Boighar.com

আইডিয়াল লাইব্রের্রী ঢাকা জাতীয় শিক্ষাব্রুম ও পাঠপ্নেস্কর্ব্য শের্ডে কর্তৃক তানুমোদিত Jewel বইচর

মুখবন্ধ

জাতীয় শিক্ষাক্রম ও পাঠ্যপুস্তক বোর্ডের নতুন পাঠ্যসূচি অনুযায়ী উচ্চ মাধ্যমিক পদার্থবিজ্ঞান ১ম পত্রের পুস্তকখানি রচিত হয়েছে এবং দেশের প্রখ্যাত কয়েকজন পদার্থবিদের মূল্যায়নের ভিত্তিতে পুস্তকখানি উচ্চ মাধ্যমিক শ্রেণীর পদার্থবিজ্ঞান ১ম পত্র পাঠ্যপুস্তক হিসেবে জাতীয় শিক্ষাক্রম ও পাঠ্যপুস্তক বোর্ড কর্তৃক অনুমোদিত হয়েছে। মাধ্যমিক স্তরের পদার্থবিজ্ঞানের সাথে ধারাবাহিকতা রক্ষা করে উচ্চ মাধ্যমিক স্তরের পাঠ্যসূচিতে অন্তর্ভুক্ত বিষয়গুলোর প্রয়োজনীয় আলোচনা সহজ সরল ভাষায় উপস্থাপন করা হয়েছে। প্রতিটি বিষয় জটিল না করে সহজভাবে আলোচনা করেছি যেন ছাত্রছাত্রীরা বিষয়বস্তু আয়ন্ত করতে অসুবিধার সন্মুখীন না হয়। বিষয়বস্তু বর্ণনা সহজবোধ্য করার জন্য যথেষ্ট সংখ্যক প্রয়োজনীয় চিত্র সংযোজন করেছি। প্রতিটি অধ্যায়ে বিষয়বস্তুর আধুনিক মতবাদ, তত্ত্ব ও তথ্য সমৃন্দ করতে আমরা যথেষ্ট সচেষ্ট থেকেছি এবং এজন্য দেশী-বিদেশী অনেক বই-এর সাহায্য নিয়েছি। যে সমস্ত পুস্তকের সাহায্য গ্রহণ করা হয়েছে সে সমস্ত পুস্তকের লেখক এবং প্রকাশকদের কাছে আমরা কৃতজ্ঞ ও ঋণী।

পুস্তকখানিতে এস. আই. পম্বতির একক সর্বত্র ব্যবহার করা হয়েছে। প্রচলিত এবং বহুলভাবে ব্যবহৃত পরিভাষা ব্যবহারের চেম্টা করা হয়েছে। উচ্চ মাধ্যমিক স্তরের উপরের স্তরে বিজ্ঞান বিষয়ক প্রায় পুস্তকই ইংরেজিতে লেখা; তাই বিভিন্ন রাশির ইংরেজি প্রতিশব্দ জানা থাকলে বিষয়বস্তু বুঝতে সুবিধা হবে বিবেচনায় বাংলার পাশাপাশি ইংরেজি প্রতিশব্দ সংযুক্ত করা হয়েছে।

পুস্তকখানি নির্ভুলভাবে মুদ্রণের চেন্টা নেয়া হয়েছে। তবুও ভুল থাকা অস্বাভাবিক নয়। যদি দৈবাৎ কোথাও মুদ্রণ ব্রুটি দৃষ্টিগোচর হয় তা জানালে কৃতার্থ হব। পুস্তকের শ্রীবৃষ্ণি ও মান উন্নয়নের ব্যাপারে যে কোন পরামর্শ এবং গঠনমূলক সমালোচনা সাদরে গৃহীত হবে এবং তা পরবর্তী সংস্করণে সন্নিবেশিত করা হবে।

এ পুস্তক রচনায় যাঁরা আমাদেরকে বিভিন্নভাবে সাহায্য সহযোগিতা করেছেন তাঁদেরকে ধন্যবাদ জানাচ্ছি। যাদের উদ্দেশ্যে বইখানি রচিত তাদের যদি কাজে লাগে তবেই আমাদের পরিশ্রম সার্থক হয়েছে বিবেচনা করব।

ডঃ আমির হোসেন খান প্রফেসর মোহাম্মদ ইস্হাক

পাঠ্যসূচি পদার্ধবিজ্ঞান---প্রথম পত্র

১। ভেষ্টর

সাধারণ ধর্ম ঃ একক ভেষ্টর ও উপাংশ, রৈখিক সমন্বয় ও লম্বি, স্কেলার ও ভেষ্টর গুণফল, ভেষ্টরের সময় সাপেক্ষ ব্যবকলন।

২। রৈখিক গতি

একমাত্রীয় গতির রেখচিত্র বিবরণ, দ্রুতি ও সরণ, তাৎক্ষণিক দ্রুতি (ব্যবকলনের সাহায্যে), গতির সমীকরণ, সুষম ত্বরণের ক্ষেত্রে গতি সমীকরণের সমাধান, পড়ন্ত বস্তুর গতি।

৩। দ্বিমাত্রিক গতি

সরণ, বেগ ও ত্বরণের ভেষ্টর রূপ, গতি সমীকরণের ভেষ্টর রূপ ও সমাধান (সুষম ত্বরণ), নিক্ষিপ্ত বস্তুর দ্বিমাত্রিক গতি, বৃত্তীয় গতি, কৌণিক ও রৈখিক বেগের সম্পর্ক (ভেষ্টর দ্বারা), কৌণিক ত্বরণ; কেন্দ্রমুখী ত্বরণ।

৪। গতি সূত্র

জড়তা ও বল, চার প্রকার মৌলিক বল, নিউটনের প্রথম গতিসূত্র, ভরবেগ; নিউটনের দ্বিতীয় গতিসূত্র (ভেক্টর দ্বারা), ঘাতবল, নিউটনের তৃতীয় গতিসূত্র; ভরবেগের সংরক্ষণ (ভেক্টর দ্বারা), রকেটের গতি, বলের ভারসাম্য, ঘর্ষণ বল ও ঘর্ষণ গুণাজ্ঞ।

- ৫। কৌণিক গতিসূত্র কৌণিক ভরবেগ, টর্ক, কৌণিক গতির জন্য নিউটনের সূত্র, কেন্দ্রমুখী বল, যানবাহন ও রাস্তার বাঁক, জড়তার ভ্রামক, চব্রুগতির ব্যাসার্ধ, সমান্তরাল ও অভিলন্দ্র অক্ষ উপপাদ্য।
- ৬। কাজ শক্তিও ক্ষমতা

কাজের সংজ্ঞা (ভেক্টর ও সমাকলনের সাহায্যে), গতিশন্তি ও কাজ-শন্তি উপপাদ্য (ধ্রুব বল), স্থিতিশন্তি, শক্তির নিত্যতা, ক্ষমতা।

৭। মহাকর্ষ

নিউটনের মহাকর্ষ সূত্র, 'G'-এর মান নির্ণয়; অভিকর্ষজ ত্বরণ 'g'-এর তারতম্য, অভিকর্ষ কেন্দ্র, কৃত্রিম ও ভূ-স্থির উপগ্রহ, মহাকর্ষীয় বিভব, মুক্তিবেগ, কেপলারের সূত্র।

৮ | সরল ছন্দিত স্পন্দন

সংজ্ঞা, ব্যবকলনীয় সমীকরণ ও সমাধান (শুধু উল্লেখ), স্থিতি ও গতিশক্তির পরিবর্তন (রেখ), স্প্রিংজনিত স্পন্দন, সরল দোলক ও তার পর্যায়কাল, দোলকের সাহায্যে 'g' নির্ণায়।

৯। স্থিতিস্থাপকতা

আন্ডঃআণবিক বলের ধারণা, স্থিতিস্থাপকতা ও হুকের সূত্র, স্থিতিস্থাপকতার গুণাচ্চকবলি ও পয়সনের অনুপাত, ইয়াৎ-এর গুণাচ্চক নির্ণায়, স্থিতিস্থাপক স্থিতিশক্তি।

১০। প্রবাহী পদার্থ

পৃষ্ঠটান (আণবিক তন্ত্ব), স্দর্শকোণ, কৈশিক নলের সাহায্যে পৃষ্ঠটান নির্ণয়; সাম্দ্রতা, স্টোকসের সূত্র, পৃষ্ঠটান ও সাম্দ্রতার ওপর তাপমাত্রার প্রভাব। ১১। তাপ ও গ্যাস

বয়েলের ও চার্লসের সূত্র, আদর্শ গ্যাস সমীকরণ, গ্যাসের অণুর গতি বন্টন সম্পর্কে প্রাথমিক ধারণা, মূল গড় বর্গ বেগ, চাপ ও তাপমাত্রার সজ্ঞো অণুর গতিবেগের সম্পর্ক, গড় মুক্ত পথ, সম্পৃক্ত ও অসম্পৃক্ত বাষ্পীয় চাপ, আর্দ্রতামিতি।

১২। তাপমাত্রা

তাপমাত্রার নির্দিষ্ট কিন্দু, স্কেল, ত্রৈধ কিন্দু, পরম তাপমাত্রা, পারদ থার্মোমিটার, থার্মোকাপল, থার্মিস্টর ও পাইরোমিটার।

১৩। তাপগতিবিদ্যার প্রথম সূত্র তাপ ও অভ্যন্তরীণ শক্তি, রুল্বতাপ ও সমঞ্চে প্রসারণ ও সজ্জোচন, তাপ গতিবিদ্যার প্রথম সূত্র (গাণিতিক), আপেক্ষিক তাপ, C_p, C_p, ও γ, রুল্বতাপ প্রক্রিয়ায় PV = ধ্রুবক, তাপীয় সমতা।

১৪। তাপ বিকিরণ কৃষ্ণবস্তুর বিকিরণ, উইনের সরণ সৃত্র, স্টেফানের সৃত্র

কৃষ্ণবস্তুর বিকিরণ, উইনের সরণ সূত্র, স্টেফানের সূত্র, নিউটনের শীতলীকরণের সূত্র, তরলের আপেক্ষিক তাপ নির্ণয়।

১৫। অবস্থার পরিবর্তন

অবস্থা ও দশা, গলন ও বাষ্পীভবনের সুন্ত তাপ, দশা চিত্র, পানির ত্রৈধ কিন্দু, সুন্ত তাপ নির্ণয়।

- ১৬। তাপগতিবিদ্যার দ্বিতীয় সূত্র প্রত্যাগামী ও অপ্রত্যাগামী প্রক্রিয়া, দ্বিতীয় সূত্রের গুণগত ধারণা, ইঞ্জিনের দক্ষতা।
- ১৭। তরজ্ঞাও শব্দ

তরজ্ঞোর সাধারণ বৈশিষ্ট্য, বিস্তার, তরজ্ঞা দৈর্ঘ্য, স্পন্দন সংখ্যা, দশা, তীব্রতা, আড় ও অনুদৈর্ঘ্য তরজ্ঞা, উপরিপাতন ও ব্যতিচার, অগ্রগামী ও স্থির তরজ্ঞা।

১৮। শব্দ

তীব্রতার লগস্কেল (ডেসিবেল), স্বরগ্রাম ও হারমোনিকস্, বীট, টানা তারের কম্পনসূত্র, অনুনাদ, সজ্ঞীত ও শব্দ যন্দ্র।

১৯। শব্দের গতিবেগ

স্থিতিস্থাপকতা ও শব্দের গতিবেগের সম্পর্ক, শব্দের বেগের ওপর তাপমাত্রা ও আর্দ্রতার প্রভাব (গাণিতিক), বায়ু স্তম্ভের সাহায্যে গতিবেগ নির্ণয়, ডপলার ক্রিয়া (গাণিতিক)।

	মান বণ্টন	
তন্ত্ৰীয় = ৭৫		
রচনামূলক প্রশ্ন	৩টি প্রশ্নের উত্তর দিতে হবে	৩×১৫ = 8৫
সংক্ষিগ্ত-উত্তর প্রশ্ন	৬টি প্রশ্নের উত্তর দিতে হবে	৬ × ৫ = ৩০
		মোট = ৭৫
প্রশ্নপত্র প্রণয়নের নীতিম	ালা ৪	
তত্ত্বীয় রচনামূলক অংশে	প্রতিটি প্রশ্নে একাধিক অংশ থাকতে পারে। স	নকল প্রশ্নের বিকল্প (অথবা) প্রশ্ন থাকবে।
প্রতিটি বিভাগ যেমন বল	বিদ্যা, তাপ ও শব্দ থেকে কমপক্ষে ১টি প্রশ্ন	থাকবে।

SOTGHAR Please Give Us Some

UST

000

If You Don't Give Us

Any Credits, Soon There II

Nothing Left To Be Shared!

Don't Remove

This Page!

Visit Us at boighar.com

Credit When You Share

Our Books!

