত্তিদ স্পোরোফাইট। দেহ মূল, কাও ও পাতায় বিভক্ত।
- ২। ত্রবিদ খাড়া পাম জাতীয়। বীজ উৎপন্ন হয় কিন্তু ফল উৎপন্ন হয় না। অর্থাৎ বীজ নগা।
- ৩। পাতা বৃহৎ, পক্ষল যৌগিক, কাজের মাধার দিকে সর্পিলাকারে সঞ্জিত।
- ৪। কচি পাতার ভার্নেশন সারসিনেট (কুওলিত)।
- ৫। পাতার ব্রাপঞ্চিশন টিস্মা বিদ্যমান।
- ও। গৌণ অস্থানিক কোরালয়েড মূল বিদ্যমান।

- ৭। পুংরেণুপত্রগুলো একত্রিত হয়ে স্ট্রোবিলাস গঠন করে কিন্তু স্থাবেশুপত্র সভ্যিকার স্ট্রোবিলাস গঠন করে না
- ৮। হেটারোম্পোরিক অর্থাৎ যৌন জননে মেগা ও মাইক্রোম্পোর সৃষ্টি হয়।
- »। বাতাসের ধারা পরাগায়ন ঘটে। P
- ১০। Cycas-এর তক্রাণু উত্তিদক্লে সর্ববৃহৎ, লাটিমের মতো, সচল ও বহু ফ্লাজেলাবিশিষ্ট।

Cycas উভিদের সাথে ফার্নের সাদৃশ্য 🔀

- (i) Cycas ও ফার্ন উভয়ই স্পোরোফাইট। দেহ মূল, কাও ও পাতায় বিভক্ত।
- (ii) পাতা পক্ষল যৌগিক।
- (iii) উভয়ের কচিপাতা কুন্ডলিত অবস্থায় থাকে।
- (iv) উভয় উদ্ভিদের তক্রাণু বহু ফ্রাঞ্জেলাযুক।
- (v) উভয়ের জীবন চক্রে অসম-আকৃতির জনুক্রম (heteromorphic alternation of generation) বিদ্যমান।


জনন প্রক্রিয়া (Reproduction) : Cycas উদ্ভিদের বংশবৃদ্ধি প্রধানত দু'প্রকারে ঘটে থাকে, যথা- ১। অযৌন জনন এবং ২। যৌন জনন।

১। অথৌন জনন : তক্রাণু ও ডিখাণুর মিলন ছাড়া জন্য সব ধরনের বংশবৃদ্ধি প্রক্রিয়া হলো অথৌন জনন প্রক্রিয়া।

Cycas উদ্ভিদের কাণ্ডে এক প্রকার মুকুল সৃষ্টি হয়। এই মুকুল জন্যক্র রোপণ করলে তা পূর্ণান্ধ নতুন Cycas উদ্ভিদ-ক্র
পরিণত হয়। মার্চ-এপ্রিল মাসে কোনো কোনো সাইকাস প্রজাতির পোড়া থেকে চারা সৃষ্টি হয়। চারা উঠিয়ে লাগালেই নতুন
সাইকাস উদ্ভিদ হিসেবে প্রতিষ্ঠা লাভ করে। দেহে সৃষ্ট অঙ্গের মাধ্যমে নতুন গাছের সৃষ্টি হয় বলে এই প্রক্রিয়াকে জন্ম

২। যৌন জনন : Cycas-এ পৃং উদ্ভিদ এবং খ্রী উদ্ভিদ পৃথক। পৃং Cycas উদ্ভিদের শীর্ষে অসংখ্য পৃংরেপুগর বিটালেকsporophyll) সৃষ্টি হয় যা একত্রিত হয়ে একটি মোচাকৃতির পৃংরেট্রাবিলাস তৈরি করে। পুংরেপুগরের সক্ত রহিত লোলেকsporophyll) সৃষ্টি হয় যা একত্রিত হয়ে একটি মোচাকৃতির পৃংরেট্রাবিলাস তৈরি করে। পুংরেপুগরের পৃষ্ঠদেশে বহু শোরাজিয়া (একবচনে শোরাজিয়াম) তৈরি হয় বিটালির আপোকাইসিস বলে। পুংরেপুগরের পৃষ্ঠদেশে বহু শোরাজিয়া (একবচনে শোরাজিয়ামের কেতরে শোরা মাতৃকোর সৃষ্টি শোরাজিয়া একত্রে অবস্থান করে, মাকে সোরাস (বহুবচনে সোরাই) বলে। শোরাজিয়ামের কেতরে শোরা মাতৃকোর সাজিত হয়ে হাপ্রয়েত পৃংরেপু (microspore) তৈরি করে। পুংরেপুর ধা প্রতিটি শোর মাতৃকোর মায়োসিস প্রক্রিয়ায় বিভাজিত হয়ে হাপ্রয়েত পৃংরেপু (microspore) তৈরি করে। পুংরেপুর পরে তর্মণু তৈরি হয়।

অপরদিকে খ্রী Cycas উদ্ভিদের মাথায় খ্রীরেণুপত্র (megasporophyll) তৈরি হয়। খ্রীরেণুপত্র চিলান্তারে সঞ্জিত পাকে, কোনো কমপ্যান্ত ক্রোবিলাস গঠন করে না। গ্রীরেণুপত্রের কিনারে ডিম্বক (oxule) সৃষ্টি হয়। উপরের অংশে পিনিউল (ইবাকৃতির পিনা বা পত্রক) থাকে। দুই কিনারে ডিম্বকসহ প্রতিটি খ্রীরেণুপত্রকে ফণা তোলা সাপের মাথার মতো দেখায় (যা অনেক সময় বাজারে সর্পমণি) নামে বিক্রি করতে দেখা যায়)। ডিম্বকের কেতরে খ্রীরেণু মাতৃকোম সৃষ্টি হয়। খ্রীরেণু যাতৃকোম সৃষ্টি হয়। খ্রীরেণু বাজ্বরে সর্পমণি নামে বিক্রি করতে দেখা যায়)। ডিম্বকের কেতরে খ্রীরেণু থেকে আর্কিগোনিয়াম সৃষ্টি বিশ্ব মাধ্যাসিস বি সজনের মাধ্যামে হ্যাপ্রয়েড খ্রীরেণু (megaspore) তৈরি করে। খ্রীরেণু থেকে আর্কিগোনিয়াম সৃষ্টি বিশ্ব মাধ্যানিয়ামের কেতরে সৃষ্টি হয় ডিমাণু। আর্কিগোনিয়াম সৃষ্টি Cycas-এর একটি আনি বৈশিষ্টা।

প্রকৃতপক্ষে Angiosperm-এর বাংলা প্রতিশব্দ করা হয়েছে আবৃতবীজী উদ্ভিদ। দু'টি গ্রিক শব্দ হতে Angiosperm প্ৰের উৎপত্তি। মিক Angeion অৰ্থ হলো vessel বা container অৰ্থাৎ পাত্ৰ এবং spermos অৰ্থ হলো seed অৰ্থাৎ বীক্ত। কাজেই যে উত্তিদের বীজ কোনো পাত্রের মধ্যে (এখানে ফলের মধ্যে) আবৃত থাকে সে উত্তিদই হলো Angiosperm বা আবৃত্রীজী উত্তিদ। এখানে পাত্র হলো ফল বা ফলাবরণ, আর ফল সৃষ্টি হয় ফুলের গর্ভাশয় থেকে, তাই আবৃত্রীজী ভত্তিদের অপর নাম হলো Flowering plants বা পুস্পক উভিদ।

আজ থেকে প্রায়(১৩ কোটি)বছর আগে আবৃতবীজী উদ্ভিদের উৎপত্তি হয়েছিল বলে মনে করা হয়। অনেকের মতে গ্রীঅপ্রধান অক্তল, বিশেষ করে দক্ষিণ-পূর্ব এশিয়া ছিল আবৃতবীঞী উদ্ভিদের উৎপত্তিস্থল এবং এখান থেকে ক্রমায়য়ে

अविदिक इंडिसा नरङ्।

আবৃতবীজী উদ্ভিদ অনেক ছোট হতে পারে, যেমন- Wolffia (o.) মিমি)। বাংলাদেশে এর দুটি প্রজাতি পাওয়া যায়। ৰাংলাদেশের ক্ষুদ্রতম আবৃতবীজী উদ্ভিদটি হলো Wolffia arrhiza. বাংলাদেশে উচু বৃক্ষের মধ্যে বৈলাম, গর্জন, তেলতর প্রধান। বাড়তে দিলে বেত অনেক লখা হতে পারে। Eucalyptus প্রায় ৫০০ কুট উচু হতে পারে।

আব্তবীজী উদ্ভিদের বৈশিষ্ট্য

১। উদ্ভিদ স্পোরোফাইট (রেণুধর), পুস্পক এবং ভাঙ্কুলার টিস্যু সমৃদ্ধ।

হা গর্ভকেশর (carpel) সাধারণত গর্ভাশয় (ovary), গর্ভদত (style) এবং গর্ভমূত (stigma)— এ তিন অংশে বিভক্ত।

৩। গর্ভাশয় আবদ্ধ প্রকোষ্ঠ বিশেষ।

8। ডিম্মক (ovule) গর্ভাশয়ের অভ্যন্তরে সৃষ্টি হয়, গর্ভধারণের পর ডিম্মক বীজে পরিণত হয় তাই বীজ ফলের ভেতরে আবৃত অবস্থায় থাকে।

৫। তক্রাণু ফ্র্যাজেলাবিহীন, পরাগায়নকালে পরাগরেণু গর্ভমূতে পতিত হয়।

🤏 🕹। এদের ছিনিয়েক ঘটে, ছিনিষেকের পর সসা (endosperm) গঠন আরম্ভ হয়। তাই বীজের সমা দ্বিপ্লয়েড (3n)।

৭। কোনো প্রকার আর্কিগোনিয়া সৃষ্টি হয় না। আর্কিগোনিয়া সৃষ্টি না হওয়া উনুত বৈশিষ্ট্য।

৮। জাইলেম টিসাতে প্রকৃত ক্রেসেলকোষ এবং ফোয়েম টিসাতে সঙ্গীকোষ থাকে।

১। বীজে একটি বা দৃটি বীজপত্র থাকে।

আবৃতবীজী উদ্ভিদের সংখ্যা ও বিভৃতি

পৃথিবীতে আবৃতবীজী উদ্ভিদ প্রজাতির সংখ্যা সবচেয়ে বেশি, শনাককৃত প্রজাতির সংখ্যা ২,৮৭,০০০ (হে. উড. ১৯৬৭)। তুন্দ্রা থেকে মরুময় প্রায় সকল পরিবেশেই এদেরকে জন্যাতে দেখা যায়।

প্রকেসর এম, সালার খানের মতানুযায়ী বাংলাদেশে আবৃতবীজী উদ্ভিদ প্রজাতির অনুমিত সংখ্যা <u>৫০০০</u>। 'এনসাইক্রোপিডিয়া অব ফোরা ও ফনা অব বাংলাদেশ' (খণ ৬–১২) অনুযায়ী' নবিভুক প্রজাতির সংখ্যা ৩৬১১টি। এরপর বেশকিছু নতুন প্রজাতি (যেমন- Colocasia hassanii H. Ara) এবং বহু নতুন রেকর্ত প্রকাশিত হয়েছে। বাংলাদেশ ন্যাশনাল হাবেরিয়াম থেকে জুন ২০১৫ তে প্রকাশিত বুলেটিন-এ Unicaceae গোত্রেরই ১৯টি প্রজাতি বাংলাদেশের জন্য নতুন নথিউক হয়েছে (নাসির, হাসান ও বুশরা)। তাই বলা যায় বাংলাদেশ থেকে নথিভুক্ত প্রজাতির সংখ্যা হবে প্রায় চার

্রাক্তির (সাক্রেরিনি) ইবিদ	আবৃতবীজী উন্ভিদ
न्यूवाका (वाकवाका) वाक	এদের গর্ভাশয় থাকে।
এদের গর্ভাশয় থাকে না।	BESONS SERVICES AND PROPERTY CONTRACTOR OF THE P
পার্নালয় না থাকায় ফল উৎপন্ন ইয় না।	গর্ভাগর ফলে পরিণত হয়।
ক্রম লা ললে হীজ নগু অবছায় থাকে।	ফল হয় তাই বীজ ফলের ভেতরে থাকে।
क्षेत्र वृद्ध ना परन पन म	आर्किरणानिमा अहि इस मह
आकिरगानमा ना करा ।	পরাগরেণু গর্ভমুবে পতিত হয়।
পরাগরেণু সরাসার ডিম্ক ওলে গাতত ব্যা	
	ছি-নিষ্কে হয়।
্রান্ডাল্পার্ম আপ্রয়েত। নিষেকের পূর্বে উৎপন্ন	এচোল্পার্ম ভিরয়েত। নিয়েতের পরে উৎপন্ন
LOCAL CONTRACTOR CONTR	261
Con Charles Care dist	জাইলেয়ে সুগঠিত তেসেল কেবে এবং
111111111111111111111111111111111111111	ফ্রোমের সমীকোছ থাকে।
	নগুৰীজী (ব্যক্তৰীজী) উৱিদ এনের গর্ভাগয় থাকে না। গর্ভাগয় না থাকায় ফল উৎপদ্ম হয় না। ফল হয় না বলে বীজ নগ্ন অবছমা থাকে। আর্কিগোনিয়া সৃষ্টি হয়। পরাগরেণু সরাসরি ভিত্তক রজে পতিত হয়। সাধারণত বি-নিষেক হয় না। এত্যোম্পার্ম হ্যাপ্রয়েভ। নিষেকের পূর্বে উৎপদ্ম হয়।

আবৃত্বীজী উদ্ভিদের অর্থনৈতিক গুরুত্ব: আবৃত্বীজী উদ্ভিদের প্রায় ২,৮৭,০০০টি প্রজাতির মধ্যে মার ১০ প্রজাতির গুরুত্ব কর্মনৈতিক ভূমিকা রয়েছে। এনের মধ্যে ১০০টি প্রজাতির (যেমন-খাল্য, কাঠ, বন্ধ ও গুরুত্ব আন্ধর্জাতিক বাণিজ্য হয়ে থাকে। আর ১৫টি প্রজাতি বিশ্বব্যাপি মানুষের প্রধান খাদ্যের জোগান লয়। যেমন-খান ভূমা, জোয়ার, বার্লি, আগু, মিটি আলু, কাসাভা প্রভৃতি। এছাড়া শতাধিক উদ্ভিদ থেকে অস্তত ১২০ ধরনের ভ্রাধুনিক ওদুধ প্রস্তুত করা হয়।

আবৃত্তবীলী উদ্ভিদের পোত্র পরিচিতি : পৃথিবীর সকল আবৃত্তবীলী উদ্ভিদকে প্রধানত দুটি শ্রেণিতে ভাগ কর্মান্ত । মাাগনোলিয়া শ্রেণি (Magnoliopsida) বা দ্বিবীজপত্রী উদ্ভিদ এবং ১ । লিলি শ্রেণি (Liliopsida) বা এক জিল । প্রতিটি শ্রেণিকে পুনরায় একাধিক উপশ্রেণি, বর্গ এবং গোত্রে বিভক্ত করা হয়েছে। ত. আর্থার ক্রনকুইস্ট (১৯৮ সকল আবৃত্ববীলী উদ্ভিদকে ৩৮০টি গোত্রের অন্তর্ভুক্ত করেছেন। এর মধ্যে দ্বিবীজপত্রী উদ্ভিদ গোত্র ৩১৫টি একবীলপত্রী উদ্ভিদ গোত্র ৬৫টি।

প্রতিটি গোরের রয়েছে কতিপয় শনাক্তকারী বৈশিষ্ট্য। এসব বৈশিষ্ট্যের মাধ্যমেই প্রতিটি গোরের পরিচিতি লাভ আবার। উল্লিমের স্বরূপ, মূল, কাও, পাতা, মঞ্জরী, ফুল, ফল এবং বীজ এর প্রতিটিতে শনাক্তকারী বৈশিষ্ট্য বিদ্যমান আকাজেই গোর পরিচিতি লাতের আগে দরকার গোর পরিচিতির জন্য আবশ্যকীয় প্রয়োজনীয় বিশেষ অর্থবাধক শব্দ সম্পরিচিত হওয়া। নিচে সংক্ষিপ্ত উপায়ে কভিপয় বিশেষ অর্থবাধক শব্দের ব্যাখ্যা দেয়া হলো।

স্থাপ (Habitat)

রীকং (Herb) : ছোট ও নরম কাতবিশিট অকাষ্ঠল উত্তিদ, যেমন- ধান, গম ও দুর্বাঘাস। বীরুৎ বর্ষজীবী। শ্রিক ভিত্তা এ ব

উপতল্ম (Under shrub) : ওলার চেয়ে অপেকাকৃত ছোট আকৃতির উত্তিদ, যেমন- কালকাসুন্দা, দাঁতমর্নন। ১ তলা (Shrub) : একক গুঁড়িবিহীন ঝোপজাতীয় মাঝারি ধরনের কান্ঠল উত্তিদ, যেমন- রঙ্গন, জবা ত গোলাগ। স্ব

ৰুক্ (Tree) : একক কাওবিশিষ্ট বৃহদাকৃতির কাঠল উভিদ, যেমন-আম, জাম, কাঁঠাল ইত্যাদি। বৃক্ষ বহর্বজীয়।

প্রশ্রেমী (Epiphytes) : যে উত্তিদ অন্য উত্তিদকে আশ্রম করে জন্মে কিন্তু খাদ্য শোষণ করে না।

মৃতজীবী (Saprophytes) : যে উদ্ভিদ মৃত ও পচা জৈব পদার্থ হতে খাদ্য গ্রহণ করে।

পরজীবী (Parasites) : যে উদ্ভিদ অন্য সবুল উদ্ভিদ হতে খাদ্য শোষণ করে বেঁচে থাকে।

भून (Root)

ধ্বান মূল (Taproot): জনমূল হতে সৃষ্ট প্রাথমিক মূল ক্রমাণত বৃদ্ধি পেয়ে যে মূলতন্ত্র গঠন করে তাই প্রধান মূল প্রধানমূল দ্বিজিলাক্সী উদ্ধিনের বৈশিষ্ট্য। মূলা, গাজন, বাঁট ইত্যাদি রূপান্তরিত প্রধান মূল। খাদ্য সঞ্চয় করে বলে প্র সঞ্চয়ী প্রধান মূল।

তক্ষ্প (Fibrous root) : কাজের নিমাংশ হতে সৃষ্ট একহচছ সরু মূলকে হছম্ল বলে। ভছম্ল একবিছা

কাও (Stem)

কাছ সাধারণত নিরেট, দ্যাকার ও বায়বীয় হয়ে থাকে। এতে পর্ব (য়েখান থেকে পাতা গ্রায়) ও মহাপর্ব (দুই ব্রা মধাবতী অংশ) থাকে। কাত কন্টকিত হতে পারে, রোমযুক্ত হতে পারে বা মসৃণ হতে পারে। তবে এর রাজিক্রমত হতে পারে।

ফালা কাও (Fistular stem) : কাও কথনো নিবেট না হয়ে মধাপর্ব ফালা হয়। যাস লোক্রের (Poaceae) জিল একল কাও দেখা যায়। এছাড়া Cyperaceae গোরের উদ্ভিদকাও তিন কোপবিশিষ্ট হয়ে থাকে এবং Lamincese ভিত্তিদকাও চার কোপবিশিষ্ট হয়ে থাকে।

বাইজোম (Rhizome) : বাইজোম হলো ভূ-নিমুত্ কপাছবিত তাও আদা, হলুদ এচলো ভূ-নিমুত্ কণাছবিত জি

টেউবার (Tuber) : কাজের ভ্-নিমুস্থ শাবার মাথার স্ফীত অংশকে টিউবার বলে। আশু (potato) টিউবার কাতের স্তুলাহরণ। মিটি আলু মূলের স্ফীত অংশ, কাও নয়।

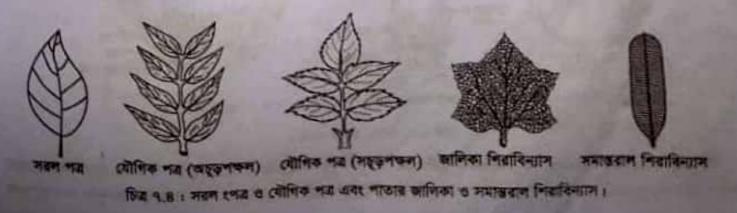
বাব (Bulb) : স্-নিমুত্ব অতি সংক্রিপান্তরিত কাও হলো বাব। যেমন প্রেয়াল, রসুন লাতীয় উদ্ভিদের কাও পাতা (Leaf)

কাজের পর্ব হতে পাতা উৎপন্ন হয়। পাতা বিভিন্ন ধরনের ও বিভিন্ন বৈশিষ্ট্যের হতে পারে। প্রতি পর্বে ১টি, ২টি বা তার অধিক পাতা থাকতে পারে। একটি আদর্শ পাতার তিনটি অংশ থাকে। যেমন- প্রেম্ন (base) প্রবৃদ্ধ (base) পরবৃদ্ধ (base) বিশ্ব (ba

পিটিওল (petiole) বা পত্রবৃত্ত/বোঁটা: পাতার বোঁটাই পিটিওল। পাতায় বোঁটা থাকলে তাকে পিটিওলেট (Petiolate) বা বৃত্তবৃত্ত পাতা বলা হয়; বোঁটা না থাকলে তাকে সেসাইল (sessile) বা বৃত্তহীন পাতা বলা হয়। অধিকাংশ পাতায় বোঁটা থাকে। ল্যামিনা (Lamina or leaf blade) বা পত্রফলক: বোঁটার মাখায় চ্যান্টা ও প্রশন্ত সবুজ অংশই লামিনা বা পত্রফলক পত্রফলকই পাতার প্রধান অংশ।

স্টিপিউল (Stipule) বা উপপত্র: কোনো কোনো পাতার বোঁটার গোড়ায় দুই পাশে পত্র সদৃশ কুদ্রাকার উপান্ত সৃষ্টি হয়, এই উপান্তকে স্টিপিউল বা উপপত্র বলা হয়।

মুক্তপার্শীয় উপপত্র (Free lateral stipules) : উপপত্র দৃটি যখন পত্রমূলের দুপাশে মুক্ত অবস্থায় থাকে।
সিম্পাল লিফ (Simple leaf) বা সরল পত্র : পাতায় একটি মাত্র পত্রফলক থাকলে তাকে সিম্পাল লিফ বা সরল পত্র
বলা হয়। জুবা, আম, জাম, কাঁঠাল প্রভৃতি উদ্ভিদের পাতা সরল পত্রের উদাহরণ।


কম্পাউড লিফ (Compound leaf) বা যৌগিক পত্র: একটি পাতার একাধিক পত্রকলক থাকলে তাকে যৌগিক পত্র বলা হয়। গোলাপ, নিম, লজাবতি, সজিনা, কামিনী প্রভৃতি উদ্ভিনের পাতা যৌগিক। যৌগিক পত্রের প্রতিটি ফলককে পত্রক (leaflet) বলা হয়। অর্থাৎ একাধিক পত্রক নিয়ে এক একটি যৌগিক পত্র গঠিত।

অচ্ডপক্ষল যৌগিক পত্র (Paripinnate compound leaf) : ব্যাকিসের চ্ড়ায় যদি কোনো পত্রক না থাকে অর্থাৎ পত্রকণ্ডলো জ্যোড় সংখ্যায় থাকে তবে তাকে অচ্ড়পক্ষল যৌগিক পত্র বলে। যেমন-বাদর গাঠি।)

সমৃত্তপক্ষল যৌগিক পত্র (Imparipinnate compound leaf) : র্যাকিসের চ্ডায় যখন একটি বিজ্ঞাড় পত্রক থাকে তখন তাকে সমৃত্তপক্ষল যৌগিক পত্র বলে। যেমন-গোলাপ।

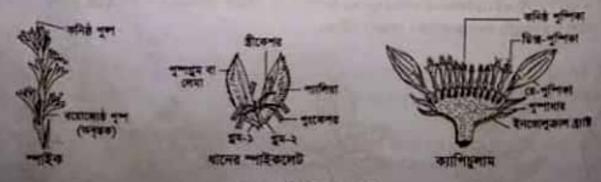
ধিপক্ষল যৌগিক পত্র (Bipinnate compound leaf) : এ ক্ষেত্রে ব্যাকিসের পাশ হতে শাখা বের হয় এবং পত্রকতলো শাখার দুই পাশে সাজানো থাকে। যেমন- কৃষ্ণচ্ড়া।

ত্রিশক্ষন যৌগিক পত্র (Tripinnate compound leaf) : এ ক্ষেত্রে র্যাকিসের শাখা হতে প্রশাখা বের হয় এবং প্রশাখার দুই পাশে পত্রকণ্ডলো সংযুক্ত থাকে। যেমন- সজিনা।

ফশকের আকৃতি (Shape of lamina) : পত্রফলক লঘা, বল্লমাকার, ডিমাকার, হৎপিতাকার, বৃত্তাকার, ইন্তাদি বিভিন্ন আকারের হতে পারে।

প্রফলকের তিনেশন (venation) বা শিরাবিন্যাস : পত্রফলকে মধ্যশিরা (অথবা একাধিক প্রধান শির), ব উপশিরা থাকে। ফলকের শিরাবিন্যাস উদ্ভিদ শনাক্তকরণে কাজে লাগে। যে নির্দিষ্ট রীতিতে শিরা-উপশিরাতশো ক্রিনান্ত থাকে তাকে শিরাবিন্যাস বলে। শিরাবিন্যাস দু'ধরনের :

- ১। রেটিকুলেট ভিনেশন (Reticulate venation) বা জালিকা শিরাবিন্যাস: পাতার শিরা-উপশিরা ও এনের দ প্রশাখাতলো পরস্পর যুক্ত হয়ে একটি জালের মতো সৃষ্টি করলে তাকে জালিকা শিরাবিন্যাস বলা হয়। জালিকা শিরুদ্ধি দ্বিজন্মী উদ্ভিনের বৈশিষ্ট্য।
- ২। প্যারাদেশ ভিনেশন (Parallel venation) বা সমান্তরাল শিরাবিন্যাস : পাতার শিরাকণো পরস্পর মৃত ন চ সমান্তরাশভাবে বিন্যন্ত থাকলে তাকে সমান্তরাল শিরাবিন্যাস বলা হয়। সমান্তরাল শিরাবিন্যাস একবীজগানী স্থায়ে বৈশিষ্ট্য।


ফাইলোট্যাঙ্গি (Phyllotaxy) বা পত্রবিন্যাস : কাণ্ডে পাতা একান্তর (প্রতি পর্বে একটি করে), প্রতিমুখ (প্রতি পরে) করে) বা আবর্তক (প্রতি পর্বে দুইয়ের অধিক করে) ভাবে বিন্যন্ত থাকতে পারে।

পুশ্বিন্যাদ বা পুশ্মশ্বরী (Inflorescence) : কাতের শীর্য মুকুল অথবা কান্ধিক মুকুল থেকে উৎপন্ন শব।
শাখাতম্বের উপর পুশ্পের বিন্যাদ পদ্ধতিকে পুশ্সমশ্বরী বলে। পুশ্সমশ্বরী প্রধানত দু'ধরনের: হেমন- রেদিনের।
সাইমোদ।

১। বেসিমোস (Racemose) : অনিয়ত বর্ধনশীল (অর্থাৎ ক্রমশ বাড়তে থাকে) মঞ্জরীদত্যুক্ত পুশ্লমঞ্জরী। ক্রেমিল
পুশ্পমঞ্জরী বিভিন্ন ধরনের হয়।

রেসিম (Raceme) : মঞ্জনীদও লম্বা ও অনিয়তভাবে বর্ধনশীল। বৃত্তযুক্ত পুস্প অগ্রোন্যুখভাবে (উপরের দিকে ক্রম কনিষ্ঠ) উৎপন্ন হয়। যেমন- সরিয়া।

শাইক (Spike) : প্রলম্বিত ও অনিয়তভাবে বর্ধিত মন্ত্রনীদত্তে অবৃত্তক পুশ্প উৎপন্ন হয়। যেমন-ব্রহ্ণনীগছা
শাইকলেট (Spikelet) : ছোট প্রকৃতির সংক্ষিত্ত স্পাইক। মন্ত্রনীদত সংক্ষিত্ত হয় এবং গোড়ার দিকে দৃটি বর্ধার অপুশ্পক শ্বুম (empty glume), উপরে একটি সপুশ্পক শ্বুম (flowering glume) বা লেমা (lemma) থাকে। এর টার্বিপরীত দিকে অবস্থান করে একটি প্যালিয়া (palea)। প্যালিয়ার উপরে পুশ্প থাকে। যেমন- ধান, গ্রম, ভাস ইপ্রে

চিত্র ৭.৫। বিভিন্ন প্রকার মঞ্চরী।

ক্যাপিচুলাম (Capitulum) বা শিবমঞ্জরী (Head) : মগুরীদও প্রদ্ধিত না হয়ে ছুল, ক্ষীত ও প্রশৃত হয়ে ^{হুল} সুস্পাধারে (receptacle) পরিশত হয়। পুস্পাধারের উপর দু'ধ্যানের পুস্পিতা (floret) যথা- তেন্দ্রে নগাকৃতি মধ্যসুস্থি lisc-florets) এবং তার বাইরে জিহ্নাকৃতি প্রান্তপূশিকা (ray-florets) বিনার থাকে। পুশ্রাধারের নিচে মন্তরীপত্র ক্রাকারে বিনাপ্ত হয়ে মন্তরীপত্রাবরণ (involucre) গঠন করে। যেমন- গাঁদা, সূর্যমুখী ইত্যাদি।

২। সাইমোস (Cymose): নিয়ত বর্ধনশীল (অর্থাৎ শীর্ষমুকুলে বৃদ্ধি রহিত হয়ে যায়) মন্ত্রনীদওযুক্ত পুশ্পমন্তরী। কোনো কোনো ক্ষেত্রে একটি মাত্র পূশ্প সৃষ্টির পর মন্ধরীদতে আর কোনো পূশ্প হয় না। এরা সাধারণত একক শ্রেনিটি। অনেকে একেও সাইমোস মন্তরী বলে থাকেন, যেমন-জিবা । বিবে

कृत अपरक প্রয়োজনীয় শব্দাবলি

ব্রাষ্ট্র (Bract) বা মঞ্চরীপত্র: যে ক্ষুদ্রাকৃতির পাতা বা পাতার নাায় অঙ্গের কক্ষে কোনো ফুল বা মঞ্চরী জন্মে তাকে য়াই বা মঞ্চরীপত্র বলে। ব্র্যাই-এর পরের স্তবকে ব্র্যাই-এর ন্যায় অঙ্গ থাকলে তাকে ব্র্যাইওল (bractiole) বা উপমঞ্চরীপত্র লে। সব ফুলে ব্র্যাই ও ব্র্যাইওল থাকে না।

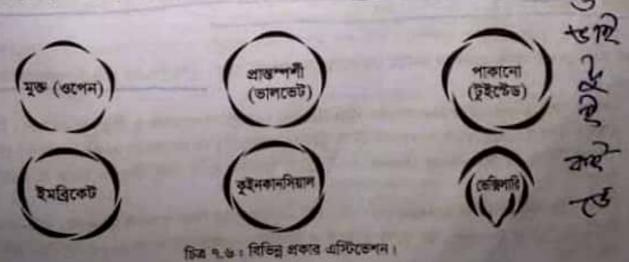
পুস্পাব্দ (Floral axis) : যে অক্ষের উপর পূস্পের চারটি স্তবক সক্ষিত থাকে তাকে পুস্পাক্ষ বলে।

পুস্প স্তবক : সাধারণ । চারটি ষ্টবক নিয়ে একটি পুস্প গঠিত হয়।

১। ক্যালিক্স (Calyx) বা বৃতি: ফুলের বাইরের স্তবকটিকে (সাধারণত সিবুজ্ঞ) বলা হয় ক্যালিক্স বা বৃতি। ক্যালিক্স
এর প্রতিটি সদস্যকে বলা হয় সিপালি (sepal) বা বৃত্যংশ। ক্যালিক্সের বাইরে ক্যালিক্সের দ্যায় কোনো স্তবক থাকলে তাকে
বলা হয় এপিক্যালিক্স (epicalyx) বা উপবৃত্তি। জবাতে উপবৃতি আছে।

২ (করোল) (Corolla) বা দলমণ্ডল :)বৃতির ভেতরের স্তবক (সাধারণত রঙিন থাকে) হলো করোলা বা দলমণ্ডল।

এর প্রতিটি সদস্যকে বলা হয় পেটাল (petal) বা পাপড়ি


এস্টিভেশন (Aestivation) বা পুশ্পত্রবিন্যাস

মুকুলাবস্থায় বৃত্যংশগুলো (অথবা পাপড়িগুলো) পরস্পরের সাথে কীভাবে বিন্যস্ত থাকে তাকে বলা হয় এস্টিভেশন বা পুস্পান্তবিন্যাস। এস্টিভেশন কয়েক প্রকার হতে পারে, যেমন-

ধপেন (Open) বা মুক্ত : এক্ষেত্রে বৃত্যংশ বা পাপড়িসমূহ পরস্পর হতে বেশ দূরে দূরে অবস্থান করে, একটি অপরটির প্রান্তও স্পর্শ করে না তাকে মুক্ত পুস্পপত্রবিন্যাস বলে। যেমন- গৃছরাজের বৃতির এস্টিভেশন।

অপরাচর প্রাপ্তর স্পাশ করে না তাকে বুক বু না আন্তর্গাল করে বা লালভিতলোর) একটির প্রাপ্ত আর একটির প্রাপ্তের ভালভেট (Valvate) বা প্রাপ্তস্পশী: এ ক্ষেত্রে বৃত্যংশতলোর (বা পালভিতলোর) একটির প্রাপ্ত আর একটির প্রাপ্তের কাছাকাছি থাকে। যেমন-জিবা ফুলে বৃতির এসিটভেশন, Calotropis procera আক্রম) ওবাবলা ফুলের এস্টিভেশন।

টুইস্টেড (Twisted) বা পাকানো : এক্ষেত্রে বৃত্যংশগুলোর (বা পাপড়িগুলোর) একটির প্রান্ত অপরটির প্রান্তক পরম্পের চেকে রাখে। যেমন- Hibiscus rosa-sinensis (জবা) ফুলের নিলমন্তলের মাস্টিভেশন।

ইমন্ত্রিকেট (Imbricate) : এক্ষেত্রে একটি বৃত্যংশের (বা পাপড়ির) দুই প্রান্তই আবৃত থাকে এবং অসম বর্ণী। প্রান্তই অনাবৃত থাকে। যেমন- Delonix regia (কৃষাচ্ড়া), Cassia sophera (কালকাসুন্দা) ফুলের একিভেশ্ন।

কুইনকানসিয়াল (Quincuncial) : যদি দুটি বৃত্যংশ (বা পাপড়ি) ভেতরে এবং দুটি বাইরে থাকে হবে কুইনতানসিয়াল এস্টিভেশন বলে। Psidium guajava (পেয়ারা), Brassica napus (সরিষা) ফুলের এস্টিভেশন।

ভেক্সিশারি (Vexillary) : এক্ষেত্রে সবচেয়ে বড় পাপড়ি (পাঁচটির মধ্যে) তার পাশের দুটির দুই প্রাপ্ততে জ্বের এবং পাশের দুটি অপর দুটির দুই প্রাপ্তকে তেকে রাখে। প্রজাপতিসম ফুলে এরূপ দেখা যায়। Pisum sativum (মানুর Lablah purpureus (শিম) ফুলের এস্টিভেশন।

ত। আনদ্রিসিয়ম (Androecium) বা পুশ্তেবক : দলমওলের তেতরে অবস্থিত ফুলের তৃতীয় স্তব্ধ ক্র আনদ্রিসিয়ম বা পুশ্তেবক। এর প্রতিটি সদস্যকে বলা হয় স্ট্যামেন (stamen) বা পুংকেশর পুংকেশরের দতকে ক্রে ফিলামেন্ট (filament) বা পুংদত এবং মাধার স্ফীত অংশকে বলা হয় অ্যাস্থার (anther) বা পরাগধানী, পরাগধানীর ক্রে থাকে পোলেন মেন (pollen grain) বা পরাগরেণু।

সাধারণত ছয়টি পৃংকেশরের মাঝে চারটি লখা এবং দুটি খাটো হলে তার্কে টেট্রাডিনেমাস (tetradynamous) হা সাধারণত চারটি পৃংকেশরের মাঝে দুটি লখা এবং দুটি খাটো হলে তাকে ডাইডিনেমাস (didynamous) বলে ।

পরাগধানীর প্রকার

পাদলম্ন (Basifixed) পরাগধানী : পরাগধানীর পাদদেশে পুংদও দৃঢ়ভাবে সংযুক্ত থাকে।

পৃষ্ঠশন্ন (Dorsifixed) পরাগধানী : পরাগধানীর পৃষ্ঠদেশের মধাবতী ছানে পুংদও দৃঢ়ভাবে সংযুক্ত থাকে।

পার্বদায় (Adnate) পরাগধানী: পরাগধানীর সমগ্র পৃষ্ঠদেশ বরাবর পুংদও দৃঢ়ভাবে সংযুক্ত থাকে।

সর্বমূব (Versatile) পরাগধানী: পুংদজের সরু অগ্রভাগ পরাগধানীর পৃষ্ঠদেশের মধ্যবর্তী ছানে একটি সূক্ষ বিদ্যা এমনভাবে সংযুক্ত থাকে যে, পরাগধানী মুদু বাতাসে এদিক-সেদিক দুলতে পারে। যেমন- ধ্রানের পরাগধানী। বেবাকার (Linear) পরাগধানী: সরু ও লঘা পরাগধানী।

বৃকাকার (Reniform) পরাগধানী : পরাগধানী দেখতে যখন বৃকের (kidney) মতো হয়। যেমন- জবার পরাগধানী দশলায় (Epipetalous) পুংকেশর : পুংকেশর পাপড়ির সাথে সংযুক্ত থাকে। যেমন- ধুতুরা, বেঙন ইত্যানি মূদ্র দেখা যায়।

৪। গাইনিসিয়াম (Gynoecium) বা প্রীন্তবক : ফুলের সবচেয়ে ভেতরের তবক (চতুর্গ তবক) হলো গাইনিসিয়াম প্রীন্তবক। এ তবকের প্রতিটি সদসাকে বলা হয় কার্পেল (carpel) প্রীকেশর ব গার্ভপত্রা কার্পেলের গোড়ায় স্ফাত হলো তভারি (ovary), গার্ভাশয় বা ভিমাশয়; মাঝের সকু অংশ হলো স্টাইল (style) বা গার্ভদত এবং মাখাটি হলো প্রিটি (stigma) বা গার্ভমুক্ত গার্ভাশয় অন্যসব তবকের উপরে থাকলে তাকে অধিগার্ভ (superior) গার্ভাশয় বলে; আর ত্রিটি অন্যসব তবকের উপরে থাকলে তাকে অধিগার্ভ (superior) গার্ভাশয় বলে; আর ত্রিটি অন্যসব তবকের উপরে থাকলে তাকে অধিগার্ভ (superior) গার্ভাশয় বলে; আর ত্রিটি

পেরিয়াছ (Perianth) বা পুশপপুট : বৃতি এবং দলকে যখন আকৃতি ও বর্গে পৃথক করা যায় না অর্থাং দেখার একই বক্ষা দেখারা তখন এদেরতে একত্রে পেরিয়াছ বা পুশপুট বলে। পুশপুট-এর প্রতিটি সদসাকে বলা হত

তিচলিক পুশ্প (Bisexual or Hermaphrodite flower) : যে পুশ্পে পুতেবক ও প্রীপ্তবক বিদ্যমান। যেমন- জন।
একলিক পুশ্প (Unisexual flower) : যে পুশ্পে পুতেবক অথবা স্ত্রীপ্তবক যে কোনো একটি বিদ্যমান। যেমন- বার্টি
পুশ্পেশে (Male or Staminate flower) : যে পুশ্পে পুতেবক থাকে কিন্তু স্ত্রীপ্তবক থাকে না। যেমন- বার্টিপুশ্পেশ

নিবুলা (Female or Pistillate flower) : যে পূলে শ্রীন্তবক থাকে কিম্ন পুংস্তবক থাকে না। গাউ-এব স্থীপুলা। ক্লীবপুলা (Neuter flower) : যে পূলে পুংস্তবক ও স্তীন্তবকের কোনোটাই থাকে না। যেমন- বাগানের স্টেল্বর্থ কিমু স্তারিদ। अव्यूर्व पूर्ण (Complete flower) : त्य भूरण हात्रि छदकडे विमामान । त्यमन छता

অসম্পূর্ব পুস্প (Incomplete flower) : যে পুস্পে চারটি স্তবকের এক বা একাধিক স্তবক অনুপত্তিত থাকে। মেমন-

সমাস পুস্প (Regular flower): যে পুস্পে প্রতিটি তবকের অংশগুলো পরস্পর সম-আকার ও সম-আকৃতিবিশিষ্ট থাকে। যেমন-জরা)

চিত্র ৭.৭ : বিভিন্ন প্রকার পূপা।

অসমাঙ্গ পৃষ্প (Irregular flower) : যে পৃষ্পে প্রতিটি তবকের অংশহলো পরস্পর বিষম আকার ও আকৃতিবিশিষ্ট হয়। যেমন- মটরতটি।

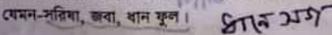
বহুপ্রতিসম পুস্প (Actinomorphic flower) : যে পুস্প খাড়াভাবে কেন্দ্র বরাবর কাটলে একবারের অধিক সমান দুটি অংশে বিভক্ত হয়। যেমন- সরিয়া জিবা একবারের স্থান

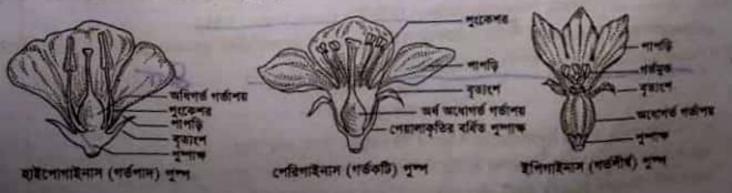
একপ্রতিসম পূস্প (Zygomorphic flower) : যে পূস্প খাড়াভাবে কেন্দ্র বরাবর কাটলে মাত্র একবার দুটি সমান অংশে বিভক্ত হয়। যেমন- শিম ও অপরাজিতা পূস্প।

অপ্রতিসম পূস্প (Asymmetrical flower) : যে পূস্প খাড়াভাবে কেন্দ্র বরাবর কাটলে কখনোই দুটি সমান সংশে বিভক্ত করা যায় না। যেমন- কলাবতী ফুল।

সবৃত্তক পুস্প (Pedicellate flower) : যে পুস্পে বোটা ধাকে।

অবৃত্তক পুষ্প (Sessile flower) : যে পুষ্পে বোটা থাকে না।


সম্পূর্ণ পূলা


অংশক (Trimerous) : যে পুম্পের স্তবকের অংশগুলো তিন বা তিনের গুণিতক সংখ্যায় থাকে।

চতুর্থংশক (Tetramerous) : যে পুস্পের স্তবকের অংশগুলো চার বা চারের গুণিতক সংখ্যায় থাকে।

পদ্মাংশক (Pentamerous) : যে পুস্পের স্তর্কের অংশগুলো পাঁচ বা পাঁচের গুণিতক সংখ্যায় থাকে।
গর্জপাদ পুস্প (Hypogynous) : পুস্পাস্থ উদ্ভল হয় এবং গর্ভাগয় এর কেন্দ্রে সর্বোচ্চ ছানে অবস্থান করে। পুস্পের

অবশিষ্ট তিনটি স্থবক ক্রেমান্থরে পর্ভাশরের নিচে সক্ষিত থাকে। এরা হলো অধিগর্ভ গর্ভাশর (superior ovary)।

গৰ্ভকটি পুস্প (Perigynous) : পুস্পাক অৱতদ বা পেয়াগাকৃতি হয় এবং গঠাশয় এ কেন্দ্ৰছলে পুস্পের অবশিষ্ট তিনটি তবক গভাশয়কে ঘিরে ক্রমান্বরে পেয়ালার কিনারায় সজ্জিত থাকে। এরা হলো (गामि) প্রভাশম (half superior ovary)। যেমন-শিম, গোলাপ ফুল।

গর্ভনীর্ধ পুশ্ব (Epigynous) : পুশ্বাক প্রমারিত হয়ে পেয়ালাকৃতি ধারণ করে এবং গর্ভাশয়ের পাদদেশে স্ক্র থাকে। পুল্পের অবশিষ্ট তিনটি স্তবক গর্ভাশয়ের উপরে পর্যায়ক্রমে সঞ্চিত থাকে। এরা হলো অধাগর্ভ গর্ভাশা (mino ovary)। যেমন-কুমড়া, পেয়ারা ফুল।

প্লাসেন্টেশন (Placentation) বা অমরাবিন্যাস

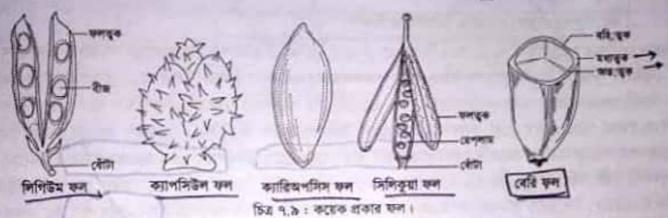
গর্ভশয়ের ভেতরে যে টিস্যু থেকে ভিভিউল (ovule) বা ভিত্বক সৃষ্টি হয় সে টিস্যুকে প্রাসেন্টা (placenta) বা কর ৰলে। গঠাশরের তেত্তরে প্লাসেন্টার বিন্যাস পছতিকে বলা হয় প্লাসেন্টেশন বা অমরাবিন্যাস। অমরাবিন্যাস বিভিন্ন 📾 হতে পারে: যেমন-

- (i) মার্জিনাল (marginal) বা একপ্রান্তীয় : এক্নেত্রে একপ্রকোষ্ঠবিশিষ্ট গর্ভাশয়ের এক কিনার বরবের প্রাসেন্টা খরে Pisum sativum (মটরতটি), Lablab purpureus (শিম)।
- (ii) আরাইল (axile) বা অকীয় : একেয়ে গর্ভাশয় একাধিক প্রকোষ্টে বিভক্ত থাকে এবং প্রতিটি কছে মধ্যক্ত প্রানেতা থাকে। Hibiscus rosa-sinensis (জবা)।

চিত্র ৭.৮ : বিভিন্ন ধরনের অমরাবিন্যাস

- (iii) জি সেট্রান্ (free central) বা মুক্তমধ্য : এক্ষেত্রে গর্ভাগয়ে একটি প্রকোষ্ঠ থাকে এবং মধাঅক্টে প্রফো থাকে। ইত, Portulaça oleracea (নুনিয়া শাক)।
- (iv) প্যারাইটাশ (paraietal) বা বহুপ্রান্তীয় : এক্ষেত্রে গর্ভাশয় এক বা একাধিক প্রকোষ্ঠবিশিট হয় এবং গ্লাদেশীশ ভাকে পরিধীয় দেয়ালে। Cucumis sativus (শশা), Lagenaria vulgaris (শাউ)।
- (v) বুশারকিশিয়াল (superficial) বা গামীয় : একেতে গর্ভাশত একাধিক প্রকোষ্ঠবিশিট থাকে এবং প্রচেশ্টা ব প্রাচীরে পাকে। Nymphaea nouchali (শাপনা), Nelumbo nucifera (পথ)। তা পি
- (vi) বেলাল (basal) বা মূলীয় : এক্ষেত্রে গর্ভাগয় এক প্রকোষ্টবিশিট হয় এবং প্রাদেন্টা গর্ভাশয়ের গোড়ায় বর্তি Tridax procumbens (fantsi), Helianthus annuus (अपनि), Oryca sativa (अन) 1
- (vii) আাশিক্যাল (apical) বা শীৰ্ষক : একেনে গৰ্ভাশয় একাধিক প্ৰকোষ্টবিশিষ্ট হয় এবং প্লাসেন্টা গৰ্ভাশক্তে বাকে। Coriandrum sativian (ধনিয়া), Euphorbia pulcherrima (পাল পাতা)।

(Fruits)


सकुड क्ल (True fruit) : गर्वागर (भरत डिस्ल्स इस । रयमन- आम, आम, लिहू । कार्यक अन (False fruit) : गर्जानय गाठीक जमा जरन (शहक विश्नाम इस । रगमन- आरमण । मान एन (Simple fruit) । अविधि जून्स इस्ड अविधि भाग कल विश्तम इस । स्थमन- आम ।

ভ্রতিত ফল (Aggregate fruit): একটি মাত্র পূলেশর মুক্ত গর্ভাশয়তলো হতে একচছে কল উৎপন্ন হয়। যেমন-আতা।

যৌশিক ফল (Multiple fruit) : সমগ্র পুল্লমঞ্জরী হতে একটি মাত্র ফল উৎপন্ন হয়। যেমন-কিঠলি)

গিণিউম (Legume) : ফল উপর থেকে নিচে দুটি কলাটে বিদীর্ণ হয়।

ক্যাপসিউল (Capsule) : ফল উপর থেকে নিচে বহু কপাটে বিদীর্ণ হয়। যেমন- ধুতুরা, টেভুস, পাট

ক্যারিঅপসিস (Caryopsis) : ফল এক প্রকোষ্ঠবিশিষ্ট এবং একটি মাত্র বীজযুক। ফলত্বক ও বীজতুক পর সংলগ্ন থাকে। यमन धान

সিলিকুয়া (Siliqua): তছ বিদারী ফল যা পরিপক্ হলে নিচ থেকে উপরের দিকে ক্রমণ কেটে যায়। এই ফল লঘা ও

নলাকার হয়। যেমন (সরিষা) বেরি (Berry) : ফল এক বা একাধিক গর্ভপত্রী এবং বহুবীজী। অস্তত্ত্বক ও মধাত্ত্বক সংযুক্ত থাকে। যেমন- কলা,

उत्पत्ना । সাইজোকার্প (Schizocarp) : তদ্ধ অবিদারী ফল। যেমন ধনে।

সরোসিস (Sorosis) ্তুপাইক, স্প্যাতিক মঞ্জরীটি একটি রসালো যৌগিক ফলে পরিণত হয়। যেমন- কাঁঠাপ,

আনারস।

সংকেত Floral Formula)

পুষ্পের লিঙ্গ, বিভিন্ন জবক, প্রত্যেক জবকের সদস্যসংখ্যা ও অবস্থান, তাদের সম ও অসম সংযুক্তি, মন্তরীপরের উপস্থিতি ও অনুপস্থিতি প্রভৃতি তথ্য যে সংকেতের সাহায্যে প্রকাশ করা হয় তাকে পুস্প সংকেত (floral formula) বলে । ব্যৱহৃত ক্রিয়ালা

भून्त नरदक	हरदिक वर्गभाना	বাংলা বর্ণমালা
পুলেপর অংশ		R5.
मक्ती भटवत क्रमा (for bract)	Br. or B.	S44.
डेल्मखरीलद्रस्य सन्। (for bracteole)	Bril. or b	64.
উপবৃতির জনা (for epicalyx)	Ek.	7
वृष्टित जना (for calyx)	K	4
मरनद सन्। (for corolla)	D	7
भून्भभूर्केर धना (for perianth)		T
भूरबन्दक्त अना (for androecium)	A	-
द्रीप्रदर्भ्य प्रमा (for eynoccium)	G	

গৰ্প সংক্ৰেতে ব্যবহাত চিহ্নসমূহ:

	1	-	
একপ্রতিসম পুশের জন্য সাংকৃতিক চিয়	8 1	বা	%
বহুপ্রতিসম পুলের জন্য সাংক্তেতিক চিহ	0		
পুংপুশেষ জন্য সাংকেতিক চিহ্ন	3		
প্রাপুলের জন্য সাংকেতিক চিহ্ন	\$		
উঙলিস পুশের জনা সাংকেতিক চিহ্ন	\$	ব্য	À
বহু সংখ্যা (অনেক) বোঝাতে সাংকেতিক	চিহ ⁶ α		

A CONTRACTOR OF THE PARTY OF TH

কোনো ভবকের সাংকেতিক বর্ণের পরে যে সংখ্যা দেওয়া হয় তা ঐ স্তবকের সদস্যসংখ্যা বোঝায়। উদাহরণখরপর কিবলে বোঝাবে বৃতিতে পাঁচটি বৃত্যংশ আছে এবং বৃত্যংশতলো মৃক্ত। কোনো দুটি বা তিনটি স্তবকের সংকেতিক বর্ণের উপরে একটি দ্ব রেখা দিলে বোঝা যাবে এদের মধ্যে অসমসংযুক্তি আছে। উদাহরণখরণ দিলে বোঝা যাবে এদের মধ্যে অসমসংযুক্তি আছে। উদাহরণখরণ দিলে পুর্ত্ত। এরূপ পিবলে বোঝা যাবে দালে সাথে পুংকেশর সংযুক্ত আছে। কাজেই দেখা যার বিদ্ধনী ছারা সমসংযোগ এবং রেখা ছারা অসমসংযোগ বোঝানো হয়। ছাড়া গর্ডাশয় যদি অধিগর্ভ (superior) হয় তবে 'গ'-এর নিচে একটি রেখা দেয়া হয়, য়েমন গ্রং আর গর্ভাশয় ইল অধাপর্ত (inferior) হয় তবে 'গ'-এর উপর রেখা দেয়া হয়; য়েমন গাঁ। যখন গর্ভাশয়টি অর্ধ-অধাপর্ত হয় তখন 'গ' প্র ভান পাণে টান নিতে হয়, য়েমন গ'-।

পুষ্প সংক্তে দিখার পদ্ধতি

পুশ্প সংক্তে লিখতে পর্যায়ক্রমে (i) প্রথমে মঞ্জরীপত্রের বর্ণমালা, (ii) তারপরে উপমঞ্জরীপত্রের বর্ণমালা, (iii) শ্ব একপ্রতিসম কি বহুপ্রতিসম এই সংকেত, (iv) পরে একলিঙ্গ কি উভলিঙ্গ এই সংকেত, (v) উপবৃতির সাংকেতিক বর্ণ ও উপবৃত্যংশের সংখ্যা, (vi) তারপরে বৃতির সাংকেতিক বর্ণ ও বৃত্যংশের সংখ্যা (সংযুক্ত হলে বন্ধনীসহ), (vii) তারপরে সংখ্যা (সংযুক্ত হলে বন্ধনীতে), (viii) তারপরে পুংত্তবকের সাংকেতিক বর্ণ ও পুংকেশরের সংখ্যা (সংযুক্ত হলে বন্ধনীতে এবং দলের সাথে সংযুক্ত থাকলে উভয়ের সাংকেতিক বর্ণমালার উপর রেখা হর্ত সংযুক্ত করতে হবে) এবং (ix) সর্বশেষে প্রীত্তবকের সাংকেতিক বর্ণ ও গর্ভপত্রের সংখ্যা (সংযুক্ত থাকলে বন্ধনীর মধ্যে এই অধিগর্ভ থাকলে নিচে রেখা ও অধোগর্ভ থাকলে উপরে রেখা দিতে হবে)। বৃতি, দল, পুংস্তবক অথবা প্রীক্তবকের কেন্দের অনুপত্নিত থাকলে সাধারণত সেই স্তবকের সংকেত লিখে '0' (শুনা) লিখা হয়।

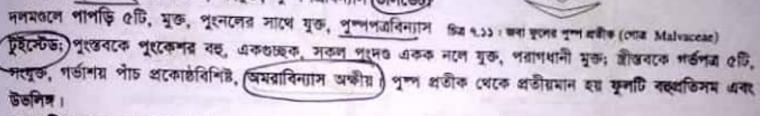
যেমন- K, C, A, G, অর্থাৎ পুস্পটি খ্লীপুস্প (এখানে পুংস্তবক অনুপত্তিত অর্থাৎ কোনো পুংকেশর নেই)।

পুল্প প্রতীক (Floral Diagram)

যে প্রতীকের সাহায়ে একটি প্লেপর মাতৃঅক্ষের (mother axis) তুলনায় এর বিভিন্ন ভবকের পূল্পপত্রতলার অবস্থান, সংখ্যা, সমসংযোগ, অসমসংযোগ, পূল্পপত্রবিন্যাস, অমরাবিন্যাস প্রভৃতি বৈশিষ্ট্য দেখানো হয়। বৃত্তের উপরে মাতৃঅক্ষ একটি বিন্দুর আকারে দেখানো হয় এবং বৃত্তের নিচে মঞ্জীপত্র (যদি থাকে) দেখানো হয়। বৃত্তের বাইরের ভবকে বৃত্তাংশ ও এর পূল্পপত্রবিন্যাস দেখানো হয়। ছিত্রীয় ভবকে পালভ়ি ও এর পূল্পপত্রবিন্যাস দেখানো হয়। ছিত্রীয় ভবকে পালভ়ি ও এর পূল্পপত্রবিন্যাস দেখানো হয়। ফুজীয় ভবকে পূংকেশর, এর সংখ্যা, সম বা অসমসংখৃতি লেখানো হয় ভবং মধ্যখানে গর্ভাগরে প্রস্থান্তম্ব ভবা অমরাবিন্যাস দেখানো হয়। উলবৃত্তি থাকনে বৃত্তির ভবকের বাইরে আর একটি ভবকে দেখানো হয়।

চিত্ৰ ৭,১০। মাতৃত্ৰত প্ৰিচিতি।

উপবৃত্তি


প্রীরুবক

বিভিন্ন তবকের সদস্যদের মধ্যে অসমসংযোগ কুদ্র সংযোগ রেখা দিয়ে দেখানো হয়। একই তবকের সদস্যদের মধ্যকার সমসংযোগ তাদের প্রান্তহয়ের মধ্যে সংযোগের মাধ্যমে দেখানো হয়।

মাতৃত্বক্ষ পরিচিতি: যে অফ (axis) হতে পুশ্পের সৃষ্টি হয় তাকে মাতৃত্বক বলে। পুশ্পের মাতৃত্বকের নিকের অংশ

হলো পিকাং অংশ এবং তার বিপরীত অংশ অর্থাৎ মন্ত্ররীপত্রের দিকের অংশ হলো পুশেপর সম্মুখ অংশ। মাতৃত্বক সঠিকভাবে শনাক করতে না পারলে সঠিক পুশ্প প্রতীক অন্ধন করা সম্ভব নয়। এখানে চিত্রের সাহাযো একটি (Crotalaria retusa (অতসী)) পুশেপর মাতৃত্বক ও পুশেপর অ্যা-পশ্চাৎ দেখানো হয়েছে।

জবা ফুলের পুস্প প্রতীকের ব্যাখ্যা : উপবৃতিতে উপবৃত্যংশ ৫টি, মুক্ত, বৃতিতে বৃত্যংশ ৫টি, সংযুক্ত, পুস্পপ্রবিন্যাস ভালভেট্ট

কয়েকটি পূস্প সংকেতের ব্যাখ্যা

১। জবা (গোত্র : Malvaceae)

পু**শ্প সংকেত :** 🕀 🐧 উবৃ_৫ বৃ_(৫) দ_৫ পুহ্_(α) গ্_(৫)

 $[\oplus \circlearrowleft Ek_1 \ K_{(1)} \ \overline{C_1 \ A_{(0)} \ \underline{G_{(3)}}}]$

ব্যাখ্যা: মঞ্জরীপত্র ও উপমঞ্জরীপত্র নেই। পুস্পটি বহুপ্রতিসম ও উত্তিস্থ ৫টি মুক্ত উপবৃতি আছে: বৃত্তাংশ ৫টি, সংযুক্ত: পাপড়ি ৫টি, মুক্ত: পুংকেশর অসংখ্য, সংযুক্ত, একডছেক এবং দললগ্ন: গ্রভপত্র ৫টি, সংযুক্ত এবং তিনিয় অধিগর্ত।

२। धान (त्याज : Ponceae)

পুল্ল সংক্রেত : মল উমল † বু পুং ০০০ গু

[Br. Bri † P2 A1+1 G1]

ব্যাখ্যা: মঞ্জরী ও উপমঞ্জরীপত্র উপস্থিত। পুস্পটি একপ্রতিসম ও উভলিছ। টেপাল ২টি, মুক্ত: পুংকেশর ৬টি, মুক্ত, পুই বৃষ্টে সজ্জিত: গূর্ভুপত্র ১টি, মুক্ত এবং গর্ভাশয় অধিগর্ভ।

একবীজপত্রী উদ্ভিদের গোত্র পরিচিতি

মে সব আবৃতবীজী উদ্ভিদের বীজে একটি মাত্র বীজপত্র থাকে তাদেরকে বলা হয় **একবীজপত্রী উদ্ভিদ। ধান, গুম,** তুটা, আখ, পেঁরাজ, রসুন ইত্যাদি একবীজপত্রী উদ্ভিদের কতিপয় উদাহরণ।

একবীজপত্রী উত্তিদের শনাক্তকারী কতিপয় বৈশিষ্ট্য

- ১। বীজে বীজপত্র একটি।
- २। मृन (क्षरम्भा)
- 🛡। পাতার শিরাবিদ্যাস সাধারণত সমান্তরাল।
- ৪। পুল্পে পুল্পপত্তের সংখ্যা ত বা এর ভণিতক (৩টি, ৬টি বা ৯টি) অর্থাৎ পুল্প ট্রাইমেরাস।
- ৫। বীজপত্তর অবস্থান শীর্ষ এবং শ্রণ মুকুল পার্থীয়

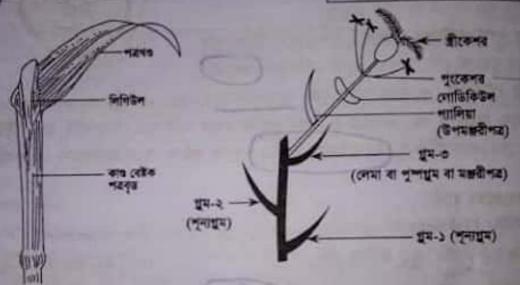
ভ, আর্থার ক্রনকুইস্ট (১৯৮১) পৃথিবীর সকল জানা একবীজপত্রী উদ্বিদকে ৬৫টি গোত্রে বিভক্ত করেছেন। সামি-উন্নত ধারা অনুষায়ী প্রথম গোত্র Butomaceae এবং সর্বপেষ গোত্র Orchidaceae, Poaceae গোত্রের অবস্থান এই তম।

গোম Poaceae (পূৰ্বনাম Gramineae) (ঘাস পোম বা Grass Family)

বজাতির সংখ্যা ও বিকৃতি : প্রায় ৫০০ গণ এবং ৮০০০ প্রজাতি নিয়ে ঘাস গোত্র গঠিত। এ গোত্রের উদ্ভিদ পৃথিবীর সব ধরনের অবস্থানে পাওয়া গোলেও অধিক পাওয়া যায় উদ্ধানওলীয় অক্তলে এবং উত্তর-নাতিশীতোকা মৃদু ভদ্ধ অক্ষলে। বাংলাদেশে এই গোত্রের ১১৩টি গণ এবং ২৮৫টি প্রজাতি শনাক্ত করা হয়েছে।

ভাইপ জিলাস Poa খেকে এই গোত্রের নামকরণ করা হয়েছে Poaceae

শ্রেণিবিন্যাস


Division : Magnoliophyta

Class: Liliopsida

Subclass: Commelinidae

Order: Cyperales

Family : Poaceae (Grammes

त्रिक्ष १,३२ : लट्डब मिनिडेन रमपारना इटारक :

চিত্ৰ ৭,১৩ : একটি স্পাইকলেটের ভাষম্যামেটিক চিত্র।

७। আমরাবিন্যাস মূলীয় (basal)

৭। ফল ক্যারিঅপসিস (caryopsis)

৫। গর্ভমূত পালকের ন্যায়

শনাককারী বৈশিষ্ট্য

১। কাও সাধারণত নলাকার, মধ্যপর্ব ফাঁপা।

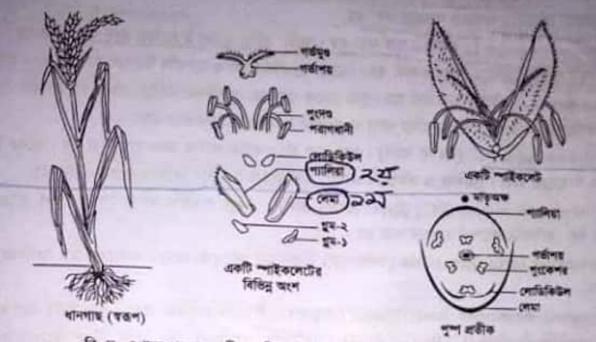
২। পত্রমূল কাওবেটক এবং পাতা লিগিউলবিশিষ্ট

ত। পুস্পবিন্যাস (মঞ্জরী) স্পাইকলেট (spikelet)।

8। পরাগধানী সর্বমূর্ব (versatile)।

সাধারণ বৈশিষ্ট্য

বর্মণ (Habit) : বর্মজীবী বা বছবর্মজীবী বীরুৎ, কতক বৃক্ষবৎ, যেমন- বাঁপ।


मृत (Root) : कारूम्ल ।

কাও (Stem) : নলাকার, অধিকাংশ গণে মধ্যপর্ব ফাঁপা (এ ধরনের কাওকে সাধারণত culm বলা হয়)। Sacchar ও Zea (ইচ্ছু এবং ভূটা গণ) গণছয়ে কাও তেমন ফাঁপা থাকে না।

পাতা (Leaves) : সরল, একান্তর, সাধারণত দুই সারিতে বিনান্ত, লিগিউলবিশিষ্ট: Echinochloa গণে নি নেই। প্রতিটি পাতা সাধারণত তিনটি অংশ নিয়ে গঠিত, যথা- গোড়াতে <u>সীথ (sheath,</u> যা সাধারণত কার্থবিদ), প্রভাৱক (blade) এবং শিশিউল (ligule)। শিগিউল হলো লিফসীথের মাথা এবং প্রফলকের সংযোগত্তা জ ক্রিটি উপবৃদ্ধি।

পুশ্বিনাল (Inflorescence): শাইকলেট (spikelet)। একটি শাইকলেটে এক বা একথিত প্ৰশাবে। একটি এক পুশ্বিক শাইকলেটে গোড়ায় ২টি চকনা মুখ্ (glumes) ঘাকে বাদেরকে বলা হয় পুনা হয় একে কালে বাদেরকে বলা হয় পুনা হয় একে কালে বাদেরকে বলা হয় পুনা হয় একে কালে বাদেরকে বলা হয় পুনা হয় কালে বিদ্যালয় (kind) বা কুলা বাদেরকে বলা হয় প্রাণিয়া (palea, L. palea = chaff, ভূষ)। বোনার বিশ্ববিদ্যালয় এক প্রাণিয়া এক প্রাণিয়াক বাদ্যালয় বিশ্ববিদ্যালয় বাদ্যালয় বিশ্ববিদ্যালয় বাদ্যালয় বিশ্ববিদ্যালয় বাদ্যালয় বিশ্ববিদ্যালয় বাদ্যালয় বাদ্যালয় বিশ্ববিদ্যালয় বাদ্যালয় বাদ্যালয় বিশ্ববিদ্যালয় বাদ্যালয় বাদ্যালয় বাদ্যালয় বাদ্যালয় বাদ্যালয় বাদ্যালয় বিশ্ববিদ্যালয় বাদ্যালয় বাদ

পুল্প (Flower) : <u>যাস পোতেরে পুল্পকে সাধারণত(পুল্পিক)</u> (floret) বলা হয়। পুল্পকা উচনিব বা একলির হতে পাৰে। ত্যা উদ্ভিদে এক লিম্ন এবং ভিনুবাসী (প্রী এবং পুরুষ পুশ্প আলাদা গাছে), জিজানিয়াতে এক লিম, সহবাসী

বি, স্ত্র, এখানে পুলের প্রতীক অন্ধিত হলো। স্পাইকলেটের প্রতীক অন্ধন করতে হলে শ্নাগ্রম - ১ এবং শ্নাগ্রম - ২ যুক্ত করতে হবে।

চিত্র ৭,১৪ : Oryza sativa উভিদের স্বরূপ, মন্ত্রনী ও ফুলের বিভিন্ন অংশ।

পুষ্পপুট (Perianth) : সকল পুষ্পিকাতে পৃষ্পপুট নেই। কোনো কোনো উদ্ভিনের পুষ্পিকাতে কুদ্রাকায় দুটি পুল্পপুট থাকে যাকে লোডিকিউল (lodicule) বলা হয়। ফুদ্র শঙ্কপত্রের ন্যায় পুল্পপুট হলো লোডিকিউল

পুত্তবক (Androecium) : পুংকেশর সাধারণত ৩টি, ধান ও বাঁশ উদ্ভিদের পুশ্লে এটি পুংকেশর দুই আবর্ত্তে অবস্থিত। পরাগধানী রেখাকার, সর্বমুখ) লঘালিছ বিলীর্ণ হয়।

খ্রীস্তবক (Gynoecium) : গর্ভপত্র ১টি, গর্ভাশয় ১টি, গর্ভদত্ত ১টি, গর্ভমূত ২টি, পালকের ন্যায় থবং পার্শীয়; গর্ভাশয় এক প্রকোষ্ঠবিশিষ্ট; প্রকোষ্ঠে ডিম্বক ১টি, ভিম্বক মূলজ এবং খাড়া।

अमद्राविन्गाम (Placentation) : भूलीय

ফল (Fruit) : ক্যারিঅপসিস

বীজ (Seed) : সম্যূল (endospermic), ভ্রূণ অতিকুদ্র ও বীজের এক কোণায় অবস্থিত।

পুশ্প সংকেত (Floral formula) : ধান পুশ্পের পুশ্প সংকেত : মপ. উমপ. † বুঁ পুঃ পুং 🛶 গ্র

Poaceae গোটের করেকটি গুরুত্পূর্ণ উদ্ভিদ

১ । Bambusa bambos (L.) Voss (বাঁশ) : উচু বৃক্ষবৎ আদি ঘাস। গৃহ নির্মাণ ও কাগনা তৈরিতে ব্যবহার করা হয়। কৃটির শিল্পে বিভিন্ন প্রকার গৃহসজ্ঞা ও আসবাবপত্র তৈরিতে ব্যবহার করা হয়। বাংগাদেশে হিচ্চ প্রজাতির বাশ জন্মে ধাকে। দৈনদিন কর্মকাতে বাঁশের তরুত্ অপরিসীম। বাঁশ কাষ্ঠল, বৃক্ষবং এবং বেশ উচু। তবুও বাঁশকে ঘাস বলা হয়। করেশ এদের পুল্প বৈশিষ্ট্য, ফাঁপা মধাপর্ব ও অন্যান্য বৈশিষ্ট্য খাসের মতো।

২। Oryza sativa L. (ধান): চাৰ করা হয়। বাঙালির প্রধান খাদা ভাত আসে ধানের চাল খেকে। চিড়া, মুড়ি, লিঠা, পারেস সবই আসে ধান বা চাল থেকে। খড় উচু মানের পো-গাদা ও জ্বালানি হিসেবে ব্যবহৃত হয়। ধানের কুড়া খেতে ভোজা তেল ও হাঁস-মুরগার খাদ্য প্রস্তুত করা হয়।

ত। Sacelurum officinarum L. (আখ, ইন্দু): চাধ করা হয়। আখ থেকে গুড়, চিনি, জ্বালানি ইত্যাদি গাছ পোলেন প্রাকে ফার্মেন্টেশন প্রক্রিনায় আলকোহল, ভিনেগার তৈরি করা হয়। আখের ছোবড়া পার্টেক্স ছৈনিছে করা হয়। এছাড়া জ্বালানির কাজেও ব্যবহার করা হয়।

B। Triticum aestivum L. (গম): চাষ করা হয়। আটা, সুজি, ময়দা ইত্যাদির জন্য চাষ করা হয়। ক্ষ্টি, গাউকটি, বিষ্ণুট প্রভৃতি তৈরিতে ব্যবহার করা হয়। গমের খড় গো-খাদ্য ও জ্বালানি হিসেবে ব্যবহার করা হয়।

৫। Zea ma) ম L. (জুয়া) : চাষ করা হয়। জুয়া থেকে পপকন ও ঘইসহ বিভিন্ন প্রকার খাদ্যসামগ্রী তৈরি হয়। জুয়া থেকে কর্ণফ্রেক্স তৈরি হয়। হাস-মুরগির খাদ্য ও জাগানি হিসেবে ব্যবহার করা হয়।

(বি Hordeum vulgare L. (যব বা বার্লি): চাষ করা হয়। যবের আটার জন্য চাষ করা হয়। যবের ছাতৃ হৈ সহজ্ঞপাচ্য ও সাস্থ্যপ্রদ খাদ্য। হরলিক্স ও কমপ্র্যান জাতীয় খাদ্যদ্রব্যের উপাদান হিসেবে ব্যবহার করা হয়।

- ৭। Cymbopogon citratus (DC.) Stapf. (লেমন ঘাস): লেবুর গন্ধযুক্ত ঘাস। সুগন্ধি তেল ও প্রসাধন। বাবহার করা হয়। চাইনজি সাুপেও ব্যবহার করা হয়।
- ৮। Phragmites karka (Retz.) Trin (নপখাগড়া) : জলাময় জায়গায় জন্মে। কাগজের মও তৈরিসহ এর ব্যবহার আছে।
 - के। Thysanolaema maxima (Roxb.) Kuntze (बाष्ट्रधाम): পाशांकि धनाकाग्र कान्य। बाष्ट्र टेडव्रि क्वा स्म।
- ২০। Cynodon daetylon (L.) Pers. (দূর্বাঘাস) : লন তৈরি, পত খাদ্য এবং ওযুধি উদ্ভিদ হিসেবে বাবহুত । বক্তপাত বন্ধ ও ক্ষত নিরাময়ে ভেষঞ হিসেবে ব্যবহার করা হয়।

অধনৈতিক ওকাই : অর্থনৈতিক দিক থেকে এই গোত্রের ওকাতু সর্বাধিক। ধান, গম, ভুটা, জোয়ার, যব বা বা কিনা, কাউন ইত্যাদি মানুষের প্রধান খাদ্য যোগান দিয়ে থাকে। পৃথিবীর ৬০% লোকের প্রধান খাদ্য ভাত এবং বহু বেতে প্রধান খাদ্য কটি। হাজার প্রজাতির ঘাস গরু, মহিষ, ছাগল, ভেড়া ইত্যাদি গৃহপালিত পতর প্রধান খাদ্য হিসেবে ব্যবহার বাবহার দেখা যায় দোলনা থেকে কবর পর্যন্ত বিভিন্ন কর্মকান্তে। মিষ্টি দ্রব্যের যোগান দিয়ে থাকে আৰু। নির্মাণ সামগ্রীর যোগান দিয়ে থাকে ছন, ইকড়, কাশ ইত্যাদি উদ্ভিদ। প্রাত্যহিক ঘরবাড়ি ঝাড়ু দিতেও প্রয়োজন পড়েও গোত্রের উদ্ভিদের।

খান্যশস্য (Cereals) : ঘাস পরিবারের (Poaceae) খাদ্যদানা (grain) উৎপাদনকারী উত্তিদসমূহকে খাদ্যশস্য বল যেমন- ধান, গম, ভূটা।

দ্বিবীজপত্রী উদ্ভিদের গোত্র পরিচিতি

যে সব আবৃতবীজী উত্তিদের বীজে দু'টি বীজপত্র থাকে তাদেরকে বলা হয় দ্বিবীজপত্রী উত্তিদ। আম, জাম, কর্মান

দিবীজপত্রী উত্তিদের পনাতকারী বৈশিষ্ট্য

-)। वीत्म वीक्लब मुंछ।
- २। मृन द्रधान मृत।
- ৩। পাতার শিরাবিন্যান সাধারণত জালিকাকার।
- ৪। পুশ্বে পুশ্বপতের সংখ্যা ৪ বা ৫ বা তার গুণিতক (৪, ৮ বা ৫, ১০ একণ)-অর্থাং পুশ্ব তিটামের

वीटल दीलनात्का अवदान नाबीय अवर जनम्बन नीर ।

ছ, আৰার ক্রনকুইস্ট (১৯৮১) পৃথিবীর সকল জানা ছিবাজপত্রী উত্তিদকে ৩১৫টি গোত্রে বিভক্ত করেছেন। আদি জি বারা অনুবামী প্রথম পোত্র Winteraceae এবং সর্বপেষ গোত্রা Asteraceae। নিচে Malvaceae গোত্রের সংক্রিত বি

গোত্ৰ: Malvaceae (মালভেসি)

টোইপ জেনাস Malva থেকে গোত্র নাম Malvaceae করা হরেছে।)

alvaceae শোতের শনাক্তকারী বৈশিষ্ট্য

-)। উত্তিদের কচি অংশ রোমশ ও মিউসিলেজপূর্ণ (পিঞ্জিল পদার্থযুক্ত)।
- ২। উপপত্ৰ মুক্তপাৰীয়।
- ৩। পুষ্প ত্রুক ছবং সাধারণত উপবৃতিযুক্ত।
- 8। পুংকেশর বহু, একগুছকে, পুংকেশরীয় নালিকা গর্ডদণ্ডের চারদিকে বেষ্টিত।
- ৫। পরাগধানী একপ্রকোষ্ঠী (এককোষী নয়) ও বৃক্কাকার
- ৬। পরাগরেণু বৃহৎ এবং কন্টকিত
- १। আমরাবিন্যার্স অক্ষীয় (axile)

শ্রেণিবিন্যাস: আর্থার ফ্রনকুইস্ট (১৯৮১)

Division: Magnoliophyta Class: Magnoliopsida Subclass: Dillenidae Order: Malvales

Family: Malvaceae

চিত্র ৭,১৫ : চিত্রে Malvaceae গোরের শনাককারী বৈশিক্ষা।

বিস্তৃতি : Malvaceae একটি বড় গোত্র। ৭৫টি গণ এবং ১০০০ খেকে ১৫০০ প্রজাতি নিয়ে এই গোত্র গঠিত। পৃথিবীর বহু দেশে এর বিভিন্ন প্রজাতি জন্মে থাকে। বাংলাদেশে এই গোত্রের আনুমানিক ১৪টি গণ এবং ৪২টি প্রজাতি জনো থাকে। এর মধ্যে সবচেয়ে বড় গণ হলো Hibiscus (প্রজাতি ১৫টি)।

সাধারণ বৈশিষ্ট্য

সক্রপ : বীরুৎ, তলা বা বৃক্ষ। উদ্ভিদ প্রায়শ পিছিল পদার্থযুক্ত।

মূল : প্রধান মূলতন্ত্র।

কাও: কাষ্ঠল, শাখাখিত ও বেলনাকার।

পাতা : সরল, কিনার অখণ্ড বা খণ্ডিড, জালিকা শিরাবিন্যাসমূক উপপত্রযুক্ত, উপপত্র মুক্তলাখীয়, সবৃত্তক, ডিঘাকার।

পুশ্পবিন্যাস : একক (সাইযোগ)।

পুলপ : একক, বৃহৎ, অফীয় বা শীর্ষ, পূর্ণাল, সমাল, উভলিল, गर्डनामभून्मी।

উপৰৃত্তি: উপৰৃত্যংশ ৩-১০টি, মুক্ত অথবা যুক্ত। (Sida এবং Abutilon

গণে উপবৃতি নেই।) বৃতি: বৃত্যংশ পাঁচটি, সংযুক্ত বা মুক্ত, অনেক সময় স্থায়ী, এস্টিডেশন ভাগতেট ভগা প্রাধুস্পর্না ।

মন্মতন : পাপতি পাচটি, মুক্ত, পুংকেশরীয় নলের সাথে গোড়ায় যুক্ত, টুইস্টেড তথা পাকালে পুরেবক পুরক্ষেত্র হত একচাছক পুংনত সংযুক্ত হয়ে একটি নল সৃষ্টি করে, পুং-নল গোড়ায় দললা, সং একপ্রকোষী, (এককোরী সহ) ব্রহাকার, রেণু বৃহৎ, কাটকিত।

ভীতবত : গর্ভপত্র ১-২০ বা এর বেশি, সাধারণত ৫-১০টি, সংযুক্ত, গর্ভাশয় অধিগর্ভ, ১ - বহু হারোইছি সাধারণত ৫ প্রকোটবিশিছ) গর্ভনতের সংখ্যা গর্ভপতের সংখ্যার সমান, সংযুক্ত, গর্ভমুতের সংখ্যা গর্ভনতের সংখ্যার স কৰনো দিবৰ। (Plagianthus গলে গৰ্ভপত্ৰ ১টি বা ২টি, Abutilon গলে গৰ্ভপত্ৰ ১৫-২০টি এবং Malva গলে 👡 व्यासक।)

जमदाविगाम : (अकीय)

ফল : সাধারণত ক্যাদসিউপ (capsule); কখনো বেরি (berry), অথবা সাইজোকার্প (schizocarp)।

बबा मुल्लार मुल्ल अरदक्छ : ⊕ ्रे डेवू, वू(e) में पूर्व(a) प्(e)

Malvaceae द्यपान डेविमनम्ह

1 1 6 (Hibiscus rosa-sinensis Linn.) 1

অর্থনৈতিক তরুত্ব : জবার অর্থনৈতিক গুরুত্ব অনেক। ফুলের জন্য একে বাগানে লাগানো হয়। জবা ফুলের রম মধ মাধনে মাধা ঠালা থাকে, চুল কালো ও লখা হয়। এর রস চুল পড়া বন্ধ করে, নতুন চুল জন্ময় ও চুল উজ্জ্ব বয় জবাকুসুম তেলের এটি একটি উপাদান। জবার কলি সকালে কিছুদিন খেলে দুর্বলতা কেটে যায়। জবা ফুল রক্ত জান ও অৰ্থবোগেৰও একটি ভালো ওমুধ।

3 1 (067 (Abelmoschus esculentus Linn Moench.) :

অর্থনৈতিক তক্তব : (চিড়স-এর প্রধান ব্যবহার সব্ভি হিসেবে। এটি স্থাপ তৈরিতেও ব্যবহৃত হয়। এর কে তক্তব্ৰ আছে। কচি টেডুলে লৌহ থাকায় নিয়মিত খেলে শারীরিক দুর্বলতা সারে। এটি রিচ্মুত্র রোণেরও উপকার স থাকে। টেড়স গাহ হতে ভালো আঁশ পাওয়া যায়।

ত। কার্পাস তুলা (Gossypium herbaceum Linn.) :

অর্থনৈতিক ভক্তত্ব : এর বীজত্বক থেকে তুলা পাওয়া যায়। কার্পাস তুলার গুরুত্ব সূতা তৈরিতে। তুলা হতে সূত্র स সূতা হতে সৃতি কাপড় তৈরি হয়। লেপ, তোষক তৈরিতেও কার্পাস তুলা ব্যবহার হয়। তুলা বীজ হতে ভোজা ভেস আর করা হয়। এছাড়া তুলা জীবাণুমুক্ত করে শৈল্য চিকিৎসায় ব্যবহার করা হয়।

8 (Co-il Casimis (Hibiscus cannabinus Linn.) :

অর্থনৈতিক তকত্ব : কেনাফ-মেপ্তাপাটের বাকল থেকে পাট জাতীয় আঁশ পাওয়া যায়। এ আঁশ পাটের মতেই ব্যাপ, চট অভৃতি তৈরিতে বাবহুত হয়।

@ | Casimis (Hibiscus sabdariffa var. altissima Linn.) :

অর্থনৈতিক ভক্ত : এর আশ নিয়ে চট, দড়ি ইত্যাদি প্রস্তুত করা হয়।

😊। সুদপত্ত (Hibiscus mutabilis) : এই উদ্ভিদ ও এর ফুল বাগানের সৌন্দর্য বৃদ্ধি করে।

Malvaceae পোরের অর্থনৈতিক তরুত্ব : বস্ত্রশিক্ষের প্রধান উপাদান কার্পাস তুলা এ গোরের Gossyphan বিভিন্ন প্রজাতি হতে সংগ্রহ করা হয়। এ গোরের কেনাঞ্চ ও মেরাপাট হতেও ওকত্পূর্ণ তর পাওয়া যায়। টেকা উংকৃষ্ট সবৃত্তি। জবা, মুলপথ প্রকৃতি বাণানের অলম্বত উদ্ভিদ। ইডিয়ান টিউলিপ (Thespesia populaca)-এর ভার্চ স শেষিক, বেগনা ও কৃষি তাজের উপকরণ তৈরি হয়। জরা বিভিন্ন প্রকার ভদুধে কাজে লাগে। এটি পূজার উপকরণ।

লাৰত কৰে। ১ম লগ : স্মানীটো ও আন্তৰ্হালী উল্লিন্স শাৰ্থকা নিৰ্ময়। रा नणः अवदीक्षण्यो व विरोधन्यो देवित्सर नार्वका निर्वय ।

21 31 34 4

मा है। हिंदा कि पान पूर्व पर्याव देशन सावायाध्य कार्येश्वन मिएड वह । कार्य (disc-sinensis)

ব্যবহারিক : Malvaceae গোত্র শনাক্তকরণ।

উপকরণঃ Maivacene গোরের ফুল (নমুনা জবা), পেলিল, রাবার, সরল অণুরীক্ষণ যন্ত্র, ব্যবহারিক সিট ইত্যাদি। কার্যপদ্ধতি: ফুলের বিভিন্ন অংশ পর্যবেক্ষণ করতে হবে, পৃথকভাবে অভন করতে হবে, সম্ভব হগে পুস্প প্রতাক অম্বন করতে হবে, পুস্প সংকেত লিখতে হবে।

খনাক্তকরণ : শনাক্তকারী বৈশিষ্ট্য লিখে শনাক্ত করতে হবে।

नमुना- जर्बा (Hibiscus rosa-sinensis)।

শক্রপ (Habit) : ভলু।

कृषि (Stem) : कार्छन् ।

পাতা (Leaves) : সরণ, একান্তর, উপপত্রিক (উপপত্র বল্লমাকার ও মুক্তপামীয়), বৃত্তক, ডিঘাকার, বহুশিরাল জালিকা শিরাবিন্যাসযুক্ত, ভঙ্গুর, মসুণ, কিনারা দত্তর, শীর্ষ সূত্রাগ্র, পিচিত্র পদার্থযুক্ত।

পুস্পবিন্যাস (Inflorescence) : একক নিয়ত।

ফুল (Flowers): একক পুষ্প, বেশ বড় এবং উজ্জ্ব লাল, বৃত্তক, উচলিস, বহুপ্রতিসম, গর্ভদানপুষ্প, পুর্নাস, সমাল, পথাংশক।

উপবৃতি (Epicalyx) : উপবৃতাংশ ৫টি (বা ৬টি) (মুজ সুবুজ, ভালতেট।

বৃতি (Calyx) : বৃত্যংশ ৫টি, যুক্ত, নলাকার, আঠাল পিছিল পদার্থযুক্ত, সবুজ, এস্টিভেশন প্রান্ত প্রতি (ভালতেট)।

দশমতল (Corolla): পাপড়ি ৫টি, নিচের দিকে সামানা যুক্ত, সমাপ, উজ্ল লাল, মিউসিলেজযুক্ত, এফিতেশন পাকানো (টুইন্টেড)।

পুস্তেবক (Androccium) : পুংকেশর অসংখ্যা, একচছে, দললগ্ন, পুংদভসমূহ মিলিডভাবে একটি নদের সৃষ্টি করেছে। এই নল গর্ভদওকে ঘিরে রেখেছে, পরাগধানী বৃত্তাকার, পৃষ্ঠপন্ন ও মুক্ত, রং হলুন, দৈর্ঘাছেদী, বাইরের দিকে विमीर्ग श्रा, त्रपृ वस् এवर क्लेकिट।

দ্রীম্বক (Gynoecium) : গর্ভপত্র ৫টি, সংযুক্ত, গর্ভাশয় পাঁচ প্রকোষ্টবিশিষ্ট, অধিগর্ভ, প্রতি প্রকোষ্টে ভিম্বক মু'টি, গর্তনত একটি, লখা, গর্ভমূব পাঁচটি, মুক্ত, আঠাল।

অমরাবিন্যাস (Placentation) : অক্ষায়)

ফল (Fruit) : সাধারণত ফল সৃষ্টি হয় না।

পুল্ল সংকেত (Floral formula) : 🕀 🗘 উবৃত্ব বৃ্ত্ত দিত পুল্ল পূৰ্ব প্ৰ

কারণসহ শনাক্তকরণ :

- ১। উত্তিদের কচি অংশ মিউসিংগজ নামক পিচিংগ সদার্থযুক।
- ২। পাতায় মুক্তপাবীয় উপপত্র বিদ্যমান।
- ৩। পুস্প একক এবং সাধারণত উপবৃতিবিশিট।
- ৫। পুংকেশর অসংখ্য, একগুছে এবং পুংলওসমূহ মিলিভডাবে একটি জাঁপা পুংকেশরীয় দালিকা গঠন করে যা গঠনান
- চাবলিকে বেটন করে রাখে। ৬। প্রাণ্যানী একলকোঠা (এককোধী ন্যু) এবা বৃদ্ধাকার।
- ৭। পরাগ রেণু বৃহৎ এবং কভাকত।
- ७। अमहाविगात (वर्षाम (axile)

e (মালভেসি) গোনোর অভর্ক।

সার-সংক্ষেপ

সাইকাস (Cycas) : সাইকাস একটি নপুবীজী উল্লিদ গণের নাম। বাংলাদেশে প্রাকৃতিকভাবে এর মার্থ একটি বুজাতি পরা থাকে, যার নাম Cycas pectinata. চট্টগ্রামের বাড়িয়াঢালা পাহাড়ি অঞ্চলে এটি পাওয়া যায়। সাইকাস উল্লিদ্ধিত অনেকটা পাম গাছের মতো, সরল কাতের মাথায় একসাথে অনেকটগো বড় আকারের যৌগিক পত্র সর্পিলাকারে সাজানো থাকে। এদের মুকুল পত্রবিন্যাস ফার্নের পাতার মতো কুটলিত। এদিক থেকে ফার্নের সাথে সাইকাসের মিল রয়েছে। সাইকাস-এর স্ত্রী এবং পুরুষ উদ্ভিদ পৃথক।

জীবন্ত জীবাশ্ম (Living fossil): উত্তিদটি জীবন্ত অথচ এর বৈশিষ্ট্য সুদূর অতীতের কোনো জীবাশ্ম উত্তিদের সাথে মিল সম্পন্ন, এমন অবস্থা হলে তাকে বলা হয় জীবন্ত জীবাশ্ম। সাইকাস এমন একটি উত্তিদ, তাই সাইকাসকেও জীবত জীবাশ্ম বলা হয়। আজ্ঞ থেকে ২৯০ মিলিয়ন বছর আগে সাইকাসের উত্তব ঘটে। সেই আদি কালের উত্তিদের সাথে বর্তমান কালের সাইকাস উদ্ভিদের বৈশিষ্ট্যের কোনো পরিবর্তন হয়নি। তাই এরা জীবন্ত জীবাশ্ম।

প্রাসেন্টেশন: প্রাসেন্টেশন (অমরাবিন্যাস) শব্দটি আবৃতবীজী উদ্ভিদের ক্ষেত্রে বিশেষভাবে প্রয়োজ্য। ফুলের গর্ভাশরের ভিতরে ডিম্বক (ovule) সৃষ্টি হয়, যা পরে বীজে পরিণত হয়। গর্ভাশরের যে টিস্যু থেকে ডিম্বক সৃষ্টি হয় মেই টিন্যুকে রলা হয় প্রাসেন্টা। বিভিন্ন উদ্ভিদের গর্ভাশরে প্রাসেন্টার সাজানো পদ্ধতি একই রকম নয়, বরং বিভিন্ন রকম। গর্ভাশরের অভাস্তরে প্রাসেন্টা টিস্যুর বিভিন্ন রকম সাজানো পদ্ধতিকে বলা হয় প্রাসেন্টেশন। মার্জিনাল, আক্সাইল, প্যারাইটাল, বেসাল, ফ্রি সেন্ট্রাল ইত্যাদি বিভিন্ন প্রকার প্রাসেন্টেশন।

পুশ্প প্রতীক: একটি বৃত্তাকার নকশা বা প্রতীকের মাধ্যমে একটি ফুলের বিভিন্ন তবকের সদস্যদের সংখ্যা, এদের মধ্যকার সমসংযোগ, অসমসংযোগ, পুশ্পপত্রবিন্যাস, অমরাবিন্যাস ইত্যাদি দেখানো যায়। এ নকশার মাধ্যমেই একটি পুশ্পের সকল বৈশিষ্ট্য প্রকাশ করা যায়। বিস্তারিত বর্ণনার প্রয়োজন হয় না। যে বৃত্তাকার নকশার মাধ্যমে একটি পুশ্পের সাম্মিক বৈশিষ্ট্য প্রকাশ করা হয় তাকে পুশ্প প্রতীক বলে।

স্পাইকলেট : এক ধরনের পুশ্পমঞ্জরীকে স্পাইকলেট বলা হয়। এই ধরনের মঞ্জরী Poaceae গোত্রের উদ্ভিদে দেখা যায়, তাই Poaceae গোত্রের একটি শনাক্তকারী বৈশিষ্ট্য হলো স্পাইকলেট মঞ্জরীর উপস্থিতি। এ ক্ষেত্রে মঞ্জরীনও অতি যায়, তাই Poaceae গোত্রের একটি শনাক্তকারী বৈশিষ্ট্য হলো স্পাইকলেট মঞ্জরীর উপস্থিতি। এ ক্ষেত্রে মঞ্জরীনও অতি যায়, তাই Poaceae গোত্রের একটি শনাক্তকারী বৈশিষ্ট্য হলো স্পাইকলেট মঞ্জরীর উপস্থিতি। এ ক্ষেত্রে মঞ্জরীনও অতি যায়, তাই Poaceae গোত্রের একটি শনাক্তকারী বৈশিষ্ট্য হলো স্পাইকলেট মঞ্জরীর উপস্থিতি। এ ক্ষেত্রে মঞ্জরীনও অতি স্থায়, তাই প্রকলিট মঞ্জরীর উপস্থিতি। এ ক্ষেত্রে মঞ্জরীনও অতি যায়, তাই প্রকলিট মঞ্জরীর উপস্থিতি। এ ক্ষেত্রে মঞ্জরীনও অতি স্থায়, তাই প্রকলিট মঞ্জরীর উপস্থিতি। এ ক্ষেত্রে মঞ্জরীনও অতি স্থায়, তাই প্রকলিট মঞ্জরীর উপস্থিতি। এ ক্ষেত্রে মঞ্জরীনও অতি যায়, তাই প্রকলিট মঞ্জরীর উপস্থিতি। এ ক্ষেত্রে মঞ্জরীনও অতি যায়, তাই প্রকলিট মঞ্জরীর উপস্থিতি। এ ক্ষেত্রে মঞ্জরীনও অতি যায়, তাই প্রকলিট মঞ্জরীর উপস্থিতি। এ ক্ষেত্রে মঞ্জরীনও অতি যায়, তাই প্রকলিট মঞ্জরীর উপস্থিতি। এ ক্ষেত্রে মঞ্জরীনও অতি স্থিতি। এই মঞ্জরীর উপস্থিতি। এ ক্ষেত্রে মঞ্জরীনও অতি স্থায় বাবে স্থায়, তাই প্রকলিট মঞ্জরীর উপস্থিতি। এ ক্ষেত্রে মঞ্জরীনও অতি স্থায় বাবে স্থায় ক্ষেত্রে মঞ্জরীর উল্লেখিয় ক্ষেত্রে মঞ্জরীনের স্থায় বাবে স্থায়

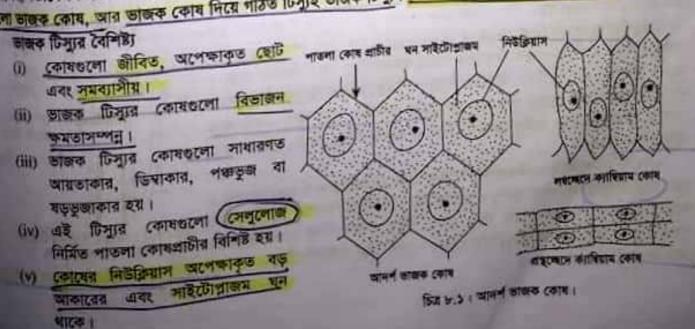
অনুশীলনী

दहनिर्वार्घनि बन्न (MCQ) কোন গোতের উত্তিদের প্রাথনের বৃহৎ এবং কণ্ডিত ? (4) Solanaceae (7) Liliaceae _(3) Malvaceae (季) Poaceae Cycas-এর বৈশিষ্ট্য হলো-21 (i) ফুলে গৰ্ডাশয় নেই (ii) কোরালয়েড মূল বিদামান (iii) ফল হয় (5) i, ii o iii নিচের কোনটি সঠিক? (न) हा व हा (*) i @ iii (i Gii

টিস্যু ও টিস্যুতন্ত্র

TISSUE AND TISSUE SYSTEM

প্রধান শব্দসমূহ : ভাজক টিসা, ভাস্কুলার টিসা, টিশাত ছ


একটি গাছ মৃগ, কাও, পাতা, ফুল ইত্যাদি ভিন্ন ভিন্ন অঙ্গে বিভাজনযোগ্য। ভিন্ন ভিন্ন অঙ্গ গঠনকারী কোষসমূহের স্ক্রি-উৎস, গঠন এবং কাজ ভিন্ন ভিন্ন ধরনের। মূলের প্রধান কাজ গাছকে মাটির সাথে ধরে রাখা এবং মাটি থেকে পানি ও ধনিত লবণ পরিশোষণ করা, পাতার কাজ খাদ্য তৈরি করা, কাণ্ডের কাজ মূল থেকে পানি ও খনিজ লবণ পাতায় পৌছে দেৱা এবং পাতায় তৈরি খাদা মূলসহ সকল অঙ্গে পৌছে দেয়া। অনাদিকে মূল, কাও ও পাতার বাইরের অংশের গঠন ও ঠাল এক ধরনের (ভেতরের অংশকে রক্ষা করা) আর ভেতরের অংশের গঠন ও কাজ অনা ধরনের। দেখা যায় একই উৎস বেকে সৃষ্ট, একই ধরনের একওচছ কোষ মিলিতভাবে একই কাজ সম্পন্ন করে থাকে। একই উৎস থেকে সৃষ্ট, একই ধ্যনের কাজ সম্পদ্নকারী সমধর্মী একটি অবিচ্ছিন্ন কোষভচ্ছকে বলা হয় টিস্যু বা কোষকলা। কাজেই টিস্যু একটি বিশেষ অর্থবোধক শব্দ। টিস্যু সৃষ্টির মূল কারণ হলো উদ্ভিদ দেহ গঠনকারী কোষের শ্রমবিভাগ।

এ অধ্যায় পাঠ শেষে শিক্ষার্থীরা

- চাঞ্চক টিস্যু সম্পর্কে বর্ণনা করতে পারবে।
- ২, এপিডার্মাল, গ্রাউভ ও তাস্কুলার টিস্যুতপ্তের অবস্থান, গঠন ও কাজ বর্ণনা করতে পারবে।
- c. চিস্যুতমের চিত্র অন্ধন করে চিহ্নিত করতে পাববে।
- একবীজপত্রী উভিদের মূল ও কাতের চিত্র অন্ধন করে চিহ্নিত করতে পারবে।
- া ব্যবহারিক
- ০ একবীজপরী উদ্ভিদের মূল ও কাও প্রস্থাছেদ করে শনাক করতে পারবে।

সাধারণত একটি উদ্ভিদে বিভিন্ন ধরনের টিস্না থাকে। তবে সব ধরনের টিস্নাকে, টিস্না গঠনকারী কোষের বিভাজন অনুযায়ী দু'টি ভাগে ভাগ করা যায়; যথা- ১। ভাজক টিস্যু এবং ২। স্থায়ী টিস্যু। নিচে এ সম্বন্ধে একটু বিস্তারিত

১। ভাজক টিস্যু (Meristematic tissue) : তোমরা নিশ্নাই লক্ষ্য করেছ কোনো একটি উদ্ভিদের চারা ক্রমেই বৃদ্ধি আলোচনা করা হলো। পেরে লঘা হচ্ছে, আবার এর গোড়াটিও ধীরে ধীরে মোটা হচ্ছে। কী কারণে এবং কীভাবে গাছটি ক্রমাখরে উচু ও মোটা হছে তা ভেবে দেখেছ কি? গাছের কোনো কোনো বিশেষ স্থানে অবস্থিত (যেমন কাও শীর্ষ, মূল শীর্ষ ইত্যাদি) কোষভঙ্গ বিধামহীনভাবে বিভাজিত হয়েই চলেছে। কোষের ক্রমাগত বিভাজনই এই বৃদ্ধির কারণ। যে কোষ্ডলো বিভাজিত হয় তা ধনা ভাতত কোষ, আর ভাতত কোষ দিয়ে গঠিত টিস্যুই ভাতত টিসু। <mark>ভাতত টিসুর অপর নাম মেরিস্টেম।</mark>

- (vi) ভাজক টিসার কোষে সাধারণত কোষ গবের থাকেনা)
- (vii) কোষতলো ঘন সনিবিষ্ট হওয়ায় এদের মধ্যে আন্তঃকোষীয় ফাঁক থাকে না
- (viii) এই টিসার কোষওলোর বিপাকীয় হার বেশি এবং সর্বদাই সক্রিয় বিপাকীয় অবস্থায় থাকে।
- (ix) কোষে কোনো প্রকার সঞ্জিত খাদা, করিত বস্তু বা বর্জা পদার্থ থাকে না।
- (x) প্লাস্টিভতলে প্রোপ্লাস্টিভ অবস্থায় থাকে। ভাজক টিস্যুত্ব কাজ
- (i) শীর্ষস্থ ভাজক টিস্যুর বিভাজনের মাধ্যমে উদ্ভিদ দৈর্ঘ্যে বৃদ্ধি পায়। এতে ছোট গাছ ক্রমে উচু ও লম্বা হয়
- (ii) পাখীয় ভাজক টিস্যুর বিভাজনের ফলে উদ্ভিদের ব্যাস বৃদ্ধি পায়। এতে সরু কাও ক্রমে মোটা হয়।
- (iii) ব্রাজক টিসা হতে স্থায়ী টিসা সৃষ্টি হয়।
- (iv) ভাজক টিসার বিভাজনের মাধ্যমে কৃত স্থান প্রণ হয়।

ভাজক টিসার শ্রেণিবিভাগ (Classification of meristem) : উৎপত্তি, গঠন, সম্প্রসারণ, অবস্থান, কার্য প্রজ্ঞা বৈশিষ্টোর উপর ভিত্তি করে ভাজক টিসাকে বিভিন্নভাবে ভাগ করা হয়; যেমন— (১) উৎপত্তি অনুসারে, (২) অব্দর্শ অনুসারে, (৩) কোষ বিভাজন অনুসারে এবং (৪) কাজ অনুসারে।

১। উৎপত্তি অনুসারে: উৎপত্তির উপর ভিত্তি করে ভাজক টিস্যুকে (ক) প্রারম্ভিক ভাজক টিস্যু (খ) প্রাইমারি ভাজ

টিবা এবং (গ) সেকেবারি ভাজক টিবাৃ- এ তিন ভাগে ভাগ করা হয়।

(ক) প্রোমেরিস্টেম বা প্রারম্ভিক ভাজক টিস্যু (Promeristem) : মূল বা কান্তের অগ্রভাগের শীর্ষদেশে একটি মূর অঞ্চল রয়েছে যেখান থেকে পরবর্তীতে প্রাইমারি ভাজক টিস্যুর উৎপত্তি ঘটে, তাকে প্রারম্ভিক ভাজক টিস্যু বলে। এ মঞ্চা থেকেই প্রথম বৃদ্ধি তক্ত হয়।

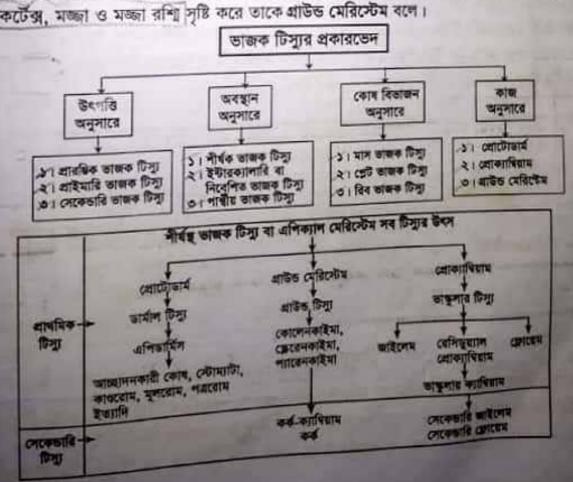
(গ) সেকেভারি ভাজক টিস্যু (Secondary meristem) : যে ভাজক টিস্যু কোনো ছায়ী টিস্যু হতে পরবর্তী সময়ে উৎপন্ন হয়, তাকে সেকেভারি ভাজক টিস্যু বলে। সেকেভারি ভাজক টিস্যু উদ্ভিদের ভ্রণাবস্থার অনেক পরে সৃষ্টি হয়। কর্ক ক্যাধিয়াম সেকেভারি ভাজক টিস্যুর উদাহরণ।

২। অবহান অনুসারে: উত্তিদের কোন অংশে অবস্থিত এর উপর নির্ভর করে চাক্তক টিস্যুকে (ক) শীর্ষস্থ, (খ) ইন্টারক্যালারি বা নির্বেশিত এবং (গ) পাশ্বীয়-এ তিন প্রকারে ভাগ করা হয়।

(ক) শীর্ষত্ব ভাজক টিসা (Apical meristem) : মূল, কাও বা এদের শাখা-প্রশাখার শীর্ষে অবহিত ভাজক টিসাকেই শীর্ষত্ব ভাজক টিসা বলে। কতক পাতা ও ফলের শীর্ষেও ভাজক টিসা থাকতে পারে। শীর্ষত্ব ভাজক টিসার বিভাজনের মাধ্যমেই এসব অঙ্গ দৈর্ঘো বৃদ্ধিপ্রাপ্ত হয়। এরা প্রাথমিক স্থায়ী টিসা তৈরি করে থাকে। পুশ্পক উদ্লিনে শীর্ষত্ব ভাজক টিসা একাধিক কোষ দিয়ে গঠিত। এরা শাইমারি টিসা।

্থি ইন্টারক্যালারি বা নিবেশিত ভাজক টিস্যু (Intercalary meristem) :

বুটি ছাল্লী টিস্মুর মাকখানে অবছিত ভাজক টিস্মুকে ইন্টারক্যালারি বা নিবেশিত ক্রি: ৮.২ : অবছান অনুসাবে টিস্মুর বাল । অসসমূহের বৃদ্ধির সময় শীর্ষছ ভাজক টিস্মু হতে কিয়নংশ প্রবাহনে (ভারমানেটিক)
পূথক হয়ে এ প্রকার ভাজক টিস্মু সৃষ্টি করে। কাজেই এরা প্রাইমারি টিস্মু। এরা প্রমুশে, মধ্যপর্বের শোড়ায় বা প্রমুশি


(গ) পাৰীয় ভাজক টিস্যু (Lateral meristem) : মূল বা কাজের পার্শ্ব ইরাবর লঘালম্বিভাবে অবস্থিত ভাজক টিস্যুকে পাৰীয় ভাজক টিসা বলে। এ প্ৰকার টিসাও দুটি স্থায়ী টিসার মাঝখানে অবস্থিত। এরা স্থায়ী টিসা হতে উৎপদ্ধ হয়, তাই বাসায় তাতা। এরা সেকেন্ডারি ভাজক টিস্যা। এদের বিভাজনের ফলে মূল ও কাতের বৃদ্ধি প্রস্তে হয়ে থাকে। ইন্টারফেসিকুলার ক্যাধিয়াম, বুর ক্যাধিয়াম প্রভৃতি পার্খীয় ভাজক টিস্যুর উদাহরণ। এদের বিভাজনের কারণে উভিদের সেকেভারি বৃদ্ধি ঘটে। ত। কোষ বিভাজন অনুসারে : বিভাজন প্রক্রিয়ার ভিন্নতার উপর নির্ভর করে ভাজক টিস্যুকে-(ক) মাস, (খ) প্রেট এবং

(গ) রিব-এ তিনভাগে ভাগ করা হয়।

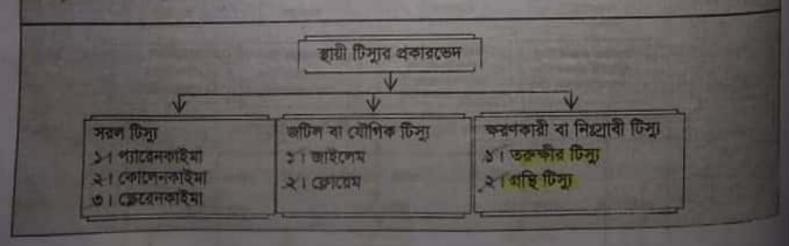
(ক) মাস ভাজক টিস্যু (Mass meristem) : যে ভাজক টিস্যুর কোষবিভাজন সব তলে (plane) ঘটে থাকে, ফলে সুষ্ট কোবে সমষ্টি কোনো নির্দিষ্ট নিয়মে সজ্জিত না থেকে কোষপুঞ্জ গঠন করে, তাকে মাস ভাজক টিস্যু বলা হয়। এ প্রকার বিভাজনের ফলে অঙ্গটি ভলিউমে অর্থাৎ দৈর্ঘ্য, প্রস্থ ও উচ্চতায় বৃদ্ধিপ্রাপ্ত হয়; যেমন- ব্রর্ধনশীল জণ, রেণুথলি, এজোল্পার্ম

(খ) প্লেট ভাজক টিস্যু (Plate meristem) : যে ভাজক টিস্যুর কোষ মাত্র দুইতলে (plane) বিভাজিত হয়, কলে কোষগুলো প্লেটের মতো হয়, তাকে প্লেট ভাজক টিস্যু বলা হয়। এ প্রকার বিভাজনের ফলে অসটি <mark>আয়তনে বৃদ্ধিপ্রান্ত হয়:</mark>

- (গ) রিব ভাজক টিস্যু (Rib meristem) : যে ভাজক টিস্যুর কোষগুলো একটি তলে বিভাজিত হয়, ফলে কোষগুলো রৈখিক সজ্জাক্রমে একসারিতে অবস্থান করে এবং দেখতে <mark>বুকের পাজরের ন্যায় দেখায়, তাকে রিব ভাজক টিসু</mark> বলা হয়। এ প্রকার বিভাজনের ফলে একসারি কোষ সৃষ্টি হয়; যেমন- বর্ধিফু মূল ও কাডের মজা রশি।
 - ৪। কাজ অনুসারে : কর্মপ্রক্রিয়া অনুসারে ভাজক টিস্যুকে নিম্নলিখিত তিন ভাগে ভাগ করা হয় :
- (ক) প্রোটোডার্ম (Protoderm) : যে ভাজক টিস্যুর কোষসমূহ উদ্ভিদদেহের ত্বক সৃষ্টি করে তাকে প্রোটোডার্ম বলে। মূল, কাও ও এদের শাখা-প্রশাখার ত্বক (এপিডার্মিস বা এপিরেমা) সৃষ্টি করা হলো প্রোটোডার্ম-এর কাঞ্চ।
- (খ) প্রোক্যাম্বিয়াম (Procambium) : ক্যাম্বিয়াম, জাইলেম ও ফ্লোয়েম সৃষ্টিকারী ভাজক টিস্যুকে প্রোক্যাম্বিয়াম বলে। পরিবহন টিস্যু সৃষ্টি করাই প্রোক্যামিয়ামের কাজ।
- (গ) গ্রাউন্ত মেরিস্টেম (Ground meristem) : শীর্ষস্থ ভাজক টিসুরে যে অংশ বারবার বিভাজিত হয়ে উদ্ভিদ দেহের মূল ভিত্তি তথা কর্টেঝ, মজ্জা ও মজ্জা রশ্মি সৃষ্টি করে তাকে প্রাউভ মেরিস্টেম বলে।

২। ছায়া দিয়া (Permanent tissue) : যে চিন্যুর কোষতলো বিভাজনে অকম সে চিন্যুকে ছায়া দিয়া বলে। এ চিন্ কোনহালা পূর্বভাবে বিকশিত এবং সঠিক আকার-আকৃতিনিশিই অর্থাৎ এরা আকার-আকৃতি ও বিকাশে ছারিত্ব লাভ করেছে, স্তঃ এরা ছাট্ট টিসু। বিশেষ অবস্থা হাড়া এরা আর বিডাজিত হতে পারে না। ডাজক টিসু। হতে কোষের পূর্ণ বিকাশ শালের 🕫 বিভাজন ক্ষমতা ছপিত হওয়ার মাধামে ছায়ী তিনুরে উত্তব ঘটে।

ছায়া তিস্থার বৈশিষ্ট্য


- (।) স্থায়ী তিসুর কোবতলো সাধারণত বিভাজনে অকম।
- (iii) জীবিত কোনে সাইটোপ্লাজম স্বাভাবিকের চেয়ে কম।
- (v) কোষভলোর প্রাচীর অপেকাকৃত হুল অর্থাৎ বেশ পুরু।
- (ii) টিস্যুতে দু'রকম কোষ থাকে-জাবিত ও মৃত।
- (iv) মৃত কোৰ প্ৰোটোপ্লাকমবিহীন (
- (vi) কোষ গহের অপেকাতৃত্বিভূট

্থান নিউক্তিয়াস স্বাভাবিকের চেয়ে ছোট এবং কোষের এক পাশে অবস্থান করে।

(viii) काय आंत्रीरत मामा नकना माया यास।

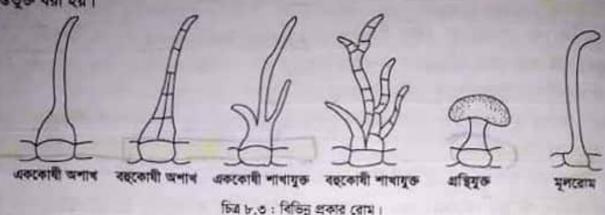
ছায়ী টিশুরে শ্রেণিবিজ্ঞাণ : গঠন ও কাজের ভিত্তিতে ছারী টিশু তিন প্রকার; যথা : (১) সরল টিশু (simple tissue), (২) অটিশ বা থৌগিক টিসূা (complex tissue) এবং (৩) ক্ষরণকারী বা নিপ্সোনী টিসূা (secretory tissue)।

- (১) সরল টিসুা (Simple tissue) : সরল ছায়ী টিসুার সবগুলো কোষ আকার, আকৃতি ও গঠন বৈশিষ্ট্যে একই ধরনের হয়। কোষের আকৃতি ও প্রকৃতির উপর নির্ভর করে সরল টিস্থাকে তিন ভাগে ভাগ করা হয়েছে: যথা : (i) প্যারেনকাইমা, ক্র কোলেনকাইমা এবং (III) ক্লেনেনকাইমা।।
- (২) জটিশ টিসুা (Complex tissue) : জটিল ছারী টিসুা একাধিক প্রকার কোষ দিয়ে গঠিত এবং সন্মিলিতভাবে একট ধরনের তাজ সম্পন্ন করে। কাজ, অবছান ও গতন প্রকৃতি অনুযায়ী জটিল টিসু। প্রধানত দু'প্রকার। যথা : (ক) জাইলেম টিসু। এবং (अ) সোহেম টিসা। এ দু'প্রকার টিসা একতে পরিবহনতত্র গঠন করে। এ টিসা মূল থেকে পাতা পর্যন্ত বিভূত। খাদাদ্রব্য ও পান পরিবহন করাই এ তিসার প্রধান কাজ।
- (৩) করণকারী বা নিহমারী টিস্যু (Secretory tissue) : যে টিস্যু হতে নানা প্রকার তরল পদার্থ (উৎসেচক, বর্জা পদার্থ = রেজিন, গদ, উহায়ী তেল, আঠা ইত্যানি) নিঃসূত হয়ে থাকে, তাকে ক্ষরণকারী বা নিঃশ্রাবী টিস্যু বলে। ক্ষরণকারী ভিসু দু'গ্রকর বৰা : () তক্তৰীর টিসা (laticiferous tissue) এবং (ii) এছি টিসা (glandular tissue)।

টিসাত্র (Tissue system)

একই ধরনের কাজ করে (শারীরবৃত্তীয় বা যাত্রিক) এমন এক বা একাধিক টিস্যু মিলে একটি টিস্যুতস্ত গঠন করে। একই ধরনের শারীরবৃতীয় বা যান্তিক কাজ সম্পাদনে নিয়োজিত এক বা একাধিক টিস্যুকে টিস্যুত্র খলে। বিজ্ঞানী সাই (Sachs-1875)-এর মতে, টিস্নার অবস্থান ও কার্যের উপর নির্ভর করে উত্তিদের সব টিস্নাতে তিনটি টিস্নাতরে আগ স্থ

আ। । ১। এপিডার্মান টিস্যুভস্ক (epidermal tissue system), ২। আউড টিস্যুভস্ক (ground tissue system) এবং ে অসুনার টিস্যুভস্ক (vascular or conducting tissue system)। নিয়ে বিভিন্ন প্রকার টিস্যুভস্কের বর্ণনা দেয়া হলো :


্বা এপিভার্মাল (বা ভার্মাল) বা তুলীয় টিস্যুতন্ত্র (Epidermal tissue system) : যে টিস্যুতন্ত্র উদ্ভিদ অঙ্গের বাইরাবরণ (তুল) সৃষ্টি করে তাকে এপিডার্মাল বা তুলীয় টিস্যুতন্ত্র বলে। অবস্থান ও কাজের দিক থেকে অনা টিস্যুর সাথে বিলা বা একটি মাত্র টিস্যু দিয়েই তুলীয় টিস্যুতন্ত্র গঠিত হয়েছে। উদ্ভিদের কাও, শাখা-প্রশাখা, পাতা, মূল, ফুল, বাল প্রভৃতি অঙ্গের তৃক্ত এই টিস্যুতন্ত্রের অন্তর্গত। কাও ও পাতার তৃক্ত বা বহিরাবরণকে এপিডার্মিস (epidermis) এবং মূলের বহিরাবরণকে এপিডার্মিস (epidermis) বলে। প্রাথমিক শার্ষক ভাজক টিস্যু হতে এপিডার্মাল টিস্যুতন্তের উপেন্তি। এপিডার্মাল তথা তৃকীয় টিস্যুতন্ত্র নিমুলিখিত অংশগুলো যারা গঠিত।

ক্রের দিকের প্রাচিক্র বলে। ক্রিউটিকল মূলের তুকে অনুপত্তিত কিন্তু কাও ও পাতায় বিদামান থাকে। তিত্তিকল মূলের তুকে অনুপত্তিত কিন্তু কাও ও পাতায় বিদামান থাকে। কিন্তু কিন্তু করের পাতায় বিদামান থাকে। করিবলার করেবলার করেবলার করিবলার করিবলার করিবলার করিবলার করিবলার করিবলার করিবলার করিবলার করিবলার করেবলার

কাল: (i) এপিডার্মিস বা তৃক উদ্ভিদকে, বিশেষ করে উদ্ভিদের অভ্যন্তরীণ টিসাকে বাইরের আঘাত থেকে ও আনানা প্রতিকূল অবস্থা হতে রক্ষা করে। (ii) রোমযুক্ত তৃক, বিশেষ করে বিষাক্ত প্রস্থিতরালা রোমযুক্ত তৃক বিভিন্ন বাদীর আক্রমণ হতে উদ্ভিদকে রক্ষা করে থাকে। (iii) অনেক সময় তৃক উদ্ভিদ কর্তৃক পানির অপচয়ও বন্ধ করে থাকে। (iv) মোমের আন্তরণ পড়া তৃক ছত্রাকের আক্রমণ হতে অভ্যন্তরীণ টিসাকে রক্ষা করতে পারে। (v) তৃক-এর ছিদ্র (স্টামাটা = পত্ররন্ধ্র) দিয়ে উদ্ভিদ অভ্যন্তর ও বাইরের পরিবেশের মধ্যে বিভিন্ন গ্যাসের আদান-প্রদান করে থাকে। (vi) ক্লোরোগ্রাস্ট যুক্ত তৃক খাদ্য তৈরি করে। (viii) মূলরোম পানি ও খনিজ লবণ শোধণ করে। (viii) বৃশিক্ষর্ম ক্রোম্ব গানি সম্বায় করে এবং পাতার প্রসারণ ও বিকাশে সহায়তা করে। (ix) তৃক্তকার প্রয়োজনে বিভাজিত হতে পারে এবং গানিয়ে তোলে।

্থ) এপিভার্মিসের উপাঙ্গসমূহ (Epidermal appendages) : এপিভার্মিস বা তুক হতে উদ্গত উপাঙ্গকে ^{এপিভার্মান} উপাঙ্গ বলে। এগুলো উদ্ভিদকে তৃণভোজী প্রাণীর কবল হতে রক্ষা করে। নিম্নে কয়েকটি উপাঙ্গের বর্ণনা দায় হলো।

(i) রোম বা ট্রাইকোম (Hair or trichome) : এরা এককোষী বা বহুকোষী এবং সরল বা ওচ্ছাকার হতে পারে। শ্রীরোম ব্রক্তের এককোষী উপাঙ্গ এবং সবক্ষেত্রে কিউটিকল বিবর্জিত। কাওরোম সাধারণত বহুকোষী এবং সর্বদা কিউটিক্সযুক্ত হয়ে থাকে। যেসব উদ্ভিদে বা অঙ্গে সেকেভারি বৃদ্ধি ঘটে সে সব উদ্ভিদে বা অঙ্গে পেরিভার্যত তৃত্রী। টিস্যুর অন্তর্ভক্ত ধরা হয়।

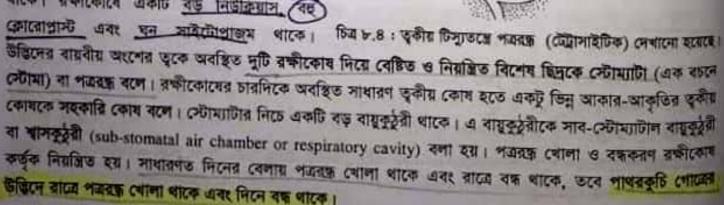
কাজ: মূলরোম পানি শোষণ করে। কাওরোম আঠা, গদ ও বিষাক্ত পদার্থ নিঃসৃত করে। উত্তিদকে বাইরের আঘাত্ত হতে রক্ষা করে। এরা কোনো কোনো কেত্রে পানি সঞ্জয় করে।

ব্ৰহ্মীকোষ

ক্রোরোপ্রান্ট

নিউক্রিয়াস

সহকারী কোর


(ii) শব্ধ (Scales) : বিশেষ ধরনের রোমকে শব্ধ রলে। প্রতিপ্রতিক্তির কার্যায়ত

(iii) क्लाल्डॉर्ज (Colleters) : विस्थि धतरमत

दरकाषी ग्राइटकामक (कालिए) रेल । ?