সূচিপত্র

۶. ভেষ্টর

3-86

সূচনা	2	ভেষ্টর রাশির গুণন	ንዮ
ভেষ্টর রাশির নির্দেশনা	2	স্কেলার গুণন বা ডট গুণন	76
ভেষ্টর রাশি সম্পর্কিত কতকগুলো সংজ্ঞা	২	একক ভেক্টর রাশির স্কেলার গুণন	79
ভেক্টর রাশির যোগ ও বিয়োগ	¢	ভেষ্টর বা ক্রস গুণন	79
ভেক্টর রাশির যোগ	¢	একক ভেষ্টরের ভেষ্টর গুণন	২১
দাধারণ সূত্র	¢	ভেক্টরের লম্ব অভিক্ষেপ বা অভিক্ষেপ	২২
রিভুজ সূত্র	৬	উপাংশে বিভাজিত ভেক্টর রাশির গুণফল	২২
বহুভুজ সূত্র	৬	স্কেলার গুণফল বিনিময় সূত্র মেনে চলে, কিন্তু	
দামান্তরিক সূত্র	٩	ভেক্টর গুণফল তা মেনে চলে না	২৪
লম্বির সর্বোচ্চ এবং সর্বনিয়ু মান	ል	স্কেলার গুঁণফল বন্টন সূত্র (Distribution law)	
ভক্টরের বিয়োগ	5	মেনে চলে	২৫
ভেষ্টর যোগের কয়েকটি সূত্র	20	ভেষ্টর গুণন বিনিময় সূত্র মেনে চলে কয়েকটি প্রয়োজনীয় সূত্র	૨ ૯
ভক্টর রাশির বিভাজন বা বিশ্লেষণ ও উপাংশ	১২	ন্দরেশত এরোজনার পূত্র স্কেলার রাশি ও ভেষ্টর রাশির মধ্যে পার্থক্য	২৬ ২৬
একটি ভেষ্টর রাশিকে একক ভেষ্টর রাশির		ভেন্টর রাশির দুই প্রকার গুণনের মধ্যে পার্থক্য	২৩ ২৭
সাহায্যে প্রকাশ	১৩	ভেন্টর ব্যবকলন বা ভেন্টর-ডেরিভেটিভ	२ । २ १
ভক্টর যোগের উপাংশ সূত্র	28	ভেষ্টরের সমাকলন	২৯
ভক্টর রাশির যোগের উপাংশ সূত্র	ንፍ	ব্যবকলন সংক্রান্ত কয়েকটি সূত্র	৩৩
ভষ্টর বিয়োগের উপাংশ সূত্র	১৬	মরণিকা	৩০
নুটি অবস্থান ভেষ্টরের শীর্যবিন্দুর সংযোগকারী		প্রয়োজনীয় সমীকরণ	৩১
ভেক্টর (উপাংশ পষ্ধতি)	১৬	সমাধানকৃত উদাহরণ	৩৩
ভেক্টর বিভাজনের দৃষ্টাশ্ত	29	প্রমালা	8¢

২.

LINEAR	MOTION
~	

- বলবিদ্যা
- স্থিতি ও গতি
- গতির প্রকারভেদ
- প্রসঞ্চা বিন্দু ও প্রসঞ্চা কাঠামো
- গতি সংক্রাম্ত কয়েকটি প্রয়োজনীয় রাশি
- বেগ ও ত্বরণের মধ্যে পার্ধক্য
- গতির সমীকরণ

82	গতি বিষয়ক কয়েকটি লেখচিত্র	90
8৯	পড়ম্ত বস্তুর সূত্র	ঀঽ
82	উল্লম্ব পতন বা উত্থানশীল বস্তুর গতির সমীকরণ	৭৩
¢٢	স্মরণিকা	ዓሯ
৫৩	প্রয়োজনীয় সমীকরণ	୩୯
હર	সমাধানকৃত উদাহরণ	99
હર	প্রমালা	ዮሮ

৩.

সূচনা

TWO DIMENSIONAL MOTION

দ্বিমাত্রিক ও ত্রিমাত্রিক প্রসক্ষা কাঠামোয় গতি

সংক্রান্ড বিভিন্ন রাশির ভেষ্টর রপ

সরণ ও বেগের উপাংশগুলোর মধ্যে সম্পর্ক

গতির ভেক্টর সমীকরণসমূহের বিভিন্ন উপাংশে

তির্যকভাবে বাধাহীন পথে উপর দিকে নিক্ষিপ্ত

বস্তুর বা প্রাসের গতির সমীকরণ

অনুভূমিকভাবে নিক্ষিশ্ত বস্তুর বা প্রাসের

গতির সমীকরণ (ভেক্টর রুপ)

গতির সমীকরণ (ভেষ্টর রূপ)

পৃথককরণ বা বিডাজন

নিক্ষিগ্ত বস্তুর গতি

গতির সমীকরণ

LAWS OF MOTION

জড়তা বা জাড্য ও বল

বলের প্রকারভেদ

নিউটনের গতিসূত্র

নিউটনের প্রথম সূত্র

নিউটনের দ্বিতীয় সূত্র

নিউটনের তৃতীয় সূত্র

বলের একক ও মাত্রা

ঘাতবল ও বলের ঘাত

কৌণিক গতিসূত্র

রকেটের গতি

সূচনা

দ্বন্দ্ব বা কাপল

টর্ক বা বলের ভ্রামক

কৌণিক ভরবেগ

বলের ঘাত ও ভরবেগের মধ্যে সম্পর্ক

ভরবেগের নিত্যতা সূত্র বা ভরবেগের সৎবক্ষণ বিধি

LAWS OF CIRCULAR MOTION

টর্ক ও কৌণিক তুরণের মধ্যে সম্পর্ক

গতিসূত্র

সূচনা

ভরবেগ

8.

œ.

দ্বিমাত্রিক গতি

<u> ጉ</u>ନ- እን ወ

22

22

205

200

208

200

206

205

209

202

203

728

ভরবেগের নিত্যতা সূত্রের উদাহরণ 270 752 226 বিভিন্ন প্রকার ক্রিয়া ও প্রতিক্রিয়া 200 ንንዮ বলের ভারসাম্য বা সাম্যাবস্থা ১০১ 250 বল ত্রিভুজ সূত্র ১৩২ 250 ঘৰ্ষণ 208 250 চল ঘৰ্ষণ বা গতীয় ঘৰ্ষণ 209 752 আবর্তন ঘর্ষণ ও প্রবাহী ঘর্ষণ 202 220 ঘর্ষণের সুবিধা এবং অসুবিধা ১৩৯ 28 স্মরণিকা 202 250 প্রয়োজনীয় সমীকরণ 256 280 সমাধানকৃত উদাহরণ 126 280 প্রশ্নমালা 758 282

363-395

262	কৌণিক ভরবেগ এবং কৌণিক বেগের মধ্যে সম্পর্ক	268
ንፍን	ঘূর্ণায়মান বস্তুর গতিশক্তি	ንወሮ
১৫২	কৌণিক গতির জন্য নিউটনের সূত্র	ንሮዔ
১৫৩	কৌণিক ভরবেগের সৎ্বক্ষণ সূত্র	ንፍብ
ንራ8	জ্ঞড়তার ভ্রামক এবং চক্রগতির ব্যাসার্ধ	ንፍብ

(viii)

66

ኦ৮

22

20

22

৯৩

28

26

\$

বৃন্তাকার গতি

কৌণিক ত্বরণ

সুষম বৃত্তাকার গতি

প্রয়োজনীয় সমীকরণ

সমাধানকৃত উদাহরণ

স্মরণিকা

প্রশ্নমালা

কৌণিক সরণ ও কৌণিক বেগ

কৌণিক গতি বিষয়ক সমীকরণ

কৌণিক বেগ ও রৈখিক বেগের মধ্যে সম্পর্ক

কৌণিক ত্বরণ ও রৈখিক ত্বরণের মধ্যে সম্পর্ক

কৌণিক কো ও রৈখিক বেগের মধ্যে পার্থক্য

শক্তি
গতিশক্তি
কাজ-শব্তুি উপপাদ্য
স্থিতিশক্তি বা বিভব শক্তি
অভিকর্ষীয় স্থিতি বা বিভব শক্তি
স্থিতিস্থাপক বিভব শক্তি
মহাকর্ষ
GRAVITATION
সূচনা
মহাকর্ষ ও অভিকর্ষ
নিউটনের মহাকর্ষ সূত্র
মহাকধীয় ধ্রুবকের সংজ্ঞা, একক এবং মাত্রা
মহাকৰ্ষীয় ধ্ৰুবক কি বিশ্বজনীন ?
মহাকধীয় ধ্রুবক G-এর মান নির্ণয়
অভিকর্ষজ ত্বরণ ' $_{\mathcal{G}}$ '
অভিকর্ষজ ত্বরণ 'g'-এর তারতম্য
পৃথিবীর ভর ও ঘনত্ব
ভর এবং ওজন বা তার

বস্তুর ওজনের তারতম্য

মধ্যৈ পাৰ্থক্য

মহাকর্ষীয় ধ্রুবক এবং অভিকর্ষজ ত্বরণের

۹.

কাজের পরিমাপ (ধ্রুব বলের ক্ষেত্রে) মধ্যে পাৰ্থক্য কাজের একক ও মাত্রা সমীকরণ অভিকর্ষীয় কাজ

WORK, ENERGY AND POWER কাজ বলের বিরুম্ধে কাজ এবং বলের দ্বারা কাজের পরিবর্তনশীল বল কর্তৃক কৃত কাজের সমীকরণ পরিবর্তনশীল বল কর্তৃক কত কাজের উদাহরণ

কাজ, শক্তি ও ক্ষমতা ৬.

জড়তার ভ্রামক সংক্রান্ত দুটি উপপাদ্য কয়েকটি বিশেষ ক্ষেত্রে জড়তার ভ্রামক ও চক্রগতির ব্যাসার্ধ নির্ণয় কেন্দ্রমুখী বল যানবাহন ও রাস্তার বাঁক

শক্তির রূপান্তর ১৯২ 299 যান্দিত্রক শক্তির নিত্যতা বা সৎরক্ষণ সূত্র ১৯৩ 296 শক্তির অপচয় 226 কাৰ্য বা কৰ্মদক্ষতা ১৯৬ 320 সংরক্ষণশীল এবং অসংরক্ষণশীল বল ১৯৬ 220 সংরক্ষণশীল বল ও অসংরক্ষণশীল বলের 727 মধ্যে পার্থক্য ንቃዮ ১৮২ ক্ষমতা ንቃት 788 কাজ ও ক্ষমতার মধ্যে পার্থক্য ንጆዎ 226 শক্তি ও ক্ষমতার মধ্যে পার্থক্য 200 ንዮቡ স্মরণিকা 798 200 প্রয়োজনীয় সমীকরণ ንዮቃ २०० সমাধানকৃত উদাহরণ 220 ২০১ প্রশ্নমালা 222 577

রৈখিক ও কৌণিক গতির মধ্যে সাদৃশ্য

228-286

262

১৬৯

১৬৯

290

298

১৭৭-২১৩

২১৪	অভিকর্ষ কেন্দ্র এবং ভরকেন্দ্র	২২৫
২১৪	গাণিতিক বিশ্লেষণের সাহায্যে কোনও তলে অবস্থিত	5
২১৪	বস্তুকণাসমূহের অভিকর্ষ কেন্দ্র নির্ণয়	২২৫
২১৬	ভরকেন্দ্র নির্ণয়	২২৬
২১৬	মহাকষীয় ক্ষেত্র ও প্রাবল্য	২২৭
২১৬	মহাকর্ষীয় বিভব	২২৭
২১৯	বিন্দু ভরের দর্ন মহাকর্ষীয় বিভব	২২৮
২১৯	প্রাবল্য ও বিভব পার্থক্যের মধ্যে সম্পর্ক	২২৮
২২৩	কেপলার-এর সূত্র	২২৯
২২৪	কেপলারের সূত্র হতে নিউটনের মহাকর্ষ সূত্র	
২২৪	প্রতিপাদন	২৩০
	মহাকধীয় ভর এবং জড় ভর	২৩০
২২৪	মুক্তি বেগ	২৩০

(ix)

262

১৬১

360

799

স্মরণিকা

প্রশ্নমালা

প্রয়োজনীয় সমীকরণ

সমাধানকৃত উদাহরণ

উপগ্রহের কক্ষীয় বেগ, আবর্তন কাল এবং		প্রয়োজনীয় সমীকরণ
উচ্চতার রাশিমালা	২৩৪	সমাধানকৃত উদাহরণ
ভূ-স্থির উপগ্রহ	২৩৫	প্রশ্নমালা
কৃত্রিম উপগ্রহের ব্যবহার	২৩৬	
সরল ছন্দিত স্পন্দন		
SIMPLE HARMONIC OSCILLATION'		
সূচনা	২৪৭	সরল দোলক
পর্যাবন্দ্র গতি ও স্পন্দন	589	সবল দোলকেব গতি সবল ছন্দিত গতি

স্বাভাবিক ও কৃত্রিম উপগ্রহ	২৩২	গ্রহের গতি	:২৩৭
বৃত্তাকার পথে পৃথিবী প্রদক্ষিণ কালে কৃত্রিম		ন্মরণিকা	২৩৭
উপগ্রহের কক্ষীয় বেগ, আবর্তন কাল এবং		প্রয়োজনীয় সমীকরণ	২৩৮
উচ্চতার রাশিমালা	২৩৪	সমাধানকৃত উদাহরণ	২৩৯
ভূ-স্থির উপগ্রহ	২৩৫	প্রশ্নমালা	২88
কৃত্রিম উপগ্রহের ব্যবহার	২৩৬		

সর ь.

সূচনা	২
পর্যাবৃত্ত গতি ও স্পন্দন	২
সরল ছন্দিত স্পন্দন	২
সরল ছন্দিত সন্দনের বৈশিষ্ট্য	২
কয়েকটি সংজ্ঞা	২
সরল ছন্দিত স্পন্দনসম্পন্ন বস্তুকণার সরণ, বেগ	
এবং ত্বরণের রাশিমালা	২
সরল ছন্দিত স্পন্দনের ব্যবকলনীয় সমীকরণ	
ও সমাধান	2
সরল ছন্দিত সম্পন্দন সম্পর্কিত কয়েকটি রাশি	2
সরল ছন্দিত গতিসম্পন্ন বস্তুকণার স্থিতিশক্তি,	
গতিশক্তি এবং গড় স্থিতি ও গতিশক্তি	২
যাম্ত্রিক শক্তির নিত্যতা সূত্র	২
সরল ছন্দিত স্পন্দন ও বৃত্তাকার গতির সম্পর্ক	২

স্থিতিস্থাপকতা ৯.

স <table-cell><table-cell> স্চনা ২৭৭ পদার্থের গঠন ২৭৭ আন্ডঃআণবিক বলের প্রকৃতি ২৭৯ স্বিতিস্থাপকতা ২৭৯ স্বিতিস্থাপকতা সম্পর্কে কয়েকটি রাশি ২৭৯ স্বিতিস্থাপকতা সম্পর্কে কয়েকটি রাশি ২৭৯ কঠিন বস্তুর স্থিতিস্থাপক ব্যবহার এবং পীড়ন ২৮৩ বনাম বিকৃতি লেখচিত্র ২৮৩ হকের সূত্র ২৮৪ প্মিসন-এর অনুপাত ২৮৬ বিকৃতির দরুন কৃত কাজ শা সঁঞ্বিত বা বিভব শক্তি ২৮৭</table-cell></table-cell>	ELASTICITY	
আশ্তঃআণবিক বলের প্রকৃতি ২৭৮ স্থিতিস্থাপকতা সম্পর্কে কয়েকটি রাশি ২৭৯ স্ঠিন বস্তুর স্থিতিস্থাপক ব্যবহার এবং পীড়ন বনাম বিকৃতি লেখচিত্র ২৮৩ হুকের সূত্র ২৮৪ স্থিতিস্থাপক গুণাজ্ঞকর প্রকারভেদ ২৮৪ পয়সন-এর অনুপাত ২৮৬	সূচনা	২৭৭
স্থিতিস্থাপকতা ২৭৯ স্থিতিস্থাপকতা সম্পর্কে কয়েকটি রাশি ২৭৯ কঠিন বস্তুর স্থিতিস্থাপক ব্যবহার এবং পীড়ন বনাম বিকৃতি লেখচিত্র ২৮৩ হুকের সূত্র ২৮৪ স্থিতিস্থাপক গুণাজ্ঞকর প্রকারভেদ ২৮৪ পয়সন-এর অনুপাত ২৮৬	পদার্থের গঠন	૨૧૧
স্থিতিস্থাপকতা সম্পর্কে কয়েকটি রাশি ২৭৯ কঠিন বস্তৃর স্থিতিস্থাপক ব্যবহার এবং পীড়ন বনাম বিকৃতি লেখচিত্র ২৮৩ হুকের সূত্র ২৮৪ স্থিতিস্থাপক গুণাজ্ঞের প্রকারভেদ ২৮৪ পয়সন-এর অনুপাত ২৮৬	আম্তঃআণবিক বলের প্রকৃতি	২৭৮
কঠিন বস্তুর স্থিতিস্থাপক ব্যবহার এবং পীড়ন বনাম বিকৃতি লেখচিত্র ২৮৩ হুকের সূত্র ২৮৪ স্থিতিস্থাপক গুণাজ্ঞের প্রকারভেদ ২৮৪ পয়সন-এর অনুপাত ২৮৬	স্থিতিস্থাপকতা	২৭৯
বনাম বিকৃতি লেখচিত্র ২৮৩ হুকের সূত্র ২৮৪ স্থিতিস্থাপক গুণাজ্ঞের প্রকারভেদ ২৮৪ পয়সন-এর অনুপাত ২৮৬	স্থিতিস্থাপকতা সম্পর্কে কয়েকটি রাশি	২৭৯
হুকের সূত্র ২৮৪ স্থিতিস্থাপক গুণাজ্ঞের প্রকারভেদ ২৮৪ পয়সন-এর অনুপাত ২৮৬	কঠিন বস্তুর স্থিতিস্থাপক ব্যবহার এবং পীড়ন	
স্থিতিস্থাপক গুণাজ্ঞের প্রকারভেদ ২৮৪ পয়সন-এর অনুপাত ২৮৬	বনাম বিকৃতি লেখচিত্র	২৮৩
পয়সন-এর অনুপাত ২৮৬	হুকের সূত্র	২৮৪
-	স্থিতিস্থাপক গুণাজ্ঞের প্রকারভেদ	২৮৪
বিকৃতির দরুন কৃত কাজ মা সঁ ঞ্চিত বা বিভব শক্তি ২৮৭	পয়সন-এর অনুপাত	২৮৬
	বিকৃতির দরুন কৃত কাজ শা সঞ্চিত বা বিভব শক্তি	২৮৭

२ ८१	সরল দোলক	২৫৮
२ ८१	সরল দোলকের গতি সরল ছন্দিত গতি	২৫৯
२ ८१	সরল দোলকের সূত্রাবলি	২৬১
२ 8৮	সরল দোলকের সূত্রগুলোর সত্যতা নির্ণয়	২৬২
२ 8৮	দোলকের ব্যবহার	২৬৩
	সরল দোলকের সাহায্যে 'g'-এর মান নির্ণয়	২৬৩
২ ৪৯	পাহাড়ের উচ্চতা নির্ণয়	২৬৫
	সময় নির্ণয়	২৬৫
২৫০	সেকেন্ড দৌলক	২৬৬
২৫২	স্প্রিং–জনিত স্পন্দন	২৬৬
	মরণিকা	২৬৮
২৫৩	প্রয়োজনীয় সমীকরণ	২৬৮
ર૯૧	সমাধানকৃত উদাহরণ	২৬৯
২৫৭	প্রশালা	২৭৫

২৭৭ স্থিতিস্থাপক গুণাজ্ঞ নির্ণয় ২৮৮ ২৭৭ ইস্পাত রবার অপেক্ষা অধিক স্থিতিস্থাপক ২৯০ ২৭৮ সার্লির পন্ধতিতে ইয়ং-এর স্থিতিস্থাপক ২৯০

、 •••		
২৭৯	স্থিতিস্থাপকতা কোন্ কোন্ শর্তের	
	উপর নির্ভর করে	২৯১
২৮৩	স্থিতিস্থাপক গুণাজ্ঞক তালিকা	२७२
২৮৪	স্মরণিকা	২৯২
২৮৪	প্রয়োজনীয় সমীকরণ	২৯৩
২৮৬	সমাধানকৃত উদাহরণ	২৯৩
২৮৭	প্রশ্নমান্য	২৯৭

গুণাজ্ঞ নির্ণয়

২৭৭–২৯৯

(xi)

১০. প্রবাহী পদার্থ

FILID

FLUID
সূচনা
পৃষ্ঠ টান
পৃষ্ঠ শক্তি বা তল শক্তি
পৃষ্ঠ টান সংক্রান্ড কয়েকটি প্রয়োজনীয় রাশি
ল্যাপ্লাসের পৃষ্ঠ টানের আণবিক তত্ত্ব
স্পর্শ কোণ
কৈশিকতা বা কৈশিকত্ব
কৈশিকতা তত্ত্ব
সাবান বুদ্বুদের অভ্যন্তরস্থ অতিরিক্ত চাপ
তরলের পৃষ্ঠ টান নির্ণয়
তরলের পৃষ্ঠ টানের উপর প্রভাবকারী বিষয়
পৃষ্ঠ টান সম্পর্কিত কয়েকটি ঘটনা
প্রবাহী ও প্রবাহীর প্রবাহ
সান্দ্রতা

তাপ ও গ্যাস

HEAT AND GAS সূচনা তাপ তাপের বিভিন্ন মতবাদ গ্যাসীয় সূত্র পরম শূন্য তাপমাত্রা বা পরম শীতলতা তাপমাত্রার পরম স্কেল স্থির চাপে গ্যাসের আয়তন প্রসারাজ্ঞ স্থির আয়তনে গ্যাসের চাপ প্রসারাজ্ঞ গ্যাস সূত্রের সমন্দ্রয় এবং আদর্শ গ্যাস সমীকরণ প্রতিপাদন প্রমাণ বা স্বাভাবিক তাপমাত্রা ও চাপ R-এর অর্থ, একক এবং মান গ্যাসের ঘনত্বের সমীকরণ গ্যাসের গতিতত্ত্ব গ্যাসের গতিতত্ত্বের মৌলিক স্বীকার্যসমূহ গড় বেগ, গড় বর্গবেগ এবং গড় বর্গবেগের বর্গমূল আণবিক বেগের বণ্টন গতিতত্ত্ব অনুসারে গ্যাসের চাপের সমীকরণ

৩০০	সান্দ্রতা গুণাজ্ঞ বা সান্দ্রতাজ্ঞ বা সান্দ্রতা সহগ	৩১৩
৩০০	ঘ র্ষণের সাথে সান্দ্রতার সাদৃশ্য	৩১৫
৩০২	পতনশীল বস্তুর উপর তরল বা গ্যাসের সাম্দ্রতার	
৩০৩	প্রভাব ঃ স্টোক্স-এর সূত্র এবং সমীকরণ	৩১৫
৩০৩	মাত্রিক পন্ধতিতে স্টোক্স-এর সূত্র প্রতিপাদন	৩১৬
৩০৪	স্টোক্স-এর পশ্বতিতে তরলের সাম্দ্রতা	
৩০৫	গুণাজ্ঞক নির্ণয়	৩১৬
৩০৬	সান্দ্রতার উপর তাপমাত্রার প্রভাব	৩১৭
৩০৮	সান্দ্রতার উপর চাপের প্রভাব	৩১৮
৩০৯	সান্দ্রতার প্রয়োজনীয়তা	৩১৮
৩১০	মরণিকা	৩১৮
৩১১	প্রয়োজনীয় সমীকরণ	৩১৯
৩১২	সমাধানকৃত উদাহরণ	৩১৯
৩১২	প্রমালা	৩২৩
	•	

<u>७००-७२8</u>

৩২৫–৩৬৮ গ্যাসের গতিতত্ত্বের প্রয়োগ ৩২৫ POO ৩২৫ এক গ্রাম অণু গ্যাসের গতিশক্তি ৩৩৯ ৩২৫ গতিতত্ত্ব হতে তাপমাত্রার ব্যাখ্যা ৩৪০ ৩২৬ গড় মুক্ত পথ 680 অণুর ব্যাস এবং গড় মুক্ত পথের মধ্যে সম্পর্ক ৩২৮ ৩৪২ গড় মুক্ত পথের নির্ভরশীলতা ৩২৯ ৩৪৩ সম্পৃক্ত ও অসম্পৃক্ত বাষ্পীয় চাপ ৩২৯ 080 সম্পৃক্ত ও অসম্পৃক্ত বাম্পের বিশেষত্ব ৩২৯ ৩88 সম্পৃক্ত ও অসম্পৃক্ত বাম্পের মধ্যে পার্থক্য ৩৪৫ গ্যাস ও বাক্ষের মধ্যে পার্থক্য 000 ৩৪৬ আর্দ্রতামিতি ৫৩৩ ৩৪৬ শিশিরাজ্ঞ্ব ৩৩১ ৩৪৭ বায়ুর আর্দ্রতা ৩৩২ ৩৪৭ শিশিরাজ্ঞ ও আপেক্ষিক আর্দ্রতা নির্ণয় ৩৩২ ৩৪৮ শুষ্ক ও আর্দ্র বালব হাইগ্রোমিটারের সাহায্যে ୦୦୦ আবহাওয়ার পূর্বাভাস ୯୦୯ (হত আপেক্ষিক অর্দ্রতা নির্ণয়ের গুরুত্ব **৩৫**১ 800 আর্দ্রতামিতি সম্পর্কিত কয়েকটি বাস্তব ঘটনা ৩৫২ 900

5:

জ্বলীয় বাচ্পের ঘনীভবন	৩৫৩	প্রয়োজনীয় সমীকরণ	৩৫৫
বায়ুমণ্ডলে জলীয় বাম্প ঘনীভূত হওয়ার ফল	৩৫৩	সমাধানকৃত উদাহরণ	৩৫৬
ম্মরণিকা	৩৫৪	প্রশালা	৩৬৫

তাপমাত্রা

TEMPERATURE হ সূচনা
তাপমাত্রা
তাপীয় সাম্যাবস্থা
তাপ ও তাপমাত্রার মধ্যে পার্থক্য
উষ্ণতামিতি ধর্ম ও উষ্ণতামিতি পদার্থ
পানির ত্রৈধ বিন্দুর (বা একটি স্থির বিন্দুর)
সাপেক্ষে থার্মোমিতির মূলনীতি
দুই স্থির বিন্দুর সাপেক্ষে থার্মোমিতির মূলনীতি
তাপমাত্রার বিভিন্ন স্কেল
তাপমাত্রার বিভিন্ন স্কেলের মধ্যে সম্পর্ক
পারদ থার্মোমিটার
থার্মোমিটারে পারদ ব্যবহারের সুবিধা
ক্লিনিক্যাল বা ডাক্তারি থার্মোমিটার

থার্মোমিটার-এর সুবেদিতা কি?