(iv) পদি (Bladder) : বিশেষ ধরনের এক প্রকার পানি ধারক এবং প্রশন্ত ট্রাইকোমকে পদি বলে। বর্থ তা দ্বিদ্ধ Mesem স্বাধ্বমাধ্যি ।

প্রে স্টোম্যাটা বা পত্রবন্ধ (Stomata) : পাতা ও কচি কাজের ত্বক ছিদ্রযুক্ত থাকে। ছিদ্রগুলা আপুরীক্ষণিক বলে খালি চোখে ধরা পড়ে না। এ সব ছিদ্র পৃটি অর্ধচন্দ্রাকৃতির রক্ষীকোষ দিয়ে বেষ্টিত থাকে। রক্ষীকোষে একটি বড় নিউক্রিয়াস্ বিষ্ট

পত্রবন্ধের প্রকারভেদ : রক্ষীকোষের চারদিকে অবস্থিত সাবসিডিয়ারি (সহকারি) কোষসমূহের সংখ্যা ও অবস্থান অনুযায়ী পত্রবন্ধ করেক প্রকার হয়ে থাকে। উল্লেখযোগ্য করেক প্রকার পত্রবন্ধ নিমুক্ত :

১। Diacytic : স্টোমা দু'টি সাবসিভিয়ারি কোষ দারা পরিবেষ্টিত থাকে। কোষ দু'টি রঞ্চীকোষের সাথে <u>সমকোণে</u> অবস্থিত।

২। Paracytic : স্টোম দু'টি বাবসিভিয়ারি কোষ ধারা পরিবেষ্টিত থাকে। কোষ দু'টি রক্ষীকোষে সমাধ্রনাশভাবে व्यविष्ट ।

Paracytic

Tetracytic

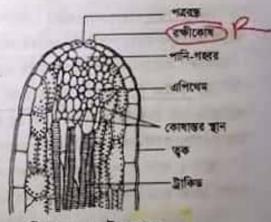
Actinocytic

চিত্র ৮.৫ : বিভিন্ন ধরনের পত্রবন্ধ।

* ও। Anisocytic : স্টোমা তিনটি সাবসিভিয়ারি কোষ দারা পরিবেষ্টিত থাকে, তার মধ্যে একটি কোষ ছোট।

8 । Tetracytic : স্টোমা চারটি সাবসিভিয়ারি কোষ ঘারা পরিবেষ্টিত থাকে ।

Actinocytic : স্টোমা অনেকগুলো রেডিয়েলি লঘা কোষ দারা পরিবেষ্টিত থাকে।


৬। Anomocytic : স্টোমাকে পরিবেষ্টনকারী কোষসমূহ সাধারণ তৃকীয় কোষ থেকে পৃথকযোগ্য নয়।

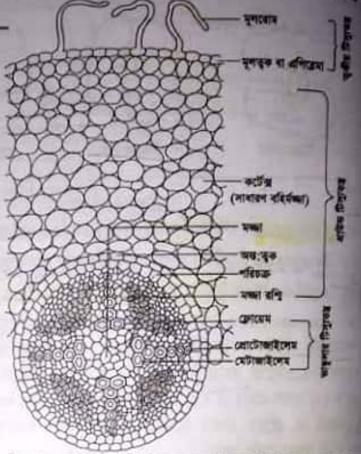
💌 পত্রবক্ষের কাজ : (i) উদ্ভিদের ভেতর ও বাইরের পরিবেশের মধ্যে গ্যাসের আদান-প্রদান করাই এর কাজ। (ii) সালোকসংশ্রেষণের সময় রন্ধ্রপথে বায়ু হতে CO2 গ্যাস গ্রহণ ও O2 গ্যাস ত্যাগ করে। (iii) শ্বসনের সময় রন্ধ্রপথে ৰায়ু হতে O2 গ্যাস গ্ৰহণ ও CO2 গ্যাস ত্যাগ করে। (iv) মূল কর্তৃক সংগৃহীত পানি প্রবেদনের সাহায্যে বাস্পাকারে বের করে দেয়াই এ রক্ষের প্রধান কাজ। (v) রক্ষীকোষ পত্ররক্ষের খোলা ও বন্ধ হওয়া নিয়ন্ত্রণ করে। (vi) রক্ষীকোষের কোরোপ্লাস্ট খাদা তৈরি করে।

কাজেই\সালোকসংশ্রেষণ, শুসন ও প্রস্নেদন—এ তিনটি ওরুত্পূর্ণ শারীরবৃত্তীয় প্রক্রিয়াতেই প্রতাক্ষ অথবা পরোক্ষভাবে

পত্রবন্ধ (স্টোম্যাটা) অংশগ্রহণ করে থাকে।

(ম) পানি-পত্ৰবন্ধ বা হাইডাথোড (Hydathode) : পানি-পত্ৰবন্ধ এক বিশেষ ধরনের পানি নির্মোচন অঙ্গ। ঘাস, কচু, টমেটো ইত্যাদি গাছের পাতার কিনারায় প্রচণ্ড গরমের দিনে পানির ফোঁটার সারি দেখে এ অঙ্গের অবস্থান জানা যায়। মাটিতে প্রচুর পানি থাকলে এবং আবহাওয়া অতিরিক্ত আর্দ্র থাকদে সাধারণত এমনটি ঘটে। বিশেষ পরিস্থিতিতে উত্তিদ দেহ থেকে পানি এই রক্ষের মাধ্যমে প্ররিত্যক্ত হয় বলে এই রক্ষপথকে পানি-পররক্ষ বলে। এর শীর্ষে ক্রিকারে আবদ্ধ একটি রক্ত্র থাকে। রক্তের নিচে একটি গবের রয়েছে। গধেরের নিচে অনেকগুলো অসংলগ্ন কোষ থাকে, এগুলোকে বলা হয় অপিথেম বা এপিথেলিয়াম (cpithelium)। এপিথেলিয়ামের ঠিক নিচে

চিত্ৰ ৮.৬ : হাইডাথোড


ট্রীকিডের শেষপ্রান্ত অবস্থিত। মূলজ চাপে পানি ট্রাকিডের শেষপ্রান্ত দিয়ে এপিথেলিয়ামের মাধ্যমে বিন্দু আকারে রক্তপথে জমা হয়। ভোরে এসব জল বিন্দু দেখা যায়। অন্য সময় পানি দ্রুত বাস্পায়িত হয় এবং সাগোকসংশ্লেষণে বাবস্বত হয় বলে তা দেখা যায় না। হাইডাপোড দিয়ে তরল পানি বের হয়ে যাওয়াকে পাটেশন বলে।

২। বাউভ টিস্যুতর (Ground tissue system) : তৃকীয় ও পরিবহনতন্ত্র ছাড়া উদ্ভিদদেহের অন্যান্য অংশ গঠনকারী টিস্যুতস্তকে ক্রাউন্ড টিস্যুতস্ত বলে। <u>আদি (fundamental) টিস্যুতস্ত ব্</u>যুহেও এটি পরিচিত। এক বা একাধিক টিশু নিয়ে এই টিশ্যুতন্ত্র গঠিত। উত্তিদের অধিকাংশ অংশ এই টিম্যুতন্ত্রের অন্তর্গত। সাধারণত পারেনকাইমা টিশু দিয়ে এই তম্ন গঠিত। অনেক সময় পাারেনকাইমা, কোলেনকাইমা ও ফ্লেরেনকাইমা— এই তিন প্রকার টিস্যু মিলিডভাবে এই তিশাহর গঠন করে থাকে পেরিক্রেম চাত্রক তিশা হতে এই তিশাতত্রের উৎপত্তি

উদ্ভিদের এপিডার্মিস তথা তৃক-এর নিচ হতে আরম্ভ করে ভাস্কুলার বান্ডল (vascular bundle) ব্যতীত ক্ষে এই টিন্যাতম্ভের অন্তর্গত। কতক (hypodermis) ফ্লেনেকাইমা টিস্যু দিয়ে গঠিত হয় আর বাকি সবটুকু প্যারেনকাইমা টিস্যা দিয়ে তৈরি। পাতায় এই তম্ভ তথু প্যারেনকাইমা দিয়ে গঠিত হয়। সব উদ্ভিদের মূলে এবং বিবীজপত্রী উদ্ভিদের কাতে এই টিস্যুতপ্রকে প্রধানত স্পষ্ট দু'ভাগে ভাগ করা যায়; যথা : (১) বহিঃস্টিলীয় অঞ্চল (extrastelar region) অর্থাৎ স্টিলীর বাইরের অংশ এবং (২) অন্তঃস্টিলীয় অঞ্চল (intrastelar region) অর্থাৎ স্টিলীর ভেতরের অংশ। এখানে উল্লেখ্য যে, পেরিসাইকল পর হতে আরম্র করে ভাস্কলার বাভলসহ কেন্দ্র পর্যন্ত অংশকে স্টিলি (stele) বলে।

কাজ : প্রধানত বিপাককরণ, খাদ্য সভ্যয় এবং আংশিকভাবে দৃঢ়তা প্রদান করা।

(১) বহিঃস্টিলীয় অঞ্চল (Extrastelar region) : স্টিলীর বাইরের অংশকে বহিঃস্টিলীয় অঞ্চল বলে। এ অঞ্চল নিমূলিখিত অংশ নিয়ে গঠিত :

চিত্র ৮,৭ : একটি বিবীজনত্রী উদ্ভিদ মূলের রাষ্ট্রফেনে বিভিন্ন টিল্যাভন্ন দেখনো হ

(i) <u>অধ্যত্ক</u> (Hypodermis) : ত্কের নিচে কোলেনকাইমা বা ক্লেরেনকাইমা টিস্যুর এক বা একাধিক স্তর ধাক তাকে অধ্যত্ত্ব বলে। সাধারণত কাণ্ডেই অধঃতুক থাকে। মূলে অধঃতুক থাকে না।

কাজ: কাতকে যাত্রিক দৃঢ়তা প্রদান করা এবং ভেতরের অংশকে রক্ষা করাই অধঃতুকের প্রধান কাজ।

(ii) কর্টেক্স (Cortex) : অধঃত্বকের নিচ হতে আরম্ভ করে অন্তঃত্বকের উপর পর্যন্ত অংশকে কর্টেক্স বলে। প্যারেনকাইমা টিস্যু দিয়ে গঠিত এবং বহু স্তরবিশিষ্ট। পাশাপাশি কোষের মধ্যে আন্তঃকোষীয় ফাঁক থাকে। অনেক সম অন্যান্য তিস্যুও বিক্রিপ্তভাবে এই অংশে দেখা যায়। মূলের কর্টেক্স বহুস্তর বিশিষ্ট হয়। কাণ্ডের কর্টেক্স কয়েকস্তর বিশিষ্ট হয়।

কাজ: পানি ও খাদা সঞ্চয়ই মূলের কর্টেক্সের প্রধান কাজ। কাতের কর্টেক্স পানি ও খাদ্য সঞ্চয় ছাড়াও উরিমা দৃঢ়তা প্রদান করে এবং সালোকসংশ্রেমণে অংশ গ্রহণ করে।

(iii) অন্তঃত্ত (Endodermis) : স্টিলীর বাইরে এবং কর্টেক্সের নিচে (এক) প্রবিশিষ্ট অন্তঃতৃক অবস্থিত। মূলে 🗝 ছিবীজপত্রী উত্তিদ কাতে অস্তঃত্বক বিদ্যমান। এ স্তরের কোষগুলো ফাঁকবিহীনভাবে সন্নিবেশিত ও পিপাকৃতির (built shaped)। কোমগুণোর ভেতরের প্রাচীর ফিতার ন্যায় এবং <mark>শিগনিন ও সুবেরিনের আন্তরণ</mark> দিয়ে বেটিত থাকে। এ ত রণতে ক্যাসপেরিয়ান বিশ্বপ (easperian strip) বলে। বিজ্ঞানী ক্যাসপেরি (Caspary) এটি লক্ষ্য করেন ১৮৬৫ সাম মূলের অভঃত্কে ক্যাসপেরিয়ান স্ট্রিপ থাকে। অভঃত্কের যেসব <u>কোয়গুলোর প্রাচীর (পাতলা </u>থাকে ভানের <mark>প্যানের</mark> ত বলে। অনেক সময় এ স্তরে প্রচু<u>র খেতুসার কণিকা বিদ্যমান থাকতে দেখা যায়, তখন এ স্তরকে খেতুসার আবরণ (এঞ্চা</u> sheath) বলে। সাধারণ (দিবাজপাত্র) উভিদের কাতে খেতসার আবরণ থাকে। ভাস্কুলার বাভল ও তৎসংগায় ভোষত মাতে বায় ও পানিতে আবদ্ধ হয়ে প্রতিবন্ধকতা সৃষ্টি করতে না পারে সেজনা অভঃতৃক বাঁধ (dam) এর মতো কাল 🕬 কাজ। অভঃত্বক সম্ভবত খাদ্য সঞ্জন, তেতরের অংশকে রক্ষা করা এবং মূলত চাপ নিয়ন্ত্রণ করার ভূমিকা রাখে।

(২) অন্তঃস্টিলীয় অধাল (Intrastelar region) : পরিবহন টিসাওচ্ছ ছাড়া পেরিসাইকল তর হতে আরম্ভ করে মূল ও কারের কেন্দ্র পর্যন্ত অন্তঃস্টিলীয় অঞ্চলের বিস্তৃতি। নিমুলিখিত অংশ নিয়ে এ অঞ্চল গঠিত :

(i) পেরিসাইকল বা পরিচক্র (Pericycle) : অন্তঃত্কের নিচে এবং ভাস্কুলার বান্ডলের বাইরে এক বা একাধিক স্তরে বনাত বিশেষ টিস্যুকে পেরিসাইকল বলে। কতক জলভা উদ্ভিদের মূলে বা কাতে এদের দেখতে পাওয়া যায় না। মূলে সাধারণত পেরিসাইকল এক স্থরবিশিষ্ট হয়ে থাকে। তথু প্যারেনকাইমা টিন্যু অথবা ক্লেরেনকাইমা টিন্যু অথবা দুই টিন্যুর মূল্রণে এ স্তর গঠিত হতে পারে ক্রিমড়া ও কুমারিকা কাণ্ডে এটি বহুতর বিশিষ্ট ও ফ্লেরেনকাইমা টিশ্যু দিয়ে গঠিত। ভবেশকাইমা টিসা তথু ফ্রেনয়েমের মাথায় কবস্থান করলে এটিবে হার্ড বাস্ট বা ভাছটুপি (bundle cap) বলে। এ স্তর হতে সকেভারি ভাজক টিসার সৃষ্টি হয়।

কাজ: খাদা সঞ্চয় ও কাওকে দৃঢ়তা প্রদান করে। এছাড়া পার্থমণ সৃষ্টি করা এবং চাতে অস্থানিক মৃদ প্ৰের কাজ।

(ii) মজা বা মেডুলা (Pith or Medulla) : পরিবহন টিস্যুগুছে দিয়ে পরিবেষ্টিত মূল বা কাজের <u>কেন্দ্রস্থলের অংশকে</u> মুজা বলে। মজ্জা সাধারণত প্যারেনকাইমা টিস্যু দিয়ে গঠিত হয়। কখনো কখনো ক্লেরেনকাইমা টিস্যু দিয়ে গঠিত হয়ে থাকে। মজ্জায় সাধারণত পাশাপাশি কোষের মধ্যে ফাঁক থাকে। অনেক সময় কিছু মজ্জাকোষ নষ্ট হয়ে মূল বা কাজের কেন্দ্রছলে একটি শূন্যস্থানের সৃষ্টি হয়।

কাজ: খাদ্য সঞ্চয়ই মজ্জার প্রধান কাজ। ক্লেরেনকাইমা টিস্যু দিয়ে গঠিত হলে মজ্জা সে অংশকে দৃঢ়তা প্রদান করে शादक ।

(iii) মজা রশ্মি (Medullary ray) : মজা যদি দুটি পরিবহন টিসাওচ্ছের মধ্য দিয়ে রশ্যির ন্যায় পেরিসাইকল পর্যন্ত **বিস্তৃত হয় তবে সেই রশ্মির ন্যা**য় অংশকে মজ্জা রশ্মি বলে। এটি প্যারেনকাইমা টিস্যু দিয়ে গঠিত।

কাজ: পানি ও খাদ্য পরিবহন করা। পানি ও খাদ্যবস্তু সঞ্চয় এবং প্রয়োজনে গৌণ চিস্যু সৃষ্টি করা মজ্জা রশ্বির কাজ। পাতার গ্রাউভ টিস্যু : পাতার গ্রাউভ টিস্যুকে মেসোফিল (mesophyll) বলে। এটি অসংখ্য ক্লোরোপ্লাস্ট ও পাতলা আচীরবিশিষ্ট প্যারেনকাইমা কোষ দিয়ে গঠিত। বিষমপৃষ্ঠ পাতায় মেসোফিল প্যালিসেড (palisade) ও স্পন্ধী (spongy) শ্যারেনকাইমা কোষ স্তরে বিভক্ত থাকে। প্যালিসেড প্যারেনকাইমা কোষগুলো ঘন সন্নিবিষ্ট, লম্বাভাবে বিন্যস্ত এবং স্পঞ্জী প্যারেনকাইমা কোষগুলো প্রধানত অনিয়ত, ভিদাকার, কোষাবকাশভাবে বিনাত্ত। সমাঙ্গপৃষ্ঠ পাতায় মেসোফিল টিসা তথু এই ধরনের প্যারেনকাইমা টিস্যু (হয় স্পঞ্জী, নতুবা প্যালিসেড) নিয়ে গঠিত।

কাল: সালোকসংশ্রেষণ প্রক্রিয়ায় খাদ্য তৈরি করা এ টিস্যুর কাজ।

ত। তাস্থুলার টিস্যুতন্ত্র (Vascular tissue system) : তাস্থুলার বাডলের (জাইলেম ও ফ্লোয়েম) সমস্বয়ে গঠিত টিসাত্তকে বলা হয় ভাকুলার টিস্যুতন্ত। <mark>ফ্যাসিকুলার (</mark>fasicular) টিস্যুতন্ত নামেও এটি পরিচিত। এ টিস্যুতন্ত খাদ্য উপাদান ও তৈরিকৃত খাদ্য পরিবহন করে বলে একে পরিবহন টিস্যুতন্ত্রও বলা হয়। আইলেম ও ফ্লোয়েম টিস্যু নিয়ে এ টিশুত্ত গঠিত। জাইলেম ও ফ্রোয়েম পৃথক পৃথকভাবে অথবা একসাথে থাকতে পারে। জাইলেম টিশুা ও ফ্রোয়েম টিশুার ম্থাখানে ক্যাধিয়াম নামক ভাজক টিস্যু থাকতেও পারে, না-ও থাকতে পারে। ধিবীজপত্রী উদ্ভিদ্ন কাতের ভাইলেম ও দোরেম টিসুরে মাঝে অবস্থিত ভাজক টিসুট হলো ক্যাধিয়াম \ প্রতিটি জাইলেম টিসু এবং রেণয়েম টিসু মিলিতভাবে প্রথম প্রক্তাবে একটি ভাস্কুলার বাঙ্গুল গঠন করে এবং এক বা একাধিক ভাস্কুলার বাঙল নিয়ে একটি ভাস্কুলার টিস্যুতস্ত গঠিত হয়। উদ্ভিদযুলে এবং বিধীজপত্রী উদ্ভিদকাতে ভাঙ্গলার বাভলতলো সাধারণত ব্রাকারে সাজানো থাকে, তবে

প্রিমান উত্তিদের কাতে এরা কর্টেক্সের মধ্যে বিক্ষিত্তভাবে উবস্থান করে। সাইলেম টিস্যু (Xylem tissue : Gk-Xylon = wood) : ট্রাকিড, ভেসেল (ট্রাকিয়া), জাইলেম ফাইবার এবং পাইলেম প্যাৱেলকাইমা— এই চার প্রকার উপাদান দিয়ে জাইলেম টিস্যু গঠিত। পরিণত জাইলেম টিস্যুর সজীব উপাদান विका भारतनकारूमा) कार्नवर्गीय উद्धिम এবং नग्नदीकी উদ্ভিদে জাইলেম টিসাতে ভেসেল খাকেলা নিম্ববীজী Gnetumএ সরল প্রকৃতির ভেসেল থাকে)। ভেসেল আবৃতবীজী উদ্ভিদের বৈশিষ্ট্য হলেও Winteraceae, Tetraceatra Trochodendraceae গোত্রের উদ্ভিদে ভেসেল থাকে না।

কিছু তেসেল কোষ সক্র গর্তমুক্ত হয়, আবার কিছু ভেসেল কোষ বড় গর্তমুক্ত হয়। সক্র গর্তমুক্ত ভেসেল ক্রের্ডোটাজাইলেম বলা হয়। আসলে এরা প্রথমে সৃষ্টি হয় বলে এদের নাম হয়েছে আদিজাইলেম বা প্রোটোজাইলেম বলা হয়। আবৃতবীঞ্জী উদ্ভিদের মেটাজাইলেম কিলির কেন্দ্রের দিকে অবস্থিত থাকে এবং প্রোটোজাইলেম কিলির পরিধির দিকে থাকে। কাতে অবস্থান ঠিক উল্টো: অর্থাৎ কাতের ভাপুলার বাভলে মেটাজাইলেম পরিধির দিকে এবং প্রোটোজাইলেম কেন্দ্রের বিনাম্ভ থাকে, একে এজার্ক (exarch) বলে। মূলের ভাপুলার টিস্যুতে প্রোটোজাইলেম পরিধির দিকে এবং মেটাজাইলেম কেন্দ্রের দিকে বিনাম্ভ থাকে, একে এজার্ক (exarch) বলে। পাতায় প্রোটোজাইলেম ও মেটাজাইলেম উভয়ই কেন্দ্র পরিধি দুই দিকে বিনাম্ভ থাকে, একে মেসার্ক (mesarch) বলে। উদ্ভিদ নমুনার সেকশন কেটে প্রোটোজাইলেম মেটাজাইলেম অবস্থান দেখেই বলা যায় কোনটি মূল আর কোনটি কাও।

ফ্রোয়েম টিস্যু (Phloem tissue : Gk-Phloos = bark) : সীতনল, সঙ্গীকোষ, ফ্রোয়েম প্যারেনকাইমা এবং ফ্রো ফাইবার— এই চার প্রকার কোষীয় উপাদান নিয়ে ফ্রোয়েম টিস্যু গঠিত। পরিণত সিভনল বা সিডকোষে কোনো নিউল্লি প্রাকে না) সঙ্গীকোষের নিউক্রিয়াস বড়, সাইটোপ্লাজম ঘন এবং কোষগহরর ছোট থাকে। নগুবীজী উদ্ভিদের ফ্রোয়েম টিস্লা সঙ্গীকোষ থাকে না। সেকেভারি ফ্রোয়েমে অবস্থিত ফাইবারকে বাস্ট ফাইবার বলা হয়। পাটের আঁশ বাস্ট ফাইবার।

পরিবহন টিস্যু (Vascular bandle): উদ্বিদদেহে যে টিস্যু খাদ্যের কাঁচামাল (পানি, খনিজ লবণ ইত্যানি) তৈরিকৃত খাদ্য পরিবহন করে থাকে তাকে পরিবহন টিস্যু বলে। জাইলেম টিস্যু মূল হতে পাতা ও অন্যান্য সবৃত্ত আদি ও খনিজ লবণ পরিবহন করে, আবার পাতা ও অন্যান্য সবৃত্ত অংশে প্রস্তুতকৃত খাদ্যদ্রব্য উদ্ভিদদেহের অন্যান্য সবঁ অংশে পরিবহন করে ফ্রোয়েম টিস্যু। তাই জাইলেম ও ফ্রোয়েম টিস্যুই পরিবহন টিস্যু।

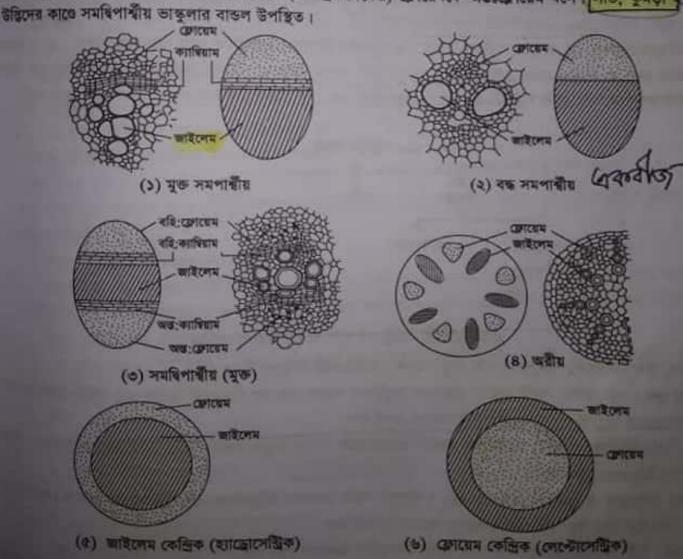
সাধারণত কাণ্ডে জাইলেম ও ফ্লোয়েম টিস্যু একই ব্যাসার্ধে অবস্থিত থেকে মিলিতভাবে একটি বাভল সৃষ্টি করে। মূ
জাইলেম এবং ফ্লোয়েম পৃথক ব্যাসার্ধে থাকে এবং পৃথক পৃথক বাভল সৃষ্টি করে। জাইলেম ও ফ্লোয়েম টিস্যুর এই বাজ
খাদ্যদ্রবা (কাঁচামাল ও প্রস্তৃতকৃত খাদ্য) পরিবহন করে। জাইলেম ও ফ্লোয়েম টিস্যুর গুচছকে ভাস্কুলার বাভল বলে।

পুষ্পক উত্তিদের টিস্যুতন্ত্র, টিস্যু এবং গঠনকারী কোষ

<u>টিস্যুতন্ত্র</u>	টিশ্য	কোষ
(ক) এপিডার্মাল টিস্যুতন্ত্র (দেহের আচ্চাদন তৈরি)	(i) এপিডার্মিস (ii) পেরিভার্ম	প্যারেনকাইমা কোষ, রক্ষীকোষ, ট্রাইকোম কর্ককোষ, কর্ক-ক্যাছিয়াম,
(খ) গ্রাউড টিস্যুতপ্ত (ফটোসিনখেসিস, সংক্ষা এবং দৃঢ়তা প্রদান)	প্যারেনকাইমা কোলেনকাইমা ফ্লেরেনকাইমা	প্যারেনকাইমা কোষ কোপেনকাইমা কোষ ফ্রেরেনকাইমা কোষ
(গ)ভানুদার টিস্যুতন্ত্র (i) জাইলেম (পানি, খনিজ লবদ, তৈরি খাদ্য পরিবহন ও দৃঢ়তা গ্রদান)। (ii) ফ্রোয়েম		ট্রাকিড, ভেসেল, প্যারেনকাইমা কোষ, ফাইবার
	(ii) क्रासम	সিভনল, সঙ্গীকোষ, প্যারেনকাইমা কোষ, ফাইবার, কর্ত প্যারেনকাইমা

ভাস্কুলার বাঙল-এর প্রকারভেদ : জাইলেম ও ফ্লোরেম চিস্যুর তুলনামূলক অবস্থানের উপর নির্ভর করে ভাস্কু বাঙলকে তিন ভাগে ভাগ করা যায়; যথা : (১) সংযুক্ত (conjoint). (২) অরীয় (radial) এবং (৩) ক্ষেত্র (concentric)।

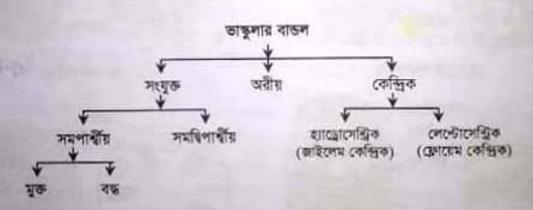
(১) সংযুক্ত (Conjoint): জাইলেম এবং ফ্রোয়েম একই ব্যাসার্থের উপর একই ভঙ্গে যুক্তভাবে অবস্থান করলে জ্ব সংযুক্ত ভাঙ্গুলার বাঙল বলে। ফ্রোয়েমের সংখ্যা ও অবস্থানের উপর নির্ভর করে সংযুক্ত ভাঙ্গুলার বাঙলকে আবার দু'ল্ল ভাগ করা হয়েছে; যথা : (i) সমপাশীয় (collateral) এবং (ii) সমন্বিপাশীয় (bicollateral)।


(i) সমপার্থীয় (Collateral) : এক খণ্ড ফ্রোয়েম টিস্যু এবং এক খণ্ড আইলেম টিস্যু একই ব্যাসার্থে পাশাপাশি ্রোমেন পরিথির তথা বাইরের দিকে এবং <u>ভাইলেম কেন্দের তথা চেতরের দিকে</u>) অবস্থান করলে তাকে সমগারীয় ভাতুলার বান্ডল বলে। পুশ্পক উত্তিদের কাতে এ ধরনের বান্ডল দেখা যায়। ক্যাথিয়ামের উপস্থিতি ও অনুপস্থিতির উপর নির্ভর করে এই ভাকুলার বাভলকে আবার নিমুলিখিত দু'ভাগে ভাগ করা হয়েছে।

(a) মুক্ত সমপাৰীয় (Open collateral) : একই ব্যাসার্ধে পাশাপাশি অবৃহত জাইলেম ও ফ্লেয়েমের মাকখানে আহিলম ও ফ্রোয়েমের মাঝখানে করেক স্করবিশিষ্ট আয়তাকার ভাজক কোষ দিয়ে গঠিত টিস্যুকে ক্যামিয়াম বলা থাকলে তাকে মুক্ত সমপাশীয় ভাস্কুলার বাভল বলে: যেমন- দিবীজপত্রী (কুমড়া জাতীয় উদ্ভিদের কাও ব্যতীত) ও

নারীনী উত্তিদের কাতের ভাকুলার বাভল।

(b) বন্ধ সমপাশীয় (Closed collateral) : সমপাশীয় বাভলের জাইলেম ও ফ্লেয়েমের মধাখানে ক্যাছিয়াম না থাকলে তাকে বন্ধ সমপাশীয় ভাঙ্কুলার বাভল বলেঃ যেমন-একবীজপত্রী উভিদের কাজের ভাঙ্কুলার বাভল।


(ii) সমধিপাৰীয় (Bicollateral) : যে তাকুলার বাভলের মাঝধানে জাইলেম এবং তার উপর ও নিচ উভয় পাশে দুই ৰও ফ্রোমে টিস্যু থাকে তাকে সমন্বিপাশ্বীয় ভাকুলার বাভল বলে। সমন্বিপাশ্বীয় ভাকুলার বাভলে জাইলেমের উভয় পাশেই কাছিয়াম থাকে, তাই সম্থিপাখীয় ভাঙ্গার বাভল সব সময়ই মুক্ত। জাইলেমের বাইরের দিকের (পরিধির দিকের) জোয়েমকে বহিঃফ্রোরেম এবং ভেতরের দিকের (কেন্দ্রের দিকের) ফ্রোরেমকে অস্তঃফ্রোরেম বলে। লাউ, কুমড়া

ৰি ৮.৬। বিভিন্ন প্ৰকাৰ ভাষ্ণপাৰ বাতৰ- ১। মুক্ত সমপাৰীয়, ২। বছ সমপাৰীয়, ৩। সমহিপাৰীয় (মুক্ত), ৪। জয়ীয়, ই। আইলেম কেন্দ্রিক এবং ৬। ফোমেন কেন্দ্রিক।

- (২) অরীয় (Radial) : যে ভাস্থলার বাশুলে জাইলেম এবং ফ্রোয়েম একত্রে একটি বাশুলের সৃষ্টি না করে 🔫 পৃথকভাবে ভিন্ন বিভাগের সৃষ্টি করে এবং আইলেম বাডল ও ফ্রোরোম বাডল ভিন্ন ভিন্ন ব্যাসার্থে পাশাপাশি কর করে তাকে অরীয় ভাঙুলার বাভল বলে। পুশ্পক উদ্ভিদের মূলে এ ধরনের ভাঙুলার বাভল দেখা যায়। খিবীভাপত্রী জিছ মূলে জাইলেম অথবা ফ্লোয়েম বাভল-এর সংখ্যা সাধারণত পাচ এর কম থাকে কিন্তু একবীজপত্রী উদ্ভিদের মূলে এচ বত্যেকের সংখ্যা সাধারণত ছয় এর অধিক।
- (৩) কেন্দ্রিক (Concentric) : জাইলেম অথবা ফ্রোয়েম টিস্যুর যে কোনো একটি কেন্দ্রে থাকে এবং অন্যটি ক্র চারদিক থেকে থিরে রাখলে তাকে কেন্দ্রিক ভাঙ্গদার বাঙল বলে। কেন্দ্রিক ভাঙ্গদার বাঙল সর সময়ই বছ হয় ৯ জাইলেম ও ফ্লোয়েমের মধাখানে কোনো ক্যাধিয়াম থাকে না। সাধারণত <mark>টেরিডোফাইটে এ ধরনের বাঙ</mark>ল অধিত দে যায়। জাইলেম ও ফ্লোয়েমের তুলনামূলক অবস্থানের উপর নির্ভর করে কেন্দ্রিক ভাঙ্গুলার বাঙলকে নিমুলিখিত দু'ভাগে 📸 कवा इत्सरहः यथा :
- (i) হাজ্রোসেক্সিক বা জাইলেম কেন্দ্রিক (Hadrocentric) : এ ক্ষেত্রে জাইলেম কেন্দ্রে থাকে এবং ফ্রোয়েম বছ সম্পূর্ণকরণে ঘিরে রাখে: যেমন- Pteris, Lycopodium ইত্যাদি উদ্ভিদের ভাঙ্কুলার বাঙল।
- (ii) শেন্টোসেক্সিক বা ফ্লোয়েম কেন্দ্রিক (Leptocentric) : এ ক্ষেত্রে ফ্লোয়েম কেন্দ্রে থাকে এবং জাইলেম আ খিরে রাখে: যেমন- Dracaena উদ্ভিদের ভাস্কুলার বাডল।

ভাতুদার বাভদ-এর কাজ: ভাতুদার বাভল তথা পরিবহন টিস্যুতন্ত নিদুলিখিত কাজ করে থাকে, যথা: (i) উলি মূল হতে কাও ও পাতায় পানি এবং দ্রবীভূত খনিজ লবণ আয়ন হিসেবে পরিবহন করা, (ii) পাতায় প্রস্তুত্ব ক উদ্ভিদের মূল হতে কচি মুকুল পর্যন্ত বিভিন্ন অংশে প্রেরণ করা এবং (iii) উদ্ভিদকে দৃঢ়তা এবং যান্ত্রিক শক্তি প্রদান কর।

একবীজপত্রী উদ্ভিদের মূল ও কাণ্ডের অন্তর্গঠন

ঘাস, বাঁশ, কলাবতী, ধান, গম, ভূমা, কচু ইত্যাদি একবীজপত্রী উদ্ভিদের উদাহরণ।

কচু মূল: কচু মূলের একটি পাতলা প্রস্থাছেদ অণুবীক্ষণ যন্ত্রের সাহায্যে পর্যবেক্ষণ করলে এর পরিধি হতে 🖎 দিকে পর্যায়ক্রমে নিমুলিখিত অভ্যন্তরীণ বৈশিষ্ট্যসমূহ দেখা যায়।

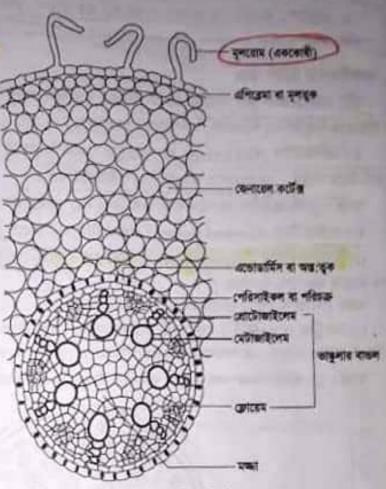
- ১। বহিঃস্টিলীয় অঞ্চল : এপিরেমা থেকে এভোডার্মিস পর্যন্ত বিভৃত অঞ্চল হলো বহিঃস্টিলীয় অঞ্চল। নিমুলিখিত টিসাওলো দেখা যায়।
- (ক) এপিরেমা বা মূলত্ক (Epiblema) : মূলত্ক অতি ঘনভাবে সন্নিবেশিত একসারি প্যারেনকাইমা কোঁ^ছ গঠিত। মূলতুকে কিছু কিছু এককোষী মূলরোম দেখতে পাওয়া যায়।

কাল: পানি ও খনিজ লবণ শোষণ করা এবং অভ্যন্তরীণ অংশকে রক্ষা করা।

(খ) কর্টেল (Cortex) বা বহিৰ্মজ্জা : কর্টের অনেক অংশ জুড়ে বিস্তৃত এবং একে নিমুলিখিত অংশে জাগ কর্ नाता। यथाः

(i) জেনারেল কর্টেন্স (General cortex) বা সাধারণ বহির্মজ্ঞা : সাধারণ বহির্মজ্ঞা পাতলা প্রাচীরযুক্ত অনেকলারি লারেনকাইমা কোষ দিয়ে গঠিত। এদের মধ্যে আভাকোষীয় ফাঁক বিদ্যমান। (কখনো কখনো আরেনকাইমা অর্থাৎ বাহুকুরী থাকতে পারে)।

কার্জ : খাদ্য সংখ্যা করা।


(ii) এভোডার্মিস (Endodermis) বা অন্তঃত্তক , এট একসারি পিপাকৃতির কোষ দিয়ে গঠিত। কোষতলো পরস্পার অতি ঘনভাবে সন্নিবেশিত। এ কোষওলোর পার্মপ্রাচীর ও বাইরের প্রাচীরটি স্থল।

কাল : কর্টেক্স হতে পরিচক্রকে পৃথক করা এবং সম্ভবত পানি প্রবেশ নিয়ন্ত্রণ করা।

- ২। অন্তঃস্টিদীয় অঞ্চল : পেরিসাইকল থেকে মজা পর্যন্ত বিস্তৃত অধ্যাল। এতে নিমুলিখিত টিসাওলো নেবা যায়।
- (জ) পেরিসাইকল (Pericycle) বা পরিচক্র : প্রাচীরবিশিষ্ট পাতলা প্যারেনকাইমা কোষ দিয়ে গঠিত। কোষগুলো খুব ঘনভাবে সনিবেশিত।

কাছ : নাইটোজেন জাতীয় খাদ্য ছাড়া অন্যান্য খাদ্য সঞ্চয় করা।

(খ) ভাতুলার বাভল (Vascular bundle) বা পরিবহন টিস্যুভন্ত : জাইলেম বা ফোরোম ওচেহর সংখ্যা হয়ের অধিক। এরা ভিনু ব্যাসার্ধে অরীয়ভাবে

চিত্র ৮,৯ : একটি কচু মূদের (একবীঞ্চলত্রী উল্লিস) রাস্থ্যেমন।

এবং চক্রাকারে সাজানো থাকে। প্রোটোজাইলেম পরিধির দিকে এবং মেটাজাইলেম কেন্দ্রের দিকে থাকে অর্থাৎ জাইলেম বহিঃত্ব প্রকার (exarch) I

কাজ: খাদ্যদ্রর পরিবহন করা।

(গ) মজ্জা রশ্মি বা সংযোজক টিস্যু (Medallary ray or conjunctive tissue) : পাতলা প্রাচীরযুক্ত প্যারেনকাইমা জাতীয় যে সব কোষ জাইলেম ও ফ্লোয়েম ওছেকে বিচ্ছিন্ন করে রাখে এরাই মজ্জা রশ্মি বা সংযোজক টিস্যু গঠন করে।

কাজ: পরিচক্র ও মজ্জার মধ্যে সংযোগ রক্ষা করা।

(ছ) পিথ (Pith) বা মজ্জা : মূলের কেন্দ্রস্থলে প্যারেনকাইমা জাতীয় কোষ দিয়ে গঠিত অংশকেই মজ্জা বলে। ইননামূলকভাবে কচু মুলে(মজ্জা বড়)

কাজ : খাদা সংজ্যা করা।

একবীজপত্রী উত্তিদ মূলের অন্তর্গঠনগত শনাক্তকারী বৈশিষ্ট্যসমূহ

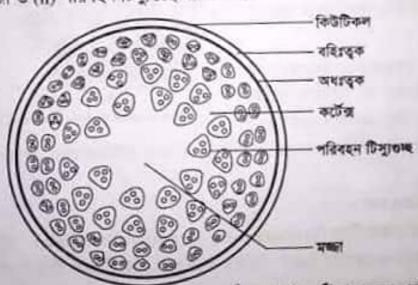
- i. তৃকে কিউটিকল অনুপস্থিত। এতে এককোষী রোমীআছে।
- ii. অধ্যত্তক অনুপস্থিত।
- iii. क्टाँग विक्सि खता विनाख ना।
- iv. পরিচক্র <mark>একসারি কু</mark>কাষ দিয়ে গঠিত।

- v. ভাঙ্গদার বাভল (অরীয়)এবং একান্তরভাবে সজ্জিত।
- থা মেটাজাইলেম কেন্দ্রের দিকে এবং প্রোটোজাইলেম পরিধির দিকে অবস্থিত।
- vii. জাইলেম বা ফ্রোয়েম গুড়ের সংখ্যা হয় এর অধিক)। (ধিবীজপত্রী উদ্ভিদ মূলে এই সংখ্যা সাধারণত ২-৪টি)। viii. মজ্জা বৃহৎ।

একবীজপত্রী উদ্ভিদ কাত

ভূটা কাত : ক্রচি ভূটা কাজের একটি পাতলা প্রস্থাজেদ অণুবীক্ষণ যন্ত্রে অবলোকন করলে পরিধি হতে কেন্দ্রের দির পর্যায়ক্রমে নিমুলিখিত গঠনগত বৈশিষ্ট্যসমূহ দেখা যায়।

১। এপিডার্মিস (Epidermis) বা বহিঃত্বক: এটি সবচেয়ে বাইরের স্তর। বহিঃত্বক একসারি চ্যাণ্টা প্যারেনকট্ট কোষ দিয়ে গঠিত। কোষগুলোর বহিঃপ্রাচীর কিউটিকল যুক্ত।

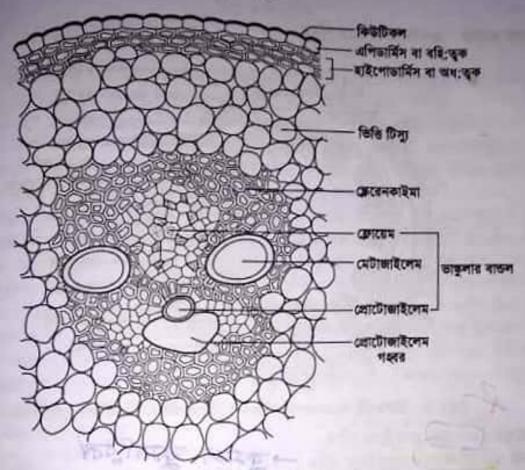

কাজ: (i) অভ্যন্তরীণ অংশকে রক্ষা করা এবং (ii) পানির অপচয় রোধ করা।

- ২। মাউড টিস্যু (Ground tissue) : গ্রাউড টিস্যু দুই অংশে বিভক্ত, যথা :
- (i) হাইপোডার্মিস (Hypodermis) বা অধঃত্বক: এটি একাধিক সারি ক্লেরেনকাইমা কোষ দিয়ে গঠিত। বহিঃবৃদ্ধে ঠিক নিচেই অধঃত্বক অবস্থিত।

কাজ: কাণ্ডকে দৃঢ়তা প্রদান করা।

(ii) কর্টেক্স (Cortex) : বহু সারি প্যারেনকাইমা কোষ দিয়ে এ অঞ্চল গঠিত। অধঃত্কের নিচ হতে কাঞ্চে ক্ষে পর্যন্ত এ অঞ্চল বিস্তৃত। এ অঞ্চলের কোষগুলোর আন্তঃকোষীয় ফাঁক আছে।

কার্জ: (i) খাদ্য সঞ্চয় করা ও (ii) পরিবহন টিস্যুতছে ধারণ করা।



চিত্র ৮,১০ : একবীজপত্রী কাজের প্রাথমিক অন্তর্গঠন (ভারাগ্রামেটিক): নমুনা—কুটা কাও।

৪। ভাঙ্গার বাঙল (Vascular bundle) বা পরিবহন টিসাওচছ: ভাঙ্গার বাঙল সংখার অনেক। এরা এটি টিসাতে বিক্ষিত্তাবে ছড়ানো থাকে। বাঙলগুলো সমপাশীয় এবং বদ্ধ। পরিধির দিকে অধিক সংখাক অবস্থিত। এরা অপেকাকৃত ছোট আকৃতির এবং ঘন সন্নিবেশিত। প্রতিটি ভাঙ্গলার বাঙল ক্লেরেনকাইমা কোষের আবরণী নির্দেশিক। ওপু ফ্লোয়েম ও জাইলেম দিয়ে ভাঙ্গলার বাঙল গঠিত। এতে কোনো ক্যাঘিয়াম নেই। প্রতিটি বাঙল পরিবেষিত। ওপু ফ্লোয়েম ও জাইলেম দিয়ে ভাঙ্গলার বাঙল গঠিত। এতে কোনো ক্যাঘিয়াম নেই। প্রতিটি বাঙল শিম্নলিখিত অংশ নিয়ে গঠিত।

া জাইলেম (Xylem) : জাইলেম টিস্যুর গঠন অনেকটা ইংরেজি 'Y' অকরের মতো। মেটাজাইলেম 'Y' এর দুর্ব বাহতে এবং প্রোটোজাইলেম লেজের দিকে অবস্থিত। প্রতিটি বাডলে প্রোটোজাইলেমের নিচে একটি ছোট গরের দের্ঘ যায়। কেন্দ্রের দিকের প্রোটোজাইলেম ও এর আশপাশের প্যারেনকাইমা কোষ বিনম্ভ হয়ে এ গহরর সৃষ্টি হয়।

কাল : পানি ও খনিজ শবণ পরিবহন করা।

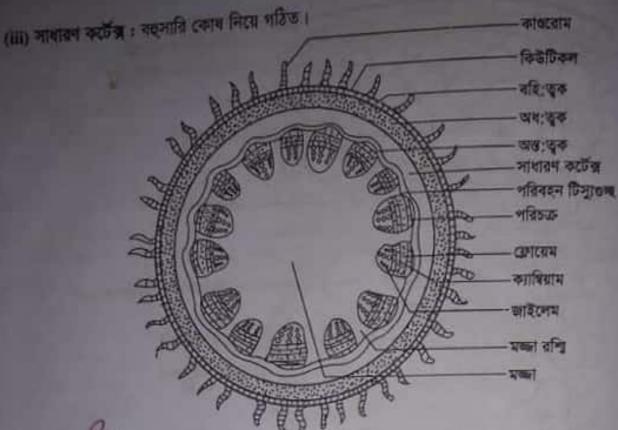
চিত্র ৮.১১ : একটি ভূটা কাজের (একবীজপত্রী উদ্ভিদ কাত) প্রস্থচ্ছেদ।

(ii) ফোরেম (Phloem) : এটি জাইলেম টিস্যুর Y-এর দুটি বাহর মাঝখানে অবস্থিত। সীভনল এবং সঙ্গীকোষ দিয়ে ক্লোরেম গঠিত। এতে কোনো ফ্লোরেম প্যারেনকাইমা নেই

বার: প্রস্তুত্ত খাদ্য পরিবহন করা।

৫। মজা ও মজা রশ্মি: এতে ছোট মজা অছে কিন্তু সুস্পট্ট মজা রশ্মি নেই।

ধক্ৰীজগুৱী উদ্ভিদ কাজের অন্তৰ্গঠনগত শনাক্তকারী বৈশিষ্ট্যসমূহ


- ১। সাধারণত কান্তরোম(অনুপস্থিত।)
- ২। বহিঃভূকে কিউটিকল উপস্থিত।
- ত। অধ্যত্ত্বক আছে এবং সাধারণত ক্লেরেনকাইমা টিস্য দিয়ে গঠিত।
- 8। তাকুলার বাভলগুলো গ্রাউভ টিস্যুতে বিক্ষিপ্তভাবে ছড়ানো।
- ৫। মেটাজাইলেম পরিধির দিকে এবং প্রোটোজাইলেম কেন্দ্রের দিকে অবস্থিত।
- ও। জাইলেম Y বা V আকৃতিবিশিষ্ট।
- ৭। ডাঙ্গুলার বাভল সংযুক্ত, সমপার্থীয় ও বছ (জাইলেম ও ফ্লোয়েমের মাঝে ক্যাখিয়াম নেই)।

বিবিজ্ঞানী উত্তিদ কাতের প্রাথমিক অন্তর্গঠন (নমুনা সূর্যমুখী) : তিখু একবীজপত্রী উদ্ভিদ কাতের সাথে তুলনা করে দেখার এবং শেখার জন্য ভায়াগ্রামেটিক চিত্রের মাধ্যমে অভি

বিকেশে উপস্থাপন করা হলো।

(1) बहिरदुक : বহিঃত্বকে কউটিকল ও কাওরোম আছে।

(II) ব্যাহ্ন : এভাধিক সারি কোষে গঠিত।

চিত্র ৮.১২ : বিবীজপত্রী কাজের প্রাথমিক অন্তর্গঠন (ভারাগ্রামেটিক); নমুনা- কচি সূর্যমূখী কাও।

(iv) অভঃত্ব : (একসারি কাম দিয়ে গঠিত।

(vi) পরিবহন টিসাওচ্ছ : (চক্রাকারে সঞ্জিত। ভাস্কুলার বাঙল সংযুক্ত, সমপাখ্রীয় ও মুক্ত। মেটাজাইলেম পর দিকে অবস্থিত।

- (viii) মজ্জা ও মজ্জারশ্মি : কেন্দ্রে মজ্জা অবস্থিত, দুই বাজুদের মার্যথানে মজ্জারশ্মি অবস্থিত।
- এটি কাও- কারণ তুকরোম বহুকোর্যা, ভাস্কুলার বাভল সংযুক্ত।
- (২) এটি ছিবীজপত্রী উত্তিদ কাভ-কারণ ভালুলার বাঙল মুক্ত সমপানীয় ।

दावशत्रिक

উপকরণ : যে কোনো একবীজপত্রী উত্তিদের মূল বা কাণ্ড, কাচের বাতি, পানি, ক্রেড/ রেজার, আলোক অণুরীক্ষণ য ত্রাইত, কভার ত্রিপ, সাজোদিন দ্রবণ, তুলি/ নিডল ইত্যাদি।

কার্যপদ্ধতি : কচু, কুটা, কলাবতা (সর্বজয়া) ইত্যাদি যেকোনো একবীজপত্রী উদ্ভিদের মূল ও কারের পাতলা প্রযুক্ত করে আলোক অণুবীক্ষণ মতে পর্যবেকণ করে গঠন বৈশিষ্ট্য জানা যায় এবং শনাক্ত করা যায়। কলাবতী বছবাল উত্তিদ, কলেজ আঙ্গিনায় লাগিয়ে রাখলে বাহারী ফুলদায়ী উত্তিদ হিসেবে সৌন্দর্য বাড়াবে আবার বাবহারিক নমুনী

ক্লে বা রেজার নিয়ে নমুনার পাজনা প্রস্তুক্তেন কেটে কাচের বাটিতে পানির মধ্যে রেখে তাতে করেক ফোটা সাজে দূৰণ মিশিয়ে মিলে অভুগাত বাভলন্থ অন্যান্য শক্ত টিস্যুখলো লাল নং গ্ৰাপ্ত হবে, ফলে সহজেই বিভিন্ন টিস্থা শন্

ক্ষাৰে চাইতে এক কোঁটা পানি নাও। বাটি থেকে তুলির সাহায্যে একটি পাতলা গ্রন্থতেন নিয়ে চাইতে রাখ ক সাধধানে সমুনার উপর একটি কপ্রার ত্রিপ রাখ। তাইডাট অবুরীক্ষণ যতে স্থাপন করা এবং ২০x অভিনত্তো পর্যবেশ কৰা, চিত্ৰ আৰু এমং বিভিন্ন অংশ চিভিন্ত কৰা। তোমাৰ অভিত অস্ব্যেছ্ণটি কেন একবীলপানী উল্লিনেৰ মূল বা কাই ^ক ভাগেনত উত্তেপ কর। শনাভভাগা বৈশিয়ে টেকপ্রা-এ বলা গেতে।

भार्त-मश्टक्

ভাজক টিসা (মেরিস্টেম) : যে টিসার কোষসমূহ বিভাজনের মাধামে কোষের সংখ্যাবৃদ্ধি ঘটায়, কলে উল্লিদাস দৈর্ঘো বা হাছে বৃদ্ধিলাও হয় সে টিসুটে ভাজক টিসা। কতক ভাজত টিসা উদ্ভিদের মূল, কাও বা এদের শাখা-প্রশাঘার শীর্ষে বা অংশ । ব্যক্তি, এদেরকে বলা হয় শীর্ষস্থ ভাজক চিসা। এদের বিভাজনের কারণে উত্তিদের কাও বা মূল এবং এদের শাধা-প্রশাধা প্রবাহত, সোমোঁ বৃদ্ধি পায়। কতক ভাজক টিস্যা উল্লিদাঙ্গের পার্শ্ব বরাবর লম্মালম্বিভাবে অবস্থিত, এদেরকে বলা হয় পার্শীয় ভাজক লেখে বা চিসা। পারীয় ভাজক টিসার বিভাজনের কারণে উদ্ভিদাস প্রস্তে বৃদ্ধিপ্রাপ্ত হয়। উদ্ভিদের জীবনে ভাজক টিসার গুরুত্ব

ত্রপরিসীম, কার্ম ভাজক তিসা না থাকলে উদ্ভিদের দেহ গঠন ও বৃদ্ধি হতো না।

ভাস্কলার টিসা : জাইলেম ও ফোরোম-এর সমখরে গঠিত টিসাই ভাস্কলার টিসা। কেবলমার টেরিভোফাইটস, ন্মাজী উভিন এবং (পাবৃতবীজী উন্তিক ভাঙ্গলার চিসা থাকে, তাই এদেরকে ভাঙ্গলার উদ্ভিদ বলা হয়। ট্রাকিড, ভেসেল, জাইলেম ফাইবার এবং জাইলেম প্যারেনকাইমা নিয়ে জাইলেম টিসা গঠিত। সীতনল, সঙ্গীতোধ, ফ্রোয়েম ফাইবার ও জোরেম প্যারেনকাইমা নিয়ে ফ্রোয়েম টিস্যু গঠিত। একাধিক প্রকার কোষ নিয়ে গঠিত বলে এরা জটিল টিস্যু। এ টিস্যুর তোহসমূহ বিভাজনে অক্ষম বলে এরা স্থায়ী টিস্যু। কাজেই ভাঙ্গুলার টিস্যু হলো স্থায়ী এবং জটিল টিস্যু। জাইলেম টিস্যু প্রধানত মূল থেকে পাতা পর্যন্ত পানি পরিবহন করে, অপরপক্ষে পাতায় প্রস্তুতকৃত (খাদা)ফোয়েম টিস্যুর মাধ্যমে ইছিদনেহের সব সজীব কোষে পৌছে। খাদ্য এবং খাদ্যের কাঁচামাল পরিবহন করে বলে এরা পরিবহন টিস্যু নামেও প্রিচিত। মূলে জাইলেম ও য়েগয়েম পৃথক পৃথক বাদ্রলে অবস্থান করে, কিন্তু কাতে একই বাদ্রলে অবস্থান করে। কাজেই ভাঙ্গার বাভলের প্রকৃতি দেখে মূল এবং কাও শনাক্ত করা যায়।

টিশাতর : টিস্যু দিয়ে টিস্যুতর গঠিত হয়। একই ধরদের কাজ করে এমন এক বা একাধিক টিস্যু মিলেই একটি টিস্যুতম গঠন করে। অবস্থান ও কাজের উপর ভিত্তি করে টিস্যুতম তিন প্রকার: যথা- এপিডার্মাল টিস্যুতম গ্রাউড টিস্যুতম এবং তিকুলার টিস্যুতন্ত। উদ্ভিদাঙ্গের বহিরাবরণ সৃষ্টিকারী টিস্যুর নাম এপিডার্মাল টিস্যুতম । অভ্যন্তরীণ অংশতে বজা করাএপিডার্মালী টিস্যাতন্ত্রের প্রধান কাজ। উল্লিদাঙ্গের মূলভিত্তি গঠনকারী টিস্যু সমষ্টিকে নিয়ে গ্রাউভ টিস্যুতন্ত্র গঠিত। থাট্ড টিস্যু একাধিক অংশে বিভক্ত। জাইলেম ও ফোয়েম টিস্যু দিয়ে গঠিত টিস্যুতস্তকে ভাঙুলার টিস্যুতস্ত বলা হয়।

বিলাহকে দৃঢ়তা প্রদান এবং খাদা ও কাঁচামাল পরিবহনই ভাঙ্গলার তিস্যুত্তের প্রধান কাল।

वहनिर्वाচनि थम् (MCQ) ১। উদ্ভিদের মূলে কোন ধরনের ভাস্থলার বাঙল থাকে ? ्(छ) अरोग (খ) সমদ্বিপাশীয় (ক) সমপাশীয় ২। ভাজক টিস্যুর বৈশিষ্ট্য হলো-(i) এই টিসার কোষগুলো বিভাজন ক্ষমতাসম্পন্ন 🛈 এই টিসা খাদা তৈরি করে নি (iii) এই টিসার কোষীয় বিপাক হার বেশি নিচের কোনটি সঠিক? (R) i, ii 6 iii (F) ii G iii (4) T G iii (3) i G ii শাশের চিত্রটি দেখে ৩ ও ৪ নং প্রশ্নের উত্তর দাও। া পাশের চিত্রে পাতার A স্থানটি— (i) দৃটি রক্ষীকোষ খারা পরিবেছিত (ii) श्राम कुरेती विभागान (iii) ভাজক টিসা দারা পরিবেটিত শিচের কোনটি সঠিক? (w) i, ii & iii (9) ii e iii (3)10 # (1) i G iii

নবম অধ্যায় উদ্ভিদ শারীরতত্ত্ব PLANT PHYSI

ল্বধান শব্দসমূহ: পত্ৰয়ক, প্রথেদন, ফটোফসফোরাইলেশন, সালোকসংশ্রেমণ, শ্বসন

ছাধ্যমিক শ্রেণিতে তোমরা সালোকসংশ্লেষণ, শ্বসন, উদ্ভিদ ও পানির সম্পর্ক, পানি ও খনিজ লবণ পরিশোষণ, কোষ রুদের আরোহণ, প্রস্থেদন ইত্যাদি শারীরতাত্ত্বিক প্রক্রিয়া সম্বন্ধে মোটামুটি ধারণা পেয়েছ। এই অধ্যায়ে উক্ত প্রক্রিয়াতলো সমূহে আরও বিস্তারিত জানতে পারবে।

প্রতিটি সজীব উদ্ভিদের দেহাভান্তরে বহুবিধ শারীরতাত্ত্বিক (physiological) ক্রিয়া-বিক্রিয়া প্রতিনিয়ত চলতে থাকে। একাধিক ক্রিয়া-বিক্রিয়া মিলিতভাবে এক একটি শারীরতাত্ত্বিক প্রক্রিয়া (physiological process) সম্পন্ন করে। উদ্ভিদ জ্বনে ওরুত্পূর্ণ কতিপয় শারীরতাত্ত্বিক প্রক্রিয়া হলো খনিজ লবণ পরিশোষণ, রস উর্ত্তোলন, সালোকসংশ্লেষণ, শ্বসন, প্রবেদন প্রভৃতি। কয়েকটি গুরুত্বপূর্ণ শারীরতাত্ত্বিক প্রক্রিয়া সম্বন্ধে নিচে আলোচনা করা হলো।

Stephen Hales নামক একজন ব্রিটিশ বিজ্ঞানী ১৭২৭ খ্রিস্টাব্দে বলেন যে, উদ্ভিদ বায়ু থেকে কিছু খাদ্য গ্রহণ করে এবং সূর্বালোক হয়ত এতে অংশগ্রহণ করে। এ কারণে তাঁকে উদ্ভিদ শারীরতত্ত্বে (Plant Physiology) জনক বলা হয়। Plant Physiology শব্দটি থ্রিক শব্দ Physis (nature) এবং logos (discourse) থেকে উদ্ভূত হয়েছে।

এ ভ্ৰম্ভাৰ পাঠ পেষে শিক্ষাৰ্থীৱা-

- ১ উদ্ভিদের খনিজ লবণ শোষণ প্রক্রিয়া ব্যাখ্যা করতে পারবে।
- আধুনিক মতবাদসহ সক্রিয় ও নিষ্ক্রিয় শোষণ প্রক্রিয়া বর্ণনা করতে পারবে।
- সক্রির ও নিছির শোষণ প্রক্রিরার মধ্যে তুলনা করতে পারবে।
- ৪ চিত্রসহ পত্ররজের গঠন বর্ণনা করতে পারবে।
- পত্রবন্ধ উনুক্ত ও বন্ধ হওয়ার কৌশল বিশ্লেষণ করতে পারবে।
- পত্রক্রীয় প্রস্কেদন প্রক্রিয়া বর্ণনা করতে পারবে।
- ৭, ব্যবহারিক
 - o পত্রবন্ধের চিত্র অন্তন করে চিহ্নিত করতে পারবে।
- b, ক্যালন্তিন চক্র ও হ্যাচ এভ স্মাক চক্র বর্ণনা করতে পারবে।
- ক্যালভিন চক্র ও হ্যাচ এন্ড স্থ্যাক চক্রের মধ্যে তুলনা করতে পারবে।
- সালোকসংশ্রেষণ প্রক্রিয়ায় লিমিটিং ফ্যাউরের ভূমিকা বিশ্রেষণ করতে পারবে।
- ३३, बाबबादिक
 - ০ সালোকসংশ্রেষণে কার্বন ডাইঅক্সাইড গ্যাসের অপরিহার্যতার পরীক্ষাটি করতে পারবে।
- ১২. সবাত শ্বসন প্রক্রিয়া বর্ণনা করতে পারবে।
- মবাত শ্বসন প্রক্রিয়া বর্ণনা করতে পারবে।
- ১৪. শিক্সে অবাত শুসনের ব্যবহার ব্যাখ্যা করতে পারবে
- শ্বনের প্রভাবকসমূহ বর্ণনা করতে পারবে।
- >७. बाबबादिक
 - o অবাত শ্বসন প্রক্রিয়াটি পরীক্ষা করতে পারবে।

খনিজ লবণ পরিশোষণ (Absorption of Mineral Salts)

উদ্ভিদ দেহাভ্যস্তরে বিভিন্ন শারীরতাত্ত্বিক প্রক্রিয়া সুসম্পন্ন করতে বিভিন্ন প্রকার খনিজ লবণের অংশগ্রহণ প্রয়োজন 📆। সাধারণত দেহাভাত্তরে এগুলো তৈরি হয় না; বাইরে থেকে, বিশেষ করে মাটি থেকে এসব খনিজ লবণ শোষণ করে শিক্ত হয়। স্বাস্থ্যপ্রদ ও শারীরিক পরিপূর্ণতার জন্য এগুলো আবশ্যকীয়। বিভিন্ন পরীক্ষা-নিরীক্ষায় দেখা গিয়েছে যে, গরিদের জন্য কার্বন, হাইড্রোজেন, অক্সিজেন, নাইট্রোজেন, ফসফরাস, পটাসিয়াম, ক্যালসিয়াম, ম্যাগনেসিয়াম, সালফার (গ্রুত), লৌহ, ম্যাংগানিজ, তামা, দন্তা, মলিবডেনাম, বোরন, সোডিয়াম ও ক্লোরিন-এই ১৭টি উপাদান অত্যাবশাকীয়। পর মধ্যে কার্বন, হাইন্দ্রোজেন ও অক্সিজেন ছাড়া সব কয়টি উপাদান উদ্ভিদ মাটি হতে শোষণ করে।

লবণ পরিলোমণ অদ : মূলের অগ্রভাগের কোষ বিভাগ্যন অঞ্চলের নব গঠিত কোষওলোই পরণ পরিশোষণে আহিছ কার্যক্ষম। মূলরোম দিয়েও কিছু লবণ পরিশোষিত হয়ে থাকে।

কোন অবছার দক্ষ পরিশোষিত হয় : উদ্ভিদ কখনো কঠিদ অবছায় কোনো পদার্থ শোষণ করতে পারে না এক বৈশিষ্টো প্রাণী হতে উদ্ভিদ সম্পূর্ণ পৃথক। <u>মাটিই খনিজ লবণ সরবরাহের একমাত্র উৎস। খনিজ লবণতলো মাটিই লাকি</u> দ্রবীভূত হয়ে ক্যাটায়ন (+) ও আনায়ন (-)-এ বিভক্ত থাকে এবং উদ্ভিদ তা আরন হিসেবেই পরিশোষণ করে থাকে উদাহরণস্বরূপ সোভিয়াম ক্রোরাইড (NaCl)-এর নাম উল্লেখ করা যায়। পানিতে দ্রবীভূত হলে এটি Na* (কাটায়ন) প্রে (আনায়ন)-এ বিভক্ত হয় এবং Na+ ও Cl আয়ন হিসেবেই মূল কর্তৃক শোষিত হয়। আয়ন দৃটি সমভাবে করে অসমভাবে শোষিত হতে পারে। বিভিন্ন আয়ন শোষণের হার বিভিন্ন প্রকার। K* এবং NO; আয়ন সর্বাপেক্ষা দ্রুত্বগতিতে শোষিত হয় বলে মনে করা হয়। সাধারণ কাটায়ন হলো K Mg, Ca, Mn, Fe, Cu, Zn, Co, Na এবং সাধারণ আনায়ন হলো N, P, B, S এবং Cl মথাক্রমে NO; PO; BO; Cl হিসেবে।

উত্তিদের জন্য অত্যাবশ্যকীয় পৃষ্টি উপাদান

E. Epstein (1972) বলেন যে, নিম্নলিখিত দৃটি কারণে (অথবা দৃটির যে কোনোটি) একটি মৌলকে অত্যাবশাকীয় বলা যাবে: যথা- (১) এ মৌলটি ছাড়া উদ্ভিদ তার স্বাভাবিক জীবনচক্র সম্পন্ন করতে পারবে না, (২) মৌলটি ইক্তি গঠনের বা মেটাবলিজমের প্রয়োজনীয় অংশ (যেমন- মাাগনেসিয়াম ক্লোরোফিল অণু গঠনের জন্য দরকারি, অর ক্লোরোফিল ফটোসিনথেসিস-এর জন্য দরকারি।) ফ্রেসফরাসের জভাবে উদ্ভিদের পাতা ও ফল করে পড়ে।

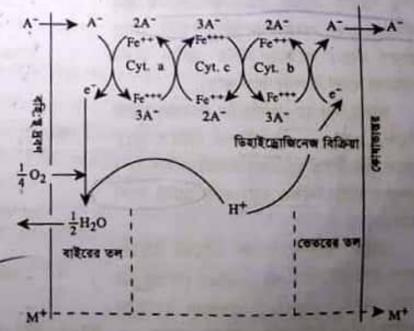
যে মৌলগুলো অধিক পরিমাণে লাগে সেগুলো ম্যাক্রোমৌল (১–৯); যে মৌলগুলো অপেক্ষাকৃত কম পরিমাণে লাগে সেগুলো মাইক্রোমৌল (১০–১৭); যে মৌল কোনো কোনো উদ্ভিদের জন্য বিশেষ প্রয়োজন, তাহলো উপকারীমৌল; যেন সিলিকন (ঘাসের জন্য), সোডিয়াম (C4 উদ্ভিদের জন্য), কোবান্ট (নাইট্রোজেন কিকসিং লিগিউমের জন্য)। সিলিকন ঘ্রন উদ্ভিদের জন্য সোডিয়াম মাইক্রোমৌল কাজেই ম্যাক্রোমৌল ৯টি এই মাইক্রোমৌল ৮টি বলা যায়।

মৌলের নাম	ধাতু/অধাত্	রাসায়নিক সংকেত	গ্ৰহণীয় রূপ	(m mol /kg)
১. হাইড্রোজেন	অধাতৃ	Н	H ₂ O	60,000
২, কার্বন		C	CO ₂	40,000
৩, অক্সিজেন	-	0	O2, CO2 44t H2O	30,000
৪. নাইট্রোজেন		N	NO ₃ , NH ₄	1000
৫. পটাসিয়াম	ধাতু	K	K'	250
৬. ক্যাপসিয়াম		Ca	Ca ² *	. 125
৭. ম্যাগনেসিয়াম		Mg	Mg ²⁺	80
৮. ফনকরাস	অধাতু	P	PO4 -	60
 সালফার (গছক) 		S	SO ₄ ² -	30
১০. ক্লোরিন	*	CI	CI-	3.0
১১. বোরন		В	BO ₁	2.0
১২. আয়রন (লৌহ)	ধাতু	Fe	Fe2*, Fe3+	2.0
 गावानिक 	-	Mn	Mn ²⁺	1.0
8. কিছ (দারা)	0.0	Zn A	Zn ² *	0.3
৫. কপার (তামা)	-	Cu	Cu ²⁺	0.1
৬. সোডিয়াম ৭. মনিবভেনাম		Na Mo	Na* MoO ₄	0.001

নাটিতে বনিত প্ৰপের প্রাপ্যতা (Availability of Mineral Salts in Soil)

মাটিছ দ্রবলে খনিজ লবণ দ্রবীভূত অবস্থায় থাকে এবং ক্যাটায়নের কিছু পরিমাণ কলয়ভাল দানার গায়ে সেগে থাকতে (adsorbed) পারে। মনে করা হয় কলয়ভাল দানার গায়ে লাগানো আয়নসমূহ আয়ন একচেন্ত প্রক্রিয়ায় উদ্ভিদের জন্য স্কেল্ডা। আয়ন একচেম্ব-এর জন্য দুটি মতবাদ প্রচলিত আছে।

মতবাদ দুটি নিমুরূপ :


(i) কার্বন জাই-অক্লাইড মতবাদ : এ মতবাদ অনুযায়ী উদ্ভিদমূল শ্বসন প্রক্রিয়ায় যে CO2 সৃষ্টি করে তা মাটিছ পানির সাথে বিক্রিয়া করে কার্বনিক অ্যাসিড তৈরি করে। কার্বনিক অ্যাসিড পরে তেঙে হাইড্রোজেন আয়ন (H+) এবং বাইকার্বনেট জারন (HCO)-এ পরিণত হয়। কলয়ডাল দানার গায়ে লাগানো ক্যাটায়নের সাথে H+ এর স্থান পরিবর্তন হয়। জন্য দিকে HCO; আয়নের জন্যও অ্যানায়নের সাথে বিনিময় ঘটে। এর ফলে ম্লের শোষণ অঙ্গের কাছে উভয় প্রকার আয়নই সহজ্বতা হয়।

(ii) কুনটাক্ট একচেন্ত মতবাদ : এ মতবাদ অনুযায়ী কলয়ডাল দানার গায়ে লাগানো আয়ন ছির অবস্থায় থাকে না এবং আয়নসমূহ কলয়ডাল দানার গায়ে স্বল্প জায়গায় কম্পিত হতে থাকে। মূলের গায়ের আয়নসমূহও একইভাবে কম্পিত হতে থাকে। এভাবে দুই অবস্থানের আয়নসমূহের কম্পনের স্থান যদি সাধারণ অবস্থায় চলে আসে অর্থাৎ যুগপৎ ঘটে (overlap) তবেই ক্যাটায়ন একচেঞ্চ তথা এক ক্যাটায়নের সঙ্গে অন্য ক্যাটায়নের বিনিময় সংঘটিত হয়। এভাবে মূলের जना जारान मर्झण्डा रस

উদ্ভিদের খনিজ লবণ পরিশোষণ প্রক্রিয়া

উদ্ভিদ তার প্রয়োজনীয় খনিজ লবণ (N, Ca, P, K, Mg, Fe, S, Zn, Mn, B, Cu, Mo, Cl, Na প্রভৃতি) মাটি হতে আয়ন আকারে শোষণ করে নেয়। লবণগুলো মাটিস্থ পানিতে দ্রবীভূত হয়ে ক্যাটায়ন (+) অথবা অ্যানায়ন (-) হিসেবে অবস্থান করে; যেমন- NaCl লবণ দ্রবীভূত হয়ে Na+ (ক্যাটায়ন) এবং Cl⁻ (অ্যানায়ন) হিসেবে অবস্থান করে। মাটিস্থ পানিতে অবস্থিত সাধারণ ক্যাটায়নগুলো K+, Mg++, Fe+++, Mn++, Cu++, Zn++ এবং সাধারণ অ্যনায়নগুলো হলো N, P.B.S. এবং CI যথাক্রমে (NO3, PO4, BO4, SO4, CI হিসেবে)।

লবণ পরিশোষণ একটি জটিল প্রক্রিয়া এবং জন্যাবধি লবণ পরিশোষণ সম্বন্ধে কোনো একটি নির্নিষ্ট প্রক্রিয়া সর্বজন স্বীকৃত হয়নি। বেশির ভাগ ক্ষে দেখা যায়, মাটিস্থ পানিতে দ্রবীভূত লবণের स्तद् म्लङ् काषतरमत घनज् जरलका जरनक कम। জ্বুও উদ্ভিদ ঘনত্বের আনতি (concentration gradient)-এর বিরুদ্ধে লবণ শোষণ করে থাকে। ^{যদিও} এক্ষেত্রে সাধারণ ব্যাপন প্রক্রিয়ায় কোষ হতে শবণ বের হয়ে যাওয়ার কথা। যা হোক, খনিজ লবণ শরিশোষণের প্রতিন্যাকে প্রধানত দু'ভাগে ভাগ কর गवित्नाम् ।

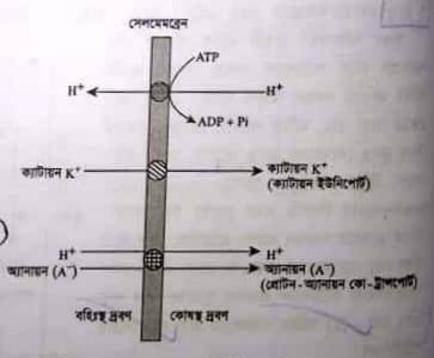
(১) সক্রিয় পরিশোষণ (Active absorption) চিত্র ১.১ : সাইটোক্রোম পাষ্প মতবাদ অনুযায়ী আনারন (A') সক্রিরতাবে ভবং ক্যাটায়ন (M+) নিট্রেছভাবে পরিলোধিত হচ্ছে। া মাটিছ দ্রবণে কোনো আয়নের ঘনত্ব মূলের শোষণ শ্বির কোষরসে সেই আয়নের ঘনত্ অপেক্ষা কম হলেও দেখা যায় মাটির দ্রবণ হতে ঐ আয়ন কোষের অভ্যন্তরে

প্রবেশ করছে। খনত আনতির (concentration gradient) বিপরীতে এই শোষণ বিপাকীয় শক্তির প্রত্যক্ত প্রবেশ। থাকে। এতে শ্বসন হার বৃদ্ধি পায়। এ কারণেই এ জাতীয় পরিশোষণকে সক্রিয় পরিশোষণ বলে। অধিকাংশ খনিছ পতিনা পরিশোষণ প্রভাতেই মূল কর্তৃক পরিশোহিত হয়ে থাকে। সক্রিয় শোষণেরও বিভিন্ন মতবাদ প্রচলিত বেষন- সাইটোক্রোম পাম্প মতবাদ, লেসিখিন মতবাদ ইত্যাদি। তবে প্রত্যেক মতবাদই আয়ন বাহক ধারণার প্রতিষ্ঠিত। সক্রিয় শোধণে ক্যাটায়ন ও আনায়ন একই সাথে পরিশোষিত হতে পারে।

আয়ন বাহক ধারণা (The carrier concept of ion) : আয়ন বাহক ধারণার উপর নির্ভরশীল তিনটি মতবাদ Am वर्गमा वना शला :

(i) পুনডেগড় মতবাদ (Lundegardth theory): এ মতবাদকে Cytochrome pump মতবাদও বলা হয়। মতবাদ অনুযায়ী বাহক হচেছ cytochrome (Cyt.)। এ মতানুযায়ী অ্যানায়ন পরিশোষণ প্রকৃতপক্ষে cytochros system-এর মাধ্যমে সম্পন্ন হয়ে থাকে। পুনভেগড়-এর মতে ভেতরের তল-এ ডিহাইড্রোজিনেঞ্চ বিক্রিয়ার ফলে প্রেট (H*) এবং ইলেকট্রন (e) সৃষ্টি হয়। ইলেকট্রনটি সাইটোক্রোম চেইন-এর মাধ্যমে বাইরের দিকে চলে আসে ব অক্সিজেনের সাথে মিলে প্রোটন সহযোগে পানি তৈরি করে। এর ফলে বাইরের তলে সাইটোক্রোমের বিজারিত সৌঃ (reduced iron) ইলেকট্রন হারিয়ে জারিত (oxidised) হয় এবং একটি অ্যানায়ন গ্রহণ করে।

প্রক্রিয়াটি এরপ : Fe⁺⁺(2A⁻) - e⁻ + A⁻ --> Fe⁺⁺⁺(3A⁻)

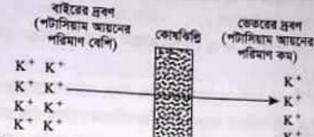

ভেতরের তলে (inner space) সাইটোক্রোমের জারিত লৌহ ডিহাইড্রোজিনেজ বিক্রিয়া হতে প্রাপ্ত ইলেকট্রন গ্রহণ হরে বিজারিত হয় এবং বাইরের তলে (outer space) সাইটোক্রোমের জারিত লৌহ যে অ্যানায়ন (A) গ্রহণ করে তা বিক্রিয়ার শেষ পর্যায়ে ভেতরের দিকে মুক্ত করে দেয়। এভাবে ভেতরের দিকে আানায়ন (A) জমা হতে থাকে। কিন্তু কাটারে শোষণ নিষ্ক্রিয় প্রক্রিয়ায় হতে পারে।

(ii) প্রোটন-আনায়ন কো-ট্রান্সপোর্ট মতবাদ : আধুনিক ধারণায়, কোষবিদ্বীর উভয় দিকে একটি তড়িৎ রাসায়নিক নতিমাত্রা (electrochemical gradient) সৃষ্টির মাধ্যমে আয়নগুলো কোষের ভেতরে স্থানান্তরিত হয়।

व आधुनिक भाउवाम अनुসाরে, आयोग निर्मिष्ठ किছू अश्राक প্রোটিন বাহক দারা বাহিত হয়ে বাইরের দুবণ প্লেকে কোনের ভেতরের দুবণে र्थादन करता अएकद्य निर्मिष्ठ व्यापिन निर्मिष्ठ আয়নের বাহক হিসেবে কাজ করে।

ধারণা করা হয় কোষঝিল্লীর ভেতরের তলের ATP-ase এনভাইমের ক্রিয়ায় ATP ভেঙ্গে শক্তি নির্গত হয়। যার প্রভাবে প্রোটন (H+) কোষের বাইরে নিঞ্চিপ্ত হয়। একে প্রোটন পাম্প वरण ।

প্রোটন পাম্পের কারণে কোষের বাইরের সাথে ভেতরের দিকে pH gradient (বাইরে pH क्य) धवर potential gradient (কোবের বাইরের +ve চার্জ বেশি, কোবের ভেতরে +ve চার্জ কম) তৈরি হয় যাকে একরে Electrochemical potential gradient (Proton motive force) বিশ



চিত্ৰ ৯.২। প্ৰেটন - আনায়ন কো -ট্ৰাপলোৰ্ট অনুযায়ী আছন শোষণ

কোৰ পৰ্যায় অভ্যন্তরে Proton motive force তৈরি হলেই বাহক প্রোটনতলো সক্রিয় হয় এবং ক্যাটায়নতলোকে বহন করে বাইরের প্রবর্গ থেকে কোষের ভেতরে নিয়ে আসে। ধ্রোটনও বাইরে থেকে ভেতরে চুকতে চায়, আর সে সময় করে বাবন ব্যানায়নতলো প্রোটনের সাথে (প্রোটন ও অ্যানায়ন একসঙ্গে) প্রোটিন বাহকের মাধ্যমে কোষাভান্তরে প্রবেশ করে। এজন্য প্রামান্ত বিশ্ব কার্যাল্য কার্যাল্য বলা হয় । এ ধারণাটি Peter Mitchel (1968) এর ক্রেমি-অসমোটিক মতেলের নিবিতে প্রতিষ্ঠিত।

(iii) লেনিখিন বাহক ধারণা (Lacithin carrier concept) : Bennet Clark (1956) লামক বিভালী মনে করেন, ্রেরির করে ভেডরের তাল দিয়ে সাম করে। লেসিখিন কোষভিত্তির বাইরের তলে আনায়ন ও ক্যাটায়ন গ্রহণ ব্যে একটি যৌগ তৈরি করে ভেতরের তলে নিয়ে যায়। যৌগটি ভেতরের তলে কোলিন-ফসফেটাইডিক আসিড এ তেঙ্গে গিছে আরদ দুটিকে মুক্ত করে। ATP প্রয়োজনীয় শক্তি যোগান দেয়।

(২) নিষ্ক্রিয় পরিশোষণ (Passive absorption) : নিষ্ক্রিয় পরিশোষণ প্রক্রিয়ায় আয়ন শোষণের জন্য কোনো বিপাকীয় শুক্তির প্রত্যক্ষ প্রয়োগের প্রয়োজন হয়। এতে শ্বসন হার স্বাভাবিক থাকে। নিষ্ক্রিয় পরিশোষণ প্রক্রিয়া নিমুলিখিত উপায়ে चर्छ थारकः

চিত্ৰ ৯.৩ : ব্যাপন মতবাদ অনুষায়ী নিষ্কিয় পঞ্চিতে আয়ন পোষণ

চিত্র ৯.৪ : আয়ন বিনিময় মতবাদ অনুযায়ী নিষ্কিয় শছতিতে আয়ন শোষণ।

() ব্যাপন (Diffusion) মতবাদ : মাটিতে অবস্থিত দ্রবণ হতে কোষের অভ্যন্তরে ব্যাপন প্রক্রিয়ায় কিছু অয়েন প্রবেশ বরে। উদ্ভিদের লবণ শোষণ অঞ্চলের কোষরসে কোনো আয়নের ঘনত্ব মাটির দ্রবণে অবস্থিত ঐ আয়নের ঘনত্ব হতে কম ংল আয়নটি মাটির দ্রবণ হতে ব্যাপন প্রক্রিয়ায় কোষরসে প্রবেশ করে। এভাবে ক্রমান্বয়ে আয়ন পরিশোষিত হতে থাকে। (Hope & Stevens, 1952)

(ii) বিক্রময় (iii) বিক্রময় (iii) বিক্রময় বিক নিতি হয়। তখন কোষের বৈদ্যুতিক নিরপেক্ষতা বজায় রাখার জন্য বাইরের দ্রবণ হতে ক্যাটায়ন (K+) কোষের অভ্যন্তরে ববেশ করে। একইভাবে হাইড্রোক্সিল (OH-) আয়নের বিনিময়ে অ্যানায়ন (CI-),আয়ন কোষরসে প্রবেশ করে। কাটায়ন

^{ও আনায়ন} একসাথে পরিশোষিত হয় না। (iii) ডেন্যান সাম্যাবস্থা (Donnan equilibrium) মতবাদ : কোষঝিল্লির অভ্যন্তরে অব্যাপনযোগ্য কিছু ছিব্ পাছত চার্জ থাকলে, একে নিরপেক করার জন্য বাহির হতে কিছু ধনাতাক চার্জবিশিষ্ট ক্যাটায়ন ঝিল্লির অভান্তরে প্রক্রে বি। প্রাক্তমাঝিল্লির ভেতর এরূপ স্থির আয়নের সংখ্যা বেশি হয়ে গেলে বাইরে থেকে ভেতরে একটি সাম্যাবস্থায় না পর্যন্ত ক্যাটায়নের ব্যাপন চলতে থাকে, একে ডোন্যান সাম্যাবস্থা বলে। বিজ্ঞানী F. G. Donnan (1911-1914)

(iv) ব্যাপক প্রবাহ (Mass flow) মতবাদ : অনেক বিজ্ঞানী (Hylmo (1955) ও Kramen (1956)) মনে করে প্রবেদন টানে যথন ব্যাপক হারে পানি পরিশোষিত হয় তথন পানির সাথে সাথে খনিজ লবণের আয়নও পরিশোষিত

পাৰ্থক্যের বিষয়	সক্রিয় পরিশোষণ	নিব্ৰিয় পারিশোষণ
১। বিপাঝীয় শক্তি		
২। শুসন হার		
৩। ক্যাটায়ন ও আনায়ন শোষণ		
৪। আয়ন বাহক		
ে। এনজাইম		

খনিজ লবণ পরিশোষণের প্রভাবকসমূহ : আয়নের ঘনত্ব, তাপমাত্রা, pH, আলোক, অপ্সিজেন, খসনিক বস্ত প্রভাবক দিয়ে খনিজ লবণ পরিশোষণ প্রভাবিত হয়। এ প্রভাবকওলোর হাস-বৃদ্ধি একটি নির্দিষ্ট সীমার মধ্যে খনিজ দ্ব পরিশোষণের হাস-বৃদ্ধি ঘটায়। প্রভাবকওলো নিমুদ্ধপ :

- ১। আয়নের ঘনত্ব : বহিছ দ্রবণে আয়নের ঘনত্ শোষণ হারকে প্রভাবিত করে। একটি নির্নিষ্ট সীমা পর্যন্ত আফ্র ঘনত্ব বাড়লে শোষণ হার বৃদ্ধি পায়।
- ২। তাপমাত্রা : একটি সংকীর্ণ সীমার মধ্যে তাপমাত্রার বৃদ্ধি লবণ পরিশোষণ হার বৃদ্ধি করে। এ সীমা থেকে বি তাপমাত্রা বা উচ্চে তাপমাত্রা পরিশোষণ হার কমিয়ে আনে, এমনকি পরিশোষণ বন্ধ হয়ে যেতে পারে।
- ত। আলো : আলো প্রোক্ষভাবে পরণ পরিশোষণ প্রক্রিয়ায় প্রভাব ফেলে। পত্ররক্রের খোলা-বন্ধ হওয় প্রপ্রেদনের হার নিয়ন্ত্রণ করার মাধ্যমে আলো লবণ পরিশোষণ নিয়ন্ত্রণ করে। প্রয়েদনের হার বাড়লে মূল হতে পাত্র পানির পরিবহন হার বাড়ে, ফলে লবণ পরিবহনও বাড়ে। মূল হতে অধিক লবণ চলে যাওয়ায় পরবর্তীতে মূল মন্ত্রিমাণ লবণ শোষণ করতে পারে।
 - 8। প্রবেদন : প্রবেদন প্রক্রিয়াও লবণ পরিশোষণে প্রভাব বিস্তার করে।
- ৫। অক্সিজেন: অক্সিজেনের অভাব হলে লবণ পরিশোষণ হার কম হয়। অক্সিজেনের অভাব শ্বসন প্রক্রিয়ায় বাছা ঘটায়, তাই লবণ পরিশোষণ হার কম হয়।
 - শুসনিক বস্ত : শুসনিক বস্তু কম থাকলে শুসন হার কম হয়, আর তাই লবণ পরিশোষণ হারও কমে য়য়।
- ৭। আয়নের পারস্পরিক ক্রিয়া : একটি আয়ন শোষিত হলে সেখানে বিদ্যমান অন্য একটি আয়নের উপর তার প্রক পড়ে Ca, Mg আয়নের উপস্থিতি K অফ্লানের শোষণকে বাধাগ্রস্ত করতে পারে।

৮। বৃদ্ধি : সক্রিনা কোষ বিভাজন অঞ্চল ও বৃদ্ধি অঞ্চলে লবণ পরিশোষণ বেশি ঘটে।

প্রবেদন (Transpiration)

উদ্ভিদ অব্যাহতভাবে তার মূলরোম দিয়ে পানি শোষণ করে এবং সেই পানি পাতা পর্যন্ত পৌছায়। উদ্ভিদ কর্তৃ শোষিত পানির সামান্য অংশই তার বিভিন্ন জৈবনিক ক্রিয়া-বিক্রিয়ায় খরচ হয় এবং বেশির ভাগই (শতকর ১৯) জ পর্যন্ত) বাম্পাকারে বের হয়ে যায়।

যে শারীরতাত্ত্বিক (physiological) প্রক্রিয়ায় উদ্ভিদের বায়বীয় অঙ্গ (সাধারণত পাতা) হতে অতিরিভ শারীলাকারে বের হয়ে যায়, তাকে প্রযোদন বলে। বায়ুমগুলে উন্মুক্ত উদ্ভিদের যে কোনো অংশে প্রযোদন সংঘটিত হয়। গাঁথাই উদ্ভিদের প্রধান প্রযোদন অঙ্গ।

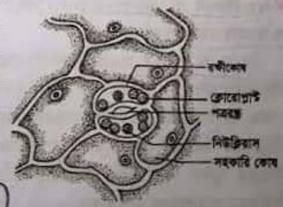
ব্রবেদনের প্রকার ংযে পথে পানি বাংলাকারে উদ্ভিদ দেহাতাক্তর হতে বাস্তুমতথে ছড়িয়ে পড়ে সে পথের ভিন্নতার উপর নির্বা করে প্রবেদনকে তিন ভাগে ভাগ করা হয়; যথা :

()) न्यस्तीत श्रायमन (Stomatal transpiration) : भ्रमुद्रास्त मुग्रा निता श्रायमन।

(३) मिन्द्रमात श्राटकना (Lenticular transpiration) कारवर किलिएनएवर घरा निया श्राटकना (৩) সুকীত প্রবেদন (Cuticular transpiration) : পিত্রকর বিউটিকলের মধ্য দিয়ে প্রবেদন

(১) পত্রবন্ধীয় প্রবেদন : পানি বাস্পাকারে পত্রবন্ধ পথে ব্রেরের বাতাসের সাথে মিশে যাওয়াকে পত্ররজীয় প্রবেদন বলে। পাতায় এবং কিচি কাত্তে অসংখা পত্ৰবন্ধ থাকে (কুলের বৃত্তি, পাপড়িতেও পত্রব্রহ্ম থাকে)। শতকরা ৯০-৯৫ লা প্রকেন এ প্রক্রিয়ায় হয়ে থাকে। কাজেই পাডাই वरचनम्बद वधान अत्र ।

(২) লেন্টিকুলার প্রন্থেদন : উদ্ভিদের সেকেভারি বৃদ্ধির ছলে অনেক সময় কাওের কর্ক টিসুরে স্থানে স্থানে ফেটে প্রি দেন্টিসেল (lenticel)-এর সৃষ্টি হয়। লেন্টিসেল দিয়ে জিছু কিছু পানি বাম্পাকারে বের হয়ে যায়। পানি যখন রুলাকারে লেন্টিসেল পথে বেরিয়ে যায়, তখন তাকে দেবিকুলার প্রবেদন বলে। খুব কম পরিমাণ পানিই এ পরে (स्ड एस ।


চিত্র ৯.৫ । ইডিসে মূল কর্তৃক পানি পরিপোষণ এবং পাতা কর্তৃক প্রথমন

(৩) তুকীয় বা কিউটিকুলার প্রশেদন : উদ্ভিদ দেহকে তছতার হাত হতে রক্ষার জন্য বহিঃতৃকের উ<u>পর যে</u> কিউটিন লাগীয় অভেদ্য রাসায়নিক পদার্থের আন্তর থাকে তাকে কিউটিকল বলে। কিউটিন হলো একটি (সুহজাতীয়) পদার্থ। হশেত পাতার উভয় পাশের বহিঃত্বকে কিউটিকল থাকে। কিউটিকল পাতলা হলে অনেক সময় কিউটিকল ভেদ করেও বিষু পানি বাম্পাকারে বের হয়ে যায় অর্থাৎ প্রয়েদন হয়। তুকের কিউটিকল ভেদ করে সংঘটিত প্রয়েদনকে তুকীয় বা ব্রিটিকুলার প্রস্থেদন বলে। যদিও পত্ররঞ্জীয় প্রস্থেদনের তুলনায় এর পরিমাণ অনেক কম। তথাপি অত্যধিক ভদ্ধাবস্থায় ধন গরেক্স বন্ধ হয়ে যায় (এবং এর ফলে পত্ররন্ত্রীয় প্রবেদন বন্ধ হয়ে পড়ে) তখনও তৃকীয় প্রবেদন চলতে পারে। 怪話 (Stomata)

পাতার (এবং কচি কাণ্ডের) উর্ধ্ব ও নিমুতলের বহিঃত্বকে (এপিডার্মিসে) অবস্থিত দুটি রক্ষীকোষ দিয়ে পরিবেষ্টিত সৃক্ষ

ন্তবে শত্রহন্ধ বা স্টোম্যাটা (stomata, একবচনে stoma) বলে। পত্রহন্ধ পু বিশেষ আকৃতির ছিদ্র নয়, এটি একটি গুরুত্বপূর্ণ স্থূদ্রাস। এ অঙ্গের আমে ক্য়েকটি শারীরতাত্ত্বিক প্রক্রিয়া নিয়ন্ত্রিত হয়। এর মাধ্যমে প্রবেদন ⁸ সালোকসংশ্রেষণ প্রক্রিয়া পরিচালিত হয়। এর সাথে পত্ররন্ধ্র খোলা বা ^{বে} ব্রমার বিষয়টিও নিয়ন্ত্রিত হয়। প্রজাতির উপর নির্ভর করে পাতার তি এক বৰ্গ সেন্টিমিটার এলাকায় ১,০০০ হতে ৬০,০০০ পত্ররন্ধ থাকতে

শবেরের গঠন : পত্ররক্ত পাতার উপরিতলে অবস্থিত দুটি আপুতির রক্ষীকোষ এবং এদের দিয়ে বেষ্টিত রক্ষ নিয়ে গঠিত।

চিত্র ১.৬ : একটি পত্ররজ্রের গঠন।

তি বভীকোষে একটি সুস্পষ্ট নিউক্লিয়াস, বহু ক্লোরোপ্লাস্ট ও ঘন সাইটোপ্লাজম থাকে। রক্ষীকোষে প্রচুর

ক্রোরোপ্রাস্ট থাকায় এটি খাদ্য তৈরি করে। রক্ষীকোষের চারনিকে অবস্থিত সাধারণ তৃকীয় কোষ হতে একটু ভিনুত্ব আকৃতির তৃকীয় সহকারি কোষ থাকে। স্টোম্যাটার নিচে একটি বড় বায়ুকুঠুরী থাকে।

অধিকাংশ উদ্ভিদের পত্ররন্ধ সকাল ১০-১১টা এবং বিকাল ২-৩টায় পূর্ণ খোলা থাকে, অন্যান্য সময় আধিক।

প্রুরক্তের কাজ : উদ্ভিদের প্রধান তিনটি শারীরবৃত্তীয় কাজে প্রারক্ত অংশগ্রহণ করে থাকে। যেমন-

- (i) পত্ররক্ষের মাধ্যমে সালোকসংশ্লেষণ ও শ্বসন প্রক্রিয়াকালীন সময়ে উদ্ভিদ অঙ্গ ও বায়ুমণ্ডলের মধ্যে গ্যাসীয় हि ঘটে।
 - (ii) উদ্ভিদদেহ থেকে অতিরিক্ত পানি প্রবেদন প্রক্রিয়ায় বাস্পাকারে বের করে দেয়া পত্ররক্তের প্রধান কান্ত
 - (iii) পত্রবন্ধের রক্ষীকোষগুলোতে ক্লোরোপ্লাস্ট থাকায় এরা সালোকসংশ্লেষণ প্রক্রিয়ায় অংশগ্রহণ করে।

পক্রক্রে খোলা ও বন্ধ হওয়ার কৌশল
(Mechanism of opening and closing of stomata) : পক্রক্রীয় প্রবেদনের সবচেয়ে উপযোগী অংশ হলো পক্রবন্ধ । রক্ষীকোষধয়ের পক্রবন্ধ সংলগ্ন প্রাচীর বেশ পুরু কিন্তু বহির্ভাগের অর্থাৎ বহিঃতুক-কোষসংলগ্ন প্রাচীর বেশ পাতলা হয় এবং এদের মধ্যে একটি করে বড় নিউক্লিয়াস এবং কিছু ক্লোরোপ্লাস্ট থাকে। রক্ষীকোষধয়ের স্ফীত অথবা শিধিল অবস্থা পক্রবন্ধের খৌলা বা বন্ধ হওয়া নিয়্রবাণ করে। পারিপার্শিক অবস্থার প্রেক্ষিতে

চিত্ৰ ৯.৭ : পত্ৰৱদ্ধ খোলা ও বন্ধ হওয়ার কৌশল।

বিভিন্ন শারীরবৃত্তীয় কারণে রক্ষীকোষে অভঃঅভিশ্রবণ ও বহিঃঅভিশ্রবণ ঘটে থাকে। রক্ষীকোষদ্বয় পার্শস্থ বহিত্বে ক্ষে
হতে অভ্যত্তিশ্রবণ প্রক্রিয়ায় পানি শোষণ করে ক্ষীত হয় এবং এর ফলে রক্ষসংলগ্ন পার্শ্বপ্রাচীর পুরু হওয়ায় এবং
সেলুলোজ মাইক্রোফাইব্রিল আড়াআড়িভাবে বিন্যস্ত থাকায় উল্টোদিকে বেঁকে যায় এবং রক্ষ খুলে যায়। অপরগ্রে
বহিঃঅভিশ্রবণের ফলে রক্ষীকোষদ্বয় স্ফীতি হারিয়ে শিথিল হয়ে পড়ে, ফলে রক্ষ বন্ধ হয়ে যায়। কাজেই দেখা যায়
পত্রবক্রের খোলা ও বন্ধ হওয়া রক্ষীকোষদ্বয়ের গঠন এবং তার ক্ষীত হওয়া ও শিথিল হওয়ার উপর নির্ভরশীল। পর্মায়
খোলা ও বন্ধ হওয়া সম্বন্ধে বিভিন্ন মতবাদ প্রস্তাবিত হয়েছে।

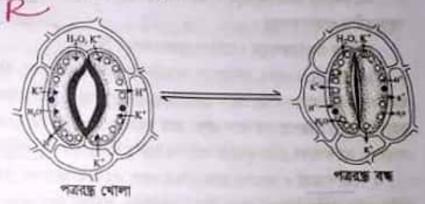
(i) বিজ্ঞানী H. Von Mohl ১৮৫৬ খ্রিস্টাব্দে মত প্রকাশ করেন যে ব্রক্ষীকোষের স্ফীতির পরিবর্তনই পত্ররন্ধ খোলা ত বন্ধ হওয়ার প্রধান কারণ।

(ii) F. E. Lloyd ১৮০৮ খ্রিস্টান্দে প্রস্তাব করেন যে রক্ষীকোষের ক্ষীতির পরিবর্তন স্টার্চ-শাগার পারম্পরিক পরিবর্তনের উপর নির্ভরশীল। এই ধারণা পরবর্তীতে স্টার্চ-শাগার মতবাদ হিসেবে প্রতিষ্ঠিত হয়। শেতসার অন্তর্নীয় হওয়ায় এর উপস্থিতিতে রক্ষীকোষদ্বয়ের অভিন্রবণিক চাপ কমে যায়, ফলে কোষস্থ পানির বহিঃঅভিন্রবন ঘটে এবং এটি শিখিল হয়ে পত্ররক্ষ বন্ধ হয়ে যায়। অপরদিকে যখন অন্তরণীয় শেতসার হতে হাইজ্রোলাইসিস প্রক্রিয়ায় দ্রবণীয় চিনিতির হয় তথন অভিন্রবণিক চাপ বেড়ে যাওয়ার কারণে পার্শ্ববর্তী কোষ হতে অন্তঃঅভিন্রবণ ঘটে এবং রক্ষীকোষ দৃষ্টি তয়, ফলে পত্ররক্ষ পুলে যায়।

কোনো কোনো প্রজাতির উদ্ভিদের রক্ষীকোষে কোনো ক্লোরোপ্লাস্ট থাকে না, অথচ পত্ররন্ত্র পূর্ণমাত্রায় কর্মক্ষম থাকে। কাজেই পত্ররন্ত্র খোলাতে স্টার্চ-এর কোনো ভূমিকা থাকার কথা নয়।

(iii) বিজ্ঞানী স্যায়েরি (Sayre, 1926) এর মতে, শ্বেডসার ও চিনির আন্তঃপরিবর্তন কোষ রসের pH এর জন্য ঘটে লাক। প্রাত্তিতে সূর্যালোক না থাকায় সালোকসংশ্লেষণ বদ্ধ হয়ে যায় কিন্তু শ্বসন চলতে থাকে। শ্বসনের ফলে সৃষ্ট CO2 বালে। বালি ক্ষাৰ্থীয় খেতসাৰে প্ৰিল্ড কৰে, ভাই pH কমে যায় (pHs)। কোমবসের pH কম হলে রাষ্ট্র প্রবর্ণীয় চিনি অদ্রবর্ণীয় খেতসারে পরিগত হয়। রক্ষীকোনে অনুবর্ণীয় খেতসার জমা হলে পানির বিশ্বৈসভিপ্রবদ ्ठा । हो उक्कीरकामका क्षीं है शतिरा शिथिल श्यः महल भवत्क तक हता यात्र।

নিনের বেলায় সূর্যালোকের কারণে আবার নালোকসংশ্রেষণ ওক হয়, ফলে কোমরসে প্রবীভূত CO₂ ব্যবস্থত হয়ে রার এবং pH বেড়ে যায় (pHy)। কোষরসন্থ pH বেড়ে গেলে অনুবলীয় স্বেডসারতে পুনরায় দ্রবলীয় চিনিতে পরিবত বাদ কলে অন্তঃঅভিসূৰণ প্রক্রিয়ার পার্শ্বতী কোষ হতে পানি রক্ষীকোষে প্রবেশ করে। তাই রক্ষীকোষ স্কীত হয়, এবং


অনুবণীয় শ্বেতসার আলো, pH7 দ্রবণীয় চিনি অন্ধকার, pH5

প্রোটন প্রবাহ মতবাদ প্রবর্তনের পূর্ব পর্যন্ত স্টার্চ-শাুগার মতবাদ প্রতিষ্ঠিত ছিল। (iv) আধুনিক মতবাদ বা প্রোটন প্রবাহ মতবাদ (Proton transport theory) :

s. Imamura ১৯৪৩ খ্রিস্টাব্দে রক্ষীকোমে 🍳 শুটাশিয়াম আয়ন প্রবেশ প্রমাণ করেন। পরবর্তী বহু গ্রেগায় রক্ষীকোষে পটাশিয়াম আয়নের প্রবেশকে রক্ষীকোষের ফ্রীতির মূল কারণ হিসেবে প্রমাণিত হয়। প্রক্রিয়াটি নিমুরূপে ব্যাখ্যা করা যায়।

গ্ৰহন্ধ খোলা (আলোতে)

जालाक वर्गानीत नीन जर्म (Blue light) রকীকোষের রিসেন্টর (সেন্সর)গুলোকে উদ্দীপ্ত করে, য়ার ফলে সক্রিয়ভাবে প্রটাশিয়াম আয়ুন (K*)

চিত্র ১.৮ : শরবন্ধ বোলা ও বছে 😢 প্রেটিন প্রবাহ মতবাদ।

इकीस्मार প্রবেশ করে√ K° প্রবেশের কারণে কোয়স্থ দ্রবণে দ্রবোর (solute) ঘনত বৃদ্ধি পায় (অর্থাৎ পানির পরিমাণ ক্সে যায়) এবং পার্শ্ববর্তী কোষ হতে অভিস্রবণ প্রক্রিয়ায় পানি রক্ষীকোষে প্রবেশ করে। রক্ষীকোষে পানি প্রবেশের ফলে **কোনোন ক্ষীত হয় এবং পত্ররক্রে খুলে যায়।**

কোষে CO2 এর পরিমাণ কমে গেলে (সালোকসংগ্রেষণের ফলে এমন হয়) রক্ষীকোষে K' প্রবেশ বৃদ্ধি পায়, ফলে পার্শ্ববর্তী কোষ থেকে প্রানিত্রক্ষীকোষে প্রবেশ করে এবং রক্ষীকোষ ক্ষীত হয়ে পত্রবন্ধ খুলে যায়।

রক্ষীকোষ থেকে সক্রিয়ভাছে H* রের হয়ে গেলেও পত্ররক বলে যায়।

নিয়ে বন্ধ হওয়া (অন্ধকারে)

রক্ষীকোষ থেকে K+ বের হয়ে যায়, (আলোর অভাবে বা অন্য কোনো কারণে) সাথে সাথে পানিও বের হয়ে যায়। দলে রক্ষীকোষ স্থীতি হারিয়ে শিথিল হয়ে পড়ে এবং পত্রবক্ত বন্ধ হয়ে যায়।

মেসেফিল কোষে পানির অভাব দেখা দিলে সেখানে আবসিসিক আসিড তৈরি হয় ৷ মার ফলে রক্ষীকোষ থেকে K' বের হয়ে যায়। K' বের হয়ে গেলে পানিও বের হয়ে যায়, ফলে রক্ষীকোষ স্ফীতি হারায় এবং পত্রবন্ধ বন্ধ श्रा याग्र।

 উচ্চ তাপমাত্রায় ফটোসিনথেসিস কমে যায় এবং কোষীয় শ্বসন বেড়ে যায়। এর ফলে কোনে CO₂ বর আ বৃদ্ধি পায়। পরিণামে পত্রবদ্ধ বন্ধ হয়ে যায়। কাজেই মনে করা হয় পত্রবন্ধ বোলা ও বন্ধ হওয়ার অন্য ক্রিয়ামক কাজ করে।

অভিস্রবৃণিকভাবে কর্মক্ষম দ্রব (osmotically active solute), যার কারণে রক্ষীকোয়ে পানি প্রবেশ করে স্বাস্থ্র উৎস থেকে আনে, যেমন—

- (i) নীল আলোর কারণে K* ও CIT প্রবেশ ও লেখানে তৈরি ম্যালেট (malate 2')
- (ii) স্টার্চ হাইড্রোগাইসিস হয়ে সৃষ্ট সুকরোজ।
- (iii) ফটোসিনখেসিসের ফলে সৃষ্ট সুকরোজ।
- (iv) মেসোফিল কোষ থেকে <u>আপোপ্নাস্টিক</u> (Apoplastic) উপায়ে প্রবেশকৃত সুকরোজ।
 দেখা যায় সকালে পত্ররক্ষ খোলার সূচনা করে K⁺, এরপর কোষে ক্রমেই সুকরোজের পরিমাণ বাড়তে মুন্ত
 এবং এক সময় সুকরোজই প্রভাবশালী হয়ে উঠে। সন্ধায় প্রথমে K⁺, পরে সুকরোজ এবং শেষে পানি গ্র
 হয়ে যায় এবং পত্ররক্ষ বন্ধ হয়ে যায়।

প্রবেদনের প্রভাবকসমূহ : প্রবেদনের প্রভাবকসমূহকে দু'ভাগে ভাগ করা যায়; যথা : বাহ্যিক প্রভাবকসমূহ ক্র অভ্যন্তরীণ প্রভাবকসমূহ।

বাহ্যিক প্রভাবকসমূহ: বাহ্যিক প্রভাবকসমূহ নিমুরূপ:

- ১। <u>আলো</u> প্রথর স্থালোক স্বাভাবিকভাবেই বায়ুমগুলের তাপমাত্রা বৃদ্ধি করে এবং যার ফলে বায়ুর আপেন্ধি আর্দ্রতা হ্রাস পায় এবং প্রস্কেদনের হার বেড়ে যায়। আলোকের উপস্থিতিতে পত্ররদ্ধ খোলা থাকে এবং আলে অনুপস্থিতিতে পত্ররদ্ধ বন্ধ হয়ে যায়; আর পত্ররদ্ধ খোলা ও বন্ধ হওয়ার উপরই বেশির ভাগ প্রস্কেদন নির্ভরশীল। এ সম কারণেই প্রস্কেদনের হ্রাস-বৃদ্ধিতে আলোর গুরুত্ব শীর্ষস্থানীয়। ব্লু লাইট পত্ররদ্ধ খোলা তুরান্বিত করে।
- ২। তাপমাত্রা: তাপের হ্রাস-বৃদ্ধির ফলে প্রখেদন হারেরও হ্রাস-বৃদ্ধি হয়ে থাকে। কারণ তাপ বাড়লে বাছ্মগ্রমে

 জানীয়বাশ্প ধারণ ক্ষমতা বেড়ে যায়, আপেক্ষিক আর্দ্রতা কমে যায়, ফলে বায়ু অধিক পরিমাণ জানীয়বাশ্প শোষণ কয়ে
 পারে। অপরদিকে তাপ বাড়লে পানিও দ্রুত বাশ্পে পরিণত হয় এবং প্রখেদনের হারকে ত্রান্থিত করে। তাপমাত্রার দ্রুম
 বৃদ্ধির সাথে পত্ররক্ষের আয়তনেরও হ্রাস-বৃদ্ধি ঘটে থাকে। সূতরাং তাপ বিভিন্ন দিক হতে প্রখেদন প্রক্রিয়াকে প্রভাবিত করে
 থাকে।
- ৩। আপেক্ষিক আর্দ্রতা: আপেক্ষিক আর্দ্রতা কম হলে প্রস্থেদনের হার বেড়ে যায়। কারণ আপেক্ষিক আর্দ্রতা কম হল বায়ু অধিক পরিমাণ জলীয়বাস্প গ্রহণ করতে পারে। অপরদিকে আপেক্ষিক আর্দ্রতা বেড়ে গেলে বায়ু কোষাভান্তর হরে নির্গত জলীয়বাস্প ধারণ করার ক্ষমতা হারিয়ে ফেলে, ফলে প্রস্থেদনের হার হাস পায়। শ্রীস্ক্রীনির্সাতিক
- ৪। বায়ুপ্রবাহ: উদ্ভিদের প্রবেদন অঙ্গের আশপাশের বায়ু সাধারণত বেশি আর্দ্র থাকে। কারণ এ অঞ্চল কোরাজর হতে নির্গত জলীয়বাস্প সরাসরি গ্রহণ করে সম্পৃক্ত হয় এবং ক্রমান্বয়ে প্রবেদনের হারের হাস ঘটে। প্রবাহিত বায়ু পালম নিকট হতে অধিক আর্দ্র বায়ু প্রবাহিত করে নিয়ে যায়, ফলে স্থানটি কম আর্দ্র বায়ু দ্বারা পরিপূর্ণ হয়। কম আর্দ্র বায় কোরাজ্যস্ব হতে নির্গত জলীয়বাস্প অধিকমাত্রায় গ্রহণ করে প্রবেদনের হারকে বাড়িয়ে দেয়।

৫। আবহ্মতদের চাপ: আবহমওলে চাপ কমার কারণে কম তাপে পানি বাস্পে পরিণত হয় ফলে চাপ কমটে প্রবেদনের হার বেড়ে যায়। অনুরূপভাবে চাপ বাড়লে প্রযেদনের হার কমে যায়।

৬। মাটিছ পানি : মাটিতে পানির পরিমাণ বেশি থাকলে উদ্ভিদ মাটি হতে অধিকমাত্রায় পানি গ্রহণ করতে পারে। এই কলে প্রবেদনের হারও বেড়ে যায়। অপরদিকে মাটিতে পানির প্রাপ্যতা কমে গেলে প্রবেদনের হারও ক্রমান্বয়ে ক্রমে যায়। ক্রারটাণ প্রভাবকসমূহ : অভ্যন্তরীণ প্রভাবকসমূহ নিমুক্ত :

)। মুগ-বিটপ অনুপাত । আনুপাতিক হারে মৃগের পরিমাণ কম হলে উভিদের জন্য মাটি হতে পানির প্রাপ্যতাও কমে ্বার্থ বাবেদনের হারও কমে যায় অর্থাৎ প্রথেদন অন্তাল অপেক্ষা শোষণ অধ্যল কম হলে প্রথেদনের হার হাস পায়। ু। পাতার আয়তন ও সংখ্যা : পাতার আয়তন ও সংখ্যার তারতম্যে প্রেদনের তারতম্য হয়। পাতার আয়তন ও

সংখ্যা হত বেশি হবে প্রখেদনও তত বেশি হবে।

ত। শাতার গঠন : পাতার গঠনের উপর প্রস্নেদনের হার নির্ভরশীল। পাতায় পাতলা কিউটিকল, পাতলা কোম প্রাচীর. ্তির প্রত্যা প্রত্যাক্ত পত্রবন্ধ থাকলে প্রয়েদন তুলনামূলকভাবে বেশি হয় কিন্তু পুরু কিউটিকল, অধিক প্যাণিসেড ব্রুরেরাইমা এবং পত্রবন্ধ গর্ভস্থিত থাকলে প্রস্থেদনের হার কমে যায়। পাতার গায়ে পত্রবন্ধের সংখ্যা, রক্ষের পরিমাণ, ব্রজাবের গঠন প্রভৃতি প্রবেদনের হারকে নিয়ন্ত্রণ করে থাকে।

৪। মেসোফিল টিস্যুতে পানির পরিমাণ : পাতার মেসোফিল টিস্যুতে পানির পরিমাণ বেশি হলে প্রবেদন হার বাড়ে। প্রভারতে, মেসোফিল টিস্মতে পানির পরিমাণ কমলে প্রস্থেদন হার কম হয়।

ে। জীবনীশক্তি (Vigour) : প্রস্থেদনের হার উত্তিদের জীবনীশক্তির উপরও নির্ভর করে। সৃত্ব-সবল উদ্ভিদে রোগাক্রান্ত দুর্বন উরিদ অপেক্ষা প্রয়েদন বেশি হয়।

শ্রবেদনের অপকারিতা ও উপকারিতা : প্রস্থেদন উদ্ভিদের জন্য যেমন প্রয়োজনীয় তেমনি ক্ষতিকরও বটে। অবশ্য ভির তুলনায় উত্তিদ লাভবানই হয় বেশি। নিচে এটি বর্ণনা করা হলো :

ব্যকারিতা বা নেতিবাচক প্রভাব : মাটিতে পানির অভাব দেখা দিলেই প্রশ্বেদন উত্তিদের জন্য ক্ষতিকর হয়ে দাঁড়ায়। মাটতে পানির অভাবের জন্যই হোক বা অন্য কোনো কারণেই হোক উদ্ভিদ মাটি হতে যে পরিমাণ পানি শোষণ করে তার প্রধিক পরিমাণ প্রস্থেদনে বের হয়ে গেলে তার অভঃচাপ কমে যায়; ফলে গাছটি নিত্তেজ হয়ে পড়ে (উইলটিং)। ক্ষেকদিনের জন্য এ অবস্থা চলতে থাকলে গাছটি মরে যায়। প্রয়েদনের কারণে শোষিত পানির কিছুটা অপচয় হয়। হলেনের উপকারিতা বা উদ্ভিদের জীবনে এর প্রয়োজনীয়তা বা তরুত্

প্রক্ষেন প্রক্রিয়া উদ্ভিদের জন্য বিশেষভাবে প্রয়োজন বা গুরুত্বপূর্ণ। এ প্রক্রিয়ার গুরুত্ তথা প্রয়োজনীয়তার বিশেষ व्यक्षका निष्ठ (मरा) रु(ना :

১। পানি শোষণ : পাতায় প্রস্থেদনের ফলে বাহিকা নালীতে পানির যে টান পড়ে সেই টান মৃলরোম কর্তৃক পানি শেকা সাহায্য করে থাকে। তাই জীবন রক্ষাকারী পানি শোষণে প্রস্বেদনের ভূমিকা আছে।

২। পানি ও খাদ্যরস উপরে উঠানো : পাতা ও অন্যান্য অংশে পানি ও খাদ্যরস পৌছানো অপরিহার্য। প্রবেদনের ফলে ব্যক্তি নানীতে পানির যে টান পড়ে তা সরাসরি পানিকে জাইলেম ভেসেলের মাধ্যমে মূল হতে কাও হয়ে পাতা পর্যন্ত শেহতে সহায়তা করে। এ পানির সাথে মূল কর্তৃক শোষিত খনিজ পদার্থ তথা সামগ্রিকভাবে খাদারস উপরে উ**থিত হয়।**

। নব্দ পরিশোষণ : প্রস্বেদনের কারণে চারদিক থেকে লবণ উদ্ভিদম্লের কাছাকাছি আসে, তাই উদ্ভিদ সহজে লবণ পরিশাহন করতে পারে।

8। পাতা ও অন্যান্য অংশে খনিজ লবণ পৌছানো : মূল কর্তৃক মাটি হতে যে লবণ শোষিত হয় তা স্বাভাবিকভাবে উচু ার পাতা পর্যন্ত পৌছাতে কয়েক বছর লাগার কথা। পাতার প্রতিটি ক্লোরোফিল অণু তৈরি হতে Mg এর দরকার যা বিকত মূল হতে পাতা পর্যন্ত পৌছে থাকে কেবল প্রয়েদনের কারণেই। কাজেই প্রয়েদন না হলে পাতার ক্লোরোকিল সৃষ্টি া হরে মেতো, ফলে খাদ্য তৈরিই বন্ধ হয়ে যেতো।

ে। সকল কোষে পানি সরবরাহ : প্রতিটি জীবিত কোষেই প্রতিনিয়ত বিভিন্ন ক্রিয়া-বিক্রিয়া ঘটে থাকে। এর জন্য

ান্ধ ব্যৱস্থান । প্রস্থেদন প্রক্রিয়ার কারণে পানি সহজে সকল কোমে পৌছাতে পারে।

। বাগোকসংশ্রেষণ : সালোকসংশ্রেষণের মাধ্যমে খাদ্য তৈরির জন্য পানির প্রয়োজন (6CO₂ + 12H₂O→ পাতে + 6H2O + 6O2)। প্রস্থেদন না হলে এ বিপুল পরিমাণ পানি পাওয়া যেতো না, ফলে সালোকসংশ্লেষণ ভথা ৭। পাতায় উপযুক্ত তাপ নিয়ন্ত্রণ : বিভিন্ন কান্সের জন্য পাতায় একটি উপযুক্ত তাপমাত্রার দরকার। প্রশ্নের স্ব অত্যধিক গরম হওয়া থেকে রক্ষা করে এবং উপযুক্ত তাপমাত্রা রক্ষা করে।

৮। কোষ বিভাজন : কোষ বিভাজনের জন্য কোষের স্ফীতি অবস্থার প্রয়োজন। প্রস্থেদন পরোক্ষভাবে এ স্ফীতি ছ এবং আরো পরোক্ষভাবে কোষ বিভাজনে সহায়তা করে।

৯। দৈহিক বৃদ্ধি : কোষ বিভাজন, খাভাবিক স্ফীতি রক্ষা ইত্যাদির মাধ্যমে প্রস্থেদন গাছের দৈহিক বৃদ্ধিতেও সা
করে।

১০। শক্তি নির্গমন: পাতা সূর্য হতে প্রতি মিনিটে প্রচুর শক্তি শোষণ করে। এর মাত্র শতকরা একভাগ (র ৯৯ কম) বিভিন্ন বিক্রিয়ার জন্য খরচ হয়, বাকি অধিকাংশ তাপশক্তি প্রস্থেদনের মাধ্যমে বের হয়ে যায়। নতুবা গাছ জ তাপে মরে যেতো।

১১। অভিস্রবণ প্রক্রিয়া : প্রথেদনের ফলে কোষরসের ঘনত বাড়ে, ফলে অভিসরণ প্রক্রিয়া ঘটার উপযুক্ত পরিক্র সৃষ্টি হয়।

১২। পাতায় ছ্ত্রাক আক্রমণ রোধ : প্রখেদনের ফলে পাতার পৃষ্ঠে কিছু পানিগ্রাহী লবণ জমা হয়, যা ছ্ত্রাক আক্র হতে পাতাকে রক্ষা করতে সাহায্য করে।

১৩। খাদ্য পরিবহন : প্রস্নেদনের ফলে উদ্ভিদ দেহের বিভিন্ন অংশে খাদ্য পরিবহন অব্যাহত থাকে।

১৪। পুস্প পরিস্কৃটন ও ফল সৃষ্টি: প্রযেদনের ফলে কোষে পরম রসস্ফীতি রক্ষা পায় বলে পুস্প প্রস্কৃটন ও ফা সৃষ্ট সম্ভব হয়।

১৫। প্রবেদনের ফলে পানি বাস্পাকারে বের হয়ে গিয়ে আকাশে ঘনীভূত হয়ে মেঘে পরিণত হয় এবং বৃষ্টিশা ঘটায়। যে এলাকায় গাছপালা বেশি থাকে সে এলাকায় বৃষ্টিপাত বেশি হয়।

পত্রবন্ধীয় প্রবেদন প্রক্রিয়া: একটি উদ্ভিদে সংঘটিত প্রবেদনের শতকরা প্রায় ৯৫-৯৮ প্রারক্রীয় প্রক্রিয়া প্রক্রিয়া প্রক্রিয়া প্রক্রিয়া প্রক্রিয়া প্রক্রিয়া প্রক্রিয়া প্রবিদ্ধান করার্থ সম্পন্ন হয়, পত্রবদ্ধ বন্ধ থাকা অবস্থায় প্রবেদন হয় না। মাটি বের শোষণকৃত পানি মূল থেকে কাও ও তার শাখা-প্রশাখা হয়ে পাতায় পৌছায় এবং পাতার শিরা-উপনিরার মাধ্যমে পাতা প্রালিসেড প্যারেনকাইমা ও স্পঞ্জী প্যারেনকাইমা কোষে পৌছায়। উক্ত পানি শোষণ করে পাতার প্যারেনকাইম কোষেওলো সম্পৃক্ত (saturated) হয় এবং ঐ পানির অধিকাংশই পাতার অভ্যন্তরন্থ ও বহিস্থ তাপ, চাপ ও অক্রম পারিপার্শ্বিক অবস্থায় বাস্পে পরিণত হয়। ঐ বাস্প তখন পাতার টিস্যুর আন্তঃকোষীয় কাঁকে এবং পত্রবন্ধসমূহের সিচ অবস্থিত পত্রবন্ধীয় প্রকোষ্ঠে (গহররে) জমা হয়। রক্ষীকোষের স্ক্রীতির কারণে পত্রবন্ধ খুলে গেলে সন্ধিত বান্ধ ব্যাপন প্রক্রিয়ায় বের হয়ে বায়ুমণ্ডলে ছড়িয়ে পড়ে। বাইরে বাতাসের আর্দ্রতা কম থাকলে ব্যাপন প্রক্রিয়া দ্রুত হয়। চিত্র ৯.৫।

कराकि धराजिनीय गय

অভিস্তবদ (Osmosis): একই দ্রাবকবিশিষ্ট দুটি ভিন্ন ঘনত্বের দ্রবদ একটি বৈষম্যভেদ্য ঝিল্লি ঘারা পাশাপাশি শৃশ্ব থাকলে দ্রাবক পদার্থ যে প্রক্রিয়ায় তার বেশি ঘনত্বের এলাকা হতে কম ঘনত্বের এলাকার দিকে ব্যাপিত (diffusion) ব দেই প্রক্রিয়াকে অভিস্তবদ বলে।

ভিকিউশন (Diffusion) বা ব্যাপন : একই তাপমাত্রা ও বায়ুমভলীয় চাপে কোন পদার্থের অধিকতর খন ছান হর্তি কম খন ছানের দিকে বিস্তার লাভ প্রক্রিয়াকে ব্যাপন বলে।

অভিস্তবণিক চাপ (Osmotic Pressure) : একই বায়ুমঙলীয় চাপ ও তাপমাত্রা বিশিষ্ট একটি প্রবণ ও তার বিশ্ প্রবক্তে যদি একটি বৈষম্যভেদ্য ঝিল্লি ছারা পৃথক করে রাখা যায় তবে বৈষম্যভেদ্য ঝিল্লি ভেদ করে বিশ্বদ্ধ প্রাথকের ঝিল্ল

ক্ষুপ্রবার প্রবেশকে সম্পূর্ণজ্পে বন্ধ করতে অধিক খনতের প্রবণের দিক হতে যে পরিমাণ চাপ প্রয়োগের প্রয়োজন হয় ব্যক্ত উক্ত প্ৰবংশৰ অভিস্ৰবণিক চাপ বলে।

ব্যজমোলাইসিস (Plasmolysis) বা প্রোটোপ্লাজম সংকোচন : (বহিঃঅভিস্রবণ) (exosmosis) প্রক্রিয়ায় সজীব কোৰছ পানি কোৰের বাইরে বেরিয়ে আসার ফলে কোষের প্রোটোল্লাজম সংকোচিত হওয়াকে প্রাজমোলাইসিস বলে। চারজিডিটি (Turgidity) বা রসক্ষীতি : অস্কঃঅভিশ্রবণ (endosmosis) প্রক্রিয়ায় পানি গ্রহণের ফলে কোষের क्षेठ इस्मात व्यवद्वार प्रात्निशिष्टि वरल। र

চারণার প্রেশার (Turgor Pressure) বা স্কীতি চাপ : টারজিভিটি তথা রসস্ফীতির জন্য প্রোটোপ্রাক্তম কর্তৃক কোহগ্রাচীরের উপর যে চাপের সৃষ্টি হয় তাকে টারগার গ্রেশার বলে।

হুমবাইবিশন (Imbibition) : কলয়েড জাতীয় তম বা আংশিক তম পদার্থ কর্তৃক তরল পদার্থ শোষণের বিশেষ প্রক্রিয়াকে ইমবাইবিশন বলে। যেসব পদার্থ পানি শোষণ করে ফীত হয় সেসব পদার্থকে হাইছোফিলিক পদার্থ বলে। আঠা সেলুলোজ স্টার্চ প্রোটিন জেলাটিন ইত্যাদি।

ফটোসিনথেসিস (Photosynthesis) বা সালোকসংশ্লেষণ

ত্রিক Photo অর্থ light অর্থাৎ আলো এবং synthesis অর্থ সংশ্লেষণ অর্থাৎ একাধিক বস্তুর সমন্বয়ে কোনো যৌগ পদার্থ সৃষ্টি। কাজেই Photosynthesis এর শাধিক অর্থ আলোর সাহায়ো কোনো যৌগ পদার্থ সৃষ্টি। Photosynthesis শ্বনটি সর্বপ্রথম ব্যবহার করেন বিজ্ঞানী বার্নেস (C.R. Barnes ১৮৯৮ ব্রিস্টাব্দে

প্রাদোকশক্তিকে শোষণ করে তা সঞ্চিত রাসায়নিক শক্তিতে রুপান্তরের প্রক্রিয়াকে বলা হয় ফটোসিনপ্রেসিস (The process of absorbing light energy and converting it into stored chemical energy is called photosynthesis.)