তাপগতিবিদ্যার প্রথম সূত্র FIRST LAW OF THERMODYNAMICS সূচনা তাপগতীয় কয়েকটি রাশি তাপ ও অন্তস্থ বা অভ্যন্তরীণ শক্তি তাপগতিবিদ্যার প্রথম সূত্র সমোষ্ণ ও রুষ্ণতাপীয় প্রক্রিয়ার ক্ষেত্রে তাপগতিবিদ্যার প্রথম সূত্রের রূপ তাপগতিবিদ্যার প্রথম সূত্রের তাৎপর্য তাপের যান্দিত্রক সমতার সংজ্ঞা ও একক গ্যাসের প্রসারণে সম্পাদিত কাজ সমোষ্ণ ও রুম্বতাপ পরিবর্তন সমোষ্ণ পরিবর্তন রুষ্ণতাপ পরিবর্তন সমোষ্ণ ও রুশ্বতাপ পরিবর্তনের মধ্যে পার্থক্য রুষ্ধতাপ পরিবর্তনে চাপ ও আয়তনের

মধ্যে সম্পৰ্ক

৩৬৯	তাপযুগল বা থার্মোরুপল থার্মোমিতি	৩৮০
৩৬৯	তাপযুগল থার্মোমিটারের সাহায্যে	
৩৬৯	তাপমাত্রা নির্ণয়	৩৮১
৩৭০	প্লাটিনাম রোধ থার্মোমিটার	৩৮২
৩৭০	থার্মিস্টর	৩৮৩
	পাইরোমিটার থার্মোমিতি	৩৮৩
৩৭১	পূর্ণ বিকিরণ পাইরোমিটার	৩৮৩
৩৭৩	আলোকীয় পাইরোমিটার	৩৮৪
৩৭৩	বিভিন্ন থার্মোমিটারের নাম, উষ্ণতামিতি পদার্থ ও	
৩৭৬	ধর্ম এবং তাপমাত্রার পরিসর	৩৮৫
৩৭৭	স্মরণিকা	৩৮৬
৩৭৯	প্রয়োজনীয় সমীকরণ	৩৮৬
৩৭৯	সমাধানকৃত উদাহরণ	৩৮৬
৩৮০	প্রশ্নালা	৩৯১

028-060

しいかーのかく

৩৯৩	রুম্বতাপ পরিবর্তনে আয়তন ও তাপমাত্রার	
৩৯৩	মধ্যে সম্পর্ক	308
৩৯৪	আপেক্ষিক তাপ	دە8
৩৯৪	গ্যাসের আপেক্ষিক তাপ	80२
	মোলার আপেক্ষিক তাপ বা মোলার তাপধারণ ক্ষমতা	80२
৩৯৫	C _p এবং C _v -এর পার্থক্যের ভৌতিক ব্যাখ্যা	৪০৩
৩৯৬	একটি আদর্শ গ্যাসের ক্ষেত্রে C_p ও C_v -এর	
৩৯৬	মধ্যে পার্থক্য	808
৩৯৬	γ-এর মানের ভিন্নতা ও গুরুত্ব	80¢
৩৯৮	রুম্বতাপীয় রেখা বা লেখ সমোষ্ণ রেখা বা লেখ-এর	
৩৯৮	• চেয়ে অধিকতর খাড়া	80¢
৩৯৮	স্মরণিকা	805
৩৯৯	প্রয়োজনীয় সমীকরণ	809
	সমাধানকৃত উদাহরণ	809
800	প্রমালা	822

(xii)

28.

ত্তাপ বিকিরণ
HEAT RADIATION
সূচনা
তাপ বিকিরণ
আদর্শ কৃষ্ণ বস্তু ও কৃষ্ণ বস্তুর বিকিরণ
বিকিরণ ক্ষমতা ও শোষণ ক্ষমতা
স্টেফান-বোল্জম্যান-এর সূত্র
নিউটনের শীতলীকরণ সূত্র
স্টেফানের সূত্র হতে নিউটনের শীতলীকরণ
সূত্র প্রতিপাদন
আদর্শ কৃষ্ণ বস্তুর বিকীর্ণ বর্ণালীতে শক্তির বণ্টন

১৬

অবস্থার পরিবর্তন CHANGE OF STATE

সূচনা
পদার্থের অবস্থার পরিবর্তন
লেখচিত্রের সাহায্যে পানির অবস্থা
পরিবর্তনের বিশ্লেষণ
গলনাজ্ঞক ও হিমাজ্ঞ্ঞ
বাষ্পায়ন, স্ফুটন ও স্ফুটনাজ্ঞ
স্ফুটনাঙ্কের উপর চাপের প্রভাব
বাষ্পায়ন ও স্ফুটনের মধ্যে পার্থক্য
সুশ্ত তাপ বা লীন তাপ
আপেক্ষিক সুশ্ত তাপ
বরফ গলনের আপেক্ষিক সুশ্ত তাপ নির্ণয়

তাপগতিবিদ্যার দ্বিতীয় সূত্র

SECOND LAW OF THERMODYNAMI
সূচনা
প্রত্যাগামী এবং অপ্রত্যাগামী প্রক্রিয়া
প্রত্যাগামী প্রক্রিয়া
অপ্রত্যাগামী প্রক্রিয়া
প্রত্যাগামী ও অপ্রত্যাগামী প্রক্রিয়ার মধ্যে পার্থক্য
তাপগতিবিদ্যার দিতীয় সূত্র
তাপগতিবিদ্যার প্রথম ও দ্বিতীয় সূত্রের
তু্বনামূলক আলোচনা
তাপ ইঞ্জিনের দক্ষতা
কার্শোর ইঞ্জিন
কার্গোর চক্রের ক্রিয়া ও সম্পাদিত কাজ
এন্ট্রপি

838-802

878	ভীন-এর সূত্র	8२०
828	গ্রীন হাউজ বা সবুজ ঘর	842
826	তরল পদার্থের আপেক্ষিক তাপ নির্ণয়	8 ২২
826	বিকিরণ ও শোষণজনিত কয়েকটি	
8\$٩	সাধারণ ঘটনা	৪২৩
872	স্বরণিকা	8२8
	প্রয়োজনীয় সমীকরণ	820
872	সমাধানকৃত উদাহরণ	8২৫
822	প্রমালা	800

800-869

৪৩৩	মিশ্রণ পম্বতিতে পানির বাম্পীভবনের আপেক্ষিক	
৪৩৩	সুশ্ত তাপ নির্ণয়	882
	কয়েকটি পদার্থের গলনাজ্ঞ্ব, স্ফুটনাজ্ঞ্ব	
৪৩৩	আপেক্ষিক সুশ্ত তাপ	88৩
808	সঙ্কট ধ্র্বক	888
800	দশা	888
৪৩৬	দশা চিত্র এবং ত্রৈধ কিন্দু	88¢
୫७৭	স্মরণিকা	88%
8৩৭	প্রয়োজনীয় সমীকরণ	889
80F	সমাধানকৃত উদাহরণ	889
৪৩৯	প্রশ্নমালা 🔹	8¢¢

8ሮ৮	এন্ট্রপির একক	866
8৫৮	এন্ট্রপির তাৎপর্য	856
8৫৮	প্রত্যাগামী প্রক্রিয়ায় এন্ট্রপির পরিবর্তন	8৬৬
8৫৯	অপ্রত্যাগামী প্রক্রিয়ায় এন্ট্রপির পরিবর্তন	৪৬৬
৪৬০	এন্ট্রপির মাধ্যমে তাপগতিবিজ্ঞানের দ্বিতীয়	
840	সূত্রের প্রকাশ	8৬৭
0.1 1	অপ্রত্যাগামী প্রক্রিয়ায় এন্ট্রপি বৃষ্ধির উদাহরণ	୫৬৭
862	মরণিকা	৪৬৮
867	প্রয়োজনীয় সমীকরণ	864
862	সমাধানকৃত উদাহরণ	869
८७७ ८७४	প্রশ্যালা	৪৭৩

(xiv)

>9.

»F)

SOUND
সূচনা
সুর, স্বর, সমমেল বা হারমোনিক
সুরযুক্ত ও সুরবর্জিত শব্দ
সুরযুক্ত শব্দের বৈশিষ্ট্য
সুরযুক্ত শব্দ ও সুরবর্জিত শব্দ বা
কোলাহল-এর মধ্যে পার্থক্য
শন্দোচ্চতা, তীব্রতা ও তীব্রতা লেভেল
সিবেক-এর সাইরেনের সাহায্যে
তীক্ষ্ণতা নির্ণয়
বীট বা স্বরকম্প
বীট বা স্বরকম্প গঠনের কৌশল
বীট বা স্বরকস্পের গাণিতিক বিশ্লেষণ
বীট বা স্বরকস্পের প্রয়োগ
বীট বা ব্যতিচারের পার্থক্য
তারের কম্পন
টানা তারে আড় বা অনুপ্রস্থ তরজ্গের
বেগের রাশিমালা
টানা তারে আড় কম্পনের সূত্র প্রতিপাদন
টানা তারে আড় কম্পনের সূত্রাবলি
সনোমিটার

স্থির তরজ্ঞোর সমীকরণ 896 865 অগ্রগামী তরজ্ঞা ও স্থির তরজ্ঞোর পার্থক্য 89¢ 879 শব্দ 896 866 শব্দের উৎপত্তি 895 8৮৮ শব্দ একটি অগ্রগামী অনুদৈর্ঘ্য তরজ্ঞা 895 8৮৮ দুটি মাধ্যমে একটি শব্দের বেগের মধ্যে সম্পর্ক 8৮৯ শব্দের ব্যতিচার 8৮ን 8৮৯ ৪৮২ শব্দের ব্যতিচার প্রদর্শনের পরীক্ষা 822 ৪৮২ স্বরণিকা ৪৯৩ ৪৮৩ প্রয়োজনীয় সমীকরণ 898 সমাধানকৃত উদাহরণ 878 888 866 প্রশ্নমালা 603

Co8-C88

52)

শব্দের গতিবেগ VELOCITY OF SOUND

সূচনা শব্দের বেগ শব্দের বেগ সম্পর্কিত নিউটনের সূত্র বায়ু বা গ্যাসীয় মাধ্যমে শব্দের বেগ সম্পর্কীয় নিউটনের সূত্র প্রতিপাদন ল্যাপ্লাস কর্তৃক নিউটনের সূত্র সংশোধন শ্যদের বেগের উপর তাপদাত্রা, আর্দ্রতা ও চাপের প্রভাব অনুনাদ বায়ুস্তম্ভ পম্বতিতে শব্দের বেগ নির্ণয় ডপ্লার ক্রিয়া বা প্রভাব

	¢8¢	ডপ্লার ক্রিয়ার জন্য শব্দের কম্পাজ্ঞ বা	
	¢8¢	তীক্ষ্ণতা পরিবর্তনের রাশিমালা	660
	¢8¢	শ্রোতা স্থির কিন্তু উৎস গতিশীল	¢¢8
য		উৎস স্থির কিন্তু শ্রোতা গতিশীল	C CC
	৫ 8৬	উৎস এবং শ্রোতা উভয়ই গতিশীল	<i>৫৫</i> ৬
	৫ 8٩	আলোর ক্ষেত্রে ডপলার ক্রিয়া	<i>ሮ</i> ሮ ዓ
		স্মরণিকা	<i>ሮ</i> ሮ ዓ
	¢8৮	প্রয়োজনীয় সমীকরণ	<i>ሮሮ</i> ৮
র্মি	(())	সমাধানকৃত উদাহরণ	ଜ ৫৯
	৫৫৩	প্রশ্বানা	৫৬৬

ব্যবহারিক

অবতারণা

সাধারণ ত্রুটি একক 0 ٩ লম্বন ভুল বা দৃষ্টিভ্রম এককের প্রকারভেদ ٩ 0 এককের পম্বতি ব্যক্তিগত ত্রুটি 8 ٩ দৈর্ঘ্যের এককের সংজ্ঞা যান্ত্রিক ত্রুটি ኤ 8 ভরের এককের সংজ্ঞা পিছট ব্রুটি 2 8 সময়ের এককের সংজ্ঞা ৯ প্রান্তীয় দাগের ভুল 8 ক্ষেত্রফল ও আয়তনের একক ል সূচক রেখা ত্রুটি 8 দৈর্ঘ্যের পরিমাপ 20 অনুভূমিক ত্রুটি ¢ ফ্লাইড ক্যালিপাৰ্স 22 ছাত্র-ছাত্রীদের প্রতি সাধারণ নির্দেশ Č স্ক্রু গজ 22 পাকা খাতা লেখার বিধি Ć স্ফেরোমিটার ১২ ছাত্র-ছাত্রীদের প্রতি বিশেষ নির্দেশ আপেক্ষিক গুরুত্ব বোতল ৬ ১৩ লেখ অজ্ঞকনের নিয়মাবলি ভার্ণিয়ার যন্দ্র ৬ ১৩ পরিমাপের একক বয়েলের যনত্র ٩ 28

পরীক্ষণ নং১ ৪	(ক) ফ্লাইড ক্যালিপার্স ও স্ক্রু গজ্জের সাহায্যে এবং (খ) আর্কিমিডিসের সূত্র প্রয়োগ করে একটি	
	নিরেট সিলিন্ডারের আয়তন নির্ণয় ও তুলনা	28
পরীক্ষণ নৎ—২ ঃ	স্ফেরোমিটারের সাহায্যে উত্তল ও অবতল লেন্স বা দর্পণ বা কোন বব্রুতলের বব্রুতার	
	ব্যাসার্ধ নির্ণয়	২২
পরীক্ষণ নং—৩ ঃ	উদ্স্থিতি নিক্তির সাহায্যে পানিতে দ্রবণীয় কঠিন পদার্থের আপেক্ষিক গুরুত্ব নির্ণয়	२१
পরীক্ষণ নং৪ ঃ	আপেক্ষিক গুরুত্ব বোতলের সাহায়্যে তরল পদার্থের আপেক্ষিক গুরুত্ব নির্ণয়	২৭
পরীক্ষণ নৎ—৫ ঃ	সরল দোলকের সাহায্যে অভিকর্ষজ ত্বরণ ' $_g$ '–এর মান নির্ণয় এবং L — T 2 (L বনাম T 2)	
	লেখচিত্র অঙ্জন	২৯
পরীক্ষণ নং৬ ঃ	সার্লির যন্ত্র বা ভার্ণিয়ার স্কেল সংযুক্ত যন্দ্ত্রের সাহায্যে ইয়ংয়ের গুণাঙ্ক নির্ণয়	೮೮
পরীক্ষণ নং—৭ ঃ	বয়েলের সূত্র পরীক্ষা	৩৭
পরীক্ষণ নং—৮ ঃ	মিশ্রণ পন্ধতিতে কঠিন পদার্থের আপেক্ষিক তাপ নির্ণয়	80
পরীক্ষণ নং—১ ঃ	শীতলীকরণ পন্ধতিতে তরল পদার্থের আপেক্ষিক তাপ নির্ণয়	৪৩
পরীক্ষণ নং১০ ঃ	মিশ্রণ পম্বতিতে বরফ গলনের সুশ্ততাপ নির্ণয়	৪৬
পরীক্ষণ নং—১১ ঃ	অনুনাদ বায়ুস্তন্ত পন্ধতিতে শব্দের বেগ নির্ণয়	8৯
পরীক্ষণ নং—১২ ঃ	প্রান্তিক ত্রুটি পরিহার করে অনুনাদ বায়ুস্তম্ভ পম্বতিতে শব্দের বেগ নির্ণয়	৫২
পরীক্ষণ নং—১৩ ঃ	সনোমিটারের সাহায্যে টানা তারের কম্পনের সূত্রের প্রমাণ ঃ (ক) n বনাম $rac{1}{L}$ রেখ,	
	(খ) টিউনিৎ ফর্কের কম্পাজ্ঞ নির্ণায়	¢ 8

(xvi)

পরিশিস্ট

১·১ সূচনা

Introduction

বিজ্ঞানের বিভিন্ন বিষয় সুনির্দিষ্টভাবে জানতে হলে কোন রা কোন ধরনের পরিমাপের প্রয়োজন হয়। পদার্থের যে সব ভৌত বৈশিষ্ট্য পরিমাপ করা যায় তাদেরকে রাশি (quantity) বলে। যেমন, দৈর্ঘ্য, ভর, সময়, আয়তন, বেগ, কাজ ইত্যাদি প্রত্যেকে এক একটি রাশি। পদার্থবিজ্ঞানের অন্তর্গত যে কোন রাশিকে ভৌত (physical) রাশি বলে।

কিছু কিছু ভৌত রাশিকে শৃধুমাত্র মান দ্বারা সম্পূর্ণরূপে প্রকাশ করা যায়। আবার অনেক ভৌত রাশি রয়েছে যাদেরকে সম্পূর্ণরূপে প্রকাশ করার জন্য মান ও দিক উভয়ই প্রয়োজন হয়। তাই ধর্ম বা বৈশিষ্ট্য অনুসারে ভৌত রাশিগুলোকে আমরা দুই ভাগে বিভক্ত করতে পারি ; যথা—

(ক) স্কেলার রাশি বা অদিক রাশি (Scalar quantity)।

(খ) ভেট্টর রাশি বা দিক রাশি বা সদিক রাশি (Vector quantity)।

স্কেলার রাশি : যে সব ভৌত রাশির শুধু মান আছে, কিন্তু দিক নেই, তাদেরকে স্কেলার রাশি বা অদিক রাশি বলে। যেমন দৈর্ঘ্য, তর, সময়, জনসংখ্যা, তাপমাত্রা, তাপ, বৈদ্যুতিক বিভব, দ্রতি, কাজ ইত্যাদি স্কেলার বা অদিক রাশি।

//// ভিন্টর রাশি ঃ যে সব ভৌত রাশির মান এবং দিক দুই-ই আছে, তাদেরকে ভেন্টর রাশি বা দিক রাশি বলে। যেমন সরণ, বেগ, ত্বরণ, মন্দন, বল, ওজন ইত্যাদি ভেন্টর বা দিক রাশি।

১২ ভেক্টর রাশির নির্দেশনা

Representation of a vector

কোন একটি ভেক্টর রাশিকে দুভাবে প্রকাশ করা হয়ে থাকে, যথা—(১) অক্ষর দ্বারা এবং (২) সরলরেখা দ্বারা।

১। অক্ষর দ্বারা কোন একটি ভেল্টর রাশিকে চারভাবে প্রকাশ করা হয়, যথা—

(ক) কোন অক্ষরের উপর তীর চিহ্ন দ্বারা রাশিটির ভেক্টর রূপ এবং এর দুই পাশের দুটি খাড়া রেখা দ্বারা এর মান নির্দেশ করা হয়। সাধারণভাবে শুধু অক্ষর দ্বারাও রাশিটির মান নির্দেশ করা হয়।

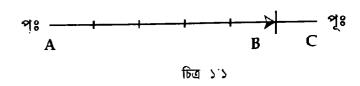
A অক্ষরের ভেষ্টর রূপ A এবং মান রূপ |A | বা A

(খ) কোন অক্ষরের উপর রেখা চিহ্ন ঘারা রাশিটির ভেক্টর রূপ এবং এর দুই পাশের দুটি খাড়া রেখ ঘারা এর মান নির্দেশ করা হয়।

🗛 অক্ষরের ভেক্টর রূপ 🗛 এবং মান রূপ । 🗛 ।

(গ) কোন অক্ষরের নিচে রেখা চিহ্ন হারা রাশিটির ভেক্টর রূপ এবং এর দুই পাশের দুটি খাড়া রেখ হারা এর মান নির্দেশ করা হয়।

A অক্ষরের ভেষ্টর রূপ \underline{A} এবং মান রূপ $|\underline{A}|$


(ঘ) মোটা হরফের অক্ষর দিয়ে ভেক্টর রাশি প্রকাশ করা হয়। যেমন A অক্ষরের ভেক্টর রূপ A এবং এর মান A।

ভেষ্টর রাশি নির্দেশের ক্ষেত্রে (ক)-এ ব্যবহৃত চিহ্নই শ্রেয়। তাই এই বই-এ আমরা এই পম্ধতিই ব্যবহার করব।

পদার্থবিজ্ঞান (১ম)–১

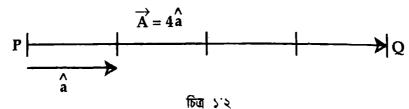
২। সরলরেখা দ্বারা ভেক্টর রাশি নির্দেশ করতে হলে রাশিটির দিকে বা সমান্তরালে একটি সরলরেখা অংকন করে সরলরেখাটির শেষ প্রান্তে একটি তীর চিহ্ন দ্বারা রাশিটির দিক এবং কোন স্কেলে উন্তু সরলরেখাটির দৈর্ঘ্য দ্বারা এর মান নির্দেশ করা হয়। এ পম্ধতিকে জ্যামিতিক উপায়ে ভেক্টরের নির্দেশনাও বলে।

মনে করি, একটি ভেক্টর রাশির মান 5 এবং এর দিক পূর্ব দিক। একে সরলরেখা দ্বারা প্রকাশ করতে হবে। এখন AC একটি সরলরেখা পূর্ব-পশ্চিম দিক বরাবর অংকন করে AC সরলরেখা হতে সুবিধামত দৈর্ঘ্যকে একক ধরে এর 5 গুণ দৈর্ঘ্য AB কেটে নিই এবং AB-এর শেষ প্রান্তে

পূর্ব দিকে তীর চিহ্ন যুক্ত করি [চিত্র ১১]। এই তীর চিহ্নিত সরলরেখাই ভেক্টর রাশিটি নির্দেশ করবে। ভেক্টর রাশি নির্দেশী সরলরেখার তীর চিহ্নিত প্রান্ত B-কে **শীর্ষবিন্দু** বা **অন্ত বিন্দু** এবং অপর প্রান্ত A-কে **আদিবিন্দু** বা **মূলবিন্দু** বা **পাদবিন্দু** বলে।

১·৩ ভেক্টর রাশি সম্পর্কিত কতকগুলো সংজ্ঞা Some definitions relating vectors

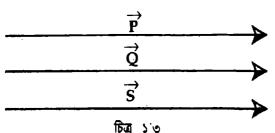
<mark>১। একক ডেক্টর (Unit vector) ঃ যে ডেক্টর রাশির মান এক একক তাকে একক ভেক্টর বলে।</mark> মান শূন্য নয় এরূপ একটি ভেক্টরকে এর মান দ্বারা ভাগ করলে ঐ ভেক্টরের দিকে বা সমান্তরালে একটি একক ভেক্টর পাওয়া যাবে।


একক ভেক্টরকে প্রকাশ করতে সাধারণত ছোট অক্ষরের উপর একটি টুপি চিহ্ন (^) দেয়া হয়। যেমন ^ ^ ^ i, a, n ইত্যাদি দ্বারা একক ভেক্টর প্রকাশ করা হয়।

ধরি, র একটি ভেষ্টর যার মান, A≠0

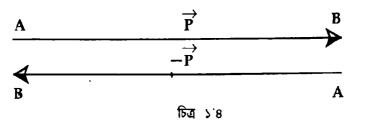
 $\frac{\overrightarrow{A}}{\overrightarrow{A}} = \overrightarrow{A}$ -এর দিকে একক ভেটর

=_a^ (ধরি)।


কান্ডেই কোন একটি ডেক্টর \overrightarrow{A} -এর মান, A = 4 একক এবং \overrightarrow{A} -এর দিকে একক ভেক্টর $\stackrel{\wedge}{a}$ হলে, $\overrightarrow{A} = 4\stackrel{\circ}{a}$ [চিত্র ১'২]। অর্ধাৎ কোন ভেক্টরের মানকে এ ভেক্টরের একক ভেক্টর দারা গুণ করলে ভেক্টরটি পাওয়া যায়।

২। সম-ভেক্টর বা সমান ভেক্টর (Equal vector) ঃ একই দিকে ক্রিয়ারত একাধিক সমজাতী ভেক্টরের মান সমান হলে তাদেরকে সম-ভেক্টর বা সমান ভেক্টর বলে। পাদবিন্দু বা আদিবিন্দু যেখানেই হোব

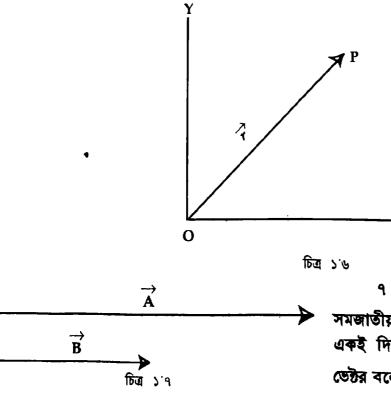
> না কেন ভেক্টরগুলো পরস্পরের সমান্তরাল এবং মান সমান হলে তাদেরকে সম-ভেক্টর বলে।


১ ৩ চিত্রে P, Q ও S তিনটি সম-ভেষ্টর।
এখানে
$$\overrightarrow{P} = \overrightarrow{Q} = \overrightarrow{S}$$
 ও P = Q = S

২

৩। বিপরীত বা ঋণ ডেক্টর (Negative vector) ঃ বিপরীত দিকে ক্রিয়ারত দৃটি সমজাতীয় ভেক্টরের মান সমান হলে তাদেরকে একে অপরের বিপরীত বা ঋণ ডেক্টর বলে।

১ ৪ চিত্রে $\overrightarrow{AB} = \overrightarrow{P}$ এর বিপরীত ভেক্টর $\overrightarrow{BA} = -\overrightarrow{P}$ এখানে, AB = BA

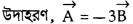

8। স্বাধীন ভেক্টর (Free vector) : কোন ভেক্টর রাশিঁর পাদবিন্দু কোথায় হবে তা যদি ইচ্ছেমত ঠিক করা যায়, তবে ঐ ভেক্টরকে স্বাধীন ভেক্টর বলা হয়। [চিত্র ১'৫-এ P একটি স্বাধীন ভেক্টর।]

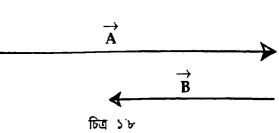
৫। সীমাবন্ধ ভেক্টর (Localised vector) ঃ যদি কোন নির্দিষ্ট বিন্দুকে ভেক্টরের পাদবিন্দু হিসেবে ঠিক করে রাখা হয়, তবে তাকে সীমাবন্ধ ভেক্টর বলে।

৬। অবস্থান ভেক্টর (Position vector) ঃ প্রসঞ্চা কাঠামোর মূল বিন্দুর সাপেক্ষে কোন বিন্দুর অবস্থান যে ভেক্টরের সাহায্যে নির্ণয় করা হয় তাকে অবস্থান ভেক্টর বলে।

মনে করি পরস্পর সমকোণে অবস্থিত X ও Y দুটি অক্ষ, এদের মূল বিন্দু O। P যে কোন একটি বিন্দু। এখানে \overrightarrow{OP} ভেক্টরটি O বিন্দু সাপেক্ষে P বিন্দুর অবস্থান নির্দেশ করছে। সুতরাং \overrightarrow{OP} একটি অবস্থান ভেক্টর [চিত্র ১ ৬]।

অবস্থান ভেক্টরকে অনেক সময় ব্যাসার্ধ ভেন্টর (radius vector) বলে এবং \vec{r} দিয়ে প্রকাশ করা হয়। সুতরাং OP = \vec{r} ।

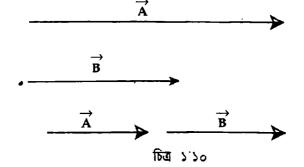

৭। সদৃশ ভেট্টর (Like vector) সমজাতীয় অসম মানের দুটি ভেট্টর $\vec{A} \in \vec{B}$ যদি একই দিকে ক্রিয়া করে তবে তাদেরকে সদৃশ ভেট্টর বলে [চিত্র ১:৭]। উদাহরণ, $\vec{A} = 2\vec{B}$


X

চিত্র ১'৫

৮। বিসদৃশ ভেক্টর (Unlike vector) গমজাতীয় অসম মানের দুটি ভেক্টর \overrightarrow{A} ও \overrightarrow{B} ধদি বিপরীত দিকে ক্রিয়া করে, তবে তাদেরকে বিসদৃশ ভেক্টর বলে [চিত্র ১'৮]।

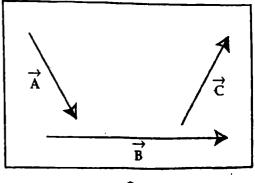
৯। নাল বা শূন্য ভেক্টর (Null or Zero vector) ঃ যে ভেক্টর রাশির মান শূন্য, তাকে নাল বা শূন্য ভেক্টর বলে। শূন্য ভেক্টরের পাদবিন্দু এবং শীর্ষবিন্দু একই। একে 0 দ্বারা সূচিত করা হয়।


১০। আয়তাকার বা আয়ত একক ভেক্টর (Rectangular unit vector) ঃ ত্রিমাত্রিক স্থানাজ্ঞ ব্যবস্থায় ধনাত্মক X, Y এবং Z অক্ষের দিকে ব্যবহৃত যথাক্রমে \hat{i} , \hat{j} এবং \hat{k} একক ভেক্টরগুলোকে আয়তাকার বা আয়ত একক ভেক্টর বলে।