এ প্রক্রিয়ায় প্রয়োজন হয় CO2, পানি, সূর্যালোক এবং ক্লোরোফিল । উৎপন্ন হয় কার্বোহাইড্রেট বা শর্করা এবং O2। CO, ব্যবহৃত হয় কার্বোহাইড্রেট তৈরির জন্য, পানি ব্যবহৃত হয় রাসায়নিক শক্তি হিসেবে NADPH + H+ তৈরির জন্য। সুর্যালাকের প্রয়োজন হয় শক্তির জন্য এবং ক্লোরোফিলের প্রয়োজন হয় সূর্যশক্তিকে শোষণ করে রাসায়নিক শক্তিতে ব্রণান্তরের জন্য। এটি একটি শারীরবৃত্তীয় প্রক্রিয়া। বিষয়টিকে একটু বিস্তারিত করে এভাবে শেখা যায়।

বে শারীরবৃত্তীয় প্রক্রিয়ায় সজীব উত্তিদ-কোষস্থ ক্লোরোফিল আলোকশক্তিকে ATP এবং NADPH + H+ নামক রাসায়নিক শক্তিতে রূপান্তরিত করে এবং ঐ রাসায়নিক শক্তিকে (ATP ও NADPH + H*) কাজে লাগিয়ে CO2 বিজ্ঞারণের মাধ্যমে কার্বোহাইড্রেট (শর্করা) জাতীয় খাদ্য প্রস্তুত ও উপজাত হিসেবে O2 নির্গত করে, তাকে সালোকসংশ্লেষণ বা क्टोंभिनएएभिन वर्ण।

নিচের রাসায়নিক বিক্রিয়াটির মাধ্যমে উচ্চতর উদ্ভিদে সংঘটিত সালোকসংশ্লেষণ প্রক্রিয়াকে দেখানো যায়।

6CO₂ + 12H₂O শালোকসংশ্লেষণ প্রক্রিয়ায় ১ অণু হেস্নোজ শর্করা প্রস্তুত করতে(৬ অণু)CO2 ও(২ অণু)H2O প্রয়োজন পড়ে এবং তে-৬০ ফোটন কণা ব্যবহৃত হয়। এছাড়া সালোকসংশ্লেষণকে একটি জটিল জারণ-বিজারণ প্রক্রিয়া বলা হয়। কারণ ানে H₂O থেকে একদিকে যেমন O₂ মুক্ত হয়, অন্যদিকে তেমনি CO₂ এর সাথে হাইছ্রোজেন সংযুক্ত হয়।

স্থালোক

বিষ্কৃতি কেবলমাত্র ক্যালভিদ চক্র, হ্যাচ ও স্থ্যাক চক্র এবং সালোকসংশ্লেষণে লিমিটিং ফ্যাইরের ভূমিকা সিলেবাসের অন্তর্ভুক্ত।

 $C_6H_{12}O_6 + 6H_2O + 6O_2$

উপৰেষ বিভিন্নাটিৰ বাত পজ্য কবলে যে কাবো মনে হতে পাবে যে এই বিভিন্নান বামনিকে ১২টি পানির (12H₂O) তে এই বিভিন্নার কাননিকে এটি পানি না দেখাসেই হতে। অৰ্থাৎ বিভিন্নাটিকে 6H₂O + 6CO₂ + আপোকশান্তি — Gui₂O₄ । তেমন বিখনেই হতে। এবং বিভিন্নাটি অবিভ সহজ হতে। । তেমন বিখনেই হতে। এবং বিভিন্নাটিতে C, H ও O এব পরিপতি গজা করুন।

এই বিক্রিয়াত মৌলিক বন্দন থেকে দেখা যায় বামনিকের পানির ১২ পরমাণু অন্তিজেন সম্পূর্ণটাই মূক অক্সিজেন ছিলেরে বিক্রিয়া ও উৎপন্ন প্রক্ত হিলেবে বের হয়ে যায়। এর কোনটাই ভাননিকে উৎপানিত পানির অংশ হয় না। অর্থাৎ বিক্রিয়ায় অংশমহণকারী পানি আং বি শেষে উৎপানিত পানি এক নয়। সাধোকসংগ্রেষণে উৎপানিত পানি এই প্রক্রিয়ার উপজাত পদার্থ। কাজেই বিক্রিয়ায় ১২ অণু পানিত মংখ্যা সারিক।

পানির সালোকবিভাজন (Photolysis of water): আলোর উপস্থিতিতে পানি (H2O) ভেঙ্গে অবিজ্ঞেন (Q হাইড্রোজেন আয়ন বা প্রোটন (2H+) ও ইলেকট্রন (e') উৎপন্ন হওয়াকে পানির সালোকবিভাজন বলে।

সালোকসংশ্রেষণ অঙ্ক : সালোকসংশ্লেষণ প্রক্রিয়াটি তরু থেকে শেষ পর্যন্ত ক্রোরোপ্রাস্ট নামক সাইটোপ্লাছার অঙ্গাপুতেই ঘটে থাকে। কাজেই ক্রোরোপ্রাস্ট হলো সালোকসংশ্লেষণের ছান। এখানেই এ প্রক্রিয়ার তরু এবং এবার এর সমান্তি। ক্রোরোপ্রাস্ট থাকে সবুজ শৈবাল, ব্রায়োক্ষাইউ্স, টেরিডোক্ষাইউ্স, জিমনোস্পার্ম এবং আনজিওস্পার্ম উরিয় সায়ানোব্যাকটেরিয়াতে ক্রোরোপ্রাস্ট নেই, তবে থাইলাকয়েডের গায়ে ফটোসিনথেটিক পিগমেন্ট থাকে। জন্যান ছিলোল (লোহিত শৈবাল, বাদামি শৈবাল ইত্যাদি) পিগমেন্টসমূহ ক্রোম্যাটোক্ষের (chromatophore) নামক অস্কার্ম থাকে। উচ্চ শ্রেণির উদ্ভিদে ফটোসিনথেসিস প্রক্রেয়ার ফটোকেমিক্যাল বিক্রিয়ার অধিকাংশ উপাদান প্রানার থাইলাকজে অত্যন্ত সুশৃঙ্গলভাবে বিন্যন্ত থাকে। ক্রোরোপ্রান্টের সবচেয়ে গুরুত্বপূর্ণ পিগমেন্ট (pigment) হলো ক্রোরোফ্রিল ক্রোরোফ্রিল ছাড়া ক্যারোটিনয়েড্স (carotenoids = ক্যারোটিন, জ্যাছোফিল ইত্যাদি) এবং ফাইকোবিলিনস (phycobilla ক্রাইকোসায়ানিন, ফাইকোইরেপ্রিন-তর্মু শৈবালে পাওয়া যায়) থাকে। ক্রোরোপ্লাস্টের গঠন সম্বন্ধে প্রথম অধ্যাম্ব আলোচনা করা হয়েছে।

ক্লোরোপ্লাস্টের অবস্থান: উদ্ভিদের যে অঙ্গে ক্লোরোপ্লাস্ট থাকে সে অঙ্গ সবুজ হয়, তাই অন্যভাবে বলা যায় উদ্ভিন্ন সবুজ অংশে ক্লোরোপ্লাস্ট থাকে। সবুজ শৈবাল, Riccia, Marchantia-র মতো থ্যালয়েড ব্রায়োফাইট্স-এর প্রায় সম দেহেই ক্লোরোপ্লাস্ট থাকে। তবে উচ্চপ্রেণির উদ্ভিদের কচি কাণ্ড ও পাতায় ক্লোরোপ্লাস্ট থাকে। সবচেয়ে বেশি ক্লোরোগ্লান্ট থাকে পাতায়, তাই সাম্প্রিক্ত বিবেচনায় সবুজ পাতাকেই ফটোসিনপ্রেসিস-এর প্রধান অঙ্গ হিসেবে চিহ্নিত করা হয়।

পাতার মেসোফিল টিস্যাতেই ক্লোরোপ্লাস্ট বিন্যস্ত থাকে। একবীজপত্রী উদ্ভিদ পাতায় মেসোফিল কোষগুলো প্রায় এক বক্স কিন্তু দ্বিবীজপত্রী উদ্ভিদের পাতায় মেসোফিল টিস্যু দু'ভাগে বিভক্ত- উপরের তুকের দিকে ঘনভাবে সন্নির্বেশিত কর্ম কাষের প্রাণিসেভ প্যারেনকাইমা এবং নিচের তুকের দিকে ফাঁক ফাঁকভাবে অবস্থিত গোলাকার কোষের ক্রারেনকাইমা। পাতার নিচের তুকে অনেক স্টোম্যাটা থাকে। স্টোম্যাটার মাধ্যমে বাতাস থেকে CO2 গৃহীত হয় এম ভেতর থেকে বাতাসে O2 নির্গত হয়।

রপ্তক পদার্থ : যে সব রপ্তক পদার্থ সালোকসংশ্রেষণে জড়িত সেগুলো হচ্ছে-ক্রোরোফিল, ক্যারোটিনয়েত্র জ্ ফাইকোবিপিনস

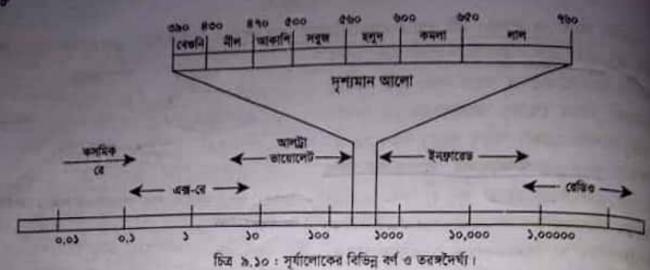
ক্রোবেশি (Chlorophyll) : ক্রোরোফল পিগমেন্ট সবুজ প্লাস্টিড তথা ক্রোরোপ্লাস্টে থাকে, আর ক্রোরোপ্লান্ট পাতার মেসোফিল টিস্যাতে অধিক পরিমাণে থাকে। সাধারণত ক্রোরোপ্লাস্টে ক্রোরোফিল :a' (ch 'a'), ক্রোরোফিল 'b' (ch 'b'), জ্যাছোফিল ও ক্যারোটিন পিগমেন্টসমূহ থাকে। ch 'a হলদে-সবুজ, ch 'b নীলাভ-সবুজ জ্যাছোফিল হল

রম কালোটন কমলা রং সম্পন্ন। এটি ছাড়াও ব্যাকটেরিয়াতে এবং শৈবালে ডিল্ল ধরনের কোরোফিল থাকে। অধুনা ক্রানীয়া মনে করেন ch 'a' একমাত্র পিগ্রেণ্ট যার পোরিত

वालाक्ष्मक आत्माक्षमस्ट्रवर्ष कार्ज नार्म धवर धनाना লামেটকলো তাদের শোষিত আলোকশক্তি ch 'a'-কে লানপুর্বত সালোকসংশ্রেষণে সাহায্য করে। কতক ch.'a' জ্ব (P700) ৭০০ nm তরঙ্গদৈর্ঘ্যের আলোকরশি বেশি শোষৰ কৰে অবং কতক ch'a' অবু (P680) ৬৮০nm ত্রসংদর্য্যের আলোকরশ্যি বেশি শোষণ করে। এরা বিশেষ ধ্বদের ক্লোরোফিল যা সালোকসংশ্লেষণে অংশগ্রহণ করে। লৈত এদের আণবিক সংকেত দেয়া হলো :

ভারোফিল 'a': C55H72O5N4Mg ভোরোফিল 'b': CscH70OrN.Mg

ক্যারোটিনয়েডস (Carotinoids) : ফ্রোরোপ্লাস্টে সবুভ গ্রোফিল ছাড়াও হলুদ, কমলা, বাদামি প্রভৃতি বর্ণের রম্ভক


ছকে। এতলোকে একসাথে ক্যারোটিনয়েডস বলে। এদের চিত্র ৯.৯ : পাতার প্রস্কাহের সালোকসংক্রেমন অস দেখানো হয়েছে। হথ্যে জ্যারোটিন (carotene) কমলা রঙের এবং জ্যান্থোফিল (xanthophyll) হলুদ রঙের। এদের আণবিক সক্তেত কারোটন : C40H56O ; জ্যাছোফিল : C40H5602 90 56 2

ফাইকোবিলিনস (Phycobilins) : নীল রভের রঞ্জক পদার্থের নাম ফাইকোসায়ানিন এবং লাল রভের রঞ্জক পদার্থের দাম **ফাইকোইরেপ্রিন।** এ দুটি রঞ্জক পদার্থকে একত্রে ফাইকোবিলিনস বলে। সায়ানোব্যাকটেরিয়া ও লোহিত শৈবালে এনের পাওয়া যায়। এদের আণবিক সংক্রেত—ফাইকোসায়ানিন : C34H44O8N4 : ফাইকোইরেন্ডিন : C34H46O8N4। সাদোকসংশ্রেষণের জন্য মূল পিগমেন্ট হলো ক্লোরোফিল। ক্যারোটিনয়েডস এবং ফাইকোরিলিনস হলো আনুষঙ্গিক পিছেও। ক্লোরোফিল-a ছাড়া অন্যান্য পিগুমেন্টকৈ বলা হয় আানটেনা পিগুমেন্ট কারণ এরা আলোকশক্তি শোষণ করে জারোঞ্চিল- a কে প্রদান করে।

আলোক বর্ণালির কর্মক্ষমতা

আলো এক ধরনের তড়িৎ-চুম্বকীয় বিকিরণ। এর উৎস হলো সূর্য। সূর্য একটি বিরাট উত্তপ্ত পরমাণু চুল্লি। এখানে স্বনরত হাইড্রোজেন পর্মাণু হিলিয়াম পর্মাণুতে পরিবর্তিত হচ্ছে। সূর্যের উত্তর কেন্দ্রের হাইড্রোজেন পর্মাণু থেকে ইনিয়াম পরমাপুতে রূপান্তরের সময় যে শক্তি বিকিরিত হয়, তাকে ফোটন কদী বলে। এক্স-রে ও গামা রশ্যির তরঙ্গদৈর্ঘা বনের কম এবং ইনফ্রারেড ও রেডিও-রে-এর তরঙ্গদৈর্ঘ্য অনেক বেশি। এসব তরঙ্গের তধুমাত্র দৃশ্যমান আলো আমরা দেখতে পাই যা সাদা আলো নামে পরিচিত।

দুশামান আলো অনেকগুলো তরঙ্গের (spectra) সমষ্টি মাত্র। দৃশ্যমান আলোর প্রকৃতি বোঝানোর জন্য যে এককে ংকা হয় তাকে ন্যানোমিটার (nanometer = nm; 1 nm = 10-9 m) বলে। দৃশ্যমান আলো একটি প্রিজম-এর ভেতর নির ধবেশ করালো হলে অন্তস্থ যে তড়িংতরঙ্গ রয়েছে তা পরস্পর থেকে পৃথক হয়ে পড়ে। এর মধ্যে মোট সাত ধরনের বিকরে রয়েছে যার সর্বনিমু দৈর্ঘ্য হলো ৩৯০ nm এবং সর্বোচ্চ দৈর্ঘ্য ৭৬০ nm। এসব তরঙ্গদৈর্ঘ্য প্রতিকলিত হয়ে নানের চোখে পৌছালে প্রত্যেকটি ভিন্ন ভিন্ন রঙে ধরা পড়ে। এগুলো হলো– বেগুনি (violet), নীল (indigo), নীলাভ-পুঁছ বা আসমানী (blue), সবুজ (green), হলুদ (yellow), কমলা (orange) এবং লাগ (red)। এওলোর আদ্যাক্ষর নিরে ৰিছিত্ত নাম বেনিআসহকলা বা VIBGYOR হয়েছে। একে আলোর বৰ্ণচ্ছিটা বা বৰ্ণালি (light spectrum) বলে। নিচে পত্নির নাম ও তরঙ্গদৈর্ঘ্যের উল্লেখ করা হলো।

আলো কোনো বন্ধর উপর পতিত হলে তার কিছু অংশ শোষিত হয়। বন্ধর উপর পতিত আলোর বিভিন্ন অভরদের যে পরিামাণ শোষিত হয়, তাকে শোষণ বর্ণালি (absorption spectrum) বলে। আপতিত সূর্যালোকের ক্রোরোপ্লান্ট কর্তৃক শোষিত হয়, ১২% বায়ুমণ্ডলে প্রতিফলিত হয় এবং বাকি ৫% ভূগর্ভে প্রতিসরিত বা বিলীন হয়। শোষিত সৌরবশ্যির মোট পরিমাণের মাত্র ০.৫-৩.৫% ক্লোরোফিল ও অন্যান্য রম্ভক পদার্থ কর্তৃক শোষিত হয়।

সালোকসংশ্লেষণের সময় বেছনি-নীল ও কমলা-লাল আলো বেশি ব্যবহৃত হয় এবং বাকি আলো অত্যস্ত কম বহ হয়। একক আলো হিসেবে লাল আলোচে সালোকসংশ্লেষণ বেশি হয়।

আলোক রাসায়নিক বিক্রিয়া

ফটোসিস্টেম : ক্লোরোঞ্চিল অণুসমূহ এবং তার সাথে সংশ্লিষ্ট ইলেকট্রন গ্রহীতাসমূহ এক সাথে একটি স্কুট্র হিসেবে অবস্থান করে। এই ইউনিটকে ফটোসিস্টেম (photosystem) বলে। ফটোসিস্টেম পাইলাকয়েভ মেমব্রেনে করে এবং এতে ৪০০ পর্যন্ত ক্লোরোঞ্চিল অণু থাকতে পারে। থাইলাকয়েভ মেমব্রেনে দু'ধরনের ফটোসিস্টেম থাকে; ম (১) ফটোসিস্টেম-১ (PS-I) এবং (২) ফটোসিস্টেম-২ (PS-II) আবিষ্কারের ধারাবাহিকতা অনুসারে PS-I এবং PS নামকরণ করা হয়েছে। সৃষ্টিগতভাবেও PS-I আগে সৃষ্টি হয়েছে।

PS-I (ফটোসিস্টেম-১) এর বিক্রিয়া কেন্দ্রের ক্লোরোফিল-a অণ্টি ৭০০ nm তরঙ্গদৈর্ঘ্যের আলোক বতা প্রবলভাবে শোষণ করে, তাই একে বলা হয়(P700)

PS-II (ফটোসিস্টেম-২) এর বিক্রিরা কেন্দ্রের ক্লোরোফিল-a অপুটি ৬৮০ nm তরঙ্গদৈর্ঘ্যের আলোক অত্যন্ত প্রবলভাবে শোষণ করে, তাই একে বলা হয় (P680)

প্রতিটি ফটোসিস্টেমের তিনটি অংশ থাকে: যথা-১ | আলোক শোমণ অংশ (light harvesting part), ১ বিক্রিয়া কেন্দ্র এবং তুর্বিকেট্রন ট্রান্সপোর্ট চেইন (ETC)।

বিক্রিয়া কেন্দ্র (Reaction Centre) : এক অপু ক্লোরোফিল
a এবং এর সাথে সংশ্লিষ্ট প্রোটিন নিয়ে একটি বিক্রিয়া কেন্দ্র
গঠিত। প্রোটিনটি নিকটস্থ ইপেকট্রন ট্রাঙ্গপোর্ট সিস্টেমের সাথে

ঘনিষ্ঠভাবে সংযুক্ত থাকে। ক্লোরোফিল ও ক্যারোটিনয়েডসমূহ

আলোক শক্তি শোষণ করে এবং এই শক্তিকে বিক্রিয়া কেন্দ্রে

প্রদান করে।

NH₂

NH₂

O O O O ADENINE

O P O P O P O CH₂

O H H

PHOSPHATES H

OH OH

RIBOSE

ADENOSINE TRIPHOSPHATE (ATP)

ADENOSINE TRIPHOSPHATE (ATP)

চিত্র ৯.১১ : ATP-এর গঠন।

ATP তৈরি: ATP (Adenosine Triphosphate) একটি উচ্চ শক্তিসম্পন্ন রাসায়নিক পদার্থ। জীবকোষে রাস্ফেটি শক্তির উৎস হিসেবে ATP কাজ করে। ADP (Adenosine Diphosphate) এর সাথে একটি অজৈব (Pi) ফসফেট ট ADP + Pi _ATP-ase ATP + H2O

আলোক শোষণের ফলে পর্যাপ্ত ইলেকট্রন-এনার্জির সহায়তায় ATP-ase এনজাইম এর কার্যকারিতায় ADP এর সাথে া বুল ATP ভৈরি হয়। পাইলাকরেড (thylakoid) এর যে সার্ফেস স্কৌমার (stroma) দিকে পাকে সে দিকে ATP া বুট বিষয়। একটি ATP অপুতে প্রচুর শক্তি মজুত থাকে। প্রয়োজনে ATP-র মজুতকৃত শক্তি কোষের বিভিন্ন বিক্রিরার জনা ভেরি ব্যালি করে। তাই ATP-কে জৈব মুদ্রা বা শক্তি মুদ্রা (Biological coin or Energy coin) বলা হয়। শক্তি সময় ও প্রবিশাহের কারণে নিমুলিখিত বিশেষণে ATP-কে ডাকা হয়:

(VA universal energy storage compound. (ii) The energy currency of the cell. (iii) The coin of the cell's energy transfer. (iv) The universal molecule of energy transfer.

NADP : NADP (Nicotinamide Adenine Dinucleotide Phosphate) একটি কো-এনজাইম। NADP পেকে ভা হয় NADPH + H*। এ বিক্রিয়ায় একটি reductase এনজাইম বোহঘটিত প্রোটন কাজ করে। CO2-কে ত্তির বিভারতে ত্রিভিকরণ ও বিজ্ঞারণে NADPH + H+ অত্যন্ত হুরুত্বপূর্ণ।

ভ্রম্ভিদদেহের ক্লোরোপ্লাস্টের স্ট্রোমাতে অসংখ্য থলে সদৃশ্য গঠন থাকে, এদেরকে **থাইলাকয়ে**ড বলে। থাইলাকয়েড মেরেলের যে অংশ স্টোমাতে উন্তুল নয় সেখানে PS-II ক্টুনিটসমূহ বিদামান; থাইলাকয়েড মেমরেনের যে অংশ ন্টোমাতে উনুক্ত সেখানে PS-I এবং ATP synthase ইউনিট থাকে; সাইটোক্রোম যৌগ, প্লাস্টোকুইনন, প্লাস্টোসায়ানিন মেরেনের সকল অংশে সমানভাবে বিদ্যমান। প্রকৃতিতে PS-II এর বহু পূর্বে PS-I সৃষ্টি হয়েছিল। মাত্র ও বিলিয়ন বছর পূৰ্বে সায়ানোবাাকটেরিয়াতে PS-II সৃষ্টি হয়।

ৰহিলাকয়েড ইলেকট্ৰন ট্ৰান্সপোৰ্ট চেইন : থাইলাকয়েড মেমব্ৰেনে সুশৃতলেভাবে সজিত কিছু সংখ্যক ইলেকট্ৰন বাহক নিয়ে ইলেকট্ৰন দ্রমণোর্ট চেইন (ETC) গঠিত। বাহকগুলো পর্যায়ক্রমিকভাবে নিমুত্তপ :

- ১। ফিলোফাইটিন (Pheophytin = Ph) : একটি অপান্তরিত ক্রোরোফিল-র অণু। পরবর্তী বাহক প্রাস্টোকুইননের সাথে এটি সংযোগ সৃষ্টি
- ২। প্লাস্টোকুইনন (Plastoquinone = PQ) : অতি ছোট চলনশীল (mobile) লিপিড যা থাইলাকয়েও মেমব্রেনে মুক্তভাবে চলাচল করতে
- ত। সাইটোক্রোম (Cytochrome = Cyt.) : সাইটোক্রোম হলো গৌহয়ট্টিক হিম (heme) ক্রপবিশিষ্ট প্রোটিন। হিম ক্রপের পৌহ ইপেকট্রন আদান-প্রদান করে।
- ৪। প্লাস্টোসায়ানিন (Plastocyanin = PC) : অত্যন্ত চলনশীল একটি কৃদ্র মেমব্রেন প্রোটিন) এর ইলেকট্রন গ্রহীতা গ্রন্থপ হলো কপার। এটি মুক্তভাবে থাইলাকমেত প্রকোষ্টে চলাচল করতে পারে।
- ৫। ফেরিডস্মিন (Ferredoxin = Fd) : এটি একটি আয়রন-সাগফার (Fe-S) প্রোটিন। এর লৌহ ইলেকট্রন ব্রহণ করে ও বিতরণ করে।
- ৬। NADP reductase : এটি আসলে একটি ফ্লাভোপ্রোটিন এবং বাউভ কো-এনজাইম FAD (ফ্লাভিন আডেনিন ভাইনিউক্লিভটাইড)। এর চ্যাতিন ক্রপ হলো ইলেকটন গ্রহীতা।

সালোকসংশ্লেষণে পানি সরবরাহ : উচ্চ শ্রেণির উত্তিদের সালোকসংশ্লেষণ প্রক্রিয়ায় পানি একটি অত্যাবশ্যকীয় উপাদান। ফটোসিনথেসিস-এর প্রধান স্থান হলো পাতার মেসোফিল টিস্যুর কোষস্থ কোরোপ্লাস্ট। কাজেই পাতার মেসোফিল কোষে অব্যাহত পানি সরবরাহ নিশ্চিত হতে হবে।

উদ্ভিদ তার মূলরোম দিয়ে (কখনো রাইজয়েড দিয়ে) মাটি কণা ফাঁকের কৈশিক পানি শোষণ করে। মূলরোম কর্তৃক শোষিত পানি ক্রমান্বয়ে কর্টেক্স পার হয়ে জাইলেম টিস্যুতে পৌছায়। জাইলেম টিস্যুর ভেসেল ও ট্রাকিড-এর মাধ্যমে উক্ত পানি কাও ও তার শাখা-প্রশাখা পার হয়ে পাতায় পৌছায়। পাতার শিরাবিন্যানের মাধ্যমে উক্ত পানি সমস্ত পত্রফলকের মলোফিল টিস্যুতে ছড়িয়ে পড়ে। প্রধানত অসমোসিস প্রতিন্মায় পানি প্রথমে কোষাভ্যন্তরে এবং শেষ পর্যন্ত কোরোপ্লাস্টে থবেশ করে। উক্ত পানি ফটোসিনথেসিস প্রক্রিয়ায় অংশগ্রহণ করে এবং ফটোলাইসিস (photolysis) তথা সালোক বিভাজনের মাধ্যমে ভেঙে O2 হিসেবে বায়ুতে নির্গত হয় এবং 2H', NADP-কে বিজারিত করে NADPH + H+ সৃষ্টি প্রতে ব্যবহৃত হয়।

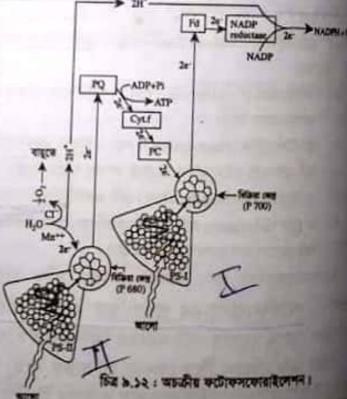
শাতার মেসোফিল টিস্যুতে CO2-এর প্রবেশ: CO2 ফটোসিনপ্রেসিস প্রক্রিয়ার প্রধান উপাদান, কারণ স্থ্রধান কাঁচামাল হলো CO2. সবুজ উত্তিদ এটি বায়ু থেকে গ্রহণ করে। বায়ুমন্তলে ০.০৩৫% CO2 থাকে বিভিন্ন কাঁচামাল হলো CO2. সবুজ উত্তিদ এটি বায়ু থেকে গ্রহণ করে। বায়ুকুঠুরী পর্যন্ত পৌছে থাকে। বায়ুকুঠুরী হতে অসংখ্য পত্ররক্ষে। খোলা পত্ররক্ষ দিয়ে বায়ু পত্ররক্ষের পিছনের বায়ুকুঠুরী পর্যন্ত পৌছে থাকে। বায়ুকুঠুরী হতে বাপেনের মাধ্যমে মেসোফিল টিস্যুর কোষে প্রবেশ করে। কোষ থেকে পরে ক্লোরোপ্লাস্টে প্রবেশ করে এবং কার্নোলা (শর্করা) তৈরি প্রক্রিয়ার অংশগ্রহণ করে।

সালোকসংশ্রেষণ প্রক্রিয়ার কলাকৌশল (Photosynthetic Mechanism)

১৯০৫ খ্রিস্টাব্দে ইংরেজ শারীরতত্ত্বিদ ব্লোকম্যান (Blackman) সালোকসংশ্লেষণ প্রক্রিয়াকে দৃটি অধ্যায়ে। করেন: যথা- (ক) আলোকনির্ভর অধ্যায় এবং (খ) আলোক নিরপেক্ষ অধ্যায়।

(क) আলোকনির্ভর অধ্যায় (Light dependent reactions) : ATP ও NADPH + H+ তৈরি।

আলোকনির্ভর অধ্যায়ের বিক্রিয়াসমূর্য থাইলাকয়েড মেমব্রেন-এ সংঘটিত হয়। সালোকসংশ্লেষণ প্রক্রিয়ার যে জন্ত আলোক শক্তি রাসায়নিক শক্তিতে রূপান্তরিত হয়ে ATP ও NADPH + H+ তে সঞ্চারিত হয়, তাকে আলোক অধ্যায় বলে। এ অংশের জন্য আলোক অপরিহার্য।


ক্রোরোফিল অণু আলোকরশ্রির ফোটন (photon) শোষণ করে এবং শোষণকৃত ফোটন হতে শক্তি সঞ্চয় করে ছ শক্তিসম্পন্ন ATP তৈরি করে।

এ ছাড়া আলোক অধ্যায়ে H_2O ভেঙে O_2 নির্গত হয় এবং NADP বিজ্ঞারিত হয়ে NADPH + H^* তৈরি ছ আলোকনির্ভর অধ্যায়কে নিমুলিখিতভাবে দেখানো হয় :

2ADP + 2Pi + 2NADP + 4H2O প্র্যালোক
কোরোফিল 2ATP + 2NADPH + H* + 2H2O + O2

উচ্চশক্তি সম্পন্ন ATP ও NADPH + H⁺ সৃষ্টি করতে যে বিপুল পরিমাণ শক্তির প্রয়োজন হয় তা সূর্যালোক হতে আসে। সূর্যালোকের শক্তিকে ব্যবহার করে ATP তৈরির প্রক্রিয়াকে ফটোফসফোরাইলেশন বলে। CO₂ আত্তীকরণের মাধ্যমে শর্করা প্রস্তুত করতে ATP ও NADPH + H⁺ এর শক্তি ব্যবহৃত হয় বলে ATP ও NADPH + H⁺ কে ভারীকরণ শক্তি (assimilatory power) বলে।

ফটোফসফোরাইলেশন: কোনো যৌগের সাথে ফসফেট সংযুক্তি প্রক্রিয়াকে বলা হয় ফসফোরাইলেশন: আর আলোক শক্তি ব্যবহার করে ফসফোরাইলেশন ঘটানোকে বলা হয় ফটোফসফোরাইলেশন। সালোকসংশ্লেষণ প্রক্রিয়ায় আলোক শক্তি ব্যবহার করে ATP তৈরি প্রক্রিয়াকে বলা হয় ফটোফসফোরাইলেশন। ফটোফসফোরাইলেশন অচক্রীয় non-cyclic) এবং চক্রীয় (cyclic) এ দু'ভাবে হতে পারে। বর্তমান ধারণার আলোকে এদেরকে নিচে বর্ণনা করা হলো:

(১) অচক্রীয় ফটোফসফোরাইলেশন : যে ফটোফসফোরাইলেশন প্রক্রিয়ায় ফটোসিস্টেম-২ হতে উৎক্রিও ইন্নের্ট্র নেরায় সেখানে ফিরে না গিয়ে, ফটোসিস্টেম-১ এ চলে আসে তাকে অচক্রীয় ফটোফসফোরাইলেশন বলে। এ প্রক্রিয়া দটোসিস্টেম-১ এবং ফটোসিস্টেম-২ উভয়ই অংশ গ্রহণ করে। প্রক্রিয়াটি নিযুক্তপ :

্য কটোসিস্টেম-২ (PS-II) এর ক্লোরোফিল অবু আলোকশক্তি শোষণ করে। শোষিত আলোকশক্তি এক অবু থেকে প্রা প্রান্ত ছানান্তরিত হরে শেষ পর্যন্ত বিক্রিয়া কেন্দ্র (reaction centre) P680-তে পৌছে। বিক্রিয়া কেন্দ্র শক্তিকৃত লোমকে এহীতার কাছে পাঠাতে পারে।

২। P680 এর অরবিট হতে শক্তিকৃত ২টি ইলেট্রন উৎক্ষিপ্ত হয় যা নিকটগু ইলেট্রন গাহীতা ফিয়োফাইটিন (ছকে দেখালো হয়নি) কর্তৃক গৃহীত হয়। একই সময়ে পানি ভাঙ্গনের ফলে সৃষ্ট ২টি ইলেব্রন এসে P680 এর ইলেব্রন ঘাটতি

পুরণ করে।

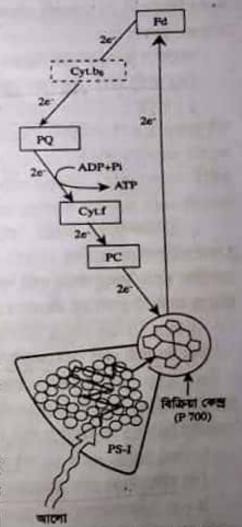
ত। ফিয়োফাইটিন হতে ইপেট্রন ২টি সাথে সাথেই প্লাস্টোকুইনন-এ (PQ) স্থানান্তরিত হয়। PQ একটি লিপিভ ও व्यानित वारक। व्याण शिंद वित्य नर्गाम निर्मित

8। PQ তার ইলেট্রন সাইটোক্রোম-এফ (Cyt. f) কে প্রদান করে পুনরায় ফিয়োফাইটিন হতে ইলেট্রন গ্রহণের জন্য প্রস্ত হয়। এ ধাপে যে শক্তি নির্গত হয় তা দিয়ে ADP এর সাথে অজৈব ফসফেট সংযুক্ত হয়ে একটি ATP তৈরি হয়। প্রকৃতপক্ষে ATP তৈরি হয় কেমিঅসমেটিক প্রক্রিয়ার।

৫। সাইটোক্রোম-এফ, ইলেব্রন ২টি প্লাস্টোসায়ানিন (PC)-কে প্রদান করে। PC একটি <u>মেমরেন প্রোটিন।</u>

৬। প্লাস্টোসায়ানিন (PC) ফটোসিস্টেম-১ (PS-I) এর P700 কে ইলেব্রন প্রদান করে (কারণ ইতোমধ্যেই PS-1 কর্তৃক আলোকশক্তি শোষণের ফলে P700 বিক্রিয়া কেন্দ্রে ক্লোরোফিল- a অপুর অরবিট হতে দুটি শক্তিকৃত ইলেট্রন ক্রাফির হয়ে গিয়েছে এবং তথায় ইলেক্সনের ঘাটতি সৃষ্টি হয়েছে)।

৭। P 700 হতে উৎক্ষিপ্ত ২টি ইলেট্রন ফেরিডঙ্গিন (Fd) গ্রহণ করে।


৮। Fd হতে ইলেক্ট্রন গ্রহণ করে NADP-reductase। NADP reductase দৃটি স্থলেক্ট্রন (P700 বিক্রিয়া কেন্দ্র হতে উৎক্ষিপ্ত) এবং দুটি প্রোটন (পানির ভাঙন হতে সৃষ্ট) সহযোগে NADP কে বিজারিত করে NADPH + H+ তৈরি করে।

PS-II হতে উৎক্ষিপ্ত ইলেট্রন পুনরায় সেখানে ফিরে না গিয়ে PS-I-এ চলে আসে।

ফটোসিস্টেম-২ যে ইলেব্রন হারায় পানি হতে ইলেব্রন এসে তা পূরণ করে। অচক্রীয় ফটোফসফোরাইলেশন প্রক্রিয়া চলাকালীন অব্যাহতভাবে পানি থেকে PS-II-তে ইলেট্রন সরবরাহ হতে থাকে। কারণ, একই সময়ে Mn++ ও Cl । এর উপস্থিতিতে পানি ভেত্তে O2, ইলেক্ট্রন (e') এবং প্রোটন (H⁺)-এ বিভক্ত হয়। অক্সিজেন অপু বায়ুতে চলে যায়, ইলেব্রন ফটোসিস্টেম-২ কর্তৃক গৃহীত হয়। পানির এ দুটি প্রোটন (2H⁺) এবং PS-I হতে উদ্ভূত দুটি ইলেট্রন (2e⁻) NADP-কে বিজ্ঞারিত করে NADPH + H⁺ সৃষ্টিতে সাহায্য করে। কাজেই ফটোসিনথেসিস প্রক্রিয়ায় যে অক্সিজেন নির্গত হয় তা অচক্রীয় ফটোফসফোরাইলেশন পর্যায়ে পানির অঙনের ফলে সৃষ্টি হয়। পানির এরপ ভাঙনকে পানির সালোকবিভাজন বা ক্টোলাইসিস অব ওয়াটার বলে।

(২) চক্রীয় ফটোফসফোরাইলেশন: যে ফটোফসফোরাইলেশন প্রক্রিয়ায় কটোসিস্টেম-১ হতে উৎক্ষিপ্ত ইলেট্রন বিভিন্ন বাহক ঘুরে একটি ATP তৈরি পূর্বক নুনরায় ফটোসিস্টেম-১-এ ফিরে আসে তাকে চক্রীয় ফটোফসফো-রাইলেশন বলে।

এ প্রক্রিরায় কেবল ফটোসিস্টেম-১ (PS-I) অংশগ্রহণ করে। ফটোসিস্টেম-১ (PS-I) এর ক্লোরোফিল অণু আলোক ফোটন শোষণ করে শক্তিপ্রাপ্ত হয় এবং এই শীন্ত বিক্রিয়া কেন্দ্রে (P700) স্থানাম্ভরিত হয়। পরে P700 ক্লোরোফিল- a অণু হতে ন্টি শক্তিপ্রাপ্ত ইলেব্রন উৎক্ষিপ্ত হয়। উচ্চ শক্তিপ্রাপ্ত ইলেব্রন ফেরিডব্রিন (Fd)-এ

চিত্র ৯,১৩ : চার্টের ফটোকনকোরাইলেশন।

পরে Fd হতে ইলেব্রন প্লাস্টোকুইনন (PQ)-এ (কারো কারো মতে Cyt. b6 ব্য়ে) স্থানান্তরিত হয়। PQ হতে ইলেব্রন Cyt. f.-এ আসে। এ সময় ইলেব্রনের মুক্ত শক্তি দারা ADP ও Pi সহযোগে ব্রুটি ATP তৈরি হয়। Cyt. f. হতে ইলেব্রুন প্লাস্টোসায়ানিন (PC)-এর মাধ্যমে P700-তে ফিরে আসে। আদি কটোকসকোরাইলেশন ঘটে। সায়ানোব্যারেরিয়া, শৈবাল ও সবুজ উদ্ভিদে সাধারণত NADP-র সরবরাহ বন্ধ হয়ে গেলে চক্রীয় প্রক্রিয়া ঘটে থাকে। পানির সরবরাহ বন্ধ হলে অচক্রীয় প্রক্রিয়া ঘটে না ক্রিয়া ঘটে। প্রয়োজন হলে উভয় প্রক্রিয়া একইসাথে চলতে পারে।

প্রেটা ব্যাহারন হলে ওবর আক্রমা এবং নাম বিশ্বর ব্যাহার হৈছে তির বা কার্বন বিজ্ঞারণ পর্বার (ব) আপোক নিরপেক্ষ অধ্যায় (Light independent reactions) : কার্বোহাইট্রেট তৈরি বা কার্বন বিজ্ঞারণ পরি আপোকনির্ভর অধ্যায়ে সৃষ্ট ATP ও NADPH + H⁺ বিশেষ প্রক্রিয়ার মাধ্যমে CO₂ হতে কার্বোহাইট্রেট উৎপাদন করে বলে একে কার্বন বিজ্ঞারণ অধ্যায়ে CO₂ বিজ্ঞারিত হয়ে কার্বোহাইট্রেট উৎপাদন করে বলে একে কার্বন বিজ্ঞারণ করা হয়। এ অধ্যায়ে কোনো আপোর প্রত্যক্ষ প্রয়োজন পড়ে না তাই একে আপোক নিরপেক স্বায় অধ্যায়ত বলা হয়। তবে আলোর উপপ্রিতিতেই কার্বন বিজ্ঞারণ হয়ে থাকে। এর কারণ আলোর উপস্থিতিতে কার্বন বিজ্ঞারণ হয়ে থাকে। এর কারণ আলোর উপস্থিতিতে বিজ্ঞার অধ্যায়ত বলা হয়। তবে আলোর উপপ্রিতিতে কার্বন বিজ্ঞারণ হয়ে থাকে। এর কারণ মাধ্যমে কার্বার নিশ্চিত হয় এবং স্টোম্যাটা খোলা থাকায় CO₂ ও O₂ বিনিময় সহজ হয়। আলোর নির্ভর প্রথায় (বা কার্বন বিজ্ঞারণ) এর বিক্রিয়াসমূহ ক্লোরোপ্লাস্টের স্ট্রোমাতে সংঘটিত হয়। আবহমওলের CO₂ হতে প্রত্যায়ায় বা কার্বন বিজ্ঞারণ মাধ্যমে কার্বোহাইট্রেট সৃষ্টির তিনটি খীক্ত পথ আছে; তা হলো—(১) ক্যালভিন চক্র ১২০) যার চক্র এবং (৩) CAM প্রক্রিয়া।

কোষে সংঘটিত মেটাবলিক বিক্রিয়াসমূহ পর্যায়ক্রমিকভাবে ঘটে থাকে যাকে বলা হয় গতিপথ (Pathway)। ও গতিপথ চক্রাকারে ঘটে থাকে তাকে চক্রও (cycle) বলা হয়। অধিকাংশ উদ্ভিদই C_3 উদ্ভিদ, যেমন-আম, আহ

(১) ক্যান্সভিন চক্র: C₃ চক্র (Calvin cycle: C₃ cycle): ১৯৪৭-১৯৪৯ সালে যুক্তরাব্রের ক্যান্সভিন বিশ্ববিদ্যালয়ের ক্যান্সভিন ও তার সহযোগীরা (Melvin Calvin,1911-1997, Benson & Bassham) তেজক্রির কার্বিশ্ববিদ্যালয়ের আইসোটোপ) ব্যবহার করে সন্ধানী সম্ভতিতে (tracer technique) Chlorella সমিক এককোরী ক্রেক্সর্বন বিজ্ঞারণের যে চক্রাকার গতিপথ আবিষ্কার করেন তা ক্যালভিন চক্র নামে পরিচিত। ক্যালভিন এজন্য ১৯৬১ সালনোবেল পুরস্কার পান।

সংক্ষেপে ক্যালভিন চক্র নিমুদ্রপ:

(ক) কার্বন যোগ (কার্বোল্লাইলেশন) :

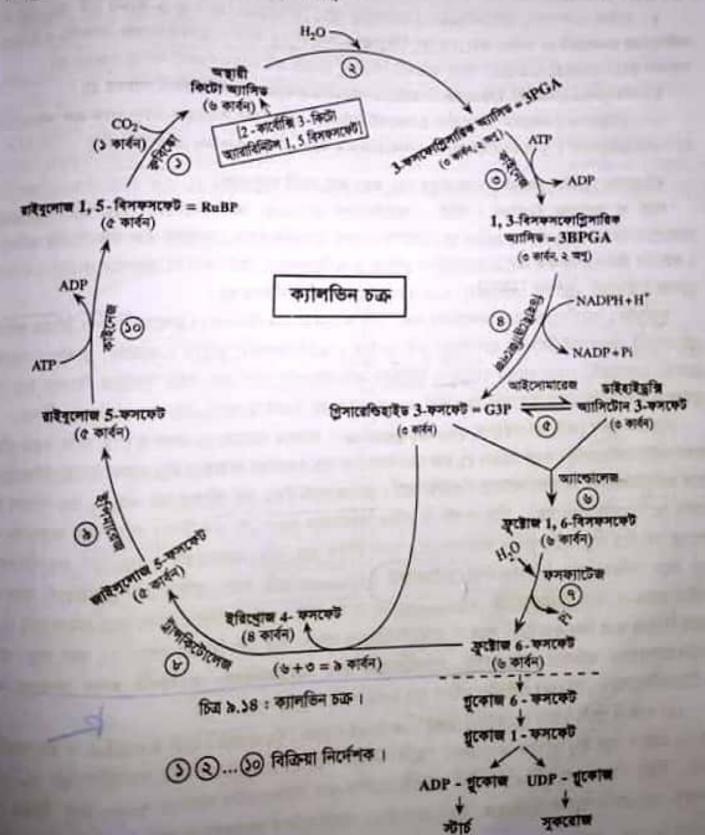
১। বায়ুছ CO₂ (এক কার্বনবিশিষ্ট) ক্লোরোপ্লাস্টের স্ট্রোমাতে প্রবেশ করে তথায় পূর্ব থেকে অবস্থিত ৫-কার্বনহিন বাইবুলোজ ১,৫-বিসফসফেট (RuBP)-এর সাথে যুক্ত হয়ে সৃষ্টি করে ৬-কার্বনবিশিষ্ট সম্পূর্ণ অস্থায়ী কিটো জ্ঞাসিত্ব কাজেই ক্যালভিন চক্রের CO₂-এর প্রহীতা হলে (RuBP)। কবিজ্ঞা (rubisco) এনজাইম CO₂-কে RuBP এর সাথে যুক্ত করতে সাহায্য করে। পিথিবাতে সর্বাধিক ভকত্বপূর্ণ এনজাইম হলো ভবিজ্ঞা করে। এই জ্ঞাবজগতের মার্বাধানিক বন্ধন তৈরি করে। কবিজ্ঞা হলো বাইবুলোজ বিসফসফেট কার্বোজ্ঞিলেজ/ অক্সিজিনেজ এনজাইমের আ্লাক্রোনিম (acronym))।

২। ৬ কার্বনবিশিষ্ট কিটো অ্যাসিড এক অণু H₂O গ্রহণ করে হাইড্রোলাইসিস প্রক্রিয়ায় সাথে সাথেই দুই জ্ 3-ফসফোট্রিসারিক অ্যাসিড (3PGA) উৎপন্ন করে। <u>3-ফস</u>ফোগ্রিসারিক অ্যাসিড ক্যালভিন চক্রের প্রথম স্থায়ী পদর্শ ক্যালভিন চক্রে উৎপন্ন প্রথম স্থায়ী পদার্থ ৩-কার্বনবিশিষ্ট বলে এ চক্রকে C₃ চক্রও বলা হয়। যে সর উদ্ভিদে C₃ চক্রের মাধ্যমে কার্বন বিজ্ঞারণ হয় তাদেরকে C₃ উদ্ভিদ বলা হয়। অধিকাংশ উদ্ভিদই C₃ উদ্ভিদ যেমন-আম, জাম।

ঙি চক্রে ১২ অপু 3PGA তৈরি হয়।

(খ) ফুসফেট যোগ (ফুসফোরাইলেশন)

ত। ATP থেকে একটি ফসফেট গ্রহণ করে 3-ফসফোগ্রিসারিক অ্যাসিড, 1, 3-বিসফসফোগ্রিসারিক অ্যাসিড-ও (BPGA) পরিণত হয়। এখানে একটি ATP খরচ হয় এবং ১টি ADP মুক্ত হয়। এখানে 3-ফসফোগ্রিসারেট কাইলে এনজাইম বিক্রিয়ায় সহযোগিতা করে থাকে।


১২ অণু 3PGA থেকে ১২ অণু BPGA তৈরি হয়; ১২টি ATP খরচ হয়, ১২টি ADP মৃক্ত হয়।

(গ) হাইডোজেন খোগ (ব্লিডাকশন)

8। 1, 3-বিসফসফোণ্ডিসারিক আসিড বিজারিত হয়ে গ্রিসারেন্ডিহাইড 3-ফসফেট-এ (G3P) পরিণত হয়। এখান একটি ফসফেট হাইড্রোজেন ধারা প্রতিস্থাপিত হয়। NADPH+H* বিক্রিয়ায় অংশ গ্রহণ করে এবং NADP হিসেবে মুক্ হয়। টিসারেন্ডিহাইড 3-ফসফেট ডিহাইড্রোজিনেজ এনজাইম এ বিক্রিয়ায় সহায়তা করে। G3P একটি ৩-কার্বনবিশি [52 वर्ष BPGA व्यक्त 55 वर्ष G3P देवति इसः 55% NADPH + H' वरण वर्ष करत, 52% NADP व 52%

(प) RuBP नुनाडिरनामन धन्तः प्रचा (न्याई, नुकरबाष्ट्र) डिरनामन

[১২টি G3P তে (১২ × ৩ = ৩৬) ৩৬টি কার্বন আছে। এর মধ্যে ১০টি G3P (৩০টি কার্বন) বিভিন্ন বিক্রিয়ার রাখ্যমে শেষ পর্যন্ত ৬টি ৫-কার্বনবিশিষ্ট (৫ × ৬ = ৩০) RuBP পুনঃউৎপাদন করে। ২টি G3P (৩ × ২ = ৬ কার্বন) রিক্রিয়ার শেষে প্রকোজ সৃষ্টির মাধ্যমে সুকরোজ, স্টার্চ, সেপুলোজ (যা কোষ, টিস্যু ও অস তৈরিতে ব্যবহৃত হয় অথবা জমা হয়) ইত্যাদি দ্রব্য উৎপাদন করে।

Scanned by CamScanner

- ৫। এক অণু গ্লিসারেভিহাইড 3-ফসফেট, ট্রায়োজ ফসফেট আইসোমারেজ এনজাইমের স্থারভার ভাইহাইদ্রন্তি জ্যাসিটোন 3-ফসফেট-এ পরিণত হয়।
- ৬। এক অপু ডাইহাইদ্রক্সি আাসিটোন 3-ফসফেট এবং এক অপু গ্লিসারেভিহাইভ 3-ফসফেট যিশিতভাবে স্থ এক অপু ফুর্টোজ 1, 6-বিসক্সফেট। অ্যান্ডোশেজ এনজাইম এ বিক্রিয়ায় সহায়তা করে।
- ৭। কুরোজ ।, 6-বিসফসফেট এক অণু পানি গ্রহণ করে সৃষ্টি করে **কুরোজ 6-ফসফেট**। এখানে এক স্পু । মুক্ত হর। ফসক্যাটেজ এনজাইম এ বিক্রিয়ায় সহায়তা করে।
- ৮। ফুরৌজ 6-ফসফেট, গ্রিসারেন্ডিহাইড 3-ফসফেটের সাথে মিলিতভাবে (৬+৩ = ৯ কার্বন) সৃষ্টি করে এ আইসুলোজ 5-ফসফেট (৫ কার্বন) এবং এক অণু ইরিপ্রোজ 4-ফসফেট (৪ কার্বন)। ট্রাঙ্গকিটোলেজ এনজাইম এই সহায়তা করে। ইরিপ্রোজ ৪-ফসফেট আরো কয়েকটি বিক্রিয়ার মাধ্যমে এই চক্রেন পরবর্তী পর্যায়ে অন্তর্ভুক্ত হয়।
 - ৯। জাইলুলোজ 5-ফসফেট ইপিমারেজ এনজাইমের সহায়তায় রাইবুলোজ 5-ফসফেট-এ পরিণত হয়।
- ১০। রাইবুলোজ 5-ফসফেট, রাইবুলোজ 5-ফসফেট কাইনেজ এনজাইমের সহায়তায় ATP থেকে এক জ্বু এহণ করে রাইবুলোজ 1, 5-বিসফসফেট (RuBP) পুনঃউৎপাদন করে। এখানে এক অণু ADP মুক্ত হয়।

রাইবুলোজ 1, 5-বিসফসফেট পুনরায় বায়ুছ্ CO, গ্রহণ করে চক্রটি চালু রাখে।

স্টার্চ ও সুকরোজ উৎপাদন : স্টার্চ : সাইটোসোলে (Cytosol) অর্থােক্ষসক্টের (Pi) ঘনত কম বা ক্রোরোপ্লাস্টের অভান্তরে স্টার্চ সংশ্লেষিত হয়। ট্রায়োজ ফসফেট গ্রিসারেন্ডিহাইড 3-ফসফেট এবং ডাইহাইদ্রাক্তি আদি 3-ক্ষসফেট মিলিডভাবে এক অণু ৬-কার্বনবিশিষ্ট ফুর্টোজ 1, 6-বিসক্ষসফেট তৈরি করে যা ক্রমান্বয়ে ফুর্টোজ 6-ক্ষ্ম গ্রুকোজ 6-ক্ষসফেট, গ্রুকোজ 1-ক্ষসফেট, ADP-গ্রুকোজ হয়ে স্টার্চ-এ পরিণত হয়।

সুকরোজ: সাইটোসোলে অর্থাফসফেটের ঘনত বেশি থাকলে Pi-এর বিনিময়ে Pi ট্রাঙ্গপোর্টার দিয়ে ট্রান্মোজ কর জোরোপ্লান্ট থেকে সাইটোসোলে চলে আসে এবং ক্রুরৌজ 1, 6-বিসফসফেট, ফুরৌজ 6-ফসফেট, গ্লুকোজ 6-ফসফেট, গ্রুকোজ 1-ফসফেট, UDP গ্লুকোজ (UDP= ইউরিডিন ডাই-ফসফেট) হয়ে শেষ পর্যন্ত সুকরোজ হিসেবে জ্যা । সুকরোজ সারা উদ্ভিদ দেহে ট্রাঙ্গপোর্ট হয়। স্টার্চ এবং সুকরোজ এই চক্রের উৎপাদন, এই চক্রে অংশগ্রহণকারী নাঃ।

আলোক শ্বসন (ফটোরেসপিরেশন, Photorespiration): আলোর সাহায্যে O_2 গ্রহণ ও CO_2 ত্যাগ করার রাজি হলো ফটোরেসপিরেশন। সবুজ উদ্ভিদে C_3 চক্র তথা ক্যালভিন চক্র চলাকালে পরিবেশে তীব্র আলো ও উচ্চ তাপমার্ক্র হলে ফটোসিনপেসিস না হয়ে ফটোরেসপিরেশন ঘটে। ক্রোরোপ্লাস্টে CO_2 এর পরিমাণ কম এবং O_2 এর পরিমাণ হয়। তীব্র আলো ও অধিক তাপমাত্রায় (৩০° সে. এর উপর) গাছে পানি সংরক্ষণের পত্রের বন্ধ হয়ে যায়, ফলে পাতার অভ্যন্তরে CO_2 গ্যাস সীমিত হয়ে পড়ে। এমতাবস্থায় RuBP, CO_2 এর পরিবর্তা এর সাথে বিক্রিয়া করে ২-কার্বনবিশিন্ত প্রাইকোলেট (plycolate) তৈরি করে। গ্রাইকোলেট ক্রোরোপ্লাস্ট তাল ব্রাইটোপ্লাজম-এ এসে পারঅক্সিসোম (Petoxisome)-এ প্রবেশ করে। পারঅক্সিসোমে প্রবেশ করে গ্রাইকোলেট ত্রালাপ্রেরাপ্রাস্ট কালেটারেসপিরেশন প্রক্রিয়ায় ক্রোরোপ্রাস্ট, পারঅক্সিসোম এবং শাইটোকব্রিয়া— এ তিনটি অঙ্গাণু ক্রম্মেম্বর্ক্রটোরেসপিরেশন প্রক্রিয়ায় ক্রোরোপ্লাস্ট, পারঅক্সিসোম এবং মাইটোকব্রিয়া— এ তিনটি অঙ্গাণু ক্রম্মেম্বর্ক্রটোরেসপিরেশন C_3 উদ্ভিদের ফটোসিনপ্রেস্ক্র হার ২৫% পর্যন্ত ক্রমাতে পারে।


(২) হ্যাচ ও ন্প্ৰাক চক্ৰ: C4 চক্ৰ (Hatch and Slack Cycle: C4 cycle): H.P. Kortschak ও তার সংশে "CO2 প্রয়োগ করে ইকু উদ্ভিদে এবং একই পদ্ধতি ব্যবহার করে Y. Karpilov ও তার সহযোগীরা ভূটা (Zea দ্বিতি গরেষণা করে 8-কার্বনবিশিষ্ট ম্যালিক আসিড এবং আসপারটিক আসিতে ৭০-৮০ ভাগ চিক্তি স্বেতি পান, অর্থাৎ গরেষণায় ব্যবহৃত ¹°CO2 কোনো C3 পদার্থ সৃষ্টিতে অংশগ্রহণ না করে C4 পদার্থ স্থান বিশ্বর স্থা

্রাট ক্যালভিন চক্রের ব্যতিক্রম। পরবর্তীতে M.D. Hatch ও C.R. Slack নামক দুখান অন্টোলীয় বিজ্ঞানী ইক্ ক্ষেত্র প্রায়ে বিস্তারিত গ্রেষণা করে কার্বন বিজারণের এ ভিন্ন পথকে সুন্দরভাবে ব্যাখ্যা করেন (অর্থাৎ ইন্দু ইল্লিসেই রাজ্যার এই গতিপথ প্রথম আনিশ্কৃত হয়), যা পরে Hatch & Slack গতিপথ বা C, চক্র হিসেবে খীকৃতি পায় (১৯৭০)। ভাইকার্বোঙ্গিলিক চক্র বাহেও এটি পরিচিত। বর্তমানে ডিঞ্জী গোডের বহু উদ্ভিদে এ গতিপথ আবিশ্বত ্রেছ। বাজার মেসোফিল কোষ এবং বাঙলসীথ কোষ সন্ধিলিতভাবে এই গতিপথ সম্পন্ন করে। ফসফোইনল পাইকভেট র্মেরিশের এবং পাইরুভেট-অর্থোফসফেট ডাইকাইনেজ এনজাইম মেসোফিল কোমে সীমাবদ্ধ থাকে। ভাবোরিলেজসমূহ এবং ক্যালভিন চত্রেনা সকল এনজাইম বাভলদীথ কোষে সীমাবছ থাকে।

নিমুদিবিত পর্যায়ে এই গতিপথ (চক্র) সমাপ্ত হয় :

)। মেনোফিল কোষে অবস্থিত ফসফোইনল পাইক্ষভিক অ্যাসিড (৩ কার্বন) এর সাথে বায়ুস্থ CO2 (HCO3 হিসেবে রংশ্বহণ করে) মিলিত হয়ে ৪-কার্বনবিশিষ্ট অঙ্গালো আমিটিক আমিত নৃতি করে। কার্বোঞ্জলেজ এনজাইম এ বিক্রিয়ায় স্থযোগিতা করে।

২। অক্সালো অ্যাসিটিক অ্যাসিড পরে ম্যাশিক অ্যাসিড অথবা অ্যাম্পার্টিক অ্যাসিড (৪ কার্বন)-এ পরিণত হয়। ভ্রাইড্রেজিনেজ এনজাইম এ বিক্রিয়ায় সহযোগিতা করে। এখানে NADPH + H⁺ যুক্ত হয়ে NADP তৈরি করে। প্রথম হারী পদার্থ ৪-কার্বনবিশিষ্ট বলে এই চক্রকে C, চক্র বলা হয়। যেসব উদ্ভিদে C, চক্রের মাধ্যমে তার্বন বিজ্ঞারণ হয় তাদেরকে C, উদ্ভিদ বলে।

চিত্র ৯.১৫ : হ্যাচ ও স্নাক চক্র : একটি সাধারণ পথ পরিক্রমা।

৩। ম্যালিক আসিড বা আম্পার্টিক আসিড মেসোফিল কোষ থেকে প্লাসমোডেসমাটা দিয়ে বাভলসীধ ক্ষেত্র জবে।

করে।

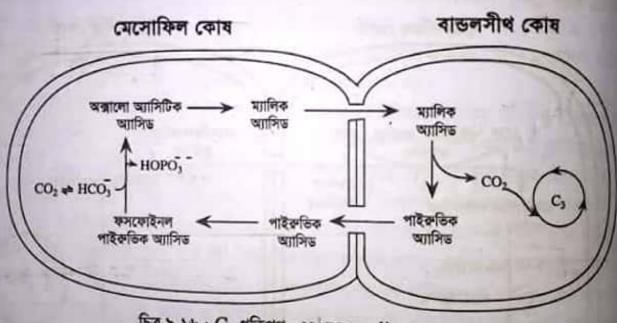
৪। বাভলসীথ কোষে ম্যালিক আসিড বা আস্পার্টিক আসিড এক অণু CO2 উৎপন্ন করে ৩-কার্বনবিশিষ্ট শাল

৪। বাভলসীথ কোষে ম্যালিক আসিড বা আস্পার্টিক আসিড এক অণু CO2 উৎপন্ন করে ৩-কার্বনবিশিষ্ট শাল

আসিডে পরিণত হয়। এ বিক্রিয়ায় NADP অংশগ্রহণ করে এবং NADPH + H* তৈরি হয়। উৎপন্ন CO2 স্বাস্থ

চক্রে (ক্যালভিন চক্র) প্রবেশ করে (অর্থাৎ রাইবুলোজ ১, ৫-বিসকসফেট কর্তৃক গৃহীত হয়) এবং চক্রটি এখানে সু

হয়। এ বিক্রিয়ায় ভিকার্বোঙ্গিলেজ এনজাইম সহযোগিতা করে।


৫। পাইকভিক আসিড বাঙলসীথ কোষ থেকে প্লাসমোডেসমাটা দিয়ে মেসোফিল কোষে প্রবেশ করে।

ও। পাইক্রভিক আসিড মেসোফিল কোষে পাইক্রভিক আসিড কাইনেজ এনজাইমের সহযোগিতায় ফস্ফে ৬। পাইক্রভিক আসিড মেসোফিল কোষে গাইক্রভিক আসিড কাইনেজ এনজাইমের সহযোগিতায় ফস্ফে পাইক্রভিক আসিড পুনরউৎপাদন করে এবং চক্রটি চালু থাকে। এখানে একটি ATP থেকে একটি ADP তৈরি হয়।

বাভলসীথ কোষে CO2 এর অভাব হয় না, তাই কোনো ফটোরেসপিরেশন হয় না, ফলে কার্বন বিজারণ হার হ

र्ग ।

উদ্ভিদে তিন প্রকার C₄ গতিপথ লক্ষ্য করা যায় : (i) বাভলসীথ কোষে স্থানান্তরিত C₄ অ্যাসিডের ধনে, মেসোফিল কোষে স্থানান্তরিত C₃ অ্যাসিডের ধরন এবং (iii) বাভলসীথ কোষে ডিকার্বোক্সিলেশন এনজাইমের প্রকা তিন বৈশিষ্ট্যের ভিত্তিতে নিমুলিখিত তিন প্রকার C₄ গতিপথ লক্ষ্য করা যায়। যথা :

চিত্র ৯.১৬ : C4 গতিপথ : NADP-malic enzyme প্রকার ইক্ষু, ভ্টা, সরগাম উদ্ভিদে এই চক্র পরিচালিত হয়।

(A) NADP-malic enzyme প্রকার।

ভূটা, ইন্কু, সরগাম, ক্র্যাব ঘাস ইত্যাদি উদ্ভিদে এ প্রকার কার্যকরী (৯.১৬ নং চিত্রে দেখানো হলো)।

(B) NAD-malic enzyme প্রকার। মিল্ল্যাত, কাউন, চিনা ইত্যাদি উদ্ভিদে এ প্রকার কার্যকরী।

(C) Phosphoenolpyruvate carboxykinase প্রকার। গিনি ঘাসে (Guinea grass) এ প্রকার কার্যকরী।

বি. ম্র. আমাদের দেশে উপরে উল্লেখিত উত্তিদগুলো হাড়া বাকি অধিকাংশ উত্তিদই (পাট, আম, জাম, কলা, পিচ ইতানি) ব

যে সব উদ্ভিদে C₃ চক্র সংঘটিত হয় তাদেরকে বলা হয় C₃ উদ্ভিদ। যে সব উদ্ভিদে C₄ চক্র সংঘটিত হয় তা

नार्वाकाव विवय	ে তবিস ত্য তবিস		
ক্রাণ্ড আনাটমি ক্রাণ্ড আনাটমি	ত্র তরিদ তিতে তাপমাত্রার খাপখাইরে নিভে সভম নয়। পাতার বাভলসীথকে খিরে মেসোফিল কোষের কোনো পৃথক তর থাকে না। গঠনগতভাবে ক্রোরোপ্রাস্ট একই রকম।		
श्रु CO2 धरा धनाव	সালোকসংশ্রেষ্টারর ===	গঠনগতভাবে ক্রোরোপ্লাস্ট দুই রকম : (i) গ্রানাযুক্ত মেসোফিল ক্রোরোপ্লাস্ট এবং	
र विकिसा	ঘনত্ব কমপক্ষে <u>৫০ ppm (parts per million) প্রয়োজন (৫০-১৫০ ppm)।</u> <u>মেসোফিল কোরে আপোক বিক্রিয়া এবং</u> ক্যাপভিন চক্র সম্পন্ন হয়।	ঘনত্ব তমপক্ষে ০.১০ ppm প্রয়োজন (০.১০-১০ ppm)। মেসোফিল কোমে আলোক বিক্রিয়া এবং	
क्षा छर्मिछ	মনে করা হয় বেশির ভাগ C3 উদ্বিদ অপেকাকৃত শীতপ্রধান অঞ্চলে উৎপত্তি লাভ করেছে।	বাভলসীখ কোষে CO ₂ সৃষ্টি ও ক্যালভিন চক্র সম্পন্ন হয়। মনে করা হয় বেশির ভাগ C ₄ উদ্ভিদ উচ্চমন্ডলে উৎপত্তি লাভ করেছে।	
-	पासक्तिय कर	ভূৎপাও লাভ করেছে।	

ক্যালাভন চক্ৰ	
() কেবল <u>মেসোফিল কোষে হয়।</u>	হ্যাচ ও ল্লাক চক্ৰ
wellersuferrante well .	(i) মেসোফিল ও বাভলসীথ কোষে হয়।
(iii) প্রাথমিক CO2 গ্রহীক RuBP	(ii) ফটোরেসপিরেশন ঘটেনা)
	(iii) প্রাথমিক CO ₂ বাহীত PEP
9 300	(iv) CO2 ফিকসিং এনজাইম্পিন্-কার্বোক্তিলেজ)
	(v) প্রথম ছায়ী ব্রবা অক্সালো আসিটিক আ সিড (৪-কার্বন)।
(মা) CO2-এর জন্য কার্বোপ্তিলেজ-এর দক্ষর্থা মধ্যম) [বি বি	(vi) CO2-এর জন্য কার্বোক্সিলেজ-এর দক্ষর্থা উচ্চ
(Dat) द्वारवाद्वादरण्य वयन याक्ट तक्या	(vii) ব্যবহাত ক্লোরোপ্লাস্টের ধরন দু'রকম <u>(বাভলসীখ</u> ক্লোরোপ্লাস্টে উন্নত গ্লানাম থাকে না)।
(viii) এ চত্রের জন্য আদর্শ ভাপমাত্রা ১০° সে, থেকে ২৫° সে, ।	(viii) এ চক্রের জন্য আদর্শ ভাপমারা ৩০° সে, থেকে ৪৫° সে.।
(ix) বাষুমণ্ডলে প্রতি মিলিয়নে কমপক্ষে ৫০ ppm পরিমাণ CO ₂ থাকা প্রয়োজন।	(ix) বাযুমণ্ডলে প্রতি মিলিয়নে নিমুভ্য ০,১০ ppm CO ₂ থাকলেও চলে।

্র উত্তিদের বৈশিষ্ট্য

C₄ উদ্ভিদের পাতার বাভলসীথ কোষে ক্লোরোপ্লাস্ট থাকে।

২। বাভলসীথের কোষগুলো ভাঙ্কুলার বাভলের সাথে(অরীয়ভাবে পুরস্থান করে।

৩। বাভলসীথের মাঝে যে ক্লোরোপ্লাস্ট দেখা যায়, তাতে মার্না (অনুপস্থিত)কন্তু মেসোফিল কোষে উন্নত প্রকৃতির থানা বিদ্যমান। যেমন-ইক্ষু উত্তিদের পাতা।

8। C4 উদ্ভিদের মেসোফিল কোষে রাইবুলোজ বিসফসফেট কার্বোক্সিলেজ নামক এনজাইমের কার্যকারিতা অনুপস্থিত।

। NADP ম্যালিক অ্যাসিড এনজাইমের উপস্থিতিতে বাভলসীথ ক্লোরোপ্লাস্টে С3 চক্র পরিচালনার প্রয়োজনীয় বিপাকীয় শক্তি NADPH + H+ উৎপাদিত হয়।

উত্তিদ চক্রের তরুত্

১। C, উদ্ভিদে উচ্চ তাপমাত্রায় (30° C – 45° C) সালোকসংশ্লেষণ সংঘটিত হতে পারে, তাই উচ্চ তাপমাত্রায় এরা কৰ্মক্ম থাকে।

২। C4 উদ্ভিদের CO2 গ্রাহক ফসফোইনল পাইকভিক আসিড, C3 উদ্ভিদের CO2 গ্রাহক রাজ্ত ১,৫-বিসঞ্চসফেট অপেক্ষা অধিক কার্যকর থাকে।

উদ্ভিদে পত্ররক্ত আংশিকভাবে বন্ধ থাকলেও C4 গতিপথ চালু থাকে।

৪। CO2 এর অপেক্ষাকৃত কম ঘনতে C4 গতিপথ চলতে পারে, তাই CO2 কমের জন্য কার্বন বিজ্ঞারণ বৃদ্ধ হয় হ

৫। C4 উত্তিদে প্রয়েদন ও ফটোরেসপিরেশন কম হয় বলে CO2 এর বিজারণ বেশি হয়।

৬। C4 উদ্ভিদের পাতায় Kranz আানাটমির জন্য এর খাদ্য উৎপাদন ক্ষমতা বেশি ও অতি সহজ্ঞতার পরিবাহিত হতে পারে।

সালোকসংশ্লেষণ প্রক্রিয়ায় নির্গত অঙ্গিজেন (O2)-এর উৎস : সবুজ উদ্ভিদের সালোকসংশ্লেষণ প্রক্রিয়াট নির্দ্রেশ বিক্রিয়ার মাধ্যমে প্রকাশ করা হয়।

 $6CO_2 + 12H_2O \xrightarrow{\pi^{\frac{4}{5}}(\pi)^{\frac{1}{5}}} C_6H_{12}O_6 + 6O_2 + 6H_2O$

এতে দেখা যায়, এ প্রক্রিয়ায় এক অণু গ্লুকোজ তৈরি হওয়ার মাধামে ৬ অণু O_2 নির্গত হয়। বিক্রিয়ায় অংশ্মধে হূ CO_2 ও H_2O_1 অতএব, সালোকসংশ্লেষণ প্রক্রিয়ায় নির্গত অক্সিজেনের দৃটি উৎস হতে পারে— একটি হলো CO_2 অপরটি হলো H_2O_3 নিমুবর্ণিত পরীক্ষাগুলো হতে এটি নিঃসন্দেহে প্রমাণিত হয়েছে যে, সালোকসংশ্লেষণের সময় যে

নির্গত হয় তা H_2O_3 হতে আসে, CO_2 হতে নয়, অর্থাৎ সালোকসংশ্লেষণ প্রক্রিয়ায় নির্গত অক্সিজেনের উৎস হলো গ্লি

(i) হিল বিক্রিয়া: ১৯৩৭ খ্রিস্টাব্দে রবিন হিল Robin Hill) নামক ইংরেজ প্রাণরসায়নবিদ একটি পরীক্ষা হলে তিনি CO₂ এর অনুপস্থিতিতে পৃথককৃত ক্লোরোপ্লাস্ট, পানি ও কিছু অজৈব জারক তথা হাইড্রোজেন গ্রাহক (hydrogal acceptor) একরে আলোতে রাখেন। পরীক্ষা শেষে দেখা যায় CO₂-এর অনুপস্থিতিতে কোনো শর্করা তৈরি হয় না, বি অক্সিজেন নির্গত হয়। আসলে পানির হাইড্রোজেন অজৈব জারক তথা হাইড্রোজেন গ্রাহককে বিজ্ঞারিত (reduced) হয় এবং অক্সিজেন বের হয়ে আসে। হিলের এ পরীক্ষা হতে প্রমাণিত হয় যে, সালোকসংশ্লেষণ প্রক্রিয়ায় নির্গত অক্সিজেন উৎস পানি। হিল বিক্রিয়াটি নিমুরূপ:

$$A$$
 (অজৈব জারক) + H_2O আগো $AH_2 + \frac{1}{2}O_2$

(ii) জ্যান নীল (Van Niel)-এর পরীক্ষা: জ্যান নীল সালোকসংশ্লেষণকারী সালফার ব্যাক্টেরিয়ার ক্ষেত্রে দেখান মেলফার ব্যাক্টেরিয়ার পানির পরিবর্তে H_2S গ্যাস ও CO_2 ব্যবহার করে শর্করা ও পানি উৎপন্ন করে। কিন্তু সেখানে কোল অক্সিজেন নির্গত হয় না। তবে সালফার অণু নির্গত হয়। কাজেই এখানেও পরোক্ষভাবে প্রমাণিত হয় মেলাকসংশ্লেষণে নির্গত অক্সিজেনের উৎস পানি; CO_2 নয়।

(iii) কবেন ও কামেন-এর তেজজিয় চিহ্নিতকরণ পরীক্ষা : ১৯৪১ খ্রিস্টাব্দে ক্যালিফোর্নিয়া বিশ্ববিদ্যালয়ের সামুদ্ধে কবেন ও কামেন তেজজিয় O_2^{18} (অক্সিজেনের তেজজিয় আইসোটোপ) দ্বারা পানির অক্সিজেনকে চিহ্নিত করেন এবং ব পানিতে কতগুলো শৈবাল জাতীয় উদ্ভিদ রেখে সালোকসংশ্লেষণ প্রক্রিয়ার ফলাফল লক্ষ করেন।

$$6CO_2 + 12H_2O^{18}$$
 मुर्गालाक $C_6H_{12}O_6 + 6H_2O + 6O_2^{18}$

দেখা গেল যে, নির্গত অব্রিজেন তেজজিয়। এতে নিঃসন্দেহে প্রমাণিত হলো যে, সালোকসংশ্লেষণ প্রক্রিয়ায় নির্গত <u>অব্রিজেনের উৎস পানি।</u> একই পদ্ধতিতে কার্বন ডাই-অব্রাইডকে O₂18 দ্বারা চিহ্নিত করে এবং স্বাভাবিক পানি বা^{হা}

6CO2 + 12H2O Thoma C6H12O6 + 6H2O11 + 6O2

্রবার দেখা গেল বে, শর্করা ও পানিতে ভেজজিয় অপ্রিজেন বিদামান। কিন্তু সালোকসংগ্রেয়ণের জলে নির্ণত ন্ত্ৰিক্তিন মোটেই তেজজ্ঞিয় নয়। কাজেই সন্দেহাতীতভাবে প্ৰমাণিত হলো যে, সাগোকসংগ্ৰেমণ প্ৰজিয়ায় নিৰ্গত স্বচুকু প্রতিব্যালির উৎসই পানি। এর সামান্যভয় অংশও কার্বন ডাই-অক্সাইড থেকে আসে না।

রালোকসংশ্রেষণের প্রভাবকসমূহ : সালোকসংগ্রেষণ কতওলো প্রভাবক ছারা প্রভাবিত হয়। প্রভাবকওলো বাহ্যিক ও ব্রার্থীন। প্রভাবকের উপস্থিতি, অনুপস্থিতি, পরিমাণের কম-বেশি সালোকসংশ্রেষণের পরিমাণও কম-বেশি করে থাকে। প্রভাবকতলো নিমুদ্ধপ :

- ক) বাহ্যিক প্রভাবকসমূহ : বেশ কিছু বাহ্যিক প্রভাবক রয়েছে যা সালোকসংশ্লেষণ প্রক্রিয়াকে প্রত্যক্ষ বা শুরাকভাবে নিয়ন্ত্রণ করে থাকে।
-)। আশো: সালোকসংশ্রেষণ প্রক্রিয়ায় আলোর গুরুত্ব অপরিসীম। খাদা প্রস্তুতকরণে যে শক্তির প্রয়োজন হয় তা সূর্বালোক হতে এসে পাকে। সূর্বালোক ক্লোরোফিল সৃষ্টিতে অংশগ্রহণ করে। সূর্বালোকের প্রভাবেই পত্ররক উন্তুক্ত হয়, CO2 পাতার অভ্যন্তরে প্রবেশ করতে পারে এবং খাদ্য প্রস্তুতকরণে অংশগ্রহণ করে। একটি নির্দিষ্ট সীমা পর্যন্ত আলোর-পরিমাণ বেড়ে গেলে সালোকসংশ্লেষণের পরিমাণও বেড়ে যায়। আলোক বর্ণালির সাতটি রঙের মধ্যে লাল, কমলা, নীল ও বেচনি অংশই সালোকসংশ্রেষণে বেশি ব্যবহৃত হয়।

্রালোর পরিমাণ অত্যধিক বেড়ে গেলে পাতার অভ্যন্তরস্থ অন্যান্য রাসায়নিক বিক্রিয়ার স্বাভাবিকতা নট হয়ে যায়, ভাই সালোকসংশ্লেষণের হার কমে যায়।

- ২। কার্বন ডাই-অক্সাইড (CO2) : কার্বন ডাই-অক্সাইড ছাড়া সালোকসংশ্রেমণ প্রক্রিয়া চলতে পারে না। কারণ এ প্রক্রিয়ার যে খাদ্য প্রস্তুত হয় তা কার্বন ডাই-অক্সাইড বিজারণের ফলেই হয়ে থাকে। উদ্ভিদ বাযুমণ্ডল হতে CO2 গ্রহণ করে খাতে। বায়ুমওলে CO2-এর পরিমাণ শতকর(০.০৫)চাগ, কিন্তু এ প্রক্রিয়ায় উদ্ভিদ শতকরা এক ভাগ পর্যন্ত CO2 ব্যবহার করতে পারে, তাই বায়ুমগুলে কার্বন ডাইঅক্সাইডের পরিমাণ ১% পর্যন্ত বৃদ্ধি পাওয়ার সাথে সামগুসা রেখে সাদোকসংশ্রেষণের পরিমাণও বেড়ে যায়।
- ৩। পানি: কার্বন ডাই-অক্সাইডের মতো পানিও এ প্রক্রিয়ার একটি কাঁচামাল। পানির পরিমাণ হ্রাস পেলে বিভিন্ন রামায়নিক বিক্রিয়ার হারও কমে যায়। তাই সালোকসংশ্রেষণ কমে যেতে পারে। অপরপক্ষে পানির উপস্থিতিই ব্রক্ষীকোষকে স্ক্রীত করে এবং পত্ররজ্ঞ খুলে যায়। ফলে CO2 অভ্যন্তরে প্রবেশ করে। কাজেই পানির পরিমাণ কমে গেলে শালোকসংশ্রেষণের হার কমে আসে।
- 8। তাপমাত্রা : সালোকসংশ্লেষণ প্রক্রিয়ায় তাপমাত্রা বিশেষ প্রভাবক হিসেবে কাজ করে। সাধারণত অতি নিমু বাপমাত্রায় (0° সে.-এর কাছাকাছি) এবং অতি উচ্চ তাপমাত্রায় (৪৫° সে.-এর উপরে) এ প্রক্রিয়া চলতে পারে না মিউপর বাারেরিয়া ও উষ্ণ প্রস্রবণের নীলাভ-সবুজ শৈবালে (৭০°)সে, তাপমাত্রারও এ প্রক্রিয়া চলতে পারে। তবে ৪৫° সে.-এর উপরে তাপমাত্রা উঠলে অধিকাংশ উত্তিদেই এ প্রক্রিয়া বন্ধ হয়ে যায়। ২০° সে. তাপমাত্রার নিচে লাকসংশ্রেষণ প্রক্রিয়ার হার কর্মে যায়) উদ্ভিদের বিভিন্নতার উপর নির্ভর করে অপ্টিমাম তাপমাত্রা ২২° সে. হতে ৩৫° 20-00 -> XXXA নে পৰ্যন্ত হয়ে থাকে।

ে। অঙ্কিজেন : বায়ুমণ্ডলে অক্সিজেনের ঘনত্ বেড়ে গেলে অধিকাংশ উদ্ভিদেই সালোকসংশ্লেষণের হার কিছুটা কমে ন। জন ধনত কমে গেলে সালোকসংশ্লেষণের হার বেড়ে যায়। ८०० ए। তমস্থ (চা. প্রেম স্কর্মেন স্কর্মেন স্কর্মেন ও বিজ পদার্থ : ক্লোরোফিল তৈরির জন্য লৌহ, ম্যাগনেসিয়াম ইত্যাদির প্রয়োজন হয়। মাটিতে এসব খনিত্র শাৰে অভাব হলে ক্লোরোফিল তৈরি কমে যায়, ফলে সালোকসংশ্লেষণ হারও কমে যায়।

৭। বাইরে থেকে প্রাপ্ত ভিটামিন বা অন্যান্য রাসায়নিক শ্রব্য : কিছু শৈবাল বা অন্যান্য উদ্ভিদে বাইরে থেকে। वा जनाना श्रातालनीय प्रवा यमि ना लाग्न ठावरल आर्लाकमश्रात्मण द्या ना । कातल धाता धमन प्रवा मिर्क देवति का photoauxotrophs ना । अरमदर्भ photoauxotroph) वरन ।

(খ) অভ্যন্তরীদ প্রভাবকসমূহ : কিছু অভ্যন্তরীণ প্রভাবক রয়েছে যা সালোকসংগ্রেষণ প্রক্রিয়াকে নানাভ্যে

করে।

৮। পাতার বয়স : পাতার বয়সও সালোকসংশ্রেষণে একটি প্রভাবক হিসেবে কাজ করে। একেবারে কচি পাত একেবারে বৃদ্ধ পাতায় ক্লোরোঞ্চলের পরিমাণ কম থাকে বলে সালোকসংশ্লেখণ কম হয়। মিঝারি পরিমাণে সালোকসংশ্রেষণ করতে পারে।

৯। পাতার অন্তর্গঠন : পাতার অভ্যন্তরীণ গঠন প্রকৃতি বিশেষ করে মেসোফিল কোষের বিন্যাস ও প্রকৃতি, শুচ

সংখ্যা ও অবস্থান ইত্যাদি বৈশিষ্ট্য সালোকসংশ্লেষণ প্রক্রিয়ায় ভূমিকা পালন করে।

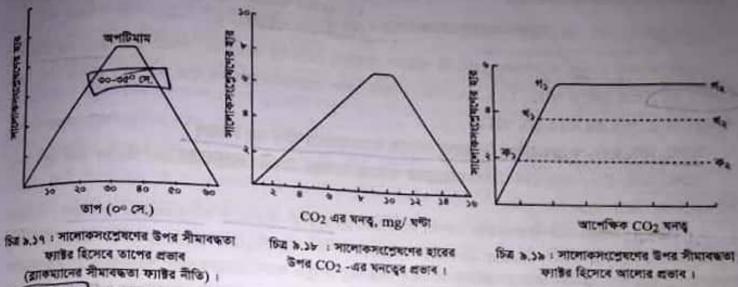
১০। **ক্লোরোফিল :** ক্লোরোফিলই স্থালোকের শক্তিকে রাসায়নিক শক্তিতে রূপান্তরিত করে কার্বন বিভারত্ত করে থাকে। কাজেই ক্লোরোফিল সালোকসংশ্লেষণ প্রক্রিয়ার জন্য একটি অত্যাবশ্যকীয় উপাদান। জান্তে অনুপস্থিতিতে কিছুতেই এ প্রক্রিয়া চলতে পারে না। ক্রোরোপ্লাস্টের অভ্যন্তরে সালোকসংগ্রেষণ হয়ে থাকে।

ব্যাস্থ্যার ১১। শ্রুরার পরিমাণ : পাতার অভ্যন্তরে শর্করার পরিমাণ বেড়ে গেলে সালোকসংশ্লেষণের হার কমে যায়।

১২। প্রোটোপ্রাজম : প্রোটোপ্রাজমে পানির পরিমাণ, বিভিন্ন রাসায়নিক পদার্থের পরিমাণ ও ধরনের । भारताकमः द्वारायक शत अत्नको। निर्धतनील ।

১৩। পটাসিয়াম : পিটাসিয়ামের অভাবে সালোকসংশ্রেষণের পরিমাণ কমে যেতে দেখা যায়। কারণ, স্মুর প্রক্রিরার অণুঘটক হিসেবে পটাসিয়াম কাজ করে। পত্ররন্ধ খোলাতে(K* চুমিকা রাখে।

🕉। এনজাইম : বহু ধারাবাহিক বিক্রিয়ার মাধামে সালোকসংশ্লেষণ সম্পন্ন হয়। কাজেই বিক্রিয়া সম্পন্ন প্রয়োজনীয় এনজাইমের উপস্থিতি ও পরিমাণও সালোকসংশ্রেষণ হার নিয়ন্ত্রণ করে থাকে।


লিমিটিং ফ্যান্টর (Limiting Factor) বা সীমাবদ্ধতা ফ্যান্টর

বিভিন্ন পরিবেশমূলক ফ্যান্টর, যথা-CO2, আলো, তাপ, পানি, অক্সিজেন ইত্যাদি একত্রে সালোকসংশ্লেখনে। প্রভাবিত করে। উপরিউক্ত ফ্যাইরগুলোর মধ্যে কোনো একটি নির্দিষ্ট ফ্যাইর সালোকসংশ্লেষণের উপর যে প্রভাব দি করে তা এককভাবে অন্যান্য ফ্যাষ্ট্রর থেকে পৃথক করা কঠিন কাজ। এতদসত্ত্বেও সালোকসংশ্লেষণের উপর প্রভাব স প্রতিটি ক্যান্টরের সর্বনিমু (minimum), উপযুক্ত (optimum) এবং সর্বোচ্চ (maximum) প্রভাব কি তার উপর ব গবেষণা করা হয়েছে।

এ ব্যাপারে ১৮৪৩ সালে লিবিগ)(Liebig, 1843) ('ল অব মিনিমাম') Law of minimum) প্রস্তাব করেন। ই निमुक्तल :

যদি একটি শারীরবিজ্ঞানিক প্রক্রিয়া একাধিক ফ্যাইর ঘারা নিয়ন্ত্রিত হয় তবে সবচেয়ে ধীর গতিসম্পন্ন ফাইর 🕏 শারীরবিজ্ঞানিক প্রক্রিয়ার হার নিয়ন্ত্রিত হবে। ১৯০৫ সালে ব্লোকম্যান Blackman, 1905) 'ল অব মিনিমাম' (La minimum) এর উপর ভিত্তি করে 'ল অব লিমিটিং ফ্যান্টর সূত্র' (Law of limiting factor) বা 'সীমাবদ্ধতা ফার্টি বভাব করেন। এ সূত্র অনুযায়ী যখন কোনো শারীরবিজ্ঞানিক প্রক্রিয়ার দ্রুততা (rapidity) কয়েকটি পৃথক ফার্টিং বতাবিত হয় সে কেত্রে নিমুতম গতিসম্পন্ন ফ্যান্টর দারাই এ প্রক্রিয়ার গতি সীমাবদ্ধ হবে। ক্লাক্স্যানের ভাষায় "Wit process is conditioned as to its rapidity by a number of seperate factors, the rate of the process is limited the pace of the slowest factor."

নিমিটিং স্থান্তবের নীতি অনুযায়ী সালোকসংক্ষেণ্ড যে কোনো নির্দিষ্ট সময়ে তথুমার একটি ফ্যান্টব থারা সীমাবদ্ধ হয়। সালোকসংগ্রেষণের হার ঐ নির্দিষ্ট ফ্যাউরের সমানুপাতিক (proportional) অর্থাৎ ফ্যাররটির পরিমাণ বড়েপে রাল্যেকসংশ্রেষণের হারের উপর এর প্রভার বাতির পরিমাণ অপ্রতিমাম মান (optimum value) থেকে অনেক বেশি রালাকসংশ্রেষণের হারের উপর এর প্রভাব হঠাৎ বন্ধ হয়ে যায় এবং এর স্থলে অন্য একটি ক্যাইর সালোকসংশ্রেষণের র্বে নিয়ন্ত্রণ করে। ২/৩টি উদাহরণ দারা এ নীতিটি বোঝানো যায়।

30-35°C তাপমাত্রায় সালোকসংশ্লেষণের হার সবচেয়ে বেশি। অতএব 30-35°C সালোকসংশ্লেষণের অপটিমাম তাপমাত্রা। তাপমাত্রা 0°C থেকে ধীরে ধীরে উচ্চতর তাপমাত্রায় উন্নীত করলে সালোকসংশ্রেষণের হার সাথে সাথে বাড়তে থাকে এবং 30-35°C তাপমাত্রায় সালোকসংশ্রেষণের হার সবচেয়ে বেশি হয়। 35°C এর উপরে তাপমাত্রা বাড়ালো হলে সালোকসংশ্লেষণের হার হঠাৎ এবং দ্রুত কমে যায় (চিত্র ১.১৭)। এখানে চুপিমাত্রা চুলো লিমিটিং ফ্যার্ট্রর।

অনুরূপভাবে, CO2 এর পরিমাণ সালোকসংশ্লেষণের হার নিয়ন্ত্রণকারী অপর একটি ফ্যান্টর। যদি আলোকিত একটি পাতার ঘণ্টায় ১০ মিলিগ্রাম CO₂ ব্যবহার করার সামর্থ্য থাকে কিন্তু ঐ পাতাকে ঘন্টায় ১ মিলিগ্রাম CO₂সরবরাহ করা হয় ভবে CO2 লিমিটিং ফ্যাক্টর হিসেবে কাজ করবে। যদি CO2 এর সরবরাহ ধীরে ধীরে ঘণ্টায় ১ হতে ২ মিলিগ্রাম, ২ হতে ৩ মিলিগ্রাম বাড়ানো হয় তবে সালোকসংশ্লেষণের হারও বাড়বে এবং এ বর্ধিত হার সর্বোচ্চ পর্যায় পৌছবে যখন ঘণ্টায় ১০ মিলিগ্রাম CO₂ সরবরাহ করা হয়। CO₂এর ঘনত্ব ঘন্টায় ১০ মিলিগ্রামের উপরে হলে সালোকসংশ্লেষণের হার হঠাৎ কমে যাবে। এখানে CO2 হলো লিমিটিং ফ্যার্টর (চিত্র ৯.১৮)।

নতুন একটি ফ্যান্টর, ধরা যাক আলো লিমিটিং ফ্যান্টর হিসেবে কাজ করবে। আলোর তির্যকতা (intensity of light) ৰিঙণ বাড়লে সালোকসংশ্লেষণের হার দ্বিগুণ বেড়ে যায় এবং একটি স্থির হারে (constant rate) সালোকসংশ্লেষণ চলতে থাকে (চিত্র ৯.১৯ খ্,-খ্)। আলোর তির্যকতা তিনগুণ বাড়ালে সালোকসংশ্লেষণের হার আরও াড়ে, খ, হতে গ, এ উন্নীত হয় এবং গ্, হতে গ্, লাইনে স্থিতিশীল হয়।

সমুদ্র সমতলে CO2 এর ঘনত ৩০০ পিপিএই এবং উচ্চ দ্রাঘিমাংশে (high altitude) CO2 এর ঘনত কমতে থাকে গম গাছে ০.১৫% CO, ঘনতে সালোকসংশ্লেষণের তার সরচেয়ে বেশি থাকে। জলজ উদ্ভিদি ১.১% CO2 ঘনত পর্যব নালোকসংশ্রেবণের হার বাড়তে থাকে। স্টিম্যান নীলসনের (Steemann Nielsen, 1955) মতে Chlorella এব Scenedesmus-এ CO2-এর উচ্চ ঘনত্ব সহ্য করার ক্ষমতা উচ্চ উদ্ভিদের পাতা হতে বেশি। পাতায় বেশি CO2সরবরার পালে পাতায় ক্ষতের সৃষ্টি হতে পারে। যেমন-টমেটো উদ্ভিদে বেশি CO₂ সরবরাহ করণে পাতায় ন্যাক্রোটিক অধ্য (nacrotic area) সৃষ্টি হয়।

সালোকসংশ্রেষণের হাব/কোলেন্ট (Photosynthetic Quotient-P.Q) : সালোকসংশ্রেষণ প্রক্রিয়ার বোলার প্রক্রিয়ার শক্তিতে রূপান্তরিত হয়ে CO2 বিজারণের মাধ্যমে কার্বোহাইক্রেট উৎপাদন করে ও O2 পরিত্যক বিপ্রায়র শোধিত CO2 এর প্রায় সমপরিমাণ O2 পরিত্যক্ত হয়। নির্দিষ্ট সময়ে সালোকসংশ্রেষণ প্রক্রিয়ায় O2 এবং এর পরিমাণের অনুপাতকে সালোকসংশ্রেষণ হার বলে। সংক্ষেপে একে P.Q লে। সালোকসংশ্রেষণের হার নির্মাণ সমীকরণের মাধ্যমে হিসাব করা হয়।

সালোকসংক্রেষণ হার
$$(P,Q)=rac{O_2}{CO_2}$$
 গ্রাগের পরিমাণ $=rac{1}{1}=1$

এ সমীকরণের মাধ্যমে সালোকসংশ্লেষণে কী পরিমাণ খাদ্যদ্রব্য তৈরি হয় তার ধারণা পাওয়া যায়। P.Q এর স্ব সময় । হয়। তবে কোনো কারণে CO_2 এর পরিমাণ কমে গেলে সালোকসংশ্লেষণের হার কম হয়। আবার CO_1 । পরিমাণ বেড়ে গেলে এর হারও বৃদ্ধি পায়।

আলো, তাপ, CO2 ও ক্লোরোঞ্চিল নিয়ন্ত্রণের মাধ্যমে সালোকসংশ্লেষণের হার নিয়ন্ত্রণ

আলো, তাপ, CO₂ এবং ক্লোরোফিল নিয়ন্ত্রণের মাধ্যমে কীভাবে সালোকসংশ্লেষণের হার নিয়ন্ত্রণ করা যায় হ সংক্ষিপ্ত বিবরণ নিমে উল্লেখ করা হলো:

১। আলো : আলোর ৩টি উর্ন্নেখযোগ্য বৈশিষ্ট্য হলো আলোর প্রকৃতি, তীরতা ও আলোকপ্রান্তির সময়কাল। আজ প্রকৃতির মধ্যে কার্যকর বর্ণালি (action spectra) ও শোষণ বর্ণালি (absorption spectra) থেকে দেখা যার র সালোকসংশ্রেষণে লাল ও নীল আলো সর্বাধিক সক্রিয়। কিন্তু তথু এ দুটি আলো প্রয়োগ করে সালোকসংশ্রেষণের হলে তেমন নিয়ন্ত্রণে আনা যায় না। আলোর তীর্তা পরিবর্তন করে এ হারকে নিয়ন্ত্রণ করা যায়। আলো ১০০ ফুট ক্যান্তর তরুক করে ৩০০০ ফুট ক্যান্তল পর্যন্ত সর্বোচ্চ পর্যায় সালোকসংশ্রেষণকে উন্নীত করা যায়। তীর স্থালে ১০,০০০—১২,০০০ ফুট পর্যন্ত কান্তল পাওয়া যায়। কৃত্রিম পরিবরণে বা কাচের ঘরে নির্দিষ্ট পরিমাণ আলো নিয়ম্বাল সালোকসংশ্রেষণ ঘটানো সন্তব। আলোর সময়কাল, স্থান ও ঋতুভেদে বিভিন্ন হয়ে থাকে। জানা গেছে, নীর্ষ অবি আলোর ভুলনায় সবিরাম আলোতে সালোকসংশ্রেষণ বেশি হয়। কারণ, দিনের বেলায় অবিরাম আলোতে সংশ্লেষ্টিত স্মাজাদান আলোক-নিরপেন্ধ পর্যায়ে একই হারে ব্যবহার করতে পারে না। দীর্ঘদিনের আলো ১৪-১৬ ঘণ্টা পর্যন্ত পেলেও তা সালোকসংশ্লেষণের কোনো কাজে লাগে না। অবিরাম আলো হলে ১০-১২ ঘন্টায় সালোকসংশ্লেষণ সক্রে বেশি পর্যায়ে পৌছানো সন্তব। ফলে দীর্ঘ বা ছোট দিনে আলোকপ্রাপ্তি ও আলোর তীব্রতা নিয়প্রণ করে সালোকসংশ্লেষণ করে প্রক্রিয়ার মাধ্যমে শর্করার উৎপাদন নিয়ন্ত্রণ করা যায়।

২। তাপ: তাপ সালোকসংশ্রেষণের একটি প্রভাবক এবং এটি নিয়ন্ত্রণ করে সংশ্লেষণ হার কম-বেশি করা যায়। তা কম-বেশি করে আলোক পর্যায়ের বিক্রিয়াকে নিয়ন্ত্রণ করা যায় না। আলোক-নিরপেক্ষ পর্যায়ের ক্যাণভিন চক্রকে সাল নিয়ন্ত্রণ করা যায়। সাধারণ অবস্থায় ১০°-৩০° সে, তাপমাত্রায় সালোকসংশ্লেষণের হার কয়েকগুণ বৃদ্ধি পায় (৩০° সে থেকে ৩৫° সে, পর্যন্ত তা সর্বোচ্চ পর্যায়ে পৌছে)। সূতরাং কৃত্রিম পরিবেশে তাপমাত্রা নিয়ন্ত্রণের মাধ্যমে সালোকসংশ্লেষণের হারকে বছলাংশে নিয়ন্ত্রণ করা সম্ভব।

৩। CO2 : বায়ুতে CO2 এর পরিমাণ ০.০৩-০.০৪% পর্যন্ত ওঠা-নামা করে। CO2-এর পরিমাণ বারি সালোকসংশ্রেষণের হার বৃদ্ধি করা যায়। পরীক্ষা থেকে দেখা গেছে, ০.৯-১% পর্যন্ত CO2 সালোকসংশ্রেষণের হার সর্বোচ্চ পর্যায়ে উন্নীত করা যায়। এ ক্ষমতা বিভিন্ন উদ্ভিদে বিভিন্ন রকম হয়ে থাকে, যেম্প-১.১% ব্যন্ত CO2 এর পরিষ্কি বায়ুতে বাড়িয়ে জলজ উদ্ভিদে সর্বোচ্চ সংশ্রেষণ হার পাওয়া গেছে, কিছু গম গাছে সর্বোচ্চ পর্যায়ে সংশ্রেষণ পাওয়া গেছে ০.১৫% CO2 ঘনতে। সূতরাং দেখা গেছে যে, পরিবেশে CO2 ঘনতের পরিমাণ কম-বেশি করে এর হারকে নিয়ন্ত্র জ

সালোকসংশ্লেষণের হার/কোশেন্ট (Photosynthetic Quotient-P.Q) : সালোকসংশ্লেষণ প্রক্রিয়ায় ক্রাসায়নিক শক্তিতে রূপান্তরিত হয়ে CO₂ বিজারণের মাধ্যমে কার্বোহাইট্রেট উৎপাদন করে ও O₂ পরিত্যক ব্রপ্তিরায় শোষিত CO₂ এর প্রায় সমপরিমাণ O₂ পরিত্যক্ত হয়। নির্দিষ্ট সময়ে সালোকসংশ্লেষণ প্রক্রিয়ায় O₂ এক এর পরিমাণের অনুপাতকে সালোকসংশ্লেষণ হার বলে। সংক্ষেপে একে P.Q লে। সালোকসংশ্লেষণের হার নির্দ্ধি

সালোকসংশ্লেষণ হার
$$(P.Q)=rac{O_2}{CO_2}$$
 ত্যাগের পরিমাণ $=rac{1}{1}=1$

এ সমীকরণের মাধ্যমে সালোকসংশ্রেষণে কী পরিমাণ খাদ্যদ্রব্য তৈরি হয় তার ধারণা পাওয়া যায়। P.Q এর মার্ সময় । হয় তিবে কোনো কারণে CO₂ এর পরিমাণ কমে গেলে সালোকসংশ্রেষণের হার কম হয়। আবার CO₂ পরিমাণ বেড়ে গেলে এর হারও বৃদ্ধি পায়।

আলো, তাপ, CO2 ও ক্লোরোফিল নিয়ন্ত্রণের মাধ্যমে সালোকসংশ্লেষণের হার নিয়ন্ত্রণ

আলো, তাপ, CO₂ এবং ক্লোরোফিল নিয়ন্ত্রণের মাধ্যমে কীভাবে সালোকসংশ্লেষণের হার নিয়ন্ত্রণ করা যার। সংক্ষিপ্ত বিবরণ নিমে উল্লেখ করা হলো:

১। আলো: আলোর ৩টি উল্লেখযোগ্য বৈশিষ্ট্য হলো আলোর প্রকৃতি, তীব্রতা ও আলোকপ্রান্তির সময়কাল। আর প্রকৃতির মধ্যে কার্যকর বর্ণালি (action spectra) ও শোষণ বর্ণালি (absorption spectra) থেকে দেখা যার প্রেলাকসংশ্রেষণে লাল ও নীল আলো সর্বাধিক সক্রিয়। কিন্তু তধু এ দুটি আলো প্রয়োগ করে সালোকসংশ্রেষণের হল তেমন নিয়ন্ত্রণে আনা যায় না। আলোর তীব্রতা পরিবর্তন করে এ হারকে নিয়ন্ত্রণ করা যায়। আলো ১০০ ফুট ক্যান্তন হ তক্ষ করে ৩০০০ ফুট ক্যান্তল পর্যন্ত বাড়িয়ে সর্বোচ্চ পর্যায়ে সালোকসংশ্রেষণকে উন্নীত করা যায়। তীব্র স্থালে ১০,০০০–১২,০০০ ফুট পর্যন্ত ক্যান্তল পাওয়া যায়। কৃত্রিম পরিবরশে বা কাচের ঘরে নির্দিষ্ট পরিমাণ আলো নিয়ন্ত্রণ সালোকসংশ্রেষণ ঘটানো সন্তব। আলোর সময়কাল, হান ও ঋতুভেদে বিভিন্ন হয়ে থাকে। জানা গেছে, দীর্ঘ মালোর আলোর তুলনায় স্বিরাম আলোতে সালোকসংশ্রেষণ বেশি হয়। কারণ, দিনের বেলায় অবিরাম আলোতে সংশ্লেষিত স্থালান আলোক-নিরপেন্দ পর্যায়ে একই হারে ব্যবহার করতে পারে না। দীর্ঘদিনের আলো ১৪-১৬ ঘট্টা পর্যন্ত মাণোলত তা সালোকসংশ্লেষণের কোনো কাজে লাগে না। অবিরাম আলো হলে ১০-১২ ঘন্টায় সালোকসংশ্লেষণ সমারে বেশি পর্যায়ে পৌছানো সন্তব। ফলে দীর্ঘ বা ছোট দিনে আলোকপ্রান্তি ও আলোর তীব্রতা নিয়ন্ত্রণ করে সালোকসংশ্লেষ প্রক্রিয় মাধ্যমে শর্করার উৎপাদন নিয়ন্তণ করা যায়।

২। তাপ: তাপ সালোকসংশ্লেষণের একটি প্রভাবক এবং এটি নিয়ন্ত্রণ করে সংশ্লেষণ হার কম-বেশি করা যায়। তা কম-বেশি করে আলোক পর্যায়ের বিক্রিয়াকে নিয়ন্ত্রণ করা যায় না আলোক-নিরপেক্ষ পর্যায়ের ক্যাপভিন চক্রকে সাল নিয়ন্ত্রণ করা যায়। সাধারণ অবস্থায় ১০°-৩০° সে. তাপমাত্রায় সালোকসংশ্লেষণের হার কয়েকতণ বৃদ্ধি পায় (৩০° জ থেকে ৩৫° সে. পর্যন্ত তা সর্বোচ্চ পর্যায়ে পৌছে)। সূতরাং কৃত্রিম পরিবেশে তাপমাত্রা নিয়ন্ত্রণের মাধ্যমে সালোকসংশ্লেষণের হারকে বছলাংশে নিয়ন্ত্রণ করা সম্ভব।

০। CO2 : বায়ুতে CO2 এর পরিমাণ ০.০৩-০.০৪% পর্যন্ত ওঠা-নামা করে। CO2-এর পরিমাণ বাহিচ্চ সালোকসংশ্রেষণের হার বৃদ্ধি করা যায়। পরীক্ষা থেকে দেখা গেছে, ০.৯-১% পর্যন্ত CO2 সালোকসংশ্রেষণের হার সর্বোচ্চ পর্যায়ে উন্নীত করা যায়। এ ক্ষমতা বিভিন্ন উদ্ভিদে বিভিন্ন রকম হয়ে থাকে, ফের্ম-১.১% পর্যন্ত CO2 এর পরি বায়ুতে বাড়িয়ে জলজ উদ্ভিদে সর্বোচ্চ সংশ্লেষণ হার পাওয়া গেছে, কিন্তু গম গাছে সর্বোচ্চ পর্যায়ে সংশ্লেষণ পাওয়া গ্রে
০.১৫% CO2 ঘনতে। সূতরাং দেখা গেছে যে, পরিবেশে CO2 ঘনতের পরিমাণ কম-বেশি করে এর হারতে নিয়্মাণ

ह। ক্রারোকিল : ক্রারোকিল সাধারণত ক্রোরোরেটে থাকে। পাডায় ক্রোরোকিল-এর পরিমাণ সালোকসংব্রেয়ণের अदि निर्माण करत शास्त्र ।

প্রবেশতে সালোকসংশ্রেষণ প্রক্রিয়ার শুরুত্ব

ন্ত্রবর্গতে সালোকসংশ্লেষণ প্রক্রিয়ার গুরুত্ব অপরিসীম। একে একটি প্রাকৃতিক জৈব রাসায়নিক শিল্প বলা যেতে নার। নিচে সালোকসংশ্রেষণ প্রক্রিয়ার তরুত্ব সম্বন্ধে বর্ণনা করা হলো :

্য । উদ্ভিদের খাদ্য প্রস্তৃত : এ প্রক্রিয়ায় সবুজ উদ্ভিদ তাদের জন্য প্রয়োজনীয় খাদ্য তৈরি করে থাকে। কাজেই এ প্রক্রিয়ায় সবুজ উদ্ভিদ জীবনের মৌলিক চাহিদা মিটায়।

২। প্রাণিকুশের খাদ্য : প্রাণিজগৎ তার খাদ্যের জন্য সম্পূর্ণভাবে সবুজ উদ্ভিদের উপর নির্ভরশীল। প্রাণিজগতের সম্পদ্ধ খাদ্য উত্তিদজগৎ সালোকসংশ্লেষণ প্রক্রিয়ায় প্রস্তুত করে থাকে। কাজেই এ প্রক্রিয়ার উপর প্রত্যক্ষভাবে উদ্ভিদ জগৎ এবং পরোক্ষভাবে মানুষসহ সমন্ত জীবজগৎ নির্ভরশীল।

ত। শক্তির উৎস : জীবজগতের শক্তির একমাত্র উৎস হল সালোকসংশ্লেষণ প্রক্রিয়া। আমরা কাজকর্ম, চলাফেরা, দৌড়, কুন্তি ইত্যাদিতে যে শক্তি খরচ করি তা আসে খাদ্য হতে, আর খাদ্য তৈরির প্রাথমিক বা মূল প্রক্রিয়া হল গ্লালাকসংশ্লেষণ। কিন্তু খাদ্যে ঐ শক্তি কোথা হতে কিভাবে আসে? খাদ্যের মাঝে এ শক্তি আসে সূর্য হতে। সূর্যের এ শক্তি সালোকসংশ্রেষণ প্রক্রিয়ায় খাদ্যে রাসায়নিক শক্তি হিসেবে আটকা পড়ে। কাজেই জীবের সকল শক্তির উৎস এ প্রক্রিয়া ।

৪। জৈব রাসায়নিক বিত্রিন্য়া পরিচালন : উদ্ভিদ ও প্রাণীর জীবন চক্রে বহু বিপাকীয় প্রক্রিয়া সংঘটিত হয়। এ সব বিক্রিয়া না ঘটলে কোন জীবন টিকে থাকতে পারত না। এ সব বিপাকীয় প্রক্রিয়া পরিচালনার সকল শক্তি আসে দালোকসংশ্লেষণ প্রক্রিয়ায় সৃষ্ট জৈব রাসায়নিক দ্রব্যসমূহ হতে।

 পরিবেশ পরিশোধন : সালোকসংশ্লেষণ প্রক্রিয়ায় CO₂ শোষিত হয় এবং O₂ উৎপন্ন হয়। প্রাণিকুলের জন্য ছতিকারক CO₂ শোষণ করে এবং সকল জীবের শ্বসনের জন্য অত্যাবশ্যকীয় O₂ সরবরাহ করে এ প্রক্রিয়া পরিবেশ পরিশোধন করে থাকে। এভাবে সবুজ উদ্ভিদের এ প্রক্রিয়া জীবজগতকে নিশ্চিত ধ্বংসের হাত হতে রক্ষা করে।

৬। উদ্ভিদের দৈহিক বৃদ্ধি : সবুজ উদ্ভিদের স্বাভাবিক বৃদ্ধির জন্য প্রয়োজনীয় খাদ্য, শক্তি ও অন্যান্য উপাদান প্রত্যক র পরোক্ষভাবে সালোকসংশ্রেষণের মাধ্যমেই এসে থাকে।

৭। মানব সভ্যতায় অবদান : সালোকসংশ্লেষণ না থাকলে মানুষই থাকত না। তবুও বর্তমান মানবসভ্যতায় এ প্রক্রিয়ার অবদান অসীম। মানব সভ্যতার জন্য প্রয়োজনীয় কয়লা, পেট্রোল, রেয়ন, সেলোফেন, ফিলা, কাগজ, রবার, কুইনাইন, মরফিন, রেসারপিন ইত্যাদি সব কিছুই প্রত্যক্ষ বা পরোক্ষভাবে সালোকসংশ্লেষণ প্রক্রিয়ারই ফল।

মোটক্থা উদ্ভিদ ও প্রাণী তথা সমগ্র জীবজগৎ তাদের খাদা, শক্তি ও জীবনসন্তার জন্য সম্পূর্ণভাবে সালোকসংশ্রেষণ প্রক্রিয়ার উপর প্রত্যক্ষ বা-পরোক্ষভাবে নির্ভরশীল। কাজেই এ প্রক্রিয়ার পুরুত্ব বা তাৎপর্য অপরিসীম ও তুলনাবিহীন।

नालाकमश्रम्भवरण छेरशन योगा काथाय याग्र?

সালোকসংশ্রেষণের মাধ্যমে উদ্ভিদের ক্লোরোপ্রাস্টে শ্বেতসার বা স্টার্চ উৎপন্ন হয়। এটি একটি কঠিন পদার্থ। কাজেই উট্টিদ এটি সরাসরি ব্যবহার করতে পারে না, পাতায় তৈরি স্টার্চ প্রথমে গ্রুকোজ ও পরবর্তীতে স্করোজ-এ পরিবর্তিত হয়ে জিদের বিভিন্ন অঞ্চলে সঞ্চালিত হয়। সালোকসংশ্লেষণ প্রক্রিয়ায় সিইটোসোলে সুকরোজ উৎপন্ন হয়। সুকরোজ সরাসরি শিদদেহের বিভিন্ন অংশে প্রবাহিত হয় এবং প্রয়োজনে ব্যবহৃত হয়। এর এক অংশ বিপাকক্রিয়ায় ব্যবহৃত হয়। বাড়তি শ্ব সঞ্চয়ী অঞ্চলে ভবিষ্যতের জন্য জমা হয়। বিভিন্ন কাজ-কর্ম চালানোর জন্য শ্বসন প্রক্রিনায় তা ভেঙে শক্তি উৎপন্ন বে। এক অংশ অন্য প্রকার খাদ্য যথা চর্বি, আমিষ প্রভৃতি তৈরিতে কাজে লাগে।

শ্বন (Respiration)

ল্যাটিন Respirae ,= to breathe, সাস সেয়া।

সকল সজীব উদ্ভিদকোষে (এবং সকল সজীব প্রাণিকোষে) প্রতিনিয়ত অব্যাহতভাবে বিভিন্ন রাসায়নিক ক্রিয়া-বিক্রিয় সংঘটিত হয়। এসব ক্রিয়া-বিক্রিয়ার জন্য চাই শক্তি। আর এ শক্তির উৎস হলো কোমস্থ কার্বোহাইড্রেট, প্রোটিন, লিপিড র্থাদি রাসায়নিক পদার্থ। এর মধ্যে কার্বোহাইড্রেটই হলো শক্তির প্রধান উৎস। স্টার্চ, সুকরোজ বা গ্রুকোজ-এ যে স্থিব ছুতা। পাকে তা একই সাথে সবটুকু মুক্ত হয় না, বরং বিভিন্ন এনজাইম কর্তৃক নিয়ন্তিত কতিপয় পর্যায়ক্রমিক বিক্রিয়ার রাধামে ক্রমান্বরে মুক্ত হয়। এ সব রাসায়নিক পদার্থের স্থিরশক্তি কর্মক্ষম গতিশক্তি হিসেবে মুক্ত করতে কোমে যে সব রাধান পর্যায়ক্রমিক জারণ-বিজ্ঞারণ বিক্রিয়া সংঘটিত হয় এদেরকে সামগ্রিকভাবে একসাথে শ্বসন নামে অভিহিত করা হয়। হাজেই শ্বসন হলো শক্তি নির্গমনকারী কৃতিপয় জারণ-বিজারণ বিক্রিয়ার সমষ্টি। শক্তি উৎপাদনকালে জটিল খাদ্যদ্রব্য সরল দ্রবো পরিণত হয়।

যে জৈব রাসায়নিক প্রক্রিয়ায় জীবকোষস্থ জটিল জৈবযৌগ জারিত হয়, ফলে জৈবযৌগে সঞ্চিত স্থিতিশক্তি রূপান্তরিত হয়ে ব্লাসায়নিক গতিশক্তিতে পরিণত হয়, তাকে শ্বসন বলে। শ্বসনের ফলে যে শক্তি নির্গত হয় তা জীবের বিভিন্ন শক্তি শোষণকারী কার্যকলাপে ব্যয় হয়। গ্রুকোজকে প্রাথমিক শ্বসনিক বস্তু ধরলে শ্বসনের রাসায়নিক সংকেত নিমুরূপ দাঁড়ায়।

दिवित असलाईम C₆H₁₂O₆ + 6O₂ + 6H₂O + 36 ADP + 36 Pi কো-এনজাইম, আকচিতেটৰ ইত্যাসি অক্সিজেন পানি

শুসন অঙ্গ : উদ্ভিদের প্রতিটি জীবন্ত কোষেই দিন-রাত্রি ২৪ ঘণ্টা শুসনকার্য চলতে থাকে। কোষীয় সাইটোপ্লাজম ও মাইটোকড্রিয়াই শ্বসন ক্রিয়ার প্রধান অঙ্গ (মাইটোকড্রিয়া সম্বন্ধে প্রথম অধ্যায়ে আলোচনা করা হয়েছে)।

শুসনিক বস্তু : শ্বসন প্রক্রিয়ায় যে যৌগিক বস্তুসমূহ জারিত হয়ে সরল বস্তুতে পরিণত হয় সে সব বস্তুকে শ্বসনিক বস্তু বলে। কার্বোহাইডেট (শর্করা), প্রোটিন (আমিষ), চর্বি এবং জৈবিক আসিডসমূহ শ্বসনিক বস্তু হিসেবে ব্যবহৃত হয়। দুর্ঘালোকের আলোকশক্তিই এসব বস্তুতে রাসায়নিক স্থিরশক্তি হিসেবে জমা থাকে এবং শ্বসনের ফলে স্থিরশক্তি গতিশক্তি হসেবে নিৰ্গত হয়। কাজেই সূৰ্যালোকশক্তিই সকল শক্তির মূল উৎস /

শুসনের প্রকারভেদ: অক্সিজেনের প্রয়োজনীয়তার উপর নির্ভর করে শ্বসন প্রক্রিয়াকে দু'ভাগে ভাগ করা যায়, যথা: ক) সবাত শ্বসন (Aerobic respiration) এবং (খ) অবাত শ্বসন (Anaerobic respiration) । যে শ্বসন ক্রিয়ার জন্য মুক্ত মব্লিজেনের প্রয়োজন হয়, তাকে সবাত শ্বসন বলে এবং যে শ্বসন ক্রিয়া মুক্ত অব্লিজেনের <mark>অনুপশ্বিতিটো সংঘটিত হয়,</mark> াকে অবাত শ্বসন বলে।

সবাত শ্বসনে অক্সিজেন শ্বসনিক বস্তুকে সিম্পূর্ণ জারিত করে এবং অধিক পরিমাণে শক্তি উৎপন্ন করে। অবাত শ্বসনে মাষস্থ কতিপয় এনজাইম শ্বসনিক বস্তুকে আংশিক জারিত করে এবং স্বস্তু শক্তি উৎপন্ন করে।

(ক) সবাত শ্বসন (Aerobic Respiration)

যে শ্বসন প্রক্রিয়ায় মুক্ত অক্সিজেনের প্রয়োজন হয় এবং শ্বসনিক বন্তু সম্পূর্ণভাবে জারিত হয়ে CO2, H2O ও বিপুল রিমাণ শক্তি উৎপন্ন করে তাকে সবাত শ্বসন বলে। অক্সিজেনের উপস্থিতি অর্থাৎ বায়ুর উপস্থিতির প্রয়োজন হয় বলে এ দার শ্বসনের নাম বাংলা ভাষায় করা হয়েছে সবাত (বাতাসসহ) শ্বসন। অধিকাংশ জীব-এর (বহু ব্যাকটেরিয়া, অধিকাংশ এক, সকল প্রোটিস্ট, উদ্ভিদ এবং প্রাণীর) শ্বসন হলো সবাত শ্বসন। সবাত শ্বসনের রাসায়নিক সংকেত নিমুক্তপ :

C₆H₁₂O₆ + 6O₂ + 6H₂O + 36ADP + 36 Pi विश्वि धनकार्थे 6CO₂ + 12H₂O + 36 ATP (38 ATP मह)

গ্রাইকোলাইদিস-এ উৎপন্ন দুই অণু NADH + H° হতে ৬টি ATP ধরলে শ্বসনে মোট ATP উৎপাদন ৩৮টি হয়। প্রকৃতপক্ষে এই

সবাত শ্বসন প্রক্রিয়ার ধাপ বা পর্যায়সমূহ

সবাত শ্বসন একটি ধারাবাহিক প্রক্রিয়া হলেও বিক্রিয়ার স্থান ও কাজের ধারা অনুযায়ী একে তিনটি ধারাবাহিত বা পর্যায়ে ভাগ করা হয়ে থাকে। ধাপগুলো হলো নিমুক্তপ ।

১। প্রথম খাপ বা প্রথম পর্যায়ে কোষের সাইটোপ্লাজমে ৬-কার্বনবিশিষ্ট প্রতি অপু গ্রুকোঞ্চ ভাগ হয়ে ৩-কার্বনবিশিষ্ট প্রতি অপু গ্রুকোঞ্চ ভাগ হয়ে ৩-কার্বনবিশিষ্ট প্রতি অপু গ্রুকোঞ্চ ভাগ হয়ে ৩-কার্বনবিশিষ্ট প্রতি অপু গ্রুকোঞ্চ ভাগ হয়ে বলে এই পর্যায়ের নাম দেয়া হয়েছে গ্রাইকোলাছ

(মিক Glykos = sugar এবং lysis = splitting)। এই পর্যায়ের সব এনজাইম দবণীয়।

২। থিতীয় ধাপ বা দিতীয় পর্যায়ে পাইকভিক অ্যাসিড সম্পূর্ণভাবে জারিত হয়ে তিন অণু CO, উৎপন্ন হয়ে সংঘটিত হয় মাইটোকভ্রিয়নের ম্যাট্রিস্ক-এ। এই পর্যায়ের্ব একটি এনজাইম ছাড়া সবকটি এনজাইম দ্রবণীয় এবং মার্টি এর তরলে অবস্থান করে। এই পর্যায়ের অধিকাংশ বিক্রিয়া একটি চক্রাকারে আবর্তিত হয়। একে বলা হয় ক্রেন্স চহ টাইকার্বোক্সিলিক অ্যাসিড (TCA) চক্র বা সাইট্রিক অ্যাসিড চক্র।

ত। তৃতীয় ধাপ বা তৃতীয় পর্যায়ে প্লাইকোলাইসিস এবং ক্রেবস্ চক্রে উৎপন্ন NADH + H*, FADH, হতে ইন্দ্র অক্সিজেন-এ স্থানান্তরিত হয়। মাইটোকড্রিয়নের ভেতর মেমব্রেনের গায়ে সংযুক্ত ট্রাঙ্গপোর্ট প্রোটিনের সমন্বয়ে গ্র ইলেট্রন ট্রাঙ্গপোর্ট চেইন এই কার্য সম্পাদন করে। তাই এই পর্যায়কে বলা হয় ইলেট্রন ট্রাঙ্গপোর্ট চেইন পর্যায়। ত্র রেসপিরেটরি চেইনও বলা হয়।

১। প্রথম ধাপ : গ্লাইকোলাইসিস (Glycolysis)

(একটি সাইটোপ্লাজমিক প্রক্রিয়া)

যে প্রক্রিয়ায় এক অপু গ্রুকোজ বিভিন্ন রাসায়নিক বিক্রিয়ায় জারিত হয়ে দুই অপু পাইরুভিক অ্যাসিডে পরিণত হ তাকে গ্রাইকোলাইসিস বলে। গ্রিইকোলাইসিসকে EMP (এই প্রক্রিয়ার প্রতিষ্ঠাতা তিনজন বিজ্ঞানী Embden, Meyerhol a Parnas এর নাম অনুযায়ী) পাথওয়ে, খুসনের সাধারণ গতিপথ বা সাইটোপ্লাঞ্জমিক খুসনও বলা হয়। উদ্ভিদে সঞ্জিত খেতসার মহ বিভিন্ন এনজাইমের সাহায্যে জারিত হয়ে গ্রুকোজ-এ পরিণত হয় এবং গ্রুকোজ গ্লাইকোলাইসিস প্রক্রিয়ার প্রথম বস্তু হিসেবে ব্যক্ষ হয়। এ প্রক্রিয়ার জন্য কোনো অক্সিজেনের প্রয়োজন পড়ে না। গ্লাইকোলাইসিস স্বাত ও অবাত উভয় প্রকার শ্বননের প্রধ্যে ধাপ বা পর্যায়।

গ্রুকোজকে শ্বসনিক বস্তু ধরলে গ্লাইকোলাইসিস প্রক্রিয়াটি পর্যায়ক্রমিকভাবে নিমুরূপ দাঁড়ায় :

গ্লেকাজ, ATP হতে একটি ফসফেট গ্রহণ করে গ্লুকোজ-৬-ফসফেট-এ পরিণত হয়। এ বিক্রিয়
হেজোকাইনেজ এনজাইম ক্রিয়াশীল হয় এবং একটি ADP সৃষ্টি হয়। বিক্রিয়াটি একয়ুখী।

(ii) **গ্রকোজ-৬-ফসফেট,** ফুরৌজ-৬-ফসফেট-এ রূপান্তরিত হয়। এ বিক্রিয়ায় **ফসফো-গ্রকোআইসোমতে**

এনজাইম ক্রিয়াশীল হয়। বিক্রিয়াটি হিমুখী।

(iii) ফুর্ট্টোজ-৬-ফসফেট, ATP হতে একটি ফসফেট গ্রহণ করে ফুর্ট্টোজ-১,৬-বিসফসফেট-এ পরিণত হয়। বিক্রিয়ায় ফসফোফুর্ট্টোকাইনেজ এনজাইম ক্রিয়াশীল হয় এবং একটি ADP সৃষ্টি হয়। বিক্রিয়াটি এক্ষ্

(iv) ফুর্ট্রোজ-১-৬-বিসফসফেট (৬ কার্বনবিশিষ্ট) ভেঙে এক অণু ৩-ফসফোগ্রিসার্যালভিহাইড (৩ কার্বনবিশিষ্ট) এবং এক অণু ডাইহাইড্রোক্তি আসিটোন ফসফেট (৩ কার্বনবিশিষ্ট) সৃষ্টি হয়। এ বিক্রিয়ায় আলভোল এনজাইম ক্রিয়াশীল হয়। আইসোমারেজ এনজাইমের কার্যকারিতায় এরা একটি অন্যটিতে পরিবর্তিত ইটি পারে। উভয় বিক্রিয়া দিমুখী।

 (v) ৩-ফসফোগ্রিসার্যালিডিহাইড এক অণু অজৈব ফসফেট গ্রহণ করে ১,৩-বিসফসফোগ্রিসারিক আর্নিজ্ পরিণত হয়। এ বিক্রিয়ায় ফসফোগ্রিসার্যালিডিহাইড ডিহাইড্রোজিনেজ এনজাইম ক্রিয়াশীল হয়,য়৾য় ফসফেট ও NAD অংশগ্রহণ করে এবং NADH + H+(NADH2) সৃষ্টি হয়। বিক্রিয়াটি ছিমুখী।

(vi) ১,৩-বিসম্বসকোগ্নিসারিক অ্যাসিড, ফসফেট হারিয়ে ৩-ফসফোগ্রিসারিক অ্যাসিড-এ পরিণত হয়। বিক্রিয়ায় ফসফোগ্রিসারিক অ্যাসিড কাইনেজ এনজাইম ক্রিয়াশীল হয় এবং ADP হতে একটি ATP হয়। বিক্রিয়াটি দ্বিমুখী।

সুক্রেজ হলে উদ্ভিদে প্রধান ট্রান্সলোকেটেড তাগার, তাই সুক্রোজকেই উদ্ভিদে স্থানিক বস্তু হিসেবে ধরা উচিত, গ্লুকোজকে নয়। HSC পর্যায়ের জনা বিষয়টি অপেকাকত অটিল বলে গ্রেজনের স্থানিক বস্তু হলে বল

- (vii) ৩-ফসফোগ্রিসারিক অ্যাসিড, ফসফোগ্রিসারোমিউটেল এনজাইমের কার্যকারিতায় ২-ফসকের অ্যাসিড-এ পরিণত হয়। বিক্রিয়াটি ছিমুখী।
- পালিত-আ পারণত হয়। বিক্রমাট বিমুখী।

 (viii) ২-কসকোন্নিসারিক আসিড, ইনলেজ এনজাইমের কার্যকারিতায় ফসফোইনল পাইকডিক সার্চি
- পারণত হয়। বিক্রেরাত বিমুখা।

 (ix) ফসফোইনল পাইক্রভিক অ্যাসিড, পাইক্রভিক অ্যাসিড কাইনেজ এনজাইমের কার্যকারিতার, শারী

 অ্যাসিড-এ পরিণত হয়। এ বিক্রিয়ায় ADP হতে একটি ATP তৈরি হয়। গুকোজ হতে শারী

 অ্যাসিড সৃষ্টির মাধ্যমেই গ্লাইকোলাইসিস প্রক্রিয়ার সমাপ্তি ঘটে। বিক্রিয়াটি একমুখী।

্যাইকোলাইসিল প্রক্রিয়ার শেষ পর্যায়ে উন্তিদে ফসফোইনল পাইরুভিক অ্যাসিড (PEP) মেটাবোলাইজিং বর অন্টারনেটিভ পথ আছে। PEP, কার্বোক্সিলেজ এনজাইমের কার্যকারিতায়, অঙ্গালো অ্যাসিটিক অ্যাসিড-এ (OAA) পঞ্চিত্রত OAA, ম্যালেট ডিহাইড্রোজনেজ এনজাইমের কার্যকারিতায়, ম্যালিক অ্যাসিড-এ পরিণত হয়। ম্যালিক আইমের কার্যকারিতায়, ম্যালিক আইমের করে এবং বিক্রিয়ার মাধ্যমে পাইরুভিক অ্যাসিড-এ পরিণত হয় যা পরে ক্রেবস চক্রে অংশ্যাহন করে

গ্লাইকোলাইসিস বিক্রিয়ার ৯টি বিক্রিয়ার মধ্যে ১ম, ৩য় এবং শেষ—এই ৩টি বিক্রিয়া একমুখী, অন্যসবগুলো বিক্র গ্লাইকোলাইসিস প্রক্রিয়ার শক্তি উৎপাদন : ATP (দুই অণু), NADH + H+ (দুই অণু) এবং প্লাইক্রভিক আর্চ (দুই অণু)।

যুকোজ হতে ফুর্টোজ-১, ৬-বিসফসফেট হওয়া পর্যন্ত দুই অণু ATP খরচ হয় এবং এর পরবর্তী পর্যায়ে বাদ দ্রায়াজ (৩-কার্বনবিশিষ্ট গ্লিসারালিডিহাইড এবং ডাইহাইডোক্সি আাসিটোন) হতে পাইরুভিক আাসিড হওয়া পর্যন্ত দুই মে ATP এবং এক অণু NADH + H+ উৎপন্ন হয় অর্থাৎ দু অণু ট্রায়োজ হতে মোট চারটি ATP এবং দুটি NADH + দ্রতিপন্ন হয়। কাজেই দেখা যায় তৈরিকৃত ৪ অণু ATP হতে প্রথমে ব্যবহৃত দুই অণু ATP বাদ দিলে য়াইকোলাই প্রকিয়ায় নিট দুটি ATP ও দুটি NADH + H+ জমা হয়। য়াইকোলাইসিসের বিক্রিয়াগুলো কোষের সাইটোপ্লাজমে প্রকে। এর স্বকটি এনজাইম দ্রবণীয়।

গ্রাইকোলাইসিস-এর নিয়ন্ত্রণ

- ১। গ্লাইকোলাইসিস ত্রাদিত হয় ATP-এর ব্যবহার দ্রুত হলে, ATP-এর ব্যবহার হাস পেলে প্রক্রিয়ার হার ক্য যায়।
- ২। গ্রুকোজ-এর প্রাপ্তি তথা সরবরাহের পরিমাণ এ প্রক্রিয়া নিয়ন্ত্রণ করে।
- আলোস্টেরিক এনজাইম 'ফসফেফুরোকাইনেজ' যা ফুরোজ ৬-ফসফেট থেকে ফুরোজ ১, ৬, বিসফসফেট জৈ
 করতে সহায়তা করে, তার গতিময়তার উপর গ্লাইকোলাইসিস প্রক্রিয়া বহুলাংশে নির্ভরশীল। ATP দ্বরা র
 কাজ বাধ্যয়ন্ত হয় এবং ADP দ্বারা উদ্দীও হয়।

গ্রাইকোলাইসিস-এর গুরুত্ব: গ্লাইকোলাইসিস প্রক্রিয়া বিপাকক্রিয়ার এক গুরুত্বপূর্ণ ধাপ। (১) গ্রুকোন্ত থেছে পাইরুভিক অ্যাসিড পর্যন্ত সৃষ্ট বিভিন্ন উপাদান বিভিন্ন উপচিতিমূলক পথে বেশ কিছু সংখ্যক কোষীয় উপাদান সৃষ্টি করে (২) গ্রুকোন্ত থেকে পাইরুভিক অ্যাসিড পর্যন্ত পৌছাতে যে ATP বা NADH + H+ পাওয়া যায় তা মোট সুগ্রুণাভির মহ ১৭% মাত্র ৩% শক্তি তাপশক্তি হিসেবে বেরিয়ে যায় এবং প্রায় ৮০% শক্তি পাইরুভিক অ্যাসিডের মধ্যে তথনত বহ বাকে। (৩) পাইরুভিক অ্যাসিড সৃষ্টিই এই প্রক্রিয়ার মখ্য বিষয়। পাইরুভিক অ্যাসিড সৃষ্টি না হলে খুসন ক্রিয়া বছ য়্যাবে। খুসন বন্ধ হলে জীব জগৎ ধ্বংস হয়ে যাবে।

মুকোনিওজেনেসিস (Gluconeogenesis) : গ্লাইকোলাইসিস প্রক্রিয়ার উল্টো পথে গ্রুকোর্ন্স টুরের হওয়াকে বলা ব মুকোনিওজেনেসিস। এটি প্রাণীর চেয়ে উদ্ভিদে কম হয়, তবে রেড়ি বীজ, সূর্যমুখী বীজ ইত্যাদিতে জমান্ত্র ক্ষে মুকোনিওজেনেসিস প্রক্রিয়ায় সুকরোজ বা গ্রুকোজ-এ পরিণত হয় যা পরবর্তীতে বীজ থেকে অনুরিত চারার বৃত্তি সহায়ক হয়।

২। দিতীয় ধাপ : ক্রেবস্ চক্র (Krebs cycle) (একটি মাইটোকড্রিয়াল ম্যাট্রিল বাজিনা)

্র প্রতিয়ার পাইকভিক আসিড সম্পূর্ণ জারিত হরে(তিম)স্থ CO; উৎপদ্ম করে।

্র বালি বাহিচ্চিক আসিডের মাইটোকভ্রিয়নের ম্যাদ্রিশ্ব-এ ধবেশ : পাইকভিক আসিড তৈরি হয় কোমের সাইটোপ্লাভামে নাইটাপালম থেকে সরাসরি ছিদ্রপথে মাইটোকব্রিয়নের বাইরের মেমবেন পার হয়। পরে পাইকভেট ট্রাপপোর্টারের এই সাইটোপ্রালম থেকে সরাসরি ছিদ্রপথে মাইটোকব্রিয়নের বাইরের মেমবেন পার হয়। পরে পাইকভেট ট্রাপপোর্টারের রবং সাইলোমান তার আয়নের বিনিময়ে মাইটোকপ্রিয়নের ইনার মেমবেন পার হয়ে মাট্রিস্থ-এ প্রবেশ করে।

মে, তার্নার পর পাইরুভিক জ্যাসিড, জ্যাসিটাইল Co-A সৃষ্টির মাধ্যমে মূল চক্রে প্রবেশ করে। প্রক্রিয়াটি

FERT : ্যাইটোক্ডিয়নের ম্যাট্রির-এ ৩-কার্বনবিশিষ্ট পাইরুভিক আসিড, পাইরুভেট ডিহাইছোজিনেজ এনজাইমের)। মাধ্য একটি কমপ্রের) কার্যকারিতায় (i) এক অণু কার্বন হারায় অর্থাৎ CO, উৎপন্ন করে (একাৰণ (একাৰণিস্থিপেশন), (ii) এক অণু NADH + H* উৎপন্ন করে (অক্সিডেশন) এবং (iii) এক অণু দুই কার্বনবিশিষ্ট ্ডিকার্নার্র্ন ত্রাসিড উৎপন্ন করে যা একটি পায়োএস্টার বন্ধন দ্বারা কো-এনজাইম-A (= Co-A, একটি সালফারযুক্ত কো-গ্রাসিট্র সাথে যুক্ত হয়ে (Co-A সংযুক্তিকরণ) ২-কার্বনবিশিষ্ট অ্যাসিটাইল Co-Aতে পরিণত হয়। এটি একটি তিন গার্রণ বার মাধ্যমে এক অণু CO2, এক অণু NADH + H+ এবং এক অণু আসিটাইল Co-A সৃষ্টি হয়। স্টাইনCo-A হলো গ্রাইকোলাইসিস ও ক্রেবস্ চক্রের সংযোগকারী রাসায়নিক উপাদান।

C₃H₄O₃ + HSCoA + NAD TPP Lipoic acid C₂H₃O - SCoA + CO₂ + NADH + H*

২। আসিটাইল Co-A, ম্যাট্রিক্স-এ অবস্থানরত চার কার্বনবিশিষ্ট অক্সালো অ্যাসিটিক অ্যাসিড-এর সাথে যুক্ত হয়ে ৮-কার্বনবিশিষ্ট সাইট্রিক অ্যাসিড সৃষ্টি করে এবং Co-A পৃথক হয়ে যায়। সাইট্রেট সিনথেজ এনজাইম বিক্রিয়ায় সহায়তা হর। বিক্রিয়াটি একমুখী। ম্যাদ্রিস্ত-এ স্থায়ী অবস্থানের কারণে অক্সালো আসিটিক আসিডকে আবাসিক অপু বলা হয়।

ত। সাইট্রিক অ্যাসিড আইসোমারিক পরিবর্তনে আইসোসাইট্রিক অ্যাসিড-এ পরিণত হয়। একোনিটেজ (aconitase)

ব্রনজাইম এ বিক্রিয়ায় সহায়তা করে। বিক্রিয়াটি ছিমুখী।

8। আইসোসাইট্রিক অ্যাসিড CO2 ও 2H° হারিয়ে আলফা কিটোগ্র্টারিক অ্যাসিড এ পরিণত হয়। এক অণু NAD হতে এক অণু NADH+H⁺ এবং এক অণু CO₂ সৃষ্টি হয়। আইসোসাইট্রেট ডিহাইড্রোজিনেজ (isocitrate dehydroeenase) এনজাইম এ বিক্রিয়ায় সহায়তা করে। বিক্রিয়াটি একমুখী।

ে। আলফা কিটোগুটারিক অ্যাসিড, Co-A এর সাথে মিলিত হয়ে সাকসিনাইল Co-A গঠন করে। এখানে এক অণু NAD হতে এক অণু NADH + H* এবং এক অণু CO2 সৃষ্টি হয়। এ বিক্রিয়ায় আলফা কিটোগ্রুটারেট ভিহাইড্রোজিনেজ

(a-ketogluterate dehydrogenase) এনজাইম সহায়তা করে। বিক্রিয়াটি একমুখী।

৬। সাকসিনাইল Co-A, Co-A হারিয়ে সাকসিনিক অ্যাসিড-এ পরিণত হয়। সাবস্ট্রেট লেভেল ফসফোরাইলেশনে এক অপু ATP (ADP + Pi = ATP) সৃষ্টি হয়। Co-A পৃথক হয়ে যায়। সাকসিনাইল Co-A সিনপ্রেটজ (Succinyl Co-A synthetase) এনজাইম বিক্রিয়ায় সহায়তা করে। বিক্রিয়াটি একমুখী। এখানে এক অণু পানি যুক্ত হয়।

৭। সাকসিনিক অ্যাসিড, 2H⁺ হারিয়ে ফিউমারিক অ্যাসিড-এ পরিণত হয়। এখানে এক অণু FAD হতে এক অণু FADH: তৈরি হয়। সাকসিনেট ডিহাইড্রোজিনেজ (Succinate dehydrogenase) এনজাইম এ বিক্রিয়ায় সহায়তা করে।

विक्रियाणि विभुश्री।

উনবিশে শতান্দীতে বিজ্ঞানীগণ আবিভার করেন যে, বায়ুর অনুপস্থিতিতে কোষে ইথানগ বা গ্যাকটিক আসিভ উৎপন্ন হয় কিন্তু বায়ুর শির্মিত কোষ O, গ্রহণ করে এবং CO: ও H:O উৎপন্ন করে। জার্মানিতে জন্ম নেয়া ইংরেজ প্রাণ-রসায়নবিন Sir Hans Adolf Krebs 11900-1981) অক্সিজেনের উপস্থিতিতে পাইকভিক আসিড সম্পূর্ণ আরণ প্রক্রিয়ার পর্যায়ক্রমিক বিক্রিয়ার তথ্য প্রথম প্রকাশ করেন ১৯৩৭ আল। এ জাবণ প্রক্রিয়ার অধিকাংশ বিক্রিয়া একটি চত্রের আকারে আবর্তিত হয়। এই চক্রকে সাধারণত **ট্রাইকার্বোঞ্জিকিক আসিত** (TCA) হয়। চক্রটি আবিষ্কারকের নামানুসারে একে ক্রেবস্ চক্র বলা হয়। এই চক্রের প্রথম উৎপন্ন এবং অতি ভরুত্পূর্ণ পদার্থ সাইট্রিক মাসিত আই এই চক্রকে সাইট্রিক অ্যাসিড চক্রও বলা হয়। ক্রেক্স তার এই বিশেষ আবিষ্ণারের জন্য ১৯৫৩ সালে রসায়নে নোকে বাইজ

পিনে আনিটাইল Co-A সৃষ্টিকে কোনো পৃথক ধাপ ধরা হয় না, কারণ এটি মাইটোকব্রিয়াল ম্যাট্রিক্সেই সংঘটিত হয়।

্রালিক আসিড 2H° হারিয়ে অক্সালো আসিটিক আসিড-এ পরিগত হয়। এখানে এক অবু NAD হতে এক স্থানিত প্রাণিত হয়। ম্যাপেট ডিহাইজ্রোজিনেজ (malate dehydrogenase) এনজাইন এ বিক্রিয়ায় সহায়তা वर्ता। विक्रियाणि विभूशी।

াবিক্র আসিটিক আসিড এই চক্রে পুনঃপুনঃ উৎপাদিত হয় এবং পুনঃপুনঃ অংশ্বাহণ করে।

ক্রমান নিয়ন্ত্রক হলো আইসোসাইট্রেট ডিহাইড্রোজিনেজ এনজাইম (আলোস্টেরিক এনজাইম)। ADP. NAD হলো এক উদ্দীপক ATP এবং NADH + H' হলো ইনহিবিটর ATP বা NADH + H' বেশি জমা হলে এই NAD বৰ্ম হয়ে যায়। আসিটাইল Co-A সৃষ্টিকালে দুই অণু পাইকভিক আসিভ হতে 2টি NADH + H* তৈরি হয়। উদ্ভিদ ও প্রাণীর ক্রেবস্ চক্রের পার্থক্য

্য। ভব্লিদে সাকসিনাইল Co-A সিনথেটেজ ATP তৈরি করে কিন্তু প্রাণীতে GTP তৈরি হয়। GTP পরে একটি _{প্রনজাইম} বিক্রিয়ার মাধ্যমে ATP-তে রূপান্তরিত হয়।

২। আজ পর্যন্ত পরীক্ষাকৃত সকল উদ্ভিদ মাইটোকব্রিয়াতে NAD-malic enzyme পাওয়া গিয়েছে। এই এনজাইম গ্রাপিক জ্যাসিড (ম্যালেট)কে পাইরুভিক জ্যাসিড-এ রূপান্তরিত করে যা জ্যাসিটাইল Co-A সৃষ্টির মাধ্যমে ক্রেবস্ চক্রে প্রবেশ করে। প্রাণীতে এরূপ বিক্রিয়া ঘটে না।

ক্রেবস্ চক্রের তরুত্ব : (১) একটি জীবের বিভিন্ন বিপাকীয় কাজকর্মের জন্য প্রয়োজনীয় শক্তি ক্রেবস্ চক্র থেকেই ৰাৱ্যা যায়। (২) ক্রেবস্ চক্রে উৎপাদিত একাধিক জৈব অ্যাসিড উত্তিদের অ্যামিনো অ্যাসিড সৃষ্টিতে ব্যবহৃত হয়ে থাকে। (৩) ক্রেবস্ চক্রে উৎপন্ন <mark>সাক্সিনিক আসিত্ত</mark> ক্লোরোফিল অণু সৃষ্টির সাবস্টেট হিসেবে ব্যবহৃত হয়। (৪) ক্রেবস্ চক্র শক্তি উৎপাদনের প্রধান কেন্দ্র। শুসনে উৎপাদিত শক্তির অধিকাংশই এ চক্রের মাধ্যমে ঘটে। (৫) ক্রেবস্ চক্রে উৎপন্ন বিজির জৈব অ্যাসিড সাধারণভাবে উদ্ভিদের জৈব অ্যাসিড বিপাকে অংশগ্রহণ করে। (৬) প্রাইমিন সাইটোসিন, পারফাইরিন হিম বত্যাদিও এই চক্র সংশ্লিষ্ট দ্রব্য থেকে তৈরি হয়ে থাকে। (৭) আমরা শ্বসনে CO, ত্যাগ করি তা এই চক্র থেকেই উৎপন্ন হয়।

৩। তৃতীয় ধাপ : ইলেট্রন স্থানান্তর ও ATP তৈরি

(একটি মাইটোকব্রিয়াল মেমব্রেন প্রক্রিয়া)

কোষীয় কাজের শক্তির স্বরূপ হলো ATP। শুসনের প্রথম ধাপে (গ্লাইকোলাইসিস) এবং দিতীয় ধাপে (ক্রেবস্ চক্র) উংগদ্ধ NADH + H⁺ এবং FADH₂তে ধারণকৃত উচ্চশক্তিসম্পন্ন ইলেকট্রনকে কার্যোপযোগী শক্তিতে রূপান্তরিত করতে হলে তা অবশাই ATP-তে রূপান্তরিত হতে হবে। এ রূপান্তর প্রক্রিয়াটির জন্য অক্সিজেনের দরকার হয় এবং মাইটোকব্রিয়নের ইনার মেমব্রেনে অবস্থিত ইলেব্রন ট্রান্সপোর্ট চেইন-এর মাধ্যমে সম্পন্ন হয়।

প্রতি অণু গ্রুকোজ থেকে প্রথম ধাপে (গ্লাইকোলাইসিস) ২ অণু NADH + H⁺ উৎপন্ন হয়, দ্বিতীয় ধাপে (ক্রেবস্ চক্র) ্রিচ অবু NADH + H⁺ এবং ২ অপু FADH₂ উৎপন্ন হয়। এরা বিজারিত যৌগ, এদেরকে অবশ্যই পুনরায় জারিত হতে হবে, নতুবা শ্বসন প্রক্রিয়াটি বন্ধ হয়ে যাবে।

ইলেব্রন ট্রান্সপোর্ট চেইন : কতগুলো ইলেব্রন ট্রান্সপোর্ট প্রোটিন একটি চেইন-এর আকারে চারটি মান্টি-প্রোটিন ক্মপ্লেক্স হিসেবে মাইটোকব্রিয়নের ইনার মেমব্রেনে (শক্তির ক্রম নিমু ধারায়) অবস্থান করে এবং ইলেব্রন স্থানান্তর করে শেষ পর্যন্ত অক্সিজেনের সমস্বয়ে পানি তৈরি করে। ইলেট্রন স্থানান্তরের সময় যে শক্তি নির্গত হয় তা দিয়ে ADP-এর সাথে লৈজানিক ফসফেট (Pi) যুক্ত হয়ে ATP তৈরি করে। ATP তৈরির এ প্রক্রিয়াকে বলা হয় <mark>অঙ্গিডেটিভ ফসফোরাইলেশন</mark>। এ ধাপে প্রতিটি NADH + H+ হতে ৩টি ATP এবং প্রতিটি FADH, হতে ২টি ATP তৈরি হয়।

কারো কারো মতে মাইটোকন্ড্রিয়াল মাট্রিস্থ-এ প্রবেশ করলে NADH + H* এব একটি ATP খরচ হয়ে যায় এবং NADH + H* এর পরিবর্তে FADH2 হিসেবে বিরাজ করে।

ত্রতার ভাবেশ করে। ETC সবাত বসনের একটি পর্যায় মাত্র, কাজেই ETC যাড়া সবাত বসন পূর্ব হয় না।

NADH-Q রিভারেজ : একটি ২৬ সাব-ইউনিট বৌগ, আণবিক ওজন ৮৫০০০০

্রামারটোক্রোম রিভার্টেজ : একটি ১০ সার-ইউনিট যৌগ, আগবিক ওজন ২৮০০০০

্। সাইটোক্রোম অলিডেল : একটি ৮ সাব ইউনিট যৌগ, আপবিক ওলন ১৬০০০০

র। সাইটোক্রোম-সি : একটি অপেক্ষাকৃত ছোট গ্রোটিন। ইউরিকুইনন : একটি নন-প্রোটিন যৌগ

হুদেক্ত্রীন ট্রান্সপোর্ট চেইনের কাজ হলো NADH + H* এবং FADH, এর ইলেকট্রন ম্যাট্রিক্স এর অক্সিজেনে প্রবাহিত

রা। বহিন মাইটোকল্লিয়নের স্বকীয়তা

্বাঞ্চিটি বহিস্থ (ETC এর বাইরে) NADH + H° ডিহাইড্রোজিনেজ যা সরাসরি সাইটোপ্লাজমে উৎপন্ন NADH + H° হিন্দের করে এবং করতে পারে। এই ইলেব্রন পরে ETC এর ইউবিকুইনোন পুল-এ প্রবেশ করে এবং ২টি (৩টি নয়)

২। মাট্রির NADH + H' অব্রিডাইজ করার জ্বি দুটি পথ্য আছে। বান দুত্র

ত। অক্সিজেন রিডাকশনের জন্য বিকল্প পথ। এ বিকল্প অক্সিডেজ, সাইটোক্রোম-৫ অক্সিডেজের মতো নয়। এটি সামানাইড, আজাইড (azide) বা কার্বন মনোক্সাইডের দারা বাধাগ্রন্ত (inhibition) হয় না। তাই এখানে সামানাইড প্রথমিধী শ্বসন হয় যা প্রাণীতে হয় না।

ত্রেরার ETC-এর শেষ পর্যায়ে সাইটোক্রোম অবিভেজ থেকে স্থায়ির-এর প্রয়োজন হয় না। অবিজেন-এর প্রয়োজন হয় করার চাত-এর শেষ পর্যায়ে সাইটোক্রোম অবিভেজ থেকে স্থায়ির-এ মৃক্ত হওয়া (ধাপ-৩) ইলেকট্রন গ্রহণ করার জন। এক পরমাণ অবিজেন দৃটি ইলেকট্রন ও ম্যায়ির থেকে দৃটি প্রোটন (2H¹) গ্রহণ করে এক অণু পানি (H₂O) তৈরি করে। কোষে অবিজেন-এর অভাব হলে ETC-এর ইলেকট্রনর শেষ বাহক সাইটোক্রোম-সি থেকে ইলেকট্রন গ্রহণ করার কেই থাকে না, তাই সাইটোক্রোম-সি ইলেকট্রন মৃক্ত করতে না পেরে পূর্ববর্তী বাহক থেকে ইলেকট্রন গ্রহণের ক্ষমতা হায়য়। এজাবে ক্রমান্থরে পেছনের সবগুলো বাহকই ভারাক্রান্ত হয়ে য়য়। এর ফলে প্রথমে ETC, পরে সাইট্রিক অ্যাসিড
চক্ত, পাইরুতিক অ্যাসিডের অবিজেশন এবং সর্বশেষ গ্রাইকোলাইসিস প্রক্রিয়াটিও বন্ধ হয়ে য়য়। এর ফলে ATP
উৎপাদন বন্ধ হয়ে য়য়, তাই কোষ তার গঠন ও কার্যাবিল চালিয়ে য়বারর মতো শক্তি (ATP) না পেয়ে মরে য়য়।

আমাদের পেশি কোষগুলো ল্যাকটিক অ্যাসিড ফার্মেন্টেশন প্রক্রিয়ায় সীমিত ATP তৈরি করতে পারে কিন্তু প্রয়োজনীয় ধনচাইম না থাকায় স্নায়ুকোষ (ব্রেইনসহ) তা পারে না। ফলে অক্সিজেনের অভাব হলে প্রথমেই স্নায়ু কোষের মৃত্যু ঘটে।

শ্বনিক বস্তু : সুকরোজ প্রথমে ভেঙ্গে গ্রুকোজ ও ফুট্টোজ হয়ে গ্রাইকোলাইসিস-এ প্রবেশ করে। গ্রুকোজ সরাসরি
শানিক বস্তু হিসেবে কাজ করে। অন্যান্য মনোস্যাকারাইড প্রথমে গ্রুকোজ হয়, পরে শ্বসনে প্রবেশ করে। স্টার্চ,

য়ইকোজেন পালিমার প্রথমে ভেঙ্গে গ্রুকোজ সৃষ্টির মাধ্যমে শ্বসনিক বস্তু হিসেবে কাজ করে। ফ্যাট ভেঙ্গে গ্রিসারোল এবং

ল্যাটি আসিড-এ পরিণত হয়। গ্রিসারোল গ্রিসারেভিহাইড-৩-ফসফেট হয়ে শ্বসনে অংশগ্রহণ করে, আর ফ্যাটি আসিড
মানিটাইল-Co-A সৃষ্টির মাধ্যমে শ্বসন প্রক্রিয়ায় প্রবেশ করে। প্রোটিন ভেঙ্গে আমিনো আসিড তৈরি হয়: এর কতক
মানিটাইল Co-A সৃষ্টিতে অংশগ্রহণ করে, আর কতক সাইট্রিক আসিড চক্রে প্রবেশ করে।

শিব। মালোকসংগ্রেমণ প্রক্রিয়ার ফটোফসফোরাইলেশন এবং শ্বসন প্রক্রিয়ার ETC অংশটি ভালোভাবে পড়। এবার নিজের ছকটি

কটোকসংখ্যারাইলেশন ও অভিভেটিত ক্ষমকোরাইলেন-এর মধ্যে পার্থকা		
नार्वरकार विषय	কটোকসকোৱাইলেশন	অভিডোটত ক্সকোন্ত্রাপ্ত
) (कान विकास भटेरे		
ই। কোন কুমাকে ঘটে		
৩। আদাধিক O ₂ -এর হায়োজনীয়াতা		
8। षट्यांनिरन्धेम		
৫। শক্তির উৎস		

শক্তি উৎপাদনের পরিসংখ্যান

সবাত শুসনে এক অণু গ্রুকোজ সম্পূর্ণ জারিত হয়ে CO2 ও পানি উৎপাদনকালে নিমুত্রপ শক্তি উৎপাদন

গ্নাইকোলাইসিস	ফেবস চফ/ TCA চফ	ETC (ETS)	সর্বমোট ATI
2ATP 2NADH+ H ⁺ (যা সাইটোপ্রাজম থেকে মাইটোকদ্রিয়াল মাট্রিস্ক-এ প্রবেশ কালে একটি ATP হারিয়ে FADH ₂ তে পরিণত হয়।	আসিটাইল Co-A সৃষ্টিকালে → 2NADH+ H ⁺ ফুল ফেবস্ চক্রে 24 ATP 2FADH ₂ 2ATP	4 ATP 6 ATP 18 ATP 4 ATP 32 ATP	= 2ATP = 4ATP = 6ATP = 18ATP = 2ATP

এখানে উল্লেখ্য যে, এক মোল গ্রুকোজকে পোড়ালে ৬৮৬ টিলোক্যালরি শক্তি বের হয় কিন্তু বায়োলজিক্যাণ নিচ মাত্র তিচ্ব ক্রিলোক্যালরি কার্যকরী শক্তি পাওয়া যায় এবং বাকি শক্তি তাপশক্তি হিসেবে নষ্ট হয়ে যায়। বিভিন্ন রামায় বিক্রিয়ায় প্রতিটি ATP হতে মাত্র ১০ কিলোক্যালরি হিসেবে ৩৮টি ATP হতে ৩৮০ কিলোক্যালরি অথবা ৩৬টি ATP ৩৬০ Kcal শক্তি সরবরাহ হয়, যার ফলে কার্যক্ষমতা দাঁড়ায় প্রায়(৫৫.৪% ব্র) তারও কম। অনেকের মতে ৪০%।

(খ) অবাত খুসন (Anaerobic Respiration)

DE .8 অবাত শ্বসন প্রক্রিয়ায় কোনো মুক্ত অক্সিজেনের প্রয়োজন হয় না। যে শ্বসন প্রক্রিয়া অক্সিজেনের অনুপস্থিতিতে স হয় তাকে অবাত শ্বসন বলে।

> C6H12O6 4मकाहम 2 C2H5OH + 2CO2 + 20 किलाकाानित गिक গ্রকোজ देशानन

অবাত শ্বসন দুটি পর্যায়ে সম্পূর্ণ হয়; যথা : ১। গ্লাইকোলাইসিস ও ২। পাইরুভিক অ্যাসিডের অসম্পূর্ণ জারণ।

১ । গ্রাইকোলাইসিস : এটি সবাত শ্বসনের গ্রাইকোলাইসিস প্রক্রিয়ার অনুরূপ, গ্রাইকোলাইসিস উভয় প্রকার শ্বস্তে প্রথম পর্যায়। এ ধাপে এক অণু গ্লুকোজ থেক ২ অণু পাইরুভিক অ্যাসিড, ২ অণু NADH + H+ ও ২ অণু ATP । र्य ।

২। পাইক্রভিক অ্যাসিডের অসম্পূর্ণ জারণ (পাইক্রভিক অ্যাসিড থেকে ইথানল অথবা স্যাকটিক অ্যাসিড স্ অবাত শ্বসনের দিতীয় পর্যায়ে পাইরুভিক আাগিড অসম্পূর্ণভাবে জারিত হয়ে\ইথানল ও CO\ অথবা তদু ল্যাকটিক मुष्टि कर्त्र ।

(I) প্রালকোহণিক ফার্মেকেশন তথা ইথানগ সৃষি। এটি দুই ধালে সম্পন্ন হয়। প্রথম ধালে কার্মেজিলেজ ্রের কার্যকারিতার পাইকতিক আসিড এক অণু CO2 বের করে দিয়ে আসিটেভিছাইড উৎপন্ন করে এবং বিতীয় প্রতার্থন ভিহাইট্রোজিনেজ এনজাইখের কার্যকারিভায় আসিটেভিহাইড, NADH + H° হতে সৃটি হাইট্রোজেন বেল করে ইথানল (ইথাইল আলকোহল) উৎপন্ন করে এবং NAD মৃক হয়ে যায়। বিক্রিয়াটি নিমুক্তপ :

ব্রবাত শ্বসনে প্লাইকোলাইসিসে NADH + H+ উৎপন্ন হয়েছিল তা এক্ষেত্রে খরচ হয়ে গেল। কাজেই অবাত শ্বসনে গ্রাইলিস প্রক্রিয়ায় জমানো দৃটি ATP-ই শক্তির একমাত্র উৎস। দৃটি ATP হতে শেষ পর্যন্ত ১০ x ২ = ২০ কিলাকালির শক্তি পাওয়া যায়।

ক্ষুম্য ছ্যাক হলো সুবিধাবাদী অবায়বীয় ছ্যাক। এটি যখন সবাত শ্বসন থেকে ফার্মেন্টেশন পদ্ধতিতে প্রত্যাবর্তন করে গ্রহন সমপরিমাণ শক্তির জন্য ১৮ গুণ দ্রুত গ্রুকোজ মেটাবলাইজ করে। পুনরায় বায়বীয় অবস্থায় এলে গ্লাইকোলাইসিস হ্লাস পায়। বা্য়বীয় (aerobic) শ্বন্ধন ফিবে আসার প্রেক্ষিতে গ্রাইকোলাইসিস,হাস পাওয়াকে বলা হয় pasteur effect.

(ii) শ্যাক্টিক অ্যাসিড সৃষ্টি : ল্যাকটিক অ্যাসিড ডিহাইড্রোজিনেজ এনজাইমের কার্যকারিতায় পাইক্তিক অ্যাসিড NADH + H+ হতে হাইড্রোজেন গ্রহণ করে ল্যাকটিক অ্যাসিডে পরিণত হয়। ল্যাকটিক অ্যাসিড সৃষ্টিকালে কোনো CO2 ভংগর হয় না। উচ্চেশ্রেণির উদ্ভিদে ল্যাকটিক অ্যাসিড সৃষ্টি হয় না। কতিপয় ব্যাষ্ট্রেরিয়া ও প্রাণীতে, বিশেষ করে পিলিতে, গাক্টিক আসিড অধিক উৎপন্ন হয়। অবাত শ্বসন অধিকাংশ আণুবীক্ষণিক জীবেরই শক্তি উৎপাদনের একমাত্র প্রক্রিয়া। কোষের বাইরে অন্সিজেনের অনুপস্থিতিতে গ্রুকোজ অণু অসম্পূর্ণভাবে জারিত হয়ে আলকোহল অথবা ল্যাকটিক আসিড সৃষ্টি ও অল্প পরিমাণ শক্তি উৎপাদন প্রক্রিয়াকে ফার্মেন্টেশন বা গাঁজন বলা হয়। ফার্মেন্টেশনের ফলে ইথানল (ইথাইল আগকোহন) অথবা ল্যাকটিক অ্যাসিড উৎপন্ন হয়

NADH + H
$$^+$$
 NAD
$$CH_3-CO-COOH$$
পাইকভিক আসিভ
পানিভ আসিভ
ভিহাইড্রোজনেজ

অবাত শ্বসনে $^+$ অণু গ্রুকোজ হতে $^+$ অণু ল্যাকটিক আসিড উৎপন্ন হয়।
$$C_6H_{12}O_6 \longrightarrow 2C_3H_6O_3 + 20 \text{ কিলোক্যাগরি শক্তি}$$
গ্রুকোজ
ল্যাকটিক আসিড

প্রকতকোষী এবং আদিকোষী জীবে শ্বসনের স্থান

প্রকৃতকোষী	আদিকোষী
(ব) মাইটোকব্রিয়নের বাইরে (সাইটোপ্লাজমে) ১। প্লাইকোলাইসিস ২। ফার্মেন্টেশন (ব) মা <u>ইটোকব্রিয়নের ভেতরে ম্</u> লাট্রিক্স-এ: ৩। <u>ক্রেবস চক্র</u> মাইটোকব্রিয়নের ইনারমেমব্রেন-এ ৪। ইলেব্রন ট্রান্সপোর্ট চেইন।	(ক) সাইটোপ্লাজমে ১। গ্রাইকোলাইসিস্ ২। ফার্মেন্টেশন ৩। ক্রেবস চক্র (খ) প্রাজমানেমব্রেনের ভেতরের তল (innersurface) ৪। ইলেক্ট্রন ট্রাঙ্গলোর্ট চেইন্।

বিভিন্ন শিলে অবাত শ্বসনের তথা ফার্মেন্টেশনের ব্যবহার : বিভিন্ন অণুজীবের অবাত শ্বসন প্রক্রিয়া কাছে ১ প্রতিষ্ঠিত হরেছে অনেক শিল্প। নিচে সংক্ষেপে এর করেকটি উপস্থাপন করা হলো।

ষ্ঠিত হরেছে অনেক শিল্প। নিচে সংক্ষেণে এর ত্রানার এই শিল্পে কাজে লাগানো হয়। ময়দা-চিনির সাথে ঈস্ট বেছু। (i) বেকারি শিল্পে। ইস্টের ফার্মেন্টেশন প্রক্রিয়াকে এই শিল্পে কাজে লাগানো হয়। ময়দা-চিনির সাথে ঈস্ট বেছু। (i) বেকারি শিল্পে : সম্পের কামেন্ডেশন আঞ্চলান্ত পাউকাটি তৈরি করা হয়। ময়দা-চিনি ইত্যাদি উপকরণের সাথে মিপ্রিত সম্পের অবাত শ্বসনের ফলে সৃষ্টি হয় ৫০ পাউকাট তার করা হয়। ময়দানাচান হত্যান ত ইথাইন আলকোহল। CO2 গ্যাস-এর চাপে পাউরুটি ফুলে ফাঁপা হয়; আর আলকোহল তাপে বাল্প হয়ে উড়ে যাহ লে আলকোহল। CO2 গ্যাস-এর চাপে পাওলার হুব (ii) মন্য শিল্পে: ইন্টের অবাত শ্বসন তথা ফার্মেন্টেশনকে কাজে লাগিয়ে মদ তৈরি করা হয়। এ প্রক্রিয়ায় বা

রস থেকে প্রিয়াইন এবং আপেলের রস থেকে সিডার এপ্তত করা হয়।

- থেকে জ্বাহন দুবং আলেকার করে। পর্বনার সাথে সম্প্রের ফার্মেন্টেশন বিক্রিয়ায় ইপাইল আলকোহল তৈরি হয়। দর্শনার (III) আনকোহন হস্ততে। বিক্রায় আলকোহন তৈরি করা হয়। একই প্রক্রিয়ায় বিউটানল, প্রপান্ত ইয়া প্রস্তুত করা হয়।
- (iv) দুধ শিল্পে: দুধের সাথে Lactobacillus helveticus, Streptococcus lactis ইত্যাদি ব্যাক্টেরিয়া মিশিরে ১ ঘণ্টার মধ্যে 37–38°C চাপমাত্রায় দই তৈরি করা হয়। এটিও ব্যার্টেরিয়ার অবাত শ্বসনের ফল। পনির ও মাখন তৈতি
- (v) **আয়ুর্বেদিক ওবুধ পিছে** : অনেক আয়ুর্বেদ ওযুধ তৈরিতে বিভিন্ন ড্রাগের মিশ্রণের সাথে চিটাগুড় দিয়ে পার জ দেয়া হয় (এমনকি মাটির নিচে বেশ কিছুদিন রাখা হয়)। এতে চিটাওড় থেকে অ্যালকোহল তৈরি হয় যাতে বিভিন্ন হাল
- (vi) চা ও ককি প্রক্রিয়াজাতকরণে : চা প্রক্রিয়াজাতকরণে ফার্মেন্টেশন পদ্ধতি ব্যবহার করা হয় এবং ফলে সবুষদা তাম বর্ণ প্রাপ্ত হয় এবং সুগন্ধযুক্ত হয়। কফি শিল্পেও এর প্রয়োগ আছে।
- (vii) মাঙ্গে ও মাছ শিল্পে: বিভিন্ন ঈস্ট ও কতিপয় ছত্রাক (Penicillium, Aspergillus), ব্যাক্টেরিয়া (Pedicocce cerevisiae. Bacillus sp.) ফার্মেন্টেশন প্রক্রিয়াকে কাজে লাগিয়ে উৎপাদিত হচ্ছে মাংসজাত দ্রবা, যেমন-দ্রিং আমেরিকায় কিউরেডহ্যাম (Curedham), মাছ হতে তৈরি জাপানে কাতস্বুশি (Katsuobushi) প্রভৃতি।

(viii)-ব্রিটামিন তৈরিতে : প্রিয়ামিন ও রিবোফ্র্যাবিন নামক ভিটামিন (B₁ ও B₂ এই প্রক্রিয়ায় ইস্টের সাহায্যে তৌ कता दश।

- (ix) ভিনেগার উৎপাদন : গুড়ের মধ্যে ঈস্ট মিশিয়ে ইথাইল আলেকোহল উৎপন্ন হয়। এতে Acetobacter ace নামক ব্যাক্টেরিয়া দিয়ে জারণ ক্রিয়ায় অ্যাসেটিক অ্যাসিড বা ভিনেগার উৎপন্ন করা হয়।
- (x) কোমল পানীয় শিল্পে: বিভিন্ন প্রকার কোমল পানীয়ের প্রধান উপাদান <u>সাইট্রিক অ্যাসিড</u> গাঁজন প্রক্রিয়ায় উৎপাদিঃ र्स ।

শ্বসনিক হার/কোশেন্ট (Respiratory quotient/R.Q) : শ্বসন প্রক্রিনায় উদ্ভিদ যে পরিমাণ CO2 ত্যাগ করে এব ষে পরিমাণ O2 গ্রহণ করে তার অনুপাতকে শ্বসনিক হার (R.Q) বলে। বিভিন্ন শ্বসনিক বস্তুর জন্য শ্বসনিক হার বিজি রকম হয়ে থাকে। উদাহরণস্বরূপ বলা যায় শ্বসনিক বস্তু যদি গ্রুকোজ হয় তবে এটি সবাত শ্বসনের মাধ্যমে ৬ অণু CO:

এক্ষেত্রে শ্বনন হার নির্ণরের জন্য নিমের সমীকরণ ব্যবহার করা হয়।

কাজেই সবাত শ্বসনের শ্বসনিক হার (R.Q) = নির্গত CO2 এর অণুর পরিমাণ পৃথীত O2 এর অণুর পরিমাণ

$$\therefore \text{ R.Q} = \frac{6\text{CO}_2}{6\text{O}_2} = \frac{6}{6} = 1$$

প্রতিয়ার কার্বোহাইডেট, জৈব আাসিড, চর্বি ও আঘিষ খুসনিক বস্ত হিসেবে জারিত হয়। খুসনিক বস্ত্র ও প্রতির মানের উপর শ্বসন হার (R.Q) ভিন্ন ভিন্ন হতে দেখা যায়। গেমন.

$$\frac{4CO_2}{3O_2} = \frac{4}{3} = \frac{133}{1.33}$$

$$\frac{1.33}{36CO_2} = \frac{3}{3} = \frac{133}{1.33}$$

ভালিক আসিতের R.Q =
$$\frac{36\text{CO}_2}{51\text{O}_2} = \frac{36}{51} = 0.71$$

R.a. < 1

আমিকে O2এর পরিমাণ কম থাকে এবং আমিষ শ্বসনিক বন্ধ হিসেবে ব্যবহৃত হলে এদের R.Q এর মার্ছ I এর কম বাকে। কানের প্রভাবকসমূহ : নিমুলিখিত বাহ্যিক এবং অভ্যন্তরীণ প্রভাবকসমূহ শ্বসন ক্রিয়ার উপর প্রভাব বিজ্ঞার করে

4774 (ক) বাহ্যিক প্রভাবকসমূহ :

্য তাপমাত্রা : শ্বসন ক্রিয়া কতগুলো রাসায়নিক বিক্রিয়ার সমষ্টি, আর এ রাসায়নিক বিক্রিয়াতলোর হার বিভিন্ন ক্রমের ধারা নিয়ন্ত্রিত। যেহেত্ উৎসেচকসমূহের কার্যকারিতা তাপমাত্রার উপর নির্ভরশীল সেহেত্ তাপমাত্রার হাস-বৃদ্ধি ক্ষানের হারকেও নিয়ন্ত্রিত করে। তাপমাত্রা 0° সে, থেকে 30°C সে, পর্যন্ত বাড়ার সাথে স্থাসন হারও ক্রমাগত বাড়ে। ০°C খসন হার খুবই কম থাকে। সাধারণত 20°-35°C তাপমাত্রায় শ্বসন প্রক্রিয়া ভালোভাবে চলে। 45°C এর উপরের তাপমাত্রায় উৎসেচকসমূহের বিক্রিয়ার হার তথা স্বসনের হার বেশ কমে যায়।

২। <mark>অক্সিজেন :</mark> পাইরুতিক অ্যাসিডের পূর্ণাঙ্গ জারণেব জন্য অক্সিজেন প্রয়োজন। সবাত শ্বসনে পাইরুতিক অ্যাসিড দুর্গু জারিত হয়ে CO2 ও H2O উৎপন্ন করে। অতএব কেবল <u>সুরাত শুসনেই অক্সিজেনের প্রয়োজন পড়ে।</u>

ও। <u>পানি</u> : কতগুলো বিক্রিয়ায় পানির প্রয়োজন হয়, অতএব প্রয়োজনীয় পানি সরবরাহও শ্বসন ক্রিয়াকে প্রভাবিত করে থাকে।

 ॥ আলো : শ্বসনকার্যে আলোর প্রয়োজন পড়ে না সতি। কিন্তু দিনের বেলায় আলোর উপস্থিতিতে পত্রবদ্ধে খোলা বাকায় 02 ব্যহণ ও CO2 ত্যাগ করা সহজ হয় বলে শ্বসন হার একটু বেড়ে যায়।

ে। কার্বন ডাই-অক্সাইড-এর ঘনত : বায়ুতে CO2-এর ঘনত বেড়ে গেলে খসন হার কিঞ্চিং ক্রমে যায়।
(খ) অভ্যন্তরীণ প্রভাবকসমূহ :

<u>১। জটিপ খাদ্যদেবা</u> : সরল খাদ্য গ্রুকোজ গ্রসন ক্রিয়ার প্রধান শ্বসনিক বস্তু। বিভিন্ন বিক্রিয়ায় কোষস্থ জটিপ খাদ্যই কোজে রূপান্তরিত হয়। কাজেই জটিল খাদ্যদ্রিব্যের পরিমাণ ও ধরন খুসন প্রক্রিয়ার হারকে নিয়ন্ত্রণ করে।

- ২। উৎসেচক: শ্বসন প্রক্রিয়ার বিভিন্ন বিক্রিয়ায় অসংখ্য উৎসেচক অংশগ্রহণ করে, তাদের উপস্থিতির উপরই সম্পূর্ণ সন প্রক্রিয়াটি নির্ভরশীল।
 - ক্রামের বয়স : যে কোষে প্রোটোপ্রাজম অধিক (অল্প বয়সের) সে সব কোষ য়সন হার অধিক হয়।
- ৪। কোষত্ব অজৈব লবণ : কোষে অজৈব লবণ অধিক পরিমাণে থাকলে শ্বসন হার বেড়ে যায়।
- । কোষ মধ্যস্থ পানি : কোষে প্রয়োজনীয় পানির অভাব হলে শ্বসন হার কমে যায়।
- ও। মাটিতে অজৈব লবণ : মাটিতে NaCl, KCl, CaCl ও MgCl এর দ্রবণের সরবরাহ বৃদ্ধি ঘটিয়ে শ্বসন হার বৃদ্ধি
 মায়।

 মার্মা

৭। জন্যান্য প্রভাবক : আঘাতপ্রাপ্ত টিস্যুতে আঘাত নিরাময়ের জন্য কোষ বিভাজন দ্রুততর হয়, ফলে শ্বসন হার র যায়। হাত দিয়ে পাতা মৃদু ঘষে দিলে শ্বসন হার বৃদ্ধি পায়।

কানের ভরত্ব (Importance of Respiration)

যে কোনো জীবের জীবনে স্থসনের তরুত্ব অপরিসীম। উদ্ভিদ বা প্রাণীর প্রতিটি সজীব কোনেই স্ক অব্যাহতভাবে চলতে থাকে। খুসন প্রক্রিয়া বন্ধ হওয়া মানেই জীব বা সেই জীব কোখের মৃত্যু হওয়া। নিচে চা শ্বসনের ৩কাতু সম্পর্কে অতি সংক্ষেপে বর্ণনা করা হলো:

নের তর্মন্ত্র সম্পরে আত সংক্ষেণে বানা করা ১। জীবের দেহে শক্তি সরবরাহ : জীবের প্রতিটি প্রক্রিয়া (যা জীবনের বৈশিষ্টা) পরিচালনার জন্য শক্তির ব जात व भक्ति जारम श्रमन श्रक्तियात्र माधारम । कारकार भक्ति उर्णामरमत माधारम जीरतत मकन किरिक श्रक्तिया क

করার মধ্যেই রয়েছে যে কোনো জীবের জীবনে শ্বসন প্রক্রিয়ার প্রকৃত হরুত্ব।

থ মধ্যেই রয়েছে যে কোনো লাকের লাকি CO2 প্রত্যক্ষ বা পরোক্ষভাবে সালোকসংশ্রেষণ প্রক্রিয়ায় ব্যবহৃত হ খাদা উৎপন্ন করে। সে খাদ্য যেমন উদ্ভিদ জীবনকে রক্ষা করে, তেমনই আবার সমগ্র প্রাণী জগতকেও রক্ষা করে। ত । খনিজ লবন পরিলোধণ : উদ্ভিদের খনিজ লবণ পরিশোষণে শ্বসন প্রক্রিয়া ওরুত্পূর্ণ ভূমিকা পালন করে।

হার কম হলে লবণ পরিশোধণ হাব কমে যায় এবং বৃদ্ধি ও অন্যান্য জৈবিক প্রক্রিয়া ব্যাহত হয়।

- ৪। কোষ বিভাজন ও দৈহিক বৃদ্ধি: শ্বসন প্রক্রিয়ার প্রভাব কোষ বিভাজন প্রক্রিয়ার উপরও প্রতিফলিত হয়। বিভাজনের প্রয়োজনীয় শক্তি ও কিছু আনুষঙ্গিক পদার্থ শ্বসন প্রক্রিয়া হতে আসে। তাই এ প্রক্রিয়া জীবের দৈছিক निग्रञ्जन करत ।
- ৫। এনজাইম ও জৈব জ্যাসিড উৎপাদন : এ প্রক্রিয়া বিভিন্ন উপকার ও জৈব অ্যাসিড সৃষ্টিতে সহায়তা ব্রার 🗈 জীবনের অন্যান্য জৈবিক কার্যক্রমেও সহায়তা করে।
- ৬। বায়ুমবলে CO2 ও O2 এর ভারসাম্য রক্ষা : সালোকসংশ্রেষণ প্রক্রিয়ায় বায়ুমওল হতে CO2 গৃহীত হয় এত বর্জিত হয় কিন্তু শ্বসন প্রক্রিয়ায় বায়ুমণ্ডল হতে O2 গৃহীত হয় এবং CO2 বর্জিত হয়, তাই বায়ুমণ্ডলে CO2 ও 0, ভারসাম্য রক্ষিত হয়।
- ৭। শিক্সে ব্যবহার : বিভিন্ন অণুজীবের অবাত শ্বসন প্রাক্রন্মাকে কাজে লাগিয়ে গড়ে উঠেছে আলকোহল, মদ, দি আচার, মাছ ও মাংসের সস ইত্যাদি উৎপাদন শিল্প প্রতিষ্ঠান।
- ৮। বেকারি ও দুর্মজাত শিল্প : বিভিন্ন অণুজীবের অবাত শ্বসন প্রক্রিয়াকে কাজে লাগিয়ে মানুষের প্রয়োজনীয় বে (পাউরুটি) ও দুগ্ধজাত দ্রব্যাদি (দই, পনির) উৎপাদন করা হয়।

গ্রাইকোলাইসিস প্রক্রিয়ার সকল এনজাইম সার্বজনীনভাবে বহু ব্যাকটেরিয়া, সকল প্রোটিস্ট, সকল ছ্তাক, প্রাণী এবং সকল উদ্ভিদ কোনে পাওয়া যায়। এ থেকে বোঝা যায় এরা সবাই একই ধরনের জেনেটিক তথ্য তথা ধন্ননের DNA বহন করে। কাজেই এরা সবাই একই পূর্বপুরুষ থেকে উল্পত হয়েছে।

কাজ: সবাত ও অবাত শ্বসনের মধ্যে পার্থক্য নির্ণয় কর।

পার্থক্যের বিষয়	সবাত শ্বসন	TETRITO Minor
১। অক্সিজেন		অবাত শ্বসন
২। পাইরুভিক অ্যাসিডের জারণ		A LABORATE BY
७। CO2 উৎপাদন		
8। পাनि উৎপাদন		
ে। অ্যালকোহল ও ল্যাকটিক অ্যাসিড		
काराज्य जागाव	NA WA LA	Marie Street
ी। क्लाबाव बर्छ		
৮। রাসায়নিক বিক্রিয়া		

সার-সংক্ষেপ

প্রবাদ : Stomata-এর বাংগা প্রতিশব্দ করা হয়েছে প্রার্জ । এই রক্ত পাতায় অধিক থাকে বলেই ক্ষুদ্ প্রতিশন করা হয়েছে। পাতায় (সাধারণত নিমুত্তে) অবস্থিত দু'টি রক্ষীকোন ধারা বেষ্টিত রক্ষের নাম পত্রবন্ধ। পত্র হতে পাৰে, আবার খুলেও যেতে পারে। পানি শোষণ করে রক্ষীকোষধয় ক্ষীত হলে পত্রবক্ত খুলে যায়, আবার পানি। রক্ষীভোষন্তর শিধিল হলে পত্রবন্ধ বন্ধ হয়ে যায়। পত্রবন্ধের মাধ্যমে পানি বাশ্পাকারে বের হয়ে যায়। উত্তিদ পত্রক্তের ওরুত্ব অপরিসীম।

প্রবেদন : প্রবেদন একটি শারীরতাত্ত্বিক প্রক্রিয়া। এই প্রক্রিয়ায় উদ্ভিদের দেহাভ্যন্তর থেকে পানি বাম্পাকারে বে যার। বান্প বের হয়ে যাওয়ার পথের ভিন্নতা অনুযায়ী প্রথেদন তিন প্রকার, যথা- পত্রবন্ধীয় প্রখেদন, পেন্টিকুলার হ এবং কিউটিকুলার প্রবেদন। অধিকাংশ উদ্ভিদে দিনের আলোতে পত্ররন্ধ খোলা থাকে এবং প্রবেদন ঘটে। মক্তৃত্বির প্রথম সূর্যালোকের এলাকায় সাধারণত পত্ররন্ধ দিনে বন্ধ থাকে এবং রাত্রে খোলা থাকে, তাই মুক্র উদ্ভিদে প্রয়েদ্য : হুয়ে থাকে। এটি উদ্ভিদের একটি অভিযোজন বৈশিষ্ট্য।

কটোঞ্সকোরাইলেশন : আলোকশক্তির সাহাযো কোনো যৌগের সাথে ফসফেট সংযুক্তি প্রক্রিয়া। কটোকসকোরাইলেশন। প্রকৃতপকে সূর্যশক্তির সাহায্যে ADP-এর সাথে এক অণু ফসফেট সংযুক্ত হয়ে ATP à হওয়ার নামই ফটোফসফোরাইলেশন। অচক্রীয় ও চক্রীয়— এই দুই প্রক্রিয়ায় ফটোফসফোরাইলেশন হয়ে থাকে। উল্লি জীবনে ফটোফসফোরাইলেশন প্রক্রিয়া অত্যন্ত গুরুত্বপূর্ণ, কারণ এই প্রক্রিয়ায় সৃষ্ট ATP ব্যবহার করে সবুজ উদ্ভিদ শুর্ক জাতীয় খাদ্য প্রস্তুত করে থাকে। সবুজ উদ্ভিদ কর্তৃক প্রস্তুত্ত খাদ্যের উপর উদ্ভিদসহ সমগ্র জীবজগৎ নির্ভরশীল।

সালোকসংশ্রেষণ : সালোকসংশ্রেষণ হলো সবুজ উদ্ধিদ কর্তৃক শর্করা জাতীয় খাদ্য প্রস্তুত প্রক্রিয়া। এ প্রক্রিয়ার স্থ উত্তিদের ক্লোরোফিল সূর্যালোকের শক্তিকে ATP ও NADPH + H+ নামক রাসায়নিক শক্তিতে রূপান্তরিত করে এ রাসায়নিক শক্তিকে কাজে লাগিয়ে কার্বোহাইড্রেট তথা শর্করা জাতীয় খাদ্য প্রস্তুত করে। এ প্রক্রিয়ায় CO2 গৃহীত হয় হয় O2 উপজাত হিসেবে বের হয়ে যায়। সালোকসংশ্লেষণের আলোক র্নিভর অধ্যায়ে(ATP)ও(NADPH + H+)তরি হয় এর আলোক নিরপেক অধ্যায়ে শর্করা জাতীয় খাদ্য প্রস্তুত হয়। এ খাদ্যের উপর সমগ্র জীবজগৎ নির্ভরশীল।

গ্রাইকোলাইসিস : শ্বসনের প্রাথমিক ধাপ হলো গ্রাইকোলাইসিস। এ প্রক্রিয়ায় এক অণু গ্রুকোজ বিভিন্ন রাসায় বিক্রিয়ায় জারিত হয়ে দুই অণু পাইরুভিক অ্যাসিড তৈরি করে। পাইরুভিক অ্যাসিড পরে সবাত শ্বসনে অ্যাসিটাইল Cou সৃষ্টির মাধ্যমে ক্রেবস্ চক্র ও ETC-এ প্রবেশ করে শক্তি ও O2 উৎপন্ন করে। গ্লাইকোলাইসিস কোষের স্থিতীপ্রাদ সংঘটিত হয়।

वहनिर्वाচनि क्षन्न (MCQ)

১। কোন উপাদানটি উদ্ভিদ মাটি হতে শোষণ করে?

(ক) অক্সিজেন (খ) হাইড্রোজেন

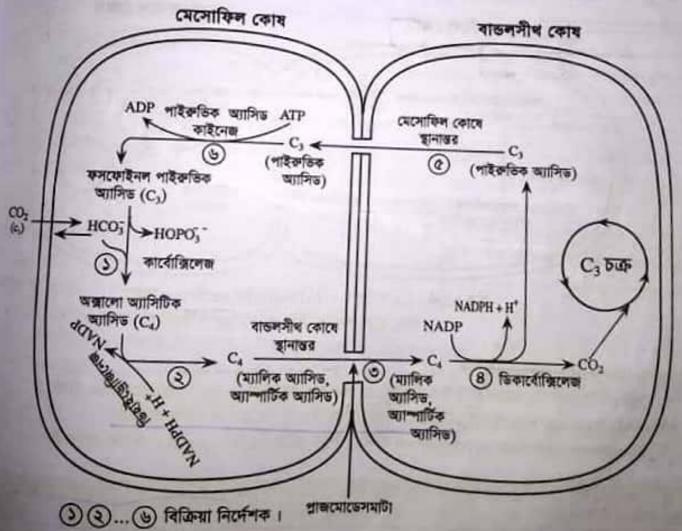
নাইটোজেন (ঘ) কার্বন

২। C4 উদ্ভিদের বৈশিষ্ট্য হলো-

(i) এ উত্তিদের পাতার বাভলশীও কোবে ক্লোরোপ্লাস্ট থাকে।

(ii) বাঙ্গলীথের কোষগুলো ভাস্কুলার বাঙ্গলের সাথে অরীয়ভাবে অবস্থান করে।

(iii) মেনোঞ্চিল কোৰে আলোক বিক্রিয়া এবং ক্যালভিন চক্র সম্পন্ন হয়। নিচের কোনটি সঠিক?

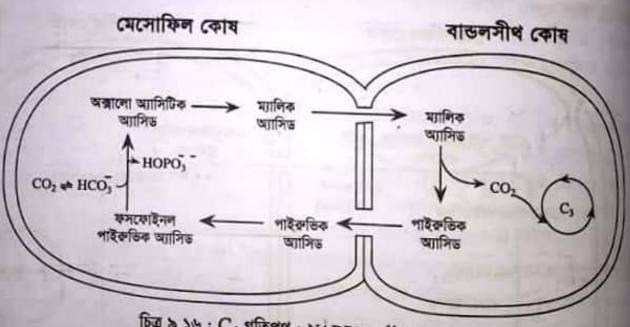

PITE

ক্ষেত্র। এটি কালভিন চক্রের ব্যক্তিকেম। পরবর্তীতে M.D. Hatch ও C.R. Slack নামক দুখন অব্রেগীয় বিজ্ঞানী ইক্ ক্ষা আরো বিজ্ঞারিত গবেখণা করে কার্বন বিজ্ঞারণের এ ডিল্ল পথকে সুন্দরভাবে ব্যাখ্যা করেন (অর্থাৎ ইকু উল্লিসেই নাল করে এই গতিপথ প্রথম আরিশকৃত হয়), যা পরে Hatch & Slack গতিপথ বা C, চক্র হিসেবে স্থাকৃতি পায়। ্রার্থি । ভাইকার্বোক্সিলিক চক্র বিয়েও এটি পরিচিত। বর্তমানে তিটি গোরের বহু উত্তিদে এ গতিপথ আবিশ্বত (১৯৭০) বিষয়ে পাতার মেসোফিল কোষ এবং বাঙলসীথ কোষ সন্মিলিভভাবে এই গতিপথ সম্পন্ন করে। ফসফোইনল পাইকভেট ব্রমের এবং পাইরুভেট-অর্থোকসকেট ভাইকাইনেজ এনজাইম মেসোঞ্চিল কোনে সীমাবদ্ধ থাকে। কার্যেরিলেজসমূহ এবং ক্যালভিন চক্রের সকল এনজাইম বাভলসীথ কোষে সীমাবছ থাকে।

নিমুগিৰিত পৰ্যায়ে এই গতিপথ (চক্ৰ) সমাপ্ত হয় :

)। মেসোফিল কোৰে অবস্থিত ফসফোইনল পাইক্লডিক আাসিড (৩ কাৰ্বন) এর সাথে বায়ুস্থ CO2 (HCO3 হিসেবে ক্রম্পেকরে) মিলিত হয়ে ৪-কার্বনবিশিষ্ট অঙ্গালো আমিটিক আমিত সৃষ্টি করে। কার্বোঞ্জিলেজ এনজাইম এ বিক্রিয়ায় সহযোগিতা করে।

২। অক্সালো আসিটিক আসিড পরে ম্যালিক আসিড অথবা আম্পার্টিক অ্যাসিড (৪ কার্বন)-এ পরিণত হয়। প্রিহাইক্রেজিনেজ এনজাইম এ বিক্রিয়ায় সহযোগিতা করে। এখানে NADPH + H⁺ মুক্ত হয়ে NADP তৈরি করে। **প্রথম** ছারী পদার্থ ৪-কার্বনবিশিষ্ট বলে এই চক্রকে C₄ চক্র বলা হয়। যেসব উত্তিদে C₄ চক্রের মাধ্যমে কার্বন বিজ্ঞারণ হয় তাদেরকে C, উদ্ভিদ বলে।



চিত্র ১.১৫ : হ্যাচ ও স্ল্যাক চক্র : একটি সাধারণ পথ পরিক্রমা।

- ৩। ম্যালিক অ্যাসিড বা অ্যাস্পার্টিক অ্যাসিড মেসোফিল কোষ থেকে প্রাসমোডেসমাটা দিয়ে বান্তলসীধ কেন্দ্র
- । ৪। বান্তলসীথ কোষে ম্যালিক আসিড বা আস্পার্টিক আসিড এক অণু CO₂ উৎপন্ন করে ৩-কার্বনবিশিষ্ট শা স্তাসিতে পরিপত হয়। এ বিক্রিয়ায় NADP অংশগ্রহণ করে এবং NADPH + H* তৈরি হয়। উৎপন্ন CO: স্বা চক্রে (ক্যালভিন চক্র) প্রবেশ করে (অর্থাৎ রাইবুলোজ ১, ৫-বিসফসফেট কর্তৃক গৃহীত হয়) এবং চক্রটি এখানে ১ ह्या। এ विक्रियास क्रिकार्तिब्रिलक अनकाहम সহযোগিতा करत ।
 - ৫। পাইকৃতিক আসিত বাভলসীথ কোষ থেকে প্লাসমোডেসমাটা দিয়ে মেসোঞ্চিল কোষে প্রবেশ করে।
- ৬। পাইক্রভিক অ্যাসিড মেসোফিল কোষে পাইক্রভিক অ্যাসিড কাইনেজ এনজাইমের সহযোগিতায় ফ্রান্ত পাইরুভিক অ্যাসিড পুনঃউৎপাদন করে এবং চক্রটি চালু থাকে। এখানে একটি ATP থেকে একটি ADP তৈরি হয়।

বাভলসীপ কোষে CO, এর অভাব হয় না, তাই কোনো ফটোরেসপিরেশন হয় না, ফলে কার্বন বিজ্ঞারণ হার र्ग ।

উদ্ভিদে তিন প্রকার C4 গতিপথ লক্ষ্য করা যায় : (i) বাভলসীথ কোষে স্থানান্তরিত C4 অ্যাসিভের ধরন্ মেসোঞ্চিল কোমে স্থানান্তরিত C3 আসিডের ধরন এবং (iii) বাভলসীথ কোমে ডিকার্বোক্সিলেশন এনজাইমের হক্ তিন বৈশিষ্ট্যের ভিত্তিতে নিমুলিখিত তিন প্রকার C4 গতিপথ লক্ষ্য করা যায়। যথা :

চিত্র ১.১৬ : C4 গতিপথ : NADP-malic enzyme প্রকার ইকু, ভূটা, সরগাম উদ্ভিদে এই চক্র পরিচালিত হয়।

(A) NADP-malic enzyme প্রকার

ভূটা, ইস্কু, সরগাম, ক্র্যাব ঘাস ইত্যাদি উদ্ভিদে এ প্রকার কার্যকরী (৯.১৬ নং চিত্রে দেখানো হলো)।

- (B) NAD-malic enzyme প্রকার। মিল্ল্যাত, কাউন, চিনা ইত্যাদি উদ্ভিদে এ প্রকার কার্যকরী।
- (C) Phosphoenolpyruvate carboxykinase প্রকার। গিনি ঘানে (Guinea grass) এ প্রকার কার্যকরী।

. ম. আমাদের দেশে উপরে উল্লেখিত উত্তিদগুলো ছাড়া বাকি অধিকাংশ উত্তিদই (প্রাট, আম, জাম, কলা,

যে সব উদ্ভিদে C3 চক্র সংঘটিত হয় তাদেরকে বলা হয় C3 উদ্ভিদ। যে সব উদ্ভি Scanned by CamScanner

नार्वाकाय विषय	ি উলিখ	नका कर
ক্রাপ্নতা ক্রাপ্নতা	GSS STORENS	
ই জাল আনাচাম	পাতার বাডগসীথকে থিরে মেসোফিল কোষের কোনো পৃথক স্তর থাকে না	উতে ভাপমারায় খাপথাইয়ে নিতে সক্ষয়।
र्ज कारबाझारुकेव	কোনো পৃথক স্তর থাকে না। গঠনগতভাবে ক্রোরোপ্লাস্ট একই রকম।	মেলোঞ্চিল কোষের যদ তার বিদামান ক্রোত
প্রকার ৪/CO ₂ এর খনত্	সালোকসংশ্রেষণের জন্ম	গঠনগতভাবে ক্রোরোপ্লাস্ট দুই রকম : (i) গ্রানাযুক্ত মেসোফিল ক্রোরোপ্লাস্ট এবং (ii) গ্রানাবিহীন বাভলসীথ ক্লোরোপ্লাস্ট 1
	million) acques (20)	ঘনত্ কমপকে o.১০ ppm প্রয়োজন
र विकिया	The state of the s	(0.30-30 ppm) i
Tanks	Mail and State Martin State	মেসোফিল কোষে আলোক বিক্রিয়া এবং বাভলসীথ কোষে CO ₂ সৃষ্টি ও ক্যালভিন চক্র সম্পন্ন হয়।
প্র ভংগতি	মনে করা হয় বেশির ভাগ C3 উত্তিদ অপেক্ষাকৃত শীতপ্রধান অন্তলে উৎপত্তি লাভ করেছে।	

क्रीबालन क्रक	
ক্র কেবল মেসোফিল কোমে হয়।	কাচ ও লাহে ৬ বাড়
Description and	(i) মেসোফিল ও বাভলসীথ কোষে হয়।
0-00-0	(ii) ফটোরেসপিরেশন ঘটে না i)
(iii) श्रायमिक CO2 श्रही (RuBP)	(iii) প্রাথমিক CO2 গ্রহীক PEP
(iy) CO2 ফিকসিং এনজাই কবিজো)	(iv) CO2 ফিকসিং এনজাইম্পিন্স-কার্বোঞ্জিলেজ
(w) श्रथम हाग्री ख्रवा <u>3PGA (७-कार्वन)</u>	(v) প্রথম ছার্য্য দ্রব্য অক্সালো আসিটিক জ্যা সিত (৪-কার্বন)।
MI CO2-এর জন্য কার্বোক্সিলেজ-এর দক্ষর্থ মধ্যম) [2] S	(vi) CO2-এর জন্য কার্বোক্সিলেজ-এর দক্ষর্থা উচ্চ)
(মা) ভোরোপ্লাসেচর ধরন একং রকম	(vii) ব্যবহৃত ক্লোবোপ্লাস্টের ধরন দু'রকম <u>(বান্ডদসীখ</u> ক্লোবোপ্লাস্টে উনুত গ্লানাম থাকে না)।
(viii) এ চত্রের জন্য আদর্শ তাপমাত্রা ১০° সে, থেকে ২৫° সে ।	(viii) এ চক্রের জন্য আদর্শ ভাপমাত্রা ৩০° সে, থেকে ৪৫° সে,।
(ix) বায়ুমণ্ডলে প্রতি মিলিয়নে কমপক্ষে ৫০ ppm পরিমাণ CO ₂ বাকা প্রয়োজন।	(ix) বাহুমণ্ডলে প্রতি মিলিয়নে নিমুভম o.১০ ppm CO ₂ থাকলেও চলে।

্র উদ্ভিদের বৈশিষ্ট্য

C4 উদ্ভিদের পাতার বাভলসীথ কোষে ক্লোরোপ্লাস্ট থাকে।

২। বাভলসীথের কোষগুলো ভাঙ্কুলার বাভলের সাথে(অরীয়ভাবে অবস্থান করে।

৩। বাভলসীথের মাঝে যে ক্লোরোপ্লাস্ট দেখা যায়, তাতে মার্না (অনুপস্থিত ক্রিষ্ট মেসোফিল কোষে উন্নত প্রকৃতির থানা বিদ্যমান। যেমন-ইকু উত্তিদের পাতা।

8। 😋 উদ্ভিদের মেসোফল কোষে রাইবুলোজ বিসফসফেট কার্বোঝ্লিলেজ নামক এনজাইমের কার্যকারিতা অনুপস্থিত।

१। NADP ম্যালিক অ্যাসিড এনজাইমের উপস্থিতিতে বাঙলসীথ ক্লোরোপ্লাস্টে C3 চক্র পরিচালনার প্রয়োজনীয় বিপাকীয় শক্তি NADPH + H+ উৎপাদিত হয়।

উট্টিদ চক্রের গুরুত্

১। C4 উদ্ভিদে উচ্চ তাপমাত্রায় (30° C – 45° C) সালোকসংশ্লেষণ সংঘটিত হতে পারে, তাই উচ্চ তাপমাত্রায় এরা কৰ্মভূম থাকে।

সরবরাহ বন্ধ হয়ে গেলে চক্রীয় প্রক্রিয়া ঘটে থাকে। পানির সরবরাহ বন্ধ হলে অচক্রীয় প্রক্রিয়া ঘটে না ক্রীয় প্র ঘটে। প্রয়োজন হলে উভয় প্রক্রিয়া একইসাথে চলতে পারে।

। প্রয়োজন হলে উভয় প্রাক্রয়া একহসাথে চন্টের নামে। (খ) আলোক নিরলেক অধ্যায় (Light independent reactions) : কার্বোহাইডেট ভৈরি বা কার্বন বিভারণ শর্মি। (व) आलाक निर्दारक व्याप्त (Light independent reaction) आलाकनिर्वत व्याप्त मृष्ठ ATP ७ NADPH + H+ विरम्ध श्रक्तिग्रात माथारम CO2 यूट कार्ताश्रद्धि (प्र আদোকানভর অধ্যায়ে সৃষ্ট ATP ও NADITI । ব উৎপাদনে বাবহৃত হয়। এ অধ্যায়ে CO2 বিজ্ঞারিত হয়ে কার্বোহাইড্রেট উৎপাদন করে বলে একে কার্বন বিজ্ঞারণ স্ক ত্রপাদনে বাবহুত হয়। এ অব্যায়ে ৫০৮ । বিলানে এতাক প্রয়োজন পড়ে না তাই একে আলোক নিরপেছ হয়। বলা হয়। কাবন বিজ্ঞারণ প্রাক্তরায় কোনো আনোম এত। অনুকার অধ্যায়ত বলা হয়। তবে আলোর উপস্থিতিতেই কার্বন বিজ্ঞারণ হয়ে থাকে। এর কারণ আলোর উপস্থিতিত্ত ও NADPH + H+ সরবরাহ নিশ্চিত হয় এবং স্টোম্যাটা খোলা থাকায় CO2 ও O2 বিনিময় সহজ হয়। আলোক নি অধ্যায় (বা কার্বন বিজারণ) এর বিক্রিয়াসমূহ ক্লোরোপ্লাস্টের স্ট্রোমাতে সংঘটিত হয়। আবহমওলের CO2 হতে প্র রাসায়নিক বিক্রিয়ার মাধ্যমে কার্বোহাইড্রেট সৃষ্টির তিনটি স্বীকৃত্ত পথ আছে; তা হলো 😕 ক্যালভিন চক্র 🙌 চ্

কোৰে সংঘটিত মেটাবলিক বিক্রিয়াসমূহ পর্যায়ক্রমিকভাবে ঘটে থাকে বাকে বলা হয় গতিপথ (Pathway) ব গতিপথ চক্রাকারে ঘটে থাকে তাকে চক্রও (cycle) বলা হয়। অধিকাংশ উদ্ভিদই C3 উদ্ভিদ, যেমন-আম, জাম।

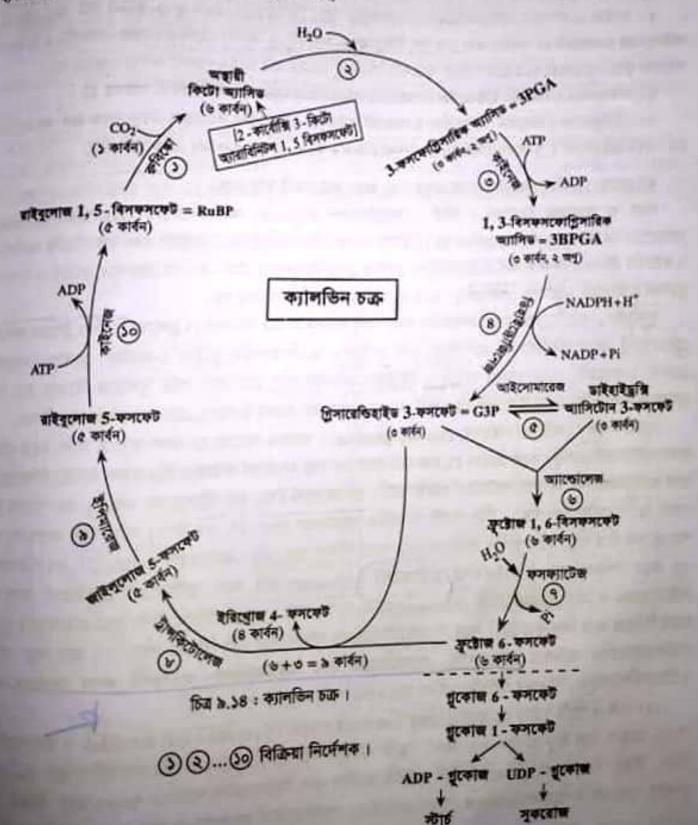
(১) ক্যালভিন চক্র : C3 চক্র (Calvin cycle : C3 cycle) : ১৯৪৭-১৯৪৯ সালে যুক্তরাট্রের ক্যালিকেটি বিশ্ববিদ্যালয়ের ক্যালন্তিন ও তার সহযোগীরা (Melvin Calvin, 1911-1997, Benson & Bassham) তেজকি কর ("C. বার্বনের আইসোটোপ) ব্যবহার করে সন্ধানী ছিভিতে (tracer technique) Chlorella সামক এককোমী দৈত কার্বন বিজ্ঞারণের যে চক্রাকার গতিপথ আবিষ্কার করেন তা ক্যালভিন চক্র নামে পরিচিত। ক্যালভিন এজন্য ১৯৬১ সা নোবেল পুরস্কার পান।

সংক্রেপে ক্যালভিন চক্র নিমুরূপ:

- (ক) কার্বন যোগ (কার্বোলাইলেশন) :
- ১। বায়য় CO₂ (এক কার্বনবিশিষ্ট) ক্লোরোপ্লাস্টের স্ট্রোমাতে প্রবেশ করে তথায় পূর্ব থেকে অবস্থিত ৫-কার্বনবিশ্ব রাইবুলোজ ১,৫-বিসঞ্সফেট (RuBP)-এর সাথে যুক্ত হয়ে সৃষ্টি করে ৬-কার্বনবিশিষ্ট সম্পূর্ণ অস্থায়ী কিটো আসিঃ। কাজেই ক্যালভিন চক্রের CO₂-এর গ্রহীতা হলে(RuBP)। কবিস্কো (rubisco) এনজাইম CO₂-কে RuBP এর সাথে বৃ করতে সাহায্য করে। পুথিবীতে সর্বাধিক ওকত্বপূর্ণ এনজাইম হলো কবিছে। কাবণ এটি প্রাকৃতিক জগৎ এবং জীবজগতের মা রাসায়নিক বন্ধন তৈরি করে। ক্লবিক্ষো হলো 'রাইবুলোজ বিসফসফেট কার্বোজিলেজ/ অগ্রিজিনেজ এনজাইমের অ্যাক্রোনিম (acronym)। ।
- ২। ৬ কার্বনবিশিষ্ট কিটো অ্যাসিড এক অণু ${
 m H}_2{
 m O}$ গ্রহণ করে হাইড্রোলাইসিস প্রক্রিয়ায় সাথে সাথেই দুই স্ 3-ফসফোগ্নিসারিক অ্যাসিড (3PGA) উৎপন্ন করে। <u>3-ফসফোগ্নিসারিক অ্যাসিড ক্যালভিন চক্রের প্রথম স্থা</u>য়ী পদর্থ ক্যালন্ডিন চক্রে উৎপন্ন প্রথম স্থায়ী পদার্থ ৩-কার্বনবিশিষ্ট বলে এ চক্রকে C, চক্রও বলা হয়। যে সব উত্তিদে C, চক্রে মাধ্যমে কার্বন বিজ্ঞারণ হয় তাদেরকে C, উদ্ভিদ বলা হয়। অধিকাংশ উদ্ভিদই C, উদ্ভিদ যেমন-আম, জ্ঞাম। ৬ চক্রে ১২ অণু 3PGA তৈরি হয়।

- (খ) ফসফেট যোগ (ফসফোরাইলেশন)
- ত। ATP থেকে একটি ফসফেট গ্রহণ করে 3-ফসফোগ্রিসারিক অ্যাসিড, 1, 3-বিসফসফোগ্রিসারিক অ্যাসিড-ই (BPGA) পরিণত হয়। এখানে একটি ATP খরচ হয় এবং ১টি ADP মুক্ত হয়। এখানে 3-ফসফোগ্রিসারেট কাইলো

১২ অপু 3PGA থেকে ১২ অপু BPGA তৈরি হয়; ১২টি ATP খরচ হয়, ১২টি ADP মুক্ত হয়।


৪। 1, 3-বিসফসফোগ্রিসারিত অ্যাসিড বিজারিত হয়ে গ্রিসারেন্ডিহাইড 3-ফসফেট-এ (G3P) পরিণত হয়। এখান একটি কসক্ষেট হাইড্রোজেন দারা প্রতিস্থাপিত হয়। NADPH+H* বিক্রিয়ায় অংশ গ্রহণ করে এবং NADP হিসেবে ইউ হয়। যিসারেভিহাইড 3-ফসফেট ভিহাইজ্রোজিনেজ এনজাইম এ বিক্রিয়ায় সহায়তা করে। G3P একটি ৩-কার্বনবিশী

হ্যানক (হার্মিনাইড) আপান্ধার ফটোসিনখেটিক ইলেকট্রন প্রবাহ বছ করে দেয়, ব

िर अने BPGA त्यरक १२ अने G3P देशवि स्था १२छि NADPH + H" जरन बहन करत, १२छि NADP ७ १२छि

(प) RuBP ज्नाडिस्नामन धना मुद्दा (नेवाई, मुक्दबाक) छर्नामन

(১২টি G3P তে (১২ × ৩ = ৩৬) ৩৬টি কার্বন আছে। এর মধ্যে ১০টি G3P (৩০টি কার্বন) বিভিন্ন বিক্রিয়ার রাধ্যমে শেষ পর্যন্ত ৬টি ৫-কার্বনবিশিষ্ট (৫ × ৬ = ৩০) RuBP পুনঃউৎপাদন করে। ২টি G3P (৩ × ২ = ৬ কার্বন) বিক্রিয়া শেষে প্রকোজ সৃষ্টির মাধ্যমে সুকরোজ, স্টার্চ, সেপুদোজ (খা কোষ, টিস্যু ও অঙ্গ তৈরিতে রাবহত হয় অথবা জমা হয়) ইত্যাদি দ্রব্য উৎপাদন করে।

Scanned by CamScanner

দশম অধ্যায়

উদ্ভিদ প্রজনন

PLANT REPRODUCTION

মাধ্যমিক শ্রেণিতে তোমরা জীবের প্রজনন সম্বন্ধে সংক্ষিত্ত ধারণা লাভ করেছ, বিশেষ করে পুশ্রক উর্দ্ধির হচ।
অঙ্গ, ফুলের গঠন, পরাগায়ন, গ্যামিট সৃষ্টি, নিষেক এবং ফল ও বীজ উৎপাদন বিষয়ে জেনেছ। এ অধ্যায়ে বিষয়ে একটু বিস্তারিত আলোচনা করা হয়েছে।

এ অখ্যার পাঠ শেষে শিক্ষার্থীরা-

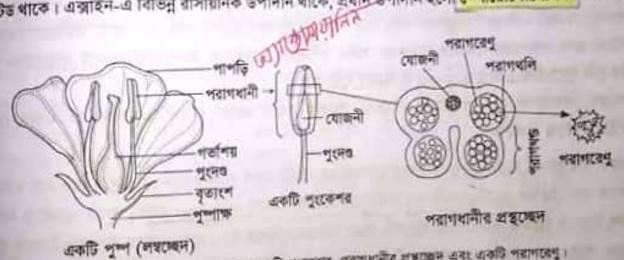
- বিভিন্ন প্রকার প্রজনন প্রক্রিয়া বর্ণনা করতে পারবে।
- ২. বিভিন্ন প্রকার প্রজনন প্রক্রিনার মধ্যে তুলনা করতে পারবে।
- ত, কৃত্রিম প্রজননের ধারণা ব্যাখ্যা করতে পারবে।
- কৃত্রিম প্রজননের উপায় হিসেবে উত্তিদের সংকরায়ন বর্ণনা করতে পারবে।
- কৃত্রিম প্রজননের গুরুত্ব বিশ্রেখন করতে পারবে।

প্রজনন জীবের একটি অনন্য বৈশিষ্ট্য। জড় বঞ্জর প্রজনন কমতা নেই। প্রতিটি জীবেরই তার অনুরূপ বংশর গৃঁ
প্রাকৃতিক ব্যবস্থা আছে। কাঁঠালের বীজ থেকে কাঁঠাল চারা, আমের বীজ থেকে আম চারা হয় যা বৃদ্ধি পেয়ে ফার্ক্র পরিশূর্ণ কাঁঠাল গাছ ও আম গাছে পরিণত হয়। একই ভাবে কলা গাছের গোড়া থেকে কলার চারা (সাকার), বাঁপ আ গোড়া থেকে বাঁশের চারা (সাকার) যা ক্রমে ক্রমে বৃদ্ধি পেয়ে যথাক্রমে পূর্ণাঙ্গ কলা গাছ ও বাঁশ গাছে পরিণত হয়। ক্রি সঞ্জিনা, মাদার, জীয়ল ইত্যাদি গাছের ভাল কেটে মাটিতে পাগালে সেই ভাল সজীব হয়ে পরিপূর্ণ গাছে পরিণত হ পাধারকৃচি পাতা মাটিতে কেলে রাখলে তার কিনার থেকে নতুন পাথারকৃচি চারা সৃষ্টি হয়। মাতৃ উত্তিদ থেকে নতুন সৃষ্টির এই প্রক্রিয়াই উদ্ভিদের প্রজনন প্রক্রিয়া। অন্যভাবে বলা যায়, প্রজনন একটি শারীরতান্তিক প্রক্রিয়া যে প্রক্রিয়া জ্ব

জন সৃষ্টি, তার বিকাশ ও প্রকাশই উত্তিদের যৌন প্রজননের মূল উদ্দেশ্য। একটি দীর্ঘ প্রক্রিয়ার মাধ্যমে জন সৃষ্টি । উদ্ধিদের জন সৃষ্টি ও বিকাশের বৈজ্ঞানিক আলোচনাই উত্তিদ জনবিজ্ঞান বা Plant Embryology। Embryo এই বাই হলোজিন।

প্রজননের প্রকারভেদ: উরিদে বিভিন্ন উপায়ে প্রজনন হয়ে থাকে। তবে বিভিন্ন উপায়তলোকে মূলত দুখ্য ভাগ করা যায়, যথা- ১। যৌন প্রজনন এবং ২। অযৌন প্রজনন। ৩। এছাড়া কোনো কোনো উরিদে অনা এত বর্জন প্রজনন দেখা যায় যা পারথেনোজেনেসিস বা অপুংজনি নামে পরিচিত।

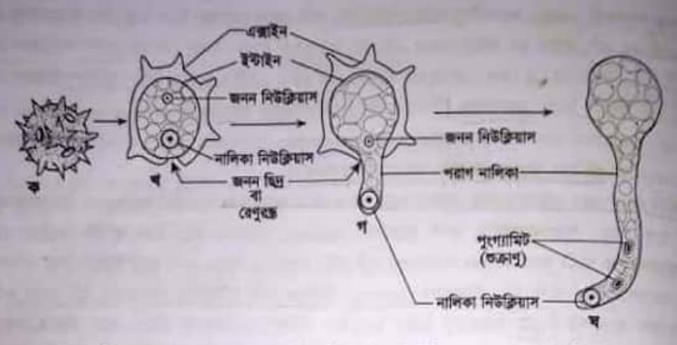
আবৃতবীজী উদ্ভিদের যৌন প্রজনন


আবৃতবীজী উত্তিদে ভিমাণু সৃষ্টি হয় ভিমকে, ভিমক সৃষ্টি হয় ফুলের খ্রীকেশরের গর্ভাশয়ে। তক্রণু সূটা পরাগরেণুতে, পরাগরেণু সৃষ্টি হয় ফুলের পুংকেশরের পরাগধানীতে। কাজেই ফুলই আবৃতবীজী উদ্ভিদে জননা গা করে। ফুল হলো উদ্ভিদের বংশবিস্তারের (প্রজননের) জন্য বিশেষভাবে ত্রপান্তরিত বিউপ (shoot)।

১। যৌন প্রজনন (Sexual reproduction) : দু'টি ভিন্ন প্রকৃতির গ্যামিটের (পুং এবং খ্রী গ্যামিট) মিলদের বাবে প্রজনন প্রক্রিয়ার সূচনা হয় তাই যৌন প্রজনন। যৌন প্রজননের মাধ্যমে স্বীজী উদ্ভিদে বীজের সৃষ্টি হয়, তাই ইছ বিশেব বংশবৃদ্ধি প্রক্রিয়াই যৌন প্রজনন। আবৃতবীজী উদ্ভিদের যৌন প্রজনন ডিগ্যামাস বিনের।

বেপুস্থলী বা পরাগরেপুর পরিস্কুটন (Development of Microsporangia) : ফুগের তৃতীয় ববক হলে পুল্ক । এক বা একাধিক পুংকেশর নিয়ে এ স্তবক গঠিত। প্রতিটি পুংকেশর নিচে দভাকার পুন্দে (filament) এই জ্বীত পরাগধানী (anther) নিয়ে গঠিত। পরাগধানীর দুটি যভের মাঝখানে একটি যোজনী (connective) থাকে।

धामान नषतपूर। धासमाम, निरंतर পরিশ্ব পরাগধানী (anther) অনেকটা চারকোণাবিশিত হয়। প্রতি কোণে ভেতরের দিকে কিছু কোষ আশপাশের কোষ বালারে বড় হয়। এদের ঘন সাইটোপ্লাজম এবং বড় নিউক্লিয়াদ থাকে। এদৰ কোষকে আর্কিস্পোরিয়াল কোষ একিক্রমানার cell) বলা হয়। এ কোষ প্রজাতিভেদে সংখ্যায় এক থেকে একাধিক পাকতে পারে। আর্কিস্পোরিয়াল কোষ বিভাগিত হয়ে পরিধির দিকে দেয়ালকোষ নিবং কেন্দ্রের দিকে প্রাথমিক জননকোনে (primary sporogenous cell) বিলত্তি হয়। দেয়ালকোষ হতে পরে ৩-৫ জরবিশিত্ত প্রাচীর গঠিত হয়। পরাগ্যানীর প্রাচীর ঘেরা এ অংশকে পরাগ্রেশি


বাধনিক জনন কোষ পরাগমাতৃকোষ হিসেবে কাজ করতে পারে জথবা বিভাজত হয়ে অনেকহলো পরাগমাতৃকোষে বিভাজ হতে পারে। পরাগমাতৃকোষে তখন মায়োসিস (meiosis) বিভাজন হয়, ফলে প্রতিটি ভিত্তরেত (2h) পরাগার্কিকার হতে চারটি হ্যাপ্রয়েত (n) পরাগারেণুর সৃষ্টি হয়। পরাগারেণু বিভিন্ন বর্ণের হতে পারে, তবে অধিকাংশ করেই সাধারণত হলুদ বর্ণের হয়। ট্যাপেটাম (tapetum) বিগলিত হয়ে পরিস্কৃতিত পরাগারেণুর পৃষ্টি সাধান করে। বাগমাতৃকোষ হতে সৃষ্ট চারটি পরাগারেণু বিভিন্ন প্রজাতিতে বিভিন্নভাবে সাজানো থাকে, তবে পরিগত অবস্থায় পরাগারেণুকলো পরস্পর আলাদা হয়ে যায়। Orchidaceae, Asclepiadaceae এসব গোত্রের উল্লিদের পরাগারেণু পৃথক সাধায় প্রকাশির থাকে। একসাথে থাকা পরাগারেণুগুলোর এ বিশেষ গঠনকে পৃলিনিয়াম (pollinium) বলে।

চিত্র ১০.১ : একটি পুল্প (লম্বাছ্রন), একটি পুংকেশত, প্রাণধানীত শ্রন্থক্তন এবং একটি প্রাণরেণু

নেশ পাতলা এবং সেলুলোজ নির্মিত। এর নাম অন্তঃত্বক বা ইনটাইন (intine)। এরাইন (বহিঃত্বক) স্থানে স্থানে অত্যন্ত বা পাতলা এবং সেলুলোজ নির্মিত। এর নাম অংশকে জনন ছিদ্র, রেণুরন্ধ বা জার্মপোর (germpore) বলে। একটি পরাণরেণুতে শালাক একাধিক জার্মপোর (২০টি পর্যন্ত) থাকে। পরাণরেণুর সাইটোপ্লাজম ঘন থাকে এবং প্রথম পর্যায়ে নিউক্রিয়াসটি শালাকত একাধিক জার্মপোর (২০টি পর্যন্ত) থাকে। পরাণরেণুর সাইটোপ্লাজম ঘন থাকে এবং প্রথম পর্যায়ে নিউক্রিয়াসটি শালাক। পরিণত অবস্থায় কোষগহরের সৃষ্টির ফলে নিউক্রিয়াসটি এক দিকে সরে আসে।

ইংখ্যানিটোফাইটের বিকাশ বা পরিস্কূটন (Development of male gametophyte) ও গঠন : পরাগরেপুর্ব্ব) ইংশা ইংখ্যানিটোফাইটের বিকাশ বা পরিস্কূটন (Development of male gametophyte) ও গঠন : পরাগরেপুর্ব্বে বলা ইংখ্যানিটোফাইটের প্রথম কোষ। পরাগরেপুর নিউক্লিয়াসটি বিভাজিত হয়ে দুটি অসম নিউক্লিয়াস গঠন করে। বড়টিকে বলা

চিত্র: ১০.২: (ত) পরাণরেণু, (খ–গ) পুংগ্যামিটোফাইট সৃষ্টির বিভিন্ন ধাল এবং (খ) পুংগ্যামিটোফাইট।

হয় নালিকা নিউক্লিয়াস (tube nucleus) এবং ছোটাটকে বলা হয় জনন নিউক্লিয়াস (generative nucleus)। পরাগধনিং প্রাচীর কেটে গেলে সাধারণত এই ধি-নিউক্লিয়াস অবস্থায় পরাগরেণু বের হয়ে আসে এবং পরাগায়ন (Pollination) সহব হয় । উদ্ভিদে পরাগায়নের কারণে কোনো তরল পদার্থ (পানি) ছাড়াই নিষিক্তকরণ (fertilization) সহব হয় পরাগায়নের মাধ্যমে পরাগরেণু প্রীকেশরের গর্ভমুগ্রে পতিত হয় এবং অন্ধৃরিত হয় অর্থাৎ ইনটাইন বৃদ্ধি পেয়ে স্লার্মণার (জননছিন্ন) দিয়ে নালিকার আকারে বাড়তে থাকে। এ নালিকাকে পোলেন টিউব (pollen tube) বা পরাগানালিকা বঙ্গে পরাগানালিকার ভেতরে নালিকা নিউক্লিয়াস এবং পরে জনন নিউক্লিয়াস প্রবেশ করে। নালিকাটি গর্ভদক্তর কর্মা বাড়তে থাকে এবং গর্ভাগরের ভেতরে ডিঘকরজে পর্যন্ত পৌছায়। ইতোমধ্যে জনন নিউক্লিয়াসটি মাইটোসিস প্রক্রিয়া বিভক্ত হয়ে দুটি পুগোমিট (male gamete) বা অক্রাণু সৃষ্টি করে।

পরাপরেণু, পরাগনালিকা, পুংগ্যামিট-এগুলোর সমন্বয়ে গঠিত হলো পুংগ্যামিটোকাইট, যা অত্যন্ত ভুদ্র এই স্পোরোকাইটের উপর নির্ভরশীল।

ভিদকের পরিস্কৃটন : ভিদক হলো ভিদাশয়ের অভ্যন্তরন্থ একটি অংশ যা মাতৃ জনলকোর সৃষ্টি করে এবং নিমেকে পর বীজে পরিগত হয়। ভিদক (oxule) সৃষ্টি হয় গর্ভাশয়ের তেতরে অমরা (placenta) হতে। প্রথমে অমরাতে একটি ফ্রেইনিত অঞ্চল হিসেবে চিহ্নিত হয়। ক্রীত অঞ্চলটি ক্রমে ভিদকে পরিগত হয়। প্রথম পর্যায়ে ভিদকের টিস্যুকে মূলবর্তী ভাগে চিহ্নিত করা যায় – চারপাশের আবরণ টিস্যু এবং মাঝের নিউসেলাস (nucellus) টিস্যু। পরবর্তী পর্যায়ে বাইটো আবরণটির নিচে আর একটি আবরণ তৈরি হয়। বাইরের আবরণটি বহিয়তুক এবং ভেতরেরটি অভ্যন্তক হিসেবে পরিচিত্ত ভিদকের অম্যভাগে নিউসেলাসের একটু অংশ অনাবৃত থাকে, কারণ তৃক এ অংশকে আবৃত করে না। এটি একটি ছিল্ল বিশেষ, যাকে মাইক্রোপাইল (micropile) বা ভিদকর্জ্ব কলা হয়। ভিদকরজ্বের কাছাকাছি নিউসেলাস টিস্যুতে একটি ক্রেআরারে বড় হয়। এর নিউক্রিয়াসটিও আকারে অপেক্ষাকৃত বড় থাকে এবং কোষটি ঘন সাইটোপ্লালমে পূর্ব ছাকে। ও কাষকে প্রাইমারি আর্কিস্পোরিয়্রাাল কোষ (primary archesporial cell) বলে। আর্কিস্পোরিয়্রাাল কোষটি বিতক য়্যা একটি দেয়ালকোষ এবং একটি প্রাথমিক জননকোষ (primary sporogenous cell) সৃষ্টি করতে পারে অথবা স্বাক্রীরেশু মাতৃকোর (megaspore mother cell) হিসেবে কাঞ্চ করে।

ব্যুক্ত ব্রীরেপু মাতৃকোষটি মায়োসিস প্রক্রিয়ায় বিভক্ত হয়ে চারটি হ্যাপ্লয়েন্ত দ্রীরেপু (megaspore) তৈরি করে। সাধ্য অধিকাংশ ক্ষেত্ৰেই ডিনটি নষ্ট ক্ষেত্ৰি (নিচেক্টি) কাৰ্ড ্রে এবং একটি (নিচেরটি) কার্যকর হয়। রিবাদের গঠন : একটি ডিম্বক (megaspoovule) নিমুলিখিত অংশ নিয়ে গঠিত: ্যা ভিত্তকনাড়ী (Funiculus) : ভিত্তকর

ন নাম অংশকে ডিম্বকনাড়ী বলা হয়। এ সাহাযো ডিঘক অমরার সাথে সংযুক্ত হোনো কোনো প্রজাতিতে ভিদকনাড়ী ন্ত্রের সাথে আংশিকভাবে যুক্ত থেকে শিরার বুর্ন করে। এই যুক্ত অংশকে ব্র্যাফি (raphe)

২। ভিদকনাতী (Hilum) : ভিদকের যে অংশের সাথে ডিম্বকনাড়ী সংযুক্ত থাকে তাকে ডিম্বকনাভী বলে।

া নিউসেলাস (Nucellus) বা ভ্রূণপোষক

: তুক দিয়ে ঘেরা প্রধান টিসাই হলো

डिएकम्न অগ্লোধক চিন্তু হতিপাদ কোৰ সেকেভারি নিউক্রিয়াস **किम्बा**न् সহকারি কোষ বর:তুক বহিন্দ্ৰক 📗 ভিশ্বকনাতী उद्दर्भाषी

চিত্র ১০.৩ : ভিদকের গঠন (নিমুমুখী বা অধ্যেমুখী ভিদকের লম্বছেদ)।

8। ডিমকত্ক (Integument) িনিউসেলাসের বাইরের আবরণীকেই ডিমকত্ক বলা হয়। সাধারণত এটি দুস্তর বিশিষ্ট ৷

ভিষকরক (Micropyle) : ডিম্বকের অগ্রপ্রান্তে তৃকের ছিদ্র অংশই ডিম্বকরক বা মাইক্রোপাইল।

৬। ভিষকমূল (Chalaza) : ডিমকের গোড়ার অংশ, মখান থেকে তুকের সূচনা হয়, তাকে ভিষকমূল বলে।

গ। ভ্রম্পণি (Embryo sac) : নিউসেলাসের মধ্যে অবস্থিত থলির ন্যায় অংশকে ভ্রমথলি বলে। এর ভেতরে প্রতিপাদ কোষ, ডিমাণু যন্ত্র ও সেকেভারি নিউক্লিয়াস থাকে।

বিলি প্রকার ডিম্বক: ডিম্বকর্জ, ডিম্বাকনাড়ী, ডিম্বক্মূল ইত্যাদি অংশের পারস্পরিক অবস্থান অনুযায়ী ডিম্বক

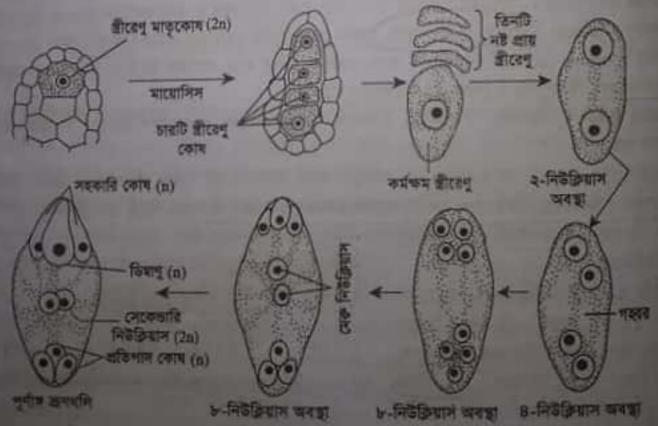
১। উর্বেম্বী (Orthotropous বা Atropous) : উর্ধেম্বী অর্থাৎ ভিদকের মূখ উপরে থাকে। এই প্রকার ভিদকে ক্ষিত্বী, ডিম্মুল ও ডিম্কর্জ একই সরল রেখায় খাড়াভাবে অবস্থিত থাকে। ডিম্কর্জ শীর্ষে এবং ডিম্কমূল গোড়ায়

দে করে। উদাহরণ : বিষকাটালী (পানি মরিচ),

ন্ত্ৰিচ, পান ইত্যাদি।

रा प्रमान्त्री वा निम्नम्बी (Anatropous) : प्रसाम्बी ি ভিদকের মুখ নিচে থাকে। এই প্রকার ভিদকে নিচের দিকে ডিমকনাড়ীর কাছাকাছি থাকে. শিক্ষা উপরে থাকে। উদাহরণ দিম, রেডি वानि। डिर्म्यमुची ७ प्राथमूची এकि प्रभवित

চিত্র ১০.৪ : বিভিন্ন প্রকার ডিঘকের গঠন। (বা) উপর্যুখী: (খ) অধ্যযুখী, (ग) गार्वपृत्तीः (४) स्क्रमृती।


ত। পাৰ্যমুখী (Amphitropous) : পাৰ্যমুখী অগাৎ ডিম্বকো মুখ উপয়ে বা নিচে নয়, এক পাপে থাকে। এ ভিত্তে ভিত্ত ও ডিছত্মূল বিপরীতম্বী অবস্থানে দুই পাশে থাকে এবং ডিছতনাড়ীর সাম্পু সমকোটা সংক্র উদাহবদুঃ পুদিলানা, পাল (আফিম) ইত্যাদি।

8। रक्रमुची (Campylotropous) । वक्रमुची अर्थार डिपट्टत मूद नार्वमूचीत कारा किन्नुकी स्टेस्ट निराम हि ত্ত বিষ্ণুবা (Campyionopolis) বিষ্ণুবা ভিষকনাড়ীর সাথে সমকোনে ব্রস্থিত কিন্তু ভিষকরে স্থানী

বাকা হয়ে ডিঘকনাড়ীর কাছাকাছি চলে আসে। উদাহরণ- সরিমা, কালকাসুন্দা।

ভাগামিটোফাইটের বিকাশ বা পরিস্কূটন (Development of female gametophyte) ও গঠন : প্রীরেণু (magain হলো বীগামিটোফাইট-এর প্রথম কোষ। কার্যকরী খ্রীবেণুটি বিভালিত ও বৃদ্ধিপ্রাপ্ত হয়ে প্রীগ্যামিটোফাইট পরে হ প্রাণামটোকাইট (মারিয়োসাকি (embryo sac) ব্ ভ্রমণী নামেও পরিচিত। ভ্রমণনির গঠন প্রধানত তিন হক্ষ্ (i) মনোপেলাবিক (monosporie)-একেন্তে একটি স্থাবেণু জনথদি গঠনে অংশগ্রহণ করে: (ii) বাই (bisporie) প্রক্রেম দৃটি প্রীরেণু শ্রণধান গঠনে অংশগ্রহণ করে এবং (iii) টেট্রাম্পোরিক (tetrasporie) প্রমের স্ত্রীবেশুই অনুধান গঠনে অংশ্যাহণ করে। শতকরা প্রায় ৭৫টি উভিনেই মনোত্রোবিক প্রক্রিয়ার অনুধান গঠিত হয়। প্রধানে ভ্রমণাল গঠনের মনোস্পোরিক প্রক্রিয়াই বর্গনা করা হলো। এটি Polygonum প্রান হিসেবেও পরিচিত।

একেরে ডিপ্লয়েড বীরেপু মাতৃকোষ হতে মায়োসিস প্রক্রিয়ায় চারটি হ্যাপ্লয়েড ব্রীরেপু গঠিত হয় যার মধ্যে 😜 ভিন্তি নট হয়ে যায় এবং নিচেরটি কার্যকরী থাকে। কার্যকরী স্ত্রীরেণু নিউক্লিয়াসটি মাইটোসিস বিভাজনের মাধ্য নিউঞ্জিয়াসে পরিণত হয়। নিউক্লিয়াস দৃটি খ্রীরেণু কোষের দৃই মেরণতে অবস্থান করে। প্রতিটি মেরণর নিউরিয়াস ক দুবার বিভাজিত হয়ে চারটি করে নিউক্রিয়াস গঠন করে। প্রতিটি নিউক্রিয়াস আরু সাইটোপ্লাজম এবং হালকা শ্রাইনে আবৃত থাকে (কাজেই কোষও বলা থেতে পারে)। ইতোমধ্যে খ্রীরেণুকোষটি একটি দুইমের যুক্ত থলির নায় ছয়ে 😘 হয় এবং এর প্রতি মেকতে ৪টি করে মোট ৮টি নিউক্লিয়াস থাকে। এ অবস্থায় প্রতি মেক হতে একটি করে নিউক্ল ধনির মাঝখানে চলে আসে এবং পরস্পর মিগিত হয়, যাকে ফিউশন নিউক্লিয়াস है। সেকেভারি নিউক্লিয়াস ।। nucleus or secondary nucleus) বলা হয়।

চিত্র ২০.৫ : মনোপেশারিক প্রক্রিয়ার স্থীগ্যামিটোফইটের বর্ধনের বিভিন্ন ধাপ বা প্রীগ্যামিটাফাইটের বিকাশ।

্র ক্রেক ক্রিমকরক্রের দিকে থাকে সে মেকর ছিলটি নিউক্রিয়ানতে ক্রমের ক্রা আলারেটেল ক্রেয়া र हिमान यम हो (गर्निय वरल । हिमान घटमत मालभारना निर्देशियाओं) वर्ष भारक, बर्ज कर्न करा बा ্রা) ত ovum or oosphere) বলা হয়। বাংলায় একে আমরা ডিখাবু বলি। ডিখাবুর মু'লাংশর মুটা বিভিন্নিয়াস বা সাহায্যকারী নিউক্লিয়াস বা সাহায়্যকারী নিউক্লিয়াস বা সাহায়্যকারী নিউক্লিয়াস বা সাহায়্যকারী নিউক্লিয়াস বা সাহায়্যকারী নিউক্লিয়াস বা সাহায্যকারী নিউক্লিয়া বিটিনির বা সাহায্যকারী নিউক্লিয়াস বা সাহায্যকারী কোষ বলা হয়। জনধানন দে দেক ভিত্তকাসকে দিকে ্রার্থির নিউক্লিয়াস তিনটিকে প্রতিপাদ নিউক্লিয়াস বা প্রতিপাদ কোম বলে।