চিত্র ১'৯

ĥ

১১। বিপ্রতীপ ডেক্টর (Reciprocal vector) ঃ দুটি সমান্তরাল ডেক্টরের একটির মান অপরটির বিপ্রতীপ হলে তাদেরকে বিপ্রতীপ ডেক্টর বলে। উদাহরণ, $\vec{A} = 5\hat{i}$ ও $\vec{B} = \frac{1}{5}\hat{i}$ । এখানে \vec{A} ও \vec{B} বিপ্রতীপ ডেক্টর।


১২। সমরেখ ভেক্টর (Co-linear vector) ঃ দুই বা ততোধিক ভেক্টর এমন হয় যে তারা একই রেখায় বা সমান্তরালে ক্রিয়া করে, তাদেরকে সমরেখ ভেক্টর বলে [চিত্র ১ ১০]।

১৩। সম-তলীয় ভেক্টর (Co-planar vector) দুই বা ততোধিক ভেক্টর একই তলে অবস্থান করলে তাদেরকে সম-তলীয় ভেক্টর বলে [চিত্র ১১১]।

১৪। সঠিক ভেক্টর (Proper vector) ৪ যে সকল ভেক্টরের মান শূন্য নয়, তাদেরকে সঠিক ভেক্টর বলে।

১৫। সম-প্রারম্ভিক ভেক্টর (Co-initial vector) একই মূল বা পাদবিন্দুবিশিষ্ট ভেক্টরসমূহকে সম-প্রারম্ভিক ভেক্টর বলে।

চিত্র ১'১১

BG & JEWEL

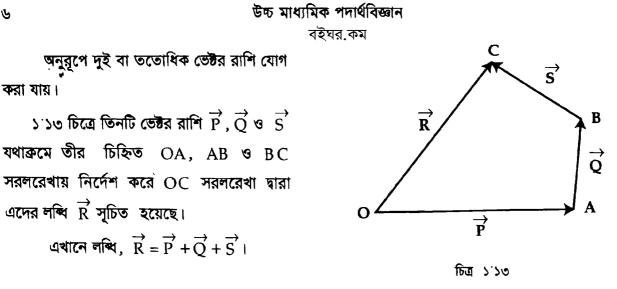
১·৪ ভেক্টর রাশির যোগ ও বিয়োগ Addition and subtraction of vectors

জ্যামিতিক পম্ধতি : একই জাতীয় দুটি ভেক্টর রাশিকে যোগ বা বিয়োগ করা যায়। যেমন সরণের সাথে কেবল সরণই যোগ বা বিয়োগ করা চলে। সরণের সাথে বেগের যোগ বা বিয়োগের প্রশ্নই ওঠে না। ভেক্টর রাশির মান ও দিক দুই-ই আছে। এই কারণে ভেক্টর রাশির যোগ-বিয়োগ সাধারণ বীজগণিতের নিয়মানুযায়ী করা হয় না। ভেক্টর রাশির দিকই এ সব ক্ষেত্রে বিদ্ব ঘটায়। যেমন ধরা যাক, একটি নৌকায় দাঁড়ের বেগ ঘণ্টায় ৪ কিলোমিটার এবং একটি নদীর পানির স্রোতের বেগ ঘণ্টায় 6 কিলোমিটার। নৌকাটিকে এ নদীর এক পাড় হতে সোজা অপর পাড়ের দিকে চালালে, নৌকাটির উপর যে দুটি বেগ ক্রিয়া করবে এদের যোগফল (৪ + 6) = 14 কিলোমিটার / ঘণ্টা দ্বারা নৌকাটির প্রকৃত বেগ পাওয়া যাবে না-প্রকৃত বেগ সম্পূর্ণ আলাদা হবে। আবার নৌকাটির গতিমুখ এ দুই বেগের মাঝামাঝি কোন এক দিকে হবে। এই কারণে ভেক্টর রাশির যোগ-বিয়োগ জ্যামিতিক পন্ধতি অনুসারে করতে হয়।

একই অভিমুখী দুটি ভেষ্টর রাশি যোগ করতে হলে রাশি দুটিকে একই দিকে নির্দেশ করতে হয়, আর বিয়োগ করতে হলে একটি ভেষ্টর রাশিকে অপরটির বিপরীত দিকে নির্দেশ করতে হয়। কিন্তু দুই বা ততোধিক ভেষ্টর রাশি একটি বিন্দুতে ক্রিয়া করলে এদের যোগফল আর একটি নতুন ভেষ্টর রাশি হবে। দুই বা ততোধিক ভেষ্টর রাশি যোগে যে একটি নতুন ভেষ্টর রাশি হয় তাকে এদের লন্ধি (Resultant) বলে। অর্থাৎ লন্ধি হল ভেষ্টর রাশিগুলোর সম্মিলিত ফল।

১-৫ ভেক্টর রাশির যোগ

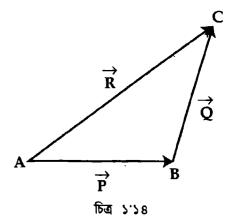
জ্যামিতিক পদ্ধতিতে ভেক্টর রাশির যোগ নিম্নলিখিত পাঁচটি সূর্দ্রের সাহায্যে করা যায় ; যথা—


- (১) সাধারণ সূত্র (General law)
- (২) ত্রিভুজ সূত্র (Law of triangle)
- (৩) বহুত্জ সূত্র (Law of polygon)
- (8) সামান্তরিক সূত্র (Law of parallelogram) এবং
- (৫) উপাংশ সূত্র (Law of components)।
- এই অনুচ্ছেদে প্রথম চারটি সূত্র আলোচনা করা হল ঃ

১.৫.১ সাধারণ সূত্র

সূত্র ঃ সমজাতীয় দুটি ডেক্টরের প্রথমটির শীর্ষ বা শেষবিন্দু এবং দ্বিতীয়টির আদি বিন্দু একই বিন্দুডে স্থাপন করে প্রথম ডেক্টরের আদি বিন্দু ও দ্বিতীয় ডেক্টরের শীর্ষবিন্দুর মধ্যে সংযোগকারী সরলরেখার দিকে লন্দি ডেক্টরের দিক এবং এ সরলরেখার দৈর্ঘ্য ডেক্টর দুটির লন্দির মান নির্দেশ করবে।

 \vec{R} \vec{Q} \vec{Q}

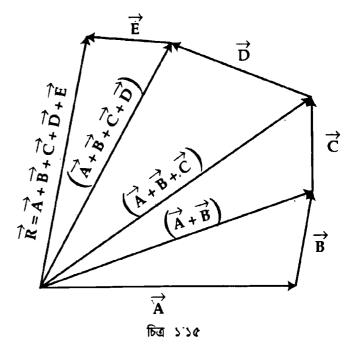

$$\vec{R} = \vec{P} + \vec{Q}$$

১.৫.২ ত্রিভুজ সূত্র

সূত্র ঃ দুটি ভেক্টর কোন ত্রিভুজের সন্নিহিত বাহু দ্বারা একই ক্রমে মানে ও দিকে সূচিত করা হলে ত্রিভুব্জের তৃতীয় বাহুটি বিপরীতক্রমে ভেক্টর দুটির লব্দি নির্দেশ করবে।

ব্যাখ্যা : মনে করি P ও Q দুটি ভেন্টর যোগ করতে হবে। প্রথমে $\overrightarrow{\mathbf{P}}$ -এর প্রান্ত বা শীর্ষবিন্দুর সাথে $\overrightarrow{\mathbf{O}}$ -এর আদি বিন্দু যুক্ত করে ভেষ্টর দুটি মানে ও দিকে বাহু AB ও BC দ্বারা সূচিত করা হল। এখন \overrightarrow{P} -এর আদি বিন্দু ও \overrightarrow{Q} -এর শেষ বিন্দু যোগ করে ABC ত্রিভুজটি সম্পূর্ণ করা হল। AC বাহুটিই দিকে ও মানে \overrightarrow{P} ও \overrightarrow{O} -এর লম্বি ভেষ্টর \overrightarrow{R} নির্দেশ করে [চিত্র ১ ১৪]।

ज्वर्था९,
$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$
(2)त्रा, $\overrightarrow{P} + \overrightarrow{Q} = \overrightarrow{R}$ (2)शूनः, $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC} = -\overrightarrow{CA}$ $[\because \overrightarrow{AC} = -\overrightarrow{CA}]$ त्रा, $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = 0$ (3)


সিম্বাস্ত ঃ অতএব, একই বিন্দুতে একই সময়ে ক্রিয়ারত ডিনটি সমজাতীয় সমতলীয় ভেষ্টর রাশিকে কোন ত্রিভুজের তিনটি বাহু দ্বারা একই ক্রমে নির্দেশ করলে এদের লব্দি শূন্য হবে।

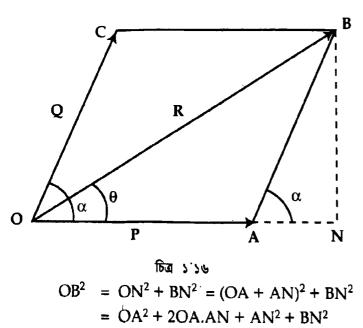
১-৫-৩ বহুভুজ সূত্র

সূত্র ঃ দুই-এর অধিক ভেক্টর রাশির ক্ষেত্রে ভেক্টর রাশিগুলোকে একই ব্রুমে সান্ধিয়ে প্রথম ভেক্টর রাশির পাদবিন্দু এবং শেষ ভেক্টর রাশির শীর্ষবিন্দু যোগ করলে যে বহুভুজ পাওয়া যায় এর শেষ বাহুটি বিপরীতব্রুমে ভেষ্টর রাশিগুলোর লম্বির মান ও দিক নির্দেশ করে।

৬

ভেটর BG & JEWEL

ব্যাখ্যা : মনে করি, \overrightarrow{A} , \overrightarrow{B} , \overrightarrow{C} , \overrightarrow{D} , \overrightarrow{E} গাঁচটি ভেষ্টর রাশি [চিত্র ১ ১৫। এদের লব্দি নির্ণয় করতে হবে। এখন প্রথম ভেষ্টর রাশির শীর্ষবিন্দুর উপর দ্বিতীয় ভেষ্টর রাশির পাদবিন্দু, দ্বিতীয় ভেষ্টর রাশির শীর্ষবিন্দুর উপর তৃতীয় ভেষ্টর রাশির পাদবিন্দু স্থাপন করি এবং এমনিভাবে ভেষ্টর রাশির পার্দ্ব রাশির আদি বিন্দু এবং শেষ ভেষ্টর রাশির শীর্ষবিন্দুর সংযোজক ভেষ্টর রাশি \overrightarrow{R} -ই উল্লিখিত ভেষ্টর রাশিগুলোর লব্দির মান ও দিক নির্দেশ করবে।


$$\overrightarrow{\mathbf{r}} \overrightarrow{\mathbf{R}}, \ \overrightarrow{\mathbf{R}} = \overrightarrow{\mathbf{A}} + \overrightarrow{\mathbf{B}} + \overrightarrow{\mathbf{C}} + \overrightarrow{\mathbf{D}} + \overrightarrow{\mathbf{E}}$$

১.৫.৪ সামান্তরিক সূত্র

সূত্র : কোন সামান্তরিকের একই বিন্দু হতে অজ্জিত সন্নিহিত বাহু দুটি যদি কোন কণার উপর একই সময়ে ক্রিয়ারত দুটি ডেক্টর রাশির মান ও দিক নির্দেশ করে, তা হলে ঐ বিন্দু হতে অজ্জিত সামান্তরিকের কর্ণই এদের লন্দির মান ও দিক নির্দেশ করে।

ব্যাখ্যা ঃ মনে করি O বিন্দুতে একটি কণার উপর $\overrightarrow{OA} = \overrightarrow{P}$ ও $\overrightarrow{OC} = \overrightarrow{Q}$ দুটি ভেক্টর রাশি একই সময়ে α কোণে ক্রিয়া করছে [চিত্র ১·১৬। OA ও OC-কে সন্নিহিত বাহু ধরে OABC সামন্তরিকটি জংকন করি এবং OB যুক্ত করি। এই সূত্রানুসারে উভয় ভেক্টরের ক্রিয়াবিন্দু O থেকে জংকিত কর্ণ \overrightarrow{OB} -ই ভেক্টর \overrightarrow{P} ও \overrightarrow{Q} -এর লব্দি \overrightarrow{R} নির্দেশ করে।

জর্ধাৎ, $\overrightarrow{OA} + \overrightarrow{OC} = \overrightarrow{OB}$ বা, $\overrightarrow{P} + \overrightarrow{Q} = \overrightarrow{R}$

লন্দির মান নির্ণয় 😮

মনে করি লক্ষির মান R এবং ∠AOC = α কোণটি সৃক্ষকোণ। এখন B বিন্দু হতে OA-এর বর্ধিত অংশের উপর BN লম্ঘ টানি যা বর্ধিত OA বাহুকে N বিন্দুতে ছেদ করল।

AB ও OC সমান্তরাল।

∠AOC =∠BAN = α ৷ জাবার OBN ত্রিভুজের, ∠ONB = এক সমকোণ = 90° ৷

উচ্চ মাধ্যমিক পদার্থবিজ্ঞান
বইঘর.কম
আবার, BNA সমকোণী ত্রিভুচ্জে,
$$AB^2 = AN^2 + BN^2$$