লে এবং এতে অবস্থিত ডিমাণু, সাহায্যকারী নিউক্রিয়াস, প্রতিশাদ নিউক্রিয়াস এবং সেকেভারি নিউক্রিয়াসকে প্রাণ্যামিটোফাইট বলা হয়। ডিখকের মধ্যে রীণ্যামিটোফাইটের উৎপত্তি ঘটে। রীণ্যামিটোফাইট বাৰাইটোৰ উপৰ নিৰ্ভৱশীল।

প্রত্যালয় (Fertilization) : অপেকাকৃত বড় ও নিচল স্থীদ্যামিটের (ভিমাণুর) সাথে ছোট ও সচল পুংগ্যামিটের প্রমান মিল্লকে ফার্টিলাইজেশন (fertilization) তথা নিষেকক্রিয়া, নিষেক ব্রেপ্তাধান নিলে। পরাগধানী থেকে ক্ষেত্র বিভিন্ন বাহকের মাধ্যমে যখন একই প্রজাতির পুশেপর গর্ভকেশরের পর্তমুভে পভিত হয় তথন ভাকে। (Pollination) বলে। সকল আবৃতবীজী উদ্ভিদ ও ব্যক্তবীজী উদ্ভিদে পরাগায়ন ঘটে থাকে।

প্রায়করণ প্রক্রিয়াটিকে নিমুলিখিত উপায়ে উপস্থাপন করা যায়; (i) গর্ভমূতে পরাগরেণুর অন্ধুরোলগম, (ii) পরাগনবিকার ক্ষ্মুখী যাত্রা ও তক্রাপু সৃষ্টি, (iii) পরাগনালিকার জনথলিতে প্রবেশ ও তক্রাপু নিক্ষিত্তকরণ এবং (iv) জনধলিতে ন্যু ৫ তক্রাপুর মিলন।

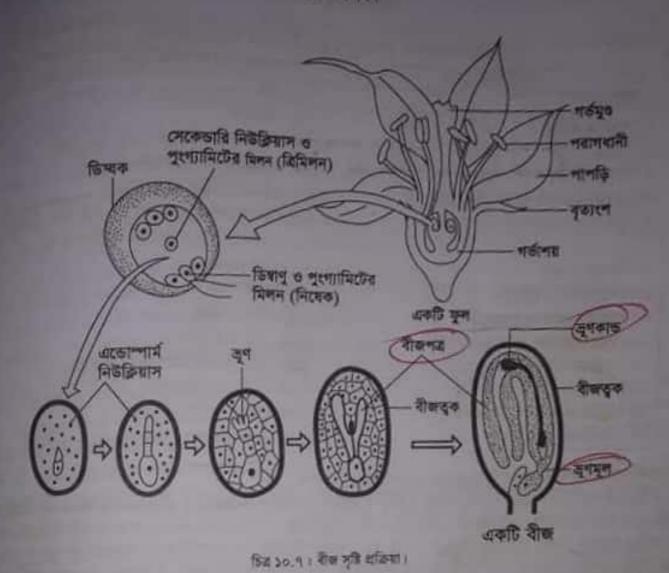
্যা গর্ভমূতে পরাগরেণুর অন্ধ্রোদগম : প্রথমে পরাগরেণু স্প্রজাতি শনাক্ত করে। গর্ভমূতের বিশেষ প্রোটিন এবং

ব্যাস্থ বিশেষ প্রোটিন পারস্পরিক বিক্রিয়ায় স্বপ্রজাতি ক্র হরে। স্বপ্রজাতি শনাক্তকরণের পর পরাগরেণ ক্রমের তরল পদার্থ শোষণ করে আকারে বড় হয় ন বছরিত হয়। অর্থাৎ পরাগরেণুর পাতলা অভ্যন্তর াই প্রমারিত হয়ে পরাগরক্ত পথে নলাকারে বের হয়ে মা মাকে পরাগনালিকা বলে। সাধারণত স্বপ্রজাতি ছাড়া पाल बहुदिङ द्या मा।

👊 পরাণনালিকার গর্ভাশয়মুখী যাত্রা ও ওক্রাণু সৃষ্টি : শানদিকটি ক্রমশ বৃদ্ধি পেরে গর্ভমূত হতে গর্ভদতের ^{হর} দিয়ে গর্ভাশয় পর্যন্ত পৌছায় এবং গর্ভাশয়ের তব 🏲 👫 ডিম্বক পর্যন্ত পৌছায়। পরাগনালিকা কর্তৃক শৃং সন্দেজ, পেকচিনেজ ইত্যাদি এনজাইম গর্তমুজ্যে হত্তে কোষ বিগলন করে অগ্রসরমান পরাগনালিকার া সৃষ্টি করে। ইতোমধ্যে পরাগনালিকার ভেতরো াই জন নিউক্লিয়াসটি মাইটোসিস প্রক্রিয়ায় বিশুক্ত ত্রাণু তথা পুংগ্যামিট সৃষ্টি করে। অধিকাংশ

চিত্র ১০.৬ : আবৃতবীজী উদ্ভিদের নিষেকজিনা।

ে (বেন্ন-আম ভাম) পরাগনালিকা ডিমকরজ পরে বিদেশ করে, একে porogamy বলে। কিছু কিছু উদ্ভিদে (যেমন-Canuarina কাউ) প্রাণনালিকা ভিম্বতম্ব দিয়ে বিষ্ণ করে, একে porogamy বলে। কোনো কোনো উত্তিদে (যেমন-লাউ, কুমড়া) পরাপনালিকা ভিত্তকুক ভেদ করে ভিয়কে প্রবেশ করে, একে mesogamy বলে। সাধারণত একটি মাত্র নালিকাই ভিয়কে থাকে। করে। ত উত্তিদে পোরোণ্যামি ক্রফিয়া সংঘটিত হয়।


- লে চ্যান্সাল্যান করে সাধানতে প্রবেশ ও ডক্রাণু নিক্ষিত্তকরণ : পরাগনাগিকা প্রথমে গর্ভাশয়ের তর ভেন্ কর প্রায়েশ করে। ইতোমধ্যে ডিমকে অবস্থিত স্থানেণু হতে ডিমাণু সৃষ্টি হয়। ডিমাণু ভ্রনথলিতেই অবস্থান করে। প্রায়ুক্ত শেষ পর্যন্ত জ্বরণ করে। মনে করা হয় কিছু বিশেষ রাসায়নিক পদার্থ পরাগনালীর গতিপথ নির্ স্রাণধলিতে প্রবেশ করে এটি সাহায্যকারী কোষের উপর দিয়ে ডিমাবুর নিকট পৌছে। পরে পরাগনাহিত্য বসারিত হয়ে ফেটে যায় এবং তক্রাণু তথা পুংগ্যামিট ভ্রণথলিতে নিকিও হয়। এ সময় প্রাগনালিকার চাপে হত একটি সাহায্যকারী কোম ধ্বংস হয়ে যায়। 🖓
- ((v) ভ্রমধনিতে ডিমাণুর সাথে একটি এবং গৌণ নিউক্রিয়াসের সাথে একটি তক্রাণুর মিশন : পরাগনাক ভ্ৰম্পতিতে নিশ্চিত দুটি পুগোমিটের মধ্যে একটি ভিমাণুর সাথে মিলিত ও একীভূত হয়ে যায় অর্থাৎ <u>নিম্মেটি</u> করে। এ প্রকার মিলনকে সিনশ্যামি (kyngamy) বলে। প্রকৃতপক্ষে ডিমাণুর সাথে তক্তাণুর মিলনই হলো নিকে অপর পুংগ্যামিটটি সেকেডারি নিউক্লিয়াসের সাথে মিলিত ও একীতৃত হয়। এ প্রকার মিলনকৈ বিমিলন (tiple)

খিনিষেকক্রিয়া বা খিনিষেক (Double fertilization) : একই সময়ে ডিখাপুর সাথে একটি পুংগামিটের 🦠 সেকেডারি নিউক্লিয়াসের সাথে অপর পুংগ্যামিটের মিলন প্রক্রিয়াকে বিনিষ্কেকক্রিয়া (double fertilization) ব কি প্রক্রিয়া বলে। বিনিষেক আবৃতবীজী উদ্ভিদের বিশেষ বৈশিয়া (নমুবীজী উদ্ভিদের Ephedra-তে বিনিষেক আহিন্দর ১৯৯০ সালে –এটি ব্যতিক্রম)।

এ প্রক্রিয়ায় একটি পুংগ্যামিট ভিমাণুর সাথে মিলিত হয় এবং অপর একটি পুংগ্যামিট সেকেভারি নিউক্রিয়াসংখ মিলিত হয়; ফলে ডিমাণু জাইগোটে পরিণত হয় এবং ডিপ্লয়েড অবছাপ্রাও হয় কিন্তু সেকেডারি নিউছিমান 🞾 অবস্থান্তাত হয়। সেকেডারি নিউক্রিয়াসের সাথে একটি পুংগ্যামিটের মিগনকে ব্রিমিশন (triple fusion) বলা হয়। এতে দৃটি মেক নিউক্লিয়াল ও একটি পুংনিউক্লিয়াস, এ তিনটি নিউক্লিয়াসের মিলন ঘটে।

নিষেকের পরিণতি (After effects of fertilization) : গর্ভাশয় থেকে ফল সৃষ্টি, ডিম্বক থেকে বীল সৃষ্টি বন হতে নতুন বংশধর সৃষ্টি হলো নিষেকের চূড়ান্ত পরিণতি। নিচে নিখেকের পরিণতির সংক্ষিত্ত বর্ণনা দেয়া হলো।

- ১। জনের পরিকুটন : নিবেকের ফলে অর্থাৎ হ্যাপ্রয়েড (n) ডিমাপুর সাথে হ্যাপ্রয়েড (n) অন্রমুর যৌন মিললে । যে ভিপ্নয়েড (n + n = 2n) কোৰের সূচনা হয়, তাকে জাইগোট বা উম্পোর (zygote or oospore) বলে। নিহিন্ন চি তথা **ভাইগোটই** হলো সোরোফাইটের প্রথম কোব। জাইগোট তার চারপাণে একটি প্রাচীর নিঃসৃত করে এবং শি সূত্র অবস্থায় পাকে। পারিপার্শিক অবস্থা এবং গ্রন্থাতি বিশেষে জাইগোটের সৃত্তিকাল ভিনুতর হয়। সূত্র অবস্থা ক্ষেতি প্ৰতে মাইটোটিক বিভাজন তক হয়। প্ৰথম বিভাজন সাধারণত আড়াআড়ি (transversely) ভাবে হয়, ফলে একটি শি আনিদ্রণ (proembryo) গঠিত হয়। আনিদ্রণটি ক্রম বিভালন ও বিকাশের মাধ্যমে একটি পূর্বাদ ক্রমে পরিনত হয়।
- ২। সদ্যের উৎপত্তি । সেকেডারি নিউক্লিয়াসের (2n) সাথে একটি অন্তাপুর (n) মিলনের কলে যে ট্রিয়ার 🖰 এতোশার্ম নিট্রক্রিয়াস গঠিত হয় ডা বার বার বিভাজন ও বিকাশের মাধ্যমে সস্য বা এতোশার্ম টিস্যু গঠন করে। এস বাচৰ পরিমাণ বাদ্য উপাদান উদ্ভিদের অন্যাদ্য অংশ থেকে এসে স্মাচিস্য সৃষ্টিতে সহায়তা করে। সমাটিস্য বহু^{ত পরি} স্টার্চ, নিপিড ও প্রোটন জমা করে।

৩। বীজ সৃষ্টি : ব্যক্তবীজী উত্তিদ এবং আবৃতবীজী উত্তিদে বীজ সৃষ্টি হয়। নিষেকের পর বিভিন্ন ধরনের বিভাজন ও ব্রু বিবর্তনের মাধ্যমে ভিম্বক (ovule) ক্রমান্তমে বীজে পরিণত হয়।

নিষ্কের পর ভিত্তের অভ্যন্তরে এরূপ পরিবর্তনের সাথে সাথে ভিত্তের তৃত দৃটি অপেকাকৃত কঠিন ও তহ হয়ে বিছের পর ভিত্তের অভ্যন্তরে এরূপ পরিবর্তনের সাথে সাথে ভিত্তের তৃত দৃটি অপেকাকৃত কঠিন ও তহ হয়ে বীজে পরিপত হয়। এরূপ করে পরিপত হয়। রসালো ভিত্তা পানি হারিয়ে অপেকাকৃত কঠিন ও তহ হয়ে বীজে পরিপত হয়। রসালো ভিত্তা পানি হারিয়ে অপেকাকৃত কঠিন ও তহ হয়ে বীজে পরিপত হয়। রসালো ভিত্তা প্রকৃতি তৃতীয় তর সৃষ্টি হয়, যাকে এরিল রলো তালো অংশ ।

বিষয়ে এবংগ এরিল দেখা যায়। শাপলা বাজেও এরিল আছে। গিচু ও কাঠলিচুর এরিল হলো কোলা অংশ।)

শাহকে নিষেকের পর ভিত্ততি বিভিন্ন পরিবর্তনের মাধামে অপেক্ষাকৃত বড়, শক্ত ও তছ হয়ে একটি বীক্ষে পরিবর্তনের মাধামে অপেক্ষাকৃত বড়, শক্ত ও তছ হয়ে একটি বীক্ষে পরিবর্তনের মাধামে অপেক্ষাকৃত বড়, শক্ত ও তছ হয়ে একটি বীক্ষে পরিবর্তনের মাধামে অপেক্ষাকৃত বড়,

া স্থানালগদের পর বীজ হতে প্রজাতি অনুযায়ী পূর্বাঙ্গ উল্লিদ আত্রপ্রকাশ করে।

। ফল সৃষ্টি : ফল হলো ক্রপান্তরিত গর্তাশয় যা নিষেকের পর বিকশিত হয়। নিষেকের কলে গর্ভাশয় উদ্দীর্ভ হয়ে।

। ফল সৃষ্টি : ফল হলো ক্রপান্তরিত গর্তাশয় যা নিষেকের পর বিকশিত হয়। নিষেকের কলে গর্ভাশয় তকিয়ে যায়।

। মান্তরিত হয়। নিষ্কের শেষে পূস্পের ভবকওলো নিজেল হয়ে এক সময় করে পরে। গর্ভাশন ও গর্তমূহ সীমারীন বৈচিত্রা।

। কলের আকার, আকৃতি ও বৈশিক্তা রয়েহে সীমারীন বৈচিত্রা।

। কলের আকার, আকৃতি ও বৈশিক্তা রয়েহে সীমারীন বৈচিত্রা।

। কলের আকার, আকৃতি ও বৈশিক্তা রয়েহে সীমারীন বৈচিত্রা।

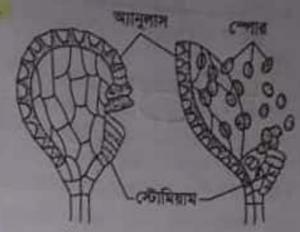
। কলের আকার, আকৃতি ও বৈশিক্তা রয়েহে সীমারীন বৈচিত্রা।

। কলের আকার, আকৃতি ও বিশিক্তা বিশ্বসাধান করে এবং বিসর্বাহা

। কলের কলে দাবে তার উৎস-উল্লেখকে নিশ্বিত করা যায়। কল বীজকে পুটি দান করে এবং বিসর্বাহা

নিষেকর পর গর্ভাশয় (ভিয়াশয়) এবং ডিয়কের বিভিন্ন পরিবর্তন নিষেকর পর গর্ভাশয় (ভিয়াশয়)	
নিবেকের আগে	নিয়েকের পরে বিকশিত হলে
ানবেক্সে আন্তর্গ ১। গর্ভাশয় প্রাচীর ৩। ভিত্তক ৪। ভিত্তক বহিঃতুক বা এক্সাইন ৫। ভিত্তক অন্তঃত্বক বা ইন্টাইন ৬। নিউসেগান বা ভ্রূপপোষক চিস্না	১। ফল হক । বীজ । টেস্টা (বীজ বহিঃত্ক) । টেসমেন (বীজ অন্তঃত্ক) ৬। অধিকাংশ ক্ষেত্ৰে নিঃশেষ হয়ে যায়, কিন্ধি প্ৰাকলে তা পেরিস্পার্ম (পরিজ্ঞা হয়
৭। ভিষাপু বা এগ ৮। সেকেভারি নিউক্লিয়াস ৯। সহকারি কোষ বা সিনারজিভ ১০। আান্টিপোডাল বা প্রতিপাদকোষ ১১। মাইক্লোপাইল বা ভিষকরজ ১২ হোইলাম বা ভিষকনাতী ১৩। ফিউনিকুলাল বা ভিষকনাতী ১৪। ক্যালাজা বা ভিষকমূল	৭। জগ (embryo) ৮। এজেশপার্ম বা সসা ৯। নট হয়ে যায় ১০। নট হয়ে যায় ১১। বাজেন ফাইজোপাইল (বীজর্ছ) ১২। হাইলাম (বীজনাতী) ১৬। বীজেন বোটা (বীজন্ত) ১৪। নট হয়ে যায় (বীজম্ল)

নিষেকজিনার ভক্তর বা ভাৎপর্য (Significance of fertilization)


জীবজগতে নিষেকক্রিয়া একটি অত্যন্ত গুরুত্বপূর্ণ জৈবিক প্রক্রিয়া। এ প্রক্রিয়ায় প্রীগ্যামিটের সাথে পুংগ্যামিটের ক্রিয়া থটে এবং গ্যামিট দুটির প্রোটোপ্রাজম ও নিউক্রিয়াসের সংযুক্তি ঘটে। কাজেই নিষেকক্রিয়ার ফলে দুটি হ্যাপ্তরের গ্যামিট মিলনের মাধ্যমে একটি ভিপ্নরের জাইগোট সৃষ্টি হয়। জাইগোট হতে ভাগের সৃষ্টি হয়। ক্রাণের সূষ্ট বৃদ্ধির জনা নিয় ছিঘাপুতে প্রোটিন সংপ্রেয়ণ এবং বিপার্কের হার বাড়াতেও নিষেকক্রিয়া সাহায্য করে। নিষেকের মাধ্যমে প্রজাতিতে জিল সংগ্রিপ্রণ গটে। এর ফলে যে প্রকরণ ঘটে তা বিবর্তনের কাঁচামাল হিসেবে বাবকত হয়। নিষেকের ফলে পুল্পের গর্ভবাট অভাররে ভিষকতপো বীজে পরিণত হয় এবং গর্ভাগ্য ফলে পরিণত হয়। কাজেই দেখা যায় নিষেকক্রিয়ার ক্রাণেই কি এবং ফলের সৃষ্টি হয়। বীজ উদ্ভিনের বংশ রক্ষা করে। বীজের সৃষ্টি না হলে অধিকাংশ পুল্পক উদ্ভিনই হয়ত বিশুর মাধ্যমে ক্রো। আবার উদ্ভিনের ফল এবং বীজের উপরই খানোর জন্য প্রাণিক্ল, বিশেষ করে মানুষ সম্পর্ণভাষে নির্ভাগী কাজেই নিষেকক্রিয়া যত না ভক্তবৃশ্ব উদ্ভিনকুলের জনা, তার চেয়েও অধিক ওরুত্বপূর্ণ মানুষ জাতির জনা। আমর ক্রিয়ার, লিচু, বেল, পেলে, ধান, গম, বার্লি, ভূটা ইত্যাদি যা বেয়ে থাকি তা সবই নিষেকক্রিয়ার ফলে সৃষ্টি টা আবার নিষেকক্রিয়া না ঘটলে উদ্ভিনসমূহ হ্যাপ্রয়েও অবস্থা হতে পুনরায় ভিপ্নরেত অবস্থায় খিরে আসতে পারে না। মাধ্যাভিতে আমুল পরিবর্তন ঘটে যেত। তাই নিষেকক্রিয়ার তাৎপর্য অপরিসীম।

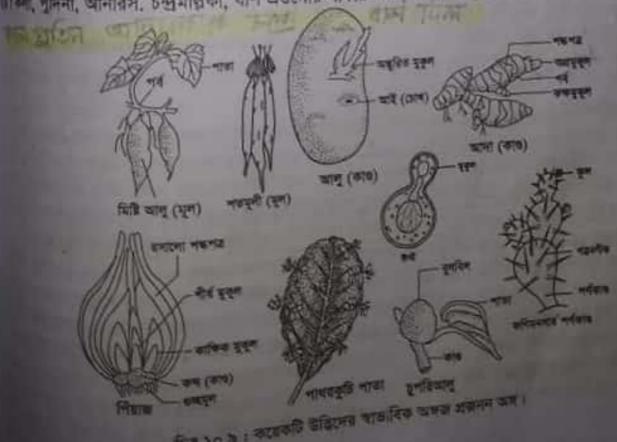
বৌন প্রজননের সুফল

- ১। যৌন প্রজননের ফলে রিকম্বিনেশনের মাধ্যমে জেনেটিক ভাইভাসিটি তৈরি হয়।
- ২। জেনেটিক ভাইভাসিটিট শারণে উদ্ভিদের নতুন ও পরিবর্তিও পরিবেশে বাপ থাইয়ে নিতে সুবিধা হয়।
- ৩। নতুন প্রকরণ সৃষ্টি হতে পারে।
- ৪। আমাদের খাদা দানা, তৈলবীজ ইত্যাদি এর মাধ্যমে পেয়ে থাকি।
- ২। অযৌন প্রজনন (Asexual reproduction) : পুং ও প্রীগ্যামিটের মিগন ছাড়া উদ্ভিদের যে প্রজনন মটে জ অযৌন প্রজনন বলে। নিমুপ্রেলির উদ্ভিদে অযৌন স্পোর সৃষ্টির মাধ্যমে অযৌন জনন হয়ে থাকে। আনুক্রীটি টিট সাধারণত দেহ অঙ্গের মাধ্যমে অযৌন জনন হয়ে থাকে। নিচে এদের সংক্রিপ্ত বর্ণনা দেয়া হলো-
- (a) অযৌন স্পোর সৃষ্টির মাধ্যমে : নিমুশ্রেপির বেশকিছু উদ্ভিদে বিভিন্ন ধরনের রেণু বা স্পোর (spote) হৈছি । এসম স্পোর অমুক্তিত হলে নতুন উদ্ভিদের জন্ম হয়। অনুকৃষ্ণ পরিবেশে এসব স্পোরে মাইটোমিস বিভাগন করিন মাহুন উদ্ভিদের জন্ম দেয়।

ব্যারতমো অধিকাংশ ছ্রাক ও শৈবাল বিভিন্ন প্রকার স্পোর গঠন করে। এদের মধ্যে প্রেমিসিলিয়ামের তালালিভিয়ে (sporangiospore) বা গৰিছিয়া আগারিকাসের বেসিডিওলেশার (basidiospore) व देखन्यागा ।

শ্রালের মধ্যে ক্রামাইভোমোনাস চলবেণু (200spore) এবং ছিনবেপু (resting spore) ना a(akinete) धदश अन्यान्य दह रेगवारनत हुन सकातादक (aplanospore) ইত্যাদি হলো বিভিন্ন ধরনের ্রার। এছাড়া ব্রায়োফাইটা ও টেরিভ্রোফাইটাকুড লা বেশুখলিতে (sporangium) উৎপন্ন রেণুগুলো অযৌন লৈ অপবিস্তারে সহায়ক। <u>কার্ন (fern) ও লাইকোপোডিয়াম</u> ্রাত্র্যালা)-এর স্পোর সম-আকৃতির অর্থাৎ হোমোস্পোরাস paperous), কিন্তু সেলাজিনেলা (Selaginella), তদ্দি শাক

চিত্র ১০.৮ : ফার্নের স্পোরাজিরাম (বাঁছে) ७ धर दिनातन (जारम)


্রত্যাদির স্পোর অসম-আকৃতির অর্থাৎ হেটারোস্পোরাস (heterosporous)।

(b) দেহ অঙ্গের মাধ্যমে : আবৃতবীজী উত্তিদে দেহ অঙ্গের মাধ্যমে অবৌন প্রজনন হয়ে থাতে। একল জননকে অসক ক্ল (vegetative reproduction) বলা হয়। অন্যভাবে, দেহ থেকে বিচ্ছিন্ন অংশবিশেষ নতুন জীব সৃষ্টি করলে তাকে 🗝 প্রমান বলে। প্রকৃতিতে অনেক উত্তিদে স্বাভাবিকভাবেই অসম প্রজনন হয়ে থাকে। আবার কৃত্রিম উপায়েও অসম রনা জা হয়। নিচে বিভিন্ন ধরনের অসতা প্রজনন সহছে বর্ণনা করা হলো:

(a) উহিদের স্বাভাবিক অঙ্গল প্রজনন : নিমুলিখিত উপায়ে স্বাভাবিক অঙ্গল প্রজনন ঘটতে পারে।

(i) ফুল মারা (By roots) : মিটি আলু, ভালিয়া, শতমুগী, কাকরোল, পটল প্রভৃতি উদ্ভিদের মূল থেকেই নতুন গাছের গ্রিম সমিতে এদের মূল লাগানো হয়। বিশ্বনি ক্রানিটো অত্যানের ক্রিম

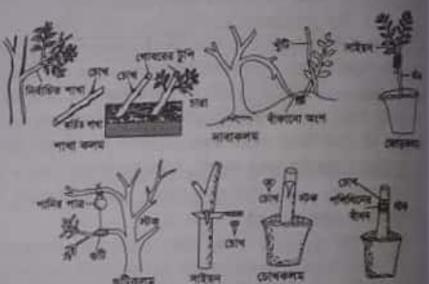
iii কাৰ মারা (By stem) : আলু, আদা, পিয়াজ, সটি, ওলকচু প্রভৃতি উভিদের কার খেকেই নতুন উভিদের জন্ম াশা, শুনিনা, আনারস, চন্দ্রমল্লিকা, বাঁশ এগুলোর সাকার-এর (বিশেষ কাও) সাহায়ে প্রজনন হয়।

(III) পাতার মাধ্যমে (By Ical) : পাধাকুটি পাতা মাটিতে কেলে রাখলেই একটি পাতা থেকে বহু নতুন হয়। এওলোই হলো খাভাবিক অসম প্রজনন-এর উদাহনব।

(iv) বুলবিল বা কক্ষমকুল : কোনো কোনো উল্লিমে পরিবর্তিত কক্ষমুকুল তথা বুলবিল যারা বলে বৃদ্ধি ছটে। চন্দ্র

(v) অৰ্থ বামৰীয় কাত মারা : কিছু জাতীয় উৱিদে অৰ্থ বামৰীয় কাত (খানাৰ যা পতি হিলেবে পৰিচিত) মাৰ বাস कुलस्याम् । यक्ति। व्यायकम् भारकत् (स्टामन)याता तरम तृष्टि पर्छ।

(vi) মুকুলোদগম (Budding) : ইসট নামক এককোষী ছত্ৰাকের মাতৃকোষ থেকে এক বা একাধিক মুকুল সূচ্চ


মুকুলতলো মাতৃকোষ থেকে বিচ্ছিন্ন হয়ে নতুন মদেউর জনা দেয়।

(vii) পর্ণকাত মারা : ফবিমনসার পর্ণকাত থেকে নতুন গাছ হয়।

(খ) উত্তিদের কৃত্রিম অঙ্গজ প্রজনন : উড়িদের কোনো গৈহিক অঙ্গ যেমন-মূল, কাও, পাতা ইত্যাদির স্ক বংশবিস্তার করার প্রক্রিয়াকে কৃত্রিম অঙ্গন্ত প্রজনন বলে। কৃত্রিম পছতি প্রয়োগ করে দুশা ও ফলের তণগতমান বছার 😥

এ ধরনের জনন ঘটানো হয়। যে পছতিতে এটি সম্ভব তাকে কলম করা বলে। কলম নিমুগিৰিত উপায়ে করা হয়ে থাকে।

- (i) नाचा कलम वा काण्टि (Cutting) : জবা, আৰ, গোলাপ, পাতাবাহার, সজিনা, আপেদ, কমলালের ইত্যাদি গাছের পরিণত কালো অংশবিশেষ কেটে সিক বা ভিজে মাটিতে পুঁতলে তা থেকে নতুন ডব্বিদ क्षन्यास ।
- (ii) দাবা কলম (Layering) : তেবু, টুই প্রভৃতি গাছের মাটি সংলগ্ন লঘা শাখাকে বাৰিয়ে মাটিতে চাপা দিলে কয়েক সপ্তাহের মধ্যে মাটির মধ্যে অবস্থিত শাখাটির পর্ব থেকে অস্থানিক মূল নিৰ্গত হয়। মাটিতে

তির ১০,১০ । কৃত্রিয় অসক প্রকাশ । (কৃত্য করার বিভিন্ন শ্রুমি)।

চাপা পড়া অংশের বাকল (ছাল) কেটে দিলে সেখানে দ্রুত মূল গঞায়। মূলসহ শাখাটি কেটে অন্য জায়গায় লাগুলে কি উত্তিদের খানা হয়।

- (III) জোড়কপম (Grafting) : বিভিন্ন ফল ও ফুল গাছের উন্নতজাত বজায় বাধার জনা জোড়কলম তৈরি করা হয়। নির্বাচিত উদ্ভিদের ঝোনো শাখা টবে লাগানো অন্য একটি উদ্ভিদের সাথে জুড়ে দিতে হয়। বিচ্ছিন্ন অংশটিতে স্থান (scion) বলে এবং সাইয়নকে যে উদ্ধিদের সাথে জোড়া দেয়া হয় তাকে স্টক (stock) বলে। স্টক যে কোনো বল নিয়ুমানের উদ্ভিদ হতে পারে। মাটির রস শোষণ করে উপরে পাঠানোই স্টকের কাজ। অন্যদিকে সাইয়ন সাধারণত হ আতের উভিদের অংশ হয়ে থাকে। সুতরাং ফল ও ফুলের চরিত্র নির্ভর করে সাইয়নের উপর, স্টকের উপর নছ।
- (Iv) ততিকলম (Gootee)। শক কাওযুক্ত যে কোনো ফল গাছ, যেমন- জেবু, আম অভূতি বা গোলাগ, গছত প্রভৃতি ফুলের গাছে তটিকলম তৈরি করা যায়। তটিকলমের জন্য নির্বাচিত অংশের বাকল (ছাল) ছাড়িয়ে সেবাসে কর মাটি ও খড় দিয়ে ভেকে খড় করে দড়ি বেঁধে দিতে হয়। নিয়মিত দেখানে পানি দিতে থাকলে ঐ অংশে জিছুদিন অস্থানিক মূল গজায়। মূলসহ শাখাটি বিচ্ছিন্ন করে ভিজে মাটিতে অন্যত্র রোপণ করলে তা থেকে নতুন উদ্ধিন জন্ম।
- (v) চোধকলম বা কৃতি সংযোজন (Budding) : এ পক্তিতে একটি গাছের কাতে অন্য গাছের তাতিত মুকুল সংগ্র ক্ষমা হয়। যে গাছের কালে যুকুল সংযোজন করা হবে ভার সুবিধা মতো শাখায় ছুরি (নাইক) দিয়ে সু-আভাবে হাঙ্গ হি লিয়ে লেই ছানে কাজিকত শাহের একটি মুকুল (অনুক্রণ আকারে) নিয়ে নায়ুরোধী করে বেঁথে সেয়া হয়। তরেক শি

সাতৃ গাছের সাথে সংযুক্ত হয় এবং দ্রুত বৃদ্ধি লাভ করে নতুন শাখা উৎপদ্ধ করে। যেমন- বুল (বর্ষ),

তে ক্ষিত্র এ প্রক্রিয়া লক্ষ্য করা থায়। ্রাই কৃত্রিম অঙ্গজ প্রজননের জন্য চাই অভিজ্ঞতা, চাই প্রয়োজনীয় বস্তুপাতি, কিছু রাসায়নিক পদার্থ (মূল তৈতির

ৰে) মোন ইত্যাদি। ্ । পার্যার্থনোজেনেসিস (Parthenogenesis) বা অপুংজনি : উচ্চ হেলির উদ্ভিদে সাধারণত ভিমাণুর সাথে তক্রাপুর ত। শালা বিষ্ণা করে করে জ্বা সূচি হয়ে থাকে। কিন্তু কোনো কোনো ক্ষেত্রে ভিয়াণু নিষিক্ত না হয়ে সরাসরি জ্বা সূচি করে। প্রাণ জ্বা । তি প্রাণ কিন্তা কিন্তু কিন্তু করে জ্বা কিন্তু করে এবং ডিখন স্থানিক বীজে পরিণত হয় তাকে ক্রিণ ক্রিণ বা অপুংজনি বলে। সর্বাণার ক্রিণ ক্রিণ করে এবং ডিখক স্বাচারিক বীজে পরিণত হয় তাকে ক্ষেত্র বিষয় বা অপুংজনি বলে। হতুমোন প্রয়োগে বীজহীন ফল উৎপাদন প্রক্রিয়াকে পরিবত হয় তাকে

(Purbenocarpy) वरण । উमादत्रवृद्धण्यु, क्रमणारणवे अङ्डि । গারিখনোজেনেসিস প্রধানত দু'প্রকার। যথা: (j) হাাপ্লয়েড পারখেনোজেনেসিস এবং (ji) ডিপ্লয়েড

(i) হাপুরেড পারথেনোজেনেসিস (Haploid Parthenogenesis) : ধখন খাডাবিক মানোসিস প্রক্রিয়ান্ত ডিখাণু সৃষ্টি লংখনোজনেসিস। ত্যেও ডা নিষ্কিত না হয়ে সরাসরি জাণের সৃষ্টি করে তখন তাকে হ্যাপ্সয়েত পারখেনোজেনেসিস বলে। এ প্রক্রিয়ায় সৃষ্ট প্রিপত হ্যাপ্ররোভ হয় এবং অনুর্বর হয়। Solanum nigrum, Orchis maculata উত্তিদে অনিমিক ভিষাপু খেকে

(ii) তিপ্নতে পারত্বনোজেনেসিস (Diploid Parthenogenesis) : যখন বাতাবিক মায়োসিস প্রক্রিয়ার বদলে যাপ্রমত ভবিদ সৃষ্টি হয়। মিটিনিস প্রক্রিয়ায় ডিমাণু (2n) সৃষ্টি হয় এবং পরে জণে পরিণত হয় তাকে ডিপ্লছেভ পারমেনোজেনেসিস বলে।

Isthenium argentatum ও Taraxacum albidum উडिएम डिश्नायङ नाजालनात्वात्विम २०७ मित्रा यात्र ।


Nicotiona labacum (তামাক) এ অনিধিক তক্রাণু হতে হ্রণ সৃষ্টি হয়। নিষেকক্রিয়া ছাড়া তক্রাণু থেকে হ্রণ সৃষ্টির क्ष्मांक जाट्यांद्यात्मिम (androgenesis) वत्म । निद्यापियाना

কৃতিম পারথেনোজেনেসিস : বাহ্যিক আবেশের মাধ্যমে কৃতিমভাবে বহু উদ্ভিদে পারথেনোজেনেসিস ঘটানো সন্তব। হুগামিট ডিমাপুতে যে উদ্দীপনা সৃষ্টি করে এরূপ উদ্দীপনা সৃষ্টিকারী পদার্থ প্রয়োগ করে নিষেক ছাড়াই ডিমাপু থেকে জব ইপদ্ধ করা হয়। এক্স-বে প্রয়োগে, ইমাঞ্জেশনের পর পরাগায়ন বিলম্বিত করে বা বৈলভিটান জাতীয় রাসায়নিক পদার্থ

পারবেনোজেনেসিস-এর ভরুত্ ঃ উত্তিদের প্রজননে পারবেনোজেনেসিস তেমন তরুত্পুর্ণ নয়। যেসব উভিসে বরেশ করে কৃত্রিম উপায়ে পার্থেনোজেনেসিস ঘটানো সম্ভব। व्याप्रात्माकारनिम २ए७ मित्री याम (व्यमन- Solanum nigrum, Parthenium argentatum) जात्मत्र वालांदिक श्रात्मन

- । কোন উদ্ভিদে অযৌন বা যৌন পদ্ধতিতে প্রজনন না ঘটে কেবল পারখেনোজেনেসিস প্রক্রিয়ায় নতুন উদ্ভিদের জন্ম হলে ঐ উত্তিদের জন্য এ প্রক্রিনাটি অতি গুরুত্বূর্ণ, কারণ বন্ধাত্ত্বে হাত থেকে বা বিলুভির হাত থেকে প্রজাতিটি মৌন প্রকার।
- এ প্রক্রিয়ার কোনো প্রকরণ সৃষ্টির সম্ভাবনা থাকে না। ্ এ বক্রিয়ায় উদ্ভিদের সুবিধাজনক মিউটেন্ট বৈশিষ্ট্যের বিকাশ ঘটতে পারে।

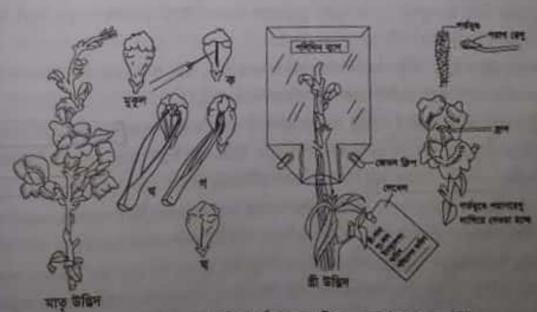
ভাগোলোর (Apospory) : ডিম্বরের (ovule) যে কোনো নেহকোর থেকে (হেমন- ডিম্বর কুড, নিউসেলাস) * এ ব্যক্তিয়ার সৃষ্ট হ্যাপ্সরোভ উদ্ভিদ প্রিভিং গবেষণায় কাজে লাগানো যার। িয়ের হ্রপথলি (embryo sac) সৃষ্টি হতে পারে। ডিঘকের দেহকোয় থেকে সৃষ্ট ডিপ্লয়েড দ্রুগদির ডিপ্লয়েড ছয় এবং ি নিষেত্র হাড়াই শ্রুপ সৃষ্টির প্রক্রিয়াকে বলা হয় আপোশোরি। আপোশোরি প্রক্রিয়ায় সৃষ্ট ডিরুপ ডিরুয়েত হয় এবং া বিদের সমঙ্গসম্পন্ন হয়। Hieracium ভাতিদে এরণ হতে দেখা যায়।

চিত্র ১০,১১ : আবৃতবাজী উভিদের জীবন চক্রে স্কন্তম।

ভিদকের ভিদক তুক বা নিউসেলাসের যে কোনো কোদ হতে ভ্রণথলি গঠন ছাড়াই (আপোল্পোরিতে ভ্রনথি কি হয়) ভ্রদ সৃষ্টির প্রক্রিয়াকে বলা হয় আভভেনটিটিভ এমব্রায়োনি (adventitive embryony)

্রজাপোশ্যামি (Apogamy) : ভিদাপু ছাড়া ভ্রণথলির অন্য যে কোনো কোষ (যেমন- সহকারি কোয়, প্রতিশানা ইত্যাদি) থেকে ভ্রন সৃষ্টির প্রক্রিয়াকে অ্যাপোশ্যামি বলে। একেরে নিষেক ছাড়াই ভ্রণ সৃষ্টি হয়। Allium-এ একণ ক

পারখেনোক্রেনেসিস, আপোশোরি, আপোগামি এবং আডতেনটিটিভ এমরায়োনি এর প্রতিটি প্রক্রিয়াটেই নিবে ছাড়া জন সৃষ্টি হয়। চিবাপু, জনগালি বা ডিবকের অন্যান্য কোব থেকে নিবেক ছাড়া জন তৈরির এসর প্রক্রিয়াটে সাম্মিকভাবে বলা হয় আগোমোল্পার্মি (agamospermy)। আগামোল্পার্মি অগুপ্রেরণা সৃষ্টির জন্য প্রাণায়ন জনস্থী হলে তাকে বলা হয় সিউজোগ্যামি (Pseudogamy)। শাস তেরির জন্মই প্রাণায়নের প্রয়োজন হয় তাল তৈরির জন্ম


70317 201	াস তোরর জনাই পরাগায়নের প্রয়োজন হয়, এণ তৈরির জন
)। गामिए तृति रह मा अवर गामिएएव अस्तासन रह मा।	रगीन छनम
अंग आह्यात्रिम द्वाराद्वाद्वावात्त्व वाद्याक्तम् वसः वर्	C. C. A.A. Die Maldineral allegand being being
০। সুট সমুল উদ্ভিদে বৈভিত্তা সৃষ্টি হয় ।।।	२ । भारतामिम् द्रकाश्चिकावास्य श्रद्धाावस इतः।
8 । भूत्रे विदेश कम् महित्सामनकम् इत् ।	DATE OF THE PROPERTY AND AND THE CASE OF THE PERSON OF THE
৫। স্থাধারণত নিম্নহোশির উত্তিদে মঠে।	B । गृते विदिन जामिक प्रास्ट्याक्षमण्डर हर ।
	ত । নিয় ও উচ্চ ক্রেনির উল্লিখে মটো ।

क्षेत्र व क्षेत्र व वागमन (Artificial Reproduction of Plants)

রা। নির্বাচন (selection), সংক্রারন (hybridization), মিউটেশন (mutation) ইড্যানি গছতির মাধ্যমে কসলের জার লাত উল্লাবন করা যায়। দুটি বিসদৃশ নির্বাচিত উল্লিদের মধ্যে ধেখানে প্রাকৃতিক উপায়ে পরাগায়ন ও প্রক্রান করিব নিয়ন্তিত উপায়ে পরাগায়ন ঘটিয়ে উল্লিদের মধ্যে ধেখানে প্রাকৃতিক উপায়ে পরাগায়ন ও প্রক্রান করাকে উল্লিদের কৃত্রিন প্রক্রান করে। এ প্রক্রিয়ায় সৃষ্ট উল্লিদের করিবর্তন সাধন করে উল্লুক লাত বা প্রক্রমণ ক্রিয়াত্বলোর মধ্যে হাইবিডাইজেশন (hybridization) তথা সংক্রায়ন সন্যক্রম। প্রকৃতিরত প্রাকৃতিকভাবেও কিছু বিশ্বনিত্ব ক্রিয়াত্বলোর মধ্যে হাইবিডাইজেশন ঘটে থাকে, তবে সাধারণত কৃত্রিন উপায়েই ফাইবিডাইজেশন ঘটানো হয়। সংক্রায়ন হলো উল্লিদ্ব স্থাননের এম্ন একটি পদ্ধতি যেখানে এক বা একাধিক জিনগত বৈশিষ্ট্যে কিনু দুই বা তথাধিক উত্তিনের মধ্যে ক্রেয়ার্বিট (জাত) উল্লাবন করা হয়।

তিনুত্র জেনেটিক বৈশিষ্ট্যমন্তিত দুই বা ততোধিক উদ্ধিদের মধ্যে ক্রেন (cross) করানোর প্রক্রিয়াকে বলা হয় কৃত্রিম গ্রহ্রিডাইজেশন (artificial hybridization)। সাধারণত উদ্নত বৈশিষ্ট্যমন্তিত নতুন প্রকরণ সৃষ্টির উদ্দেশ্যে এটি ক্রেনা হয়। কৃত্রিম হাইব্রিডাইজেশন (সংকরায়ন) প্রক্রিয়া বা কৌশল: কৃত্রিম হাইব্রিডাইজেশন প্রক্রিয়াটি নিমুক্তপ:

-)। প্রারেন্ট নির্বাচন: কাদের মধ্যে হাইব্রিডাইজেশন করতে হবে তা নির্বাচন করাই হলো প্যারেন্ট নির্বাচন।
- ২। পাারেন্টের কৃত্রিম স্থারাগায়ন : প্যারেন্ট স্থারাগ্রী না হলে এদেরকে কৃত্রিয় স্থারাগ্যানের মাধ্যমে হোমোজাইগাস (homozygous) করা হয়।
- ৩। প্যারেন্ট উদ্ভিদের ইমাস্থলেশন : যে পুশ্পকে মাতৃপুশ্দ হিসেবে ধরা হবে তা যদি উভলিঙ্গ (এবং ক্লরাগী হয় আবা প্রয়াজনে অপরাগী হতে পারে) হয় তাহলে ইমাস্থলেশন করা হয়। পরিপত্ব হবার আগেই পুশ্দ থেকে পুরেকশর মেরে ফেলা বা সরিয়ে ফেলাকে বলা হয় ইমাস্থলেশন। এতে করেছিপরাগায়ন ঘটতে পারে না)
 - 8। বাণিং: পলিখিন ব্যাগের সাহায্যে ক্রমে ব্যবহারের জন্য নির্বাচিত উদ্ভিদের পুশ্পিত অংশকে চেকে দেওয়া হয়।

চিত্র ১০.১২ : অসিং-এর বিভিন্ন পর্যায় (ক-ম ইমাভুলেশন) বা সংকরায়ন।

লা হয়। ৬। শেখেদিং : ইমাকুলেলনের তারিব, ক্রসিং-এর তারিব, মাতৃ ও পিতৃ উল্লিম পরিচিতি সম্বলিত একটি পেত্র

উত্তিদে লাগিয়ে দেয়া হয়।

৭। বীজ সংগ্রহ : কৃত্রিম পরাগায়নের কলে সৃষ্ট কলটি পাকলে তা থেকে বীজ সংগ্রহ করা হয়।

৮। বীজ্ঞ বপন ও F, উভিনের উদ্ধব: পরবর্তী বছর কৃত্রিম ক্রেনের ফলে সৃষ্ট বীজ্ঞতলো বপন করা হয় এবং F সৃষ্টি হয়। F₁-বংশদরওলো হলো নির্বাচিত প্যারেন্টের হাইব্রিড। পরে F₂F₆ পর্যন্ত বংশদর সৃষ্টি করে চ্

৯। F₁ বংশধরের ব্যবহার ও নতুন প্রকরণ সৃষ্টি: F₁ বংশধরের দৃটি উত্তিদের মধ্যে ক্রেস করিয়ে থেশব উত্তিদের হয় সেওলো হলো F₂ বংশধর। একই পছতিতে কয়েক প্রজন্ম (generation) ধরে এভাবে সংকরায়ন করতে করতে করে এখ নতুন প্রকরণ এর জন্ম হয়।

প্রকৃতপকে ত হতে ৬ নদর ধারাকে মিলিডভাবে কৃত্রিম প্রজননের কলাকৌশল বলা হয়।

সংকরায়ন পদ্ধতির সতর্কতা (Precaution)

- ১। প্যারেন্ট নির্বাচন করার সময় তাদের পার্থকাগুলো সুস্পষ্টভাবে লক্ষ্য করতে হয়।
- ২। ইমান্তুলেশন ও পরাণায়নের সময় হাত, সূঁচ, চিমটা, তুলি প্রভৃতি স্পিরিট দিয়ে ধুয়ে জীবাণুমুক্ত করতে হয়।
- ত। শক্ষ্য রাখতে হবে, ইমান্কুলেশনের সময় যেন একটি পুংকেশরও থেকে না যায় এবং গর্ভকেশরের হেন জেন প্র না হয়।
- 8। ব্যাণিং ঠিকমতো করতে হবে এবং এর মধ্যে বায়ু প্রবেশের জন্য সৃক্ষ ছিদ্র থাকতে হবে।
- ৫। সংকর বীজ সংগ্রহ এবং এক্ষেত্রে কলা-কৌশল গ্রহণ সঠিকভাবে নিতে হবে।

विवर्जरन कृष्यिय श्रकनरनद्र कृषिका

উত্তিদ বিবর্তনে কৃত্রিম প্রজননের বিশেষ ত্মিকা রয়েছে। নিম্নে কৃত্রিম প্রজননের ত্মিকা সংক্ষেপে বর্ণনা করা হলোঃ
আরিয়েশন সৃষ্টি : বিবর্তনের আধুনিক ধারণা মতে মিউটেশন, ক্রোমোসোমীয় মিউটেশন, জেনেটিক বিক্রিনেদ
প্রজাতি বৈচিত্রের জন্য তরুত্বপূর্ণ। ফলে কৃত্রিম প্রজননের মাধ্যমে উনুত ওপসম্পন্ন নতুন প্রজাতি তৈরি হয় স্বাধ্যমে ভারিয়েশন (বৈচিত্রের) সৃষ্টি হয়।

বৃতিকুগতা সহিষ্ণু জাত তৈরি : কৃত্রিম প্রজননের মাধ্যমে বন্যা, খরা, লবণাক্তা প্রতিরোধক্ষম জাত তৈরি কয় য এ জাত নতুন পরিবেশের সাথে নিজেদেরকে খাপ খাইয়ে নিতে পারে।

রোগ থতিতাধী জাত তৈরি: শদোর সর্বোচ্চ ফলনের প্রধান সমস্যা হলো রোগ ও কীট পতঙ্গের আক্রমণ ক্রিল রাজননের মাধ্যমের বিভিন্ন ফসলের রোগ প্রতিরোধী জাত তৈরি করা সম্ভব হচ্ছে। BIURI উদ্লাবিত মুকা (বিমার-১৮) গাজী (বিজ্ञার-১৪) মোহিনী (বিজ্ञার-১৫)। এগুলো রোগ প্রতিরোধী জাত।

গুণাত মান উন্নয়ন : খাদ্য শসার ক্ষেত্রে দানার আকার, বর্ণ, গছ, স্থাদ, দীর্ঘ সংরক্ষণ সময় ইত্যাদি উন্নত বৈশিক্ষ দাবিদার। কৃত্রিম প্রজননের মাধ্যমে এসর বৈশিষ্ট্য স্থানান্তর করে উদ্ভিদের গুণগত মান উন্নয়ন করা যায়।

আবাদকাশ সংক্রিকরণ : বন্যার কারণে অনেক নিম্নত্যির আবাদ নট হয়ে যায়। আবার কড়েন প্রোপের অন্ত ক্ষণ নট হয়। কৃত্রিম সংকরায়নের মাধ্যমে কসংগর আবাদকাশ ২০-৩০ দিন পর্যন্ত কমানো সম্ভব। এতে বনার শুর্মী ক্ষাল সমাহ করা যাবে। পুর রাজ্যানের অর্থনৈতিক শুকুর : কৃত্রিম প্রজননের অর্থনৈতিক হক্ষণ্ড অপরিসীম। এর মাধ্যমে সৃষ্টি করা হয়েছে বিশ্বনা উন্নত ফলনশীল জাত। উন্নত ফলনশীল প্রকরণহলার অধিকাশেই আবার রোল ও খনা প্রতিযোগকম। করি পুরিইতে উন্নত ফলনশীল প্রকরণহলোর কারণে লক লক টন ফলন বেড়ে চলেছে। সংক্রির আকারে কৃত্রিম বার্থ বিশ্বনি বিশ্বনি ভাত উত্তাবন, (২) রোগ প্রতিযোগ

(১) উচ্চ ফলনশীল আত উদ্ভাবন, (২) রোগ প্রতিরোধক্তম আত উদ্ভাবন, (৩) প্রতিকূল পরিবেশে অভিযোজনক্তম (১) উচ্চ ফলনশীল হাইবিড উদ্ভাবন, (৫) দৃষ্টিনন্দন অর্কিড উদ্ভাবন, (৬) দৃষ্টিনন্দন গোলাল উদ্ভাবন, (৭) বার্ড উদ্ভাবন (৮) বীজহীন ফলের আত উদ্ভাবন, (১) অধিক ফলনশীল পাক-স্বাঞ্জির আত উদ্ভাবন এবং (১০) বার্ড কৃত্রিম প্রজননে বহ উদ্লত আত উদ্ভাবন। নিমে কৃত্রিম প্রজননের ক্যেকটি উদাহরণ দেয়া হলো।

ু উচ্চ ফলনদীল ধানের জাত সৃষ্টি: ১৯৬০ এর দশতে ফিলিপিনমে অবৃত্বিত আন্তর্জাতিক ধান গবেষণা কেন্দ্রের
ামা International Rice Research Institute) বিজ্ঞানিগণ ইরি মান উব্লবন করেন। কৃত্রিম প্রজ্ঞানের মাধ্যমে উব্লবিত
ক্রেমানিগা ধান ইরি-২০, ইরি-৮, ইরি-৫, ইরি-২৮, ইরি-২৮ ইত্যাদি। একবল্লতি এদের ফলন বেড়েছে বহুতব ।
ক্রেমানিগা ধান গবেষণা কেন্দ্রে (BRRI-Bangladesh Rice Research Institute) উব্লবিত উচ্চ ফলনশীল ধান চান্দিনা,
ক্রিমাইল ইত্যাদির ফলনও অনেক বেশি। বাংলাদেশ ধান গবেষণা প্রতিষ্ঠান কর্তৃক উল্লবিত চার্মানি উফলী
ক্রেমানিক নাম হলো- চান্দিনা (বিআর-১), মালা (বিআর-২), শাহী বালাম (বিআর-১৫) এবং প্রাবনী (বিআর-২৬)। শত
ক্রেম্ব এশিয়ায় ধানের উৎপাদন ক্যপক্ষে ৪ গুণ বৃদ্ধি পেয়েছে।

অধিক ফলনশীল ইরি বা বিরি ধান উদ্বাবনের আগে পৃথিবীর এ অঞ্চলে, বিশেষ করে আজকের বাংলাদেশ অবাংশ করে বছল পর পরই দুর্ভিক্ষ দেখা দিতো, অথচ তখন লোকসংখ্যা ছিল আজকের তুলনায় অনেক কম এবং খান চামের ছবি ছিল অনেক বেশি। এর প্রধান কারণ হলো তখন ধানের ফলন একরপ্রতি খুবই কম ছিল, ফলে কোনো বছর আগাম লা বা ধরা দেখা দিলেই দুর্ভিক্ষ দেখা দিতো। তখনকার সময়ে চাষকৃত জাতচলোর একরপ্রতি সর্বাধিক ফলন ছিল ১৮০২ মধ। বর্তমানে চাষকৃত উচ্চফলনশীল জাতের একরপ্রতি সর্বাধিক ফলন হয় বিচাহত মধা।

ইনি-৮, ইরি-৫, ইরিশাইল এতলো উচ্চফলনশীল ধানের জাত। ইন্সোনেশিয়ান পেটাধান ও তাই ব্যালের ডি. জি.
ইনি-৮, ইরি-৫, ইরিশাইল এতলো উচ্চফলনশীল ধানের জাত। ইন্সোনেশিয়ান পেটাধান ও তাই ব্যালের ডি. জি.
ইনি-৫ করাবান করে উদ্রাবন করা হয়েছে ইরি-৮। এর একরপ্রতি ফলন ৯০-১০০ মণ। ইরি-৫ জ্বরাবন
লাহমেশে উদ্রাবিত ইরিশাইল উদ্রাবন করা হয়েছে ইন্সোনেশিয়ান পেটাধান, চারতের টি. কে. এম-৬ ধান এবং
লাইন্সোনের টাইচ্নু-১ এর মধ্যে সংকর করে। এর একরপ্রতি ফলন ৭০-৭৫ মণ। এমনিভাবে বিমার-২০ এবং বিমার-৩
বর্ষ মধ্যে সংকরায়ান করে উদ্রাবন করা হয়েছে বিরিশাইল। বিমার-২৮ এবং ২৯ আরও উন্নত জাত।

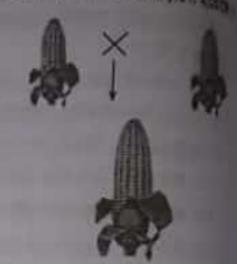
ত উচ্চ ফলনশীল গমের জাত তৈরি: বর্তমানে বিশ্ববাণী চাষকৃত গমও কৃত্রিম প্রজননের ফসল। আগে গমের ফলন
রাজ পুরই কম। তাহাড়া বিভিন্ন রোগে আক্রান্ত হয়ে প্রায়ই ফসল নাই হয়ে থেতো। ফসল রক্ষার জনা তথান লক্ষ্ লক্ষ্
লাজে ভ্রমুধ প্রয়োগ করতে হতো। কৃত্রিম প্রজননের মাধামে উল্লাবিত বর্তমান গমের ফলনত বেশি। আবার বোল
ভিরোদক্ষম হত্যায় ওদুধ প্রয়োগের তেমন প্রয়োজন হয় না। এর ফলে খরচ কম হয়, অথচ ফসল বেশি পাত্রয় যায়।

মনেক আগে যে গমের চাই হতো তার ফলন ছিল খুবই কম, তাছাড়া এর রোগ প্রতিরোধ করার ক্ষমতাও ছিল কম।

তিই আতের মধ্যে সংকরায়নের মাধ্যমে উদ্ভাবন করা হয়েছে উন্নতজাতের গম, যা বর্তমানে চাই করা হয় বিশ্ববাণী।

তিই আতের মধ্যে সংকরায়নের মাধ্যমে উদ্ভাবন করা হয়েছে উন্নতজাতের গম, যা বর্তমানে চাই করা হয় বিশ্ববাণী।

তিই আতের মধ্যে সংকরায়নের মাধ্যমে উদ্ভাবন করা হয়েছে উন্নতজাতের গম, যা বর্তমানে চাই করা হয় বিশ্ববাণী।


তিই আতের মধ্যে বলাকা, কাকন, আনন্দ, আকবর, বরকত ও সওগাত বেশ জনপ্রিয় জাত। উচ্চকলনশীল গম

বিশ্ব জন্য আমেরিকান বিজ্ঞানী Norman Earnest Borlaug ১৯৭০ সালে নোবেল পুরস্কার লাভ করেন।

্র উন্নত জাতের কুটা উৎপাদন : আমেরিকার বিজ্ঞানী G. H. Shull ১৯০৮ সালে কুটার সংকর উল্লিদ সুনিত্র ত্রত লাতের বুলা কর্মনার সকল হন। এরপর কুটার ছি-সংকর পছতিতে এর উৎপাদন আরও রাড়ালো হয়ে।

🗅 উন্নত জাতের ফুল ও অর্কিড উৎপাদন : বর্তমান সময়ে চামকৃত অধিকাশে ফুলই সংকরায়নের মাধামে কৃতিমভাবে সৃষ্টি করা হয়েছে। প্রতি বছর বছ অতিত সৃষ্টি করা হচ্ছে সংকরায়নের মাধ্যমে। কৃত্রিম সংকরায়নের মাধামে যে জাত তৈরি হয়েছ ভার কলে কুল চাবে বিপ্লব ঘটছে। যেমন- গোলালের হাইরিড-টি, ফ্রোরিবাডা, মেরিগোল্ড, গ্লাভিওশাস, রজনীগছা ইত্যাদি প্রায় সব জাতই হাইব্রিড।

🗆 হাইব্রিভ ফল ও সবজি উৎপাদন :কৃত্রিম হাইব্রিভাইজেশনের মাধামে আম, তরমুজ, আপেল, বরই ইত্যাদি ফল এবং মিটি কুমড়া, শাউ, টমেটো, ঝিঙা, বাধাকপি ইত্যাদি সবজি উৎপাদন করে ৰাজারজাত করা হচেছ। বীজহীন ফল ও সবজি কৃত্রিম প্রজননের जुक्त ।

চিত্ৰ ১০.১৩ : হাইব্ৰিচ বুটাৰ স্থা

্রাণ প্রতিরোধী আত উৎপাদন : বিভিনু রোণ সংক্রমণের ফলে প্রচুর পরিমাণে আবাদি কসলের ফলনহার হ বাকে। বুনো প্রজাতির রোগ প্রতিরোধ কমতা বেশি হওয়ায় দংকরায়নের মাধ্যমে এ বৈশিট্য আবাদি ভাতে কুলিক স্থানাক্তরের মাধ্যমে রোগ প্রতিরোধী লাত উৎপাদন করা সন্তব। গাজী (BR-14), মুকা (BR-11), মোহিনী (BR-15) হর ধানের রোগ প্রতিরোধী জাত।

এভাবে সৃষ্টি করা হয়েছে কয়েক লক জাত বা প্রকরণ। ফলে সমৃত্তি ঘটেছে মানবসভ্যভার।

সার-সংক্রেপ

প্রজনন : জীব থেকে নতুন শিত জীব সৃষ্টি প্রক্রিয়াই প্রজনন। প্রজনন জীবের অননা বৈশিষ্টা। মার্ডাইন থেকে বৃদ শিত উত্তিদ সৃষ্টির প্রক্রিয়া হলো উত্তিদ প্রজনন। উত্তিদ বিভিন্ন উপায়ে প্রজনন করতে পারে। উপায়তলো হলো অসম সন্ যৌন জনন, পারথেনোকার্লিক জনন। মূল ও কাতের বিভিন্ন উপবৃদ্ধি থেকে যে জনন হয় তা হলো অসভ জনন। মূল মূটি মাধামে যে প্রজনন হয় তা হলো যৌন প্রজনন। ফুল থেকে বীজ হয়, তাই বীজ ছারা যে প্রজনন হয় তা যৌন প্রজনত।

নিষেক : নিশ্চল খ্রীগ্যামিটের সাথে সচল পুংগ্যামিটের মিলনকে নিষেক বা নিষেকক্রিয়া বলা হয়। নিষেক দিয়া লখম ধাপ হলো পরাপায়ন। পরাণায়নের মাধ্যমে একই উল্লিখের অথবা একই প্রজাতির অন্য উল্লিখের প্রাণ্ধানী 🖽 পরাণরেণু কুলের গর্ভমূতে পঠিত হয়। গর্ভমূতে পঠিত হওয়ার পর পরাণরেণু পরাগনালিকা সৃষ্টির মাধ্যমে অভুরির হয়। লরাগনালিকা ধীরে ধীরে বৃদ্ধি গেয়ে<mark>গর্ভদত্ত</mark>পার হয়ে গর্ভাশয়ে অবেশ করে। ইত্যেমধ্যে প্রাগনালিকার ভেত্রে তরুগু দ্ হয়। পরাগনালিকা শেষ পর্যন্ত ভ্রণথলিতে প্রবেশ করে। তক্রাণু ভ্রণথলিত্ব ভ্রিমাণুর সাথে মিলিত হয়ে নিষেক জিয়া সাই করে। একই সময়ে অপর একটি তক্রাণু জনগলিতে অবস্থিত সেকেভারি নিউক্রিয়ানের সাথে মিলিভ হয়ে ছিনিখের সম্ম করে। নিখেকের পর নিষ্ঠিত ডিমাণু পরিপূর্ণ হয়ে বীলে পরিণত হয়। ?

সংক্ষায়ন । কোনো ভালো বৈশিষ্ট্য সম্পন্ন গাছের পরাগরেণু একই প্রজাতির ভিন্ন বৈশিষ্ট্য সম্পন্ন গাছের মার্চ্য শরাপায়ন খটিয়ে উন্নত জাত উদ্ধাননের প্রক্রিয়াকে বলা হয় সংক্রায়ন (hybridization)। অন্যভাবে বলা যায়, সংক্রা হলো এমন প্রজনন পছতি বেবানে এক বা একাধিক জিনগত বৈশিটো তিরু দুই বা ততোধিক উদ্ভিদের মধ্যে ক্রত ক্রিট নতুন উন্নত ভারাইটি (बाठ) উদ্বাধন করা হয়। একটি নাতিদীর্থ প্রক্রিয়ার মাধ্যমে এটি করা হয়। ধানের ইরি বা বিটি-ই বিভিন্ন উন্নত ফলনশীপ হকবণ এভাবেই সৃষ্টি করা হয়েছে।

একাদশ অধ্যায় জীবপ্রযুক্তি BIOTECHNOLOGY

প্রধান শব্দসমূহ :
টিস্যা কালচার, জেনেটিক ইঞ্জিনিয়ারিং, প্রাসমিত, ইনস্যালিন, জিনোম সিকোরোপিং

নতুন শিক্ষাক্রমে মাধমিক শ্রেণিতে জীবপ্রযুক্তি, টিস্যুকালচার, জেনেটিক ইঞ্জিনিয়ারিং এবং বাস্তবক্ষেত্রে এসব প্রযুক্তির প্রয়োগ সম্বন্ধে তোমরা সংক্ষিপ্তভাবে জেনেছ। এ অধ্যায়ে উক্ত বিষয়গুলো সম্বন্ধে আরও বিস্তারিত জানতে পারবে।

এ অধ্যায় পাঠ শেষে শিকার্থীরা-

- টিস্যকালচার প্রযুক্তির ধাপসমূহ বর্ণনা করতে পারবে।
- জেনেটিক ইঞ্জিনিয়ারিং-এর ধাপসমূহ বর্ণনা করতে পারবে।
- জন ক্রোনিং ব্যাখ্যা করতে পারবে।
- বিভিন্ন ক্ষেত্রে প্রয়োগকৃত রিকমিনেন্ট ভিএনএ প্রযুক্তি ব্যাখ্যা করতে পারবে।
- ক্রিনোম সিকোয়েপিং-এর প্রয়োগ ব্যাখ্যা করতে পারবে।
- জীব প্রযুক্তির ওরুত্ব ও সদ্ভাবনা ব্যাখ্যা করতে পারবে।
- ৭. জীব প্রযুক্তির বিকাশের সাথে স্বাস্থ্য নিরাপত্তা ঐ্কির সম্পর্ক বিশ্লেষণ করতে পারবে।

জীবপ্রযুক্তি জীববিজ্ঞানের একটি আধুনিক ও প্রয়োগমূখী শাখা। বায়োটেকনোলজি (জীবপ্রযুক্তি) শব্দটি আজ থেকে ক্র্ পূর্বে ১৯১৯ সালে প্রথম ব্যবহার করেছিলেন হাঙ্গেরীয় কৃষি প্রকৌশলী কার্ল এরেকি (Karl Ereky)। Biology এবং Technology শব্দ দু'টির সমন্বয়ে সৃষ্টি হয়েছে Biotechnology নামক বিশেষ অর্থবোধক শব্দটি।

বর্তমান বিশ্বউনুয়ন বিজ্ঞান ও প্রযুক্তিনির্ভর। বলা হয়ে থাকে এটা বিজ্ঞান ও প্রযুক্তির যুগ। বিজ্ঞান ও প্রযুক্তিতে বে দেশ যতটা উনুত সে দেশ অর্থনীতি, যোগাযোগ ও শক্তিতে ততটা উনুত। কিন্তু সব প্রযুক্তিই জীবপ্রযুক্তি নয়। মাটি দিয়ে ইট তৈরিও একটি প্রযুক্তি, মাটির গভীর থেকে তেল, গ্যাস উঠানোও প্রযুক্তিনির্ভর, ইন্টারনেটের মাধ্যমে সারাবিশ্বে মুহুর্ভেই যোগাযোগ স্থাপন, মোবাইল ফোনের নানাবিধ ব্যবহার ইত্যাদি সবই প্রযুক্তিনির্ভর। কিন্তু এগুলো জীবপ্রযুক্তি নয়।

উত্তম ব্যাকটেরিয়া প্রকরণ নির্বাচন করে উত্তম গুণমানের দুই তৈরি করা একটি সহজ জীবপ্রযুক্তি। অ্যাপকোহল তৈরিগ এক ধরনের জীবপ্রযুক্তি। একলো প্রাচীনতম জীবপ্রযুক্তি। ব্যাকটেরিয়াকে ব্যবহার করে পচনশীল জৈববস্ত্ত থেকে বারোগাল তৈরি এক ধরনের জীবপ্রযুক্তি। গবেষণাগারে ছোট একখণ্ড ভাজক টিস্যু থেকে হাজার হাজার চারা তৈরি করার প্রযুক্তি হলে জীবপ্রযুক্তি। ১৯৭০ দশকে বিকম্বিনেন্ট DNA প্রযুক্তি তথা জিন-প্রকৌশল উদ্ধাবিত হওয়ার পর জীবপ্রযুক্তি বিবাদি নতুনমাত্রা লাভ করেছে।

জীবপ্রযুক্তির পরিখি (Scope of Biotechnology)

জীবপ্রযুক্তির পরিধি ব্যাখ্যা করার জন্য নিমুলিখিত শব্দুচলো ব্যবহার করা হয়।

- (i) ব্লু বায়োটেকনোগজি (Blue Biotechnology) : এর ছারা বায়োটেকনোলজির জিলীয় ও সামূদ্রিক প্রয়োগ বর্ণা
- (ii) মিন বায়োটেকনোপজি (Green Biotechnolog): এর ছারা বায়োটেকনোলজির কৃষিক্ষেত্রের প্রয়োগ বর্ণনা ক
- (iii) ব্রেড ও হোয়াইট বায়োটেকনোলজি (Red & White Biotechnolog): এর খারা বায়োটেকনোলজির চিক্তি ক্ষেত্রের প্রয়োগ বর্ণনা করা হয়।

র্ক্তিশান (১৯৬৮) এর মতে, জীবন্ত উদ্ভিদ, প্রাণী, অণুজীব বা এদের অংশবিশেষ ব্যবহার করে মানবতার কল্যাণে জ্বোল্যোগী উন্নত বৈশিষ্ট্য সম্পন্ন নতুন উদ্ভিদ, প্রাণী, অণুজীব বা দ্রব্য উৎপাদনে প্রয়োগকৃত প্রযুক্তি হলো জীবপ্রযুক্তি। ্রিক্রিক অবদান/তরুত্ (Importance of Biotechnology)

ব্ধান্ত্র বহু পদ্ধতি ইতোমধ্যেই উদ্ধাবিত হয়েছে এবং প্রয়োগ হছে। নিচে কয়েকটি বহুল ব্যবহৃত পদ্ধতি সম্বন্ধে

রলোচনা করা হলো।

1

M_

)। জিন প্রযুক্তিতে : (i) উদ্ভিদ ও প্রাণিদেহে (মানুষের) ভাইরাস জীবাণু শনাক্তব্রণ। (ii) বিভিন্ন প্রকার জিনগত প্রাক্তকরণ ও রোগ নিরাময়। (iii) বিভিন্ন জীবাণু প্রয়োগে জীবাণু অন্ত হিসেবে দেশের প্রতিরক্ষা কাজে ব্যবহার। (॥) বিভিন্ন টিউমার কোষকে নিশ্চিত করতে নির্দিষ্ট অ্যান্টিবডি উৎপাদন ও সঠিক স্থানে প্রেরণ।

২। এনজাইম প্রযুক্তিতে : (i) উন্নতমানের এনজাইম উৎপাদন এবং প্রয়োজনীয় দ্রব্য উৎপাদনে এনজাইমের বাবহার।

👊 প্রাকৃতিক প্রোটিনের চেয়ে উন্নত পেপটাইড, নির্দিষ্ট ওমুধ, সঞ্চয়ী প্রোটিন প্রভৃতি জৈবযৌগের উৎপাদন।

- ত। কৃষিক্ষেত্রে : (i) উদ্ভিদকোষ, টিস্যু ও অঙ্গের কালচার। (ii) সালোকসংশ্লেষণে বেশি সক্ষম, নাইট্রোজেন স্থায়ীকরণ অস্তাসম্পন্ন ও উন্নত সঞ্চয়ী প্রোটিন ধারণ ক্ষমতাসম্পন্ন উদ্ভিদ উৎপাদন। (iii) রোগ-পতঙ্গ-বালাইনাশক **প্রতিরোধী উদ্ভিদ** লাত উৎপাদন। (iv) বেশি মাংস ও দুধ উৎপাদনকারী সৃষ্থ ও সবল গ্রাদিপশু উদ্ভাবন। (v) জীবপ্রযুক্তির মাধ্যমে উৎপন্ন মেদিশতর দুধ, রক্ত ও মলমূত্র থেকে ওযুধ উৎপাদন।
- 8। চিকিৎসা শাস্ত্রে: (i) বিভিন্ন জটিল রোগের প্রতিষেধক এবং রোগব্যাধি শনাক্তকরণের জন্য **অ্যান্টিবডি** উৎপাদন। 📵 য়াকটেরিয়ার মাধ্যমে সংশ্লেষিত ইনসুলিন ও ইন্টারফেরনসহ নানা ধরনের হরমোন উৎপাদন। (iii) মানুষের বৃদ্ধি মমোন উৎপাদন। (iv) মস্তিকে, হৃদপিতে ও ফুসফুসে রক্ত জমাট প্রতিরোধক উপাদান উৎপাদন। (v) বর্তমানে ব্যাক্তর্মের মাধ্যমে হরমোন, অ্যান্টিজেন ও ভিটামিন তৈরি করা হচ্ছে।
- e। শিল্পক্তে: (i) শিল্পক্তে অণুজীববিদ্যার জানকে ভাগোভাবে কাজে লাগিয়ে জীবপ্রযুক্তির সাহায়ে। বিভিন্ন প্**মের অণগত ও পরিমাণগত** উৎপাদন বাড়ানো। (ii) জৈবশক্তি উৎপাদন। (iii) অণুজীব থেকে খাদা উৎপাদন।
- গরিবেশ রক্ষায় : (i) কলকারখানায় নির্গত রাসায়নিক পদার্থের বিক্রিয়া প্রশমন ঘটানোর জন্য অণুজীবের ব্যবহার। 🗓 দ্বাসৃষ্ট বর্জা ও জঞ্জাল ধ্বংস ও পরিবেশ নির্মল করার কাজে অণুজীবের ব্যবহার। (iii) জিন ব্যাংক স্থাপন করে हैरेरिक्स तका।

अमिरित कामारे -> व्यक्तिक व्यक्तिक

উদ্ভিদ টিস্যু কালচার (Plant tissue culture)


টাইদের যেকোনো বিভাজনক্ষম অঙ্গ থেকে (যেমন-শীর্ষমুকুল, কক্ষমুকুল, কচি পাতা বা পাপড়ি ইত্যানি) বিচিন্তা শলে চিন্যু সম্পূর্ব জীবাবুমুক্ত (sterile) অবস্থায় উপযুক্ত পুষ্টি মাধ্যমে বৃদ্ধিকরণ (এবং পূর্ণাঙ্গ চারাউল্লিদ সৃষ্টি) করাকে পু কাশচার বলে। অর্থাৎ গবেষণাগারে কোনো টিসাকে পুরি মাধ্যমে কাশচার করাই হলো টিস্যু কাশচার। বহু পূর্ব ার বলে। অবাৎ গবেষণাগারে কোনো তিমুক্ত ম ব ধরনের ধারণা অনেকে পোষণ করতেন। আমেরিকান জীববিজ্ঞানী Morgan (1901) সর্বপ্রথম মত প্রকাশ করেন র বাজিটি সঞ্জীব উদ্ভিদ কোষেরই একটি পূর্ণাঙ্গ উদ্ভিদে পরিণত হওয়ার অন্তর্নিহিত ক্ষমতা আছে। এই ক্ষমতাকে তিনি ী বি এজন্য একে মাইক্রোপ্রোপাণেশন বলা হয়। আবার এ প্রক্রিয়ায় কোনো উন্তিদের সমন্তবসম্পন্ন বন্ধর বা কোন প্রতিনা একে মাইক্রোপ্রোপাণেশন বলা হয়। আবার আ নালানার উদ্দেশ্যে মাতৃউত্তিদ হতে পৃথকীকৃত অংশকে বিলা হয়। তিস্থা কালচারের উদ্দেশ্যে মাতৃউত্তিদ হতে পৃথকীকৃত অংশকে বিলা হয়। তার্মান বে বলে একে ক্রোনিং প্রযুক্তিও বলা হয়। তিনু চারাকে বলুচারাসু(Plantiet) বলা হয়। জার্মান বলা হয়। তিনু। কালচার পদ্ধতির মাধ্যমে উৎপাদিত নতুন চারাকে বলুচারাসু(Plantiet) বলা হয়। জার্মান Gottlieb Haberlandt (1902-)-त्क िमु कामहारवित जनक रेगा हैये। कातम जिन्हे अर्थश्रम जिन्हा কালচার পদ্ধতির উদ্ভাবন করেন। এ পদ্ধতিকে In-vitro কালচারও বলা হয়। কারণ এ প্রক্রিয়াটি কাচপারের মধ্যে করা হয়। ১৯৩০ এর দশকে ফরাসি বিজ্ঞানী Gautheret (১৯৩৯), আমেরিকান বিজ্ঞানী White (১৯৩৯) এবং জ্ব একজন ফরাসি বিজ্ঞানী Nobercourt (১৯৩৯) পৃথকভাবে ভিন্ন ভিন্ন উদ্ভিদের টিস্যু নির্দিষ্ট পৃষ্টি মাধ্যমে দীর্যস্থানীক্ত আবাদ করতে সক্ষম হন।

টিস্যু কালচার, জীবপ্রযুক্তির একটি নতুন শাখা হলেও ইতোমধ্যে এ প্রযুক্তির মাধ্যমে উদ্ভিদ প্রজনন, উন্নত উদ্ধূপর বিশ্বে একার উদ্ধিদ নিয়ে বর্তমানে গাকে প্রকরণ উৎপাদন এবং মানব উন্নয়নের ক্ষেত্রে প্রভূত সাফল্য অর্জিত হয়েছে। বিভিন্ন প্রকার উদ্ভিদ নিয়ে বর্তমানে গাকে চলছে এবং এসব গবেষণালব্ধ ফলাফল মানুষের প্রয়োজনে ব্যবহার করা হছেছে। এর ফলে দেশের অর্থনীতিতে ক্রিকালচার প্রযুক্তি ইতোমধ্যেই বিশেষ অবদান রাখতে তক্ত করেছে।

তিস্যু কালচারের প্রকারভেদ : তিস্যু কালচার পদ্ধতি বিভিন্ন প্রকৃতির হয়ে থাকে: যেমন- কক্ষমুকুল কালচার (axillar)
bud culture), মেরিস্টেম কালচার, মাইক্রোপ্রোপাগেশন, ক্যালাস কালচার-এর মাধ্যমে চারা উৎপাদন, দৈহিক জ্বা
থেকে ব্রিণ উৎপাদন (somatic embryogenesis), প্রাগধানী কালচার-এর মাধ্যমে হ্যাপ্রয়েড ইন্তিদ উৎপাদন, প্রোটোপ্রদ
কালচার ইত্যাদি।

টিস্যু কালচার পদ্ধতির ধাপসমূহ : নিমুলিখিত ধাপে টিস্যু কালচার পদ্ধতির বর্ণনা করা যায় :

১। মাতৃউদ্ভিদ বা একপ্রণট নির্বাচন : এরপ্রান্ট হলো ঐ উদ্ভিদাংশ, টিস্যু কালচারে ব্যবহারের জন্য যাকে প্রের উদ্ভিদ থেকে পৃথক করে নেয়া হয়। কাজেই এরপ্রান্ট নির্বাচন একটি অতি ওরুত্বপূর্ণ বিষয়। সাধারণত কাতের পর্যিমুকুল, গ্রের্মুকুল এরপ্রান্ট হিসেবে অধিক ব্যবহৃত হয়। পূর্ব বা পাতার শীর্ষও ব্যবহৃত হয়। যে উদ্ভিদ থেকে এক্সপ্রান্ট নেয় য় বা হবে সেটি হলো মাতৃউদ্ভিদটি অবশ্যই নীরোগ ও উৎকৃষ্ট বৈশিষ্ট্যমন্তিত হতে হবে। টিস্যু কালচারের জ্ব

চিত্র ১১.১ : টিস্থা কাশচার প্রক্রিয়ার ক্রমিক পর্যায় বা ধাশসমূহ।

২। কালচার মিডিয়াম বা আবাদ মাধ্যম তৈরি: টিস্যু কালচার কাজের জন্য প্রাথমিকভাবে একটি কালচার থিজি। তৈরি করা আবশাক। উদ্ভিদের পুষ্টি ও বৃদ্ধির জন্য যে সমস্ত রাসায়নিক উপাদান প্রয়োজন হয় তার সময়য়ে এ বিভিন্ন গ্রন্থত করা হয়। বিভিন্ন ধরনের মুখ্য ও গৌণ উপাদান (macro and micro elements), ভিটামিন, সুকরোজ (২-৪%), র্ভত এ মিডিয়ামে থাকা প্রয়োজন। মাধ্যমকে ঘন করতে জমাট বাধার উপাদান, যেমন প্রাগার স্টিক য়াত্রার মেশাতে হয়। মৌলিক উপাদান সমৃদ্ধ আবাদ মাধ্যমকে ব্যাসাল মিডিয়াম বলে। মিডিয়ামের pH ৫.৫-৫.৮ এর

ত। জীবাণুমুক্তকরণ বা নিবীজকরণ : কালচার মিডিয়ামে থাকে পৃষ্টি উপাদান, ফলে এতে সহজেই জীবাণু জন্মতে পারে। কিন্তু কালচার করার জন্য মিডিয়াম এবং এক্সপ্লান্ট সবই জীবাণুমুক্ত থাকা আবশ্যক। তাই মিডিয়ামকে কনিক্যাল ছ্লাছ বা টেস্ট টিউবে ঢেলে নির্বীজকৃত তুলা দিয়ে পাত্রের মুখ বন্ধ করে দেয়া হয় যাতে বায়ু ঢুকতে না পারে। এরপর পাত্রটিকে নির্বীজকরণ যন্ত্র (autoclave) দিয়ে জীবাণুমুক্ত করা হয়। মিডিয়ামকে অটোক্রেড যন্ত্রে নির্দিষ্ট তাপ (১২১° সে.), চাপ (১৫ পাউড) ও সময় (২০ মিনিট) রাখা হয়। জীবাণুমুক্ত পরিবেশে গবেষণাগারে কাচের পাত্রের মধ্যে কৃত্রিম আবাদ মাধামে এক্সপ্লান্ট থেকে অণুচারা তৈরির পদ্ধতিই হলো ইন-ভিট্রো কালচার।

চিত্র ১১.১.১ : একটি টিস্যু কালচার ও বারোটেকনোলজি গবেষনাগার (আর্থেক)

8। মিডিয়ামে এক্সপ্রাণ্ট বা টিস্যু স্থাপন: এক্সপ্রাণ্টকে নিবীজ করে (সাথে হাত, চিমটা ইত্যাদিকে আলকোহল দিয়ে নিবীজ করতে হয়) সম্পূর্ণ নিবীজ অবস্থায় কাচপাত্রে রাখা মিডিয়ামে স্থাপন করা হয়।

৫। ক্যালাস সৃষ্টি ও সংখ্যাবৃদ্ধি : মিভিয়ামে এক্সপ্লান্ট তথা টিস্যু স্থাপনের পর পাত্রটিকে একটি বৈদ্যুতিক আলো ত্তত-৫,০০০ লাক্স), তাপমাত্রা (১৭°-২০° সে.) ও আপেন্ডিক অর্দ্রতা (৭০-৭৫%) নিয়ন্তিত কচ্ছে রাধা হয়। ক্ষেকদিন পর টিসাটি বার বার বিভাজিত হয়ে একটি কোষীয় মতে পরিণত হয়। মও হলে জিরয়বহীন জীনান্ত টিসাডাই। শ্বপ্লান্ট মিডিয়ামে স্থাপন করার পর আপো ও তাপ নিয়ন্তিত করে রাখণে যে <u>অব্যবহীন অবিনাম্ভ টিসাঙ্গুল সৃত্তি হয় আই</u>

প্রাশাস। ক্যালাস থেকে এক সময় অসংখ্য মুকুল সৃষ্টি হয়। ७। মূল উৎপাদক মাধ্যমে স্থানান্তর ও চারা উৎপাদন । মুকুলতলোকে সাবধানে কেটে নিয়ে মূল উৎপাদনকারী বিভিয়ামে রাখা হয় এবং সেখানে প্রতিটি মুকুল, মূল সৃষ্টি করে পূর্ণাঙ্গ চারাগাছে পরিবত হয়।

৭। চারা টবে স্থানান্তর: উপযুক্ত সংখ্যক সুগঠিত মূল সৃষ্টি হলে পূর্ণাঙ্গ চারাগাছ কালচার করা পাত্র থেকে সরিয়ে নিত্র ার প্রক্রিয়ায় সাবধানতার সাথে টবে স্থানান্তর করা হয়। এভাবে টিস্যু কালচারের মাধ্যমে চারাগাছ উৎপাদন কান্ত সম্পূ দরা হয়।

৮। প্রাকৃতিক পরিবেশে তথা মাঠ পর্যায়ে স্থানান্তর: টবসহ চারাগাছকে কিছুটা আর্দ্র পরিবেশে রাখা হয়, তবে রোগিত চারাগাছগুলো কক্ষের বাইরে রেখে মাঝে মাঝে বাইরের প্রাকৃতিক পরিবেশের সাথে খাপ খাইয়ে নিতে হয়। পূর্ণাঙ্গ চারাগাছগুলো সজীব ও সবল হয়ে উঠলে সেগুলোকে এক পর্যায়ে প্রাকৃতিক পরিবেশে মাটিতে লাগানো হয়।

এখানে উল্লেখ্য যে, টিস্যু কালচার প্রযুক্তিকে বর্তমানে অনেক ধরনের গবেষণার ক্ষেত্রে প্রয়োগ করা হছে। প্রয়োগ পদ্ধতি ও উদ্দেশ্যভেদে টিস্যু কালচার বিভিন্ন রকম হয়। কী ধরনের উদ্ভিদ থেকে কোন প্রকৃতি ও আকারের টিস্যু ব্যবহার করতে হবে এবং কী ধরনের কালচার মিভিয়াম ব্যবহার করা হবে তা সম্পূর্ণভাবে নির্ভর করবে কালচারের উদ্দেশ্যের উপর। উপরে বর্ণিত কার্যপদ্ধতি প্রয়োগভেদে পরিবর্তিত হতে পারে।

কাজ: টিস্যু কালচার পদ্ধতির ধাপসমূহ ক্রমধারায় পোস্টার পেপারে উপস্থাপদ কর।

উদ্ভিদ প্রজনন ও উন্নতজাত উদ্ভাবনে টিশ্যু কালচার প্রযুক্তির ব্যবহার (Application of tissue culture technology)

টিস্যু কালচার পদ্ধতি আবিষ্কৃত হওয়ার পর থেকে উদ্ভিদ প্রজননের ক্ষেত্রে অনেক সমস্যার সমাধান হয়েছে। এ পদ্ধতি ব্যাপকভাবে বিভিন্ন উদ্ভিদের ক্ষেত্রে প্রয়োগ করে প্রজননবিদরা অনেক সাফল্যও অর্জন করেছেন। নিচে এর কয়েকটি ওক্সত্বপূর্ণ দিক উপস্থাপন করা হলো।

১। ছবছ মাতৃ-তণাতণসম্পন্ন চারা উৎপাদন: যে সব উদ্ভিদের বীজ উৎপাদন করা সন্তব হয় না (য়েমন- গুলা, সাগা
কলা) সেসব উদ্ভিদের ক্ষেত্রে তিস্থা কালচার প্রয়োগ করে চারাগাছ উৎপাদন ও বিপণন করা য়য়।

ফুল, ফল বা শসা উৎপাদনকারী কোনো ভালো জাতের উদ্ভিদ থেকে যদি অধিক সংখ্যক চারা উৎপাদন করা প্রয়েল্প হয় তবে ঐ ভালোজাতের একটি উদ্ভিদ থেকে টিস্যু নিয়ে কালচার করে অনেক সংখ্যক চারাগাছ উৎপাদন করা সম্ভব ইই। এভাবে উৎপাদিত চারাগাছসমূহ হবহ এদের মাতৃ-উদ্ভিদের মতো হয়ে থাকে। কাজেই একই বৈশিষ্ট্যমণ্ডিত উদ্ভিদ উৎপাদ করার জন্য টিস্যু কালচার প্রযুক্তি অত্যন্ত কার্যকর প্রক্রিয়া। তাই এ পছতি মূইক্রোপ্রোপাগেশন নামেও পরিচিত।

- ২। বিশুর প্রায় উন্তিদ সংরক্ষণে: বর্তমানে অনেক বিশৃগুপ্রায় উন্তিদকে বিশুন্তির হাত হতে রক্ষা করার জন্য টিস্যা কাশচার প্রযুক্তি ব্যবহার করা হচ্ছে। কারণ স্বস্তু সময়ে উল্লিখিত উদ্ভিদ থেকে চারাগাছ উৎপাদন করা এ প্রযুক্তি ব্যবহারেই স্করে।
- ত। শ্রণ কালচার প্রযুক্তির মাধ্যমে উদ্ভিদের কৃত্রিম প্রজনন : টিস্যু কালচার পদ্ধতির আর একটি বিশেষ দিক হলো
 প্রকালচার। শ্রণকালচারের মাধ্যমে উদ্ভিদ প্রজননবিদ্যার অনেক সমস্যার সমাধান করা যায়। বিশেষ করে আন্তঃপ্রজাতি
 সক্তেরে ক্ষেত্রে শ্রুণ পূর্ণতা লাভ না করায় সংকর উদ্ভিদ পাওয়া সম্ভব হয় না। এসব ক্ষেত্রে সংকরায়নের পর শ্রনকালচার
 করা হয়। ফলে শ্রণ আর নত্ত হয় না এবং পরবর্তীতে এ শ্রণ বিকাশ লাভ করে পূর্ণাঙ্গ সংকর উদ্ভিদ উৎপাদন করে।
 এভাবে উৎপাদিত সংকর উদ্ভিদের সাহায়ে। উন্নতজাত উদ্ধাবন করা সম্ভব।
- ৪। সংকর উদ্ভিদ উৎপাদনের ক্ষেত্রে প্রোটোপ্লাস্ট মিলন বা ক্রিউন্ন : এ পদ্ধতি প্রয়োগ করে দুটি ভিন্ন প্রজাতির প্রোটোপ্লাস্ট সংযুক্তি ও তা থেকে নতুন বৈশিষ্ট্যসম্পন্ন সংকর উদ্ভিদ উৎপন্ন করা সন্তব হয়েছে। সাধারণ সংকরায়নের ক্ষেত্রে পূর্বে প্রী গ্যামিটের মিলনের সময় পূংগ্যামিটে সাইটোপ্লাজম পুরই কম থাকে এবং তা দ্রীগ্যামিটের বাইরে রয়ে য়য়। কিম্ন প্রোটোপ্লাস্টের মিলনে সোমাটিক হাইব্রিড তৈরি হলে সেখানে দুটি প্রজাতির সম্পূর্ব সাইটোপ্লাজমের মিলন ঘটে। প্রোটোপ্লাস্ট মিলনের মিলন ঘটে। প্রচারের মুখন দুটি কোখের মিলনে নিউক্লিয়াসের মিলন ঘটে না তথু সাইটোপ্লাজমের মিলন ঘটে তখন তাকে সাইব্রিড cybrid) বলে। প্রোটোপ্লাস্ট মিলনের মাধ্যমেই সাইটোপ্লাজমের বিশেব গুণ স্থানান্তরের সুযোগ সৃষ্টি হয়ে থাকে। এক্ষেত্রে কোরোপ্লাস্ট ও মাইটোকঞ্জিয়ার প্রয়োজনীয় বৈশিষ্ট্যসমূহ স্থানান্তর ঘটিয়ে নতুন জাতের উদ্ভিদ উৎপাদন করা সন্তব হয়েছে আলু ও চিমেটো উদ্ভিদের প্রোটোপ্লাস্ট ফিউনন করে সৃষ্ট নতুন উদ্ভিদের নাম দেয়া হয়েছে প্রামাটো।

৫। মেরিস্টেম কালচার : মেরিস্টেম কালচার টিস্যা কালচার পছতির আর একটি বিশেষ দিক। উদ্ভিদের শীর্ষমুকুলের আলাগের টিস্যুকে মেরিস্টেম বলে। মেরিস্টেম কালচারের মাধ্যমে উৎপাদিত চারাগাছ সাধারণত রোগমুক্ত হয়ে খাকে, কারণ মেরিস্টেম টিস্যুকে কোনো রোগ-জীরাণু খাকেনা)

৬। অল্প সময়ে অধিক চারা উৎপাদন : টিস্যু কালচার পছতি প্রয়োগ করে একটিমাত্র উদ্ভিদ থেকে অল্প সময়ে অসংখ্য চারা উৎপাদন করা যায়। এ প্রক্রিয়ায় চন্দ্রমল্লিকার একটি ছোট অসজ টিস্যু থেকে বছরে লক্ষ্ণ করা উৎপাদন করা সম্বর।

৭। হাপ্রয়েভ উদ্ভিদ উৎপাদন : পরাগরেপু এব পরাগধানী কালচার-এর মাধ্যমে হাপ্রয়েভ উদ্ভিদ উৎপাদন করা শহর। হাপ্রিয়েভ উদ্ভিদসমূহ উদ্ভিদ প্রজননের ক্ষেত্রে অত্যন্ত গুরুত্বপূর্ণ। বিভিন্ন উদ্ভিদের ক্ষেত্রে কাজিকত হোমোজাইপাস লাইন পাওয়া অত্যন্ত সময়সাপেক। কিন্তু পরাগরেপু বা পরাগধানী কালচারের মাধ্যমে হ্যাপ্রয়েভ উদ্ভিদ উৎপন্ন করা সমুব হলে তা থেকে সহজেই ইন্সিত ডিপ্রয়েভ উদ্ভিদ পাওয়া যায়। Poaceae Solanaceae ও Brassicaceae গোরের হ্যাপ্রয়েভ বিদ পাওয়া যায়। Poaceae Solanaceae ও Brassicaceae গোরের হ্যাপ্রয়েভ

৮। কোৰ আবাদ ও ক্যালাস টিস্যু আবাদ : কোৰ আবাদ ও ক্যালাস টিস্যু আবাদ কৌশলের মাধ্যমে উৎপন্ন দৈহিক ক্ষা ওলের আবাদ ও ক্যালাস টিস্যু আবাদ ও ক্যালাস টিস্যু আবাদ কৌশলের মাধ্যমে উন্নতল্লাত যেমন- Adhi নামক গম উত্তাবন করা ক্ষা থেকে বীজ উৎপন্ন করা যায়। সোমাক্রোনাল ভ্যারিয়েশনের মাধ্যমে উন্নতল্লাত যেমন- Adhi নামক গম উত্তাবন করা ক্ষা থেকে বীজ উৎপন্ন করা যায়। সোমাক্রোনাল ভ্যারিয়েশন এর মাধ্যমে রোগ প্রতিবাধী, প্রতিবাধী করিত বৈশিষ্ট্যসম্পন্ন জীব উৎপন্ন করা হয়। সোমাক্রোনাল ভ্যারিয়েশন এর মাধ্যমে রোগ প্রতিবাধী, প্রতিবাধী করিদ সৃষ্টি করা সম্ভব হরেছে। আবাদী গ্রামিট কোষ হতে উৎপন্ন ক্রোনীয় প্রকরণতে বলে ব্যামিটোক্রোনাল আবিবাধী উত্তিদ সৃষ্টি করা সম্ভব হরেছে। আবাদী গ্রামিট কোষ হতে উৎপন্ন ক্রোনীয় প্রকরণতে বলে ব্যামিটোক্রোনাল আবিবাধী উত্তিদ সৃষ্টি করা সম্ভব হরেছে। আবাদী গ্রামিটাক্রানাল

১। <u>ইাশজেনিক উদ্ভিদ সৃষ্টি :</u> প্রচলিত সংকরায়ন পছাডিতে কাজিকত বৈশিষ্ট্য সন কেন্দ্রে ছিন্তুদে সংবোদন করা সন্তব্ ব্যু না। ব্লিকম্বিনেন্ট DNA প্রমৃত্তিতে নানা ধরনের অনুজীব, উদ্ভিদ ও গ্রাণী হতে সংগৃহীত জিন আবাসকৃত শ্রুণ বা কোষে প্রবেশ করিয়ে চাহিদা মতো জিলোম তৈরি করা সম্ভব। টিস্যু কালচার প্রযুক্তিতে এ কোষ বা ভ্রন হতে পূর্বাস ট্রান্ডাইন্ উত্তিদ সৃষ্টি করা যায়। আগাছানাশকরোধী, পতঙ্গরোধী, উন্নত পৃষ্টিমান সম্পন্ন কসলী উদ্ভিদ যেমন- আলু, টমেটো, আমার ভূলা, সমাবিন, স্বৰ্ণধান (golden rice) ইত্যাদি উদ্ভিদ প্ৰজনন ও উনুত উদ্ভিদ উৎপাদনে এক বিরাট বিপ্লব ঘটাতে ত

বাংলাদেশে টিস্যু কালচার পদ্ধতির প্রয়োগ: ঢাকা বিশ্ববিদ্যালয়ের উদ্ভিদবিজ্ঞান বিভাগে আশির দশকের প্রথম দিং বেকে টিস্যু কালচারের কাজের সূত্রপাত হয় এবং বাংগাদেশে সর্বপ্রথম ঢাকা বিশ্ববিদ্যালয়ের উদ্ভিদবিজ্ঞান বিভাগেই টিয় কালচার কান্ত তরু হয়। ক্রমে ক্রমে দেশের অন্যান্য বিশ্ববিদ্যালয় এবং গবেষণা প্রতিষ্ঠানে এ কান্ত প্রসার লাভ করে।

ঢাকা বিশ্ববিদ্যালয়ের উদ্ভিদবিজ্ঞান বিভাগে বেশ কিছু উদ্ভিদ নিয়ে টিস্যু কালচার গবেষণা সম্পাদন করা হয়েছে। ঞ মধ্যে উলেখযোগ্য কয়েকটি হলো :

- (১) বিভিন্ন প্রকার দেশি ও বিদেশি অর্কিভের চারা উৎপাদন।
- (২) কলার চারা উৎপাদন। বর্তমানে বাংলাদেশে কৃষক পর্যায়ে তিস্থা কালচার প্রক্রিয়ায় উৎপাদিত চারা ব্যাপকভাবে ব্যবহার করা হচ্ছে। এরা রোগ প্রতিরোধক্ষম বলে উৎপাদনও ভালো।
- (৩) চন্দ্রমন্ত্রিকা, গ্লাভিওলাস, লিলি, কার্নেশান প্রভৃতি ফুল উৎপাদনকারী উদ্ভিদের চারা উৎপাদন।
- (৪) কদম, জারুল, ইপিল ইপিল, বক ফুল, সেগুন, নিম প্রভৃতি কাঠ উৎপাদনকারী উদ্ভিদের চারা উৎপাদন।
- (৫) বিভিন্ন প্রকার ভাল জাতীয় কসল ও বাদামের টিসা কালচার।
- (৬) পাটের স্ক্রণ কালচার ও চারা উৎপাদন।
- (৭) তিসু কালচার প্রয়োগ করে গোল আপুর রোগমুক্ত বীজ মাইক্রোটিউবার উৎপাদন।

রাজশাহী বিশ্ববিদ্যালয়ের উল্লিদ্বিজ্ঞান বিভাগের টিসূ্য কালচার গবেষণাগারেও টিস্যু কালচার বিষয়ক উন্লভ্যানের গবেষণা চলছে। উন্নতমানের <u>বেলের</u> চারা উৎপাদন এদের একটি সাফল্যজনক কাজ। শীতপ্রধান দেশের স্ট্রবেরী ফলের গাছকে বাংলাদেশের আবহাওয়ার উপযোগী জার্মপ্লাজম উদ্ভাবন ও মাঠ পর্যায়ে সফলভাবে আবাদকরণ। আকাশমী উদ্ভিদের দ্রুতবর্ধনশীল ও কম সময়ে অধিকতর কাঠ উৎপাদনক্ষম চারা উৎপাদন এবং তরমুজের চারা উৎপাদন বিশেষভাবে উল্লেখযোগ্য। <u>কাঁঠাগে</u>র চারা উৎপাদনসহ আরও কিছু উল্লেখযোগ্য কাজ হয়েছে জাহাঙ্গীরনগর বিশ্ববিদ্যালয়েত উত্তিদবিজ্ঞান বিভাগের টিসু। কালচার গবেখণাগারে। তনাধ্যে রোগমুক্ত গোল আপুর মাইক্রোটিউবার (আপুরীঞ্) উৎপাদন এবং কৃষক পর্যায়ে বিতরণ। গোলাপ, গ্লাডিওলাস, লালপাতা ও নানাধরনের অর্কিডের চারা উৎপাদন। ইপিল-ইপিন, মেহগনি ও কেলিকদম ইত্যাদি কাঠ প্রদানকারী উত্তিদের চারা উৎপাদন।

চট্টগ্রাম বিশ্ববিদ্যালয়ের উদ্ভিদবিজ্ঞান বিভাগের টিন্যু কালচার গবেষণাগারে দেশি ও বিদেশি নানা প্রকার অভিজ্ঞো চারা উৎপাদন, মুগ কলাই ও মাধ কলাই ভালের রোগ প্রতিরোধক্ষম চারা উৎপাদন ইত্যাদি উল্লেখযোগ্য।

এহাড়া বর্তমানে বহু প্রাইডেট সংস্থা (NGO) তথা ব্র্যাক কর্তৃক Stevia, প্রশিকার বিদেশি অর্কিড ও গোল আলুর চারী ভংগাদন ও বিপথন বাংলাদেশে টিয়া কালচার প্রযুক্তির প্রসার এবং সম্ভাবনার দুয়ার খুলে দিয়েছে।

টিসা কালচার পদ্ধতির সুবিধা ও অসুবিধাসমূহ : নিচে টিসা কালচার পদ্ধতির সুবিধা ও অসুবিধাসমূহ কনি৷ কন হলো-

সুবিধাসমূহ

- ১। একটি উরিদ বা উরিদাশে হতে খল্ল সময়ের মধ্যে একই বৈশিষ্ট্যসম্পন্ন বহু চারা সৃষ্টি করা যায়।
- ২। সহতে রোগমুক, বিশেষ করে তাইবাসমুক চারা উৎপাদন করা সম্ভব।
- ত। স্বতৃতিত্তিক চারা উৎপাদনের বাধাবাধকতা হতে মুক্ত হওয়া যায়।
- ৪। সঠিক বীজ সংগ্রহ ও মঞ্চ করার সমস্যা থেকে মুক্ত থাকা মাছ।
- ৫। বলমে অক্স উদ্ভিদের চারা উৎপাদন।

- 🔋। আর পরিসরে অধিক চারা উৎপাদন।
- ৰ। ইরিদের যে কোনো টিস্থা থেকে চারা উৎপাদন।
- 😕 অতি সভায় বাণিজ্ঞাকভাবে চারা উৎপাদন।
- 🖫। বিদেশী জাতের উদ্ভিদ থেকে দেশী আবহাওয়া উপযোগী জাত সৃষ্টি করা।
- ১০। যে সমস্ত উত্তিদ বীজের মাধ্যমে বংশবিজ্ঞার করে না সেতলোর চারা প্রাত্তি ও স্বল্প সর্বেচ্ছ সতেজ অবস্থায় স্থানান্তর করা যায়।
- ১১। বিশুঙ্গ্রায় উত্তিদ পুনঃউৎপাদন ও সংরক্ষণ করতে টিস্যু কালচার নির্ভরযোগ্য প্রযুক্তি হিসেবে স্বীকৃতি শাভ করেছে।

অসুবিধাসমূহ

- ১। টিশ্বা কালচার প্রযুক্তির প্রথম ও প্রধান অসুবিধা হলো মূল্যবান হত্তপাতি বেমন-ল্যামিনার ক্লো, অটোক্তেভ ইত্যাদি। এছাড়া বিভিন্ন ধরনের মূল্যবান রাসায়নিক পদার্থ। এওলো মূল্যবান হলেও অনেক সময় পাওয়া য়য় না।
- ২। কোনো কারণে যদি মান্টিপ্লিকেশনের সময় প্রাথমিক অবস্থায় আবানকৃত টিস্যু জীবাণু ধারা (ব্যাট্টেরিয়া, ছ্যাক) আক্রান্ত হয় তবে বহুসংখ্যক সম্ভাবনাময় চারা নট হয়ে যায়।
- ৩। সঠিকভাবে টিস্যু কালচার বা মাইক্রোপ্রোপাণেশনের কাজ করার জন্য অবশ্যই প্রশিক্ষণপ্রাপ্ত দক্ষ জনবলের প্রয়োজন হয়।
- ৪। টিল্যু কালচারের মাধ্যমে উৎপন্ন চারাওলা বেশ ক্ষাকৃতির হওয়য় এদের ছানাত্তর প্রক্রিয়য় বেশ অনুবিধা হয়ে
 খাকে।
- থ। উৎপর চারাগ্রশো মাতৃ-উত্তিদের গুণসম্পন হয়ে থাকে, তাই নতুন বৈশিষ্ট্রের আবির্ভাব ঘটে না।

জেনেটিক ইঞ্জিনিয়ারিং (Genetic Engineering)

জেনেটিক ইঞ্জিনিয়ারিং জীববিজ্ঞানের একটি নবীনতম ও প্রয়োগমুখী শাখা। এর মূল লক্ষা কোনো কাজিকত জিনা ইনারবের মাধ্যমে উন্নতমানের নতুন জীবপ্রকরণ সৃষ্টি করা। কোনো জীবকোষ থেকে কোনো সুনির্দিষ্ট জিন নিয়ে কালের জীবকোষে ছাপন ও কর্মক্ষম করা বা নতুন বৈশিষ্ট্য সৃষ্টির জনা কোনো জীবের DNA-তে পরিবর্তন ঘটানোকে ক্রেনের জীবকোষে ছাপন ও কর্মক্ষম করা বা নতুন বৈশিষ্ট্য সৃষ্টির জনা কোনো জীবের DNA তবুর কাজিকত অংশ ক্রেনিয়ারিং বা জিন প্রকৌশল বলা হয়। জেনেটিক ইঞ্জিনিয়ারিং-এর মাধ্যমে DNA তবুর কাজিকত অংশ ক্রেনিয়া থেকে মানুযে, উত্তিদ থেকে প্রাণীতে, প্রাণী থেকে উত্তিদে ছানান্তর করা সন্থব হয়েছে। এ ধরনের জীবতে বলা র রেপেটিয়া থেকে মানুযে, উত্তিদ থেকে প্রাণীতে, প্রাণী থেকে উত্তিদে ছানান্তর করা সন্থব হয়েছে। এ ধরনের জীবতে বলা র রেপেটিয়ারের তারের করিয়ে এখন ঐসময়ত বিশ্লাকর তারের জনা সন্থব ইনসুলিন তৈরির জিন ঝাকটেরিয়াতে (E coli) প্রবেশ করিয়ে এখন ঐসময়ত বিশ্লাকরা দিয়ে ইনসুলিন উৎপাদন করা সন্থব হয়েছে। ১৯৫১ প্রিস্টাব্দে সায়েল ফিকশন লেখন বিলম্ব প্রকাশ স্থিক চিলার প্রকাশ স্থিক চিলার স্থিক চিলার স্থাক চিলার স্থাক চিলার ব্যাক্টার বাবহার তরেন।

বৰ্মী জীবের কোষ থেকে কোনো কাঞ্চিত DNA-কে রেপ্ট্রিকশন এনজাইমের সাহায়ে। কেটে নিয়ে জনা কোষের DNA এর সাথে সংযুক্ত করার কলে যে নতুন (মিশ্রিত) DNA উৎপন্ন হয় তাকে Recombinant DNA বলে।

জিলটিক ইছিনিয়ারিং-এর জন্য যে পছতি বা টেকনোগলি ক্রয়েণ করা হয় তাকে বধা হয় বিকথিনেট DNA

feet with any or miles with

জিল প্রটোপল্পত যে প্রযুক্তির মাধ্যমে কোনো জীবের DNA-তে কাজিত পাইনিক পরিবর্তন <u>আরু য</u>ত ছত ত্তিকবিলেউ DNA প্রযুক্তি বলে। এ পথাতি প্রযোগে সোনো সুক্রিনিই জিনসাহ DNA অপুত অংশনে (বেলারের ক্রিড়ে)। কৰে সাকটেবিয়াৰ প্ৰাস্থিত DNA-তৰ অভিযাপন কৰা হয়। এভাবে পঠিত সতুস জিল ব্যাকটেবিয়াৰ মাধ্যমে সংখ্যা ধ করা হয়। একে জিন ক্রেনিকে বলা হয়। একাবে ক্রেন করা জিনটি চাহিলা অনুসাতে ব্যবহার করা হয়, সেজে। লডোমনীয় প্রিমাণ মোটিন ব্যাকটেরিয়ার মাধ্যমে উৎপাদন করা এবং (III) অন্য করিকত জীবে বিশেষ করে উল্লিখ মান ক্ষানের মাধ্যমে ট্রাপায়েনিক উৎপাদম করা। পরবরীতে এ জীবে লয়ন ক্সিনের বহিংলালকে পর্যক্ষের কর হ विक्रियानी 13NA व्यूर्ति बोर्ट्डबाटनंड अवटि नदून नाना । 35% मन्द्रवत बानायांकि मध्य अव एक, किस इंट्रबाइन WHA PATE AN OUTS MISSEN ECO OF SCRIE!

विक्रिक्ट DNA समृति व जिल्हानिक प्रेटिन प्रत्यामा स्टिक्ट व्यूकीरका जनत विरामकारन निर्वर्तनेन । प्रेट्रीन militariere uniff coli. Aproducterium tumefacteris right modifien que motifett mente until en BURGISHE WAS REFER SENT BUT ADER COICE OF CONCESSE STORE WORLD COICE CONCESSES STORE CONCESSES একে বলা ব্য প্রাস্থিত (plannis) । প্রাস্থিত এব মাব্যমে বহুন জিন-এব সন্থিবেশন এবং সন্থিবেশিত ক্লিকে অনু জ MINISTER WATER STATE OF

THE (Plasmid) & CONTROL (SEES SEING DNA PYCO) THE WOLLD CONTROL (1952) E. ... ব্যাকটোরিয়া কোনে সর্বাহ্ম প্রাসহিত্যের সভাল পাল। অধুনা কিছুসংখ্যক প্রকৃত কোনেও প্রাসহিত্যের সভাল পালয়া শিক্ষ অধিকৈ ও সুমানত DNA (contribut) হিচাবে অধিকাৰে বাকটোলিয়াতে প্ৰাৰ্থনিও অৰ্থন্ত । এনের সংখ্যা কোনো SISCOO MES SES MICE

चामविद्यार मानावन विनिधा अन्ये से स्टे

- 31 makes galant (bahara (fe-fera(DNA) and 1
- 21 48 meles se ere 10" 200 x 10" Calina.
- का क्रामिक व्यक्तमाना किन महत्व करत गाइन।
- । বেশ্বিকশন অনজাইদ করা আদর্শ ক্লাস্মিকের নিনিট স্থানকলো ८४६३ ८७७१ शा
- व । अक्षा-(जनकृतानामने जानाद्य भवद्वादे अना नात्रदर्शवधाय

द्वानिक्षक स्वाहत्वमः जानिक दशनक दिन स्वाहः वशा-

(I) में लगा के प्रान्तिक । लगत प्रानिक दक्षी शाक्टोरिया त्यरक जना बारक्टीरियारक त्याप्तीय केनावन क्र कवार क्या मार्च (Fr(enthey) क F-क्राम्प्रक प्रावदम्बन तमद्द (Pa) देशीर कटड, मा द्वीमकमदम आहामा कटडे ((ID: R. शामिक । बाल प्रामिक व्यक्तिगरशीक केम्बामल्ल्यु किन शहक K. प्रामिक कार्जिस्ट्राजिक ब्रांस्ट्राम करकाममध्य ।

(III) কোল প্রাসমিত ১ তে সর প্রাসমিতে কোলিনিন (Cuticia), উৎপালনভাতী জিন বাকে জানেরকে কোল প্রত NOT I CONTRACT UND WORTH CONTRACT BY THEORY OF THE COLD CREECH WICH WHEN THE I CAME SHE THE Without wearns marked with with the fallsoften avantation) Stermannilly face once a fattening requirement Children Canada alith alia Old I

THE 32 P. I. A. grobinstretium summy

SPECIAL DISA.