বা, $OC^2 = AN^2 + BN^2$ [$\therefore AB = OC$]
এখন ত্রিকোণমিতির সাহায্যে আমরা পাই, $\cos \angle BAN = \cos \alpha = \frac{AN}{AB}$
 $AN = AB \cos \alpha = OC \cos \alpha$
সূতরাং $OB^2 = OA^2 + AB^2 + 2OA$. $AB \cos \alpha$ [$\therefore AB^2 = AN^2 + BN^2$]
বা, $OB^2 = OA^2 + OC^2 + 2OA$. $OC \cos \alpha$.
বা, $R^2 = P^2 + Q^2 + 2PQ \cos \alpha$
 $R = \sqrt{P^2 + Q^2 + 2PQ \cos \alpha}$ (4)

লন্দির দিক নির্ণয় :

৮

মনে করি P-এর সাথে θ কোণ উৎপন্ন করে লব্দি R ক্রিয়া করছে, অর্থাৎ $\angle AOB = \theta$ | সুতরাং OBN সমকোণী ত্রিভূজে, $\tan \theta = \frac{BN}{ON} = \frac{BN}{(OA + AN)}$ $= \frac{AB \sin \alpha}{(OA + AB \cos \alpha)} = \frac{Q \sin \alpha}{(P + Q \cos \alpha)}$ BAN সমকোণী ত্রিভূজে, $\sin \alpha = \frac{BN}{AB}$ BN = AB sin α (5)

সমীকরণ (4) এবং সমীকরণ (5) হতে যথাক্রমে R এবং 🖯 পাওয়া যায়।

বিশেষ ক্ষেত্র (Special cases) **ঃ**

(i)
$$\alpha = 0^{\circ}$$
 even, well costs y to an even from the latent even in the even in the even in the even is a set of the even in the even is a set of the eve

সুতরাং, দুটি ভেষ্টর একই দিকে ক্রিয়াশীল হলে এদের লম্বির মান হবে ভেষ্টরদ্বয়ের যোগফল এবং দিক হবে ভেষ্টরদ্বয় যেদিকে ক্রিয়া করে সেদিকে।

(ii) α = 90° হলে, অৰ্থাৎ ভেটার দুটি পরস্পর লম্ম হলে,
R² = P² + Q² + 2PQ cos 90° = P² + Q² [∵ cos 90° = 0]
বা,
$$R = \sqrt{P^2 + Q^2}$$

এবং tan θ = $\frac{Q \sin 90°}{P + Q \cos 90°} = \frac{Q}{P}$
(iii) α = 180° হলে, অর্থাৎ ভেটার দুটি বিপরীতমুখী হলে,
R² = P² + Q² + 2PQ cos 180° = P² + Q² - 2PQ [∵ cos 180° = -1
= (P - Q)²
. $R = P - Q$
Gave tan δ = $\frac{Q \sin 180°}{P + Q \cos 180°} = \frac{0}{P - Q} = 0$ [∵ sin 180° = 0
θ = 0

]

]

জর্ধাৎ ভেষ্টর দুটি পরস্পর বিপরীতমুখী হলে তাদের লম্বির মান হবে ভেষ্টর দুটির বিয়োগফল এবং দিক হবে বৃহত্তর ভেষ্টরটির দিকে। ভেষ্টর দুটি সমান ও বিপরীতমুখী হলে, সেক্ষেত্রে লম্বি শূন্য হবে।

লম্মির সর্বোচ্চ এবং সর্বনিয় মান (Maximum and minimum value of the resultant) মনে করি দুটি ভেষ্টর রাশি \overrightarrow{P} এবং \overrightarrow{Q} একই সময়ে কোন বিন্দুতে α কোণে ক্রিয়া করছে। ভেষ্টর যোগের সামান্তরিক সূত্রানুসারে এদের লম্বির মান $R = \sqrt{P^2 + Q^2 + 2PQ \cos \alpha}$

(ক) উপরোক্ত সমীকরণ হতে বলা যায় লম্বি \overrightarrow{R} -এর মান \overrightarrow{P} এবং \overrightarrow{Q} -এর মধ্যবর্তী কোণের উপর নির্ভর করে। \overrightarrow{R} -এর মান সর্বাধিক হবে যখন $\cos \alpha$ -এর মান সর্বাধিক হবে অর্থাৎ $\cos \alpha = 1 = \cos 0^\circ$

বা,
$$\alpha = 0^{\circ}$$
 হবে
: লব্দির সর্বোচ্চ মান]
 $R_{(সর্বোচ)} = \sqrt{P^2 + Q^2 + 2PQ \cos 0^{\circ}}$
 $= \sqrt{(P+Q)^2} = (P+Q)$

অতএব, দুটি ভেষ্টর যখন একই সরলরেখা বরাবর পরস্পর একই দিকে ব্রিয়া করে তখন তাদের লম্বির মান সর্বোচ্চ হবে এবং এই সর্বোচ্চ মান ভেষ্টর রাশি দুটির যোগফলের সমান হবে। অন্যভাবে বলা যায়, দুটি ভেষ্টর রাশির লম্বির মান এদের যোগফল অপেক্ষা বড় হতে পারে না।

(খ) লব্ধি R-এর সর্বনিম্ন মান হবে যখন cos α-এর মান সর্বনিম্ন হবে জর্থাৎ cos α = — 1 = cos 180° বা, α = 180° হবে।

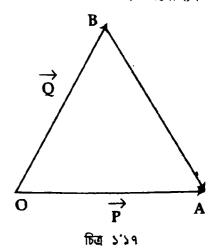
লন্দির সর্বনিম্ন মান,

$$R_{(\pi \hat{q} \cap \pi)} = \sqrt{P^2 + Q^2 - 2PQ} = \sqrt{(P \sim Q)^2} = P \sim Q$$
(7)

অতএব, দুটি ভেক্টর রাশি যখন একই সরলরেখা বরাবর পরস্পর বিপরীত দিকে ক্রিয়া করে তখন তাদের লন্দির মান সর্বনিম্ন হবে এবং লন্দির সর্বনিম্ন মান ভেক্টর রাশি দুটির বিয়োগফলের সমান হবে। সূতরাং বলা যায়, দুটি ভেক্টর রাশির সর্বনিম্ন মান এদের বিয়োগফল অপেক্ষা ছোট হতে পারে না। এখানে উল্লেখ্য যে (7)নং সমীকরণে ~ চিহ্নটি P এবং Q-এর মধ্যে বিয়োগফল নির্দেশ করে, তবে P এবং Q এদের মধ্যে যেটি বড় সেটি আগে লিখতে হবে অর্থাৎ Q যদি P অপেক্ষা বড় হয় তবে P $\sim Q = Q - P$

১-৬ ভেষ্টরের বিয়োগ

Subtraction of vectors

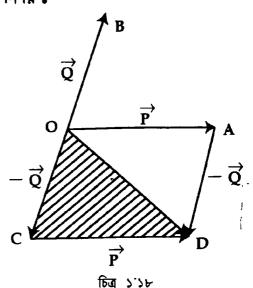

দুটি ভেট্টর রাশির বিয়োগ বলতে একটি ভেট্টরের সাথে অপরটির ঋণাত্মক ভেন্টরের যোগফল বুঝায়। \overrightarrow{P} ও \overrightarrow{Q} ভেট্টর দুটির বিয়োগফল \overrightarrow{C} হলে দেখা যায়, $\overrightarrow{C} = \overrightarrow{P} - \overrightarrow{Q} = \overrightarrow{P} + (-\overrightarrow{Q})$

ভেষ্টর যোগের ত্রিভুচ্জ সূত্র, সামান্তরিক সূত্র ও বহুভুচ্জ সূত্র প্রভৃতি ভেষ্টরের বির্যোগের ক্ষেত্রেও প্রযোজ্য।

(ক) ত্রিভুজ সূত্রের সাহায্যে ভেক্টরের বিয়োগফল নির্ণয় :

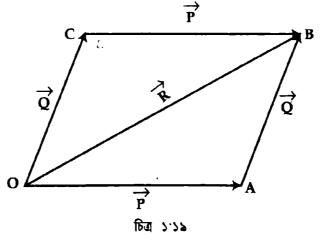
ধরা যাক \overrightarrow{P} ও \overrightarrow{Q} ভেক্টর দুটির বিয়োগফল নির্ণয় করতে হবে। প্রথমে ভেক্টর দুটিকে মান ও দিকে অপরিবর্তিত রেখে একই আদি বিন্দু হতে OA ও OB অজ্ঞকন করতে হয় [চিত্র ১ ১৭]। এরপর \overrightarrow{Q} -এর প্রান্ত বিন্দু B-এর সাথে \overrightarrow{P} -এর প্রান্ত বিন্দু A যোগ করলে \overrightarrow{BA} -ই মানে ও দিকে \overrightarrow{P} — \overrightarrow{Q} ভেক্টরকে সূচিত করে।

জতএব,
$$\overrightarrow{\mathbf{BA}} = \overrightarrow{\mathbf{P}} - \overrightarrow{\mathbf{Q}}$$


(6)

(খ) সামান্তরিকের সৃত্রের সাহায্যে ভেক্টরের ব্রিগ্রিকিল নির্ণয় ঃ

ধরা যাক \overrightarrow{P} ও \overrightarrow{Q} দুটি ভেট্টর। \overrightarrow{P} ও \overrightarrow{Q} ভেট্টর দুটিকে একই আদি বিন্দু হতে উপযুক্ত বাহু দ্বারা সূচিত করতে হয় [চিত্র ১'১৮]। এরপর \overrightarrow{Q} -এর সমান অথচ বিপরীতমুখী বাহু দ্বারা — \overrightarrow{Q} -কে নির্দেশ করা হয়।


এখন OA ও OC-কে সন্নিহিত বাহু ধরে OADC সামান্তরিক অজ্ঞকন করলে কর্ণ OD উক্ত ভেক্টর দুটির বিয়োগফল নির্দেশ করে।

অর্থাৎ, কর্ণ
$$\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{AD}$$

= $\overrightarrow{P} + (-\overrightarrow{Q}) = \overrightarrow{P} - \overrightarrow{Q}$ ।

১ ৭ ভেষ্টর যোগের কয়েকটি সূত্র Some laws of vector addition

(ক) বিনিময় সূত্র (Commutative law) ঃ $\overrightarrow{P} + \overrightarrow{Q} = \overrightarrow{Q} + \overrightarrow{P}$ প্রমাণ ঃ মনে করি, \overrightarrow{P} ও \overrightarrow{Q} দুটি ভেক্টর রাশি এবং \overrightarrow{R} রাশি দুটির লব্দি [চিত্র ১ ১৯]।

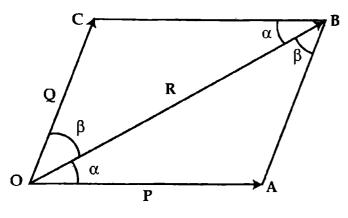
ত্রিভূজ সূত্র অনুসারে, OAB ত্রিভূজে,

$$\overrightarrow{R} = \overrightarrow{P} + \overrightarrow{Q}$$

 $\Psi \Phi \Phi O B = O A + A B$

এখন OABC সামান্তরিক অজ্ঞন করি এবং OC ও CB-এ যথাক্রমে AB ও OA-এর ন্যায় তীর চিহ্নিত করি। OCB ত্রিভূজে

$$\overrightarrow{OB} = \overrightarrow{OC} + \overrightarrow{CB}$$
 (ত্রিভূচ্চ সূত্র অনুসারে).
 $\overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OC} + \overrightarrow{CB}$
অধাৎ $\overrightarrow{P} + \overrightarrow{Q} = \overrightarrow{Q} + \overrightarrow{P}$
এটিই হল বিনিময় সূত্র।
তেমনি স্কেলার রাশিও বিনিময় সূত্র মেনে চলে।


(8)

$$\begin{array}{c} (\overrightarrow{e}\overrightarrow{b}\overrightarrow{a}, \overrightarrow{b}\overrightarrow{c}) = (\overrightarrow{e}\overrightarrow{c}, \overrightarrow{b}\overrightarrow{c}) = (\overrightarrow{e}\overrightarrow{c}, \overrightarrow{c}) = (\overrightarrow{e}\overrightarrow{c}) =$$

১৮ ভেক্টর রাশির বিভাজন বা বিশ্লেষণ ও উপাংশ Resolution of vectors and components

একটি ভেক্টর রাশিকে সামান্তরিক সূত্রের দ্বারা বহুভাবে দুটি ভেক্টর রাশিতে বিভক্ত করা যায়। এই পম্ধতির নাম তেক্টর রাশির বিভাজন। সুতরাং একটি ভেক্টর রাশিকে দুই বা ততোধিক ভেক্টর রাশিতে বিভক্ত করার প্রক্রিয়াকে ডেক্টর রাশির বিভাজন বা বিশ্লেষণ বলে। এই বিভক্ত ভেক্টর রাশিগুলোর প্রত্যেকটিকে মূল ভেক্টর রাশির এক একটি অংশক বা উপাংশ (Component) বলে।

(i) যে কোন দুই উপাংশে বিভাজন ঃ

মনে করি R একটি ভেক্টর রাশি। তীর চিহ্নিত OB সরলরেখাটি তার মান ও দিক নির্দেশ করছে [চিত্র ১ ২২]। OB-এর সাথে দুই পাশে α ও β কোণ উৎপন্ন করে এরূপ দুটি দিকে একে দুটি উপাংশে বিডক্ত করতে হবে।

এখন Ο বিন্দু হতে OB-এর সাথে দুই পাশে α এবং β কোণ করে OA এবং OC রেখা দুটি টানি। OB-কে কর্ণ করে OABC সামান্তরিকটি অঙ্জন করি।

সুতরাং সামান্তরিকের সূত্রানুযায়ী OB দ্বারা সূচিত ভেক্টর রাশি \overrightarrow{R} -এর দুটি অংশকের বা উপাংশের মান ও দিক \overrightarrow{OA} এবং \overrightarrow{OC} নির্দেশ করবে।