বাসমিডের ব্যবহার : আণবিক বংশগতিবিদ্যার (molecular genetics) গবেষণার বিভিন্ন ক্ষেত্রে প্লাসমিভ ব্যাপকভাবে ্যাব্যার করা হয়। জেনেটিক ইঞ্জিনিয়ারিং, জিন ক্লোনিং ইত্যাদি কজে প্লাসমিড অত্যন্ত উপযোগী বাহক (vector) হিসেবে গ্রার করে। প্লাসমিড DNA ব্যবহার করে আধুনিক জীবপ্রযুক্তির বিভিন্ন ক্ষেত্রে অভ্তপূর্ব সাফল্য পাওয়া গিয়েছে: যেমন, ানুষের ইনসুলিন জিন ক্লোনিং, রোগ ও পোকামাকড় প্রতিরোধ ক্ষমতাসম্পন্ন উত্তিদ উৎপাদন, ইত্যাদি উল্লেখযোগ্য।

বিক্ষিনেন্ট DNA প্রস্তুত করার প্রধান ধাপসমূহ নিমুরূপ: (क) কাঙ্কিত DNA (টারগেট DNA) নির্বাচন।

- (ৰ) একটি বাহক নির্বাচন, যার মধ্যে কাক্ষিত DNA খণ্ডটি প্রতিস্থাপন করা যাবে। এক্ষেত্রে প্লাসমিড DNA কে ব্যবহার করা হয়।
- (গ) বাহকের DNA অণুর নির্দিষ্ট স্থানে (specific site) ছেদন করার জন্য প্রয়োজনীয় রেস্ফ্রিকশন এনজাইম निर्वाচन ।
- (ম) ছেদনকৃত DNA খণ্ডসমূহ (কাঞ্জিত DNA ও বাহক) সংযুক্ত করার জন্য DNA লাইগেজ এনজাইম ছারা জোড়া লাগানো।
- কাজ্ঞিত DNA সহ বাহক DNA-এর অনুগিপনের জন্য একটি পোষক (host) নির্বাচন (যেমন- E. coli)। (8)

কাঞ্চিত DNA খণ্ড সমন্বয়ে প্রস্তুতকৃত রিক্দিনে<u>ন্ট D</u>NA-এর বহিঃপ্রকাশ মূল্যায়ন।

(ছ) রিকম্বিনেন্ট DNA তৈরির সময় বাহক হিসেবে TI প্লাসমিড ব্যবহার করা হয়ে থাকলে, রিকম্বিনেন্ট DNA কে Agrobacterium-এ স্থানান্তর করানো।

(জ) কাক্তিত উদ্ভিদ কোষে কাক্তিকত জিনকে Agrobacterium খারা স্থানান্তর করানো।

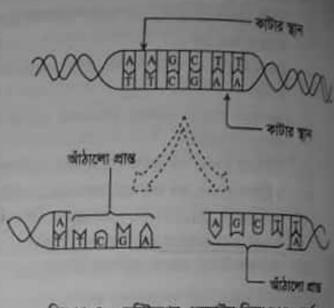
ব্রিকমিনেন্ট DNA-এর ধাপসমূহের বর্ণনা :

(ক) কান্ডিকত DNA নির্বাচন ও পৃথকীকরণ : রিকম্বিনেন্ট DNA তৈরির প্রথম পদক্ষেপ হলো কান্ডিকত DNA অণু নির্বাচন। নির্বাচনের পর কাঞ্জ্যিত জীবের কোষ থেকে DNA-কে পৃথক করতে হবে। প্রথমে কোষকে **লাইসিস** (lysis) করা হয় এবং কোষের অভ্যন্তরে অবস্থিত প্রোটিন, শর্করা, লিপিড প্রভৃতি অণু হতে DNA অণুকে <u>রাস্যাদিক সংক্</u>তিতে পৃথক করা হয়। এই DNA-এর সাথে কিছু পরিমাণ RNA ও প্রোটিন মিশ্রিত থাকে। পরবর্তী**ছে বিজিয়াম কোরাইছ** ব সুকরোজ শ্রেডিয়েন্ট সেন্ট্রিফিউজের মাধ্যমে উক্ত মিশুণকে নির্দিষ্ট ব্যাভ আকারে পৃথক করা হয় এবং কাঞ্চিকত DNA বাভকে পৃথকভাবে আহরণ করে নেয়া হয়। বর্তমানে সিলিকা নির্ভর কিটীব্যবহার করে এই কাজটি অনেক সহজে করা वास्।

রেম্ফ্রিকশন এনজাইম (Restriction enzyme) : যে এনজাইম প্রয়োগ করে DNA অণুর সুনির্দিষ্ট সিকোয়েশ-এর একটি অংশ কেটে নেয়া যায় ঐ এনজাইমকে রেস্ট্রিকশন এনজাইম বলে। এদেরকে রেস্ট্রিকশন এভোনিউক্লিয়েসেস (endonucleases)ও বলা হয়। এরা DNA অপুর একটি সুনিদিষ্ট সিকোয়েল, যাকে রেন্টিকশন সাইট (restriction site বা recognition site) বলা হয়, তা কেটে দিতে সক্ষম। এ ধরনের এনজাইম প্রাকৃতিকভাবেই ব্যাকটেরিয়া কোষে বিদামান থাকে। এদের কাজ হলো বা<u>াকটেরিয়াতে আক্রমধকারী জাইবাল DNA কেটে দেয়া</u>। স্বাভাবিকভাবে এরা ভাইরাল DNA কেটে থাকে, তবে যে কোনো উৎস থেকে পাওয়া যে কোনো DNA সূত্রের নিউক্লিয়োটাইডের ঐ একই সিকোয়েল (ব্ৰেম্মিকশন সাইট) সমান দক্ষতার সাথে কাটতে সক্ষম।

প্রতিটি ব্যাকটেরিয়াম কোষ কমপক্ষে একটি রেম্ফিকশন এনজাইম উৎপন্ন করে থাকে। শত শত প্রকার ব্যাকটেরিয়া কোষে শত শত ধরনের রেস্ট্রিকশন এনজাইম উৎপন্ন হয়। এরা DNA সূত্র কাটার জন্য নিজম্ব সিকুয়েল শনান্ত করতে

শারে এবং ঐ রেক্টিকশন সাইট কেটে দিতে পারে।


(খ) বাহক নির্বাচন : কাজ্জিত DNA-এর প্রয়োজনীয় অংশ বহন করার জন্য একটি বাহক (vector) নির্বাচন করতে য়। ব্যাকটেরিয়াতে অবস্থিত প্রাক্তমিড-DNA-কে কাফিকত DNA বহন করার জন্য বাহক হিসেবে ব্যবহার করা যায়। এই বাহক প্রাসমিত DNA-কে প্রয়োজন অনুসারে পরিবর্তন (modify) করে নেয়া হয়। যেমন- (i) কাজিত DNA থেকে বিশ্ববিদেশ্য প্রোটিন তৈরি করতে চাইলে বাহকের ভেতর কাজিকত DNA-র ৫-প্রাডে প্রোমোটার ৩ ৩-রাভে টারমিনেটর

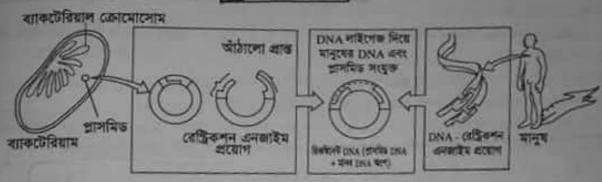
নিকোরেশ যোগ করতে হয়। (ii) কাজিকত DNA-কে উদ্ভিদ কোনে প্রতিস্থাপন করতে হলে কাজিও DNA-র ভেতরে প্রোমোটার ও টারমিনেটরস্থ স্থাপন করতে হয়।
(iii) সাধারণতাবে সংরক্ষণ করার উদ্দেশ্য হলে সাধারণ প্রাসমিতে স্থাপন করতে হয়।

(গা) সাধারণভাবে সংগ্রেমণ করার তালে। হলে। হলে। হলে। ছেদন: সুনির্দিষ্ট রেস্ট্রিকশন এনজাইম প্রয়োগ করে হরে। ক্রিক্টেম প্রয়োগ করে বাহক DNA তেও (যেমন-ম. tumefaction)

Τা প্রাসমিত DNA) ছেদন করে নেয়া হয় (চিত্র: ১১.৪, ১১.৫)।

কাজিকত DNA-ই এ সংক্রান্ত DNA খণ্ড বহন করে।
ইতিন্ন গ্রীবের জনাই লাইব্রেরি আছে, যেমন- E. coli লাইব্রেরি,
মানব জিনোম লাইব্রেরি ইত্যাদি। এখন আবার কমপ্রিমেন্টারি
DNA (cDNA) লাইব্রেরিড আছে। cDNA হলো mRNA-এর
ক্রমন্ত্রিমেন্টারি কপি। যে সব জিন বহিপ্রেকাশ ঘটাতে সক্রম সে
সব জিন cDNA লাইব্রেরিডে পাওয়া ঘার। একজ্ঞন গবেষক
cDNA লাইব্রেরি থেকে তার কাজ্কিত DNA খণ্ড পোরেন।
DNA হাইব্রিডাইজেশন প্রোব (কাজ্কিক DNA সিকোরেজের
সম্পূরক একক খণ্ডক রেডিভজারিতিত DNA খণ্ড) ব্যবহার করে
(কারণ এই প্রোব কাজ্কিত DNA-এর সাথে হাইব্রিডাইজ করবে)
লাইব্রেরি থেকে ক্রোন শনাক্ত করে PCR-এর মাধ্যমে সেই
কাজ্কিত সিকোরেজ খণ্ড বের করে আনা ঘাবে। বর্তমানে জিন
মেশিনের (automated chemical Synthesis apparatus)
সাহাযো সহজেই DNA হাইব্রিডাইজেশন প্রোব ও PCR-এ
ব্যবহৃত্ব প্রাইমার তৈরি করা যায়।

চিত্র ১১.৪ : রেস্ট্রিকশন এনজাইম দিয়ে DNA কর্চন


বিভিন্ন ধরনের ব্যাকটেরিয়া থেকে এ পর্যন্ত সহস্রাধিক রেস্ট্রিকশন এনজাইম পৃথক করা হয়েছে: বেমন- Eco a (Escherichia coli Ry 13), Hind III (Haemophilus influenzae Rd), Bam HI (Bacillus amyloliquefacient be প্রকৃতি। রেস্ট্রিকশন এনজাইমসমূহ DNA অপুর একটি সুনির্দিষ্ট সাজান পদ্ধতির (specific base sequences) করে কেটে দেয় এবং একই রেস্ট্রিকশন এনজাইম দারা প্রাসমিডের ঐ একই বেস সিকোয়েদবিশিষ্ট অংশকে কটি মা সাধারণত এরা ৪-৬ জোড়া বেস অংশ কেটে থাকে। রেস্ট্রিকশন এনজাইমকে DNA অপু কর্তনের সুদ্ধ বিশ্ব (molecular scissors-আপ্রিক কাঁচি বা বায়োলজিক্যাল নাইফ) হিসেবে ব্যবহার করা হয়।

করেকটি রেম্ট্রিকশন এনজাইম ও এদের রেম্ট্রিকশন স্থান নিচে দেখানো হলো:

এনজাইম	ৱেম্ট্রিকশন স্থান	এনজাইম	রেন্ট্রিকশন স্থান	
Bam HI	G GATCC CCTAG G	Hpa II	c cgg ggc c	
Hind III	A AGCTT TICGA A	Mbo 1	CTAG 1	
Eco RI	G AATTC CTTAA G			দিয়ে DNA অদুর কাট্র স্থান দেখালো হয়েছে।

্ষা) ছেননকৃত কাজ্জিত DNA খণ্ডকে বাহক প্লাসমিত DNA-তে স্থাপন : প্লাসমিত DNA হতে বের জালের ফাঁকা স্থানে কাজ্জিত DNA খণ্ডকে প্রতিস্থাপন করা হয়। DNA-ligase এনজাইম ব্যবহার করে কাজ্জিত থাকিক প্রাসমিত DNA-এর সাথে সংযুক্ত করা হয়। ফলে প্লাসমিত DNA-টি কাজ্জিত DNA খণ্ড বহন করে। DNA খণ্ড প্লাসমিত DNA-তে সংযুক্ত হবার ফলে রিক্তিনেন্ট DNA তৈরি হলো।

(s) লোহক (host) নির্বাচন ও রিকম্বিনেন্ট প্লাসমিড DNA পোষকদেহে প্রবেশ করানো : রিকম্বিনেন্ট DNA অণুক্তে পত্ত বোলো পোষ্টক ব্যাকটেরিয়ামে প্রবেশ করালো হয়। স্থাভাবিক অবস্থায় ব্যাকটেরিয়া অন্য প্রাসমিভ গ্রহণ করে না । নিয়াম সমুক্ত করে heat shock-এর মাধ্যমে বিশেষ পরিবেশ সৃষ্টি করলে প্রাসমিত গ্রহণ করতে পারে। প্রাসমিত গ্রহণ রাল ঐ ন্যাকটেরিয়ামকে ট্রাক্টরেয়াম (transformed bacterium) বলে। পরবর্তীতে ট্রাক্টরেয়াম ভারতিরিয়ার সংখ্যা বৃদ্ধির সাথে সাথে রিকমিনেন্ট প্লাসমিডটিও সংখ্যাবৃদ্ধি করে বলে একে ক্রোনিতে বলা হয়। DNA ব্যুপ্রবেশ্যে অন্য একটি আধুনিক পদ্ধতি হলো electroporation

চিত্র ১১.৫ : রিকখিনেন্ট DNA সৃষ্টি।

(5) বিকম্বিনেন্ট DNA-এর মূল্যায়ন : সাধারণত রিকম্বিনেন্ট DNA প্রস্তুত করার কাজটি সফলতাবে হয়েছে কিনা ডা প্রমাণ করার জন্য প্রাথমিকভাবে পরীক্ষা করে দেখা হয়। রিকম্বিনেন্ট DNA যুক্ত ঐ ব্যাকটেরিয়াম (পরীক্ষার মাধ্যমে শনাক্তৃত) আগোর মিডিয়ামে জনিয়ে সংখ্যা বৃদ্ধি করা হয়। এক্ষেত্রে পোষক ব্যাকটেরিয়া recombinant plasmid বহন করছে কিনা তা শনাক্ত করার জন্য অ্যাগার মিডিয়ামে নির্দিষ্ট antibiotic ব্যবহার করতে হয় কারণ বাহক প্লাসমিতে ঐ antibiotic अत्र resistance gene तरप्रदेश।

রিক্মিনেন্ট DNA কাজ্জিত জিন বহন করছে কিনা তা শনাক্তকরণ : এটি করা হয় এন PCR পছতিতে, পাট Restriction digestion-এর মাধ্যমে এবং (अ) জেনেটিক প্রোব-এর মাধ্যমে। জেনেটিক প্রোব (genetic probe) device মেটাল ডিটেক্টর-এর তুলনীয় একটি উপায়। জেনেটিক প্রোব হলো রেডিও আকটিভলি চিহ্নিত টার্লেট জিনের (বাঙ্গত জিনের) পরিপুরক এক স্ট্র্যান্ডবিশিষ্ট DNA বা mRNA।

(ছ) রিকম্বিনেন্টকে DNA-কে Agrobaeterium-এ স্থানান্তর : রিকম্বিনেন্ট DNA তৈরির সময় বাহক হিসেবে Ti

রাসমিভ ব্যবহার করে থাকলে ঐ DNA-কে Agrobacterium-এ স্থানান্তর করতে হয়।

(া) কাঞ্চিত উদ্ভিদকোষে রিকমিনেন্ট DNA প্রবেশ করানো : কাঞ্চিত জিন সমৃত্য কোনো কাঞ্চিত উদ্ভিদ সৃষ্টি পতে হলে কান্তিকত জিনকে কান্তিকত উল্লিদকোষে Agrobacterium tumefacians-এর মাধ্যমে বা অন্য পছতিতে শিখন করতে হবে এবং পরে টিস্না কালচার প্রক্রিয়ায় ঐ কোষ থেকে নতুন ও কাজিকত জিনসহ নতুন প্রকৃতির উদ্ভিদ টি করা হয় এবং সংখ্যাবৃদ্ধি করা হয়। এরপ উল্লিদকে ট্রাপজেনিক উদ্ভিদ (transgenic plant) বলে। এখানেই টিসা শা<u>চারের সাথে</u> জেনেটিক ইঞ্জিনিয়ারিং-এর সম্পর্ক।

Implanta পদ্ধতি ব্যবহার করে সরাসরি ট্রাপ্জেনিক উদ্ভিদ তৈরি করা যায়। Arabidopsis উদ্ভিদের পূস্পমঞ্জরীকে Brobacterium সাসপেনসনে নির্দিষ্ট সময় ভ্বিয়ে রেখেও সহজে ট্রাগজেনিক উল্লিদ তৈরি করা যায়। এ প্রক্রিয়ায় টিসা

শ্চারের দরকার পড়ে না।

জিল কোনিং (Gene cloning)

<u>একই জিনোটাইপ বিশিষ্ট একাধিক জীব বা জীবাংশকে কোন বলা হয়।</u> একটি জবা গাছ থেকে ১০টি ভাগ কেটে চাবা াপে এরা হবে চ্বচ্ একই জিনোটাইপ সম্পন্ন এবং এরা হলো কোন। কোন মাতৃউভিদের পূর্ব বৈশিয়া বহন করে। পারণত কাজিকত উদ্ভিদ থেকে এই কোনিং করা হয়। মনে করি একটি চা পাছের চা উত্তয় মানের হয়, কাছেই ঐ পাছটি শী কারিকত গাছ। ঐ গাছ থেকে ক্রোন করে বাগান বৃদ্ধি করলে পুরো বাগান থেকেই উন্নতমানের চা পাওছা ছাবে।

ছন ভোনিং হলো কোনো জীবের DNA পৃথক করে তা থেকে কোনো বিংশদ বৈশিষ্ট্যের আজিত ছিল চিহ্নিত করে মানে চীবাগানে কোনাল পছতি চাল করা হয়েছে। হথায় কোনো কালিছত জিনকে ত্বত কপি করা বা সংখ্যাবৃতি করাই হলো জিন জোনিং।

একটি ক্রেমোসোমের DNA-তে অসংখ্য জিন থাকতে পারে। এর স্বতলোই কাজ্জিত জিন নয়। কেননা, নির্দিষ্ট ভি নিদির প্রোটিন তৈরি করে, তাই প্রথমে কাজিকত প্রোটিন খোঁজা হয় এবং ঐ প্রোটিন উৎপাদনকারী জিন খুঁজে বের কর হয়। সাধারণত বিজ্ঞানিশপ জীবের DNA-এর ক্যাটাপণের জিন লাইব্রেরি তৈরি করেন এবং ঐ জিন লাইব্রেরি থেট কাষ্টিকত জিন পুঁজে বের করেন।

গ্রেষণাগারে বিশ্লেষণ করার জন্য অথবা উন্নতমানের প্রোটিন তৈরির জনাই হোক রিক্সিনেন্ট DNA তৈরির এক ভদেশ্যই হলো বিশেষ জিনের বহু কপি তৈরি করা। একটি জিনের বহু সংখ্যক হবহু কপি তৈরি করাই হলো জিন ক্লোনিং।

জিন ক্লোনিং-এর জন্য জিন-এর উৎস : তিনটি উৎস থেকে তা পাওয়া যায়-

- । বিনা ক্রাইটেরিয়ায় (random) তৈরি ক্রোমোনোমের খণ্ড যা ডেইর-এ অন্তর্ভুক্ত করা। এগুলো জিন-লাইব্রেরিয়ে
- ii. সুনিদিষ্ট mRNA থেকে রিভার্স ট্রান্সক্রিপশনে করা কমপ্রিমেন্টারি DNA।
- iii. গবেষণাগারে অর্গানিক কেমিস্টগণ কর্তৃক বিশেষ প্রক্রিয়ায় তৈরিকৃত DNA হও।

PCR (পণিমারেজ চেইন রিআকশন): ১৯৮৪ সালে আমেরিকান বিজ্ঞানী Kary Mullis কোম বহির্ভুতভাবে DNA ক্লোনিং এর দ্রুততম এক পদ্ধতি আবিষ্কার করেন। এ প্রযুক্তিকে পলিমারেজ চেইন রিজ্যাকশন বা PCR বলা হয়। একটি টেস্ট টিউবে একটি জিনের বহু কপি করা যায় PCR এর মাধ্যমে। প্রথমে হিস্তুক DNA-বে ১০° সে, তাপমাত্রায় একক সূত্রক করা হয়। DNA রেপ্লিকেশনের জন্য ৫-প্রান্তে এক্টি প্রাইমার যুক্ত করা হয়। একটি আদর্শ প্রাইমার ১২ থেকে ২০ বেইস পর্যন্ত লখা হয়ে থাকে। DNA পলিমারেজ তখন সম্পূরক সূত্র তৈরি করে দেয়। কয়েক মিনিটেই কপি তৈরি হয় এবং অল্লসময়ে অসংখ্য কলি তৈরি হয়ে যায়। এটি খুবই সহজ একটি উপায়। সাধারণত এই সূত্র তৈরির হার ২০০০ বেদ প্রতি মিনিটে। তবে বর্তমানে মিউটেশন পদ্ধতি ধারা এই হার আরো বাড়ানো হয়েছে, ১০০০ bp প্রতি

বিভিন্ন ধকার ক্লোনিং: বিভিন্ন প্রকার ক্লোনিং পদ্ধতি অছে। নিচে এ সম্বন্ধে সংক্ষিত্ত আলোচনা করা হলো।

- (i) DNA ক্রোনিং : রিকম্বিনেন্ট DNA তৈরির মাধ্যমে DNA ক্রোনিং করা হয়। এটি জিন ক্রোনিং নামেও পরিচিত। কোনো জীবের কাজিকত DNA খও কেটে উপযুক্ত ব্যাকটেরিয়ামের প্রাসমিত DNA-তে প্রতিস্থাপন করা হয়, ফলে প্রাসমিত DNA টি একটি বিকম্বিনেন্ট DNA-তে পরিণত হয়। উপযুক্ত মাধ্যমে এই রিকম্বিনেন্ট DNA যুক্ত ব্যাকটেরিয়াম আবাদ করণে সন্ন সময়ে হাজার হাজার ব্যাকটেরিয়া সৃষ্টি হবে এবং প্রতিটি ব্যাকটেরিয়ামে ঐ কাভিফত জিন থাকবে। এভাবেই
- (ii) বিলোডাকটিত ক্রোনিং : জনন পদ্ধতিতে দাতা ক্রেয়ের DNA-এর মাধ্যমে তার হ্বহ প্রতিছেবি সম্পন্ন নতুন প্রজনা সৃষ্টি করার কৌশল হলো রিপ্রোভাকটিভ ক্লোনিং। (ভলি) নামক ভেড়ার সৃষ্টি এই পদ্ধতিতে করা ক্রয়েছে। একটি ভেড়ার তন গ্রন্থি থেকে কোষ নিয়ে (একটি দাতা কোষ বা দাতা ভেড়া) তাকে আবাদ মাধ্যমে সংখ্যা বৃদ্ধি করা হয়। পরে একটি তেড়ার ডিমাণু কোষ (গ্রহীতা কোষ) নিয়ে তা থেকে নিউক্লিয়াস সরিয়ে তদস্থলে দাতা কোষের নিউক্লিয়াস হবেশ করানো হয়। ডিখাপুটি লাতা কোষের নিউক্রিয়াস নিয়ে বিভাজিত হয়ে জ্ব সৃষ্টির পর্যায়ে পৌছায়। এ জ্ব তৃতীয় একটি ভেড়ার জরায়ুতে স্থাপন করা হয়। তৃতীয় ভেড়াটি নির্দিষ্ট সময় পর দাতা ভেড়ার চেহারা সম্পন্ন একটি বাচ্চার জন্ম দেয়। এর নাম দেয়া হয়েছিল ডলি (১৯৯৬) সালে ভলির জনা হয়)। ভলিব সনাই বিধ্যোজাকটিছ কোনিং এর উদাহরণ।

জীবপ্রযুক্তির ব্যবহার : রিক্থিনেন্ট DNA প্রযুক্তির প্রয়োগ

রিকম্বিনেন্ট DNA প্রযুক্তি ইচ্ছে বর্তমান বিশ্বের বছল আলোচিত ও অভ্যন্ত সম্ভাবনাময় প্রযুক্তি বিজ্ঞান। জীবন-জীবিকার প্রায় সব কেত্রেই এই প্রযুক্তির সম্ভাবনার ধার উন্মুক্ত। নিচে এই প্রযুক্তির করোকটি প্রারোগিক ব্যবহার নিয়ে अर्हित व्यालाम्मा क्या श्ला।

- ১। কৃষিক্ষেত্রে: কৃষিক্ষেত্রে রিকম্বিনেন্ট DNA প্রযুক্তি সকলভাবে বাবহুত হচ্ছে; যেমন-
- (ক) ট্রালজেনিক উত্তিদ : আমেরিকান ভুলা গাছে পোকার (Conton bollworm) আক্রমণের ফলে প্রতি বছর বিপুল পরিমাণ উৎপাদন হোস পেতো। পোকার আক্রমণ প্রতিবাদ করতে তাই ব্যবহার করতে হতো ইনশেষিশাইত


(insecticides = পতঙ্গনাশক)। Bacillus thuringiensis নামক ব্যাকটোরিয়া থেকে একটি জিন যোগ করার মাধ্যমে ট্রাপজেনিক তুলা গাছ পৃষ্টি করা হয়েছে। এই ট্রাপজেনিক তুলা গাছে পোকার জন্য বিষাক্ত প্রোটিন পৃষ্টি হয় যার ফলে এখন আর ঐ পোকার আক্রমণ ঘটে না। এর ফলে ঐ তুলার ফলন বৃদ্ধি পেয়েছে, আবার পতঙ্গনাশক ব্যবহার করতে হয় না বলে উৎপাদন বায় কমে গেছে এবং জমির উপরের মাটি, পানি এবং বায়ু দৃষণও ক্রাস পেয়েছে। বর্তমানে আমেরিকায়ে চামকৃত ভূটার ৪০ ভাগ তুলাই ৫০ ভাগ এবং সয়াবিনেই ৪৫ ভাগই ট্রাপজেনিক প্রকরণ । বাংলাদেশেও এখন ৪৫ তোলে, গোলেন রাইস, লেটরাইট রোগ প্রতিরোধক্ষম আলু চায়ের ট্রায়াল চলছে, কৃষক পর্যায়ে এখনও দেয়া হয় নি।

বর্তমান সময় পর্যন্ত প্রায় ৬০টি উচ্চ শ্রেণির উদ্ভিদ প্রজাতিতে ট্রাগজেনিক প্রক্রিয়া সফলভাবে প্রয়োগ সম্ভব হয়েছে। এর মধ্যে রয়েছে তামাক, টমেটো, পেঁপে, ভ্টা, রাই, সূর্যমুখী, তুলা, নাশপাতি, গম, আঙ্গুর ইত্যাদি।

আগাছা নিধনকারী পদার্থ সহনশীল উদ্ভিদ

গ্রাইকোসেট একটি আগাছা নিধনকারী পদার্থ যা পৃথিবীর সবচেয়ে মারাত্মক ৭৮ আগাছার মধ্যে ৭৬টি ধাংস করতে সক্ষম। তবে এটি আগাছার সাথে ফসল উদ্ভিদও নষ্ট করে ফেলে। কাজেই ফসল লাগানোর আগেই জমিতে আগাছানাশক দেয়া ভালো। কিন্তু ফসল লাগানোর পরও জমিতে পুনরায় আগাছা জন্ম নেয়, তখন অতি সাবধানে এটি ব্যবহার করতে হয়।

কতক ব্যাকটেরিয়া একটি এনজাইম তৈরি করে থাকে যা গ্লাইকোসেট তেঙ্গে দিতে পারে। বিজ্ঞানিশন ব্যাকটেরিয়া থেকে এই জিন পৃথক করে রিকম্বিনেন্ট DNA প্রযুক্তিতে তুলা ও স্থাবিন উদ্ধিদে অন্তর্ভুক্ত করে ট্রালজেনিক তুলা ও স্থাবিন উদ্ধিদে অন্তর্ভুক্ত করে ট্রালজেনিক তুলা ও স্থাবিন উদ্ধিদ তৈরি করতে সক্ষম হয়েছেন। এসর কর্সলের জমিতে এখন নিভিন্তে গ্লাইকোসেট হার্বিসাইছ (herbicide) প্রয়োগ করা চলে।

(ব) তপগত মান উন্নয়নে : অস্ট্রেলিয়াতে ভেড়া পালন একটি উত্তম ব্যবসা। ভেড়া থেকে পাওয়া যায় পশম এবং মাংস। এরা ক্রান্তান্তর জাতীয় ঘাস খায়। ঐ ঘাসের প্রোটিনে সালফারের অভাব আছে। এর ফলে যে ভেড়া ক্রোভার ঘাস আয় এদের লোম্বিদ্রমানের হয়। লোমকে উন্নতমানের করতে হলে এদেরকে সালফার সমৃদ্ধ খাবার দিতে হয়।

রিকমিনেন্ট DNA প্রযুক্তির মাধামে সূর্যমুখীর সালফার অ্যামিনো অ্যাসিড সৃষ্টিকারী জিল Agrobacterium tumefaciens ব্যাকটেরিয়ার প্রাসমিড DNA-এর মাধ্যমে ক্লোন্ডার ঘাসে স্থানান্তর করা হয়েছে। ফলে খাদ্য হিসেবে কেবল এ খাস খেলেই ভেড়ার লোম উনুতমানের হচ্ছে, পৃথকভাবে সালফার সমৃদ্ধ খাদ্য দেয়ার প্রয়োজন হচ্ছে না। সূর্যমুখীর

সাপকার তৈরিকারী জিন সমূত ক্রোভার ঘাস হলো একটি টালজেনিক উদ্ভিদ 🕻

(গ) সুপার রাইস (Super rice) বা পোন্ডেন রাইস (Golden rice) : বাংলাদেশসহ এশিয়ার বিভিন্ন দেশের ছেট ছেলে-মেয়েদের ভিটামিন-A এর অভাব রয়েছে। এর ফলে কেবল বাংলাদেশেই প্রতি বছর হাজার হাজার শিশু অন্ধ হয়ে য়য়। সাধারণত ভিটামিন-A সমৃদ্ধ খাবারের অভাবেই এরপ হয়ে থাকে। এশিয়ার লোকদের প্রধান খাদ্য ভাত। তাই ভাতের মাধ্যমে ভিটামিন-A এর অভাব পূরণ করতে পারলেই আমাদের সন্তানেরা আর রাতকানা বা অন্ধ হবে না। এ উদ্দেশ্যকে সামনে রেখে সুইডেনের বিজ্ঞানী Ingo Potrykus (1999) ও তার সহযোগীরা উল্লাবন করেন সুপার রাইস। তারা Japonica টাইপ ধানে, ভ্যাফোডিল থেকে বিটা ক্যারোটিন তৈরির চারটি জিল এবং অতিরিক্ত আয়রন তৈরির তিন্তি জিন প্রতিস্থাপন করেন। এই ধানের ভাত খেলে এশিয়া, আফ্রিকা ও ল্যাটিন আমেরিকার ভাতপ্রিয় জনগোষ্ঠীর লক্ষ্ক লক্ষ্ক হলে-মেয়েরা ভিটামিন-A এর অভাবজনিত কারণে আর অন্ধ হবে না এবং মায়েরা দেহে রক্তপ্নাতার জন্য সৃষ্ট বিভিন্ন রোগ থেকে রেহাই পাবে। এখন সুপার রাইস বা গোক্তেন রাইস চার তক্ত হয়েছে।

(খ) রোগ প্রতিরোধক্ষম জাত উদ্ধাবনে : ভাইরাস, ব্যাকটেরিয়া, ছ্য্রাক ও নানা ধরনের কীট-পতঙ্গ প্রতিরোধক্ষম জাত উদ্ধাবনে রিকম্বিনেন্ট DNA প্রযুক্তির ফলে সাফলা অর্জিত হয়েছে। টোবাকো মোজাইক ভাইরাস, প্রটেটো ভাইরাস-এর কোট প্রোটিন (CP) জিন দিয়ে ট্রাপফর্মেশনকৃত তামাক গাছ ভাইরাস আক্রমণ হতে নিজেকে প্রতিরোধ করছে। ইতোমধা

একইভাবে পেঁপের রিংস্পট প্রতিরোধী জাত উল্লাবন করা হয়েছে।

(৪) নাইট্রোজেন সংবদ্ধনে : বায়বীয় নাইট্রোজেন সংবদ্ধনকারী ব্যাকটেরিয়া হতে 'নিফ জিন' (যা নাইট্রোজেন সংবদ্ধনের জনা দায়ী) E. coli ব্যাকটেরিয়াতে স্থানান্তর করা সন্তব হয়েছে। আশা করা হচ্ছে 'নিফ জিন' বাই ব্যাকটেরিয়ার ব্যবহার জমিতে নাইট্রোজেন ঘটিত সার প্রয়োগ কমাতে বা একেবারে বন্ধ করতে পারবে। ফলে ফসলের উৎপাদন খরচ কমবে এবং পরিবেশ দৃষণ রোধ হবে।

(চ) দ্যুতিময় উদ্ভিদ সৃষ্টি: জোনাকি পোকার দেহে বিসফারেজ নামক এনজাইমের প্রভাবে পুসিফেরিন নামক পদার্থ করিত হয়ে আলার বিজ্বরণ ঘটে। তাই জোনাকি পোকা উড়ার সময় আলোক বিজ্বরত হয়। এ বৃসিফেরিন পদার্থ নিয়সরণ নিয়য়ণকারী জিন তামাক গাছে রিকখিনেন্ট DNA প্রযুক্তির মাধ্যমে প্রতিস্থাপন করা সম্ভবপর হয়েছে। ফলে তামাক গাছের পাতা থেকে আলোক বিজ্বরিত হয়। তাই রাতের বেলা অন্ধকার স্থানে এরা বেশ শোভাবর্ধক।

(ছ) বীজহীন ফল সৃষ্টিতে : রিক্থিনেন্ট DNA প্রযুক্তি ব্যবহার করে বর্তমানে সারা বিশ্বের অনেক দেশে বীজহীন ফল

সৃষ্টি করা হছে। যেমন- জাপানে বীজহীন তরমুজ উদ্ভাবন এ প্রযুক্তরই এক প্রতিফলন।

(জ) ক্ষতিকারক কীট-পতন্ধরোধী উদ্ভিদ সৃষ্টি (Production of insect pest resistant plant) : অনেক কীট-পতন্ধ আছে যারা ফসল উদ্ভিদের মারাত্মক ক্ষতি করে থাকে। এর ফলে ফসলের উৎপাদন হ্রাস পায়। এরা হলো ক্ষতিকারক কীট-পতন্স অর্থাৎ insect pest। জেনেটিক ইঞ্জিনিয়ারিং-এর মাধ্যমে এসব ক্ষতিকারক কীট-পতস্বরোধী ফসল উদ্ভিদ সৃষ্টি করা সম্ভব। এখানে করেকটি উদাহরণ দেয়া হলো।

(i) ইউরোপিয়ান কর্নবোরার (European corn-borer) এক প্রকার মথ। এদের লার্ডা ভূটা গাছের বিশেষ ক্ষতি করে থাকে, ফলে ভূটার ফলন শতকরা ৪০ ভাগ পর্যন্ত ক্রাস পায়। জেনেটিক ইঞ্জিনিয়ারিং-এর মাধ্যমে Bacillus

thuringiensis-এর একটি জিন ভূটা উদ্ভিদে অনুপ্রবেশ ঘটিয়ে এই ফতিকারক কর্মবোরার প্রতিরোধী ভূটার জাত উদ্ভাবন করা সম্ভব হয়েছে। Bacillus thuringiensis ব্যাকটেরিয়াতে একটি প্রোটিন তৈরি হয় যা কাঁট-পতপের জন্য বিষাক্ত, কিম্ব মানুষের জন্য বিষাক্ত নায়। জেনেটিক ইন্ধিনিয়ারিং পছতির মাধ্যমে ব্যাকটেরিয়ার বিষাক্ত প্রোটিন তৈরিকারী 'জিন'কে ভূটা ইন্ধিনে অনুপ্রবেশ ঘটিয়ে একটি নতুন জাত তৈরি করা হয়েছে যা পতপের জন্য বিষাক্ত ঐ প্রোটিন উৎপাদন করতে পারে। এর ফলে ভূটার ঐ নতুন উদ্ধাবিত জাত কর্মবোরার দ্বারা আক্রান্ত হয় না (কর্মবোরার নিজেরাই মরে যায়)। এর ফলে ভূটার ফলন ছোস পায় না, ফলন বাড়লে অথবা ফলন হাস না পেলে উৎপাদন খরচ কম পড়ে, ছতিকারক রাসায়নিক*, ইন্সেন্তিসাইত ব্যবহার করতে হয় না, তাই উৎপাদন খরচ আরও কমে যায়। এছাড়া ফতিকারক ইন্সেন্তিসাইত গৃত্তির পানির সাথে গড়িয়ে পুকুর, ডোবা, নদী-নালায় পড়ে জলজ ইক্যেসিস্টেমের যে মারাজ্যক ক্তি করে তা থেকেও পরিবেশ রক্ষা পায়। ইন্সেন্তিসাইত ছিটানো ফসল থেকে মানুষের দেহে ছতিকারক ইন্সেন্তিসাইত প্রবেশ করে যে স্বাস্থাহানি মটে তা থেকেও মানুষ রক্ষা পায়।

কাজেই পতঙ্গনিরোধী কসল উত্তিদ চাখে খরচ কম পড়ে, উৎপাদন বাড়ে, মানব স্বাস্থ্য ও পরিবেশ রক্ষা পায়।

শ্রি) Bacillus thuringiensis (Bt) একটি মৃত্তিকাবাসী বিভূ আকৃতির ব্যাকটেরিয়া। বাংলাদেশের বিভিন্ন ধরনের মাটিতে এটি বিরাজমান আছে। গবেষণাগারে অধিক পরিমাণে উৎপাদন করে বায়ো-ইনসেন্টিসাইড হিসেবে কসলে (যেমন বেচন, ফুলকপি ইত্যাদিতে) প্রয়োগ করলে ক্ষতিকারক কাঁট-পতঙ্গ থেকে কসল রক্ষা পায়, ফলন ভ্রাস পায় না, পরিবেশের এবং মানবদেহেরও কোনো ক্ষতি হয় না। বাংলাদেশে এর পরীক্ষামূলক প্রয়োগ মোটামুটি সন্তোধজনক বলে প্রমাণিত হয়েছে।

(iii) স্টেরাইল ইনসের টেকনিক (Sterile Insect Technique = SIT) : এটি একটি আধুনিক জীবলমুক্তি (যদিও রিকখিনেন্ট DNA প্রযুক্তি নয়)। SIT হলো একটি পরিবেশ রাছর ক্ষতিকারক পত্ত নিয়ন্ত্রণ প্রছাত। Edward Kripling ও Raymond Bushland ১৯৩৭ সালে এই প্রভাবর প্রভাবক। কসলে বা জমিতে ক্ষতিকারক রাসায়নিক পত্সনার্শক প্রয়োগ না করে বায়োলজিকাল ইনসের কর্মোল পদ্ধতিতে ক্ষতিকর পত্স নিয়ন্ত্রণ করা হয়। এই প্রভাবত ক্ষতিকারক প্রত্যেব পূক্ষওলোকে বছাা করে দেয়া হয় (প্রধানত রেডিয়েশন প্রয়োগের মাধ্যমে)। এর কলে দ্রী পত্সসমূহ কার্যকর তিম উৎপাদনে অক্ষম হয়, কলে নতুন প্রজাব বিকলিত হতে পারে না। তাই কিছুনিনের মধ্যেই ঐ ক্ষতিকারক পত্সতি প্রায় নিশ্চিক হয়ে যায়। মশা নিয়ন্ত্রণের এটি একটি কার্যকরী উপায়। আবার শাক্সবন্ধি ও ফলমুক্রের ক্ষতিকারক ক্রীটে-পত্সও এই পদ্ধতিতে দর্মন করা সন্তব। আমানের দেশে এই পদ্ধতি এবলা প্রয়োগ সন্তব না হলেও ব্রাজিল, জাপান, ফিলিপিনস, থাইল্যাভ, যুক্তরান্ত্রের বিভিন্ন ছানে এই পদ্ধতি প্রয়োগ করা হছেছ। এই পদ্ধতি একদিকে যেমন কৃষিতে প্রয়োগ করা। হছেছ, অন্যাদিকে পত্সবাহিত (যেমন-মশা) রোগ নিয়ন্ত্রণের মাধ্যমে চিকিৎসার ক্ষেত্রেও ব্যক্তে হছেছ। বাংলাদেশে বিভিন্ন Insect Biotechnology গবেষণাগারে SIT নিয়ে গবেষণা চলছে।

বাংলাদেশের প্রথম GM (Genetically Modified) খাদ্য কসল

জেনেটিক মডিফিকেশনের মাধ্যমে বিভিন্ন ফসলের রোগ-বালাই প্রতিরোধ ক্ষমতা বৃদ্ধি করে যে ফসল উৎপাদন করা হয় তাকে GM ফসল বলে। পৃথিবী জুড়ে এখন প্রায় ৩০টি দেশ GM ফসল (Genetically Modified crop) উৎপাদন করছে। গত ২২ জানুয়ারি ২০১৪, বাংলাদেশে প্রথম একটি GM খাদা ফসল (Bi-বেগুন) চাষের জনা সরকার অনুমোদন নিয়েছে। এর চারটি জাত নির্বাচিত কৃষকের কাছে বিভরণ করা হয়েছে।

Be-বেতন কী? Bacillus thuringiensis নামক একটি সয়েল ব্যাকটেরিয়া থেকে ক্রিন্টাল প্রোটন জিন (Cry1Ac) বেচনোর জিনোমে অস্তর্ভুক্ত করে উৎপন্ন বেচনের নাম দেয়া হয়েছে Be-বেচন।

সাধারণ বেক্তন ও Bi-বেক্তনের মধ্যে পার্থক্য হলো এক প্রকার পোকা সাধারণ বেক্তন গাছের কচিডগা ও ক্ল ছিত্র কর মাই করে কেলে যার ফলে ফলন দারুণভাবে হাস পায়। পোকার আক্রমণ থেকে ফসল রক্ষা করার জনা কুমকুরে প্রে সিঞ্জন-এ ৬০-১৮০ বার পোকানাশক ওমুধ শেপ্র করতে হয়। Bi-বেহুনে ঐ পোকার আক্রমণ হবে না, তাই পোকানাশ

পোকানাশক শেপ্র করলে কী হয়? বেচন ক্ষেতে পোকানাশক শেপ্র করলে পোকার আক্রমণ থেকে গাই ও কসল ক্র পায়, তবে-

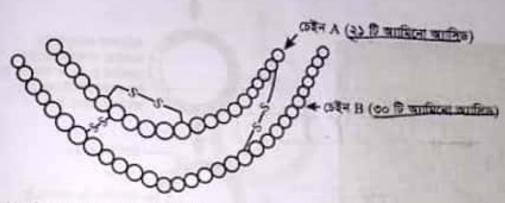
- (i) বেগুনের সাথে ওমুধ মানুষের দেহে প্রবেশ করে এবং পরিণামে ক্যাপার-এর মতো মারাত্মক রোগে আক্রান্ত হয়। (ii) ফসলের জমি থেকে বৃষ্টির পানির সাথে পোকানাশক বিষ নিকটপ্থ নদী-নালা-খাল-বিলে জমা হয় এবং জন্ত উদ্ধিদ ও প্রাণীর বিশেষ করে মাছের উৎপাদন ব্যাপকভাবে হ্রাস পায়।
- (iii) মাটি ও পরিবেশ বিদাক হয়।
- (iv) কুমকের হাজার টাকার ওযুধ বিনাতে হয় এবং বহু কর্মঘণ্টা ব্যয় করে ওযুধ শেপ্র করতে হয়।
- (v) ওষুধ স্পেকারী ব্যক্তিও এক সময় এই বিধ ছারা আক্রান্ত হয়। এতে কেবলমাত্র ওষুধ প্রস্তুকারী কোশাদ শাভবান হয়, আর সবাই ক্তিয়ান্ত হয়।

Bt-বেতন চায় করলে কী লাভ হবে?

Bt-বেণ্ডন চাষ করলে কৃষক নিমুলিখিতভাবে লাভবান হবেন।

- (i) পোকানাশক ওযুধ কিনতে হবে না ও শেপ্র করতে হবে না। এতে হাজার হাজার টাকা উৎপাদন খরচ কম হবে।
- (ii) আমরা যারা বেগুন খাই তারাও ঐ বিষ খারা বিষক্রিয়ায় আক্রান্ত হবো না এবং ক্যান্সারের ঝুঁকি থেকে বেঁচে
- (iii) মাটি ও পরিবেশ বিষমুক্ত থাকরে।
- (iv) আশেপাশের জলাশয় বিষমুক্ত থাকবে এবং জলজ পরিবেশের খাভাবিক উৎপাদন প্রক্রিয়া অব্যাহত থাকবে। (v) উৎপাদন বাড়বে।

GM-ফসল কি ক্ষতিকর?


পরিবেশবাদীরা বরাবরই এর বিরোধিতা করে আসছে। যদিও তাদের কাছে এর কোনো বৈজ্ঞানিক প্রমাণ নেই। আমর জ্ঞানি প্রতিটি জিন একটি নির্দিষ্ট প্রোটিন তৈরি করে এবং ঐ প্রোটিনই ঐ জিনের বৈশিষ্টোর প্রকাশ ঘটায়। কার্জেই Bi-ক্রিস্টাল জিনও একটি নির্দিষ্ট প্রোটিন তৈরি করবে। ঐ প্রোটিন আমাদের দেহে কোনো ক্ষতিকর প্রভাব ফেলবে কিনা সেটাই প্রধান প্রস্ন। পরীক্ষায় প্রমাণিত হয়েছে যে, Bt-জিন বিশেষ পোকার জন্য বিষাক্ত হলেও মানুহের জন্য বিষাক্ত নয়। এছাড়া Bt-বেশুন উদ্ভাবনের পর পৃথিবীর উন্নত দেশে ১০টির অধিক গবেষণাগারে মাছ, মুরগি, ছাগল, খরগোশ, ইনুর ইত্যাদি প্রাণীর উপর গবেষণায় কোনো ক্ষতিকর প্রভাব প্রতীয়মান হয়নি। কাজেই আমরা দ্বিধাহীন মনে Bt-বেচন শেকে शांतरवा ।

২। চিকিৎসা বিজ্ঞানে: চিকিৎসা বিজ্ঞানে রিক্সিনেন্ট DNA প্রযুক্তি ইতোমধ্যেই সফলভাবে ব্যবহৃত হচ্ছে। এ প্রযুক্তি ব্যবহার করে উৎপাদন করা হচ্ছে বিভিন্ন ধরনের টিকা, হরমোন, আন্টিবভি ও আন্টিজেন। রোগ শনাক্তকাশেও এখন বাৰহুত হচ্ছে জিন প্ৰযুক্তি। সুস্থ সবল শিত জন্মদানের ক্ষেত্রেও এ প্রযুক্তি নিয়ে আসছে আশার আলো।

(B) মানুষের দেহের প্রতিটি কোষ ২৫০০০ পর্যন্ত কর্মক্ষম জিন বছন করে (আরো বছ জিন মানবদেহে আছে যাদের কার্ এখনো জানা সম্ভব হয়নি)। এর যেকোনো একটি নির্দিষ্ট জিন-এ ভ্রম (error) দেখা দিলে দেহে রোগ সৃষ্টি হতে পারে। মানুষের এরপু <u>৩৫০০টি জেনেটিক ডিস্</u>প্রপ্রতি জানা গেছে। আশা করা হচ্ছে একলো রিক্থিনেউ DNA প্রযুক্তির মাধ্যমে

मुत्रीकुछ कत्रा याति।

(i) ইনসুলিন (Insulin) : ইনসুলিন হলো এক ধরনের হরমোন যা মানব অন্ন্যাশয়ে আইলেটস অব ল্যাঙ্গারহ্যান্ত এর বার্তি থেকে ক্ষরিত হয়। ইনসুলিন মানুষের একটি গুরুত্বপূর্ব হরমোন যা অন্ন্যাশয়ের (Pancreas) বিটা-কোষ হতে বিদ্যমান গ্রুকোজের উচ্চ মান্রাকে কমিছে স্থান্তারিক মান্রায় নিয়ে আসে। কোনো কারণে অন্ন্যাশয় হতে ইনসুলিন নিঃসৃত না হলে অথবা কম নিঃসৃত হলে অথবা নিঃসৃত ইনসুলিন অকার্যকর হলে রক্তে গ্রুকোজের মান্রা রেড়ে যায়, অর্থাৎ ভায়াবেটিস রোগ হয়। এমতাবস্থায় ভায়াবেটিক রোগীকে ইনসুলিন অকার্যকর হলে রক্তে গ্রুকোজের মান্রা র ধরনের রোগীর সংখ্যা লক্ষ লক্ষ্ক, তাই ইনস্যালিনের চাহিদাও ব্যাপক।

ইনসুলিনের A ও B চেইন। দুটি নিন্টিনের মধ্যে ভাইসালফাইভ বচ তৈরি হয়

ইনসুনি ৫১টি আমিনো আসিড নিয়ে গঠিত কুদ্রাকার সরল প্রোটিন। দুটি পলিপেপটাইড চেইন (২১টি আমাইনো আসিড নিয়ে গঠিত চেইন-A এবং ৩০টি আমিনো আসিড নিয়ে গঠিত চেইন-B দুটি ইসালফাইড বঙ্কের মাধ্যমে স্ফুড হয়ে একটি ইনসুলিন অপু গঠন করে। এর রাসায়নিক সংকেত হলো : $C_{244}H_{377}N_{65}O_{75}S_{16}$ আগবিক ভ ৫৭৩৪ বর্তমানে মানুষের ইনসুলিন উৎপাদনকারী জিন E coll-তে ছানান্তর করে ব্যাপক হারে ইনসুলিন উৎপাদন করা হচ্ছে। একটি ব্যাক্তেরিয়াম কোষে প্রায় দুশ লক্ষ অপু ইনসুলিন তৈরি হয়ে থাকে।

জিন প্রকৌশলের মাধ্যমে মানুষের ইনসুলিন উৎপাদন

ভাষাবেটিস রোগের চিকিৎসায় প্রচুর পরিমাণে ইনসুলিন প্রয়োজন, কিছু প্রকৃতিতে এত ইনসুলিন কোথায়? একসময় কি বা শুকরের অন্ন্যাশয় থেকে ইনসুলিন সংগ্রহ করে তা মানুদের চিকিৎসায় ব্যবহৃত হতো। কিছু গরু বা শুকরে থেকে নিয়া ইনসুলিন মানুদের জন্য ততটা উপযোগী নয়। কাজেই জিন প্রকৌশল জ্ঞান কাজে লাগিয়ে মানুদের জ্ঞিনকে ব্যবহার করে কুন্রিম উপায়ে ইনসুলিন উৎপাদনের উদ্যোগ নেয়া হয় এবং এক সময় তা সঞ্চল হয়। প্রথমেই মানুদের DNA-তে বিসুলিন উৎপাদনকারী জিনের অবস্থান নির্ণয় করা হয়। তা হলো ১১ নং ক্রোমোসোমের খাটো বাহুর DNA-এর শীর্মে। এত ১২৩টি নাইটোজেন-বেস নিয়ে গঠিত ইনস্যালনের জেনেটিক কোড বিদামান।

জিন প্রকৌশল তথা জীবপ্রযুক্তির মাধ্যমে মান ইনসূলিন কপোদন কৌশল আবিষ্কার করেন আমেরিকার Ell Lily & Company, যা ১৯৮২ সালে প্রথম বাজারজাত করা হা শিহতমূলিন নামে।

বৈসুদিন উৎপাদন প্রক্রিন্যাটি নিমুক্তপে ব্যাখ্যা করা ফেতে পারে :

১। ইনসুলিন উৎপাদনকারী জিন পনাক্তকরণ : মানবদেহে ইনসুলিন উৎপাদনকারী জিনটির অবস্থান বর্তমানে বিজ্ঞান ১১বং ক্রোমোনোমের খাটো বাহর শীর্য অংশের DNA-তে এই জিন অবস্থিত। <u>এটি ১৫৩টি নাইটোজেন বেস</u>

- ২। DNA সূত্র থেকে ইনসুলিন জিন অংশ পৃথককরণ : রেস্ট্রিকশন এনজাইম প্রয়োগ করে মানব DNA থেকে রুমুদিন উৎপাদনকারী জিন অংশ বিশেষ উপায়ে কেটে পৃথক করা হয়।
- । বাহক প্লাসমিত পৃথককরণ : ইনসূলিন জিনকে বহন করার জন্য E. coli ব্যাকটোরিয়াম থেকে বিশেষ কৌশলে গ্রামমিত পৃথক করা হয়।
- ৪। E. coli প্রাসমিত DNA-এর একাংশ কর্তন : রেস্ট্রিকশন এনজাইম প্রয়োগ করে ইনসুলিন জিনের সমপরিমাণ ব্যামিত DNA অংশ কেটে স্থান ফাঁকা করা হয়।
- e। প্লাসমিত DNA-তে ইনসৃধিন জিন ছাপন : প্লাসমিত DNA-এর কর্তিত ফাঁকা ছানে মানুষের ইনসৃধিন জিন (DNA অংশ) বসিয়ে দেয়া হয় এবং লাইণেজ এনজাইম প্রয়োগ করে প্লাসমিড DNA এবং মানব DNA সংযুক্ত করে দেৱা হয়। এবার তৈরি হলো রিকম্বিনেন্ট DNA বা রিকম্বিনেন্ট প্লাসমিত।
- । রিকমিনেন্ট প্রাসমিত একটি E. coli ব্যাকটেরিয়ামে প্রবেশ করানো : এটি করা হয় ট্রালফরমেশন প্রক্রিয়ায় । এটি ক্রি শক মেখত অথবা ইলেব্রিক পাল্স মেথতে করা হয়। যে ব্যাকটেরিয়া রিকখিনেন্ট প্লাসমিত বহন করবে তাকে Vector (বাহক) বলা হয়। বাহক অবশাই নিজস্ব প্লাসমিড মুক্ত হতে হবে। প্লাসমিড মহণ করার জনা ভেইরকে Competent (উপযুক্ত) হতে হয়। হিট শক মেথভ অনুসারে ভেরবকে (E. coli) প্রথমে CaCl, দ্রবলে ভ্রিয়ে ১৪-১৬ ঘটা ব্যুক্তে রাখা হয়। এতে E. coli-এর কোষ প্রাচীরে Ca লেগে থেকে E. coli কোষকে প্রাসমিত গ্রহণ করার জন্য Competent করে থাকে। এরপর $E.\ coli$ কোষ এবং রিকমিনেন্ট প্রাসমিভকে একরে মিকচার করে একটি পাত্রে আধা খটা বরকে, পরে ৪২°C তাপে ৯০ সেকেভ এবং পুনরায় ২ মিনিট বরকে রাখলে E coli কোষ পোষণ করে প্রাসমিভ সেহাভ্যন্তরে নিয়ে নেয়। এবার E. coli কোষ ইনসূলিন জিনসহ GMO E. coli-এ পরিণত হলো।
- ৭। ফার্মেন্টেশন ট্যাংকে GMO E. coli সংখ্যা বৃদ্ধিকরণ : এবার GMO E. coli তথা ট্রাপজেনিক E. coli কে নির্দিষ্ট কালচার মিডিয়াযুক্ত ফার্মেন্টেশন ট্যাংকে নির্দিষ্ট তাপমাত্রায় রাখা হয়। ফার্মেন্টেশন ট্যাংকে অল্প সময়ের ব্যবধানে লক্ষ লক্ষ ্বীপজেনিক E. coli সৃষ্টি হয় এবং সাথে প্রতি কোমে উৎপাদিত ইনসুলিন জমা হয়।
- ৮। ইনসুলিন পৃথকীকরণ : ইনসুলিন তৈবি হয়ে কোনের অভান্তবে অবস্থান করে। তাই E. coli কোষসমূহকে lysis (বিগলিত) করে ইনসূলিন আহরণ করা হয়।
- ১। ইনসুশিন বিতদ্ধকরণ : ব্যাকটেরিয়াকে বিগলন করার মাধামে যে ইনসুশিন পাওয়া যায় তাতে ব্যাকটেরিয়ার নিক্ষৰ অনেক প্রোটিনও থাকা স্বাভাবিক। তাই আহরিত ইনসুদিনকে বিচছ করা হয়।

বাজারজাতকরণ : উৎপাদন পরবর্তীতে উপযুক্ত এম্পুলে ভবে ইনসুলিন বাজারজাত করা হয় এবং ইনজেকশন সিরিজের মাধ্যমে সুনির্দিষ্ট পরিমাণে ও সময়ে পেশিতে পুশ করা হয়। দেহে ইনসুলিন রকের সাথে প্রবাহিত হয়ে দেহকোষের মেমব্রেনে উপযুক্ত রিসেন্টিভ সাইট তৈরি করে যার ফলে রক্ত থেকে গ্রুকোজ কোষের ভেতরে প্রবেশ করে এবং

কার। জিন প্রকৌশলের মাধ্যমে ইনসুগিন উৎণাদন প্রক্রিয়াটি একটি পোস্টার পেপারে জন্তন করে ক্লানে/ভোমার তে মুকোজের মাত্রা স্বাভাবিক হয়ে আসে।

(ii) ইউরেক্তেরনস (Interferons) : ইন্টারক্তেরন হলো এক ধরনের উচ্চ আগবিক ওজন সম্পন্ন গ্রোটিন যা ক্যান্সার কোৰে বৃদ্ধি ও ভাইরাসের বংশবৃদ্ধিতে বাধা দেয়। বহিবাক্তমণ খেকে রক্ষা করার জন্য প্রতিটি বাধীন বাটেবই একটি মতিরকা ব্যবস্থা আছে, তেমনই বহিরাগত ভাইরাস, ব্যাকটোরিয়া, ছ্ত্রাক, বিষ, জনা কোনো বস্তু ইত্যাদির আক্রমণ থেকে াতা করার জন্য প্রতিটি মানবদেহে একটি প্রতিরকা ব্যবহা থাকে, এটি দেহের ইমিউন সিস্টেম (immune system)। ইউন্নেশ্বন হলো শ্লোটিন জাতীয় বাসায়নিক প্ৰতিবন্ধানুক্ত অস্ত্ৰ (chemical defence) যা দেহের ইমিউন সিন্টেনের অনু

র্গত। এক কথার, ইন্টারফেরন হলো প্রতিরক্ষামূলক প্রোটিন (defence protein)। কোনো লেহকোষ বিশেষ ভাইনা সংক্রমিত হলে তার প্রতি সাড়া দিয়ে সংক্রমিত কোষ ইন্টারফেরন নামক রাসায়নিক পদার্থ (গ্রাইকো-ব্রোটিন) বি করে। নিঃসৃত ইন্টারফেরন আক্রমণকারী ভাইরাসের প্রোটন সংশ্লেষণ প্রক্রিয়া বন্ধ করে দেয়, ফলে উইরচ্ছ করে। শিঃসৃত হতারকেরণ আক্রমণকারা ভাহরালের জনাত সংখ্যাবৃদ্ধি করতে পারে না, কলে পরবর্তী কোষগুলোকে আর আক্রমণ করতে পারে না। কাজেই সংক্রমিত ক্র সংখ্যাপৃত্তি করতে পারে শা, কলে পরবতা কোবতসাতে চারপাশের কোবতগো ভাইরাসের আক্রমণ থেকে রক্ষা পায়, অধিকন্ত এরা ভাইরাস-প্রতিরোধক্ষম হয়ে ওঠ। ই কীরুদেরনের কাজ হলো আক্রমণকারী ভাইরাসের সংখ্যাবৃদ্ধি বন্ধ করে দেয়া এবং সৃষ্ট কোষতলোতে ভা প্রতিরোধক্ষম করে তোলা ও ভাইরাসের আক্রমণ থেকে রক্ষা করা। ব্রিটিশ বিজ্ঞানী Alick Islands & Ja

ইন্টারফেরনের ব্যবহার : ইন্টারফেরন একটি নির্দিষ্ট প্রজাতির হরমোন, এমনকি একই দেহের বিভিন্ন টিয়া ছে বিভিন্ন প্রকার ইন্টারফেরন তৈরি হয়। ভাইরাস আক্রান্ত লিউকোসাইট থেকে এক ধরনের ইন্টারফেরন, ফাইব্রেরস্ট দে থেকে অন্য ধরনের ইন্টারফেরন নিঃসরণ হয়। ভাইরাস দ্বারা সংক্রমিত কোষ কর্তৃক ইন্টারফেরন নিঃসৃত হলেও বঠি রিকম্বিনেন্ট DNA কৌশল প্রয়োগ করে অধিক পরিমাণে ইন্টারফেরন উৎপন্ন করা সম্ভব হচ্ছে। ইন্টারফেরন প্রজে ক জাটিল হেপাটাইটিস-B, কতক হার্পিস সংক্রমণ, বিভিন্ন ধরনের প্যাপিলোমা (Papilloma) চিকিৎসা করা সম্ভব হয়ে এছাড়া জলাতত্ব (rabies) রোগের চিকিৎসায়ও সাফল্য অর্জিত হয়েছে। গবেষকগণ ধারণা করছেন যে ক্যাপার জেন বৃদ্ধি রহিত করতে ইন্টারফেরন সফলভাবে ব্যবহার করা যাবে।

ইন্টারফেরন উৎপাদ্<u>ন প্র</u>ক্রিয়াটি নিমুক্রপ

- ১। মানুষের ফাইব্রোব্রাস্ট্র কোষ থেকে DNA আহরণ করা হয় এবং তা থেকে ইন্টারফেরন (ইন্টারফেরনরি) কোড বহনকারী জিন পৃথক করা হয়।
- ২। একটি উপযুক্ত প্লাসমিডকে রেস্ট্রিকশন এনজাইম দিয়ে কাটা হয়।
- ত। এবার ইন্টারফেরন জিন অংশকে DNA লাইগেজ এনজাইম দিয়ে প্লাসমিভের কাটা (ফাঁকা) অংশে সংযুক্ত স্থ হয়। অর্থাৎ একটি রিকম্বিনেন্ট DNA অণু তৈরি করা হয়।
- 8। ইন্টারফেরন জিনসহ রিকম্বিনেন্ট DNA-কে E. coli ব্যাকটেরিয়াতে প্রবেশ করানো হয়।
- ৫। এবার আবাদ মাধ্যমে রিকমিনেন্ট DNA বিশিষ্ট E. coli-এর ব্যাপক বংশবৃদ্ধি করা হয়। E. coli ক্ উৎপাদিত ইন্টারফেরন আবাদ মাধ্যমে নিঃসৃত হয়।
- ৬। আবাদ মাধ্যম থেকে ইন্টারফেরন পৃথক করে বিতদ্ধ করা হয়।
- ৭। বিতক্ষকৃত ইন্টারফেরন বিশেষ পদ্ধতিতে সংরক্ষণ ও বাজারজাত করা হয়। এরপ একটি ইন্টারফেরনে वाविज्ञिक नाम Betaferon.
- (iii) টিস্যু প্রাসমিনোজেন অ্যাকটিভেটর (Tissue Plasminogen Activetor = TPA) : মানুষের রক্তনানীতে ইই জমাট বেঁধে স্ট্রোক করতে পারে অথবা হার্ট আটাক হতে পারে। সাথে সাথে জমাট বাঁধা রক্ত গলিয়ে দিতে পারনে রোট সুস্থ হয়ে উঠে। ১৯৭০ সালে প্রথম ব্যাকটেরিয়া কোষ থেকে Streptokinase এনজাইম পাওয়া গেল যা দিয়ে জমট বার্গ রক্ত গলিয়ে দেয়া যায়। কিন্তু এ প্রোটিনটি মানুষের নিজন প্রোটিন য়ি রিধায় দেহে বহু পার্শ্বরতিক্রিয়ার সৃষ্টি করে।

মানুষের রক্তে এমনিতেই প্লাজমিন এনজাইম (Plasmin enzyme) থাকে যা Plasminogen অবস্থায় বিরাভ করে। প্লাজমিলোজেন বিক্রিয় (inactive) অবস্থায় থাকে। প্লাজমিলোজেনকে কর্মক্ষম অবস্থায় আনতে হলে TPA-এর দরকার হয়।

TPA তৈরি প্রক্রিয়া :

- (i) মানুষের কোষ থেকে TPA জিন এর mRNA পৃথক করা হয়েছে
- (ii) mRNA থেকে cDNA তৈরি করা হয়েছে।

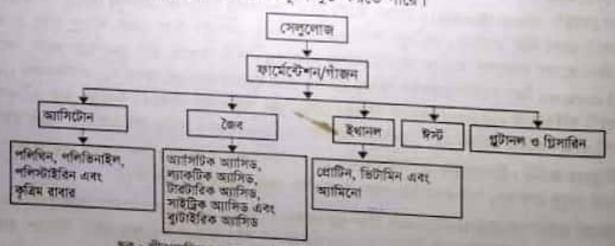
- (iii) cDNA-কে উপযুক্ত প্লাসমিডে অন্তর্ভুক্ত করে রিকম্বিনেন্ট DNA তৈরি করা হয়েছে।
- (iv) রিকমিনেন্ট DNA-কে E. coli ব্যাকটেরিয়াতে প্রবেশ করানো হয়েছে।
- (v) আবাদ মাধ্যমে রিকম্বিনেন্ট DNA সহ E. coli-কে আবাদ করে হাজার হাজার কণি (ক্রোনিং) করা হয়েছে।
- (vi) E coli থেকে TPA প্রোটিন পৃথক করে ওযুধ হিসেবে তৈরি করা হয়েছে।
- (vii) হার্ট অ্যাটাক বা স্ট্রোক-এর রোগীর রক্ত নালিতে TPA ইনজেই করলে রক্তের ব্লক বিগলিত হয়ে যায় এবং রোগী। সৃস্থ হয়ে উঠে।
- (viii) TPA নিঃসরণকারী জিন মানুষের দেহ থেকে নেয়া বলে এর কোনো পার্শ প্রতিক্রিয়া হয় না।
- (iv) ইরিপ্রোপোইটিন (Erythropoietin-EPO) তৈরি: আমাদের কিডনি ইরিপ্রোপোইটিন (EPO) নামক একটি ব্রুমোন তৈরি করে যা রক্ত প্রবাহের সাথে বোনম্যারো (bone marrow)-তে প্রবেশ করে। EPO, বোনম্যারো কোষকে বিভালনে উদ্দীপ্ত করে এবং প্রচুর RBC (লোহিত রক্ত কবিকা) উৎপন্ন হয়। যাদের কিডনি বিকশ হয়ে যায় বা প্রায়ে অকেলো হয়ে পড়ে তাদের নিয়মিত ডায়ালাইসিস করতে হয়। ডায়ালাইসিস-এর সময় এই হরমোনও (EPO) রক্ত থেকে ব্যে হয়ে যায়, কলে রোগীর দেহে RBC একেবারেই কমে যায়, রোগী তাই রক্তশ্ন্তায় ভোগে।

EPO তৈরি প্রক্রিয়া : নিমে EPO তৈরির প্রক্রিয়া বর্ণনা করা হলো :

- (i) মানুষের দেহ থেকে EPO জিন পৃথক করা হয়েছে। (ii) পরে রেস্ট্রিকশন এনজাইম দিয়ে কেটে এবং লাইগেছ এনজাইম দিয়ে সংযুক্ত করে এই জিনকে উপযুক্ত বাহকে (প্লাসমিড) অন্তর্ভুক্ত করা হয়েছে। (iii) পরে এই রিকম্বিনেন্ট DNA-কে অপর ব্যাকটেরিয়াতে (E. coli) প্রবেশ করানো হয়েছে। (iv) রিকম্বিনেন্ট DNA সহ E. coli ব্যাকটেরিয়াকে মাবাদ মাধ্যমে আবাদ করে হাজার হাজার কপি করা হয়েছে। (v) E. coli থেকে EPO প্রোটিন নিছাশন করে গুমুধ ছিসেরে প্রস্তুত করা হয়েছে। বর্তমানে হাজার হাজার কিডনি রোগীকে রক্তশ্ন্যতা দুরীকরনার্ছে E. coli-তে উৎপন্ন EPO ইনজেকশন দেয়া হছেছ।
- (v) জিন পেরাপি (Gene therapy): কোনো নির্দিষ্ট রোগ উৎপাদনের জন্য দায়ী ক্রণ্টিপূর্ণ জিনকে সঠিক করার (to correct) পদ্ধতি হলো জিন থেরাপি। ক্রণ্টিপূর্ণ জিনটিকে রেন্ট্রিকশন এনজাইম দিয়ে কেটে সরিয়ে দিয়ে ঐ জায়গায় corrected জিন প্রবেশ করানোর মাধ্যমে কাজটি সম্পন্ন করা হয়। দু'টি উপায়ে এটি করা হয়ে থাকে, যথা : (i) গরেষণাগারে corrected জিন সম্বলিত কোষকে জিনায়ে রোগীর দেহে ইনজের করা হয়, অথবা (ii) একটি বাহক (vector), সাধারণত একটি ভাইরাসকে corrected জিনসহ মানুষের DNA বহন করার জন্য পরিবর্তন করা হয় এবং তাকে সরাসরি মানুষের টার্গেট কোষে প্রবেশ করানো হয়। টার্গেট কোষে তর্মন corrected DNA সংযুক্ত হয়ে যায় এবং রোগ মুক্ত করে।
- ত। মলিকুলার ফার্মিং: ট্রালজেনিক প্রাণী উদ্ভাবনের মাধ্যমে তাদেরকে বায়ো-রিআটর হিসেবে ব্যবহার করা হচ্ছে। ব ধানের প্রাণী থেকে প্রাপ্ত দুধ, রক্ত ও মলমূত্র থেকে প্রয়োজনীয় ওযুধ আহরণ করা হয়ে থাকে।
- 8। পরিবেশ ব্যবস্থাপনা (Environmental Management) : বেসব ব্যবস্থা গ্রহণের মাধ্যমে পরিবেশকে উন্নত করা বাহ, পরিবেশ ব্যবস্থাপনারী উপাদানসমূহকে নিয়ন্ত্রণ বা পুনঃপ্রক্রিয়াজাত করে ব্যবহার করা যায় তাকে পরিবেশ ব্যবস্থাপনা বিশে। জীবজগতের বসবাসের জন্য চাই সুন্দর পরিবেশ। সুন্দর পরিবেশ ঠিক রাখা ও তৈরি করার জন্য চাই সুন্দর ও বিশ্বানাভিত্তিক পরিবেশ ব্যবস্থাপনা। পরিবেশ ব্যবস্থাপনার কতিপয় ক্ষেত্রে জীবপ্রযুক্তির ব্যবহার সম্বন্ধে নিচে সংক্ষিত্র বর্ণনা বিশ্বান্তি
- (ক) কলকারখানা ও খনি থেকে নির্গত বর্জা : কলকারখানা ও খনি থেকে নির্গত বর্জা পরিবেশ দূষণ ঘটার।

 শাকাখানা থেকে নির্গত সায়ানাইড, লেড, মারকারি, কপার এবং ক্রিছ অতান্ত বিদ্যাক্ত এবং দীর্ঘছায়ী দূষিত পদার্থ।

 শাকাখানা থেকে নির্গত বর্জো বিভিন্ন অণুজীব জলায় এবং বর্জা পদার্থকে তেন্তে সরল উপাদানে পরিণত করে। ফ্রাল,


 শান্ত তাইওয়ান এবং ভারতে পেট্রোলিয়াম কারখানা থেকে নির্গত বর্জা পদার্থে এক ধরনের ব্যাকটেরিয়া জলার বা

single cell protein হিসেবে পশু ও মানুষের খাদ্য হিসেবে ব্যবহৃত হয়। অণুজীবের সহায়তায় দুধের (dairy) ক্রতে বিশত বর্জা (whey) থেকে ল্যাকটিক আসিড তৈরি করা হয়। কাণজ ও কাণজের মও (pulp এবং pap industry) থেকে নির্গত বর্জা পদার্থে Torula নামক ঈস্ট জন্মায় যার মধ্যে প্রচুর আমিষ ঘাকে। Saccharongo cerevisiae এবং Torula utilis বর্জা পদার্থের মধ্যে জন্মায়। এদের থেকে অ্যামিনো অ্যাসিড পাওয়া যায়।

কাণজ শিল্পের কাঁচামাল ব্লিচ করতে ক্রিরিন বাবহাত হয়। এ ক্লোরিনজনিত দূষণ থেকে পরিবেশকে বিভিন্ন হার বাবহার করে সহজেই মুক্ত করা যায়। পাট, বন্ধ ও চিনি শিল্পের সেগুলোজ জাতীয় বর্জাকেও বিভিন্ন ব্যাকটোরিয়া বন্ধ হ্যাকের মাধ্যমে উপকারী সরল দ্রব্যে রূপান্তর করা যায়, কলে একদিকে পরিবেশ দূষণমুক্ত হয় এবং অপর্কার প্রয়োজনীয় লাভজনক দ্রব্য পাওয়া যায়, যেমন- বিভিন্ন জৈব আসিড (আসিটিক আসিড, সাইট্রিক আসিড, শাক্তির আসিড, টারটারিক আসিড ইত্যাদি), ইথানল, প্রোটিন, ভিটামিন, আমিনো আসিড, আসিটোন, গ্লিসারিন, ফুক্তির ইত্যাদি।

(খ) সমুদ্রে তেল নির্ণমন : নুষ্টিনাক্রমে বা ইঞ্ছাকৃতভাবে নানা উপায়ে সমুদ্রে তেল-এর মাধ্যমে দুষণ (pollubia) ঘটতে পারে এবং তার পরিগতি অত্যন্ত ভয়াবহ হয়। তেল পানিতে অদ্রবণীয় এবং পানি অপেক্ষা হালকা বলৈ তা পনি উপর ভাসতে থাকে এবং চকচকে একটি স্তরের সৃষ্টি করে। তেলের এ স্তর সমুদ্রে বসবাসকারী বিভিন্ন উদ্ভিদ ও হাই মারাআক ক্ষতিসাধন করে। কিন্তু সমুদ্রে যে সমস্ত হাইড্রোকার্বন অক্সিডাইজিং অপুঞ্জীব বাস করে তারা অদ্রবণীয় জে দানার সাথে লেগে থেকে সংখ্যায় বৃদ্ধি লাভ করে এবং অক্সিজেনের উপস্থিতিতে তেলকে ভেঙ্কে সরল উপাদানে পরিষ্ঠ করে এবং তেল দুষণ থেকে মুক্ত করে। তবে কোনো উপায়ে তেল সমুদ্রের তলায় চলে আসলে বছরের পর বছর র অপরিবর্তিত অবস্থায় থাকে। কারণ অক্সিজেনের অনুপশ্বিতিতে এ অনুজীবহুলো কাঞ্জ করে না। Pseudomona, Nocardia, Mycobacteria, বিশেষ ধরনের উস্টে ও মোল্ড জাতীয় ছ্রাক হাইড্রোকার্বন অক্সিজাইজিং অনুক্ষিত্র অব্যাক্ত করে থাকে।

জিন প্রকৌশল প্রযুক্তি ব্যবহার করে নতুন প্রকরণের <u>Pseudomonas ব্যা</u>কটেরিয়া উদ্ভাবন করা হয়েছে যা তেন চ হাইদ্রোকার্বনকে অতি দ্রুত নাই করে দিয়ে পরিবেশকে দূষণ মুক্ত করতে পারে।

ছক : জীবলযুক্তির মাধামে দেপুলোক জাতীয় বর্জা থেকে বিভিন্ন পদার্থের উৎপাদন।

(গ) পরঃবর্জা বা সিউরেজ আন্তাকরণ: ঘুরবাড়ি, মহন্তা বা কৃষিখামার হতে নির্গত মলমুত্র ও জল্পাকে সিউটের (sewage) বা নর্দমার ময়লা বলে। অনেক সময় অভবৃষ্টির পরিত্যক্ত পানিও ভূগর্ভন্থ নর্দমা দিয়ে প্রবাহিত হয়ে সিউছের পরিণত হয়। রোগ উৎপালনকারী পরজীবীসহ জৈব ও অজৈব পদার্থ দিয়ে সিউয়েজ গঠিত। অজৈব পদার্থ যেমন- কর্মরালি এবং অন্যান্য বর্জা পদার্থ যান্ত্রিক ও রাসায়নিক পছতির মাধ্যমে আলাদা করা হয়। জৈব পদার্থ পানি দৃষ্ণের অন্তর্ম কারণ। তাই সিউয়েজ গানি যাতে খাবার বা ব্যবহার্য পানির সাথে মিশতে না পারে সেজনা উল্লত দেশে জৈবিক ইনার্য পরিশোধন করা হয়। বায়বীয় বা অবায়বীয় ব্যাকটেরিয়াসহ শৈবাল, ছয়াক, প্রোটোজোয়া এ প্রক্রিয়ায় অশেয়হণ করে

্রা ছেব গদার্থকে তেওে CO2 ও CH4 -এ পরিগত করে। CH4 জ্বালানি হিসেবে ব্যবহার করা যায় এবং প্রথমটি গ্রাসীয় রা বিশ্ব বাষ্ট্রমণ্ডলে ছাড়া পায়। জৈবিক বিক্রিয়ার পর মোটামুটিভাবে বিভন্ন করে গানি নদী বা সাগরে ফেলা উচিত। কিছ কর্ম বাংলাদেশে সিউয়েজ বিভন্ধকরণ করা হয় না বললেই চলে। কুমানে সিউয়েজ আন্তীকরণের সুবিধার জন্য কিছু নির্বাচিত অণুজীবেত হিটার কাল্চার তৈরি করা হয়েছে। এছাড়া প্রত্যাক আন্ত্রীকরণের কিছু প্লান্টও উদ্ধাবিত হয়েছে। এসবের উদ্ধাবনের ফলে সিউয়েজ আন্তরকরণ আরও সহজ্ঞসাধা আারেশন ট্যাকে সেভিযোগেলন ট্যাক চিত্ৰ ১১.৮ : এটিভেটেড স্মাজ পছডিতে সিউয়েজ পরিশোধন

হর্তমানে সারা বিশ্বে একটিভেটেড স্ক্র্যাজ (activated sludge) পদ্ধতিতে সিউয়েজ পরিশোধন করে পরিশোধিত পানি 🚅 হ'হদে ছাড়া হয়। এটি একটি সহজ জীবজ পদ্ধতি, ফলে পরিবেশ দৃষণ মৃক্ত থাকে। এ পদ্ধতিতে আরেশন টাংক ও ক্রমেটেশন ট্যাংক নামক দুটি ট্যাংক ব্যবহার করা হয়। প্রথম ট্যাংকে বিভিন্ন অণুজীব (ব্যাকটেরিয়া, ছত্রাক ইত্যাদি) হছে থাকে যারা জৈব বস্তুকে ভেঙ্গে CO2 ও পানিতে পরিণত করে। দ্বিতীয় ট্যাংকে পানিকে স্থিতিশীল রাখা হয় কলে নিচে ক্রমি জমা হয় এবং উপরে পরিশোধিত পানি থাকে, যা নদী বা হ্রদে ছাড়া হয়। তলানি সার হিসেবে ব্যবহৃত হয়। এ হাত ব্যবহৃত একটি উল্লেখযোগ্য ব্যাকটেরিয়াম হলে Zooglea ramigera.

জিনোম সিকোয়েশিং

(Genome sequencing)

ছিনোম সিকোয়োপিং আধুনিক জীবপ্রযুক্তির এক উল্লেখযোগ্য অগ্রগতি। প্রতিটি জীবে একটি নিনিষ্ট সংখ্যক ক্রমোমে থাকে। সাধারণত ক্রোমোসোমগুলো বিভিন্ন গঠন বা ধরনের হয়। কোনো একটি প্র<u>ক্ষাতি</u>র একটি নিউক্রিয়াসে ব্যাপ্ত ক্রোমোসোমের একটি সেটকে বলা হয় জিনোম (genome)। হ্যাপ্তয়েত নিউক্লিয়াসে একটি জনোম থাকে, আর ত্তিত নিট্রিয়ারে দিটি জিনোম থাকে। মানুষের দেহকোথে ২৩ জোড়া ক্রোমোসোম থাকে। প্রতি জোড়ার একটি করে 🕬 কোনোসোম মিলিতভাবে গঠন করে মানুষের জিনোম। কাজেই মানুষের দেহকোষে এক জোড়া জিনোম আছে।

কোনোদোমের মূল উপাদান DNA এবং DNA-এর অংশবিশেষই জিন হিসেবে কাজ করে। কাজেই বলা যায়, জ্ঞীত এক সেট ক্রোমোসোমে অবস্থিত সকল জিনসহ পূর্ণাপ DNA-ই জিনোম। সহত্রলবে একটি জীবকোৰে হৈছ জিন সমষ্টিকে একত্রে জিলোম বলা হয়। একটি জীবের জিলোমকে) ঐ জীবের মানটার বুজিন্ট কলা হয়।

মাধ্যা জানি অসংখ্য নিউক্লিয়োটাইড বিভিন্ন বিন্যাসে সন্দিত হয়ে DNA অণু গঠন করে। এক অণু ডিঅক্সিরাইবোল ্বি, এর অনু নাইট্রোজেন বেস (অ্যাভিনিন = A, ত্যানিন = G, খাইমিন = T এবং সাইটোসিন = C) এবং এক জনু শক্তে সমূত হয়ে এক একটি নিউক্লিয়োটাইড গঠিত হয়। DNA অপুর অনুদৈর্ঘ্যে ATGC বেসচলো কোন অনুক্রম ক্ষেত্রির পর কোনটি) সক্ষিত থাকে তা হলো জিনোম সিকোয়েল, আর এই সিকোয়েলটি (সাজান শছভিটি) **উদয়ালন**

ৰা হলে। জিনোম সিকোয়েনিং বা DNA সিকোয়েনিং। িলোহ সিকোরোপিং কাজতি উনুত প্রযুক্তি ও বহু মূলাবান যগ্রপাতি নির্ভিত। পথা DNA অণুটি একসাতে সিকোরেজিং শা সংক্রামোপং কাজতি উপুত প্রযুক্ত ও গত পুনার বাবার মান্তর পর্বালার সিকোরেপিং করে একসাথে মিলিয়ে মান্তর বাবা, তাই DNA অপুকে উপস্কু প্রত্তে কোটে নেয়া হয় এবং মর্ডানোর সিকোরেপিং করে একসাথে মিলিয়ে পি সৈখোৱা নিকোয়েশিং উপস্থাপন করা হয়। তবে প্রথম দিকে প্রক্রিয়াটি যত বায়বহুল হিল বর্তমানে উন্নত প্রয়ুক্তির

क्टों बोर्स इंडबाइटन कटम चटअटह ।

জিলোম নিকোরেশিং-এর প্রবর্তক হলেন Dr. F. Sanger, খিনি পরবর্তীতে এই কাজের খীকৃতি খরপ কে পুরস্কার লাভ করেন। প্রক্রিয়াটি এরপ : (i) প্রাথমিকভাবে নির্দিষ্ট DNA অণুকে রিএজেন্ট নমৃদ্ধ চারটি টিস্টাটিছির করে দেয়া হয়, যেখানে বিক্রিয়ার মাধ্যমে প্রতিটি DNA খতের A.T.G.C রেসিভিউ খনাক করবে। (ii) করে দেয়া হয়, যেখানে বিক্রিয়ার মাধ্যমে প্রতিটি DNA খতের A.T.G.C রেসিভিউ খনাক করবে। (ii) করিলারেশিস পদ্ধতিতে পাশাপাশি চারটি বিক্রিয়ার প্রতিটিকে পৃথক করা হয় এবং রেভিওঅ্যান্টিভ ব্যাভ-এর ইন্নির্মাণ (size) থেকে সিকোয়েশ নির্ণয় করা হয়। (iii) কম্পিউটার নিয়প্তিত X-ray ক্যানার ব্যবহার ক্রেপ্রিয়াণ (size) থেকে সিকোয়েশ নির্ণয় করা হয়।

পার্টের জীবনরহস্য উদ্যোচন বা জিনোম সিকোয়েলিং : বাংলাদেশি বিজ্ঞানী ড. মাকসুদূল আলম ও তার সহযোগ্ধ তোষা পার্টের (Corchorus olitorius) জিনোম সিকোয়েলিং তথা পার্টের জীবনরহস্য উন্যোচন করেছেন। পার্টের পেয়ার ১২০ কোটি এরা কোন অনুক্রমে সক্ষিত আছে তা জানা হয়েছে। বিজ্ঞানীদের ধারণা জিনোম সিকোয়েলিং কার ফলে এখন উদ্ভাবন করা সন্তব হবে মিহি আঁশের পাট, শীতকালীন পাট, সহজে পচনযোগ্য পাট, পোকা প্রতিরোধক পঞ্জ ধর্মী পাট, তুলার মতো শক্ত আঁশের পাট ইত্যাদি। কিছুদিন আগে ড. মাকসুদূল আলম মৃত্যুবরণ করেছেন।

ফসলী উদ্ভিদে রোগ সৃষ্টিকারী ভাইরাসের জিনোম সিকোয়েণিং : মুগডাল বাংলাদেশের একটি অন্যতম হার উৎপাদনকারী উদ্ভিদ। কিন্ত হুলুদ মোজাইক ভাইরাসের আক্রমণে এই ফসলের উৎপাদন অনেকাংশে হ্রাস পায়। রাই ঢাকা বিশ্ববিদ্যালয়ের উদ্ভিদবিজ্ঞান বিভাগের অধ্যাপর্ক ডি. মুহাম্মদ নুকল ইসলাম চ গবেষণা সহযোগী দল বাংলাদেশ মুগের হলুদ রোগ উৎপাদনকারী ভাইরাসের জিনোম সিকোয়েণিং করেন এবং RNAi পদ্ধতি ব্যবহার করে হলুদ মোজাইর মুগের হলুদ রোগ উৎপাদনকারী ভাইরাসের জিনোম সিকোয়েণিং করেন এবং RNAi পদ্ধতি ব্যবহার করে হলুদ মোজাইর ভাইরাস প্রতিরোধী জাত উদ্ভাবনের গবেষণা করছেন। তার দল ICGEB-র আর্থিক সহায়তায় টমেটোর পাতা কোকড়ানে ভাইরাস প্রতিরোধী জাত উত্থাবনের গবেষণা করছেন। তার দল ICGEB-র আর্থিক সহায়তায় টমেটোর পাতা কোকড়ানে ভাইরাসের জিনোম সিকোয়েণিং সম্পন্ন করেছেন। বর্তমানে Tol.CV প্রতিরোধী টমেটো জাত উৎপাদনের লক্ষ্যে অধিকতর গবেষণা চালিয়ে যাচ্ছেন।

वाधा प्रत्यका जाउ उरगानका व	ট জীবের জিনোম সিকোরো	नेर ज्या	-
কয়েক। জীবের নাম	কোমোসোম সংখ্যা	জিনসংখ্যা ৩২০০	কারজোড় ৪.৬ মিলিয়ন
E. coli Haemophilus influenzae		\$900 6000	১.৮ মিলিয়ন ১২.১ মিলিয়ন
C.	30	20000	১০০ মিলিয়ন ৩.২ বিলিয়ন
Arabidopsis thaliana (পুস্পক উভিদ) মানুষ	85	<u>২</u> ৫০০০ (+ বহু অপ্রকাশিত)	
		- were 6	neer prints AME

DNA ফিলার প্রিন্ট (DNA finger print): DNA finger prints বুঝতে হলে প্রথমে finger prints সম্পর্কে একু

ধারণা থাকা প্রয়োজন। ফিঙ্গার প্রিন্টস বলতে সাধারণত মানুষের হাতের আঙুলের ছাপ, দাগ বা চিহ্নকে বোঝায়। দুজন মানুষের আঙুলের ছাপ একই রকম হয় না (ক্রোনিং ও আইভেনটিক্যাল টুইন বাতীত)। তাই জমিজমা হস্তান্তর বা রেজিস্ট্রি, ক্রোনিং লম্বান নামা রেজিস্ট্রি, বায়োমেট্রিক পদ্ধতিতে সীম নিবদ্ধন ইত্যাদি ক্ষেত্রে ফিঙ্গার ক্রাবিন নামা রেজিস্ট্রি, বায়োমেট্রিক পদ্ধতিতে সীম নিবদ্ধন ইত্যাদি ক্ষেত্রে ফিঙ্গার ক্রাবিন বাধা হয়। দুজন মানুষের ফিঙ্গার প্রিন্টের ভিন্নতা হয় জিন তথা DNA

(A.T.G.C) এর ভিন্নতার জারুদে। কোনো জীবের DNA-কে রেস্ট্রিকশন ফালে হলে খালে হল DNA ভিক্ত প্রকলি এর বিনাস কর্তন করে জেল ইলেকট্রোফোরোসিস (Gel electrophorosis)-এর মাধ্যমে (উক্ত DNA এর) বে ফটোগ্রাফিক বিন্যাস বা ছাপ পারুয়া যায় তাকে DNA finger print বা DNA profile বলে। প্রথমে কোনো জীব আ মানুষের সম্পূর্ণ DNA সংগ্রহ করে রেস্ট্রিকশন এনজাইম দিয়ে কর্তন করা হয় এবং পরবর্তীতে জেল ইলেকট্রেফোরেসির মানুষের সম্পূর্ণ DNA সংগ্রহ করে রেস্ট্রিকশন এনজাইম দিয়ে কর্তন করা হয় এবং পরবর্তীতে জেল ইলেকট্রেফারেসির মানুষের সম্পূর্ণ DNA সংগ্রহ করে রেস্ট্রিকশন এনজাইম দিয়ে কর্তন করা হয় এবং পরবর্তীতে জেল ইলেকট্রেফারেসির মানুষের সম্পূর্ণ DNA সংগ্রহ করে রেস্ট্রিকশন এনজাইম দিয়ে কর্তন করা হয় এবং পরবর্তীতে জেল ইলেকট্রেফারেসির এর মাধ্যমে জেল জরের উপর চালনা করা হয়। ফলে সেখানে DNA খণ্ডলো ক্রমান্থরে বড় থেকে ছোট হিসেবে কর্ত্তগো

ব্যাত হিসেবে জমা হবে। বিশেষ ফটোগ্রাফিক পছতি ধারা ব্যাভতগোর প্রকৃতি ও পারস্পরিক অবস্থান জানা যায়। নার্থিক প্রায় আনুষ্টের DNA খণ্ডলোর এমন ফটোগ্রাফিক বিন্যাস বা চিত্রকৈ DNA finger print বা DNA profile

জিনোম সিকোয়েশিং-এর প্রয়োগ (Application of genome sequencing)

জোনো নির্দিষ্ট প্রজাতির জিনোম সিকোয়েঙ্গিং-এর মাধ্যমে জানা যায় ঐ প্রজাতির DNA অণুতে অবস্থিত ATGC eলা কোনটার পর কোনটার অবস্থান অর্থাৎ এদের অনুক্রম। DNA অণুর অনুদৈর্ঘ্যে সব অংশে ATGC একই অনুক্রমে বাহান করে না, কখনো কখনো একই সাথে পরপর একাধিক A বা একাধিক T থাকতে পারে।

ভোলা জীবের জীবনরহস্য জানার প্রথম ধাপ হলো জিনোম সিকোয়েদিং জিনোম সিকোয়েদিং জানদেই জীবের ক্ষর জেনেটিক তথ্য জানা যায় না। সিকোয়েঙ্গিং এর পর জানা সহজ হয় কোখায় কোন জিনের অবস্থান, জিনের গঠন, প্রমিধ এবং কোন জিনের কি কাজ। কোনো জিনের অবস্থান, গঠন, পরিধি ও কাজ জানতে পারলেই ঐ জিনটিকে श्वदात कता यारा ।

DNA ফরেনসিক্স (DNA Forensics)

- (১) অপরাধী শনাক্তকরণে : ভিত্তিম বা অপরাধ সংঘটিত হবার স্থান থেকে আলামত সংগ্রহ করে জিনোম সিকোয়েশিং করা হয়। এর পর সন্দেহভাজন তালিকা ধরে তাদের জিনোম সিকোয়েন্সিং করা হয়। যার জিনোম সিকোয়েন্সিং এর সাথে আলামত থেকে নেয়া সিকোয়েলিং এর মিল হবে সেই প্রকৃত অপরাধী। অজ্ঞাত বা খুন হওয়া ব্যক্তির পরিচয় জানতে DNA সিকোয়েখিং পদ্ধতি ব্যবহৃত হয়ে থাকে। বর্তমানে বাংলাদেশে মৃত অজ্ঞাত জঙ্গীর DNA সিকোরোন্সিং করে তার পরিচয় নিশ্চিত করা হয়ে থাকে।
- (২) পিতৃত্ব নির্ধারণে : অনেক সময় সম্ভানের পিতৃত্ব নিয়ে জটিলতা দেখা দেয়। এক্ষেত্রে সম্ভানের জিনোম সিকোয়েন্সিং এর সাথে পিতৃত্ব দাবিকৃত ব্যক্তিদের জিনোম সিকোয়েন্সিং মিলিয়ে দেখা হয়। যার জিনোমের সাথে সম্ভানের জিনোম সিকোয়েনিং মিল সম্পন্ন হবে, তিনিই হবেন সম্ভানের প্রকৃত পিতা।
- (৩) বজন নির্ধারণে: সাভারে রানা প্লাভার মর্মান্তিক ঘটনায় পরিচয়হীন শ্রমিকদের জিনোম সিকোয়েপিং করে তার সাথে তার দাবিকৃত আত্মীয়দের জিনোম সিকোয়েশিং করে মিল পাওয়ার পর লাশ হস্তান্তর করা হয়েছে এবং ক্ষতিপুরণের টাকাও দেয়া হয়েছে।
- (৪) শেপিবিন্যাসে স্তর নির্ধার<u>ণ</u> : জিনোম সিকোয়েঙ্গিং করে জানা হলো আর্কিব্যাক্টেরিয়া, ব্যাটেরিয়া থেকে সম্পূর্ণ পৃথক এবং অন্যান্য জীবগোষ্ঠী থেকেও পৃথক, কারণ ১৭৩৮টি জিনের অর্ধেকেরও বেশি জিন অন্যান্য সকল জীবণোষ্ঠী থেকে পৃথক। তাই আর্কিব্যারেরিয়াকে পৃথক অধিরাজ্য (Domain) করা হয়েছে।
- (৫) শ্রেণিবিন্যাস প্রক্রিয়ায় বৈশিষ্ট্যের মিল নির্ধারণে : আর্কিব্যান্টেরিয়ার rRNA এর বেস সিকোয়েল ব্যান্টেরিয়ার সাঁথে মিল সম্পন্ন। তাই আর্কিব্যাক্টেরিয়া ও ব্যারেরিয়া ঘনিষ্ঠতম।

জিনোম সিকোয়েশিং এর প্রয়োগ সম্পর্কে কয়েকটি উদাহরণ নিচে প্রদান করা হলো :

- >। যে কোনো প্রকৃতির জীব থেকে বিশেষ কোনো জিনকে শনাক্ত করা এবং পরবর্তীতে পৃথক করা; যেমন- মানুষের ইনসুলিন উৎপাদনকারী জিন। এটি ১১ নং ক্রোমোসোমের খাটো বাছর DNA-এর শীর্ষে অরম্ভিত।
- ই। উদ্ভিদের রোগপ্রতিরোধ, কীটপতঙ্গ প্রতিরোধী বা প্রতিকূল পরিবেশে বেঁচে প্রাকৃত্র জন্য উপযোগী জিন অনুসন্ধান করা: বেমন- Bt toxin জিন Cry IAC) এবং লবণাক্ততা সহিষ্ণু জিন PDH 45 (কৃষিক্ষেত্রে প্রয়োগ)।
- ৬। উদ্বিদের মান উন্নয়নের জন্য উন্নত বৈশিষ্ট্য সম্পন্ন জিন অনুসন্ধান এবং জীবগ্রযুক্তির মাধ্যমে তাকে নমলভাবে ব্যবহার করা; যেমন- গোভেন রাইস এর বিটা-ক্যারোটিন জিন। (কৃষিক্ষেত্রে প্রয়োগ)

- প্রাদি কর্সলের জিলাম সিকোয়েপিং তথ্য অন্যান্য মৌশিক গবেষণা কার্যক্রমে প্রয়োগঃ বেমন- ধান, পাট, ব্রু
 ইত্যাদি কর্সলের জিলাম সিকোয়েপিং তথ্য অন্যান্য মৌলিক গবেষণায় প্রয়োগ।
- প্রাদি পত্র মাংস, দুধের পুষ্টি গুণাগুণ ও পরিমাণ বৃদ্ধিতে জিনোম সিকোয়েশিং পদ্ধতি প্রয়োগ করা বেছে
 পারে।
- ৬। মানব জিনোম সিকোয়েশিং ছারা মানব জিনোমের অনেক তথাই এখন উন্মোচিত হয়েছে, ফলে এই তথাসমূহ চিকিৎসা বিজ্ঞানসহ অনেক গবেষণার ক্ষেত্রে প্রয়োগ করা সম্ভব হছেে; যেমন- ইনসুলিন জিন-এর প্রয়োগ।
- ৭। যে কোনো জীবে জিনের প্রকাশ (expression of gene) কৌশল সম্পর্কে বিশ্লেষণ এবং এই তথ্যসূত্র গবেষণা কার্যক্রমে প্রয়োগ।
- ৮। জীবতথ্য বিদ্যার (Bioinformatics) জন্য প্রয়োজনীয় উপাদান জিনোম সিকোরেগিং উপাত্ত থেকে মুখ্যু সংগ্রহ করা।
- ৯। বন্য জীবজন্ত যেমন-সিংহ, বাঘ, হাতি ইত্যাদির ভালো ব্যবস্থাপনা বিশেষ করে প্রজননের ক্ষেত্রে DNA সিকোয়েঙ্গিং কৌশল প্রয়োগ করা হয়ে ঘাকে।
- ১০। এছাড়া জৈব জ্বালানী উদ্ভাবন, ডেসু মশা নিয়ন্ত্রণ, ইন্টারফেরন উৎপাদন ও ক্যা**লার গবেষণায় জিনো**ই সিকোয়েশিং সাফল্যের সাথে প্রয়োগ করা হচ্ছে।

কাজ: জীবপ্রযুক্তির সাফল্যজনক প্রয়োগসমূহ নিয়ে একটি চার্ট তৈরি কর।

জীবপ্রযুক্তির প্রয়োগে জীবনিরাপত্তা (Biosafety) বিধানসমূহ

সৃষ্টিকর্তা মানুষের কল্যাণের জনাই অন্য সবকিছু সৃষ্টি করেছেন। তার সৃষ্টির মধ্যে রয়েছে একটি সুন্দর প্রাকৃতিৰ ভারসামা অবস্থা। তাছাড়া হাজার হাজার বছরের ব্যবহারের মাধ্যমে জানা হয়েছে কোনটি মানুষের জন্য কতিকারক, জর কোনটি ক্ষতিকারক নয়। এর পরও কোনো ব্যক্তি যদি ভুলক্রমে না অজ্ঞতাবশত কোনো প্রাকৃতিক বস্তু প্রহণ বা ব্যবহারের ফলে ক্ষতিগ্রস্ত হয় তার জন্য অন্য কাউকে অভিযুক্ত করার উপার্য় নেই।

জীবপ্রযুক্তি ব্যবহার করে মানুষের কলাাণ সাধনের উদ্দেশ্যে উদ্ভাবন বলা হচ্ছে GMO (Genetically Modified Organism)। GMO ব্যবহার করার পূর্বে জেনে নিভে হবে এটি মানুষের কোনো ক্ষতির কারণ হয় কি না, বিশেষ করে যেগুলো মানুষ ও পুতপাখির খাদা ও ওমুধরূপে ব্যবহার করা হবে। যেমন Bt. cotton নামক পোকা আক্রমণরোধী হুলা একটি GMO উদ্ভিদ। তুলা থেকে সূতা, কাপড় ইত্যাদি তৈরি করা হবে যা মানুষের সরাসরি কোনো ক্ষতির কারণ হবে না কিষ্ক Bt. Brinjal নামক পোকা আক্রমণরোধী GMO বেগুন উদ্ভাবন করা হয়েছে। এটি চাষের জন্য কৃষকের কাছে দেয়া আগে নিশ্চিত হতে হবে এই বেগুন খেলে মানুষের কোনো ক্ষতির সন্ধাবনা নেখা দেয়া কিনা। পরীক্ষার মাধ্যমে শ্রমণিত হতে হবে যে এই Bt বেগুন মানুষের ইমিউন সিস্টেমের বা অন্য কোনোভাবে ক্ষতি করবে না।

জীবপ্রযুক্তি দারা উদ্রাবিত GMO সমূহের উপর গবেষণা, ব্যবহার এবং প্রকৃতিতে অবমুক্তকরণের যাবতীয় নিয়ম ত পদ্ধতি সম্বলিত নির্দেশনাকে Biosafety Guidelines বলে। এই নির্দেশিকায় GMO উদ্রাবনের জন্য গবেষণা পরিস্কর্মা করার নীতিমালা ছাড়াও, GMO নিয়ে মাঠ পরীক্ষণ, নিরাপদ স্থানান্তর, আমদানি এবং এক দেশ থেকে জন্য দেশে শ্বানান্তর করার ক্ষেত্রে বিশেষ নিয়মাবলি এবং সতর্কতামূলক বাবস্থাসমূহ বিজ্ঞারিত উল্লেখ করা আছে। এই নির্দেশিকার মার্বিষয়বস্তু হলো GMO ব্যবহারের পূর্বে জীববৈচিত্র্য, প্রাণী ও মানব স্বাস্থ্যের উপর সম্ভাব্য সমস্ত ঝুঁকি পরিহার, নির্দেশ এই তাকে মোকাবিলা করার বৈজ্ঞানিক পদ্ধতিসমূহকে পরিচালিত করা।

এই Biosafety Guidelines এর আওতায় বাংগাদেশে একটি ভাতীয় জীবনিরাপস্তা কমিটি (National Committee on Biosafety) ও প্রতিটি প্রতিষ্ঠানে প্রতিষ্ঠানিক জীবনিরাপত্তা কমিটি (Institutional Biosafety Committee) গঠন কা হয়েছে। এ ছাড়াও জীবনিরাপত্তা কোর কমিটি (Biosafety Core Committee), মাঠ পর্যায়ে জীবনিরাপত্তা কমিটি (Field Evel Biosafety Committee) এবং জীব নিরাপত্তা অফিসার (Biological Safety Officer) গঠন করা হয়েছে।

Biosafety Guidelines এর আওতাত্ত বিষয়সমূহ নিমে সংক্ষেপে উল্লেখ করা হলো।

্য প্রাথমিরাপত্তা সংক্রান্ত প্রাতিষ্ঠানিক কাঠামো গড়ে তোলা।

২। GMO প্রয়োগের/ ব্যবহারের ফলে সন্তাব্য সব ধরনের থুকি নিরপণ ও বুকি ব্যবস্থাপনা।

ত। প্লীববৈচিত্র্য প্রাণী ও মানব স্বাস্থ্যের উপর GMO-এর ফতিতারক দিক নির্ণয় করা এবং তার প্রতিকারের ইগ্রুক বাবছা করা।

s। GMO ক্ষতিকারক নয় প্রমাণিত হলে তবেই প্রবর্তন করা।

সার-সংক্রেপ

চিস্যু কালচার : গবেষণাগারে কৃত্রিম পুষ্টি মাধ্যমে কোনো বিভাজনক্ষম টিস্যুর সংখ্যাবৃদ্ধিই টিস্যু কালচার। এই প্রযুক্তির মাধ্যমে অন্ত সময়ে হাজার হাজার চারা উৎপাদন করা সভব। চিস্যু কালচার প্রযুক্তির মাধ্যমে উৎপন্ন চারাভলো একই বয়সের হয় এবং ওপগত মান বজায় থাকে, ফলে ফলন বাড়ে। একই পছতি প্রয়োগ করে ভাইরাসমুক্ত বীজ তৈনি তর হয়, কলে ফসল ভাইরাস আক্রমণ থেকে মুক্ত থাকে এবং ফলন হাস পায় না, কৃষক ক্ষতিগ্রন্ত হয় না।

জেনেটিক ইঞ্জিনিয়ারিং : কোনো জীব থেকে কাজিত কোনো জিন পৃথক করে নিয়ে অন্য কোনো কাজিত জীবকোযে প্রতিস্থাপন করাই হলো জেনেটিক ইঞ্জিনিয়ারিং বা জিন প্রকৌশল। এতে দুটি পৃথক DNA-এর অংশের সমস্বয়ে একটি নতুন প্রকৃতির DNA তৈরি হয়, যাকে বলা হয় রিক্থিনেউ DNA। রিক্থিনেউ DNA দিয়ে তৈরি নতুন বৈশিষ্ট্রের জীবকে বলা হয় GMO (genetically modified organism)। বর্তমানে জেনেটিক ইঞ্জিনিয়ারিং কৌশল প্রয়োগ করে পতজবিরোধী হ্রা, চাইরাস বিরোধী পেঁপে, সুপার রাইস, ইনসুলিন প্রভৃতি উৎপাদন করা হয়েছ।

প্রাসমিত : বিভিন্ন অপুজীবে, বিশেষ করে ব্যাকটেরিয়া কোষে তাদের মূল ক্রোমোসোম ছাড়াও এক বা একাধিক বুলকার DNA থাকে। ক্রোমোলোম বহির্ভত এসব বুলকার DNA-কে বলা হয় প্লাসমিত। E. coli ব্যাকটেরিয়া কোষে সর্বপ্রথম প্রাসমিতের সন্ধান পান Laderberg ১৯৫২ সালে। জেনেটিক ইঞ্ছিনিয়ারিং-এ প্রাসমিত অভ্যন্ত আবশ্যকীয় ইপাদান। প্লাসমিড বিভিন্ন রক্তম হতে পারে।

ইনস্থিন : ইনস্থিন একটি হরমোন যা অল্যাশয়ের বিটা-কোষ হতে নিঃসৃত হয় এবং রজে বিদ্যমান গুকোজের ইঙ্কমাঝা থেকে স্বাভাবিক মাত্রায় নিয়ে আসে। দেহে ইনস্যুগিনের অভাব হলে ডায়াবেটিস রোগ হয়। ইনসুগিন ৫১টি মামিনো অ্যাসিড দিয়ে গঠিত খুদ্রাকার প্রোটিন। দুটি পলিপেপটাইড চেইন দুটি ডাই-সালকাইড বজের মাধ্যমে সংযুক যথে ইনসুলিন গঠন করে। বর্তমানে মানুষের ইনসুলিন নিঃসরণকারী জিনকে E. coli ব্যাকটেরিয়াতে স্থানান্তর করে জিন ইকৌশদের মাধামে ইনসূদিন উৎপাদন করা হচ্ছে। ভায়াবেটিক রোগ চিকিৎসার প্রধান হাতিয়ার হলো ইনস্যুলিত।

জিলোম সিকোয়েশিং : কোনো জীবের জিলোমস্থ DNA অণুর অনুদৈর্ঘো নিউক্লিওটাইডসমূহ (ATGC) কোন অনুক্রমে বিশ্বিত আছে তা জানাই হলো জিনোম সিকোয়োঙ্গিং বা DNA সিকোয়োঙ্গিং। কোনো জীবের জিনোম সিকোয়োঙ্গিং সম্প্র হশে তার বিভিন্ন জিনের অবস্থান ও কার্যকারিত। জানা সহজ হয়। জিনের অবস্থান ও কাজ জানা গেলে তার আটি-বিচারি কালাক করা সমূহ হয়। GMO=Genetically Modified Organism; LMO = Living Modified Organism ।

जन्मी नर्गी

क्रिनेर्वाहिन वन्न (MCQ)

- ১। DNA-কে গভিত করে-(ক) লাইগোজ এনজাইম (খ) রোফ্রিকশন এনজাইম (গ) খ্যোটিয়েজ এনজাইম (খ) জামাইলেজ এনজাইম
- ই। বিকম্বিনেন্ট DNA প্রস্তুত করার ধাপ হলো—
 - (i) কাহ্নিত DNA নিৰ্বাচন
 - (ii) নিৰ্দিষ্ট স্থানে DNA অণুকে ছেদন কথাৰ জন্য প্ৰয়োজনীয় বেন্দ্ৰিকশন ক্ৰনগাইছ নিৰ্বাচন
 - (iii) আলাস সৃষ্টি ও সংখ্যাবৃদ্ধি

ঘাদশ অধ্যায় জীবের পরিবেশ, বিস্তার ও সংরক্ষণ ENVIRONMENT, DISTRIBUTION AND CONSERVATION OF LIVING ORGANISMS

ध्यान अक्तमृद् : প্রভাতি, ভীবগোঠী, বারোম

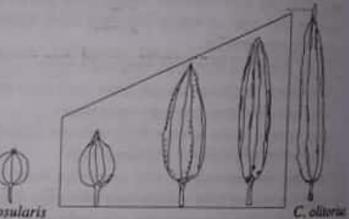
পুরিবিতে লক্ষ প্রজাতির জীব বাস করে। সব পরিবেশে সব জীব প্রজাতি বাস করতে পারে না। মাছের জন্য চাই পুরিবেশ, মানুষের জন্য চাই স্থলজ পরিবেশ। সব সাম্ব কেই জলজ পরিবেশে পাওয়া যায়? না, খাল বিলের মাছ নাৰ প্রিবেশ, নামু প্রায়েশত থরশ্রোতা নদীতে পাওয়া যায় না, ইলিশ মাছ বিল-বিল-পুকুর-ডোবায় পাওয়া যায়? না, বাল বিলের মাছ প্রায়েশত থারেয়া যায় না। অর্থাৎ প্রতিটি জীবের একটি ভিতিত তিপুকুর-ডোবায় পাওয়া যায় না, তিমি মাছ ধরশ্রেতা প্রারণত মন্ত্রা যায় না। অর্থাৎ প্রতিটি জীবের একটি নির্দিষ্ট পরিবেশ আছে, যার বাইরে এরা বাস করতে পারে না। ক্লীতেওঁ শাতমা কলাক্লীতেওঁ শাতমা কলাকল ক প্রবেশারবে। প্রবিদ্ধ পারবে। প্রবিদ্ধ পারবে। প্রবিদ্ধ পারবে। প্রবিদ্ধ পারবেশ প্রবিদ্ধ প্রবিদ্ধ পরিবেশ গঠিত। আর পরিবেশ অনুযায়ী এদের বিস্তার ঘটে। প্রার্থ তথা ভাতা, বিষ্ণার বাংলাদেশের সব জেলাতেই পাওয়া যায়, আবার এমন উদ্ভিদও আছে যা কেবল চটগ্রাম অথবা ন্তুর জন্তুন ব্রুক্ত স্থান্তর পাওয়া যায়। জীবের বিস্তার ঘটে তার উপযোগী পরিবেশ অনুযায়ী। পরিবেশ ক্ষতিগ্রস্ত হলে প্রজাতির রেল সুগর্মন বিজ্ঞান বিজ্ঞান বিজ্ঞান বিজ্ঞান বিজ্ঞান বিজ্ঞান বিজ্ঞানী বিজ্ রাজ্যম Ecology শব্দটি ব্যবহার করেন। গ্রিক Oikos (অর্থ বাসস্থান) এবং logos (অর্থ জ্ঞান) হতে Ecology শব্দটি রাজ্যন চিটেডের) এসেছে। ইকোলজি হলো পরিবেশের আন্তঃক্রিয়াদির অধায়ন যা জীবের বন্টন, প্রাচুর্য, উৎপাদন ও বিবর্তন নিয়ন্ত্রণ করে প্রদের মঙ্গল সাধন করে। এ অধ্যায়ে এসব বিষয় নিয়েই আলোচনা করা হয়েছে।

- ্য প্রজাতি, জীবগোষ্ঠী ও জীবসম্প্রদায় ব্যাখ্যা করতে পারবে।
- <u>১ ইকোলজিক্যাল পিরামিডের প্রকারভেদ চিত্রসহ ব্যাখ্যা করতে পারবে।</u>
- বিভিন্ন প্রকার পিরামিডের মধ্যে তুলনা করতে পারবে।
- জনজ, মকজ ও লবণাক্ত পরিবেশে জীবের অভিযোজন প্রক্রিয়ার তুলনা করতে পারবে
- বিভিন্ন ধরনের বায়োম সম্পর্কে বর্ণনা করতে পারবে।
- প্রাণিভৌগোলিক অঞ্জলসমূহ এর ধারণা ব্যাখ্যা করতে পারবে।
- ধরিয়েন্টাল অঞ্চলের উদ্ভিদ ও প্রাণীর বিস্তার বর্ণনা করতে পারবে।
- রাংলাদেশের বিভিন্ন বনাধ্যলের বৈশিষ্ট্য বর্ণনা করতে পারবে।
- বিভিন্ন বনাঞ্চলের উল্লেখযোগ্য উদ্ভিদ ও প্রাণীর নাম উল্লেখ করতে পারবে
- উপকূলীয় বনাঞ্চল উপযোগী উদ্ভিদের বৈশিষ্ট্য বর্ণনা করতে পারবে।
- উপকৃশীয় এলাকায় বনাঞ্চল তৈরির প্রয়োজনীয়তা ব্যাখ্যা করতে পাববে
- ১২ বিশৃঙ্গ্রায় জীব সম্পর্কে ব্যাখ্যা করতে পারবে।
- জীব বিলুন্তির কারণ ব্যাখ্যা করতে পারবে।
- ১৪. বিশৃঙপ্রায় জীব সংরক্ষণের প্রয়োজনীয়তা ব্যাখ্যা করতে পারবে।
- জীববৈচিত্র্য সংরক্ষণ পদ্ধতি বর্ণনা করতে পারবে।
- ১৬. জীববৈচিত্র্য সংরক্ষণের গুরুত্ব উপলব্ধি করতে পারবে।
- ১৭ বিশ্বপ্রায় জীবের সংরক্ষণের বিষয়ে নিজে সচেতন হবে এবং অনাকেও সচেতন করবে।

প্রজাতি (Species)

বিজ্ঞানীদের কাছে জীবের পরিচিতি সব সময়ই প্রজাতি নির্ভর। পৃথিবীতে কত জীব আছে তা বলা হয় না, বা জানতে গিল্পা হয় না, জানতে চাওয়া হয় কত প্রজাতির জীব আছে। বাংলাদেশে কত প্রজাতির মাছ আছে, বা কত প্রজাতির শৈক উদ্ভিদ আছে তাই জানতে চাওয়া হয়। পৃথিবীর সকল মানুষ এক প্রজাতির অন্তর্ভুক্ত। তা হলে প্রজাতি কিঃ প্রজাতি কাডে বিভিন্ন বৈশিষ্ট্যে সর্বাধিক মিলসম্পন্ন একদল জীবকে (উন্তিদ, প্রাণী) বোঝায় যারা নিজেদের মধ্যে মিলনে উর্বর জিন উৎপাদনে সক্ষম কিন্তু অন্যদলের সদস্যের সাথে মিলনে উর্বর সম্ভান উৎপাদনে অক্ষম। একই প্রজাতির সদস্যসমূহ বহুর পূর্বপুরুষ থেকে উত্ত । সাধারণত একই প্রজাতির অন্তর্ভুক্ত দুটি জীব তাদের মধ্যে যৌন মিলনের মাধ্যমে উর্বর বিল উৎপাদনে সক্ষম হয়। দুটি জীবের মধ্যে বৌন মিলনের মাধ্যমে উর্বর সন্তান উৎপন্ন না হলে ধরে নেয়া হয় জীব দুটি

একই প্রজাতিত্বক নয়, তারা পৃথক প্রজাতিত্বক। এটাকে বলা হয় বায়োলজিকালে স্পিন্সি, আর প্রজাতির এই চ বলা হয় সায়োগজিকালে স্পিনিস কনসেন্ট।


বলা হয় বায়োগাজক্যাল। পাশন কনলেও।
উদ্ভিদের ক্ষেত্রে প্রজাতির গতানুগতিক ধারণা ভিন্ন রকম, কারণ দুটি মিলসম্পন্ন জীবের মধ্যে ক্রম করে ছালা সম্ভান সৃষ্টি হয় কিনা তা পরীক্ষা করা অনেক সময় সাপেক্ষ ব্যাপার। তাই প্রেণিবিন্যাসবিদগণ কেবল বৈশিষ্ট্যের জিলা প্রজাতি নির্বন্ন করতে চান। প্রজাতি নির্বন্ন করতে চান। প্রজাতি নির্বন্ন কর করে বাহাক বৈশিষ্ট্যক ধরা হলেও বর্তমানে প্রয়োজনে কর্মার বৈশিষ্ট্য, পরাগরেণুর বৈশিষ্ট্য, ক্রোমোসোমাল বৈশিষ্ট্য, এমনকি DNA, RNA ইত্যাদি বৈশিষ্ট্যও আমলে নেয়া হয়।

ধনিষ্ঠ সম্পর্কমুক্ত দুটি তিনুজীবকে কখন পৃথক প্রজাতিত্বক করা হবে? এর মধ্যেও মতের তিনুতা আছে। বৈশিত তক্তত্বের উপর নির্ভয় করে জীব দুটি এক বা একাধিক বৈশিষ্ট্যে পার্থকামত্বিত হতে হবে এবং এই পার্থকা হতে চ্বিতিন্ন, এদের মধ্যে নিরবচ্ছিন্নতা বা মাধ্যমিক পর্যায় থাকলে পৃথক প্রজাতিতে বিভক্ত করা যাবে না।

একটি সহজ উদাহরণ দিলে এটি বৃঞ্চত সুবিধা হবে। বাংলাদেশে পাটের দুটি প্রজাতি চাব করা হয়। প্রজাতি মুক্ত হলো Corchorus capsularis (সানা পাট) এবং Corchorus olitorius (তোষা পাট)। গঠন বৈশিষ্ট্যে প্রজাতি দুট বছা কাছাকাছি, সাধারণ মানুষ এনের মধ্যকার পার্থকা বুঝতে পারবে না। এদের মধ্যকার প্রধান পার্থকা ফলের হর্দ্দিঃ আকারে।

প্রজাতি দুটির ফলের পার্থক্য বিজিনু, অর্থাৎ একটির সাথে অপরটি একেবারেই আলাদা। চিত্রে প্রদর্শিত মর্বার

পর্যায়তপোর অন্তিত্ব থাকলে প্রজাতি দূটিকে
আগাদা করা হতো না, দুটি একই প্রজাতির অন্ত
র্ভুক্ত হতো। যেহেতু এদের মধ্যে কোনো
নিরবছিনুতা নেই (continuity নেই) সেহেতু
প্রজাতি দুটি পৃথক। C. capsularis-এর সাথে C.
capsularis ইন্টারব্রিডের মাধ্যমে উর্বর সন্তান
উৎপাদনে সক্ষম। C. olitorius-এর সাথে C.
olitorius ইন্টারব্রিড করে উর্বর সন্তান উৎপাদনে
সক্ষম। কিন্তু C. capsularis-এর সাথে C.
olitorius ইন্টারব্রিড করে না বা ইন্টারব্রিড করে C. capsularis

তার্যালয়ের ব্যারপ্রের করে না বা হতারপ্রের করে করে কর্মানার। উর্বর সম্ভান উৎপাদনে অক্ষম। কাজেই এরা দৃটি পুথক প্রজাতি। তাহলে প্রজাতির বৈশিষ্ট্য হলো নিমুক্তপ :

(i) বাহ্যিক বৈশিষ্ট্যে সর্বাধিক মিল সম্পন্ন এক দল জীব (উদ্ভিদ, প্রাণী, অণুজীব, ছত্রাক)।

- (ii) একই প্রজাতিত্ব জীব একটির সাথে অপরটি ইন্টারব্রিড করে উর্বর সম্ভান উৎপাদন করতে পারে কিয় প্র প্রজাতিত্ব কোনো জীবের সাথে ইন্টারব্রিড করে উর্বর সম্ভান উৎপাদনে অক্ষম।
- (iii) একই প্রজাতিত্ক বিভিন্ন জীবের মধ্যে বৈশিষ্টোর পার্থকা থাকলে তা হবে নিরবছিন (continuous)।
- (iv) একটি প্রজাতিত্ত জীবসমূহ একই পূর্বপূক্ষ থেকে উত্ত।

প্রজাতি হলো শ্রেণিবিন্যাস পছতির সর্বনিমু একক যা দুটি পদের মাধ্যমে প্রকাশ করা হয়, যেমন Corchonst capsularis, C. olitorius (গণ নাম একবার পূর্ণ শেখার পর পরবর্তীতে প্রথম অক্ষর দিয়ে সংক্ষিত্ত করার নিয়ম আছে), Artocarpus heterophyllus (কাঠাল), Mangifera indica (আম) ইত্যাদি।

পৃথিবীতে উদ্ভিদ প্রজাতির সংখ্যা

পৃথিবীতে বৰ্তমান বৰ্ণনাকৃত (described) ও অনুমিত (estimated) প্ৰজাতির সংখ্যা নিমুদ্ধণ (sources : Jeffries, MJ. 1997; Prance, G.T. 1992)

বর্ণনাকৃত প্রজাতির সংখ্যা	অনুমিত প্রজাতির সংখ্যা	
8,000	\$0,00,000	
92,000	20,00,000	
80,000	2,00,000	
	8,000 92,000	

ট্যান্সার নাম পাইকেন	বৰ্ণনাকৃত প্ৰজাতির সংখ্যা	অনুমিত প্রভাতির সংখ্যা	
মস	20,000	20,000	
	b,000	3,000	
লিভারওটস	6,000	9,000	
ফার্ম ও ফার্নতুলা	\$2,000	25,000	
জিমনো শার্ম	620	600	
আনজিও~পার্ম	2,00,000	0,00,000	

বাংলাদেশে উদ্ভিদ প্রজাতির সংখ্যা

খালোদেশ উদ্ভিদ ও প্রাণী জানকোষ' অনুযায়ী বাংলাদেশ থেকে বর্ণনাকৃত উদ্ভিদ প্রজাতির (প্রকরণসহ) সংখ্যা

নাকটোরিয়া ১৭১ ব্রায়োকাইটা — → ২৪৮ সায়ানোব্যাকটোরিয়া ৩০০ টেরিভোফাইটা — → ১৯৫ ভ্রাক ২৭৫ ন্যাবীজী উদ্ভিদ — → ০৫ শ্বাল ২,২৪৫ আবৃতবীজী উদ্ভিদ ৩,৬১১

্র সংখ্যা প্রকাশিত হওয়ার পর গত পাঁচ-ছয় বছরে শৈবাল ও আবৃত্রীলী উদ্ভিদের আরো কিছু প্রজাতি নথিভুক্ত করা গরেছ। কাজেই প্রকৃত সংখ্যা উদ্ধৃত সংখ্যার চেয়ে একটু বেশি হবে।

জীবগোষ্ঠী বা পপুলেশন (Population)

জসংখ্য প্রজাতির জীব নিয়ে এই জীবজগৎ গঠিত। সময়ের ব্যবধানে এসব প্রজাতির সংখ্যা ও ধরন পরিবর্তিত হয়ে বাক। আজকের পৃথিবীতে যেসব জীব (উভিদ ও প্রাণী) লক্ষ্য করা যায়, কয়েক লক্ষ বছর আগে পৃথিবীর বুকে জীবের স্বা ও ধরন অন্য রকম ছিল। জীবসমূহ সাধারণত জীবগোষ্ঠী তথা পপুলেশন-এ (population) বিনাম্ভ থাকে।

প্রকটি নির্নিষ্ট ছানে একই সময়ে বসবাসকারী একই প্রজাতির একনপ জীবকে বলা হয় পপ্লেশন বা জীবগোটী
(Population is a set of organisms belonging to the same species and occupying a particular area at the same int)। একটি নির্দিষ্ট অভালে বসবাসকারী ও স্থিলিতভাবে পরস্পরের উপর ক্রিয়াশীল সব প্রজাতির সব পপ্লেশন মিলে গান করে একটি জীব সম্প্রনায় বা কমিউনিটি (community)।

সব জীবের সব কমিউনিটি মিলিতভাবে তৈরি করে জীবমতল বা বায়োকিয়ার (biosphere)। বায়োকিয়ারের জীবসমূহ ক্ষেত্রিত সব কমিউনিটি মিলিতভাবে তৈরি করে জীবমতল বা বায়োকিয়ার (biosphere)। বায়োকিয়ারের জীবসমূহ ক্ষেত্র একে অন্যের উপর নির্ভরশীল, অপরনিকে পৃথিবীর ভৌত পরিবেশের উপরও নির্ভরশীল। ভৌত পরিবেশের মধ্যে আছ নি বায়ুমতল (atmosphere), নির্না বারিমতল (hydrosphere) এবং নির্না অপুমতল (lithosphere)। বায়োকিয়ার ও আনুমতলের আন্তঃতিন্যাতে বলা হয় ইকোকিয়ার (ecosphere)।

জীবগোষ্ঠী বা পপুলেশনের বৈশিষ্ট্য (Characteristics of a Population)

১। ঘনত্বা বিস্তার: পপ্লেশন ছোট হতে পারে, আবার বেশ বড়ও হতে পারে, তবে পপ্লেশনের একটি কলত্ব্র্ল দির হছে এর অন্তর্ভুক্ত গ্রীবের ঘনত্ব ও বিজ্ঞার (density and dispersion)। পপুলেশন এতো বড় হতে পারে বে বিশ্বিকভাবে এটি পর্যবেক্ষণ করা সমূব হয় না, পর্যবেক্ষণ করতে হয় নমুনা অংশের। বিভিন্ন নমুনা অংশের পর্যবেক্ষণের বিশ্বেকভাবে এটি পর্যবেক্ষণ করা হয়। একটি সময়ে একটি একক আয়তন জায়গায় কোনো প্রজ্ঞান্তির কতি সমস্য বিশ্বেক হা হয়। একটি সময়ে একটি একক আয়তন জায়গায় কোনো প্রজ্ঞান্তির কতি সমস্য বিশ্বিক হা হলো পপুলেশনের ঘনত্ব (population density)। যে কোনো প্রজ্ঞান্তির পপুলেশন ঘনত্ব ভিন্ন পরিবেশে বিশ্বিক হার হার থাকে। আবার একই অবস্থানের বিভিন্ন ক্ষত্তে বা ভিন্ন ভিন্ন বছরে কোনো প্রজ্ঞান্তির পপুলেশন ঘনত্ব ভিন্নতর

জোনো পপ্লেশন বন্দনের ভৌগোলিক বিভারের সীমাতে বলা হয় ঐ পপ্লেশনের বিভার পরিময় (range)। বিভার কিয়ের কোনো প্রজাতির বিভার সমপ্রকৃতির (uniform) হতে পারে, অসমপ্রকৃতির (random) হতে পারে, আবার বিভার সমপ্রকৃতির (uniform) হতে পারে, অসমপ্রকৃতির (random) হতে পারে, আবার

याकाम रव

২। জন্ম-মৃত্যুর হার : প্রতিটি পপুলেশনের জনা ও মৃত্যু হার থাকে। সময়ের সাথে পপুলেশনের পরিবর্তন ছা আবার পৃথিবীর অঞ্চলভেদেও এর পরিবর্তন ঘটে। জনা ও মৃত্যুর কারণে এরপ পরিবর্তন ঘটে থাকে। মানুষের ছেত্রে জ বছর প্রতি হাজারে কতটি শিত জনা নিল তাকে জন্ম হার বলা হয়। জনা ও মৃত্যু হার সমান হলে পপুলেশন বৃদ্ধি শুনা (১৮) population growth) হয়।

ত। সংখ্যাবৃদ্ধি শক্তি : প্রতিটি পপুলেশনের একটি প্রচ্ছন সংখ্যাবৃদ্ধি শক্তি (biotic potential) খাকে। স্বত্তর স্বিধাজনক পরিবেশে কোনো পপুলেশন সর্বাধিক কতটা বৃদ্ধি পেতে পারে তাকে বলা হয় প্রচ্ছন সংখ্যাবৃদ্ধি শক্তি বিদ্ধা প্রজাতির সংখ্যাবৃদ্ধি শক্তি ভিনুতর হয়ে থাকে। দেখা গেছে একটি ব্যাকটেরিয়াম কোন দিশ ঘণ্টায় সংখ্যায় বৃদ্ধি প্র

১০৭,৩৭,৪১,৮২৪টি হতে পারে। উচ্চশ্রেণির উদ্ভিদ ও প্রাণীর সংখ্যাবৃদ্ধির শক্তি তুলনামূলকভাবে অনেক ক্ষ।

৪। সীমিতকরণ শক্তি: প্রকৃতিই পপুলেশনের বৃদ্ধিকে সীমিত রাখে। কাজেই কোনো পপুলেশনই তার ব্রহ্ম সংখ্যাবৃদ্ধির শক্তিকে অনির্দিষ্ট সময়ের জন্য কাজে লাগাতে পারে না। পরিবেশীয় প্রভাবকসমূহ পপুলেশনের বৃদ্ধিকে সীমিত রাখে। বিবর্তনের কার্যক্রম পপুলেশনেই তরু হয়।

পপুলেশন বা উদ্ভিদ প্রজাতি বন্টনে প্রধান প্রভাবকভলো হলো-

১। জলবায়ুগত প্রভাবক : থেমন- স্থালোক, পানি ও বৃষ্টিপাত, তাপমাত্রা, বায়ুপ্রবাহ, আর্দ্রতা ইত্যাদি।

২। মৃত্তিকাজনিত প্রভাবক : যেমন- মাটিতে পানির পরিমাণ, মাটির ভাপমাত্রা, মাটির বিক্রিয়া, <u>মাটির জৈব পর্যা</u> মাটির বাতাস ইত্যাদি।

ত। ভ্-স্থান সম্পর্কিত প্রভাবক : যেমন্- সমুদ্রপূর্চ হতে উচ্চতা প্রিহাড়ের ঢাল ইত্যানি।

৪। জীব সম্পর্কিত প্রভাবক : যেমন- উদ্ভিদের সাথে উদ্ভিদের সম্পর্ক, উদ্ভিদ ও প্রাণীর সম্পর্ক, ধারক উদ্ভিদ ও পরাশ্রয়ী উদ্ভিদ ইত্যানি।

জীব সম্প্রদায় (Biotic Community)

সাধারণত পৃথিবীর কোনো ছানে বা কোনো পরিবেশেই এককভাবে কোনো জীব বা জীবগোষ্ঠী বাস করে না বা করতে পারেও না। সাধারণত বিভিন্ন ধরনের জীবসমূহ একই পরিবেশে একই ছানে মিলেমিশে বাস করে। এই পরিবেশে, একই ছানে বসবাসকারী বিভিন্ন জীব প্রজাতিকে একত্রে বলা হয় জীব সম্প্রদায়। জীব সম্প্রদায় হলো একটি নির্দিষ্ট ছানে এবং একই পরিবেশে বিভিন্ন উদ্ভিদ ও প্রাণিসমূহের প্রাকৃতিক সমাবেশ, যারা প্রত্যেকে নিজেদের মধ্যে এক অন্যের প্রতি সহনশীল ও নির্ভরশীল এবং পরস্পর ক্রিয়াশীল (A biotic community is a naturally occurring assemblage of plants and animals that live in the same environment are mutually sustaining and interdependent and are constantly fixing and dissipating energy- Smith 1966)। সহজভাবে বলা যায়, জীব সম্প্রদায় হলো একটি নির্দিষ্ট ছানে জীবসমূহের সমষ্টিগত অবস্থান। একটি বড় মরুভূমি বা তৃপভূমির যেমন নির্দিষ্ট জীব সম্প্রদায় থাকে।

बीव अन्यमास्यद्व दिनिष्ठें।

১। গ্রন্থাতির বিভিন্নতা: প্রত্যেক জীব সম্প্রদায় বিভিন্ন প্রজাতির উদ্ভিদ ও প্রাণী নিয়ে গঠিত। এদের সংখ্যা ও অবস্থান সম্প্রদায়ের প্রকৃতির উপর নির্ভর করে ভিন্নতর হয়। প্রত্যেক জীব সম্প্রদায়ের জীবসমূহ খাদা, আয়য়, প্রকর্মী ইত্যাদি ব্যাপারে একে অন্যের উপর ও জড় পরিরেশের উপর নির্ভরশীল হয়।

২। বৃদ্ধির ধরন ও গঠন : একটি জীব সম্প্রদায়ে বসবাসকারী বিভিন্ন জীবের বৃদ্ধির ধরন ও গঠন বিভিন্ন বক্ষ হট।

ত। <u>আধিপত্য :</u> জীব সম্প্রদায়ের প্রকৃতি নির্বায়ে সম্প্রদায়ভূক সব প্রজাতি সমান ভূমিকা পালন করেনা। সম্প্রদায়ভূক বহু প্রজাতির মধ্যে মাত্র কয়েকটি প্রজাতি এদের সংখ্যা, আকার ও অন্যান্য কর্মকাত দ্বারা পুরো সম্প্রদায়ের উপর আধিশত বিস্তার করে থাকে।

৪। জরবিন্যাস : প্রাকৃতিকভাবে সৃষ্ট প্রতিটি সম্প্রদায়ের মধ্যে তাদের অবস্থান অনুযায়ী দমাদ্দি জরবিনাস থাকে।
বেমন একটি বন সম্প্রদায়ে (forest community)— (i) প্রভারক্টোরি জর- সূবদেয়ে উচু বৃক্ষতলো এই তর গ্রান করে প্রতি
এবং অনাদের উপর ছায়া দিয়ে থাকে। এই জরে বসবাসকারী পাখিও তিনু প্রজাতির হয়। (ii) আভারক্টোরি- ওতার্যার্থি
লোক অপেক্ষাকৃত কম উচ্চতার বৃক্ষ প্রজাতিওলো নিয়ে এই স্তর গঠিত। এরাও তেমন ছায়াপ্রিয় নয়। (iii) ট্রাক্টার্থি
ভর্ম ছায়াপ্রিয় প্রঞাতিওলো নিয়ে এই স্তর গঠিত। (iv) চায়াতর- বড় বৃক্ষের চারা এবং তৃণজাতীয় উল্লিট্নিয়ে বি

ত্ত সংলগ্ন ভর- এই ভরে প্রচুর বিভিন্নার থাকে এবং এই অবে বিভিন্ন প্রভাৱ বাত করে।

(খ) জু-সংলগ্ন ভর- এই ভরে প্রচুর বিভিন্নার থাকে এবং এই অবে বিভিন্ন প্রভাৱ বাত করিব।

ত্তানি প্রাক্তি বিনাদির পরিবেশে ভাব সম্প্রদার বাত করেব প্রচুর স্বান্ত সাহায়। করে। ত্যাদি থাকে। একটি নিৰ্দিষ্ট পরিবেশে জীব সম্প্রদায় বছদিন ক্ষরাসের কারণে ঐ পরিবেশের পরিবর্তনের সাথে কোনো কোনো জীবপ্রজাতির অরগদ্ধি মধ্য সাল ক্রমান্মন : তেনের সাথে কোনো কোনো জীবপ্রজাতির অবপৃত্তি ঘটে আর কোনো জীবপ্রজাতির অবপৃত্তি ঘটে আর কোনো জীবপ্রজাতির অবপৃত্তি ঘটে আর কোনো কোনো জীবপ্রজাতির অবপৃত্তি ঘটে আর কোনো কোনো জীবপ্রজাতির আরিবর্তন ক্রিন্তির ক্রিন্তাতির আরিবর্তন ক্রিন্তন ক্রেন্তন ক্রিন্তন ক্রিন্তন ক্রিন্তন ক্রিন্তন ক্রিন্তন ক্রিন্তন ক্রিন্তন ক্রিন্তন ক্ ্রির্মের পানেব না পৌছা পর্যন্ত এমন হতে থাকে। একটি পুতুর ব্যানিকের বার্বানে একটি জনলে পরিবর্তন ক্রিটি চূড়ান্ত পর্যায়ে না পৌছা পর্যন্ত এমন হতে থাকে। একটি পুতুর ব্যানিকের বার্বানে একটি জনলে পরিবর্তন করা। কর্মন ও পৃষ্টির স্বয়ংসম্পর্ণতা । ১০৯৮ ।। বাদা স্তর গঠন ও পৃষ্টির স্বয়ংসম্পূর্ণতা: একটি সম্প্রদায়তুক জীবধজাতিসমূহের মধ্যে একটি খান্য শুজন ও ধানা স্তর সাজন করে। এতে উৎপাদনকারী, তৃণভোজী, মাংসভোজী, পচনকারী সর ধরনের জীবেরই সমারেশ ন্মানের সাথে সম্প্রদায়ের পরিবর্তন : সময় ও ঋতু পরিবর্তনের সাথে সম্প্রদায়ত্ব জীব প্রজাতির সংখ্যার হাস বহি কল র। স্মানের বাত্তির জীব প্রজাতির সংখ্যার ব্রাস-বৃদ্ধি ঘটে। শীত, বর্ষা ও বসত্ত করি প্রকর্তনের বা বাস্ত্ৰতন্ত্ৰ বা বাস্ত্ৰসংস্থান (Ecosystem) রোলা স্থানের (একটি পুকুর, তৃণভূমি, চারণভূমি, জঙ্গা) জীব সম্প্রদায় ও এদের গরিবেশ নিজেদের মধ্যে এবং কোনো ব্যান্তির বার পতিময় পদ্ধতিকে বলা হয় বাস্তুতন্ত বা ইকোদিদেই । জড় (মাটি, লানি, আলো, জৈব ত প্রতিষ্ঠ এবং জীব (উদ্ভিদ, প্রাণী, ছত্রাক, অণুজীব) উপাদান দিয়ে একটি বাস্ত্রতন্ত্র গঠিত হয়। একটি বাস্তর্ভরের শীব)। উৎপাদক (Producer) : উৎপাদক হলো সবুজ উত্তিদ। পুকুর বা বিশের প্রধান উৎপাদক হলো ফাইটোগ্রাংউন াপন হলো : क्ष्मम कृष्ठ উश्चिम = Spirulina, Eudorina, Pandorina etc.)। नवुक जीवम भारताकमस्ट्रायासक प्राथाय आमा বানন করে। এই খাদ্যই প্রাণিজগতকে টিকিয়ে রাখে। প্রকৃতপক্ষে সনুজ উদ্ভিদ তাদের উংগাদিত বাদ্যের ভেতরে শিক্তি ধরে রাখে যা পরে খাদকে প্রবাহিত হয়। একটি নির্দিষ্ট এলাকায় (সাধারণত প্রতি ব্যক্ষিটারে) সরুত উদ্ভিদ কর্তৃত মণদিত খাদ্যে যে পরিমাণ শক্তি বন্ধন হয় তাকে বলা হয় <u>মোট উৎপাদন</u> (Gross production) এবং খনন কাৰ্যে শক্তি াত হল্যার পর যা অবশিষ্ট থাতে ভাকে বলা হয় প্রুত উৎপাদন (Net production)। প্রতি ইউনিট সমতে যে পরিমাণ कि देशामिত হয় সেই হারকে বলা হয় Productivity । এবি किसि ই। বাদক (Consumer) : উৎপাদক খেয়ে যারা বেঁচে থাকে তারাই বাদক। খাদক হলো তাবিকুল। পুরুষ স্থুনাটেন জিলার প্রাণী = Cyclops, Cypris, Daphnia) সরাসরি ফাইটোপ্লার্ডেন বেরে থাকে, তাই স্থান্নাইন হলো প্রাথমিক থানক শিয়াম consumer)। তিতপুটি, মলা, ব্যালা ইত্যাদি বুপ্লাণ্ডিন বেরে থাকে, তাই এরা হলো সেকেডারি বানক। গলস্ ্রি, রোয়াল, চিতল ইত্যাদি মলা, খলিশা খেয়ে থাকে তাই এরা হলো টারশিয়ারি খাদক। <u>সাহরার, বক এরাও</u> nd া বিয়োজক (Decomposer) : বাস্ত্ৰতন্ত্ৰের মৃত নীবদেহ বা দেহাংশ পঢ়িছে জৈব ও আঁজৰ পদাৰ্থনাপ বৰ্ণান্ত বিয়োজক (Decomposer) : বাস্ত্ৰতন্ত্ৰের মৃত নীবদেহ বা দেহাংশ পঢ়িছে জৈব ও আঁজৰ পদাৰ্থ থেৱে খাৰে স্বাহার কতক ব্যাকটেরিয়া ও ছত্রাক। তাই ব্যাকটেরিয়া ও ছত্রাক হলো বিয়োজক। মূহ জীবের কৈব পদার্থ থেরে পাঙ্ সংগ্রহক কতক ব্যাকটেরিয়া ও ছত্রাক। তাই ব্যাকটেরিয়া ও ছত্রাক হলো বিয়োজক। মূহ জীবের কৈব পদার্থ থেরে পাঙ্ ি হলেকে বলা হয় স্যাপ্রোক্ষায় (saprophage)। এদেরকে ট্রান্সক্রমারও বলা হয়। অবলা এবা ঘাদ্য পুলারের বলা হয়। বিশ্বর বিভিন্ন বীবর্তরের মধ্য দিয়ে কর্মানির বিশ্বর ব ্বিলি বাদ্য কৰিব বাদ্য শূলাল বন্ধ হয়ে থাবা। উৎপাদত থেকে বিভিন্ন জীবৰাকে মধ্য দিয়ে কালালিক বিভিন্ন জীবৰাকে মধ্য দিয়ে কালালিক বিভিন্ন বিভিন্ন বাদ্য কালালিক সোলালিক সামালিক াৰ বিয়োজক না থাকলে খাদ্য শৃত্যল বছ হয়ে যায়। উৎপাদত গৈতে বিভিন্ন ভাৰতমে হয়। কৈছা বছ হয়ে যায়। উৎপাদত গৈতে বিভিন্ন ভাৰতমে হৈছে (Trophic level) বছ। বছ খাদ্য শৃত্যল বা ফুড চেইন বলে। ফুড চেইনের বিভিন্ন খাদ্যতরকৈ ইছিক স্থেক (food web) বা বান্তম বছ। শাদা শৃত্যাল বা ফুড চেইন বলে। ফুড চেইনের বিভিন্ন খাদাত্রকে ট্রাইক দেভেন (Iropine এনা বিভিন্ন খাদাত্রকে ট্রাইক বিভিন্ন খাদাত্রকে ট্রাইক বিভিন্ন খাদাত্রকে ট্রাইক বিভিন্ন খাদাত্রকে ট্রাইক বিভিন্ন খাদাত্রক বিভান করে বিভান বি শিক্ষ কেলো বাস্ততরে একাধিক খাদ্য শৃত্যার খাদক), শোদ, গলার, বোয়াল মাহ (টারলিয়ারি বাদক) সর্ব বাদ্র বাদক) কর্মান প্রশাস প্রশাস বাদক), শোদ, গলার, বোয়াল মাহ (টারলিয়ারি বাদক) সর্ব বাদ্র বাদক) → প্ৰাথমিক বাদক → সেকেডাই বাদক ভিডপুটি) → প্ৰাথ → অ্বাংটন → ভোট মাহ (মগা, ভিডপুটি) → প্ৰাথ पाने पामा मृत्यन : → (東京 新華 (在)教 (本年) → 初) 5 कार्डन 🛶 सुश्रार्डन িল্লান → লুপ্লাংউন ১ গালুহপান

ইকোলজিক্যাল পিরামিড (Ecological Pyramid)

সাধারণত দেখা যায় একটি ইকোসিন্টেমে উৎপাদকের (সবুজ উত্তিদ) তুলনায় প্রাথমিক খানকের মোন ক্রিক্স উত্তিদ থেয়ে বেঁচে থাকে) সংখ্যা কম থাকে, আবার প্রাথমিক খাদকের তুলনায় সেকেডারি খাদকের সংখ্যা আরও কম থাকে। খাদাতরতলোর মধ্যকার এবন ক্রিয়ে নকশা আঁকলে দেখা যাবে একটি পিরামিডের আকৃতি ধারণ করেছে। বিভিন্ন ইকোসিন্টেমের খাদাপুলনের জিল্ল সম্পর্কিত পিরামিড আকৃতির নকশাকে ইকোপজিক্যাল পিরামিড বলে। ইকোপজিক্যাল পিরামিড নিমুক্ত হতে শত্ত ১। সুংখ্যার পিরামিড, ২। বায়োমাস-এর পিরামিড এবং ৩। শুক্তির পিরামিড।


১। সংখ্যার পিরামিড (Pyramid of numbers) : সাধারণত প্রারম্ভিক খাদান্তরে (প্রভিউসার) জাঁবের সংখ্যা প্রধানান্তরের জীবের সংখ্যার তুলনায় অনেক বেশি থাকে। কোনো ইকোসিস্টেমে খাদ্যন্তরের জীবের সংখ্যানিভির সভ্রমানার জন্য অন্ধিত নকশাকে সংখ্যার পিরামিড বলে। তুণভূমির একটি নির্দিষ্ট এপাকায় জন্মনো উর্নের সংখ্যাক জন্য অন্ধিত নকশাকে সংখ্যার পিরামিড বলে। তুণভূমির একটি নির্দিষ্ট এপাকায় জন্মনো উর্নের সংখ্যাক তুলনায় ঐ তুলসমূহের উপর নির্ভরশীল প্রাথমিক খাদকের সংখ্যা কম হবে। আবার ঐ খাদকের সংখ্যার তুলনায় টারশিয়ারি খাদকের নির্ভরশীল সেকেভারি খাদকের সংখ্যা আরও কম হবে। সেকেভারি খাদকের সংখ্যার তুলনায় টারশিয়ারি খাদকের সংখ্যা আরও কম হবে। সংখ্যার পিরামিডে প্রতিটি খাদ্যক্তরে (trophic lead জীবের সংখ্যা দেখানো হয়।

ইকোলিক্টেমে একটি নির্দিষ্ট সময়ে অবস্থিত দকল জৈববস্তব মেটি ভর (mass) বারোমান (biomass) হলো কোনো একটি ইকোলিক্টেমে একটি নির্দিষ্ট সময়ে অবস্থিত দকল জৈববস্তব মেটি ভর (mass) বা মেটি পরিমাণের (amount) হিল্প (Biomass is a quantitative estimate of the total mass or amount of living material)। অর্থাৎ, জীবজ পদর্থে মেটি ভন্ধ বজনই হলো বারোমান। বারোমান, মেটি ঘূন্তল হিসেবে (total volume), তন্ধ বজন হিসেবে (dry weight একা বজন হিসেবে (fresh weight) প্রকাশ করা যায়। কোনো একটি ইকোলিক্টেমের খালাজরতলার হারোমান এবং তাজা বজন হিসেবে (fresh weight) প্রকাশ করা যায়। কোনো একটি ইকোলিক্টেমের খালাজরতলার হারোমান নির্দায় করা এনের ফলারুল দিরে অন্ধিত রৈখিক চিত্রকে বারোমান-এর পিরামিত বলে। উদাহরণখন্তল বলা যায়, একটি দুক্লের বারোমান, এর উপর নির্চরণীল পাছির বারোমান হতে বেশি। আবার পার্থিতলার বারোমান, ভানের স্থানির্দান পর্যাধী পোকামাকড্ওলোর বারোমান অপেকা বেশি। বারোমানের পরামিতে প্রতিটি খানাজরে (চাক্টিটি

চিত্র ১২.৪ : পুরুরের একটি গক্তির পিরামিত।

চিত্ৰ ১২.৫ : সমুদ্ৰের খাল পিরাইছ।

জেলো ইকোসিস্টেমের এক হিগমিটার) এলাকায় এক বছর সময়কালে প্রথম খানাপ্তরে লীব হবা উবালত ক নিম শক্তি সংগ্ৰহ কৰে, তা খিতীয় জৰেন জীব কৰ্তৃক সংগৃহীত শক্তি থেকে বেশি৷ সানাৰ দিতীয় বজে জীব কৰ্তৃ পৃতি শক্তি তৃতীয় স্তরের জীব কর্তৃক সংগৃহীত শক্তি থেকে বেশি। চতুর্থ স্তরের জীব সবচেয়ে জা শক্ত বাবার করে। মি শিরমিতে প্রতি খাদ্যন্তরের বায়োমাসে শক্তির পরিমাণ নির্দেশ করে।

পিট প্রবাহ (Energy flow) : ইকোসিস্টেমের মধ্য দিয়ে সূর্য শক্তির একমুখী চলনকে প্রতি প্রবাহ (mergy flow) নী আলাক শক্তির মাত্র ০.০১ ভাগ) বলে। সূর্য থেকে যে গতিশক্তি ইকোনিস্টেমে হবেশ করে এক একটি বাহিছে। বা ইনি কর্তৃক সালোকসংশ্রেষণ প্রক্রিয়ায় ধৃত হয় এবং গ্রুকোজের মতো বিভিন্ন কৈ করে জিল লাজনে কর িয়ে। কোষীয় শ্বসনের মাধ্যমে জৈব অনুগুলো ভেঙে শক্তি উৎপন্ন হয় যা শরীরে উর্জাণ স্থানির নিজা লাইনে পাট টি ব্যাং প্রমানের মাধ্যমে জৈব অণুগুলো ভেঙে শাক ভংগর হয় যা শগুলে এর প্রিক্তা চলে বর, বিষয়ে এ মা নিয়াং এ শক্তি পুনরায় ব্যবহার করতে পারে না। কাজেই শক্তি প্রবাহ একমুখী (linear)। পরি একারে এই জা ক্ষিত্র মাধ্যমে। ইকোসিস্টেমে শক্তি প্রবাহ ঘটে বাদা শৃত্তপে (food chain)। যে প্রথম বাদা এক প্র তি of feeding level) থেকে পরবর্তী ভবে স্থানাভবিত হয় সেই গতিপথকে থালা পূর্বল বা প্রতিপ্রায় ব আ feeding level) থেকে পরবর্তী ভবে স্থানাভবিত হয় নেই গাঁওপথকে খালা সুন্দার হয় প্রভিন্নার আ আর্থা বাল। খালা শুকালে শক্তি পর্যায়ক্রমে খালোর মাধানে এক জীব খেকে আনা গ্রাহে হালালিক হয়। প্রভিন্নার আনা শিক্ত পূর্ব শক্তি শানত বুর্ব শক্তিকে গ্রহণ করে খাদা শূক্ষণ তথা ফুড চেইন-এর সূচনা করে। গ্রন্থিত হৈ কেলে ইর্কেন্সির শান শুনা শান্তিকে গ্রহণ করে খাদা শূক্ষণ তথা ফুড চেইন-এর সূচনা করে। গ্রন্থিত হৈ কেলে ইর্কেন্সির শির শভিকে গ্রহণ করে থাদা শৃত্যল তথা ফুড চেইন-এর সূচনা বরে। গ্রন্থতি হৈ কেন্দ্র মূচ প্রশ শার শানা শৃত্যাল পরস্পর সংযুক্ত থাকে। পরস্পর একাধিক বাদা শৃত্যালে প্রশিক্ষ সংযোগ সংস্কৃতি হব

ি ধবাহের বৈশিষ্ট্য: ইকোসিস্টেমে শক্তি প্রবাহের বৈশিষ্ট্যসমূহ নির্মণ (५७४) वस्त्र ।

া সৌরশক্তি প্রথম উৎপাদকের পেহে আহ্বিত হয় এবং পরে তা বিভিন্ন থানতে বানকাতি হয়।

।) সূত্র

।।) সূত্র

।।) সূত্র

।। স্বার্থির

। निर्माह श्रवाद अक्मूची। 11) मूह -> (ii) दिश्लामक -> (iii) चानक (शार्थिक -> (सर्वकार -> कार्यकार)) শাভির মূল উৎস সৌরশক্তি।

৪। খানা শৃতধ্বের তক্ত থেকে যত শেকের নিকে যাওয়া যায় ততই শতির ক্রমব্যর ঘটে।

শক্তি ইকোসিস্টেমে (খান্য হিসেবে) নিমুক্তপে প্রবাহিত হয় :

১। উৎপাদক (Producer) → ২। তৃপভোজী খাদক (Herbivores) → ৩। মাংসাশী খাদক (Carnivores)

১। উৎপাদক (Producer) — ২। ভূগতোৰা শক্তি প্ৰবাহের দশমাংশ নিয়ম : খাদকরা যত উৎপাদককে ভক্তণ করে তার দশমাংশ মাত্র বাবহারকারীর (খানদে শাভ প্রবাহের দশনাংশ দেশন । বাদন । বাদন । বাদন ১০০ কেঞ্জি তুল আহার করে তাহলে মাত্র ১০ কেঞ্জি তার দেই ক লৈই গঠনের কাজে শালে। বেমনা সাত তেজি মাংস খায় তাহলে ঐ মাংসের মাত্র ১ কেজি বাঘের দেহ গঠনে ক লাগে। শক্তি প্রবাহ ব্যাখ্যাম এটি ১০ শতাংশ নিয়ম নামে পরিচিত। Lindenmann (1942) এ মতবাদের প্রবর্তত।

বায়োলজিক্যাল ম্যাগনিফিকেশন

পরিবেশ থেকে জীবদেহে বিযাক পদার্থ গ্রহণ ও জমা হতে পারে। দেহে জমাকৃত বিযাক পদার্থের খনত নিয়ক। জীবদের (যেমন-উৎপাদক) তুলনায় পরবর্তী স্তরের জীবদেহে অধিক থাকে। খাদ্য শৃত্থলৈ নিমুম্বর থেকে উচ্চতর হ অবস্থানরত জীবদেহে বিষের ক্রমবর্ধমান খনত্বের এই প্রক্রিয়াকে বলা হয় বাুুুুয়োলজিকাল মাাগনিক্তিকেশন (Biological Magnification)। আমেরিকাতে (১৯৫০ দশকে) ফসলে DDT প্রয়োগের বিযক্রিয়ায় ঈগল (খাদ্য শৃত্তাে সাঠ জরে) প্রায় নিশ্চিক্ত হতে বসেছিল। পরবর্তীতে সরকার DDT নিষিদ্ধ ঘোষণা করেছে।

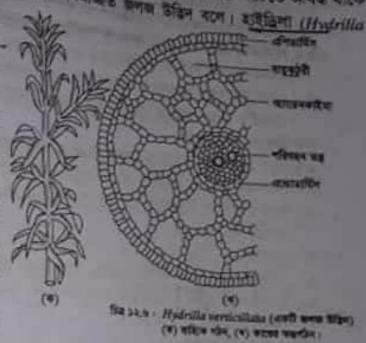
কাল : সংখ্যার পিরামিত ও বায়োমাসের শিরামিত দুটির মধ্যে তুপনা কর। লক্ষ কর একটি অপরটির উল্টো। সংখ্য পিরামিড-ও শক্তির পিরামিড এর মিল খুঁজে দেখ। তোমার মতো করে বিষয়টি ব্যাখ্যা কর।

জীবের অভিযোজন (Adaptation of organisms)

পরিবেশের সাথে জীবের সম্পর্ক অতি ঘনিষ্ঠ। সব পরিবেশে সব ধরনের জীব বাস করতে পারে না। প্রতিটি 🕏 তখনই পরিপূর্ণ বিকাশ লাভ করে যখন সে তার সুবিধা অনুযায়ী একটি সুন্দর পরিবেশ পায়। একটি নির্দিষ্ট পরিবেশ কোনো জীবের খাপ খাইয়ে নেয়াটাই হলো ঐ জীবের অভিযোজন। কোনো নিবাসে বসবাসের জন্য একটি জীব র বৈশিষ্ট্যভলো অর্জন করে তাকে অভিযোজন বলে। কতক জীব মিঠা পানিতে বাস করে, কতক জীব লোনা পানিত হ করে, কতক জীব মরুভূমিতে বাস করে, আবার কতক জীব স্বাভাবিক স্থলভাগে বাস করে। বাসস্থানে পানির প্রাণায় : ধরন এখানে একটি বড় নিয়ামক হিসেবে বিবেচিত হয়েছে। পানিতে বাসকারী জীবের গঠন বৈশিষ্ট্য এক বক্ষ, इस বাসকারী জীবের গঠন বৈশিষ্ট্য অন্য রকম। বৃষ্টিবহুল অঞ্চলে বাসকারী জীবের গঠন ও আচরণ মরুভূমিতে বাসকারী ছালে গঠন ও আচরণ থেকে পৃথক ধরনের। কাজেই দেখা যায়, একটি নির্দিষ্ট পরিবেশীয় অবস্থায় খাপ খাইয়ে নেয়ার জ্ব (অভিযোজনের জন্য) ঐ পরিবেশে বসবাসকারী জীব সম্প্রদারোর গঠনগত ও আচরণগত পার্থক্য সৃষ্টি হয়েছে, অর্থার জীব সম্প্রদায়ের গঠনগত ও আচরণগত বিশেষ বৈশিষ্ট্যের কারণেই তারা ঐ বিশেষ পরিবেশে নিজেদেরকে খাপ খাঁট নিতে পেরেছে। জলাময় (জলজ), মকুম্য (মকজ) এবং লবণাক্ত পরিবেশে বাস করতে গিয়ে পরিবেশ অনুযাটা গ্রীং সম্প্রদারের বৈশিষ্ট্য সৃষ্টি হয়েছে। স্থার্মিঃ (Warming-1909) মাতির প্রকৃতি ও মাধ্যমে পানির পরিমাণের উপর নির্ভর বা উট্রিদতলোকে প্রধানত তিনটি প্রধান এদপে ভাগ করেন; যেমন-হাইড্রোফাইট জেরোফাইট এবং মেসোফাইট। লোনা শনি অঞ্চলে পানির শবণাক্ততার জন্য বিশেষ ধরনের প্রণ সহনীয় উদ্ভিদ জন্মতে দেবা যায়। এরা **হালোফাইট** বা কেন মাটির উদ্ভিদ। নিচে এ সম্বন্ধে সংক্ষিপ্ত বর্ণনা করা হলো।

জলজ উন্তিদ (Hydrophytes)

জলে (পানিতে) যাদের জন্ম তারাই জলজ। যেসব উদ্ভিদ পানিতে জন্মে এবং পানিতে বিস্তার লাভ করে সেই ইদ্রিদকে বলা হয় জলজ উদ্রিদ বা হাইছোফাইট্স (hydro = পানি, phyte = উদ্রিদ)। জলজ উদ্রিদ পানিতে নিম্নিট পানিতে ভাসমান বা উভচর হতে পারে। পানিতে জন্ম ও সকল বৃদ্ধির জন্ম জলজ উদ্ভিদের কিছু বিশেষ বৈশিষ্টা বিশাসী


জলজ উত্তিদের প্রকারতেদ

বর্ণনা বা পাঠদানের সৃবিধার জন্য জলজ উত্তিদসমূহকে তালের সঠিক অবস্থা ও অবস্থানের ভিত্তিতে চার প্রকারে লা রা হয়ে থাকে।

তত্ব ক্ষিতিত জগতা উত্তিদ (Submerged hydrophytes) । বেসৰ উত্তিদ মূল বাৰা পানিব নিচে মাটিতে আৰম্ভ থাকে নিহটিত লানিব মধ্যে নিমজ্জিত থাকে সেসৰ উত্তিদকে নিম্ভিত ্যালির কানির মধ্যে নিমজ্জিত থাকে সেসর উল্লিম্ন কুল বালা পানির নিচে মাটিতে আরম্ব থাকে পাতা শেওলা (Vallisneria spiralis), তালিক জলাজ উল্লিম্ন বলে। হাইছিলা (Hydrilla প্রতি প্রতিষ্ঠা (Vallisneria spiralis),

(Potamogeton nodosus), পিরাটোডাইগায় Applum demersum) ইত্যাদি निमस्तिर जलन

信用 書件(を書せ) श्रृह-वाजमान कराक उद्धिम (Free floating ्राक्ष्मेग्रास्त्र) : क्षणानदा भागित निर्देश माणित भाष्य র ইণ্ডদের কোনো সংযোগ থাকে না, কলে পানির দ্বিলে মুক্তাবে ভাসমান অবস্থায় বিরাজ করে নেকে মুক্ত ভাসমান জলজ উত্তিদ বলে। কচুরিপানা sementia crassipes), कृतिशाना (Lemna minor), লান (Wolffia microscopica), টোপাপানা (Pistia कृष्डिणामा (Azolla), मुगाकानिणामा medes). মুক্ত-ভাসমান জলজ উভিদের NO

া মূলাবছ পত্ৰ-ভাসমান জলজ উত্তিদ (Rooted floating hydrophytes) : যেসৰ জনত উত্তিদের মূল জলাশরের ল দিছে মাটিতে সংযুক্ত থাকে কিন্তু দীৰ্ঘ বোটার কারণে পাতাকলো পানিব উপৰে ভাসমান থাকে ভাদেরকে বলা হয় तत नव-छाममान छानक উद्धिम । সामा नाभना (Nymphaea pubescens), मान नामना (Nymphaea subra), नीम প্ৰা (Nymphaea nouchali), পৰা (Nelumbo nucifera), শ্ৰিকণা (Ottelia alismoides) ক্ষেত্ৰী মুণাৰত প্ৰ-জন চলজ উদ্রিদের উদাহরণ।

। ইতচর উত্তিদ (Amphibious plants) : যেসব উত্তিদ জলাশয়ের বিনারে মাটতে শিকড়াবছ বাকে এবং কাতের াজপ্থ পানিতে ভাসমান থাকে সেসৰ উদ্ভিদকে উভচর উদ্ভিদ বলে। <u>কংমিকতা (Ipomoca aquatica)</u> হেলেকা distinfluentans), কেশরদাম (Ludwigia repens) করেকটি উভচর উদ্ধিনের উদাহরণ।

व हें इसके देनिक्षेत्र

। নিম্নিত জলজ উদ্ভিদের কাও নরম, দুর্বল, সল ও লঘা মধাপর বিশিষ্ট হয়। মাটিতে নোলভাবত ভাসমান জ কাও নাধারণত রাইজোম জাতীয় হয়।

। ছলজ উদ্ভিদের মূল সুগঠিত হয় না, অনেক কেত্রে মূল থাকে না বললেই চলে।

া কাও ও পাতার বহিঃত্ক কিউটিনযুক্ত থাকে না; পত্রক্ত থাকে না, বা কম থাকে। পত্রক্তে হংরা কোষ নাও

া বাদের মূল ও কাতে বড় বড় বাযুকুঠুরী থাকে। বায়কুঠুরী বিশিষ্ট গঠনতে আবেদকাইমা বলে।

। দিলল উল্লিদের ভাকুলার বাভল অপেকাকৃত ছোট থাকে, অনেক সময় লাইলেম অনুপছিত থাকে। মেকানিকাল মিক্স থাকে, তাই অঙ্গ-প্রত্যঙ্গ পুর শক্ত হয় না।

विकारण जनक छिद्धिम अलक छेणाता वरणवृद्धि घटि।

জলজ উত্তিদের অভিযোজন (Adaptation of hydrophytes)

काशनिक छन्दियांकन ্রী সুগঠিত হয় না, সংক্ষিপ্ত ও দুর্বল প্রকৃতির হয়। অনেক উদ্ভিদের (বেমন- উড়িপানা = Wolffie) মূল বাকেই

- ২। মূলে মূলরোম অনুপস্থিত (কারণ পানি শোষণের জন্য মূলরোমের দরকার হয় না)।
- ত। কোনো কোনো উদ্ভিদের অস্থানিক ভাসমান মূল (যেমন- কেশরদাম- Jussiaca repens) থাকে। উদ্ভিদকে ভাসতে সাহায্য করে।
- ৪। নিমজ্জিত উদ্ভিদের কাও নরম ও স্পঞ্জী হয়, মধাপর্ব লম্বা হয়। ভাসমান উদ্ভিদের কাও অপেডাকৃত ১১ মোটা হয়। মাটিতে আবদ্ধ উদ্ভিদের কাও সাধারণত রাইজোম জাতীয় ও নরম হয়।
- ৫। পাতা সাধারণত পাতলা ও নরম থাকে। তাই পানির টানে ছিড়ে যায় না। অনেক উত্তিদের পত্রবৃত্ত স্টার্ছ । উত্তিদকে ভেসে থাকতে সাহায্য করে। যেমন- কচুরিপানা।

অন্তৰ্গঠনগত অভিযোজন

- ১। ত্বকে কিউটিকল থাকে না, অথবা খুবই পাতলা থাকে। কারণ পানির অপচয় রোধ করার প্রয়োজন হয় না।
- ২। নিমজ্জিত উদ্ভিদের পাতা ও কাজের তৃকে ক্লেরোপ্লাস্ট থাকে।
- ত। কাও ও পাতার অভ্যন্তরে বড় বড় বায়ুকুঠুরী থাকে। বায়ুকুঠুরী বায়ু (O2, CO) ধরে রাখে। বায়ুকুঠুই 🛼 ভাসতে সাহায্য করে।
- ৪। মেকানিক্যাল টিস্যু থাকে না বা কম থাকে। তাই সহজে পানির টানে ভেঙ্গে যায় না।
- ৫। পরিবহন টিস্যু থাকে না বা অগঠিত, কারণ পানি পরিবহনের প্রয়োজন পড়ে না।
- ৬। নিমক্ষিত উদ্ভিদের পাতায় স্টোম্যাটা থাকে না, অন্যান্য উদ্ভিদেও স্টোম্যাটা কম থাকে। কারণ, গ্যাস কিছে। তেমন প্রয়োজন পড়ে না।

শারীরবৃত্তীয় অভিযোজন

- ১। সর অঙ্গ দিয়েই পানি শোষণ করতে পারে (তুকে কিউটিকল না থাকায়), পানি শোষণের জন্য মূল ও মূলয়ে প্রয়োজন হয় না।
- ২। কাও ও পাতার ত্তেও ক্লোরোফিল থাকে, তাই পানির নিচে কম আলোতে ও কম CO, যুক্ত পারে।
- ত। অধিকাংশ জলজ উত্তিদ(অঙ্গজ উপায়ে সংশবৃদ্ধি করে থাকে (কারণ পরাগায়ন অনিশ্চিত)।
- ৪। কাও ও পাতার বায়ুকুঠুরীতে বায়ু জমা থাকায় খুসন ও সালোকসংশ্লেষণের অসুবিধা হয় না।
- ৫। প্রবেদন হার কম কারণ পানি শোষণের জন্য প্রবেদনের টান দরকার হয় না।

জলজ প্রাণীর অভিযোজন

नादा ।

জলজ প্রাণীরা জলে বাস করতেই বিশেষভাবে অভিযোজিত। জলজ প্রাণীদের মধ্যে অধিকাংশই হলো মাহে ইছি প্রজাতি। পানিতে থাকার সুবিধার জন্য এদের দেহের তেতরে পটকা নামক বায়ু থলি থাকে। পানিতে দ্রবীত্ত বিজ্ থহণের জন্য সুপ্রতিষ্ঠিত ফুলকা থাকে। পানিতে চলাচলের জন্য বিভিন্ন স্থানে পাখনা থাকে। দেহের আকৃতিও সামি ভূমিকা পাশন করে।

এছাড়া ব্যান্ত, কাছিম, কুমির, সাপ এওলোও পানিতে বাস করতে পারে। এদের দেহের বিশেষ গড়ন, লাম্বী^{ন কু} ত্ক, পা বা লেজ দিয়ে সাঁতার কাটার ব্যবস্থা এবং পানির নিচে অক্সিজেন গ্রহণের ব্যবস্থা আছে।

মরুজ উদ্ভিদ (Xerophytes)

মক্ত পরিবেশে যেসব উদ্ভিদ জন্মায় সেসব উদ্ভিদই মক্তজ উদ্ভিদ। মরু অঞ্চলে বাংসরিক বৃষ্টিপাত সাধালাকী সেমির (১০ ইঞি) কম, তাই মাটিতে পানির পরিমাণও অনেক কম। অধিকাংশ মক্ত অঞ্চল কংকর ও বালিম্য, মার্টির পানিশুনা অবহায় থাকে, তারপরও বিশেষ বৈশিষ্টোর কারণে তেমন প্রতিকৃত্ব পরিবেশেও কিছু উদ্ভিদকে জন্মির বায়। এসব উদ্ভিদ সাধারণ বৃষ্টিশুনা খরা অধ্যাণেও সহজেই জন্মাতে পারে। আবার আমানের দেশের মতো পরিবেশেও জন্মতে পারে ২ দেহে পানি সংরক্ষণ, অল্প আয়াসে মুল দিয়ে পানি শোষণ এবং কাও বা পাতার মাধ্যমে অপচয় রোধকরণ এই তিনটি মৌশিক বৈশিষ্টোর যেকোনো একটি বা স্বকৃটি বৈশিষ্টাই একটি মক্ত উদ্ভিদ্ধ

্ত্ৰালাং dactylifera), শতমূপা (Asparagus racemosus), শতাকী উল্লি (Araye americana) নাম্প্র 200 ৰ (Phoenix and Caloe vera), করবী (Nestum Indicum), কনিমনসা (Opunda dillenii), শতক্ষি ্রা processor বিভিন্ন ক্রিটার প্রজাতি ইত্যাদি মক উদ্ভিদের ক্তিপ্র উদাহরণ। এর সরকটির বাংলাদেশে বার্লার त हरि गरिक।

মক্ত উদ্ভিদের অভিযোজন (Adaptation of xerophytes)

্রের উল্নিসমূহ সাধারণত আকারে ছোট র বোশমুক্ত হয়। এ ধরনের উদ্ভিদ বালির লাটা ও বায়ুর ঝাপটা সহ্য করতে পারে, वरि किएम याचा मा।

।। দুশ মাটির উপরিতলের কাছাকাছি অথবা ধুর গভীরে প্রলম্বিত। তাই উপর থেকে গালো বৃষ্টির পানি যেমন শোষণ করতে বয়ে, দ্রন্ত মাটির গভীরে চলে যাওয়া পনিও পোষণ করতে পারে। অর্থাৎ এদের মা স্ণাঠিত

। হনেক উদ্রিদের পাতা ও কাও চ্যান্টা, ক্রেলা ও সবুজ থাকে। তাই পানি ধরে तन्त्र भारत ।

। শধা অপেক্ষাকৃত ছোট, পুরু বা কাঁটায় ব্যাথরিত। তাই পানির অপচয় রোধ হয়।

182 32,4 : Nertum (dell- and un Elbe) +

লেমানিক অভিযোজন

- । হলর কিউটিকল পুরু, কাত ও পাতায় মোমের আবরণ থাকে। তাই প্রয়েশ-ব্রাস শার।
- া শহার পাালিলেড প্যারেনকাইমা ঘন ও সুদৃঢ়, স্টোম্যাটা (পরবন্ধ) ব্রের গভীরে (লুকাছিত) স্বর্তিত, সনেও মন্ত শ্বভা ব্যোম ছারা আংহাদিত থাকে। তাই পানি বাস্পায়ন ও নির্ণমন কম হয়।
- া আনেতাইমা কোষ স্ফীতিশীল ও বুসালো। তাই প্রয়োজনীয় পানি হরে রাখতে পারে।
- শিকার্মিন বহুত্তর বিশিষ্ট। তাই পানির অপচয় রোধ ও বরায় নেডিছে পড়ে না।
- াৰ মেকানিক্যাল টিসা ও পরিবহন টিসা সুগঠিত, মোটা প্রাচীরবিশিট ও খন সন্নিবেশিত। এটি পানির অশুক্র াৰ, শানি ধরে রাখা এবং গাছকে খরা সহিচ্ছু করার কৌশল।

A MORNING

ক্রিনের অভিন্রবৃথিক ভাপ বেশি। তাই পানি শোষণ মাত্রা বৃদ্ধি পায়। পানি শোষণ সহল হয়, বাচ কম হয়।

र वनका त्यान द्य।

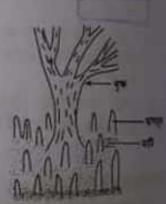
প্ৰতিৰ হাত প্ৰাই কম। তাই শোধিত পানিব পৰিমাণ কম হলেও তা দেহাভাৰতে বৰে বাৰতে সাম।

¹ শাসে লামে পানি শোষণ করে নিতে সক্ষ।

প্রতি পানি শোষণ করে নিতে সক্ষ। বিশিলমূহ বৃদ্ধির পরপরই অভি অল্ল সময়ে জীবনাক্ত সম্পন্ন করতে সক্ষ।

- কম পানি, অতি উত্তাপ ইত্যানি কারণে এনজাইমের ক্রিন্মা কিছুটা কম থাকে তাই অধিকাশে ইতিকে কর্মা
- ৬। পাতার ভেতরের দিকে অর্থাপুনিমূত্কে পত্রবন্ধ থাকে।

মকক প্রাণীর অভিযোজন


মক্লজ পরিবেশ চরমভাবাপনু। এখানে খুব কম সংখ্যক প্রাণী প্রজাতিই বাস করে। তীব্র আলো, উচ্চতাপ, টার স্থ পাধর এবং স্বস্ত্রপানি—এ সমস্ত প্রতিকূল অবস্থা। উট, সাপ, বিশেষ ধরনের ইদুর, মরু গিরগিটি, পাখি, মরু বিভাগ ইয় প্রাণী মরু অঞ্চলে দেখতে পাওয়া যায়।

এদের অনেকেই দিনের বেলায় গর্তে লুকানো থাকে এবং রাত্রিতে বাইরে বের হয়। এরা অধিকাংশই ক্রম্ মক্রবাসী প্রাণী দীর্ঘদিন পানি পান না করে থাকতে পারে। এদের অধিকাংশই রসালো বাদ্যে বিদ্যমান পানি হব 👟 অভাব পুরণ করে। এদের অনেকের গায়ের ত্ব পুরু থাকে যাতে পানির অপচয় কম হয় এবং তাপ সহা করে ত মক্ল কড়ের বালি থেকে রক্ষা পাওয়ার জন্য এদের অনেকের নাকের হিদ্র অত্যন্ত সরু থাকে, কানের ছিন্র আনু লোমাবৃত থাকে। চোখ ঢেকে রাখার আবরণ থাকে, অনেকের পায়ের তলায়ও বিশেষ ব্যবস্থা থাকে। দিনের ক্যুত এভানোর জন্য অধিকাংশ প্রাণী নিশাচর প্রকৃতির হয়। উটের দেহাভাতরে পানি জমা করে রাখার ব্যবস্থা আছে। হত গাছের কচি পাতা ও বাকল চিবিয়ে পানি পান করে।

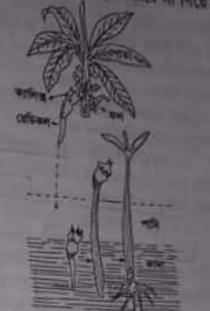
লোনা মাটির উদ্ভিদ (Halophytes)

লোনা পরিবেশে অধিকাংশ উদ্ভিদই জন্মতে পারে না, তবে বিশেষ বৈশিষ্ট্য সম্পন্ন কতিপয় উল্লিদ প্রজাতি জন্মাতে পারে। যেসব উদ্ভিদ লবণাক্ত পরিবেশে (মাটিতে ও পানিতে) সহজেই জন্মতে ও বিস্তার লাভ করতে পারে সেসব উদ্ভিদই লোনা মাটির উদ্ভিদ বা আশোফাইট (Halophytes)। সমুদ্ डिलक्नवर्जे कायात्रजांगे जकाल त्य वित्यस स्तानत থালোকাইট জাতীয় উদ্ভিদ জনো সেসৰ উদ্ভিদকে ম্যানগোভ উত্তিদ বলে।

জিন ১২,৮ : লোনা মাটি উভিদের শাসমূত

লোনামাটির উত্তিদের বৈশিষ্ট্য

- ১। লোনামাটির উত্তিদের কাও ও পাতা রসালো থাকে।
- थ अपना उद्यम् वा किनम्न थाक या माणित नामाना निष्ठ विकुछ थाक (2)
- ত। মাটিতে 🔾 কম থাকায় অনেক উত্তিদে খাসমূল বা নিউমেটোফোর (pneumatophore or breathing root) 🔻 হয়। মাটির নিচের শাখা মূল থেকে শ্বাসমূল মাটির উপরে উঠে আসে। এদের গারো শ্বাসছিদ্র থাকে, যা দিছে ব থেকে O2 থাহণ করে।
- ৪। মূপের অভ্যন্তরে (কর্টেক্স-এ) বড় বড় বায়ুকুঠুরী থাকে।
- ৫। লোনামাটির উল্লিদে প্রখেদন কম হয়।
- ও। অনেক উত্তিদে জরায়ুক্ত অনুরোদগ্রম (viviparous germination) হয়, যেমন (Rhizophora সুনর প্রভাতি।
- ৭। এদের কোষত্ব প্রোটোপ্লাজম কিছুটা আঠালো হয় এবং এদের অভিসাধনিক চাপ বেশি বা
- ৮। উত্তিদ অপেকাকৃত বর্গাকার হয় এবং এদের এপিডার্মিস বহুতর বিশিষ্ট হয়।
- বোরা (Rhizophora eunjugata), কেওড়া (Sonneratia apetala), প্রভা (Zylocarpus moluccensis), তেলা (Nipa fruticans), शतकाका (Acanthus illicifolius), मुन्ती (Heritiera fomes) कराकि जानामाणि बेडिय


লবণাক্ত পরিবেশে উদ্ভিদের অভিযোজন (Adaptaion of halophytes) নানির গভীরতার সাথে সাথে লবণাক্ততা বৃদ্ধি পায়, তাই অধিকাংশ উল্লিখন মূলতম নাটির পুন গভীরে না শিয়ে

ব্রাহত লবণাক্ত পানি শোষণ করতে অসুবিধা হয়, তাই বৃত্তির সময় প্রান্ত বাবে আসলে উত্তিদ দ্রুত পানি শোষণ করে তাদের র কিছুল। ব্যাহার সঞ্জয় করে রাখে। এ কারণে এদের কাও, পাতা ও মূলকে ক্সলো দেখায়।

্রালোক সময় পানির টানকে সহা করে দাঁড়িয়ে থাকার জন্য विकार उद्यान वा छेममून थाता।

া বাসমূপের ভেতরে বায়ুকুঠুরী থাকে এবং সে কুঠুরীতে বায়ু (O₂) ধরে পারে। খাসমূলের কারণে মূল ও বাইরের সাথে গ্যাসের বিনিমর সহত

। দ্বাজ মাটিতে এবং জোয়ার-ভাটার স্থানে বীজ এক স্থানে টিকে লক্ষিন। তাই বহু উদ্ভিদে গাছে থাকা অবস্থায়ই বীজের অমুরোদগম করু ্বার ভ্রম্প সৃষ্টি হয়। মূল একটু বড় ও ভারী হলে মাটিতে পড়ে এবং াই হালা মাটিতে চুকে যায় ও স্থায়ী হয়। ফলে জোয়ার-চাটার টানে তা জ্বস্থ স্থানিক চাটার

ক্রম্ম না। উদ্ভিদে থাকা অবস্থায় ফলের অভ্যন্তরে বীজের অভ্যােলগমকে বলা হয় জরাযুক্ত অভ্যােলগম। মাানগোড ক্রম্ব অনেক উদ্ভিদে জরায়ুজ অদুরোদগম লক্ষ্য করা যাও।

১। শ্বাসমূলের সাহাযো শ্বাসকার্য চালায়।

৭। যথেষ্ট পরিমাণ পানি শোষণ করতে পারে না বলে প্রয়েদন নিয়ন্তিত থাকে।

দাচ পরিবেশে প্রাণীর অভিযোজন

দলাভ পরিবেশ বলতে এখানে সুন্দরবনের পরিবেশতে ধরে নেয়া হয়েছে, বিশাদ সমুদ্রকে নয়। এখানে আছে ক্ষমা প্রজাতির মাছ, পাখি, সাপ, হরিণ, বাঘ, বানর, বনমোরণ, তকন, কাছিম, কাকড়া ইডাদি। লোনা পানিতে যেসৰ ব্রম করে তারা লোনা পানি গ্রহণ ও ত্যাগ করতে পারে। তন্যপায়ীরাও অধিক সময় পানির নিচে থাকতে পারে এবং বি উপরিতলে এসে শাস নেয়। সুন্দরবনের অন্যন্য প্রায় সব প্রাণীই প্রচুর বাদ্য প্রান্তির উপর অভিযোজিত। প্রৱা সার অস্তাব হলে স্থান ত্যাগ করতে পারে। কাছিম ভাঙ্গায় এসে বালির গর্তে ভিম পাড়ে। পানিতে সাভার কটতে এরা ইয়াছিত ।

মেসোফাইট (Mesophytes)

মে মাটিতে মিষ্টি পানি (পোনা পানি নয়) প্রয়োজনীয় স্থাতাবিক মাত্রায় থাকে সে মাটিতে জন্মনো উদ্ভিদই হলো শ্বিত (Mesophyte)। আমাদের অধিকাংশ ফলদ বৃক্ষ, ফসল উরিদ, বাড়ির আশগাশের জোপ, রাজ্যর বারের

্রা হলো মেসোফাইট। আম, জাম, কাঁঠাল, লিচু, কলা, শাল, সেওন এসর মেসোফাইটের উনাহরণ। ৰি. ম. উবিদ নিক্তল, প্ৰাণী সচল এবং প্ৰয়োজনে স্থান জ্যাগ কৰতে গাবে। ভাই উৱিদ ও প্ৰাণীৰ অভিযোগন এতই বৰুম বছ।

নির একটি ছকের মাধ্যমে জলজ, মুকুজ ও প্রণাক্ত পরিবেশে জন্মনো উরিদের বৈশিয়সমূহ চুলন পরে াও। ইশনা করার আগে বিষয়টি বার বার ভালোভাবে পড় এবং বুষে নাও। মাটিতে পানিঃ পরিমণ, সংগাততা,

্তিন, কামের অভ্যন্তরীণ গঠন, স্টোমাটি, জনন ইত্যানি বিষয়ে তুলনা হব।

জীবভূমি/বায়োম (Biome)

একটি বড় বাস্ততন্ত্র তথা ইকোসিস্টেমই একটি বায়োম। তুন্দ্রা অন্তল একটি বায়োম, মক্তুমি একটি বারী বিশ্ব বিশ্ব

(ক) স্থপজ বায়োম (Terrestrial biome) : যেসব বায়োম স্থপভাগে অবস্থিত তাদের স্থপজ বায়োম বলৈ। ইন্দ বায়োম প্রধানত নিমুদ্ধপ :

১। মক্লভূমি বায়োম : (Desert biome) : মক্লভূমি হলো এমন ভৌগোলিক অঞ্চল যেখানে বাৎসৱিত বৃষ্টিশাত বহ লেমি (১০ ইঞ্জি)-এর কম। এখানে বাম্পায়ন হার অনেক বেশি। এখানে জলীয় বাম্প থাকে না। মাটিতে জৈং গুটি য়

কম। মাটিতে পুষ্টি থাকলেও পানির খুব অভাব।

এ পরনের মরুভূমি উত্তর ও দক্ষিণ গোলার্বে 30°C ল্যাটিচুঙে অবছিত। সব মরুভূমি গ্রীম্মারলীয় কথালে অবছিল নয়। সবচেয়ে বড় মরুভূমি সাহারা যা আফ্রিকা মহাদেশের প্রায় অর্থেক ছান জুড়ে অবছিত। অক্টোলয়া, এশিয়া, উল্লেখ্য দক্ষিণ আমেরিকায় মরুভূমি আছে। মরুভূমিতে দিন ও রাত্রির তাপমারার পার্থকা 30°C পর্যন্ত হতে পারে। মরুভূমিতে আভিয়োজিত উদ্ভিদকে জেরোফাইট বলা হয়। মরুভূমিতে বর্যজীবী ও বহুবর্যজীবী উত্তর প্রকার উদ্ভিদ জরে। সাধারক বহুরে একবারই বৃদ্ধি হয় এবং বৃদ্ধির সাথে সাথেই আপের বছরের নীজ অদুর্নিত হয় এবং বৃত্ত জ্বাদিনেই বিকশিত হয়ে ফুলে-ফলে ভরে যায়। সংক্রিপ্ত জীবন শেষে এরা মরেও যায়। মরুভূমির উদ্ভিদের স্টোম্যাটা সাধারণত রাত্রিতে কেনে তাই পানির অপচয় হয় না। এরা অধিকাংশই CAM ইন্তিদ। ক্যাকটাস, বাবলা, খেজুর, কিছু ইউফরবিয়া, কিছু গিনিইর এবং আস্টোরেসির কিছু উদ্ভিদ জনো থাকে। জন্যপায়ীদের মধ্যে উট, দুখা, ক্যাদারুক, রাবিট, খেকশিয়াল প্রবন। সরীস্পের মধ্যে হর্গ লিজার্ড, কোরাল সাপ, গিলা মন্টোর ইত্যাদি। পাখিদের মধ্যে শকুন, দাভুকাক, মনু গানি উল্লেখযোগ্য। প্রাণীরা সাধারণত রাত্রে বেশি চলাফেরা করে।

২। ভূপভূমির বায়োম (Grassland blame) : এ বায়োমে বাংসরিক বৃষ্টিপাত <u>২৫-৭৫</u> সেমি (১০-৩০ ইছি), সাধারণত বছরে এক মৌসুমেই বৃষ্টিপাত হয়। ঘাস হলো ভূপভূমি বায়োমের প্রধান তেজিটেশন। মধ্য কানাত্র, দক্ষিণ আমেরিকা, আর্জেনিটনা ও অস্ট্রেলিয়াতে বিস্তার্ণ ভূপভূমি আছে। ভূগভূমি নানাবিধ ভূণভোলী প্রণাই ক্ষণক্ষেত্র। ঘাসের পাতা সরু এবং খাড়াভাবে থাকে, তাই প্রস্থেদন কম হয়। <u>মাটি হিউমাস্ত সমুদ্</u>ত। দিনে ও রাতে তাশমত কম-বেশি হাস-বৃদ্ধি ঘটে। শীতকালে তাপমালা 15°C ও নেমে যায় আর গ্রীম্মকালে (32°C) এর উপরে প্রঠে আসে। ক্ষ্ ঘাস ১২-১৫ সে,মি, লঘা হয়। যব, গম, রাই বেশি জনো। প্রধান প্রাণী হলো বাইসন, জেরা, জিরান্ড, ঘোড়া, এন্টিশোল, ক্যান্সারু ইত্যাদি ভূণভোজী। এদের ভক্ষক হলো সিংহ, হায়না ও থেকশিয়াল। কটিপতঙ্গের মধ্যে উইপোকা, ঘাস্টেইং মৌমাছি, প্রজাপতি এবং এদের খাদক হিসেবে পাখি, টিকটিকি, সাপ ও ব্যান্ড বাস করে।

ও। সাভানা বায়োম (Savanna biome) : এ বায়োমে বাৎসরিক বৃষ্টিপাত ১০০-১৫০ সেমি (৪০-৬০ ইঞ্জি)। সালান এক বিশেষ ধরনের তৃণভূমি, মাঝে মাঝে ছোট বৃক্ষ বা ঝোপ থাকে, যা ভূণভূমিতে থাকে না। সাভানাতে নীর্ঘ চকনে মৌসুম থাকে। ট্রপিক্যাল রেইন ফরেন্টের সীমানায় সাভানা সৃষ্টি হয়েছে। আফ্রিকা, আমেরিকা, ভারত ও অস্ট্রেলিয়াতে সাভানা আছে।

৪। তুন্তা বাব্যোম (Tundra biome) : স্বচেয়ে উত্তরের গুলজ ভাগের বায়োম হলে তুন্তা। সাইবেরিয়ার উত্তরংশ, গ্রীনগাতে, আলাস্কা ও উত্তর মেক অকল নিয়ে তুন্তা বাব্যোম গঠিত। বাৎসরিক বৃষ্টিপাত কথনো ১৫ সেমি (৫ ইঞি) মা তারও কম, যা বরফ হিসেবে পড়ে। দীর্ঘ শীতকালে এখানে বরফ জমা হয়ে থাকে। হয় থেকে আট সভাষের গ্রীমান্তল দেখা যায় মখন উপরের কিছু বরফ গলে যায় এবং ছোট ছোট জলাভূমি সৃষ্টি হয়। এখানে সূর্যের আলো তির্মকভবে শন্তি দুও জীবদেহ পৃত্তির প্রধান উৎস, যা নাইটোজেন ও ফসফরাস সমৃষ্ট।

তুস্তা অভালের প্রধান উদ্ভিদ্ মিস ও লাইকেন বিখানে বৃক্ষ প্রজাতি কম। উচু পর্বতশ্বে এরণ অভাল আছে, মাজে আলপাইন তুস্তা বলে। ভলাপায়ীর মধ্যে বলগা হরিণ, খরগোস, নেকড়ে, মেরণভাত্তক প্রধান। পাবিদের মধ্যে পেইইন

ব্রাক্রণাখি, হাস, পৌচা, স্যান্ত পাইপার প্রধান। শ্রীমকাণে কিছু মশা ও মাছির আগমন ঘটে। অমেরুদ্ধী প্রাণীদের মধ্যে গ্রামুক, জোঁক, জনতা বিটল উল্লেখযোগ্য।

g। বনকৃষি বায়োম (Forestland blome) : পৃথিবী পৃষ্ঠের এক কৃতীয়াংশ বনকৃষি দিয়ে আবৃত থাকে। এটা বৃটিপাত প্রবৃধ এলাকা হওয়ায় প্রধান শ্রীবগোটি হলো বৃক্ষ এবং কাষ্ট্রগ উদ্ভিক্ষ। পৃথিবীর বিভিন্ন অঞ্চলে এ ধরনের বনত্মি দেখা

(i) ট্রপিক্যাল রেইন ফরেস্ট (Tropical rain forest) ৷ বাৎসরিক বৃষ্টিপাত কমপক্ষে ২৫০ সেনি থেকে ৪৫০ সেনি () আ বিধা পেকে ১৮০ ইঞ্জি)। বৃষ্টিপাত প্রায় সারা বছরই হয়, তবে বর্গাকালে অধিক। সরচেয়ে বড় ট্রপিকালে রেইন (১০০ থাকা দ্বাজিপ আমেরিকার আমাজান অববাহিকা, দিতীয় বৃহত্তম ইন্দোনেশিয়ান দ্বীপপুঞ্জ, এরপর আফুকার কলো করেন্ট্রন্থ, ভারত, বার্মা, মধ্য আমেরিকা এবং ফিলিপাইনের অংশবিশেষে ট্রপিক্যাল রেইন ফরেন্ট অর্বাছত।

ট্রাপিক্যাল রেইন করেস্টে অসংখ্য প্রজাতির উচু বৃক্ষ জনো। বনের মেখে (floor) অন্ধকার ও ভেজা থাকে। এসব বনে কোনো একক প্রস্ঞাতির উদ্ভিদ আধিপত্য বিস্তার করে না। বনের উপরে ক্যানোপি (canopy) তৈরি হয় ৩০-৪৫ মিটার উচ কোনো অব বৃদ্ধের প্রজাতি দিয়ে। কিছু উচু বৃক্ষ (৬০ মিটার বা বেশি) এই ক্যানোপি ভেদ করে উপরে উঠে যায়, যালেরলৈ ইমাজেট (emergent) বলে। বৃক্ষকে অবলয়ন করে প্রচুর কাষ্টল লতা ও পরাধ্রমী উদ্ভিদ প্রতিষ্ঠা লাভ করে। ট্রপিক্যাল রেইন করেন্টে <u>স্পিশিস ডাইভারসিটি অধিক। এ সব ফরেন্টে অসংখ্য প্রজাতির পতঙ্গ, পাখি, সরিসৃপ, স্থন্যপায়ী ও উভচর প্রাণী</u>

(ii) ট্রপিক্যাল সিজনাল ফরেস্ট (Tropical seasonal forest) : ট্রপিক্যাল রেইন ফরেস্ট অবাল থেকে এখানে বাংসরিক বৃষ্টিপাত কিছুটা কম, তবে এখানকার বৃষ্টিপাত সারাবছর না হয়ে বিশেষ মৌসুমে (বর্ষাকালে) হয়ে পাকে। মৌসুমি বৃষ্টিপাতের সময় এই বন ট্রপিক্যাল রেইন ফরেস্টের মতোই, শীতকালে কিছু বৃক্ষের পাতা করে যায়। রাংগাদেশের চট্টগ্রাম, পার্বত্য চট্টগ্রাম ও সিলেটের বন এ জাতীয়। বার্মার (মায়ান্<u>মার) সেচন বন এ জাতীয়।</u>

(iii) পত্রঝরা বা পর্ণমোচী বনাধাল (Deciduous forest) : ভৌসভুয়াস ফরেন্টে বৃক্ষের পাতা বছরে একবার (রিশেষত শীতকালে বা তকনো মৌসুমে) ঝরে যায়। ডেসিড়য়াস ফরেস্ট আবার দু'ধরনের, টেম্পারেট ডেসিড়য়াস ফরেস্ট রবং ময়েস্ট ডেসিডুয়াস ফরেস্ট। নিচে এদের সম্পর্কে সংক্ষিত্ত বর্ণনা করা হলো।

(a) টেম্পারেট ডেসিড্রান ফরেস্ট : এ অজলে বৃত্তিপাত ১০০ দেমি (৩৯ ইবিঃ), কিন্তু তাপমাত্রা কম। শীতকালে সব বুকের পাতা ঝরে যায়। উচু বৃক্ষের মধ্যে ওক (Oak), ম্যাপল (maple), বীচ (Beech), বার্চ (Birch), চেস্টনাট প্রধান। প্রমেরিকা (পূর্ব দিক), কানাডা (উত্তর-দক্ষিণ দিক) ইউরোপ (মধ্য ও উত্তর ব্রিটেন, নরওয়ে, সুইতেন), রাশিয়া, পূর্ব এশিয়া, চায়না, কোরিয়া ইত্যাদি দেশে এ বন আছে। এ অক্ষলে তুষারপাত হয়।

(b) ময়েস্ট ডেসিডুয়াস ফরেস্ট : এ অফলে বৃষ্টিপাত অপেকাকৃত বেশি (২০০ সেমি) ৭০-৭৫ ইঞ্চি); শীত মপেকাকৃত কম, বরফ পড়ে না। এ বনের অধিকাংশ বৃক্ট পত্রবরা। বাংলাদেশের শালবন মরেস্ট ভেসিভুয়াস ফরেস্ট।

(iv) কনিফার ফরেস্ট (Conifer forest) : এ অফলে বাৎসারিক বৃষ্টিপাত ৫০-১০০ সেমি (২০-৪০ ইঞ্জি); দার্ঘ ত্তিকাল ও সংক্ষিপ্ত গ্রীম্মকাল থাকে। তাপমাত্রা -30°C থেকে 30°C মটি উর্বন এবং নিটার সমৃদ্ধ তাই অগ্নীয়। মামেরিকান যুক্তরাট্রে অনেক কনিফার ফরেস্ট আছে। প্রধান বৃক্ষ পাইন, স্পুস, ফার, রেডউড, হেমলক ইত্যাদি। এদের শিকাংশই চিরসবুজ । প্রাণীর মধ্যে শিয়াল, নেকড়ে, সিংহ, হরিণ, বিভিন্ন প্রজাতির পাখি, কাঠবিড়ালী, ইদুর এবং অসংখ্য মাকামাকড় এখানে জন্মে। সামান্য কিছু সরীসৃপ প্রাণীও আছে।

(v) ম্যানগ্রোভ বনাঞ্চল (Mangrove forest) : এ ধরনের বনাঞ্চল ৩২° উত্তর এবং ৩০° দক্ষিণ এর মধ্যবর্ত্তী महमीय गढ़ान अस्त्रत्न (intertidal zone) अत्य । वास्नाम्मरमत मुन्मत्रदम এत এकि शक्षे हमाहत्म । ध दत्तानत वन তিবার পূর্ব উপকৃত্য, দক্ষিণ ও পূর্ব এশিয়া এবং উত্তর অস্ট্রেলিয়ার উপকৃষ্ণে আছে। প্রাত্যহিক জোয়ার-ভাটার কারণে জীবিক, কর্দমাক্ত এবং লবণাক্ত হয়। বাৎসরিক গড় বৃষ্টিপাত ১৬০-২০০ সৈমি বিজন্ম বনভূমি তেমন সমৃদ্ধ নয়। এমন বিশেষ ধরনের কিছু বৈশিষ্ট্যের উদ্ভিদ লক্ষ্য করা যায় (যেমন-খাসমূল, জনায়ুভ অস্কুরোদগম, তত্তমূল ও শে। । উল্লেখযোগ্য উদ্ভিদের মধ্যে সুন্দরী, কেওড়া, গ্রান, গেওয়া, হিজল, গোলপাতা, বাইন ইত্যাদি প্রধান। এইটো জিইগার কার্ন, বিভিন্ন ধরনের আরোহী লতা ইত্যাদি। এখানে উরেখযোগ্য প্রাণীতলো হলো রমেণ বেছল টাইগার,

ि हिंद्रा द्विन, क्यीत, वना ठकत्र, वानत्र, मामा धत्रत्व भायक, माल ७ लाचि।

(খ) জলজ বাম্মোম (Aquatic biome): পৃথিবীপৃঠে জলময় পরিবেশের বায়োমগুলো একরে জলভ হতে পরিচিত। জলজ বায়োম মিঠা পানি এবং লাগরে পৃথক প্রকৃতির। মিঠাপানির বায়োম নদী, এপ, হাওড়, বাঙ্কা (wetlands) ইজাদি ভাগে বিভক্ত। ম্যানগোড্স (mangroves) বনাঞ্চল ওয়েটল্যান্ড বায়োমের অন্তর্গত। মান্ত্রান্ড ও ৩০° দক্ষিণ ল্যাটিচ্ডের মাঝামান্ডি উপকৃদীয় অন্তর্গে অবস্থিত।

জ্বজ বারোম প্রধানত দু'প্রকার। মিঠাপানির (স্বাদুপানির) ও লোনাপানির বারোম।

- ১। মিঠাপানির বায়োম (Freshwater biome) : পুথিবীর প্রায় এক প্রক্ষমাংশ মিঠাপানির বারোম নিয়ে এগুলো ছোট, অগভীর এবং বিচিন্ন। এগুলো কয়েক ধরনের।
- (i) নদী (River): ন্দীতে সাধারণত একমুখী স্রাত থাকে। কণা, এদ বা হিমবাহ থেকে নদীর উৎপত্তি হত্ত সদীর উৎসে প্রচুর পরিমাণে নৃড়ি পাখর থাকে। সেখানে পানির স্রোত বেশি থাকে। তাপমাত্রা কম থাকে। পানি অপ্রচুর তেঁ থাকে। মারামাঝি সমতল অংশ বেশ চওড়া এবং শেষ দিকে পানিতে প্রচুর পলিমাতি থাকার পানি প্রকর্তার মারামাঝি সমতল অংশে প্রচুর শৈবাদ এবং সবুজ উদ্ভিদ জন্মে। মেরুদণ্ডী প্রাণীদের মধ্যে নানা ধরনের মারামাঝি সমতল অংশে প্রচুর শৈবাদ এবং সবুজ উদ্ভিদ জন্মে। মেরুদণ্ডী প্রাণীদের মধ্যে নানা ধরনের মারাম্বাস্থিপর মধ্যে কৃমির, যড়িয়াল, সাপ, কাছিম আর জন্মপায়ীর মধ্যে ততক।
- (ii) জলাভূমি (Wetlands): রামসার কনভেনশন (১৯৭১) অনুসারে বাংলাদেশে তালিকাভূক জলাভূমি স্বরূপ টালুয়ার হাওড়। এছাড়া সারাদেশে ছোট-বড় অনেক জলাভূমি আছে। এগুলো স্থায়ী বা অস্থায়ী, মিঠাপানি বা লোক জলাধার, এনের প্রোত বা বন্ধ জলাশন্ত থাকে। সারা বিশ্বের জলাভূমিতে ৫০০০ এর বেলি সপুস্পক উদ্ভিদ জন্ম আংলাদেশে এর সংখ্যা প্রায় ১৫৪টি। বাংলাদেশে উল্লেখযোগ্য জলজ উদ্ভিদ হলো-পানিকল, যাখনা, পদ্ধ, শাপনা ক্রে আজুলা, স্যালভিয়া, কচুরীপানা ইত্যাদি। প্রাণীর মধ্যে ৭৫০ প্রজাতির পাখি, ৭৬০ প্রজাতির মিঠা ও লোনপানি ম্বিনুক, শামুক, সাপ ও বছ অমেরুদভী প্রাণী বসবাস করে।
- (III) এদ ও পুকুর (Lakes & Ponds): এমন জলাগয়ের আয়তন কয়েক মিটার থেকে করেক হাজার কিল্টে পর্যন্ত হয়ে থাকে। এদের গভীরতাও বেশ তারতম্য হয়ে থাকে। অনেক পুকুর শীতকালে তকিয়ে যায়। এনের শীত অনেক (বৈকাল এদ ৪৭৪২ ফুট) এবং ছায়ী জলাধার। গভীর এদগুলো আনুভূমিক তিনটি অন্ধালে বিভক্ত।
- (a) বেলা অঞ্চল (Litoral zone) : এটি হ্রেনের কিনারার উষ্ণ অঞ্চল। এখানে বিভিন্ন ধরনের শৈবন, মূল্যা ভাসমান উদ্ভিদ জন্মে থাকে। প্রাণীদের মধ্যে স্লেইল, পতঙ্গ, কাস্টালিয়ান, মাছ ও উভচর প্রাণী বাস করে। পত্সে হ ড্রাগন ফ্লাই এবং মিজেস প্রধান। এ অঞ্চলের উদ্ভিদ ও প্রাণীগুলো ডাহুক, সাপ ও কচ্ছপের খাদা।
- (b) অগভীর অক্তল Limnetic zone) : এটি হ্রদের উপরের মুক্ত অঞ্চল। এ অঞ্চল আলোকিত এবং এক ফাইটোপ্লাকেটন ও জুপ্লাংকটন থাকে। এছাড়া কিছু ফুদ্রাকার মাছও এখানে দেখা যায়।
- (c) গভীর অঞ্চল (Profundal zone) : এদের নিচে স্কীণ আলোকিত অঞ্চলকে বোঝায়। এখানকার গানি য়া ও বেশ ঘন। প্রাণীঙলো পরভোজী প্রকৃতির কারণ এরা মৃতদেহ ডক্ষণ করে থাকে।
- ২। লোনাপানির বায়োম (Oceans & Seas): মহাসাগর, সাগর ও মোহনা মিলে পৃথিবী পৃষ্টের প্রায় ৩/৪ আ
 করে আছে লোনাপানির বায়োম। এটাই পৃথিবীর সবচেয়ে বড় এবং প্রথম বায়োম। সাগরের শ্বদান্ততা আ
 এবং pH_8 গ্রীম প্রধান অঞ্চলে পৃষ্ঠতলে পানির তাপমাত্রা 27°C আর মেরু অঞ্চলে 3°C। সাগরের ৪টি অঞ্চলি জীববৈচিন্না বিদামান।
- (i) গড়ান অঞ্চল (Intertidal zone): যেহেতু এ অঞ্চলটি প্রতিদিন দু'বার জোয়ার-ভাটায় প্লাবিত হা ভাইনি বিভিন্ন প্রকারের উদ্ভিদ ও প্রাণী থাকে। উপরের অংশে করেকটি প্রজাতির ভায়াটম, বাদামি শৈবাদ, লোহিত শৈবাদ সবুজ শৈবাদও জন্মে থাকে। প্রাণীদের মধ্যে স্নেইল, ক্রাবস, ছোট ছোট মাছ থাকে। এছাড়া ক্রান্টাশিয়ান ও প্রাণী থাকে।
- (ii) পেলাজিক অঞ্চল (Pelagic zone) : সাগরের পৃষ্ঠীয় যুক্ত অঞ্চলকে বোঝায়। এ অঞ্চলে আগায়া আটা । জন্মে থাকে। এর পাশাপাশি প্লাংকটনও থাকে। প্রাণীদের মধ্যে নানা ধরনের মাছ, ডলফিন, হাঙ্গর ও তিমি গার্গে।

্রাটি ক্রেন্ট্রিক অবাল (Benthic zone) : পেলাভিকের নিতে অন্ত আলো বা আলোহীন অবালকে বোকায়। এখানে ্রাটি এবা মৃতদেহ থাকে। মূলত সামৃদ্রিক আগাছা, ছবাক, খার্ছেরিয়া, শ্রুর, সি-স্টার মাছ থাকে। ্রি) এবিসাল জ্যাল (Abyssal zone) : এটি সমুদ্রের গভীরতম স্থানকে ব্যেকার। তাপমাত্রা প্রার্থ (বি

্রি পুর কম থাকে। অনেক অমেরাদর্ভী প্রামী, মাছ এবং কেমোরিনথেটিক ব্যান্তেরিয়া থাকে।

প্রাণিভৌগোলিক অঞ্চল (Zoogeographical regions)

্রিল্টে প্রাকৃতিক পরিবেশ সর্বার একই রকম নয়। এর কোখাও বরফ শীতল, কোখাও নাতিশীতোক, আবার ্রবার উদাঃ এর কোলাও ভূগভূমি, কোখাও অপাভূমি, কোখাও মকুভূমি বা গভার অরণাভূমি। এসব পরিবেশ কোনোটাই লাগ লীবল্লাতি বিহান নয়। প্রতিটি প্রাকৃতিক পরিবেশেই তার নিজম বৈশিষ্ট্যপূর্ণ কিছু জীবল্লভাতি বরেছে। তুন্দ্রা ক্রার অধিকাংশ জীব্য জাতিই মক্ল অভালে পাওয়া যায় না। উভিদ তার ছান ত্যাগ করে অন্যত্র যেতে গাবে না, কাজেই প্রি জির রাক্তিক পরিবেশে তির তির ধরনের উল্লিদ প্রজাতি জন্মতে দেখা যায়। প্রাণীরা প্রয়োজনে ভালের বাসস্থান করে এদিক ওদিক যেতে পারে, তারপরও চিন্ন চিন্ন প্রাকৃতিক পরিবেশে বেশ কিছু চিন্ন চিন্ন প্রজাতির প্রাণী শক্ষা

বিষয় মেজদতী প্রাণীদের ক্ষেত্রত এরপ অবহান ও বিষ্ণৃতির পার্থকা লক্ষা করা যায়। পৃথিবৈর বুকে নেক্ষাই লৈ অবস্থান ও বিশ্বতির উপত্র ডিডি করে P. L. Scinter ১৮৫৭ সালে পৃথিবীকে মোট প্রটি প্রাণিভৌগোলিক অকলে ত করেছিলেন। ১৮৭৬ সালে A. R. Wallace সামান্য পরিবর্তন সাপেতে ই এটি প্রাণিভৌগোলিক অকলতে সমর্থন

। যাটি বাণিভৌগোলিক অঞ্চল নিয়ুক্তৰ : । শালিমারটিক অক্ষল, ২। তরিয়েন্টাল অক্ষল, ৩। অস্টেলিয়ান অক্ষল, ৪। নিত্রেপিকাল অক্ষল, ৫। ইবিলেয়ান

্ত বিশ্বাক্তিত অকল । শ্রমার A. R. Wallace তাইক প্রদান ছক অনুসারে পৃথিবির প্রাণিডৌগোলিক অফলচলার নাম, সেই অফলের

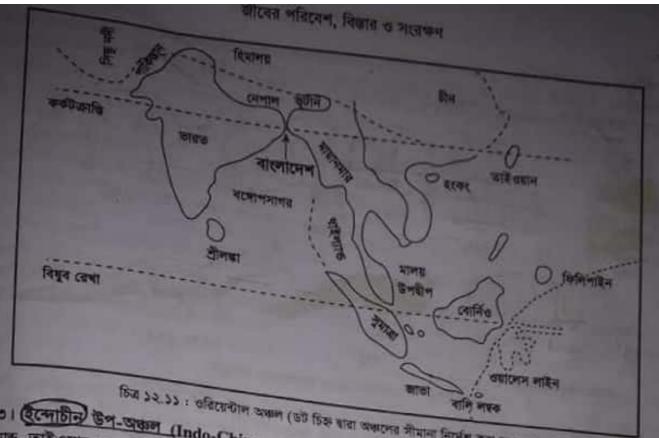
া লোকসমূহের নাম এবং সেন্ধ অঞ্চলের প্রধান করেবটি মেকস্ট্র প্রাণীর নাম দেয়া হলে।

অধালের নাম	অন্তর্ভুক্ত এলাকাসমূহের নাম	প্রধান মেক্রদত্তী প্রাণীদের মাম
১ ৷ প্রাণিসাকটিক স্থান (Palaearctic region)	ইউরোপের সমগ্র অংশ, আফ্রিকার উত্তরাংশ, এশিয়ার উত্তরাক্তণ, হিমালগ্রের উত্তর অংশ, চীন, জাপান ও কোরিয়ার উত্তর অংশ, ইরান, আফগানিস্তান ইত্যাদি দেশসমূহ।	হরিণ, ভারুক, ভোঁদর, কপণা হলৈ জু করুতর, ফ্রেমিংগো, উটপাধি, পেলিক্স, চার্ক এলিগেটর, প্যাডেল ফিস, নাকারফিস, আর্সিক্স
২। গুরিয়েন্টাল অঞ্চল (Oriental region)	বাংলাদেশ, ভারত, পাকিজান, আফগানিজান, প্রীলংকা, সিঙ্গাপুর, গাইল্যাভ, মালয়েশিয়া, ইন্দোচীন, ইন্দোনেশিয়া, নেপাল, ভূটান, ফিলিপাইন, তাইওয়ান ইত্যাদি।	হাতি, বাম, (গীবন) ভাত্তক, ব্যক্তিনী চন বাদুর, কবুতর, ফিঙে, কোভিগ, ব্র বাই ন্য কুমির, ভইসাপ, কই, কাতলা, মৃণেপ, কালিক
ও। অস্ট্রেলিয়ান অঞ্চল (Australian region)	অস্ট্রেলিয়া, তাসমেনিয়া, নিউজিল্যাড, নিউগিনি, ইন্দোনেশিয়ার পূর্বজ্ঞিল ও প্রশাস্ত মহাসাগরের কিছু দ্বীপ।	ক্যাপাক, ওয়াচাবি, ত্যোত্তলা, ওমবাট, চাচিত্র অপোসাস, পায়ার বার্ড, ক্যাসোমারি কার্ডায় টিয়া, এমু, বার্ডিস অব পারাভাইস, কার্ট্রেজ কিউই, কেনোডন, টিফলপস,
8। নিত্রেপিক্যাল অঞ্চল (Neotropical region)	মধ্য আমেরিকা, দক্ষিণ আমেরিকা, ব্রাজিল, ওয়েস্ট ইভিজ ইত্যাদি।	ভালুক, হরিণ, কুকুর, লামা, অপোসাম, ক্রপুরিয়া, অস্ট্রিচ, সারস, বাজ, পাঁচা, হরিবা, কুমির, কঞ্চপ, কোরাল, সাপ, বোয়া, ভাইপুর, বাইন মাহ, ক্যাটডিস, লাইফিস।
৫। ইথিওপিয়ান অঞ্চল (Ethiopian region)	অফ্রিকার সাহারা মরুভূমির দক্ষিণ অঞ্চল, আরবের দক্ষিণ অঞ্চল, মাদাগান্ধার (বা মালাগান্থি) ও মাদাগান্ধারের নিকটবতী কিছু মহাসাগরীয় দ্বীপ।	পরিলা, শিম্পাঞ্জী লেমুর, হাতি, র্ডোনর, মান্দ্র পরার, আমাভিরো, জিরাফ, জেরা, জ্পর্য উটপাখি, বাজ, শতুন, সারস, ফিরু কুমি। তইসাপ, বোরাপাইখন, ক্যাটফিস লাঞ্চস
ও। নিআকটিক অঞ্চল (Nearctic region)	র্মীনল্যান্ড, মেক্সিকোর উদ্যোজন, কানাডা, উত্তর আমেরিকার অধিকাংশ, আইসল্যান্ড ইত্যাদি এই অঞ্চলের অন্তর্ভুক্ত।	খোড়া, উট, লামা, আলপাকা, গোরাছা, নেতঃ মেকশিরাল, ভালুক, ক্যাভার, বাইসন, লামানি পোলিকান, শকুন, টার্কিস, হামিবোর্ড, ফিডে, কর্মর প্রবাদ, সাপ, ক্যালাছ হা প্যাডেল ফিস, বো ফিন, সাকরে ফিস, ক্যালিল ইত্যাদি।

পৃথিবীর ছয়টি প্রাণিভৌগোলিক অন্ধালের মধ্য থেকে এখানে কেবল ওরিয়েন্টাল অঞ্চলের সংক্ষিত্ত আলোচনা উপস্থাপ হলো।

ওরিয়েন্টাল অঞ্চল (Oriental Region)

ভৌগোপিক সীমানা : ওরিয়েন্টাল অরুণের উত্তরে আফগানিস্তান ও চীন, দক্ষিণে ভারত মহাসাগর, পতিমে ইরুর হ আরব এবং পূর্বে প্রশাস্ত মহাসাগর অবস্থিত।


অভর্ক দেশসমূহ : কান্ডীয় এশিয়া, বিশেষ করে বাংলাদেশ, ভারত, পাকিস্তান, আফগানিস্তান, মান্ননার, বাইলান মালয়েশিয়া, দক্ষিণ চীন, ইন্দোচীন, খ্রীলংকা, ভাপান, ইন্দোনেশিয়া, তাইওয়ান, ফিলিপাইন, নেপাল, ভূটান ইয় ওরিয়েন্টাল অঞ্চলের অন্তর্গত।

এ অন্তালটি প্রধান চারটি উপ-অন্তালে বিভক্ত; যথা-

ভারতীয় উপ-অঞ্চল (Indian subregion) : এ উপ-অঞ্চলটি সিছুনদ ও হিমালয়ের পাদদেশ থেতে লাক্ত গোমা হয়ে মুখুইর পর্যন্ত সমগ্র মধ্য ও উত্তর ভারত পর্যন্ত বিভূত। বাংলাদেশ ভারতীয় উপ-জ্বাংশের আর্ভুক্ত।

शिक्तिक देश-प्रकल (Ceylonese subregion) : जात्रजीय देशदीरशत प्रश्नितिस धरा आया शीमाण वर्षे

व्यवस्थान व्यवस्था

চিত্ৰ ১২.১১ : ওবিয়েন্টাল অঞ্চল (ডট চিহ্ন খারা অঞ্চলের সীমানা নির্দেশ করা হয়েছে)।

ত। হিন্দোচীন উপ-অন্তল (Indo-China subregion) : চীনের প্যালিআকটিক সীমানার দক্ষিণাংশ, যায়ানমার, ৱাইল্যাভ, তাইওয়ান, আন্দামান ও হাইনান হীপপুঞ্চ এ অঞ্জলের অন্তৰ্ভ ।

৪। ইন্দোমালয় উপ-অঞ্চল (Indo-Malayan subregion) : মালয় উপদ্বীপ ও ইস্ট ইভিজের কতথলো দ্বীপ ধেমন রোর্নিও, জাভা, সুমাত্রা এবং নিকোবার দ্বীপপুত্ত এ অঞ্চলের অন্তর্ভুক্ত।

জলবায়ু : ওরিরেন্টাল অঞ্চলের প্রায় সমগ্র অঞ্চলের জলবায়ু উষ্ণ ও অর্দ্র অর্থাৎ গ্রীমমওলীয় । এ অঞ্চলের পূর্বাচণে দেশি ও প্রেইরি তৃণভূমি, মধ্যভাগে মৌসুমি উত্তিদবিশিষ্ট সাভানা তৃণভূমি এবং সীমিত অঞ্চলে ক্রাণ্ডীয় জলবায়ু দেখা যায়।

উদ্ভিদক্ল (Flora) : ওরিয়েন্টাল অঞ্চলে সারা বছর প্রচুর বৃষ্টিপাত হয় এবং এখানকার জলবায়ু অর্দ্র ও গরম বিধায় এখানে চিরসবুজ বৃক্ষের গভীর বনাঞ্চল এবং সিক্ত পত্রবারা বনাঞ্চল সৃষ্টি হয়েছে। গড় বাৎসরিক বৃষ্টিপাত ১৫০ সে.মি.। এ ষ্ণালে ট্রপিক্যাল রেইন ফরেস্ট, ডেসিড্য়াস ফরেস্ট, ট্রপিক্যাল গ্রাসল্যান্ত এবং ম্যান্ত্রোত বনাঞ্চল দেখা যায়। এখানে ক্ষু শাল (Shorea robusta), গর্জন (Dipterocarpus turbinatus), সুন্দরী (Heritiera fomes), কেওড়া (Sonneratio কুলাৱাৰ), পেওয়া (Excoecaria agallocha), পত্ৰ (Zylocarpus granatum), কোলপাতা (Nipa fruticans), বেড (Calamus rotung), নারিকেল (Cocos nucifera), সুপারি (Areca catechu), রাবার (Hevea brasiliensis), হেতাল Phoenix paludosa), 到到 (Mangifera indica), 到到 (Syzygium cumini), 动河 (Artocarpus heterophyllus), নিৰোণা (Cinchona officinalis), কৰি (Coffea arabica), চা (Camellia sinensis), পাট (Corchona capularis), শানি তুলা (Gossypium herbaceum) ইত্যাদি গাছ জনো। ওরিয়েন্টাল অঞ্চলের উপকূলে গরান (Ceriops decundra)

ধাণিকুল (Fauna) : এ অঞ্চলে বস্ত্ ধরনের প্রাণি রয়েছে। এদেরকে নিমুলিবিত উপায়ে সাজানো যায় :

মিঠা বা স্বাদুপানির মাছ : ইলিশ (Tenualosa ilisha), কই মাছ (Labeo rohita), মাচর মাছ (Clarius amachus), লইট্যা মাছ (Harpodon nehereus), হাঙ্গর মাছ (Scaliodon sorrakowah), কই মাছ (Anabus modineus), প্ৰত্যা মাছ (Harpodon nenereus), তাল মাছ (Ompok pabda), তালাবাইন (Macrognathus দ্বা) ইত্যাদি পাওয়া যায়।

্র কুলোব্যান্ত (Duttaphrynus melanostictus), সেলিব্যান্ত (Haplobatrachus tigerinus), গেছেব্যান্ত Macophorus fergusonil), স্যালামাভার (Tylotoriton vercossa), ইক্থিওফিস্ (Ichihyophis) ইভ্যাদি পাভয়া যায়।

সন্মান্ত : গোগরা (Naja naja), হল কছেল (Indotestudo elongata), তইসাল (Varanus bennulos কমোডেজাগন, গিরসিটি, জ্রাকো, রক্তােষা (Calotes versicolor), কেউটে, উভূনু, টিক্সিডি (Draca ক্রান্তের্ডা), অবস্ব (Python moralus) সনীসূপ জাতীয় প্রাণী।

দির ১২.১২ : তরিয়েন্টাল অঞ্চলের উল্লেখযোগ্য প্রালিকুল।

পঞ্চীকুদ : তিয়া (Psittacula eupatria), কবুতর (Columba livia), স্বেত তাকাত্য়া (Cacatua alba), কি কোকিল (Phaenicopheus sp), মুদুর (Pavo cristatus), ব্র বার্ড, বনমোরণ (Gallus gallus), বার্ই, শালিক, হত্ত দোয়েল (Copsychus saularis), পাহাড়ী দুদু (Columba puncicea), হলদে পাবি, রাজশহুল (Sarcogyps cultus বুলবুলি, হাস, পাঁচা (Bubo bubo) ইত্যাদি পাওয়া যায়।

ভন্যপায়ী: এ অবালে রয়েল বেঙ্গল টাইগার (Panthera tigris), চিডারাঘ (Banis javanica), যাতি (Elepanaximus), উন্নক (Hylobates hoolock), ভারুক (Melarsus ursinus), ওরাং ওটাং (Pango pygmacus), প্রেরের mulatta), বুনো মহিষ (Bubalus bubalis), বিশুলী গণার (Dicerorhinus sumatrensis), চিন্ন হরিব (Le axis), বরগোশ, ততক (Platanista gangetica), সভারুক, টাপীর, বাদুর (Pteropus sp), বন্যশ্কর, সিংহ (Panton leo), চন্মাপড়া হনুমান (Trachypithcus phayrei), হায়েনা (Hyaena sp), বড় বেজী (Herpestes edwards), আর্থি (Manis crassicaudata), পাণ্ডা (Ailuropoda melanoleuca) ইত্যাদি পান্তব্য যায়।

Endemic (আঞ্চলিক) : কোনো নির্দিষ্ট ভৌগোলিক অঞ্চলে সীমাবদ্ধ উত্তিদ বা প্রাণীকে উক্ত অঞ্চলের এক্টেন উত্তিদ/প্রাণী বলে।

Exotic (বিদেশী) : এক ভৌগোলিক অঞ্চল (দেশ) থেকে অন্য ভৌগোলিক অঞ্চল (দেশ) এ প্রবর্তনকারী উদ্দিদ প্রাণীকে আগত অঞ্চলের Exotic উদ্ভিদ/প্রাণী বলে; যেমন-পৌপে, আনারস, তেলাপিয়া ও সিলভার কার্প মার বাংশালয়ী Exotic (প্রদেশী)।

ওরিয়েন্টাল অঞ্চলের কয়েকটি এডেমিক ফনা (প্রাণী)

শ্ৰেপি	সাধারণ নাম	दिखानिक नाम
Osteichthyes (제팅)	নাপতি কই সবুজ কুই	Badis badis Lubeo fisheri
Amphibia (উডচর)	গারো পাহাড়ি ব্যাঙ ভ্যানিয়েল এর ব্যাঙ —	Rana garoensis Rana daniel
Reptilia (সরীসূপ)	যড়িয়াল	Gavialis gangeticus Kachuga sylhetensis
Aves (পाचि)	বৰ্মী মন্ত্ৰ খেত কাকাতুয়া	Pavo muticus Cacatua alba
Mammalia (স্বন্যপায়ী)	নিংহগেলী বানর তত্ত্	Macaca silenus Orcaella brevirostris

বাংগাদেশের বনাঞ্চল (Forest of Bangladesh)

রাম্পন ২০°৩০ থেকে ২৬°৪৫ উত্তর অক্ষাংশে ও ৮৮° থেকে ৯২°৫৬ প্রাঘিমাংশে অবস্থিত একটি জনবহুল ছোট রাম্ভন ১,৪৪,৪০০ বর্গ কিলোমিটার। এর পশ্চিম, উত্তর ও পূর্ব– তিন দিকেই ভারতের বিভিন্ন রাজা। পার্বতঃ

बायलाही

चुलना

রাল্যার জেলার দক্ষিণাংশ নাফ নদী
রাল্যার (বার্মা) থেকে পৃথক। দেশের
রাল্যার (বার্মা) থেকে পৃথক। দেশের
রাল্যার (বার্মা) থেকে পৃথক। দেশের
রাল্যার ছিন্যার জাত জারু আত্বর দেশ হলেও
রাল্যার জিন্যার জাত। সবচেয়ে গরম (অধিক
রাজ্যার এরিল-মে এবং সবচেয়ে বেশি শীত
রাজ্যার জাতি-সেপ্টেম্বর মানে অধিক বৃষ্টি

ালাদেশের বড় অংশ গাছের সমভূমি লালাদেশের বাকি অংশে ছোট বড় অনেক বন লালা একটি দেশের মোট আয়তনের শতকরা লালা বনাধাল থাকা উচিত। বাংলাদেশে লালা বনাধাল কমে দাঁড়িরেছে শতকরা ১০ লালা হলাভাল কমে দাঁড়িরেছে শতকরা ১০ লালাহাল। প্রয়োজনের তুলনার এই পরিমাণ

লে ধরন অনুযায়ী বাংলাদেশের বনকে

ाद्रिल्द्र अर्थ-ित्रसद्दा बनाधन, २ । श्रवसता दा भागि समुद्रम कर्ष ७ । भागनव्या ह बनाधन ।

১i দিরসবুজ ও অর্ধ-চিরসবুজ বনাঞ্চল (Evergreen and semi-evergreen

forest) : চট্টগ্রাম, পার্বতা চট্টগ্রাম ও সিলেট অঞ্চলে চিরসবুজ ও অর্ধ-চিরসবুজ বন অবস্থিত।

(रम विनिधा

॥ বার্ষিক বৃষ্টিপাত ২২৫ সেমি (চট্টগ্রামে) থেকে ৫০০ সেফি (সিলেট), তাই বাতাসে জলীয় বালের পরিমাণ বেশি

দিদিতে হিউমাস অধিক, মাটি আসিডিক (স্থান্ত্রা) Ce

🖹 বন অপেকাব্রত খন।

নি) ভূমিত্রপ: ছোট ছোট পাহাড় ও মাঝে মাঝে খান।

া অধিকাংশ উদ্ভিদ চিত্রসবুজ প্রকৃতির।

ৰধ্যান উঞ্জিদ

বিষয়ে উচু বৃক্ষের মধ্যে সিভিট (Swintonia floribunda), পর্জন (Dipterocarpus turbinatus), সমূল des hudiflora); দিতীয় পর্যায়ের বৃক্ষের মধ্যে নাগেশ্বর (Mesua ferrea), বাটনা (Quercus spp.), পিতরাম hudiflora); দিতীয় পর্যায়ের বৃক্ষের মধ্যে নাগেশ্বর (Mesua ferrea), বাটনা (Quercus spp.), পিতরাম hudiflora); দিতীয় পর্যান। পত্রঝরা বৃক্ষের মধ্যে কড়ই (Albizia procera), গামার (Gmelina arborea), আদি coromandelica), চাপালিশ (Artocarpus chaplasha), উদাপ (Sterculia vilosa) ইত্যানি প্রধান। এ ব্রে

প্রতিষ্ঠা কর্মা উদ্ভিদ, কর্ম জাতীয় উদ্ভিদ ও বিভিন্ন প্রজাতির ফার্ন জন্মে থাকে।

বি ক্রমানের অনেক দুর্গম ও বিস্তর এলাকা নিয়ে বিশ্বন অবস্থিত। অধিকাশে বাশই মূদী বাশ (Melocanna)

বি ক্রমানের অনেক দুর্গম ও বিস্তর এলাকা নিয়ে বাশ্বন অবস্থিত। অধিকাশে বাশই মূদী বাশ (Melocanna)

বাদ্ধা চাল ও অগভীর খাতের কারনে কৃষি কাজের অনুপ্রোগী। তবে কোনো কোনো এশাকার জুম চাষ

(Jhum cultivation) হয়ে থাকে। জুম চাধের পর দীর্ঘদিন পড়ে থাকা এলাকায় ছনবন সৃষ্টি হয়। <u>ছন বনের শ্</u>যান্ত ছন (Imperata evlindrica) এবং খাগড় বা কার্ন (Saecharum spontaneum)। Imperata cylindrica) অবং শাগত বা কান বিজ্ঞান । ১৮৬১ সালে ব্রাম্প্রিখেকে বীজ এনে প্রথম সেচন বাগা বছ ১

কার্ডাই এলাকায়।

সোয়াম্প ফরেস্ট হলো মিঠাপানি বা স্বাদুপানির জলাশয় যারা জলাবদ্ধ বন। সিলেটের উত্তরাংশে জুলাবদ্ধ বন (Swamp forest) আছে। এটি রিভারতল জলাবন বিসেবে পরিচিত। এ दरनत श्रधान डेशिम नन चीपड़ा (Phragmitis karka), कान (Saccharum spontaneum) এवर देकड़ा घान (Erianthus ravennae)। उटकर भए। दिक्न (Barringtonia acutangula) अंदर कड़ा गाष्ट्र (Pongamia pinnata) श्रधान । दार्शाटनंदर्गत अकमान वना (भानाभ Rosa involucrata) अचारन भाउमा गाम । রাভারতল বন দেখার জন্য প্রচুর পর্যটক এসে থাকে। এখানে একটি পর্যবেক্ষণ টাওয়ার আছে।

বছরর সিলেটের বনাদালের মধ্যে রেমা-কেলেলা. পাওয়াছভা, সাতছভি উল্লেখযোগ্য নাম। সিভিট ও গর্জন চট্টগ্রাম ও পার্বতা চট্টগ্রামে যথেষ্ট পাওয়া গেলেও সিলেটের বনে এগুলো কম। সিলেটে প্রচর বেত জন্ম।

চিত্র ১২.১৩। দিলেটের রেমা-কেদেরা বনের মার্থবাস।

প্রাণিকুলের মধ্যে আসামী বানর, চশমা হনুমান, মুগপোড়া হনুমান, উল্লুক, গেছোভালুক, বুনো শুৰু, জ কাঠবিভালী, শেয়াল ইত্যাদি প্রধান।

২। পত্রঝরা বা পর্ণমোচী বনাঞ্চল (Deciduous forest) । যে বনের সকল বৃক্ষের পাতা একসাথে করে হয় যায় দিয়ে গঠিত বনকে পর্বমোচী বন বলে। এ বন ঢাকা, গাজীপুর, ময়মনসিংহ, টাঙ্গাইল, শেরপুর, কুমিলার ম্যান্নিং ল বরেন্দ্র অফলে অবস্থিত। ময়নামতির বন শালবন বিহার নামে, শেরপুর জেলার উত্তরে পাহাড়ী এলাকার বার্তিন गजनी वन नाट्य পরিচিত ।

বরেন্দ্র বনাঞ্চল : রংপুর, দিনাজপুর ও রাজশাহী জেলায় অবস্থিত।

মধুপুর বনাঞ্চল : টাঙ্গাইল জেলার মধুপুর ও ময়মনসিংহ জেলার বেশ কিছু সংশ নিয়ে গঠিত।

রাজেন্দ্রপুর বনাঞ্চল: গাজীপুর জেলার উত্তরাংশে অবস্থিত।

চন্দ্রা বনাঞ্চল : গাঞ্জীপুর জেলার উত্তর-পশ্চিমাংশে এটি অবস্থিত।

দাল্যাই শাল্বন অঞ্চল : এটি কুমিল্লা জেলায় শালমাই পাহাডে অবস্থিত।

বলের বৈশিয়া

- (i) বসম্ভকালে গাছে নতুন পাতা গজায় আর শীতকালে এ বনের বৃষ্ণরাজির পাতা ঝরে যায়।
- (ii) বার্ষিক বৃষ্টিপাত কম, ১২৫ সেমি (বরেন্দ্র অঞ্চলে) থেকে ১৭৫ সেমি (ঢাকায়), বাতাদের আর্দ্রতা অপেকাতৃত কম।
- (iii) লৌহেব (আয়রন-অক্সাইড হিসেবে) পরিমাণ অধিক থাকাত মাটির বর্ণ লাগ বা হলুদাভ, মাটি বেশ আসিভিক, বর্ণায় কর্মমাক ও শীতে ভকলো।

जिस ३२,३8 । भागवम ।

(क) वन जनमामनकडारन कम धन, करन मधुन्त जकारन जरणकाकृत धन।

া। বিশ্ব কালে কাকে কাকে সমতলভূমি বাইদ সবছিত। চালাছ বন এবং বাইদে ধান চাম হয়। (।) গড় তাপমাত্রা শীতকালে 17.8°C এবং গ্রীপ্রকালে 26.70°C।

क्षत्र वंशन देखिन র বালের প্রধান বৃক্ষ শাল । শাল বৃক্ষের পরিমাণ কোনো কোনো ছানে শতকা। আই ৯৮ বুল পর্বন্ধ। তাই এই বনের পালবন। বর্তমানে অধিকাংশ মূল শালবৃক্ষই কঠিত। মূল বৃক্ষের শোড়া থেকে গঞ্জানো চারা থেকে সৃষ্টি হয়েছে রুল বন, তাই এ বনের আরেক নাই প্রায়ী বন

প্রাণ বৃদ্ধ পাল (Shorea robusta)। এ ছাড়াও চাল্ডা (Dillenia pentagyna), কড়ই (Albicia procesa), (Millusa velutina), रूपे (Careya arborea), राष्ट्रका (Terminalia bellirica), रूपि (Holarrhena প্রত্যাল হত্যালি বৃক্ষ জন্মে থাকে। শতমূলী (Asparagus racemanus), ইনট চতাল (Glariota superba) स्थान (Rouvolfia serpentina) छिनाछि विभागन एडवक छेविन व दरन (मणा यात्र ।

हें दल आगीरमत भर्षा भाषा रुतिन (Muntiacus muntjak), नानत (Macaca mulana), मुरालाजा रनुमान, एन्ह्यान (pair aureus), বুনো শ্কর, সজারু, বাদুর, বেজি, খাটাস (Viverricula indica) কুত্ম পেঁচা (Bube zeylonensis) রা বিভাগ (Felis viverrinus) প্রধান।

ে মানগ্রান্ত বা উপকূলীয় বনাঞ্চল (Mangrove or Tidal forest) । লবণাক ও কর্দমাক কেলা মাটির বনকে ক্ষাত বন বলে। বাংলাদেশ ও ভারতের স্থারবন হলো পৃথিৱীর সর্বাপেকা বহু ম্যানগোত বান্তি। ম্যানগোত বনের র অংশ পটুয়াখালী জেলার দক্ষিণ পতিম অংশ থেকে তক হয়ে পতিমে বৃহত্ত গুলনা পাড় হয়ে পতিমবঙ্গের কাছে রহেল নদী পর্যন্ত বিস্তৃত। এ অংশ সুন্দরবন নামে পরিচিত। এছাড়া মাতামূহরী নদীর মোহনায় চকোরিয়া সুন্দরবন্ত ক্ষাত বন নামে পরিচিত এবং নাফ নদীর তীরে কিছু ম্যানমোভ বন দেখা যায়। সুন্দরবনের অর্থাৎ ম্যানমোভের ৪,০০০ বর্গ কিলোমিটার এলাকার প্রায় ৬২% বিংলাদেশে অবস্থিত। সুন্দরবদের বার্ষিক বৃষ্টিপাতের পরিমাণ ২০০ সেমি র মনিকুলে প্রজাতির সংখ্যা স্থলভাগে ২৮৯টি এবং জলভাগে ২১৯টি প্রজাতি রয়েছে।

ন্মান্ত বনের বৈশিষ্ট্য

- ()) व वन हित्रमवुक वन ।
- (ii) বনের নিমাঞ্চল দৈনিক দু'বার জোয়ারের পানিতে সিক হয়।
- (iii) মাটি এবং পানি লবণাক্ত। মাটির pH ৭ এর কাছাকাছি।
- (iv) মাটিতে অক্সিজেনের অভাব থাকায় অধিকাংশ বৃক্ষের শ্বাসমূল বা নিউমেটোকোর হয়।
- ।।। শবশাক্ততার পরিমাণ তহু ওজনের ১০-৫০ ছাগ।
- m) মোয়ার-ভাটা অধ্যলে প্রতিষ্ঠিত হতে অনেক উদ্ভিদে জরাযুক্ত অন্ধুরোদগম হয়।
- (III) क्या था मनी-छेलमनी ७ छारमण धाता भूनम्हदन छाउँ छाउँ अरण दिङ्छ।

ন হথান উত্তিদ

শীপাড়ের কম লবণাক্ত (হালকা) পানিতে গোলপাতা (Nipa fruticans), হিতাল (Phoenix paludosa), সুনর তি fames), পেওয়া (Excoecaria agallocha), কেওড়া (Sonneratia apetala), প্রামুর (Amoora cucullata), ি (Excoecana agameena), ত্রাক্ত্র (Excoecana agameena), তর্ম) অন্তলে কাঁকড়া (Brugulera gymno relicu), বইন আৰু officinalis), পতর (Xylocarpus moluccensis), মুনুল (Xylocarpus granatum) জাল হাত। হবল প্রতির (Xylocarpus monuccensis), পরি (Xylocarpus monuccensis), পরি (Hibiscus tiliaceous) ও হাতৃশোলা (Acuminus (Brownlowia lanceolata), এবং ভশালাতীয় বোহাল (Hibiscus tiliaceous) ও হাতৃশোলা (Acuminus ত প্রধান। সুন্দরবনে টাইগার ফার্লের (Acrostichum aureum) ঝোপ আছে। সুন্দরবনে তোনো বাশ জন্ম না। ¹ শ্বে অকিড কলো।

চিত্র ১২.১৫ : সুন্দরবনের (১) গোলপাতা, (২) টাইগার ফার্ম।

প্রাণিকুল : উদ্ভিদের মতো সুন্দরবন প্রাণিকুলেও সমৃদ্ধ। এখানকার স্থলভাগে ২৮৯টি প্রাণী এবং আক্রান্ প্রাণী প্রজাতি রয়েছে। এছাড়া এখানে ৩১৫টি প্রজাতির পাখিও রয়েছে।

(২) হরিণ (১) হিতাল চিত্র ১২.১৫.১ : সুন্দরবদের (১) হিতাল, (২) হরিণ।

সুন্দরবনের প্রধান আকর্ষণ রয়েল বেঙ্গল টাইগার, ২০১৩ সালের হিসাব মতে যার সংখ্যা ৪৪০টি। এখান বর্ম হরিণ আছে ৮০-৮৫ হাজার, বানর ৪০-৫০ হাজার, লোনাপানির কুমির ২০০-২৫০টি। এখানে ১২০ হজারে হার ২৭০ প্রজাতির পাবি আছে। এছাড়াও আছে বনমোরগ, অজগর, বাদামি কাঠবিড়ালী, বুনোশূকর, পেরাকা সাণ ইত্রি

সুন্দরবন ওয়ার্ভ হেরিটেজ সাইট (বিশ্ব ঐতিহা এলাকা) : সুন্দরবনের তিনটি বন্যজীব অভ্যারণা নিয় জ হেরিটেজ সাইট গঠিত। এর আয়তন ১৪০০ বর্গ কিলোমিটার, যার মধ্যে ৯১০ বর্গ কিলোমিটার বনভূমি আর ১৯ কিলোমিটার জলাভূমি। অসাধারণ প্রাকৃতিক সৌন্দর্যের কারণে UNESCO-র ওয়ার্ড হেরিটেজ কমিটি ১৯৯৭ সাল জ ২১তম সেশনে বাংলাদেশের সুন্দরবনকে ওয়ার্ড হেরিটেজ এর অংশ হিসেবে তালিকাছুক্ত করে এবং বাংলাদেশ একে ১৯৯৯ সালে ওয়ার্ভ হেরিটেজ সাইট ঘোষণা করে।

উপকূলীয় বনাঞ্চল ও সবুজ বেষ্টনী (Costal Tidal forest & green belt)

বাংলাদেশ্যের পূর্ব, পশ্চিম ও উত্তর দিক স্থল বেষ্টিত কিন্তু দক্ষিণ দিকে নয়েছে উন্মুক্ত বঙ্গোগদাণৰ। দক্ষিণ মলো বিশেষ করে সাজ্ঞীন জেলাগুলো, বিশেষ করে সাতকীরা, খুলনা, বাগেরহাট, বরগুনা, পটুয়াখালী, ভোলা, নোয়াখালী, চটুগ্রাই ও ক্রিলি জেলা সরাসরি সাগর পাড়ে দাঁড়িয়ে আছে। এছাড়াও সাগরবক্ষে সন্ধীপ, হাতিয়া, মৃত্যুখাদী, উল্লিখ্য হ মুকড়িসহ অসংখ্য ছোট-বড় দ্বীপ ও চর এলাকা রয়েছে। স্<u>মূপূর্ণ উপক্রীয় সকল প্রায় কিছে।</u>

ভিতিতে বাংলাদেশের উপক্লীয় বনাঞ্চলকৈ তিন ভংগ ভাগ করা হতেছে।

তিনি নিয় অকল : বাংলাদেশের পূর্ব দক্ষিণে বদর মোকাম থেতে কেই ত ্রাসিন্দ্র বিশ্বনার প্রতিষ্ঠিত প্রতিষ্ঠিত করে করে বিশ্বনার প্রতিষ্ঠিত করে বিশ্বনার প্রতিষ্ঠিত করে করে বিশ্বনার প্রতিষ্ঠিত করে করে বিশ্বনার প্রিয়ার অবলা । প্রিয়ার আকে টেকনাফ পর্যন্ত ১৪৫ কিমি, দীর্ঘ সমূদ্র সৈকত আছে। ব্যালনেশের ক্রমত করে হল প্রায়ার থেকে টেকনাফ পরান, গেওয়া প্রধান উদ্ভিদ। এছাড়া গোল্লাল ক্রমত ক্রমত করে ইন প্রিরারার বের বাইন, গরান, গেওয়া প্রধান উদ্ভিদ। এয়াড়া গোদশাতা, টাইগার কর্ম, যার্লার ইর কি

। তাহুলীয় অঞ্চল : ফেনী নদীর মোহনা থেকে সুন্দরবদের পূর্ব গর্বত সমস্তল বিশ্বত হলে। এবাদে চক্রী বাহুলীয়া অঞ্চল : ফেনী নদীর মোহনা থেকে সুন্দরবদের পূর্ব গর্বত সমস্তল বিশ্বত হলে। এবাদে চক্রী বা উপত্যাল এই এই প্রধান উভিদ কেওড়া। এছাড়া এখানে বাইন, গেওয়া প্রভূতি দেবা যায়। প্রায় প্রধান উভিদ কেওড়া। এছাড়া এখানে বাইন, গেওয়া প্রভূতি দেবা যায়।

প্রতিষ্ঠ কর্ম নালের অঞ্চল : সমপূর্ব সুন্দরবন এ অরুগের অন্তর্ভুক্ত। এ অঞ্চলে বৃহৎ মান্সার বন্ধুই বছে।
বি প্রতিষ্ঠা, গরান, বাইন, গোলপাতা, হাড়গোলা, টাইগার ফার্ন হত্তি প্রথম ইতিছ

া করে করে। পরান, বাইন, গোলপাতা, হাড়গোজা, টাইগার ফার্ন লক্তি ধ্রম উদ্ভিদ।

বা ব্যস্থানের কারণেই বাংলাদেশ একটি কড়গ্রন এলাকা। সাম্ভিক ্ত্রা, গোডানা, বিজ্ঞানের কারণেই বাংগাদেশ একটি কড়প্রবদ এগাকা। সামুদ্রিক জনোজ্যস, সিত্তর, ইনেজে প্রতি বছাই বিজ্ঞানের আঘাত হানে। এর ফলে ব্যাগক প্রাণ ও সম্পদহানি ঘটে। সম্পদ্র বিশ্ব ব ্রিত ব্যস্থান্ত আঘাত হালে। এর ফলে ব্যাগক প্রাণ ও সম্পদহানি ঘটে। সমূদ্রের ইপ ও চর এলাক্স বর্ত্ত গোল সংক্রোসমূহে আঘাত হালে। এর ফলে ব্যাগক প্রাণ ও সম্পদহানি ঘটে। সমূদ্রের ইপ ও চর এলাক্স বর্ত্ত গোল সংক্রোসমূহে আঘাতে এ বিস্তীর্ণ এলাকাকে সামুদ্রিক জলোগ্ডাস, সিত্তর প্রবিজ্ঞ বস্তুত লাক্স ্রিলাসমূহে আমানের এ বিস্তীর্ণ এলাকাকে সামূদ্রিক জলোগুলুস, সিত্তর, মূর্বিকত এসব প্রাকৃতিক দুর্বোগ বেকে হল। ব্যক্তির। আমানের এ বিস্তীর্ণ এলাকাকে সামূদ্রিক জলোগুলুস, সিত্তর, মূর্বিকত এসব প্রাকৃতিক দুর্বোগ বেকে হল। প্রতিষ্ঠ । আলাব প্রতিষ্ঠ । আলাব উপায় হলো উপায় হলো উপকূলীয় সবুজ বেইনী সৃষ্টিকরণ । সবুজ নেইনী হলো উপকূলীয় বনাখন সৃষ্টির মাধ্যমে বাজি সম্বোধ সবুজ বেইনী তৈবি করা ।

প্রত মহাবৃত সবুলা বেটনী তৈরি করা। ্যার র মন্ত্র পূর্বিশ্বাড় ও জালোড্যাসে বাংগাদেশের উপকৃষীয় অভাগে হাজার হাজার মানুবের হালালী মটে। বর সুষ্টা পান প্রচত পূর্বিশ্বাড় ও জালোগ্রহ মানুষ ও তালের সক্ষমে সক্ষার বাংগিলে উপকৃষ্টি মানুবের হালালী মটে। বর ্রার রপকুলীয় এলাকায় বস্বাসরত মানুষ ও তাদের সম্পদ রকার ব্রহনিয়ে উপকুলীয় করুল বেটনী গড়ে তালার ক্রা রপকুলীয় এলাকায় বস্বাসরত মানুষ ও তাদের সম্পদ রকার ব্রহনিয়ে উপকুলীয় করুল বেটনী গড়ে তালার ক্ষা লগত বাব উপকূলীয় বনবিভাগ নামে একটি বনবিভাগ সূচি করা হয়। প্রথমিকভাবে করবাছার ও চইয়ার বাব ন্যো হয় এবং উপকূলীয় বনবিভাগ নামে একটি বনবিভাগ সূচি করা হয়। প্রথমিকভাবে করবাছার ও চইয়ার ্ত্ৰতে তিলোমিটার উপকূলীয় সবুজ বেষ্টনী গড়ে কোলার উলোগ নেয়া হয়।

क्षा दानी (Costal Tidal green belt) গোলাল নিয়মিতভাবে আতু পরিবর্তনেত সময় বঙ্গোলসাগরে নিয়ুচাণের সৃষ্টি হলে ভূবত মুর্বিয়ন্তের করলে পরে। ক্ষ্মী বহু বহু গাছপালা ও প্রাণিসম্পদের গ্রহর কতিসাধন হয়। তাই বড়ের কবল থেকে ঘররাড়ি, ফসন, কৃষ্কিনি হ তা তার উদেশ্যে পরিবেশ চাত্তিক চিত্তাধারায় বৃক্ত রোপণ করা যেতে পারে। <u>বাকৃতিক দুর্বোগ করেছাগনার উদেশে</u>। াৰু বাবৰ প্ৰথা বায় প্ৰবাহের সিমকোণে বাগিত প্ৰক্ষাণি শাখা-বাশাৰা সমূহ বুককে বাহু ধৰাই বোধক বা <u>শার্থিকিছে। আর যে একফালি ভূমতের উপর সমুজ বেইনী গড়ে জোলা হয় সেই ভূ-মততে আশ্রহ ফলি (Shelter</u> গ্রাহত। চিনার্থনিক বৃংক্তব উঠু প্রজাতিকলো সবুক বেটনী হিসেবে অধিক কার্বকর। তবে অশ্রের কার্যনির কর্ত্বার কেন্দ্রাল লা মুক্তি বুক্ত বোপণ করতে হয় এবং তার উভয় পাশে ক্রমণ কম উভডার বুক, তলু, উপচলু ও ভূগনতা বোপণ মায়। এর ফলে বনের ক্যানোপির (Canopy) রস্থতেন হিসেপাকার হয়।

- ১০ বুল বোনী সমুদ্র থেকে আসা জংলাছোসকে প্রাথমিকভাবে প্রতিহত করে এবং **জলোজাসের গতি,** প্রচতনা ত भिरुति ल्यून (बहेनीड धारमासनीसठा (Necessity of tid. I green belt)
 - । অসাজ্যস্তালীন ভাটার টানে মানুষ, পত ও অন্যান্য সম্পন্ন ভেলে বাওয়া থেকে বজা করে।

 - । বিক্রা গতিবেশ, কাপটা ও কতির পরিমাণ কমিয়ে দেয়। । বসস্থান গভীর পানিতে তলিয়ে গেলে বৃক্তের উপর উঠে মানুষ আহ্রেছা করতে পরে।
 - াস্ত্র ব্যানতে তালনে গেলে বৃংকর ওলা তর করে। বিশ্ব ব্যানীতে লাগানো বৃক্ষ থেকে প্রয়োজনীয় স্থানানি, কঠি, খাবন ও স্থানা সামাী পেতে পারে।
 - া ইপ্ৰুণীয় অভাগ জোয়াবের পানিতে নিয়মিত নিক হছ এবং পানি স্ব্ৰাক। এক) উচু সালায়ত লগে হতে। জিয়াকে মোৰ অধান ভোয়াধের পানিতে নিয়ানত নিত হয় এবং পানি বংশাত আৰু হতাতি করু কেন্দ্র আন নিয়ান সকল सिनेव बुक्कर धरम या विनिधि

 - শিক্ষাৰ মাধ্যমে মাটি বৰে বাধ্যৰ পাতে এমন প্ৰভাৱি নিৰ্ভাল কৰাত হবে। কর বাপানয় তেতে না যায় বা মুলোনপাটিত মা হয় এমন প্রভাত চন্তানা করছে হলে। বুল বেইনীর বুল্ফ থেকে থাসা, পশুধাসা, পানীয়, স্থাসানি, করি ও জন্মনা অধিত সম্পদ্ধ প্রথম স্থান্থ স্থানা ব্যক্তি

কেওড়া, সুন্দরী, বাইন, রাইজোফোরা, পতর, নারিকেল, সুপারি, গাব, বিলাতি গাব ইত্যাদি বৃদ্ধ বিভাগ কেওড়া, সুশানা, বাবন, বেতে পারে। মৃদু শবণাজ্ঞ সালে অধ্যে অন্য ন্যু পারে, এ থেকে জালানি ও কাঠ পাওয়া যায়। সুন্দরী থেকে কাঠ পাওয়া যায়। গাব থেকে খ্রালানি, যান্ত্রে সা পারে; এ থেকে জালানি ও কাঠ শাভ্যা যায়। এছাড়া গাব গাছ অত্যন্ত শক্ত, ঝড়ের ঝাগটা সামাগ নিয়ে ক্র পরে। জেত্রের দিকে লাগ্যনো নারিকেল এবং সুপারি বাগান খাদ্য, পানীয় ও অর্থ যোগান দিতে পারে।

্রেইনটি, প্রান শিরিষের মতো কম শক্ত কাঠের বৃক্ষ নির্বাচন করা উচিত নয়। প্রচণ্ড কড়ে বা জ্ব নিজেরাই ভেঙে যায় এবং বসতবাড়ি, মানুষ ও পতপাখির মৃত্যুহার বাড়িয়ে দেয়।

অর্থের লোভে যেন কেউ সবুজ বেষ্টনীর বৃক্ষ নিধন না করতে পারে সেদিকে সবার দৃষ্টি রাখতে হবে।

বাংলাদেশের বিলুগুপ্রায় জীবের পরিচিতি

প্রকৃতিতে যে সকল জীব (প্রাণী ও উদ্ভিদ) পূর্বে ছিল কিন্তু বর্তমানে তাদের কোনো অন্তিত্ব পাওয়া বার স্ক জীবদের বলা হয় বিলুপ্ত জীব। বিভিন্ন কারণে সময়ের ব্যবধানে কিছু কিছু প্রজাতি কোনো নির্দিষ্ট জন্ম যেতে পৃথিবীর বুক থেকেও বিলুপ্ত হয়ে যায়। এ ধরনের বিলুপ্তিকে নেপথ্য বিলুপ্তি বলে। হঠাৎ করে পৃথিবীব্যাপী বিশ্ব প্রজাতি বিলুপ্ত হওয়ার ইতিহাস আছে। এ ধরনের বিলুপ্তিকে বলা হয় গণবিলুপ্তি (mass extinction)। গণবিনুধি প্ শাচ বার ঘটেছে। যে উত্তিদ বা প্রাণীকে নির্দিষ্ট প্রাণিভৌগোলিক অঞ্চলের বাইরে অন্য কোগাও পাওয়া যা ব অভিমিক উদ্ভিদ বা প্রাণী বলে। ৪৫০ মিলিয়ন বছর আগে (অর্জোভিসিয়ান যুগেরও শেষ দিকে) প্রথম গণরিলুই ৮ শতকরা ৮৫ ভাগ প্রজাতি বিলুপ্ত হয়ে যায়। সর্বশেষ গণবিলুপ্তি ঘটেছে প্রায় ৭০-৮০ মিলিয়ন বছর আগে কিটসিচ যখন শতকরা ৭৬ ভাগ প্রজাতি বিলুপ্ত হয়ে যায়। এরপর আর কোনো গণবিলুপ্তি ঘটেনি বরং ধীরে গাঁরে চিন্তু প্রজাতির উলোগ ঘটেছে।

জীববৈচিত্রোর রেকর্ড জরু হয় কার্যত ১৬০০ খ্রিস্টাব্দের পর থেকে। এর পূর্বে কোনো দেশেরই জীববৈচিত্রের কা তৈরি হয়নি, এখনও পৃথিবীতে অনেক দেশ আছে যাদের জীববৈচিত্রের তালিকা করা সম্ভব হয়নি।

বর্তমানে জীববৈচিত্র্য সংকটে পড়েছে। তালিকাড়ক অনেক প্রজাতি ইতোমধ্যেই বিলুপ্ত হয়েছে এবং বহু এখানি প্রায় অবস্থায় এসে দাঁড়িয়েছে। অনেক প্রজাতি আছে যা পৃথিবী থেকে বিলুপ্ত না হলেও বিভিন্ন অধান থেকে বিলুক্ত চলেছে। বাংলাদেশেও এমন অনেক জীব প্রজাতি আছে যা পূর্বে সচরাচর দেখা গেলেও এখন আর দেখা যাই ন।

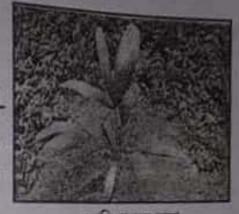
বাংলাদেশের কডিপয় বিলপ্তপায় উলিদ

<u>শ্</u> রেপি	देवळानिक माम	স্ত্রপ	বারিছান
कार्नवर्गीग्र	> Psilotum triquetrum	পরাশ্রমী	বরিশাল, পটুয়াখালী ও দুশন
উদ্ভিদ	₹ Tectaria chattagramica	प्रगत	FDSITH
नग्रवीकी	2 Cycas pectinata	छन्।	চট্টগ্রাম, ব্যক্তিয়াচালা, পারো
উন্ভিদ	₹ Podocarpus nerifolia	বৃক্ষ	50शास
	10 Gnetum funiculare	সতা হলা	চটগ্রাম, কপ্রবাজার, সিলেট
আবৃতবীজী	১ ৷ Aldrovanda vesiculosa (মন্ত্ৰিকা ঝাঝি)	জলজ, পতঙ্গশুক	রাজশাহী, পাবনা
উত্তিদ	ই i Aquillaria agallocha (আগর) -	বৃদ্ধ	পাখারিয়া বন-খোলভীবাজার
	ত। Corypha taliera (ডালিপাম)	তাল ভাতীয় বৃক্ষ	एका विश्वविसास्य भगाव
	8 Knema bengalensis (পুলে বড়লা)	उक्ष	क्रमाहाकता-कन्नदावाद (देव
	१ Licuala peltata (दशक्ष) -	তাল জাতীয় বৃক্ষ	उत्रेद्याम, कामामर-वावामरहे,
	७ Rotala simpliciuscula (ceiūnen≻	উভচর জাতীয় উদ্ভিদ	চট্টগ্রাম (এডেমিক)
	৭। Rosa involucrata (আর্থা গোলাপ)	জগজ, ওল	সিলেট এর হাওড়

^{*} आगव वर्षभारन वांगीक्रिकचारव छाम क्या इसक, काई बाद विमुख्याच नम अवर Chlorophytum repaiente (वेंबर) বালোদেশে আর পার্যাই যাহের না। "ভালিশানটি এখন নাই, এর অনেক চারা বিভিন্ন জারণার লাগানে হয়েছে।

১। তালিপাম (Tali palm)

বিশুও প্রায় উদ্ভিদের মধ্যে তালিপাম অন্যতম। এর


apha saliera Roxb. গাছটি দেখতে প্রত বি Corypha taliera Roxb. গাছটি দেখতে প্রায় তাল গাছের ব্য Construit নাম হলো তালি বা তালিপাম। এটি Arecaceae

ুবাকো অভগত। নালাদে। বি প্রিম বঙ্গের <u>শান্তিনিকেতনের কাছে অবস্থিত তালিপাম গাছটি</u>

াদীসহ তালিপাম (Corypha taliera)

ফেলার বাংলাদেশে **डाका** विश्वविमानिश

তালিপামের চারা

এলাকায় অৱস্থিত তালিপাম গাছটিই ছিল বিশ্বের একমাত্র বনা তালিপাম গাছ। তালিপাম জীবনে মাত্র একবারই ফুল ও ফল উৎপানন করে এবং পরে তার মৃত্যু ঘটে। ঢাকার গাছটিও ২০১০ সালে ফুল ও ফল উৎপাদন শেষে ২০১২ সালে বিশুও হয়ে গেছে। তবে মৃত্যুর আগে গাড়টি বহু ফল উৎপাদন করে গেছে যা থেকে অসংখ্য চারা করে বন বিভাগের মাধ্যমে দেশের বিভিন্ন অধ্যনে লাগানো হয়েছে। ছাকা বিশ্ববিদ্যালয়ের উপাচার্য ভবনের সামনেও একটি চারা লাগালো

র্যানে বিশ্বের কোথাও বন্য অবস্থান্য আর কোনো তালিপামের খবর জানা নেই। আমাদের লাগানো চারাওগোর প্রতি লৈ যত্ন নোৱা আৰশ্যক, যাতে সঠিকভাবে বেড়ে উঠতে পারে এবং ৬০-৭০ বছর পর মৃত্যুর আগে প্রমুখ ফল উৎপালন

ধানে উল্লেখ করা যায় যে, আমরা ইতোমধোই তালিপামের পুশ্পায়ন, বীজের অনুরোদগম, কচি ফলের ছামত গারে। বাংলার বাইরে এ গাছ নেই। এটি বৃহত্তর বাংলার এডেমিক। এক্ষিকেল বিশ্লেষণ, ব্যাষ্ট্রেরিয়া বিরোধী ক্ষমতা, আন্টি অক্সিডেন্ট গুণ ইত্যাদি বিষয়ে গ্রেষণা শেষে ফলাফল প্রকাশ

অসম্ম হয়েছি, যা আগামী ৬০-৭০ বছরে আর সম্ভব হবে না।

र। पश्चिका योदि। (Malacca Jhangi)

নিক বাঁকি বাংলাদেশের আরেকটি বিলুও প্রায় ने देव देखानिक नाम Aldrovanda vesículosa Linn. Droseraceae । यद्भिका योषि এकि अनक বাং পতসভূক উন্তিদ। বাংগাদেশে সর্বপ্রথম মার্ক্ত শিওয়া যায় ১৯৭৪ সালে ব্রাজশাহার জন্তর্গত একটি বিল থেকে। পরবর্তীতে চলন বিবা সাহব হয়নি। ধারণা করা হচ্ছে বাংগাদেশ সভর্ত পর্যবেছণে হয়ত কেই বাই প্রেছির হলাশয়তলোতে সভর্ত পর্যবেছণে হয়ত কেই বাই প্রেছের বাই প্রিছির বাই প্রিছির বাই প্রিছির বাই বিশ্বত হয়ে প্রেছের প্রাকৃতিক হলাশয়তলোতে বাইকা কান্তি কান্তে থাকে। িকা) থেকেও একবার সংগ্রহ করা হয়েছিল কিন্তু এর া থেকেও একবার সংগ্রহ করা হলেছে মরিকা বর্ষর বাংলাদেশের কোলো লায়গা থেকে মরিকা

শবিকা কাঁকি (Aldrovanda vericulosa)

্ত হতোমধ্যেই বিপুত হয়ে গেছে। প্রাকৃতিক জলাশয়তগোতে স্বিকা কান্তি জন্ম থাকে। বিশ্বা এশিয়া, আফিকা সেন্ট্রাল ইউরোপ ও অস্ট্রেলিয়াতেও স্বিকা কান্তি জন্ম থাকে।

৩। কুনে বড়লা (Khude barala)

ক্লুদে বড়লা বাংলাদেশের একটি এন্ডেমিক উত্তিদ। বাংলাদেশে এন্ডেমিক অর্থ হলো বাংলাদেশের বাইরে অন্য কোনো দেশে এখনো এটি পাওৱা যায়নি। এর বৈজ্ঞানিক নাম Knema bengalensis de Wilde, গোত্র Myristicaceae। এই উদ্ভিদটি সর্বপ্রথম সংগ্রহ করা হয় ১৯৫৭ সালে কস্তবাজার জেলার ভুলাহাজরা বনাদ্বল থেকে। পরবর্তীতে ১৯৯৯ সালে কক্সবাজার জেলার আপার রিজু বনবিট অফিসের কাছে একটি গাছের সন্ধান পাওয়া যায়।

ফুদে বড়লা একটি মধাম আকারের বৃক্ষ, কাণ্ডে ক্ষত হলে রক্ত বর্ণের কস বের হতে থাকে। ক্লুদে বড়লার পুরুষ ও গ্রী বৃক্ষ পৃথক। এখনো কোনো ন্ত্রী বৃক্ষের সন্ধান পাওয়া যায় নি। আপার রিজু অঞ্চলে ব্যাপক অনুসন্ধান করে এর প্রী বৃক্ষ আবিষ্কার করতে হবে এবং ঐ বৃক্ষ থেকে বীজ সংগ্রহ করে

कृतन बड़ना (Knema bengale চারা করার মাধ্যমে সংখ্যা বৃদ্ধি ঘটাতে হবে অথবা টিস্যু কালচার পদ্ধতিতে চারা করতে হবে। এর স্বেছণ ও বাত উদ্যোগ নিতে হবে।

8। কোরুদ(Kurud)

কোরুদ একটি পাম জাতীয় উদ্ভিদ যা চট্টগ্রাম, সক্র (कामानः) अदः मिलिएन भरीन दत्न छत्। धारक । अत्र देखनिक व Licuala peltata Roxb | CIIII Arecaceae, uff ceit siefe q মাত্র ২-৩ মিটার উচু হয়ে থাকে। এর পাতা দিয়ে এক রক্ষ 🚾 তৈরি করা হয়, আবার ধরের ছাউনিও দেয়া হয়। বাংগাদেশে संग মায়ানমার এবং ভারতের বিহার, মণিপুর, ত্রিপুরা, আনামান । নিকোবার দ্বীপপুরে পাওয়া যায়। বাংলাদেশে বর্তমানে এট দুর ম যাছে। এর ইন নিটু ও একু-সিটু উভয় প্রকার সংরক্ষণ মতি 🕬 বন বিভাগ এ দিকে নজর দিবেন আশা করি।

(Alcuala peltata)

৫। রোট্যালা (Rotala)

রোট্যালা বাংলাদেশের একটি এভেমিক উদ্ধিদ। এর रेक्क्रानिक नाम Rotala simpliciuscula (S. Kurz) Koehne, পোত্ৰ Lythraceae, বাংলাদেশের চট্টগ্রাম থেকে এটি সংগ্রহ করেছিলেন হকার ও থমদন (Hooker and Thomson) এবং সেই নমুনার উপর ভিত্তি করে S. Kurz धात मामकान करविष्टिलन ।

রোট্যালা একটি উভচর জাতীয় উদ্ভিদ, জল সিক্ত ছালে জন্মে থাকে। তবে হকার ও থমসনের সংগ্রহের পর আর দিতীয় বার সংগ্রহ করা সম্ভব হয়নি, কাজেই এটি বাংলাদেশ থেকে এমনকি পৃথিবী থেকে বিলুপ্ত হয়ে গেছে বলে অনুমান করা যায়।

द्वाणाना (Rotala simpliciuscula)

রোগ্যালা (Rotala simpliciuscului)
আমালেরকে এ গাছটিকে খুঁজতে হবে এবং পাওয়া গেলে ইন-সিটু এবং এক্স-সিটু উভয় পছবিতে সাধার্ মা করতে হবে। বাসকা করতে হবে।

বাংলা নাম	म (विश्वविद्यार) करि	(294)	
্বার্ছন বেঙ্গল টাইগার	Royal Bengal Tier	(Endangered)	25
্যালপকুন	Royal Bengal Tiger	Animals)	
গ্ৰামান	King Vulture Garial	Ponthera tigns	
हा क्रिता भागित कृथित	Mugger Crocodile	HISTORYDI COL	
शामिन गाँदे	State Bull	Officiality posterior	
वा का के दे	Inawaddy Dylet	Crocodylus palastrus Boselophus tregocomelus Occomelus	-
। বেগুল ক্রফ কাইটা	Comese Paneolini	Cricoella previnostria	
	Bengal Roof Furtle	Manu pentadaciyla Kachirga kachina	-

াংলাদেশের বিলুগুপ্রায় কয়েকটি প্রাণীর সংক্রির বিবরণ

(Sarcogyps calvus)

🐧 त्राजनकृत (Red-headed vulture)

রাজশকুন বিশ্ব প্রেক্ষাপটেই একটি বিপন্ন পাখি, বাংগাদেশে এটি মহাবিশ্র বলে চিহ্নিত। এটি বাংলাদেশের প্রাক্তন আবাসিক দাখি, তবে বর্তমানে আর দেখা যায় না। দক্ষিণ ও দক্ষিণ-পূর্ব এশিয়ায় এর বিকৃতি।

বাজশকুনের বৈজ্ঞানিক নাম Sarcogyps calvus (Scopoli, 1786): ইংরেজি নাম Red-headed Vulture or King Vulture, এই মুখা লাগ, পাৰত তাগ। পুরুষ ও প্রী পাথির চেহারা অভিনু। অন্যান্য শকুনের মতো এরা দশবছ নহ, একা বা জোড়ায় দেখা যায়। থাবারের তালিকায় মৃত পতর দেহ। উচু গাছের ভালে পাতা দিয়ে বাসা বানায় এবং একটি মাত্র ভিম পাড়ে। ৪৫ দিলে ভিম জোটে। বাংলাদেশের বন্যপ্রাণী আইনে এটি সরেচ্ছিত প্রজাতি।

২। ঘড়িয়াল (True gavial)

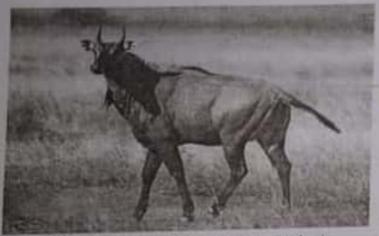
শড়িয়াল বাংলাদেশে একটি অতি বিপদাপর रम्भ काठीय थानी। धतः स्नया दय নাদেশে এটি প্রায় বিলুপ্ত, যদিও ভারতের ৰৰ বেকে আসা ঘড়িয়াল কদাচিৎ নদীতে গা যায়। এর বৈজ্ঞানিক নাম Gavialis

Reticus (Gmelin, 1789).

র্য ৪.৫ মিটার। ঘড়িয়াল গভীর ও দ্রুত প্রবাহমান পানিতে বাস করে। এনের প্রধান বাদ্য মাছ। নবেছর লক্ষ্মির বিশ্ব নৰ বজনন মাস। স্ত্ৰী ঘড়িয়াল বালুতে তৈরি গর্তে ৩০-৫০টি ডিম গাড়ে। ছিম অনেক বড়। ৩ মাস তা দেহার গঢ়িছে

বিদরকে ব্রহাপুত্র নদে (ভারত ও ভূটান), সিছু নদ (পাকিস্তান), গঙ্গা নদী (ভারত ও নেগাল) এবং ম্যাননীতে ব) পাক্ষ শবাহণত ভোগেদের মাছ ধরার জাগে অটকা পড়ে এদের জীবনাবসান ঘটে এবং এটি বিগুরির একটি বরু জাগে। এ তি) পাওয়া যায়। মায়ানমার ও পাকিস্তানেও এই প্রকাতি প্রায় বিলুও। द साका दरा।

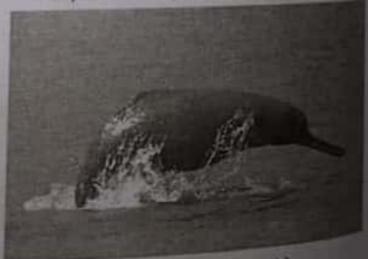
ত। মিঠাপানির কুমির (Freshwater crocodyle)


মিঠাপানির কুমির বাংলাদেশে বিলুপ্ত, প্রাকৃতিকভাবে আর मिथा याग्र ना । वारणत्रहार्क्षेत्र यान जाहान धाली (त) भाव्यारवत সাথের পুকুরে কয়েকটি কুমির আছে। সম্প্রতি ভারত থেকে সাফারি পার্কে পাগনের জন্য কয়েকটি কুমির আনা হয়েছে। धन देवकानिय नाम Crocodylus palustris (Lesson, 1768)।

প্রাপ্তবয়ক্ষ কুমিরের দেহের দৈর্ঘ্য ৩-৫ মিটার। এরা নদী, পুকুর ইত্যাদি মিঠা পানিতে বাস করে, সাধারণত জোমার-ভটি। এলাকায় প্রবেশ করে না। এরা দলবদ্ধভাবে বাস করে। এরা নদীর তীরে গর্তে ভিম পাড়ে, ৫০-৫৫ দিনে ভিম ফোটে।

মিঠাপানির কুমির (Crocodylus palustris)

যে করটি মিঠাপানির কুমির এখন বাংলাদেশে আছে তাদের রক্ষণাবেক্ষণ ও বংশবৃদ্ধি করা প্রয়োজন।


नीनगाँ (Boselaphus tragocamelus)

৫। ততক (River dolphin)

ততক একটি স্তনাপায়ী জলজ প্রাণী। বাংলাদেশে তত্তক এখন বিপন্ন প্রাণী হিসেবে বিবেচিত। সাধারণত এরা উপকৃল ও সমুদ্রে বিচরণ করে। বর্ষায় বড় বড় নদী দিয়ে অনেক ভেতরেও চলে আসে। বাংলাদেশে দু'ধরনের ততক পাওয়া যায়, একটির বৈজ্ঞানিক নাম Orcaella brevirostris এবং অপর্টির বৈজ্ঞানিক নাম Neophocaena phocaenoides। বিভীয়টির পিঠে পাখনা নেই। এরা মাঝে মাঝে পানি থেকে উপরে লাফ দেয় এবং দল বেঁধে চলে। মাছ এদের প্রধান খাদা। এরা ততক মাছ, শিত বা শিত মাছ, হুউম মাছ, হজুম মাছ ইত্যাদি নানা নামে পরিচিত।

8। नीनगारे (Nilgai)

নীল গাই বাংলাদেশের আর একটি বিলুর হয়। নাপায়ী প্রাণী। ১৯৪০ সালের দিকে বর্তমান বাংক্রে তেতলিয়া অধ্যলে নীল গাই পাওয়া বেতোবলে জান যা জ বর্তমানে বাংলাদেশের কোঘাও নীল গাই দেখা যায় ন 🐋 বাংলাদেশ থকে বিলুপ্ত। এরা সমতল ভূমিতে বাস করে। নী গাইয়ের বৈজ্ঞানিক নাম Boselaphus tragocamelus (Pela 1766)। প্রজনন সময় ছাড়া সাধারণত বছরের অন্যান সম ষাড় ও গাড়ী পৃথকভাবে বিচরণ করে। গানীর গোন হন্ বাদামি, প্রাপ্ত বয়ক যাড়ের লোম নীল-ধুসর।

उउक (Orcaella brevirostris)

जीवदेविच्या (Biodiversity)

পৃথিবীতে প্রায় ৩০ লক প্রজাতির লীব ও অণুলীব রয়েছে বলে অনুমান করা হয়। এয়ারত শনাক হয়েছে মার্চ্ছ লক্ষ প্রজাতির জীব। প্রকৃতিতে প্রত্যেকটি প্রজাতির তিন্ন ভিন্ন ভূমিকা রয়েছে। জীব্রবিচিন্না হলে। জীব সম্প্রদানে

কেওড়া, সুন্দারী, বাইন, রাইজােফােরা, পতর, নারিকেল, মুপারি, গাব, বিলাচি গাব ইতাানি বৃত্ত বার্তিক পারে। মৃদু লবগাক্ত পানি এদের জনা জস্বিধা হয় না। কেওড়া পাতা হরিগের প্রিয় যান। এই মুন্দারী থেকে কাঠ পাওয়া যায়। গাব থেকে জালানি, মাহেন জালান এবং খাওয়ার যোগা ফল পাওয়া যায়। এছাড়া গাব গাছ জতান্ত শক্ত, ঝড়ের ঝাপটা সামান নিছে পরে। ক্রেইনার্টি, পরেন লিবিকেল এবং সুপারি বাগান খাদা, পানীয় ও অর্থ যোগান দিতে পারে। বিইনার্টি, পরেন লিবিকের মতো কম শক্ত কাঠের বৃক্ত নির্বাচন করা উচিত নয়। প্রচর্ব ঝাড়ে নামান নিজেরাই ভেঙে যায় এবং বসতবাড়ি, মানুষ ও প্রপ্রাধির মৃত্যুহার বাড়িয়ে দেয়।

অর্থের লোভে যেন কেউ সবুজ বেষ্টনীর বৃক্ষ নিধন না করতে পারে সেদিকে সবার দৃষ্টি রাখতে হবে।

বাংলাদেশের বিলুগুপ্রায় জীবের পরিচিতি

প্রকৃতিতে যে সকল জীব (প্রাণী ও উদ্ভিদ) পূর্বে ছিল কিন্তু বর্তমানে তাদের কোনো অন্তিত্ব পাওয়া যাই না চেন্ত জীবদের বলা হয় বিলুপ্ত জীব। বিভিন্ন কারণে সময়ের ব্যবধানে কিছু কিছু প্রজাতি কোনো নির্দিষ্ট অফল তেওঁ পৃথিবীর বুক থেকেও বিলুপ্ত হয়ে যায়। এ ধরনের বিলুপ্তিকে নেপথা বিলুপ্তি বলে। হঠাং করে পৃথিবীরাণী বিলুক্ত প্রজাতি বিলুপ্ত হওয়ার ইতিহাস আছে। এ ধরনের বিলুপ্তিকে বলা হয় গণবিলুপ্তি (mass extinction)। গণবিলুপ্তি পাঁচ বার ঘটেছে। যে উদ্ভিদ বা প্রাণীকে নির্দিষ্ট প্রাণিভৌগোলিক অঞ্চলের বাইরে অন্য কোগাও পাওয়া যা মার্ডিমিক উদ্ভিদ বা প্রাণী বলে। ৪৫০ মিলিয়ন বছর আগে (আর্ডোভিসিয়ান যুগেরও শেষ দিকে) প্রথম গণবিলুপ্তি শতকরা ৮৫ ভাগ প্রজাতি বিলুপ্ত হয়ে যায়। সর্বশেষ গণবিলুপ্তি ঘটেছে প্রায় ৭০-৮০ মিলিয়ন বছর আগে ক্রিটিফা যখন শতকরা ৭৬ ভাগ প্রজাতি বিলুপ্ত হয়ে যায়। এরপর আর কোনো গণবিলুপ্তি ঘটেনি বরং ধীরে ধীরে বিজ্

জীববৈচিত্রোর রেকর্ড শুরু হয় কার্যত ১৬০০ খ্রিস্টাব্দের পর থেকে। এর পূর্বে কোনো দেশেরই জীববৈচিত্রের জ তৈরি হয়নি, এখনও পৃথিবীতে অনেক দেশ আছে যাদের জীববৈচিত্রোর তালিকা করা সম্ভব হয়নি।

বর্তমানে জীববৈচিত্র্য সংকটে পড়েছে। তালিকাভুক্ত অনেক প্রজাতি ইতোমধ্যেই বিলুপ্ত হয়েছে এবং বহু প্রজাতি প্রায় অবস্থায় এসে দাঁড়িয়েছে। অনেক প্রজাতি আছে যা পৃথিবী থেকে বিলুপ্ত না হলেও বিভিন্ন সকল থেকে বিলুত্ত চলেছে। বাংলাদেশেও এমন অনেক জীব প্রজাতি আছে যা পূর্বে সচরাচর দেখা গেলেও এখন আর দেখা যার না।

বাংলাদেশের কতিপয় বিলুগুপ্রায় উদ্ভিদ

শ্ৰেদি	বৈজ্ঞানিক নাম	বর্ণ	-
कार्नवर्गीय	> Psilotum triquetrum	পরাধ্রী	প্ৰাৱিস্থান
উত্তিদ	₹ Tectaria chattagramica	ञ्चलका अनुका	বরিশাল, পটুয়াখালী ও ফুলন
नभूवीकी	> Cycas pectinata	शु <u>न</u> इन्ह्य	চট্টগ্রাম
উন্তিদ	₹ 1 Podocarpus nerifolia		চটগাম, বাড়িয়াচালা, গাবে
	O Gnetum funiculare	दुक	इंग्रेग्रा म
আৰ্ডবীজী	> Aldrovanda vesiculosa (মরিকা ঝাৰি)	লতা হলা	চট্টগ্রাম, কলুবাজর, সিয়েট
উদ্ভিদ	२। Aquillaria agallocha (আগর)	জনজ, পতসভ্ক	রাজশাহী, পাবনা
	ত। Corypha taliera (তালিপাম)	देख	পাথারিয়া বন-মৌপ্রীবার্থ
	8 Known h	তাল জাতীয় বৃষ্	চাকা বিশ্ববিদ্যালত এলাক
	8। Knema bengalensis (পুনে বড়লা)	37	ভূলাহালরা-কল্পবালার (এটে
	ऐ । Licuala peltata (दिन्छम्) -	তাল জাতীয় বৃক্ষ	চটাগ্ৰাম, কাসালং-বাঞ্চমাই, বি
	७। Rotala simpliciuscula (आणाणा)	উভচর জাতীয় উদ্ভিদ	চটগাম (এটেগিড)
	৭ ৷ Rosa involucrata (জালি গোলাপ)	क्षणक, क्षण	সিম্পট এর হাতক

আগত বর্তমানে বাণিজ্যিকভাবে চাম করা হচ্ছে, ডাই আর বিশৃতপ্রায় নয় এবং Chlorophynum repalense (ইক্স) ই বাংলাদেশে আন পাওয়াই যাঙে না। *তালিলামটি এখন নাই, এর অনেত চারা বিভিন্ন আয়গাত লাগানে হতেছে।

১। তালিপাম (Tali palm)

(कलात

বাংলাদেশে

বিশ্ববিদ্যালয়

जिं

বিশুর্ব প্রায় উদ্ভিদের মধ্যে তালিপাম অন্যতম। এর ৰ তেনিকাল নাম হলো তালি বা তালিপাম। এটি Arecaceae

গোৰো অন্তৰ্গত। রা প্রিম বঙ্গের <u>শান্তিনিকেতনের কাছে অবস্থিত তালিপাম গাছটি</u>

মন্ত্ৰীসহ তালিপাম (Corvpha taliera)

তালিপামের চারা

এলাকায় অবস্থিত তালিপাম গাছটিই ছিল বিশ্বের একমাত্র বন্য তালিপাম গাছ। তালিপাম জীবনে মাত্র একবারই ফুল ও ফল উৎপাদন করে এবং পরে তার মৃত্যু ঘটে। ঢাকার গাছটিও ২০১০ সালে ফুল ও ফল উৎপাদন শেষে ২০১২ সালে বিলুপ্ত হয়ে গেছে। তবে মৃত্যুর আলে গাছটি বহু ফল উৎপাদন করে গেছে যা থেকে অসংখ্য চারা করে বন বিভাগের মাধ্যমে দেশের বিভিন্ন অন্ধালে লাগালো হয়েছে। ঢাকা বিশ্ববিদ্যালয়ের উপাচার্য ভবনের সামনেও একটি চারা লাগানো

র্মানে বিশের কোথাও বন্য অবস্থায় আর কোনো তালিপামের খবর জানা নেই। আমানের লাগানো চারাতদোর প্রতি শেষ্কু নেয়া আবশ্যক, যাতে সঠিকভাবে বেড়ে উঠতে পারে এবং ৬০-৭০ বছর পর মৃত্যুর আগে প্রচুর ফল উৎপাদন আনতে পারে। বাংলার বাইরে এ গাছ নেই। এটি বৃহত্তর বাংলার এভেমিক।

বাদে উল্লেখ করা যায় যে, আমরা ইতোমধাই তালিপামের পুস্পায়ন, বীজের অনুরোদগম, কচি ফলের অগমিকে বিশ্লেষণ, ব্যাষ্ট্রেরিয়া বিরোধী ক্ষমতা, অ্যান্টি অক্সিডেন্ট তণ ইত্যাদি বিষয়ে গবেষণা শেষে ফ্লাফন প্রকাশ অসম্ম হয়েছি, যা আগামী ৬০-৭০ বছরে আর সম্ভব হবে না।

रे। मन्निका बौबि (Malacca Jhangi)

শ্বিম বাঁঝি বাংলাদেশের আরেকটি বিলুঙ প্রায় मा द्व देखानिक नाम Aldrovanda vesiculosa Linn. Ma Droseraceae। মল্লিকা ঝাঝি একটি জলজ গ্রন্থ পতসভ্ক উদ্ভিদ। বাংলাদেশে সর্বপ্রথম মরিকা গত্যা যায় ১৯৭৪ সালে ব্রাজশাহীর ার ব্রহর্গত একটি বিল থেকে। পরবর্তীতে চলন প্রিনা) থেকেও একবার সংগ্রহ করা হয়েছিল কিন্তু এর শতি বাংলাদেশের কোনো জায়গা থেকে মরিকা

মহিকা খাঁকি (Aldrovanda vesiculosa)

মার্কা ঝার্ক ব্যান। ধারণা করা হচ্ছে বাংলাদেশ মার্কা ঝার্ক পর্যবেক্ষণ হয়ত কেই এটি পেছেও ঘাত ইতামধ্যেই বিজুপ্ত হয়ে পেছে। প্রাকৃতিক জ্পাশ্যাওলাতে সতর্ক পর্যবেক্ষণ হয়ত কেই এটি পেছেও ঘাত সমান্তিয়া একি ক্ষণাধাই বিলুপ্ত হয়ে গেছে। প্রাকৃতিক লগানাতে। বিশ্ব এশিয়া, আঞ্জিকা, সেন্ট্রাল ইউরোপ ও অস্ট্রেলিয়াতেও মল্লিকা কাঁডি জন্মে থাকে।

ত। স্থান বড়লা (Khude barala)

জুদে বড়লা বাংলাদেশের একটি এডেমিক উদ্ভিদ। বাংলাদেশে এভেমিক অর্থ হলো বাংলাদেশের বাইরে অন্য কোনো দেশে এখনো এটি পাওয়া यायनि । এর বৈজ্ঞানিক নাম Knema bengalensis de Wilde, পোত্র Myristicaceae। এই উদ্ভিদটি সর্বপ্রথম সংগ্রহ করা হয় ১৯৫৭ সালে কক্সবাজার জেলার ভূলাহাজরা বনাঞ্চল থেকে। পরবর্তীতে ১৯৯৯ সালে কল্পবাজার জেলার আপার রিজু বনবিট অফিসের কাছে একটি গাছের সন্ধান भीउमा याम ।

কুদে বড়গা একটি মধ্যম আকারের বৃক্ষ, কাণ্ডে ক্ষত হলে রক্ত বর্ণের কস বের হতে থাকে। কুদে বড়লার পুরুষ ও খ্রী বৃক্ষ পৃথক। এখনো কোনো ন্ত্রী বৃক্ষের সন্ধান পাওয়া যায় নি। আপান রিজু অন্ধানে ব্যাপক অনুসন্ধান করে এর প্রী বৃক্ষ আবিষ্কার করতে হবে এবং ঐ বৃক্ষ থেকে বীজ সংগ্রহ করে

कुटम राज्ञा (Knema bengalen

চারা করার মাধ্যমে সংখ্যা বৃদ্ধি ঘটাতে হবে অথবা টিস্যু কালচার পছতিতে চারা করতে হবে। এর সংরক্ষণ ও মধ উদ্যোগ নিতে হবে।

কোরুদ (Licuala peltata)

8। क्लिक्न (Kurud)

কোক্রদ একটি পাম জাতীয় উত্তিদ যা চাট্যাম, কুল (কাসালং) এবং সিলেটের গহীন বনে জন্মে থাকে। এর কৈছনিত্র Licuala peliata Roxb । পোন Arecaceae. अपि एएए पार्ट्स प মাত্র ২-৩ মিটার উচু হয়ে থাকে। এর পাতা দিয়ে এক বলা ।। তৈরি করা হয়, আবার ঘরের ছাউনিও দেয়া হয়। বাংলাদেশে स्क মায়ানমার এবং ভারতের বিহার, মণিপুর, ত্রিপুরা, আনামান। নিকোবার খীপপুঞ্জে পাওয়া যায়। বাংলাদেশে বর্তমানে এটি দুর ম যাচেহ। এর ইন-সিটু ও এক্স-সিটু উভয় প্রকার সংরক্ষণ বহি লাভ বন বিভাগ এ দিকে নজর দিবেন আশা করি।

৫। রোট্যালা (Rotala)

রোট্যালা বাংলাদেশের একটি এভেমিক উদ্ভিদ। এর दिखानिक नाम Rotala simpliciuscula (S. Kurz) Koehne, পোর Lythraceae. বাংলাদেশের চট্টগ্রাম থেকে এটি সংগ্রহ করেছিলেন হকার ও থমসন (Hooker and Thomson) এবং সেই নমুনার উপর ভিত্তি করে S. Kurz এর নামকরণ করেছিলেন।

রোট্যালা একটি উভচর জাতীয় উদ্ভিদ, জল সিক্ত ছালে জন্মে থাকে। তবে হকার ও থমসনের সংগ্রহের পর আর খিতীয় বার সংমহ করা সম্ভব হয়নি, কাজেই এটি বাংগাদেশ থেকে এমনকি পৃথিবী থেকে বিপুত্ত হয়ে গেছে वरण अनुमान कता याग्र ।

রোট্যালা (Rotala simpliciuscula)

আমাদেরকে এ গাছটিকে খুঁজতে হবে এবং পাওয়া গেলে ইন-সিটু এবং এক্স-সিটু উভয় পছতিতে বা पानका सनायक वारत ।

বাংলাদেশের বিপদাপন্ন (বিপুত্তপ্রায়) কতিপয়

বাংলা নাম	ইংরেজি নাম		
ল বেঙ্গল টাইগার	Royal Bengal Tiger	रेकानिक मात्र	
757	King Vulture	Panthera tigris	
TF	Garial	Sarcogyps celvus	
াল মনিল কমিব	Mugger Crocodile	Garialis gangericus	
নাদির কুমির	Blue Bull	Crocodylus palastris	
13		Boselaphus tragocamelus	
	Inawaddy Dolphin	Orcaella heevirostris	
72	Chinese Pangolia	Manu pentadactyla	
দুকুফ কাইটা	Bengal Roof Furtle	Kachuga kachuga	

বাংলাদেশের বিলুগুপ্রায় কয়েকটি প্রাণীর সংক্ষিত্ত বিবরণ

ध्यन्न (Sarcogyps calvus)

१। রাজশকুন (Red-headed vulture)

রাজশকুন বিশ প্রেক্ষাপটেই একটি বিপন্ন পাখি, বাংলাদেশে এটি মহাবিপন্ন বলে চিহ্নিত। এটি বাংলাদেশের প্রাক্তন আবাসিক পাছি, তবে বর্তমানে আর দেখা যায় না। দক্ষিণ ও দক্ষিণ-পূর্ব এশিয়ায় এর বিশ্বতি।

तास्त्रकृतनत देवसानिक नाम Sarcogyps calvia (Scopoli, 1786): ইংরেজি নাম Red-headed Vulture or King Vulture, এর মাধা নান, সালক কান। পুরুষ ও স্থী পাথির চেহারা অতিরু। অন্যান্য শতুনের মতো এরা দলবছ নাঃ, একা বা জোড়ায় দেখা যায়। থাবাবের তালিকায় মৃত পতর দেহ। উঠু গাছের ভালে পাতা দিয়ে বাসা বানায় এবং একটি মাত্র ভিম পাড়ে। ৪৫ দিনে ভিম কোটে। বাংলাদেশের বন্যপ্রাণী আইনে এটি স্বেক্তিত প্রজাতি।

ই। ঘড়িয়াল (True gavial)

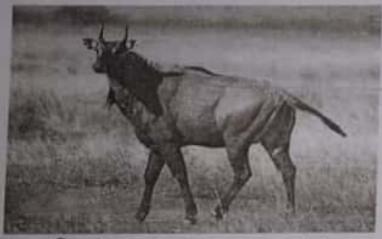
ৰ্যালাৰ বাংলাদেশে একটি অতি বিপদাপন্ন नुष काठीय थानी। धरत स्तया इय লাদেশে এটি প্রায় বিলুঙ, যদিও ভারতের ত্ৰ থেকে আসা ঘড়িয়াল কদাচিৎ নদীতে ख या। এর বৈজ্ঞানিক নাম Gavialis

যড়িয়াৰ (Gavialis gangeticus)

র্থ ৪.৫ মিটার। ঘড়িয়াল গভীর ও দ্রুত প্রবাহমান পানিতে বাস করে। এনের প্রধান খানা মাছ। নতেখ্য আনুহারি
বিশ্ব সমস্থ্য বিশ্ব বিশ্ নৰ মানার। যাড়িয়াল গভীর ও দ্রুত প্রবাহমান পানিতে বাল করে। এনের বড়। ও মার ডা নেরার নর রিম কি বজনন মাস। স্ত্রী ঘড়িয়াল বালুতে তৈরি গর্তে ৩০-৫০টি ডিম পাড়ে। ডিম অনেক বড়। ও মার ডা নেরার নর রিম কি বাজ্য বিদয়কে ব্রহাপুত্র নলে (ভারত ও ভূটান), গিছু নদ (গাহিছান), গঙ্গা নদী (ভারত ও দেশাল) এবং মহানদীতে ত) পাওলা

াওৱা যায়। মান্নানমার ও পাকিতানেও এই প্রজাত প্রান্ন াবপুত। শীর্ষাক্ত জেলেদের মাছ ধরার জালে আটকা পড়ে এদের সীব্দাবসান ঘটে এবং এটি বিশুন্তির একট বর্ড কালে। এ েই) শাওয়া যায়। মারানমার ও পাকিডানেও এই প্রজাতি প্রায় বিশুও। কে বাচন হয়।

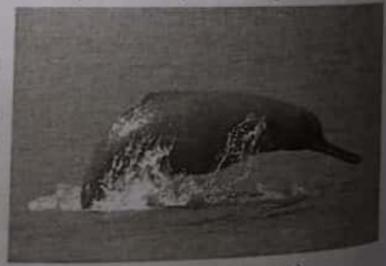
৩। মিঠাপানির কৃমির (Freshwater crocodyle)


মিঠাপানির কুমির বাংলাদেশে বিলুপ্ত, প্রাকৃতিকভাবে আর দেখা যায় না। বাগেরহাটের খান জাহান আলী (র) মাজারের সাথের পুকুরে কয়েকটি কুমির আছে। সম্প্রতি ভারত থেকে সাফারি পার্কে পাদনের জন্য কয়েকটি কুমির আনা হয়েছে। धन देक्झानिर नाम Crocodylus palustris (Lesson, 1768)।

প্রাপ্তবয়ক্ষ কুমিরের দেহের দৈর্ঘা ৩-৫ মিটার। এরা নদী, পুকুর ইত্যাদি মিঠা পানিতে বাস করে, সাধারণত জোয়ার-ভাটা এলাকায় প্রবেশ করে না। এরা দলবদ্ধভাবে বাস করে। এরা নদীর তীরে গর্তে ডিম পাড়ে, ৫০-৫৫ দিনে ডিম ফোটে।

মিঠাপানির কৃমির (Crocodylus palustris)

যে কয়টি মিঠাপানির কুমির এখন বাংলাদেশে আছে তাদের রক্ষণাবেক্ষণ ও বংশবৃদ্ধি করা প্রয়োজন।


नीनगाँ (Boselaphus tragocamelus)

৫। ততক (River dolphin)

ওতক একটি স্তনাপায়ী জলজ প্রাণী। বাংলাদেশে ততক এখন বিপনু প্রাণী হিসেবে বিবেচিত। সাধারণত अता छेलकुल ७ अभूरम् विष्ठतथ करत । वर्षाय वर्ष वर्ष নদী দিয়ে অনেক ভেডরেও চলে আসে। বাংলাদেশে मृ'धवरमव ७७क शाख्या याग्र, এकप्रिव देवकानिक नाम Orcaella brevirostris এবং অপরটির বৈজ্ঞানিক নাম Neophocaena phocaenoides। पिতीয়তির পিঠে পাখনা নেই। এরা মাঝে মাঝে পানি থেকে छेलात नाम म्मा अवर मन दिर्ध हरन। याङ अस्मत প্রধান খাদা। এরা ওতক মাছ, শিশু বা শিশু মাছ, হউম মাছ, হছেম মাছ ইত্যাদি বানা নামে পরিচিত।

8। नीनगाই (Nilgai)

নীল গাই বাংলাদেশের আর একটি বিশুর হা। নাপায়ী প্রাণী। ১৯৪০ সালের দিকে বর্তমান বাংলাকে তেঁতুলিয়া অঞ্চলে নীল গাই পাওয়া যেতোৰলে জানা যা হয় বর্তমানে বাংগাদেশের কোথাও নীল গাই দেখা যায় 🗷 📸 বাংলাদেশ থকে বিলুপ্ত। এরা সমতল ভূমিতে বাস করে। বি भाइराज रेक्कानिक नाम Boselaphus tragocomelia (Pala 1766)। প্রজনন সময় খাড়া সাধারণত বছরের অন্যান মা যাঁড় ও গাভী পৃথকভাবে বিচরণ করে। গাভীর লোম 🐫 বাদামি, প্রাপ্ত বয়ন্ত যাঁডের লোম নীল-ধুসর।

ठठक (Orcaella brevirostris)

सीवदेविष्ठ्या (Biodiversity)

পৃথিবীতে প্রায় ৩০ লক প্রজাতির জীব ও অনুজীব রয়েছে বলে অনুমান করা হয়। এয়াবত প্রাত হছেছে মার ১৭৫ লক্ষ প্রজাতির জীব। প্রকৃতিতে প্রত্যেকটি প্রজাতির ভিনু ভূমিকা ব্যেহে। জীববৈচিতা হলো জীব সম্প্রদারের হ

প্রতির আছিকের পার্থক্য। Bio অর্থ জীব, diversity অর্থ ভিন্নতা বা বৈচিত্রা। কাজেই Biodiversity এর বাংলা লা হয়েছে জীববৈচিত্র)। T.E. Lovejoy (1980) তার "Changes in Biological Diversity" হবছে এবং E and R.E. McManus (1980) তার "Ecology and Living resources-Biological Diversity" ब्रह्म ह None and Spinish কৰিব। বিভাগে Walter G. Rosen (1986) সংগ্রহণ Biological Diversity প্রবাদ স্থানিক বিভাগে Walter G. Rosen (1986) সংগ্রহণ Biological Diversity স্থানিত দিলেবে Biodiversity শৃষ্টি বাবহার করেন। অধ্যাপত Hamilton এর মতে, পৃথিবীত মাটি, শানি ত র স্থানতারী সব উদ্ভিদ, প্রাণী ও অণুজীবদের মধ্যে যে জিনগত, প্রজাতিগত ও পরিবেশগত (বাস্ততান্ত্রিক) বৈচিত্র্য তাতেই জীববৈচিত্র্য বলে। UNCED (1992) এই স্থানতার প্রজাতিগত ও পরিবেশগত (বাস্ততান্ত্রিক) বৈচিত্র্য ্রি তাকেই জীববৈচিত্র্য বলে। UNCED (1992) এর সংজ্ঞানুযায়ী-পৃথিবীর ছলজ, সামুদ্রিক ও অন্যান্য ব্যৱভঙ্ক নি মার্থ সকল স্করের সদস্য হিসেবে বসবাসকারী জীবদের মধ্যে বিদ্যমান সকল ধরনের বৈচিত্রাই জীববৈচিত্রা। প্রতিদেশে ভাঙ্গুলার উদ্ভিদের সংখ্যা প্রায় ৩,৮৬৬টি। ২০০১ সালের রেড ভাটা বুক অনুযায়ী ১০৬টি বিপর অবস্থায় বাংলাদেশে ৬৫০টি প্রজাতির পাখির মধ্যে ১২টি প্রজাতি বিপুর আর ৩০টি প্রজাতি বিপুরির পথে। ৩৪টি উচ্চর ব্রের মধ্যে ৮টি, ১৫৪টি সরীসূপের মধ্যে ১৪টি প্রায় বিপুত্তির পথে। যেমন-সুন্ধরবন অধান থেকে বুনোমহিব, সোয়াম্প লে গে হরিব, গভার, চিতা বাঘ ও গাউর পুরোপুরি বিলুপ্ত হয়ে গেছে।

সরবিধে ১০-৩৭% জীব আগামী ২০৫০ সালের মধ্যে বিলুপ্ত হয়ে যাবে বলে বিজ্ঞানীদের ধারণা। আগামী ৪০ স্থান্ত । বিশ্বলি ধ্বংস হয়ে যাবে। বুর্তমানে প্রতি বছরে জীব প্রজাতির বিশ্বিত হস্ত হলে। বি.০০০ (০.৫%)।

- প্রতি কারণ (Causes of extinction of organism)

জ্বিধ কারণে বিভিন্ন জীব প্রজাতি বিশুপ্ত হয়েছে এবং আরও অনেক প্রজাতি বিশুপ্তির পথে রয়েছে। জীববিশুপ্তির es প্রধান কারণসমূহ নিচে বর্ণনা করা হলো।

(a) ইকোলজিক্যাল কারণ

পৈতি(তম ১৬ ১ -> ১০০০ বিভৃতি অভাল : কোনো প্রভাতির পপুলেশন সংখ্যা কম হলে এবং বিভৃতি অভাল সংক্রীর্ণ হলে তার বিলুপ্তির সন্থাবনা দেখা দেয়।

হা বছ বটন : স্থানে স্থানে ওছেবভিত জীব প্রজাতির সহজে বিশুর হওয়ার সম্ভাবনা থাকে।

৩। বড় দেহ এবং খাদাশুক্তলে উপরে অবস্থান : খাদাশুক্তলে যার অবস্থান যত উপত্তে তার বিলুপ্ত হওয়ার সম্ভাবনা তত বেশি।

🕯। কলোনিকরণের ক্ষমতা : যে সব প্রজাতি নতুন পরিবেশে বংশবিস্তারের মাধ্যমে কলোনি সৃষ্টি করতে পারে না সে সৰ প্ৰজাতি সহজে বিলুপ্ত হয়।

া পরিবেশীয় নিয়ামকের অছিরতা : পরিবেশীয় নিয়ামক (খাদা সরবরাহ, আবহাওয়া ইত্যাদি) সমূহের অছিরতায় শূর্বত প্রজাতিগুলো টিকে থাকতে পারে না।

। ধাকৃতিক বিপর্যা : ভূমিকম্প, আল্লেয়ণিরির অ্যাৎপাত, দাবানল, হিমবাহ, ভূমিধস, টর্নেডো, সামুদ্রিক জলোছাস ইত্যাদি কারণে সহজেই দুর্লভ প্রজাতি বিপুত হয়ে যেতে পারে।

(९) মানব সৃষ্ট কারণ : বর্তমানকালে মানুষের কার্যকলাপই প্রজাতি ধ্বংসের মূল কারণ।

। বাসহান ধ্বংস : জীববৈচিত্র্য বিশৃতির সবচেয়ে বড় কারণ হলে তাদের বাসহান ধ্বংস বর্তমানে প্রতি মিনিটে শুপিবীতে ৫০ এর্কর বাসস্থান ধংশে হছে। জলাভূমি ভরাট জলজ প্রজাতি বিশুবির কারণ।

(अप्रयक्तिन) সম্পদের অভিমান্তায় আহরণ বহু জীব প্রজাতি বিলুরির কারণ হয়ে দাঁড়িয়েছে।

া আত মাত্রায় পশুচারণ : তৃণভূমিতে অভিমাত্রায় পশুচারণের হলে অনেক প্রজতি বিলুব্রির পরে।

। <u>মলিনেটর ধ্বংস</u> : মৌমাছিসহ বহু কাঁটপ্তস উত্তিদের প্রাণায়ন ঘটিয়ে থাকে। অতিমান্ত্র কাটনাপ্ত, তিখনাশক বাবহারের ফলে পরাগায়নের এই বাহকগুলো কমে গিয়েছে, ফলে পরাগায়নের অভাবে প্রভাৱি रेण्डित भए तरप्रस्थ ।

বিশ্ব দুখণ । পরিবেশ দুখণ প্রীববৈচিত্রা বিশ্বির একটি বড় কারণ হিসেবে দেখা দিরেছে।

বিলুগুপ্রায় জীব প্রজাতি সংরক্ষণের প্রয়োজনীয়তা Importance of conserving endangered species

Bildবৈচিত্রা সংরক্ষণের প্রথম নীতিমালা হলো "জীবের প্রতিটি ধরনই অনন্য এবং সমাজ বা মানবতার কর 🕫 ন্যায্যতার দাবিদার"। এই নীতিমালার আলোকে কেবল বিলুঙগ্রায় জীব নয়, সকল জীব প্রজাতিকে স্বেড হ অপরিহার্য। প্রতিটি জীব তার পরিবেশের একটি উপাদান এবং এর সাথে পরিবেশের অন্যান্য নিয়ামকের একটি জি সম্পর্ক রয়েছে। একটি জীব প্রজাতি নয়, একটি জীব প্রজাতির কোনো একটি ইনডিভিজুয়েলের বিপুত্তির পরিবেশ্বে। কিঞ্জিৎ বিদ্রুপ প্রতিক্রিয়া সৃষ্টি করে এবং এই প্রতিক্রিয়া সন্মিলিতভাবে একদিন পরিবেশের ব্যাপক পরিবর্তন এনে দি পারে। কাজেই সঠিকভাবে সকল প্রজাতির জীবকে সংরক্ষণ করতে হবে।

আমাদের অসচেতনতার কারণে ইতোমধ্যেই পৃধিবীর বুক থেকে বহু উত্তিদ ও প্রাণী প্রজাতি বিপুর হয়ে গিয়েছে হ বিশুন্তির হারপ্রান্তে আছে হাজার হাজার প্রজাতি। এখনই সংরক্ষণের ব্যবস্থা না নিলে এগুলোও বিলুত হয়ে যাবে।

যে জীব প্রজাতিগুলো সহসা বিপদাপর হওয়ার সম্ভাবনা নেই সেগুলোও সংরক্ষণের তালিকায় রাখতে হবে, তরে এছ সর্বাধিক গুরুত্ব দিতে হবে বিপুঙ্গ্রায় জীব প্রজাতি সংবক্ষণের প্রতি। পৃথিবীর বুক থেকে একবার বিপুঙ্গুয়ে জীব প্রজাতি সংবক্ষণের প্রতি। পৃথিবীর বুক থেকে একবার বিপুঙ্গুয়ে জীব প্রজাতি সংবক্ষণের প্রতি। তাকে ফিরিয়ে আনা সম্ভব হবে না। এখনো সকল জীব প্রজাতির উপকারি দিক আমাদের জানা সম্ভব হয়নি, হয়তে সং যাবে আজকের এ বিলুপ্তগ্রায় প্রজাতিটি হতেই ভবিষাতে আমার কোনো বংশধরের জীবন রক্ষাকারী উদ্ধ অবিষ্ঠ হর বিশুঙ্খার কোনো জীব প্রজাতির মধ্যে এমন একটি 'জিন' থাকতে পারে যাকে কাজে লাগিয়ে আমানের কৃষি ও চিহতু বিজ্ঞান বহুদূর এগিয়ে যেতে পারবে: ঘটাতে পারবে কৃষি বিপ্লব বা শিল্প বিপ্লব। কাজেই আমরা পৃথিবীর বুক থেকে এর জীব প্রজাতিও আর হারিয়ে যেতে দেবো না।

মনে রাখতে হবে এমনিতেই কোনো জীব প্রজাতি বিলুপ্ত হওয়ার পথে এগোয়নি। এর পেছনে বহু যুক্তিসংগত সা রয়েছে। প্রথমেই ঐ কারণগুলো জানতে হবে। প্রতিটি জীবের নিজস্ব পরিবেশ সম্বন্ধে নিশ্চিত হয়ে ঐ রকম পরিবেশ দুট করতে হবে। এরপ প্রতিটি জীবের বংশবিস্তার প্রক্রিয়া সম্বন্ধে জানতে হবে। টিস্যু কালচারের মাধ্যমে বংশবৃদ্ধি কা स কিনা তাও পরীক্ষা করে দেখতে হবে। সব রকম অসুবিধা দূর করে এবং সব রকম সুবিধা প্রদান করে আমরা বিশুহর জীব প্রজাতিগুলোকে পৃথিবীর বুকে কেবল টিকিয়েই রাখবো না, এদের সংখ্যাও বৃদ্ধি করবো।

সামমিকভাবে বিলুঙপ্রায় জীব প্রজাতি সংরক্ষণের প্রয়োজনীয়তাকে নিমুলিখিত বিষয় অনুযায়ী দেখা যায়।

(১) কৃষিজজীব ও তাদের বন্য আত্মীয় সংরক্ষণ, (২) ভেষজউণ্ডিদ ও প্রাণী সংরক্ষণ, (৩) জীববৈচিত্র্য সংক্ (৪) ইকোসিস্টেম সংরক্ষণ, (৫) অগ্রসরমান অর্থনীতি সংরক্ষণ, (৬) নান্দনিকতা সংরক্ষণ এবং (৭) প্রতিটি জীবেং টে থাকার অধিকার সংরক্ষণ।

কাজ : বিশুঙপ্রায় উদ্ভিদ ও প্রাণীর একটি চার্ট তৈরি কর।

জীববৈচিত্ত্য সংরক্ষণ (Biodiversity conservation)

বিশ্বকে মহা বিপর্যয় থেকে রক্ষা করার জন্য জীববৈচিত্র্য সংরক্ষণ এখন অত্যাবশ্যক হয়ে পড়েছে। বিশ্ববাদী বিভি দেশ ও সংস্থা এ বিষয়ে সুনির্দিষ্ট কর্মপন্থা নিয়ে এগিয়ে এসেছে, তরু হয়েছে জীববৈচিত্র্য সরেকণের কাল। জীবন সমত অঞ্চলগুলোই (ইটস্পট নামে পরিচিত।

জীববৈচিত্রা সংরক্ষণ তথা কনজারভেশন বলতে বোঝায় বর্তমান জীবকুলের সুষ্ঠ রক্ষণাবেক্ষণ এবং পরিনিত বিজ্ঞানসমত ব্যবহার, যাতে করে একদিকে বর্তমান প্রজনা তাদের প্রয়োজন অনুযায়ী জীববৈচিত্রা ব্যবহার কারে পরা এবং অপরদিকে ভবিষ্যৎ প্রজন্মও যেন এমনিভাবে ডাদের প্রয়োজন অনুযায়ী জীববৈচিত্র্য ব্যবহার করতে পারে জ্যা সমূনত থাকবে।

অন্তাবে বলা যায়, কনজারভেশন হলো মানুষ কর্তৃক জীবমণ্ডলের ব্যবহার সংক্রান্ত এমন ব্যবস্থাপনা গাঁড়ে কা বেল কর্তমান প্রস্থানার জনা সর্বোচ্ছ ১০ জী জীবমঙল বর্তমান প্রজনোর জনা সর্বোচ্চ সহনীয় মাত্রায় সুকল প্রদান করতে পারে অথচ একই সাথে জবিয়াং প্রজনুস্থী সকল প্রয়োজন ও আকাক্ষা পুরণের সম্ভাবনাও সমস্তাবে অকুরু থাকে।

C) Higher			
9 918 110	नेन भाई		
The same of the sa	नेन भाउँ वानिस्तान-ध्यम भाव		
The state of the s	Charle "		
विश्वकार्य (नवड	(रोनडीबाजार		
ि । गाउँका		2560	-
३०। शामियनगर	নোরাখালা	0868	2335
र गान्यनगत्र	के प्रतासाव	29565	1999
১১। বাড়ইডালা	शिवगुष्ठ	940	3003
३२। सरारगष्ठ	Print	282	3000
১৩। সিংগ্রা	5DSIIW	949.	ROOK
10.00	দিনাজপুর	२७००	1005
28। কাদিগড়	मिनाकशृत	673	4030
১৫। আলতাদিখি	मराभगित्र	000	4010
३७। वीदगढ		C88	3030
	नल्ला	268	2030
২। ইকোপার্ক (Ecopark) - हेर	<u> निगामधूत</u>	769	2033

রেখে এবং সেখানকার জীববৈচিত্রের কোনো প্রকার ক্ষতি না করে চিত্রবিনাদনের সব ব্যবস্থা করা হয় ইজোগার সাধারণত প্রকৃতির অপার সৌন্দর্যমন্তিত বনাঞ্চলের অংশবিশেষকে বিশেষ ব্যবস্থাপনায় এনে ইকোপার্ক স্থান নির্বাচনের ক্ষত্রে ফ্রোরাকে প্রাধান্য হয়। ইকোপার্ক স্থাপনের উদ্দেশ্যসমূহ নিমুদ্ধপ :

(i) প্রাকৃতিক পরিবেশ সংরক্ষণ ও উনুয়ন, (ii) বিশৃত্ত ও দুর্লভ উত্তিদ সংরক্ষণ, (iii) বিরাজমান জীববৈচিত্রা ও জন্ম বাসস্থান সংরক্ষণ, (iv) বিশেষ ব্যবস্থাপনায় স্থানীয় জীববৈচিত্র্যের ব্রিভিং ও উনুয়ন, (v) পর্যটকদের আকৃষ্ট করার হলে চিত্তবিনোদনের উপযুক্ত ব্যবস্থা নিশ্চিতকরণ ও অবকাঠামো নির্মাণ, (vi) স্থানীয় বাসিন্দানের সামাজিক-অর্থনৈতিক জ্বান এবং (vii) শিক্ষা ও গবেষণার সুযোগ সৃষ্টি করা।

বাংলাদেশের উল্লেখযোগ্য কয়েকটি ইকোপার্ক

- (a) সীতাকুও ইকোপার্ক: সীতাকুও উপজেলা, চট্টগ্রাম। ঐতিহাসিক চন্দ্রনাথ পাহাড় ও মন্দিরকে এর অন্তর্ভ কর হয়েছে। আয়তন ১৯৯৬ একর, প্রতিষ্ঠাকাল ১৯৯৯। প্রাকৃতিক Cycas এখানে জন্মে থাকে। প্রায় ১৫৪ প্রজাতির উন্ন এখানে পাওয়া যায়।
- (b) মধুটিলা ইকোপার্ক : নালিতাবাড়ি উপজেলা, শেরপুর। বাংলাদেশ-ভারতের বর্ভার সংলগ্ন গারো পাহদে পাদদেশে এটি অবস্থিত। আয়তন ৩৮০ একর, প্রতিষ্ঠাকাল ১৯৯৯। ঘন বন, পাহাড়, ঝর্গা, লেক এবং বহু টিলা দিয়ে এই পার্ক গঠিত।
- (c) মাধবকুও ইকোপার্ক : বড়লেখা উপজেলা, মৌলভীবাজার। পাথারিয়া হিল-রিজার্ড ফরেস্টের জলেবিশের নিয় এটি প্রতিষ্ঠিত। আয়তন ৫০০ একর, প্রতিষ্ঠাকাল ২০০১। দৃষ্টিনন্দন মাধবছড়া ঝর্ণা এখানে অবস্থিত। দুর্গত দেখিনিক বৃক্ষ এখানে দেখা যায়।
- (d) বাঁশবালি ইকোপার্ক: বাঁশবালি উপজেলা, চট্টগ্রাম। জলদি অভয়ারণা রেজের বামের ছড়া ও ঢানের ছড়া এনান নিয়ে এই ইকোপার্ক গঠিত। আয়তন প্রায় ৩০০০ একর। এই পার্বতা এলাকায় বহু দৃষ্টিনন্দন কাঠামো (লেক, কুলর দেই) এবং হাতি, ভারুক, হরিণ, অজগর দেখা যায়। প্রতিষ্ঠাকাল ২০০৩।
- (e) কুয়াকটো ইকোপার্ক: পটুয়াখালির কলাপাড়া উপজেলা এবং বরগুনার আমতলি উপজেলার অংশ নিয়ে কুমানি ইকোপার্ক গঠিত। প্রায় ১৩ হাজার একর আয়তনের এই বিশাল ইকোপার্ক ২০০৫ সনে প্রতিষ্ঠিত হয়। কুয়াকটি আ সৈকত এবং ম্যানগ্রোভ বন এই ইকোপার্কের অন্তর্ভুক্ত। পর্যটকদের জন্য সুব্যবস্থা আছে।

(f) টিলাগড় ইকোপার্ক : সিলেট কৃষি বিশ্বদিয়ালয়ের কাছে রিজার্ড ফরেস্টের অংশবিশেষ নিয়ে টিলাগর ইরেপার্গ গঠিত। অয়তন ১১২ একর, প্রতিষ্ঠাকাল ২০০৬।

(g) জাফসং ইকোপার্ক: সিলেটের গোয়াইনঘটি উপজেলার কৌলাখাল রিজার্ড ফরেস্টের অংশবিশেষ নিয়ে র্রী ইকোপার্ক গঠিত। সিলেট-তামাবিল হাইওয়ের দু'পাশে স্ট্রিপ গার্ডেন (strip gardens) করে দেয়া হয়েছে। क विकास व माजकत

স্থেক্ৰ (preservation), ব্ৰহ্মাৰ্ক্ৰে (maintenance), সংনীয় মান্ত প্ৰয়োগ (sustainable পুনরভার (restoration) এবং ব্যবহারের (using biodiversity) মাধ্যমে গঠিত সমধিত ব্যবহাপনাকে al, বিভারতেশন বা ভারবৈচিত্র্য সংরক্ষণ বলে।

্রালাল কর্মান কর্মান (Protected Areas of Bangladesh) : সরকারি নোটাফকেশনের মাধ্যমে (চ্যান্টার ্রান্ত বিষ্ণ সংক্রমিন কর্মারী) সংরক্ষিত অধ্বল (বনাধাল) ঘোষণা করা হয়। জীববৈচিত্রা সংরক্ষণ করাই এর ্ত বি ক্রিল্ডার্লা, ন্যাশনাল পার্ক, সাঞ্চারি পার্ক, ইকোপার্ক, বোটানিক্যাল গার্চেন, বিশেষ জীববৈচিত্র্য সংরক্তণ করাই এর প্রতিশ্রাল হেরিটেজ অঞ্চল 'সংরক্ষিত অন্তালের' অফর্টেক ্বা প্রান্তিশনাল হেরিটেজ অধ্যল 'সংরক্ষিত অধ্যলের' অন্তর্ভুক্ত।

র্বিচিত্রা সংরক্ষণের পদ্ধতিসমূহ : জীববৈচিত্রা সংরক্ষণ পদ্ধতি প্রধানত দু'প্রকার, যথা- (ক) ইন-সিটু সংরক্ষণ ব্য এক্স-সিটু সংরক্ষণ ।

া একান্ত বাস্থানে সংরক্ষণ বা ইন-সিটু সংরক্ষণ (In-situ conservation) : মূল বাসস্থানে তথা আকৃতিক ব্যাস্থাতিশীল ইকোসিস্টেমে জীবলৈছিক সংক্রম ্ত্র বির্তিনীয় গতিশীল ইকোসিস্টেমে জীববৈচিত্র্য সংরক্ষণ করাকে বলা হয় ইন-সিটু সংরক্ষণ।

ব্রাধিনের কর্মমান্ত, শবণাক্ত ও সিক্ত পরিবেশে সুন্দরী গাছ জন্মে থাকে। কাজেই সুন্দরী গাছকে সুন্দরবানের মূল ক্ষার পরিবেশতন্ত্রে সংরক্ষণ করাই হলো ইন-সিটু সংরক্ষণ বা স্বস্থানে সংরক্ষণ এর এতটি উদাহরণ। নুসরকলের সুবিধাসমূহ

- কোনো প্রজাতি সংরক্ষণের সবচেয়ে উত্তম উপায় হলো যে বাসস্থানে ইহা জনো সেই বাসস্থানকে যথায়থভাবে স্বেক্ষণ করা। এর ফলে উক্ত প্রজাতির সাথে সম্পর্কযুক্ত প্রাণিত্রও সংরক্ষিত হয়।
- ্লা খনেক উত্তিদ তাদের স্বাভাবিক বৃদ্ধি ও অন্যান্য কারণে তাদের মাইকোরাইজাল ছ্রাকের উপত্র নির্ভরশীল। হ্ন-সিটু সংরক্ষণের ফলে মাইকোরাইজাল ছত্রাকও সংরক্ষিত হয় এবং ঐ উদ্ভিদের টিকে থাকা নিচিত হয়।
- একটি প্রজাতি বা একটি উত্রিদ কেবলমার একটি ইকোসিস্টেমের অংশই নয়, ইহা বিভিন্নতাবে আশ্লাশের জনাান্য প্রজাতির সাথে ক্রিয়া-বিক্রিয়া করে এবং অনেক প্রজাতিকে বেঁচে থাকতে সাহায্য করে। ইন-সিটু সংবক্ষণে এ সবিধা থাকে।
- w কোনো প্রজাতিকে তার বাসস্থানে সংরক্ষণের সবচেয়ে উপকারী দিক হলো এই যে এতে করে বিবর্তনীয় প্রক্রিয়াওলো চালু থাকে।
- মে দেশ বা অধ্যলে গ্রেণরা এখনো ভালোভাবে তালিকাভ্জ করা সমর হয়নি অথবা বিশদভাবে স্টাভি করা সমর য়ানি সে দেশ বা দে অন্তর্জে ইন-সিট সংবক্ষণ আবশাক। অনেক দেশেই সংকটাপন্ন প্রজাতির (endangered species) তালিকা প্রস্তুত সম্পন্ন হয়নি, সেসব দেশে এক্স-সিটু অবস্থানে কোন কোন প্রস্তুতি সংরক্ষণ করতে হবে তাও সঠিকভাবে চিহ্নিত হয়নি, কাজেই ইকোসিন্টেম সংরক্ষণ করা তথা ইন-সিটু সংরক্ষণ পদ্ধতিই সেখানে আদর্শ সংরক্ষণ পদ্ধতি।
- া। যে স্বশ্বলে এখনো অনেক প্রজাতি অনাবিদ্ধৃত বয়েছে সে স্বশ্বলেও ইন-সিটু সরেকণ পদ্ধতি আবশ্যক।
- াখা বিজ্ঞানসিট্ট্যানট (recalcitrant) বীজ সংরক্ষণের জন্য ইন-সিট্ট পদ্ধতি বিশেষভাবে উপযোগী।

निकल्पर अवान माधामकरमा निम्नकर्णः

। মাতীয় উদ্যান (National Park) : ন্যাশনাল পার্ক বলতে বোঝায় প্রাকৃতিকভাবে সৌন্দর্যমণ্ডিত তুলনামূলকভাবে শ মেখানে বন্যজীব (উদ্ভিদ ও প্রাণী) সুরক্ষিত থাকবে। গবেষণা ও বিলোদনের জন্য কর্তৃপক্ষের অনুমতি নিয়ে

শার্কে প্রবেশ করা যায়। বাংলাদেশের কয়েকটি উল্লেখযোগ্য ন্যাশনাণ পার্ক হলো—

	বাংলাদেশে	करमकार अरत्वस्यामा ना	আরতন (হেইর)	ব্যতিষ্ঠাকাৰ
শরেকিত এ	লাকার নাম	जरशन	6055	2995
SHIP	ন্যাশনাল পার্ক	গাজীপুর টাঙ্গাইল-ময়মনসিংহ	808	2925
(FE)		- मिनाकर्युच 	29.90	300)
- MARIE	(সবচেয়ে হোট)	কল্পবাজাব	dept	7770
THE DESIGNATION OF THE PERSON	(সর্ব প্রথম)	Seasons in		

many later later a mount

ুইট একর, প্রতিচাকাল ২০০৭।

ব্যবহা হকোপার্ক : বঙ্গবন্ধ ধ্যুনা সেতৃর পশ্চিম লাগে এটি বনবিভাগ কর্ত সুলন বলা ইকোপার্ক।

ুবলাভা ইকোপার্ক : মৌলভীবাজার শহরের কাছে রিজার্ত ফরেকের ৮৮৭ একর জারণা নিয়ে ২০০৮ সালে ক্রিভি ব্যাপার্ক। এখানে অবসার্ভেশন টাওয়ার, ইকো-কটেজ, পিক্রিত শ্পট এবং গ্রন্থ চথার ও ভেম্ম

রামারি পার্ক (Safari Park) : সাফারি পার্ক এক ধ্রনের সংরক্ষিত বনভূমি যেখানে কনা প্রাণীরা (বিজ্ঞ নামার্থ প্রাকৃতিক পরিবেশে রক্ষিত থাকে, মুক্তাবস্থায় স্বাধীনভাবে বিচরণ করে এবং নর্শনার্থীগণ বিশেষ বাংলে ্রান্ত্র বিষ্ণালয় পতিপ্রকৃতি অবলোকন করে আনন্দ লাভ করে নেই পার্ক হলো সাফারি পার্ক। সাফারি পার্কে দেশের র্মের তালে প্রক্রের আনা বনাপ্রাণী প্রাকৃতিক পরিবেশে বিশেষভাবে সংবঞ্জন করা হয়। প্রাণীরা এখানে মুক্তাবে রবা বিলা পারে। সাফারি পার্কের উদ্দেশ্য হলো: (४) ইকেট্রিরিজ্ম, (৪) বিনোদন, (৪) কনজার্কেন এবং গ্রেক্থা,

নাদের মধ্যে সংরক্ষণ সচেতনতা সৃষ্টি। বাংলাদেশে দৃটি সাফারি পার্ক আছে। যখা-

্রার্থিক শেখ মুজিব সাকারি পার্ক, ডুলাহাজরা। এটি ডুলাহাজরা বঙ্গবন্ধু শেখ মুজিব সাঞ্চারি পার্ক নামেও পরিচিত। ত্তন প্রায় ২২২৪ একর। উপজেলা চকোরিয়া, জেলা কম্মবাজার। প্রতিষ্ঠা ১৯৯৯।

বলে ১৬৫ প্রজাতির প্রায় ৪০০০ প্রাণী আছে। উল্লেখযোগ্য উদ্ভিদের মধ্যে গর্জন, বৈলাম, তেলসূর প্রধান। প্রাদীর র বৃথিক সংখ্যায় হাতি আছে, আরো আছে সিংহ, ভালুক, গয়াল, কুমির, হরিণ ইত্যাদি।

📵 বঙ্গবন্ধু শেখ মুজিব সাফারি পার্ক, গাজীপুর। এটি গাজীপুরের খ্রীপুর উপজেলার মানো অঞ্চলে অবস্থিত। আছতন একর বনভূমি। ২০১১ সালে এর কার্যক্রম শুরু হয় এবং ২০১৩ সালে জনসাধারণের জনা উনুক্ত করা হয়। এটি আন্তর সাফারিওয়ার্ল্ড-এর মডেলে তৈরি করা হয়েছে। প্রধান উদ্ভিদ শাল। বনাপ্রাণী-বাঘ, সিংহ, হাভি, সাধার, হরিণ, ন হ্নান, ভালুক, গয়াল, কুমির এবং বিভিন্ন পাখি।

ह। বনাজীব অভয়ারণ্য (Wildlife Sanctuary) : এমন প্রাকৃতিক অঞ্চল যেখানে মাটি, পানি, উদ্ভিদ, প্রাণী, অণুজীব লার ছন্য অক্ষত রাখা হবে যাতে করে সব ধরনের জীব মুক্তভাবে বিস্তার লাভ করতে পারে। বাংলাদেশের করেকটি জন্মগা বন্যজীব অভয়ারণ্য হলো-

বন্যজীব অভয়ারণ্য

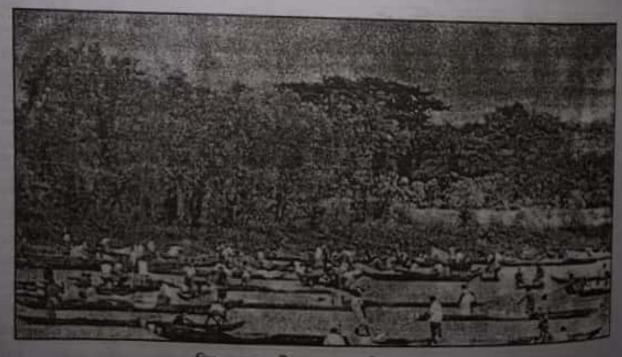
A second	श्राम	আয়তন (হেট্রর)	প্রাচন্ট্রাক্র
সংরক্ষিত এলাকার নাম	হবিগঞ	5930	7999
ারেমকেলেঙ্গা অভয়ারণা		80	2942
। স্ব কুকড়ি- মুকড়ি (সবচেয়ে ছোট) —	ডোলা (প্রথম)	७५२३६	3996
िर्भारतम (পূर्व)	বাগেরহাট	93003	7999
	সাতক্ষীরা	09660	7790
-	धुनमा	82059	7920
नुस्तदन (मिक्किल)	বাসামাটি	9950	2994
<u> </u>	PRINT	3003	2009
178 "	কল্পবাঞ্জার	8936	2070
किनम्राचानी "	ह्याया	2003	5050
শুপুরুরিয়া-ধুপাছড়ি "	চট্টগ্রাম	33630	5030
श्वादिश्य "	কুৱাবালাব	2003	2030
তিকাফ (এটি পূর্বে গেমরিজার্ড ছিল)	বালরবান	8085	5030
नाअन (लाह मृद्ध द्रानासकार-		650	5025
	र्वधमा	The second second	3025
ে দ্রাণিরি	খাদেরহাট	080	5077
गुरक्ती "	বাগেরহাট	3050	3030
(कारामावि "	পটুয়াখালী	386	
Pierce	<u> </u>		

৫। গেম রিজার্ড : এমন প্রাকৃতিক অজগ যেখানে বন্যজীব সুরক্ষিত থাকবে, তবে কর্তৃপজের অনুমোদন বিষ্ণু করা যাবে। বাংলাদেশের একমাত্র গেম রিজার্ডীট ছিল কন্ধবাজার জেলার নাফ নদীর তীরে অবস্থিত টেকনাফ গেম। বর্তমানে এটি বন্যজীব অভয়ারণা।

বভমানে আট বন্যভাব অভয়ার ।।

6। বিশ্ব ঐতিহ্য (World Heritage) : ইউনেকো কর্তৃক বিশ্বের বিভিন্ন দেশের ঐতিহাসিক বা প্রাকৃতিত্ব
ব্যাতিসম্পন্ন এলাকা বা স্থাপনাকে বিশ্বসম্পদ হিসেবে ঘোষণা করা হয়। সুন্দরবনের তিনটি বন্যপ্রাণী অভয়ারণারে ।

সালে বিশ্ব ঐতিহ্য হিসেবে তালিকাভুক্ত করে এবং বাংলাদেশ সরকার সুন্দরবনকে ১৯৯৯ সালে বিশ্ব ঐতিহ্য সাইটিক
করে।


করে।

৭। মংস্য অভয়াশ্রম (Fish Sanctuary) : অভয়ারণো বন্য উদ্ভিদ ও প্রাণী সংরক্ষিত হয়। তাই মাহের অভ্যাশ্রমের প্রয়োজন দেখা দেয়, বিশেষ করে দেশি মাহের জন্য। এ ধরনের অভয়াশ্রম হলো বৃহত্তর সিলেন্টের স্থাত্ত ও হাকালুকি হাওড় এবং চট্টগ্রামের মাছ প্রজনন কেন্দ্র হালদা নদী।

টাঙ্গুমার হাওড় (Tanguar Haor) : বাংলাদেশের একটি প্রখ্যাত ব্রেটেল্যান্ড হলো টাঙ্গুমার হাওড় এটি সুক্র জেলার ধর্মপাশা ও তাহিরপুর উপজেলায় অবস্থিত। ৫১টি জলমহাল নিয়ে টাঙ্গুমার হাওড় গঠিত। শ্বানীয়ভাবে এটি মুক্তি বিল নয় কুড়ি কান্দা' নামে পরিচিত। আয়তন প্রায় ১০০ বর্গ কিলোমিটার। টাঙ্গুমার হাওড়বে ১৯৯৯ চ ইকোলজিক্যালি ক্রিটিক্যাল এরিয়া হিসেবে বিবেচনা করা হয় এবং ২০০০ সালে একে Ramsar site ঘোষণা করা ম এই হাওড়ে নিজস্ব পাখি ছাড়াও শীতকালে সুদূর সাইবেরিয়া থেকে আগত প্রায় ২০০ প্রকার বিভিন্ন বিদেশি পমি প্রথাকে। এখানকার উল্লেখযোগা বৃক্ত প্রজাতি হলো হিজল, করচ, বরুন ইত্যাদি।

হাকাপুকি হাওড় (Hakaluki Haor) : আয়তনের দিক থেকে হাকাপুকি হাওড় বিশ্বের সর্ববৃহৎ এর আরু
১৮১.১৫ বর্গ কিলোমিটার। মৌলভীবাজার ও সিলেট জেলার পাঁচটি উপজেলায় (কুলাউড়া, জুরি, বড়লেখা, গোলালগ্রঃ
কেন্দুগঞ্জ) এর বিস্তৃতি। ১৯৯৫ সাল হতেই এটি ইকোলজিক্যালি ক্রিটিক্যাল এরিয়া এবং রামসার সাইট হিসেবে সঞ্জল
করা হচ্ছে। এ হাওড়ে আছে বহু প্রজাতির দেশি মাছ ও অন্যান্য প্রাণী, আর আছে অসংখ্য প্রজাতির পাখি। শালনা, গ্রন্থ
বহু প্রজাতির জলজ উদ্ভিদ এখানে জন্মে থাকে।

হালদা নদী (Halda River) : হালদা নদী বাংলাদেশের অধিকাংশ কার্প জাতীয় মাছের প্রাকৃতিক প্রজনন ক্ষে
হিসেবে পরিচিত। এটি খাগড়াছড়ি জেলার রামগড় উপজেলার পাতাছড়া ইউনিয়নের হালদাছড়া থেকে উংগরি শা
করেছে। এটি ফটিকছড়ির রাউজান, হাটহাজারীর কালুরঘাট ও চাদগাও-এর উপর দিয়ে প্রবাহিত হয়ে পরিশেষে করিবী

চিত্র: হালদা নদীতে জেলেদের ভিম ধরার দুশা।

লাত পরেছে। নদীটির দৈর্ঘ্য প্রায় ৯৫ কিলোমিটার। এই নদীতে সমহামত ও সঠিক মতো ভিমপাড়ার উপর আমাদের করিলা প্রণের অনেকটাই নির্ভর করে। জাতীয় অর্থনীতিতে এই প্রাকৃতিক মংসা প্রজনন কেন্দ্রের তক্তব্রপরিসাম। বলা হয়ে থাকে এটি দক্ষিণ এশিয়ার একমাত্র প্রাকৃতিক মংসা প্রজনন কেন্দ্র। সাধারণত এপ্রিপের শেষ বা মের্থা প্রথম দিকে এখানে মা-মাছেরা ভিম পাড়ে এবং জেলেরা তা সংগ্রহ করে। নদী দ্যণের কারণে ভিমের পরিমাণ ক্রিক ক্রমে আসছে। এ প্রজনন কেন্দ্রকে অবশ্যই দ্যণ মৃক্ত রাখতে হবে।

্থ) কৃত্রিম বাসস্থানে সংরক্ষণ বা এক্স-সিটু সংবক্ষণ (Ex-situ conservation) : বায়োডাইভারসিটির উপাদানসমূহকে গ্রানের মূল বাসপ্থান বা প্রাকৃতিক স্বাভাবিক পরিবেশের বাইরে বাঁচিয়ে রাখাই হলো এক্স-সিটু সংরক্ষণ। সিলেট বনের আরু গাছকে বা সন্দর্বনের সুন্দরী গাছকে ঢাকার বোটানিক্যাল গার্ডেনে লাগিয়ে সংরক্ষণ করা হলো এক্স-সিটু সংরক্ষণ করা হয়।

১। উদ্ভিদ উদ্যান বা বোটানিক্যাল গার্ভেন (Botanical garden) : সারা বিশ্বে প্রায় 2,000 বোটানিক্যাল গার্ভেন আছে। বোটানিক গার্ভেনে সাধারণত দুর্গত প্রজাতি, অর্থনৈতিক্তাবে জাতুপূর্ণ প্রজাতি এবং ট্যাঙ্গোনমিক্ডাবে তরুত্বপূর্ণ প্রজাতির গাছ লাগানো হয়। বিশ্বের মোট পুস্পক উদ্ভিদ প্রজাতির প্রায় চার ভাগের এক ভাগ প্রজাতির উদ্ভিদ লাগানো আছে বোটানিক গার্ভেনতলোতে। কাজেই বিলুপ্তির হাত থেকে উদ্ভিদ প্রজাতিকে সংরক্ষণের একটি বড় উপায় হলো বোটানিক গার্ভেন। ঢাকা বিশ্ববিদ্যালয়ের বোটানিক গার্ভেনে এমন কিছু প্রজাতি সংরক্ষিত আছে যা বাংলাদেশের আর কোথাও নেই।

নোটানিক্যাল গার্ডেনের কাজ নিমুত্রপ :

THE WILL I

(i) পাৰণিক সার্ভিস (সামাজিক, কালচারাল, অর্থনৈতিক, বিনোদনম্লক, বিশেষ কাজ) যেমন-ফ্লাওয়ার শো.

(ii) निका, (iii) कमलाटर्डनन, (iv) गरवरवा, (v) हारवित्याम अवर अकानना ।

পৃথিবীর প্রথম বোটানিক্যাল গার্ভেন ছিল থিওফ্রান্টাস-এর কুল (গাইসিয়াম = Lyceum) সংলগ্ন গার্ভেন) তারপর উল্লেখযোগ্য বোটানিক্যাল গার্ডেন হলো ইতালির Lucaghini (১৪৯০-১৫৫৬) নামক উল্লেদবিজ্ঞানের অধ্যাপক কর্তৃক প্রতিষ্ঠিত তার বিশ্ববিদ্যালয় সংলগ্ন গার্ডেন। পরবর্তীকালে বোটানিক্যাল গার্ভেনের মধ্যে ইতালির Padua বিশ্ববিদ্যালয় সংলগ্ন গার্ডেন (১৫৪৫) উল্লেখযোগ্য।

বাংগাদেশের প্রথম বোটানিক্যাল গার্ডেন সম্ভবতঃ ঢাকা বিশ্ববিদ্যালয় বোটানিক্যাল গার্ডেন যা ১৯৪০ দশকের প্রথম দিকে প্রতিষ্ঠা করা হয়েছিল।

এ গার্ডেনে অনেক দুর্লভ উদ্ভিদ আছে। দেশের বৃহত্তম বোটানিক্যাল গার্ডেন হলো ন্যাশনাল বোটানিক্যাল গার্ডেন,

মরপুর, ঢাকা। এটি ১৯৬১ সালে প্রতিষ্ঠিত এবং ৮৪.২ হেইর জায়গার এক বিশাল গার্ডেন। এই গার্ডেনে বৃক্ষ, গুলা, লভা,

অর্কিড মিলে প্রায় ৫৭,০০০ উদ্ভিদ নমুনা আছে। এই গার্ডেনে কোনে হার্বেরিয়াম নেই তবে এর এক কোনে বাংলালেশ
ন্যাশনাল হার্বেরিয়াম অবস্থিত।

বিলোদন বা শাখের বাগান বোটানিক্যাল গার্ডেন নয়। বিজ্ঞান, শিক্ষা ও গবেষণার উদ্দেশ্যে সূজন করা গার্ডেনই

বোর্গানকাল গার্ডেন।

স্বীক্ষরচন্দ্র গুরু বাবসার জন্য "চৈতন্য নাসারী" প্রতিষ্ঠা করেছিলেন ১৮৯৪ সালে জামালপুরে বলধার জমিদার নরেন্দ্র স্বীক্ষরচন্দ্র গুরু বাবসার জন্ম নরেন্দ্র একটি শখের বাগান বলধা গার্ডেন তৈরি করেন। বহু বিদেশী দুর্গত নারাহ্ব রায় চৌধুরী ১৯০৯ সালে ঢাকার ওয়ারীতে একটি শখের বাগান বলধা গার্ডেন তিরি করেন। বহু বিদেশী দুর্গত নারাহ্ব রায় চৌধুরী ১৯০৯ সালে ঢাকার ওয়ারীতে একটি শখের বাগানকৈ বাগানকৈ বোটানিকাল পার্ডেন হিসেবে

বালিকাভুক করেছে।

২। ব্রীজ ব্যাকে (Seed bank): সীড ব্যাংকের মাধ্যমে উদ্ভিদ প্রজাতি সংরক্তণ একটি সহজ্ঞতর উপায়, জালা দীত
বাংকে আর জায়গায় আর পরিপ্রমে ও আর ধরতে অধিক প্রজাতি ধরে রাখা যায়। সীত ব্যাংকে এমদ করের উদ্ভিদ
বাংকে আর জায়গায় আর পরিপ্রমে ও আর ধরতে অধিক প্রজাতি ধরে রাখা যায়। সীত ব্যাংকে এমদ করের উদ্ভিদ
বাংকে আর জায়গায় আর পরিপ্রমে ও আর বর্ত্তর হয়ে গিয়েছে। Bronus interruptus (Kackel) Druce এবং
ব্যাতির বীজ সংরক্তিত আছে যা বাস্তবে বিলুত হয়ে গিয়েছে। বিশ্ব হয়ে গিয়েছে কিন্ত নীত ব্যাংক প্রমের বীজ
বিশ্বনাক্রিক সংরক্তিত আছে যা বাস্তবে বিলুত হয়ে গিয়েছে কিন্ত নীত ব্যাংক প্রমের বীজ
বিশ্বনাক্রিক সংরক্তিত আছে যা বাস্তবে বিলুত হয়ে গিয়েছে কিন্ত নীত ব্যাংক প্রমের বীজ
বিশ্বনাক্রিক সংরক্তিত আছে যা বাস্তবে বিশ্বনাক্রিক যারা বিশ্বর হয়ে গিয়েছে কিন্ত নীত ব্যাংক

বীজকে ছকিয়ে (20°C ভাপমান্ত্রায় জিলিং করতে প্রায় অধিকাংশ উল্লিদ বাজাতির বীজকেই (জাচনত করে লাভা মায়। এ ধরনের বীজ মেটি সুবীলি কর বীজকে তাকরে। 20 C তাশননাম জনতা হলত প্রতির । বা ধরনের বীজ মেটি স্থানী জনতা প্রতির । বা সর বীজকে ত্রালে ভ্রমেন্ড শতানীর পর শতানা অসুরোদশম জমতানর পরে বিজ্ঞান । যে সর বীজকে তভাগে অসুরোদশহ জমতা হ ভাগ। অন্য ৩০ তাশ বীজ recalcitiant বীজ হিসেবে পরিচিত। যে সর বীজকে তভাগে অসুরোদশহ জমতা হয়।

লো বিকালাসানাত বাজা বেশন নোৰ।

ত। ক্বিড জিন বাাকে (Field gene bank) : কিন্ত জিন বাাকের মাধ্যমে বিকালসিট্টান্ট বীজবাটী ছত্তি ক ত। ক্রিড জিন ব্যাকে Presi gene name)
করা সম্ভব। কোনো প্রজাতির সাভাবিক এলাকার বাইবে জনা কোনো স্থানে এসব প্রজাতির জীবত নমুন্ সাচন হয়। ক্রপ প্রজাতির জন্য এ প্রক্রিয়া উত্তম। ক্রাসাভার ফুনা কিলম্মিতে ক্রিন্ড জিন ব্যাকে আছে। বাংগাদেশের হতিক

৪। জিন ব্যাকে (Gene bank) : উদ্ভিদের জিন তত্ত্বে সম্পদ্ধগোকে সংক্রমণে এবং পৃথিৱীর বিশাস সমূ ত। জন ব্যাহক (Charles Bank) : তার্ডার বিজ্ঞান বিজ্ঞা উত্তিদ নমুনাচলোকে সময়ে সময়ে জন্মনো হয় এবং এ থেকে নতুন বীঞ্চ উৎপন্ন করে সংরক্ষণ করা হয়।

৫। চিড়িয়াখানা (Zoo): চিড়িয়াখানা এমন এক ধরনের স্থাপনা (এলাকা) যেখানে জীবস্ত বনা প্রাণীসমূহ তাম করে রেখে সেখানে বিনোদন, গবেষণা ও প্রজননের ধ্যবস্থা করা হয়ে থাকে। এটা জাতীয় পর্যায়ে এক বৃহৎ

আবার ব্যক্তি পর্যায়ে শুদ্র পরিসরে গড়ে ওঠে। উদাহরণ-মিরপুর জাতীয় চিড়িয়াখানা।

ও। নিমুতাপমাত্রায় সংরক্ষণ (Low temperature conservation) : অসত বংশবিভারে সক্ষ ধান চ ফসলের অসজ অংশ (যেমন-রাইজোম, বাখ, টিউবার, করম) সাধারণত অন্ত জীবনকাল সম্পন্ন এবং দ্রুত বিন্যা হ্যাত্ যদি না এদেরকে উপযুক্ত পরিবেশে সংরক্ষণ করা হয়। ৯০ তাগ আপেক্ষিক আর্দ্রতা বা ৪°-৫° সে, তাশমান্তে সে আলুকে ৫-৭ মাস হিমাগারে সংরক্ষণ করা যায়। আরার ১৪- সে, ভাপমারা এবং উচ্চ আর্লুতার মিটি আলু করে জ भरद्रक्षण क्वा याथ। তবে এভাবে বেশিদিন সংবক্ষণ कवा याय ना।

৭। ইন-ভিট্রো সংরক্ষণ (In-vitro conservation) : ইন-ভিট্রো উপারে ল্যাবরেটরিতে রিকালস্মিতি হর্নে ক্যাপাস (callus) টিস্যু সংরক্ষণ করা যায় বা তরল আবাদ মাধ্যমেও সংরক্ষণ করা যায়। অতি নিম্ন তাপমান্ত হয় দাইটোজেনে Cryogenic পদ্ধতিতেও (-১৯৬° দেনিয়েড) এদেরকে সংরক্ষণ করা যায়, তবে এতে সময়, খন্ড ৫ জা

সতক্তার দরকার হয়।

৮। ডিএনএ সংরক্ষণ (DNA conservation) : উভিদ্ন খেকে DNA আহরণ করে তা সংরক্ষণ করা হয়। DNI সংরক্ষণের মাধ্যমে প্রয়োজনীয় ও কাজ্জিত জিন সংরক্ষণ করা যায় কিন্তু এখনো সংরক্ষিত DNA তেকে নতুন উল্লিখ্য উপায় উদ্ধাৰিত হয়নি।

ঠ। পরাণরেণু সংরক্ষণ (Pollen grain conservation) : পরাণরেণুকে নিমুত্তাপমারায় দীর্ঘদিন সংক্ষে ছা যায় এবং পরে জীবন্ত উদ্ভিদের সাথে ক্রসিং-এ ব্যবহার করা যায়। সংরক্ষিত পরাণ থেকে হয়ত অদূর ভবিষাতে হাত্রম উরিদও সৃষ্টি করা যাবে। পরাগ সংরক্ষণের মাধামে কেবল উন্নিদের পুরুষ নিকটি সংরক্ষিত হয়, স্ত্রী নিকটি ময়।

কোন কোন প্রজাতি সংরক্ষণের দাবিদার

এক্স-সিটু কলজার্ভেশনে সব উদ্ভিদ প্রজাতি সংরক্ষণ করা সম্ভব নয়, তাই কোন কোন উদ্ভিদ প্রজাতি সংক্ষের স অথাধিকার পাবে তা পূর্বেই নির্ধারণ করতে হবে। সংরক্ষণের ব্যাপারে অমাধিকার প্রদানের ক্ষেত্রে নির্মাণিতি বিষয়েশ প্রতি লক্ষ্য রাখা হয়।

(i) দুর্লাড (rare) এবং সংকটাপদ্ম (endangered) প্রজাতি প্রথম অ্যাধিকার পাবে।

(ii) অর্থনৈতিকভাবে গুরুত্পূর্ণ দরকারি উদ্ভিদ প্রজাতির নিকট সম্পর্কযুক্ত প্রজাতি অহাধিকার পাবে, কার্ম ^{এড} নিকট সম্পর্কযুক্ত উদ্রিদ জেনেটিক সম্পদের (genetic material) উৎস হিসেবে কাল করে, যেমন- রোগ জীয়ার जिम ।

(iii) ট্যান্সোন্মিক হরুত্বপূর্ণ উত্তিদ প্রজাতি ও তার নিকট সম্পর্কযুক্ত প্রজাতি সংবক্ষণে অমাধিকার পার্বে ।

দশ্যতি কাল: কোনো বোটানিক্যাল গার্ডেন, ন্যাশ্রাল পার্ক, অভয়াল্লয়, অভয়ারণা ব্যন করে ব্যন ক প্রতিবেদন তৈতি কর এবং শিক্ষকের নিকট উপত্যাপন কর।

সম্বিদ্ধার তরুত্ব বা প্রয়োজনীয়তা (Importance of biodiversity conservation)

প্রতিষ্ঠানির তার বুলি ও ধ্বংস একটি প্রাকৃতিক ব্যাপার। কিন্তু গত এক শতালী যাবং জাসের হার সৃত্তির ক্রের বিশ্ব বিশি। এর মূল কারণ মানুষের কর্মকাও। বন ধ্বংস ও জলাশহ চরাট করে ক্রিকিট ত্রির জার্মান্তর মূল কারণ মানুষের কর্মকাও। বন ধংগেও জলাশহ চরাট করে কৃষিচাহি সম্পাসন, করিছ বাসামিক সার, আগাছা নাশক, কীউপতঙ্গ নাশক, ছ্যাক নাশক প্রকৃতি বাসামিক তা বোল। আৰু আগাছা নাশক, কাঁটপতঙ্গ নাশক, ছত্ৰাক নাশক প্ৰকৃতি বাসায়নিক সংবাদ মান্তি। কৰি বাসায়নিক সাথ, আগাছা নাশক, কাঁটপতঙ্গ নাশক, ছত্ৰাক নাশক প্ৰকৃতি বাসায়নিক স্বব্যের মান্তি। বিশ্ব বিশ্বায়ন ও অন্যান্য উনুয়ন কর্মকাণ্ডের জন্য অধিক হাবে বনাঞ্চল ধ্যাস ও অন্যান্য উনুয়ন কর্মকাণ্ডের জন্য অধিক হাবে বনাঞ্চল ধ্যাস ও সম্প্রি ্রানালন্দ্র বাদ্যান ও অন্যান্য উল্লয়ন কর্মকারের জন্য অধিক হারে বনাঞ্চল ধ্বংস ও মারাতিরিক বনছ সক্ষ্য বাদ্যান প্রায়ন ও অন্যান্য উল্লয়ন কর্মকারের জন্য অধিক হারে বনাঞ্চল ধ্বংস ও মারাতিরিক বনছ সক্ষ্য বাদ্যান্য প্রাকৃতিক বনভূমি ও জলাভূমি দ্রুত হোস পাছেছে। প্রাণিকল স্থান প্রায় ্বার্ন, শিল্পান বিষ্ণার্ক রাজ্য প্রাকৃতিক বনভূমি ও জ্বাভূমি দ্রুত হাস পাছে। প্রাণিকুল তার খানা ও আহালে জন সরস্থি বিষ্ণার্ক নির্ভাগীল থাকায় বনভূমি ও জ্বাভূমি হাসের সাথে সাথে বহু প্রাণী প্রভাষিত ্রার্থিক বাল্যার বাক্ষার বনত্মি ও জলাভূমি হাসের সাথে সাথে বহু প্রাণী প্রস্তাতিও কালে হতে গিছেছে করে ।

বহু । একসময় আমাদের পিত্রকরা বনে ময়র ছিল বলে জানা যাত। আছু লাভ ত্তি বাদ্ধের জনা বনের ধারে বাড়িতেও থাকা যেতো না। এখন মার কৌ কি মার প্রাণ বছর আগেও ্রার বিশ্ব বানরের জন। বনের ধারে বাড়িতেও থাকা যেতো না। এখন মহুর নেই, রায়ও নেই, বানও লাই নেই

নাল। বিশ্বতি ক্ৰিড্ৰোসের ফলে বৈশ্বিক উদ্ধতা দেখা দিয়েছে এবং দ্ৰুত পৰিবৰ্তন হয়ে যাছে পৃথিৱৈ ছাৰ্ছাবল ভ বিশ্ব সংগ্রহণ বাবে বাবে । কালেই সামস করে বিশেষ করিব প্রাকৃতিক সুর্যোগ বেড়েই হলেছে। এসং করেব লা বর্ণ বা করিই আল স্থানির মুখে। কাজেই মানুষ তার নিজের অন্তিত্ রকার জন্মই পৃথিবীবাদী জীববৈচিত্রা সংক্রমণ त करा । भूति इद्याप्ट IUCN (International Union for Conservation of Nature and Natural Resources) NEWorld Wildlife Fund & Nature): UNEP (United Nations Environmental Program); WCMC (World Monitoring Centre): CITES (Convention on International Trade in Endangered Species of I Face and Flora), EAS (Environmental Awareness Strategies), UNICEF (United Nations gures Children Emergence Fund) প্রকৃতি আমর্কাতিক সংস্থা।

হি দেশের জীববৈচিত্র্য রক্ষা করার জন্য আন্তর্জাতিক সংস্থাসমূহের উপর নির্ভন করার সেয়ে নিজেবই সচেত্রন হরো এক্ষেত্রক সচেতন করবো। অনগণকে জীববৈচিয়ের তকত্ বোঝাতে পারলে সহজেই আমাদের এই সমুদ্য সম্পদ

েলেকে চারতের হিমালয় অধালের 'চিপকো' অন্দোলনের কথা উল্লেখ করা যায়। চিপকো ছানীয় অনিবাসী শদ্ মর্মালা লেন্টে থাকা। কোনো বৃক্ষ কটিতে এলে ঐ আন্দোলনের করীরা গাছের সাথে লেন্টে থাকে, বলে ঐ গাছটি শিংহত থেকে রক্ষা পায়। স্থানীয়া জীববৈচিত্রা রক্ষার জন্য আমাদেরত অবস্থা অনুযায়ী কোনো উপত্ত আবিষ্ঠার করতে

মীয়েক জীববৈচিত্র্য সংরক্ষণের গুরুত্বকে নিমুলিখিত উপায়ে নিমিট্ট করে প্রকাশ করা যায়। ম ইবৈটিয়া ও কৃষি : কৃষি উন্নয়নের জন্য জীববৈচিয়া থাকা অপরিহার্য। ফসনী উভিনের নিকট স্মর্কের্ড বন্য লৈ জিন ব্যবহার করে আমাদের কৃষি প্রভাতির ফলন অনেত বাড়ানো সাবে হলেছে এবং ক্রিয়াতের অবহার করে আমাদের কৃষি প্রভাতির ফলন অনেত বাড়ালো নজা হৈছে এবং করিয়াতেও। অবহার করা উদ্ভিদ সৃষ্টি করা হয়েছে, করা সহিষ্ণু, লোনা জন সহিষ্ণু প্রকাশত সৃষ্টি করা হছেছে এবং করিয়াতেও। আহার। তাই জীববৈচিত্রা (বিশেষ করে বন্য জীববৈচিত্রা) মানব সমাজের থানা যোগানের জনা অভিব প্রয়োগনীয়। । ইংকিয়ে ও মাছের চাহিলা : বহু জাতের মাছ আছে, এদের পুরিমানও লাইকার্মতিত। আবর মনুগের লছকের ক্ষমিত ব মাছের চাহিলা : বহু জাতের মাছ আছে, এপের মাজবল হত বৈছিলামর হবে, আমাদের নিজৰ বিশ্বমিত বিশ্বমিত হবে, আমাদের নিজৰ

াজীইবচিত্রা ও গুমুধ : মানুষের প্রাথমিক সাস্থ্য পরিচর্যা প্রায় সম্পূর্ণভাবেই উন্নেইচিত্রা নিউও। নতুন নতুন ভারত বিবাস বিষয়ের ও ওযুধ : মানুষের প্রাথমিক বাছা পরিচয়ী প্রয়ে সম্পূলকবের আগের মানত বারের।
ক্রিয়ার নতুন নতুন ভযুধ আবিষ্কার হচেত। মানুষের জেনেটিক পার্থকা অপরিহর্ষে। আমেরিকার The National Casar े। क्षांत्रेर मूत्रम स्टब । পি কিছিল্ব চাহিনা মেটাতে ব্যাপক বৈচিয়াময় কীৰ প্ৰাণাতি পাৰিল কৰিবলৈ। আমেচিকাৰ The National Cascillation কৰিবলৈ চাহিনা মেটাতে ব্যাপক বৈচিয়াময় কীৰ প্ৰাণাতি থাকা কৰিবলৈ। আমেচিকাৰ বৈচিয়াময় কীৰ প্ৰাণাতি থাকা কৰিবলৈ মাত্ৰ একটি থেকে বিজ্ঞানিক বি শুলার চাহিদা মেটাতে ব্যাপক বৈচিয়াময় কীব প্রজাতি থাকা অপানহার। এবনট থেকে প্রিয়ো টিপ্রার্থিত করে করিছ মান্ত একটি থেকে প্রিয়ো টিপ্রার্থিত করেছে হার। ৩৫,০০০ হলার প্রকৃতি প্রস্তুত করেছে হার। ৩৫,০০০ হলার প্রকৃতি হার কং,০০০ হাজার বিভিন্ন উদ্ভিদ প্রজাতির এক লকটি নির্যাস পরীকা করে মান্র প্রকাচ ব্যক্তি হার কি থেকে) নামক ক্যালার কেমোধেরাপির গুমুখ প্রতিষ্ঠিত করকে সক্ষম হয়। ০৫,০০০ হাজার প্রকাশ র বা াই থেকে) নামক ক্যাপার কেন্সোধেরাপির গুমুখ প্রতিষ্ঠিত করকে সক্ষম হয়। ওচ্,০০০ জনার এই থেকে। বুলি একটি প্রজাতি বিশুর হয়ে যেতো ভাইলে কেন্সোধেরাপির এই কুষ্টি আর অধিপুক্ত হয়ে লা এ থেকে।

বিভাগের করুত্ব অনুধাবন করা হাছ।

তবুধ, রং, মোম, কাগজ শিল্প, কর্ক শিল্প, রাবার শিল্প ইত্যাদি বহু ধরনের সামগ্রী জীবজগুং থেকে আসে। ক্রিজগুং, বৈচিত্রাময় সামগ্রীর যোগান দেয়। জীববৈচিত্র্য সংকুচনের সাথে সাথে আমাদের বাবসা ও শিল্প সংকুটি

৫। জীববৈচিত্রা ও ইকেট্রিরিজম: জীববৈচিত্র্যে ভরপুর এলাকাকে ইকেট্রিরিজমের জন্য বেছে দেয়া হয়। কৈ জীব দেখার জন্য দেশ-বিদেশের প্রচুর লোক সেখানে যায় এবং এর মাধ্যমে দেশ বিপুল অংকের মুদ্রা (বৈদেশিক মূল লাভ করে।

৬। জীববৈচিত্র্য ও এপনোবায়োলজি : উপজাতীয় জনগোষ্ঠী তাদের জীবনযাত্রার বিভিন্ন ধরনের জীবত করেছে। সমৃদ্ধ জীববৈচিত্র্যের সাথে তাদের সমৃদ্ধজীবন-যাপন নির্ভরশীল। পৃথিবীতে লক্ষ শক্ষ উপজাতীয় শোষ্টাই ক্ষু

৭। জীববৈচিত্র্যের নান্দনিক শুরুত্ম : জীববৈচিত্র্যের নান্দনিক গুরুত্ম অপরিসীম। জীববৈচিত্র্যসমৃত্ধ পরিপাটি তথ্য মনোরম পরিবেশ মানুষকে দিয়ে থাকে অনাবীল আনন্দ, মানসিক শান্তি ও দৈহিক প্রশান্তি। মানসিক শান্তি মানুষকে চিন্তামুক্ত, রোগমুক্ত ও দীর্ঘজীবী। এটি বৃদ্ধ-বৃদ্ধাদের জন্য অধিক উপযোগী।

৮। জীববৈচিত্র্য এবং অবকাশ যাপন ও সাংস্কৃতিক গুরুত্ব : জীববৈচিত্র্য কবি সাহিত্যক ও চিত্র শিল্পীদের ব ৰ ক্ষে অনুপ্রেরণা যোগায়, কাজে আনে নতুনত্ব ও গতি। অনেকেই অবসর সময় কাটান বাগান করে, পাখি পাদন জ্ব অ্যাকুরিয়ামে সুন্দর মাছ চায় করে।

৯। জীববৈচিত্রোর ইকোলজিক্যাল গুরুত্ব : জীববৈচিত্রা ও বিভিন্ন ইকোসিস্টেম পারম্পরিক সম্পর্কযুক। বেক্রেইকোসিস্টেমের ১/২টি কীস্টোন প্রজাতির বিলুপ্তি ঘটলে সম্পূর্ণ ইকোসিস্টেমটি ভারসামা হারিয়ে কেলে। ফুড চেইন গুরু ওয়েব দৃটিই জীববৈচিত্রানির্ভর। কাজেই জীববৈচিত্রোর ইকোলজিক্যাল গুরুত্ব অপরিসীম।

১০। শরণার্থী হ্রাস : বিশ্বের বহস্থানে পরিবেশগত বিপর্যয়ের কারণে শরণার্থী সংখ্যা দিন দিন বৃদ্ধি পাছে। বিশ্বের্থ ৪৫ জনে ১ জন এবং বাংলাদেশে প্রতি ৭ জনে ১ জন জলবায় বিপর্যয়ের শিকার। জীববৈচিত্রা সংরক্ষণ কর্মণ জনবায় অসুবিধান্তলো দূর হবে এবং সঠিকভাবে পরিকল্পনা নিলে শরণার্থী সংখ্যা হ্রাস পাবে।

IUCN Red List Categories

IUCN (International Union for Conservation of Nature and Natural Resources) একটি বিশ্বতি জীববৈচিত্র্য সংরক্ষণকারী সংস্থা বিলুপ্ত বা বিলুপ্তির আশঙ্কায় আছে এমন উদ্ভিদ ও প্রাণীর তালিকা করেছে, যা IUCN হি । III নামে পরিচিত। বিত্তর গবেষণা ও বিশেষজ্ঞাদের আলাপ-আলোচনার পর IUCN এ সংক্রান্ত কচিপয় কার্টি (শ্রেণি) নির্ধারণ করে দিয়েছে। IUCN এর বর্তমান নাম World Conservation Union (WCU)।

ক্যাটিগরিসমূহ নিমুরূপ:

১। Extinct Species বা বিলুপ্ত প্রজাতি: যে প্রজাতিটির সম্ভাব্য সব বাসস্থান এবং বছরের সব পতুতে পর্যাক্তিই অনুসন্ধান কার্যক্রম চালানোর পর নিশ্চিত হওয়া গেছে যে, প্রজাতিটির সর্বশেষ সদস্যটির মৃত্যু হয়েছে। এর আর চেল সদস্য বেঁচে নেই। বাংলাদেশের এন্ডেমিক Nothopegia acuminata J. Sinclair এখন বিলুপ্ত।

ই। Extinct in the Wild বা বন্য পরিবেশে বিপুঙ্জ: যে প্রজাতিটি তার প্রাকৃতিক বন্য পরিবেশে আর পাল্যা বাদ বলে নিশ্চিত হওয়া গেছে কিন্তু বাগানে চাষাবস্থায় বা কোথাও পালিত অবস্থায় (প্রাণীর ক্ষেত্রে) এখনও সংক্রিত্রাটি জীবিত সদস্য রয়েছে তাকে বলা হয় বন্য পরিবেশে বিপুঙ্জ। Anthurim leuconeurum এমন একটি প্রজাতি যা প্রবন্ধায় বিল্প্ত কিন্তু Kew garden-এ লাগানো আছে।

ও। Critically Endangered বা অতিবিপন্ন : বিলুপ্তির কারণসমূহ অব্যাহত থাকলে যে প্রজাতিটি নিকী ভীকি বিলুপ্ত হওয়ার মতো চরম থুকিতে আছে তা হলো অতিবিপন্ন শ্রেণি। 5। Endangered Species বা বিপন্ন প্রজাতি : বিশ্বতির কারণসমূহ অব্যাহত থাকলে যে প্রজাতিটি ভবিষ্যতে বিশান অবস্থায় পরিণত হওয়ার সম্ভাবনা রয়েছে সেটি হলো বিপন্ন প্রজাতি। বিশ্বতি বিশ্বতি

el Vulnerable Species বা বিপদমান্ত/শভামান্ত : বিলুভির কারণসমূহ অব্যাহত থাকলে যে প্রভাতি ভবিষ্যতে বিপন্ন

বিশ্ব হওয়ার সম্ভাবনা ররোছে তা হলো বিপদগ্রন্থ বা শভাগ্রন্থ শ্রেণি।

ভা Rare Species বা বিরল প্রজাতি : এসব প্রজাতির পপুলেশন সংখ্যা খুব কম এবং বিক্তভাবে বিভূত বা গোনা বিশেষ ভৌগোলিক অঞ্চলে সীমিত থাকে। এখানে উল্লেখ্য যে, অতিবিপন্ন, বিপন্ন, বিপদমান্থ শ্রেণি তিনটিকে একরে ক্ষিত্র (threatened) প্রজাতি বলে।

IUCN अब जन्माना कााणिशति इरला Least concern (LC), Data deficient (DD) अवर Not evaluated (NE) ७, ८ अवर दनर क्माणिशतिरक वला इस् Threatened Category.

নিশাত কাজ: এলাকার বিরল প্রজাতির উদ্ভিদ ও প্রাণীর তথা অনুসন্ধান, তালিকাকরণ, ফটোগ্লাফকরণ ও সামাজিক সচেতনতা সৃষ্টি। বছর শেষে কাজের উপর একটি প্রতিবেদন তৈরি করে জমা দিতে হবে।

সার-সংক্রেপ

জীবনৈতিয়া : Biodiversity-এর বাংলা জীবনৈতিয়া করা হয়েছে। সহজ্ঞ ভাষায় বলতে গেলে পুথিবীতে বিরাজমান জীবনুদ্রের সামপ্রিক সংখ্যাপ্রাচূর্য ও ভিন্নতা হলো জীবনৈতিয়া। জীব বলতে অপুজীব, ছ্য্রাক, উদ্ভিদ ও প্রাণীকে বুঝায়। পিরীতে লক্ষ লক্ষ প্রজাতির জীব রয়েছে। এরা একটি থেকে অপরটি ভিন্ন বৈশিষ্ট্যমণ্ডিত এবং পৃথকযোগ্য। একটি রজাতির সব ব্যক্তি (individual) কি একই রকম? সামপ্রিক গঠনে একই রকম হলেও সৃষ্ঠতর বৈশিষ্ট্যে এরা শর্মকামণ্ডিত। পৃথিবীর সকল মানুষ একই প্রজাতির অন্তর্ভূক্ত হলেও প্রতিটি মানুষই একজন থেকে অপরজন আলাদা। জিলাত পার্থক্যের কারণে একই প্রজাতির অন্তর্ভূক্ত হয়েও প্রত্যেক ব্যক্তিই পৃথকযোগ্য, ভিন্ন। পরিবেশ তথা ইকোসিন্টেম র্মাণকৃত পার্থক্যের কারণে একটি ইকোসিন্টেম থেকে অন্য একটি ইকোসিন্টেমের গঠনগত পার্থক্য থাকলে তালের বারণকৃত জীবপ্রজাতিসমূহের মধ্যেও পার্থক্য থাকবে। একটি জলজ ইকোসিন্টেমে যে ধরনের জীব বাস করে, একটি ছল ইকোসিন্টেমে অন্য ধরনের জীব বাস করে। সুন্দরবনের ইকোসিন্টেমে যে ধরনের জীব বাস করে, মধুপুর বনের ইকোসিন্টেমে অন্য ধরনের উদ্ভিদ ও প্রাণী বাস করে। কাজেই দেখা যায় জীববৈচিয়ের সাথে জিল, প্রজাতি ও কোসিন্টেম নিবিভূভাবে জড়িত। কাজেই জীববৈচিত্রাকে সাধারণত তিন্টি পর্যায়ে আলোচনা করা হয়, যথা জিলগত কৈয়েম নিবিভূভাবে জড়িত। কাজেই জীববৈচিত্রাকে সাধারণত তিন্টি পর্যায়ে আলোচনা করা হয়, যথা জিলগত কৈয়া (Genetic diversity)। এই তিন প্রকার বৈচিত্রা মিলিভভাবে সৃষ্টি করেছে জীববৈচিত্রা বা Biodiversity। বিচিত্রা (Ecosystem diversity)। এই তিন প্রকার বৈচিত্রা মিলিভভাবে বিষয়টি প্রকাশিত হলেও পরবর্তীতে ১৯৮৬ সালে শ্বিদিকভাবে Biological Diversity নামে ১৯৮০ সালে দু'টি প্রবন্ধে বিষয়টি প্রকাশিত হলেও পরবর্তীতে ১৯৮৬ সালে ব্যামিকভাবে Biological Diversity নামে ১৯৮০ সালে দু'টি প্রবন্ধে বিষয়টি প্রকাশিত হলেও পরবর্তীতে ১৯৮৬ সালে

Walter Rosen দুটি শব্দকে মিলিয়ে Biodiversity হিসেবে প্রকাশ করেন।
সংরক্ষণ বা কনজারভেশন : কনজারভেশন (conservation) শব্দটি জীববৈচিত্রের সাথে সম্পর্কয়্ত । পৃথিবীর সংরক্ষণ বা কনজারভেশন : কনজারভেশন (conservation) শব্দটি জীববৈচিত্রের সাথে সম্পর্কয়্ত । পৃথিবীর ইবৈচিত্রিকে সংরক্ষণ করার নামই কনজারভেশন । বাংলায় সংরক্ষণ বলতে প্রিজারভেশনকেও বোঝায় কিন্তু প্রিজারভেশন ও কনজারভেশনের মধ্যে পার্পকা বিদ্যমান । কনজারভেশন হলো মানুষ কর্তৃক জীবমগুলের ব্যবহার সংক্রেছ এমন ও কনজারভেশনের মধ্যে পার্পকা প্রজানার জন্য সর্বোচ্চ মাত্রায় সুফল প্রদান করতে পারে এবং একই সাথে ভবিষায়্ত আন্মর সব প্রয়াজন ও আকাজনা প্রণের সম্ভাবনাও সমভাবে অকুর থাকে। কাজেই কনজারভেশন বলতে বোঝায় আন্মর সব প্রয়াজন ও আকাজনা প্রণের সম্ভাবনাও সমভাবে অকুর থাকে। বাবয়ায়ির সংরক্ষণ, রক্ষণাবেক্ষণ, সহনীয় মাত্রায় প্রয়োগ, পুনকদ্ধার এবং বাবয়ার। বিবয়টিকে সহজভাবে বলা মায়, বিবিচিত্রা সংরক্ষণ, রক্ষণাবেক্ষণ, সহনীয় মাত্রায় প্রয়াগ, পুনকদ্ধার এবং একই সাথে আমার সন্তানগণও যেন ভবিষ্যতে আর বর্তমান প্রয়োজনে একটি বৃক্ষ কেটে কাঠ ব্যবহার করবো এবং একই সাথে আমার সন্তানগণও যেন ভবিষ্যতে মার প্রয়োজনে এক বা একাধিক বৃক্ষ কেটে কাঠ ব্যবহার করতে পারে তার ব্যবহা করে যাখো (অর্জাৎ একটি গাছ বিদ্যাজনে এক বা একাধিক বৃক্ষ কেটে কাঠ ব্যবহার করতে পারে তার ব্যবহা করে যাখো (অর্জাৎ একটি গাছ

নিস, দু'টি গাছ লাগাবো)। বিস, দু'টি গাছ লাগাবো)। তথ্য হলার জেলার তথ্য প্রত্যা প্রত্যা কনজারভেশন এবং (মুক্ত জনসমূল কনজারভেশন।

(৷) ইন-সিটু কনজারতেশন হলো জীববৈচিয়ের উপাদানকে আদের নিজত আবাসভূমিতে রেপেই সংক্ষেত্র নিব্ৰৈটিটো সংবক্ষণের স্বচেতে সুবিধাজনক উপায় হলো ইন-সিটু প্ছতিতে কনজার্ড করা। ন্যাপনাল পার্ক, ইজেন্দ্র ৰাকাৰি পাৰ্ক, বশালাণী অভয়াৱশা, মংসা অভয়ালম ইত্যাদি সৃষ্টিত মাধামে ইন-সিটু কনজারতেশন করা হয়।

(ii) এজ-সিটু কনজারভেশন হলো জীববৈচিয়েরে উপাদানকে তালের নিজম বাসস্থানের বাইবে জনা কোলে চ দ্ধকণ করা। বোটানিক গার্ভেন, সীভ ব্যাংক, ফিল্ড জিন বাংক, নিমুতালমারায় ও তরল নাইটোছেনে স্ব শ্বভিত্তলা হলে। এক্স-সিটু কনজারভেশন।

अनुगीननी

खनिर्वाधनि बन्न (MCQ)

বাংলাদেশের বিলুপ্ত প্রাণী কোনটি ?

(ক) পাতিকাক

(গ) মেনিমাছ

- ২। জীব সংবক্ষণের জন্য প্রয়োজন-
 - (i) অভয়ারণা, সংরক্ষিত বন, ইকোলার্ক তৈরি
 - মুদ্ধ-বিয়হ্, বাঁধ ও সভক নির্মাণ, কলকারখানা তৈবি
 - (iii) DNA সংরক্ষণ, টিস্যু সংরক্ষণ, লিভিং জিন ব্যাংক তৈরি নিচের কোনটি সঠিক।

(本) 1 日日

(4) 1 年出

(門) 注意田

(N) I'II @ III

अभी गकारि भएक के थे हैं सर् वर्ज़ व केवर माथ।

ৰাংপাদেশের সব ভারণার মাটি ও আবহাওয়া এক রকম নয়। তাই এদেশের বিভিন্ন অভনে বিভিন্ন ছবন ইছ জন্ময়। কোনো কোনো উভিদ চিত্ততিং আতাত কোনো কোনোটি শতক্তা। শাল, চাপালিপ, নশবালভা, কুলী শেওয়া, বান্দরহোলা, গোলপাতা ইত্যাদি বিভিন্ন পরিবেশে জন্মে বাকে

- ১ ইমীপকের ম্যানয়োত উল্লিক্তপোর বৈশিয়ঃ-
 - (i) जवायुक्त ककृद्रतामगम
 - (াা) খালনুল উপছিত
 - (iii) পুৰায়িত প্ৰবন্ধ উপছিত নিচের কোনটি সঠিক?

(4) i g ii (4)

(4) 17 6 111

- ৪। উমীপকের পত্রবরা উল্লিন কোন অঞ্চলে বেশি জন্মে ঘাকে?
 - (ক) গলনদীর বিত্তীর্ণ সমভূমি অকল
 - (খ) চাকা-ময়মনসিংহ বনাকল
 - (গ) বৃহত্ত নিলেট অভাগ
 - (N) চট্টগ্রাম ও পর্বতা চট্টগ্রামের বনাঞ্চল

स्थानिकानि श्रञ्जानां न केतवयां ना :

\$1(4) | \$1(4) | 01(2) | \$1(4)