বর্ণনানুসারে OC এবং AB সমান্তরাল এবং OB তাদেরকে যুক্ত করেছে। কাজেই ∠ABO = ∠BOC = β এখন ত্রিকোণমিতি ও ত্রিভুজের ধর্মানুসারে ∆OAB হতে আমরা পাই,

$$\frac{OA}{\sin\beta} = \frac{AB}{\sin\alpha} = \frac{OB}{\sin \angle OAB}$$
with a B = OC at $\angle OAB = 180^{\circ} - (\angle AOB + \angle ABO) = 180^{\circ} - (\alpha + \beta)$

$$\frac{OA}{\sin\beta} = \frac{AB}{\sin\alpha} = \frac{OB}{\sin(180^{\circ} - (\alpha + \beta))}$$

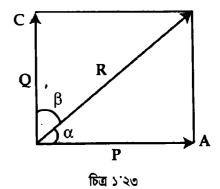
$$\overrightarrow{OA} = \frac{AB}{\sin\alpha} = \frac{OB}{\sin(180^{\circ} - (\alpha + \beta))}$$

$$\overrightarrow{OA} = \frac{Q}{\sin\alpha} = \frac{R}{\sin(180^{\circ} - (\alpha + \beta))} = \frac{R}{\sin(\alpha + \beta)} [\cdots AB = OC]$$

$$P = \frac{R \sin \beta}{\sin(\alpha + \beta)}$$
(13)
$$at = \frac{Q}{\sin(\alpha + \beta)}$$

সমীকরণ (13) ও (14) R ভেষ্টরের উপার্গের সমীকরণ

(ii) লম্ব উপাংশে বিভাজন :


যদি R ভেষ্টরকে সমকোণে বিভাচ্চিত করা হয় অর্থাৎ, P এবং Q উপাংশ দুটি পরস্পর সমকোণী হয় [চিত্র ১·২৩], তবে $(\alpha + \beta) = 90^{\circ}$

$$\sin (\alpha + \beta) = \sin 90^\circ = 1 \, \mathfrak{AR}$$

$$\sin \beta = \sin (90^\circ - \alpha) = \cos \alpha$$

$$\frac{P}{\cos \alpha} = \frac{Q}{\sin \alpha} = R$$

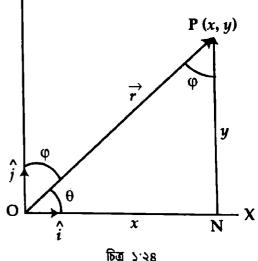
$$P = R \cos \alpha \, \mathfrak{AR} Q = R \sin \alpha$$

P এবং Q উপাংশ দুটিকে মূল ভেক্টর রাশি R-এর লম্বাংশ বলে। P-কে অনুভূমিক উপাংশ (Horizontal components) এবং Q-কে উলম্ব উপাংশ (Tangential components) বলে।

(15)

একটি ভেক্টর রাশিকে একক ভেক্টর রাশির সাহায্যে প্রকাশ 5.2 Representation of a vector by unit vectors

একটি ভেক্টর রাশিকে একক ভেক্টর রাশির সাহায্যে প্রকাশ করতে গিয়ে আমরা দুটি বিষয় বিবেচনা করব। একটি দ্বিমাত্রিক ক্ষেত্র ও অপরটি ত্রিমাত্রিক ক্ষেত্র। নিম্নে বিষয় দুটি পৃথকভাবে আলোচিত হল।


(ক) দ্বিমাত্রিক ভেষ্টর রাশির ক্ষেত্রে : ধরা যাক পরস্পর সমকোণে অবস্থিত OX ও OY সরলরেখা দুটি যথাক্রমে X ও Y অক্ষ নির্দেশ করছে [চিত্র ১ ২৪]। XY সমতলে X অক্ষের সাথে heta কোণে অবস্থিত OP রেখাটি দারা r মানের একটি ভেট্টর রাশি \overrightarrow{r} -এর মান ও দিক নির্দিষ্ট হয়েছে। আরও ধরা যাক P-এর স্থানাজ্ঞ (x,y) P(x, y)এবং ধনাত্মক X ও Y অক্ষে একক ভেষ্টর রাশি যথাক্রমে

 \hat{i} ও \hat{j} । P হতে X অক্ষের উপর PN লম্ম টানি।

তা হলে চিত্র অনুসারে ON = x, NP = y এবং OP = r.

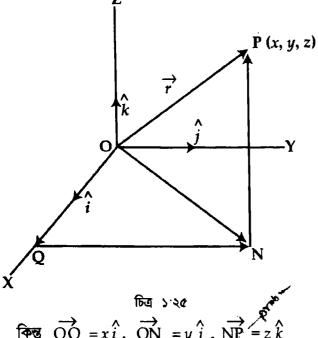
$$\overrightarrow{ON} = x \hat{i}, \quad \overrightarrow{NP} = y \hat{j} \quad \text{udv} \quad \overrightarrow{OP} = \overrightarrow{r}$$

uva, खिष्ठ्रक मूख अनुमाल,

$$\overrightarrow{OP} = \overrightarrow{ON} + \overrightarrow{NP}$$

বা. $\overrightarrow{r} = x \hat{i} + y \hat{j}$
(16)

ভেক্টরের মান


চিত্র ১'২৪ হতে আমরা পাই. $OP^2 = ON^2 + NP^2$ \overline{A} , $r^2 = x^2 + y^2$ $r = \sqrt{x^2 + y^2}$ \overrightarrow{r} বরাবর বা \overrightarrow{r} -এর সমান্তরাল একক তেটার : \vec{r} বরাবর বা \vec{r} -এর সমান্তরাল একক ভেষ্টর. $\hat{r} = \frac{\vec{r}}{r} = \frac{x\hat{i} + y\hat{j}}{\sqrt{x^2 + y^2}}$

(17)

(18)

বইঘর কম (ব) ত্রিমাত্রিক ভেষ্টর রাশির ক্ষেত্রে ঃ ত্রিমাত্রিক ভেষ্টরের বেলায় অনুরূপভাবে লেখা যায়,

 $\vec{r} = \hat{i} x + \hat{j} y + \hat{k} z$. এখানে P-এর অবস্থানাজ্ঞ্ব (x, y, z) ৷

প্রমাণ : ধরা যাক, পরস্পর সমকোণে অবস্থিত OX, OY ও OZ সরলরেখা তিনটি যথাক্রমে X, Y ও Z অক্ষ নির্দেশ করছে [চিত্র ১ ২৫]। OP রেখাটি এই অক্ষ ব্যবস্থায় rমানের একটি ভেক্টর রাশি \overrightarrow{r} নির্দেশ করছে। আরও মনে করি P-এর স্থানাজ্ফ (x, y, z) এবং ধনাত্মক X, Y ও Z অক্ষে একক ভেক্টর রাশি যথাক্রয়ে \widehat{i} \widehat{j} ও \widehat{k} । PN রেখাটি হল XY সমতলের উপর এবং NQ রেখাটি হল OX-এর উপর লম্ম।

o হল
$$\overrightarrow{OP} = \overrightarrow{ON} + \overrightarrow{NP}$$
 এবং $\overrightarrow{ON} = \overrightarrow{OQ} + \overrightarrow{QN}$ $\overrightarrow{OP} = \overrightarrow{OQ} + \overrightarrow{QN} + \overrightarrow{NP}$

$$\overrightarrow{P} = x\hat{i}, \ \overrightarrow{QN} = y\hat{j}, \ \overrightarrow{NP} = z\hat{k}$$

$$\overrightarrow{OP} = \overrightarrow{r}$$

$$\overrightarrow{r} = x\hat{i} + y\hat{j} + z\hat{k}$$

(19)

ভেন্টরের মান :

চিত্র ১'২৫ হতে, $OP^2 = ON^2 + NP^2$ এবং $ON^2 = OQ^2 + QN^2$

$$OP^{2} = OQ^{2} + QN^{2} + NP^{2}$$

$$\exists 1, \quad r^{2} = x^{2} + y^{2} + z^{2}$$

$$r = \sqrt{x^{2} + y^{2} + z^{2}}$$

$$(20)$$

 \overrightarrow{r} বরাবর বা, \overrightarrow{r} -এর সমান্তরাল একক ভেক্টর রাশি st

$$\hat{r} = \frac{\overrightarrow{r}}{r} = \frac{x\,\hat{i} + y\,\hat{j} + z\hat{k}}{\sqrt{(x^2 + y^2 + z^2)}}$$
(21)

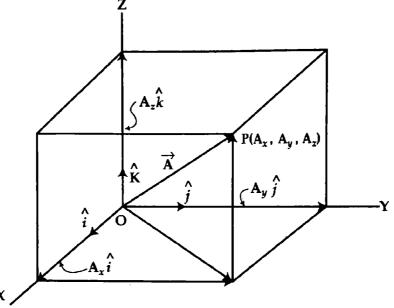
উদাহরণ ঃ যদি $\overrightarrow{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$ হয়, তবে \overrightarrow{A} ভেষ্টর রাশির মান,

$$A = \sqrt{A_x^2 + A_y^2 + A_z^2} \text{ and } \overrightarrow{A} \text{ (Sobstands)}$$

$$\hat{A} = \frac{\overrightarrow{A}}{A} = \frac{A_x^2 + A_y^2 + A_z^2}{\sqrt{A_x^2 + A_y^2 + A_z^2}}$$

১-১০ ভেষ্টর যোগের উপাংশ সূত্র Law of components for vector addition

পূর্বের অনুচ্ছেদে একটি ভেষ্টর রাশিকে আয়তাকার একক ভেষ্টরের সাহায্যে প্রকাশ করার নিয়ম আলোচনা করা হয়েছে। দুই বা ততোধিক ভেষ্টর যদি লম্দ উপাংশে বিতক্ত করা থাকে, তবে তাদের লব্দি উপাংশের সাহায্যে সহজেই প্রকাশ করা যায়। একে ভেষ্টর যোগের উপাংশ সূত্র বলে।


\$8

ভেষ্টর রাশিকে উপাংশে বিভক্ত করে উপাংশগুলোর বীজ্ঞগাণিতিক যোগফল দ্বারা লব্দি ভেষ্টর নির্ণয় করা যায়। লব্দি ভেষ্টর নির্ণয়ের পন্দ্রতি নিম্নে আলোচনা করা হল।

১.১০.১ ভেষ্টর রাশির যোগের উপাংশ সূত্র

যে কোন স্থানাচ্চ্ব ব্যবস্থায় একটি ভেষ্টর রাশিকে উপাংশে বিভক্ত করা যায়। প্রত্যেকটি ভেষ্টর রাশিকে উপাংশে বিভক্ত করে উপাংশগুলোর বীজগাণিতিক যোগফল দ্বারা লম্বি ভেষ্টর রাশি নির্ণয় করা যায়।

মনে করি, ত্রিমাত্রিক আয়তাকার স্থানাজ্ঞক ব্যবস্থায় OX, OY, OZ তিনটি অক্ষ নির্দেশ করছে [চিত্র ১ ২৬]। মনে করি O মূলবিন্দু। র ভেষ্টর রাশিকে X, Y, Z-অক্ষ বরাবর উপাংশে বিভক্ত করার জন্য OX অক্ষ

চিত্র ১'২৬

বরাবর একক ভেষ্টর রাশি \hat{i} , OY অক্ষ বরাবর একক ভেষ্টর রাশি \hat{j} এবং OZ অক্ষ বরাবর একক ভেষ্টর রাশি \hat{k} লই। \overrightarrow{A} -এর শীর্ষবিন্দু P-এর স্থানাজ্ঞ্ব (A_x , A_y , A_z) হলে X, Y ও Z-অক্ষ বরাবর এর উপাংশ, যথাক্রমে $A_x \hat{i}$, $A_y \hat{j}$ ও $A_2 \hat{k}$ এবং

$$\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$$
(22)

অনুরূপভাবে \overrightarrow{B} ভেক্টর রাশিকে X, Y ও Z-অক্ষ বরাবর উপাংশের সাহায্যে লেখা যায়,

$$\overrightarrow{B} = B_x \widehat{i} + B_y \widehat{j} + B_z \widehat{k}$$

$$\therefore \overrightarrow{A} + \overrightarrow{B} = A_x \widehat{i} + A_y \widehat{j} + A_z \widehat{k} + B_x \widehat{i} + B_y \widehat{j} + B_z \widehat{k}$$

$$= (A_x + B_x) \widehat{i} + (A_y + B_y) \widehat{j} + (A_z + B_z) \widehat{k}$$
(23)
(24)

এখন \overrightarrow{A} + \overrightarrow{B} = \overrightarrow{C} হলে এবং X, Y ও Z অক্ষ বরাবর লন্দি \overrightarrow{C} -এর উপাংশের মান যথাক্রমে C_x, C_y এবং C_z হলে সমীকরণ (24)-কে লেখা যায়,

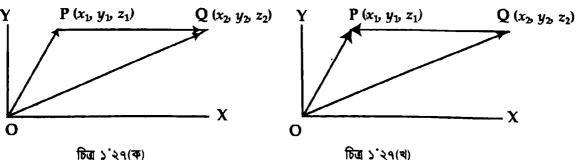
$$\vec{A} + \vec{B} = \vec{C} = C_x \hat{i} + C_y \hat{j} + C_z \hat{k}$$
(25)
অধ্বাৎ, $C_x = A_x + B_x$, $C_y = A_y + B_y$ এবং $C_z = A_z + B_z$
(25)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(

উপরের নিয়মে ভেষ্টর দুটির বিয়োগফল নির্ণয় কর্রা যায়।

১-১০-২ ভেষ্টর বিয়োগের উপাংশ সূত্র \overrightarrow{A} ও \overrightarrow{B} ডেট্টর দুটিকে বিভাজিত উপাংশে লেখা যায়, $\overrightarrow{A} = A_x i + A_y j + A_z k$ $\operatorname{und} B = B_x i + B_y j + B_z k$ এই ভেষ্টরদয়ের বিয়োগ বা বিয়োজন হবে, $\overrightarrow{A} - \overrightarrow{B} = (\overrightarrow{A_x i} + \overrightarrow{A_y j} + \overrightarrow{A_z k}) - (\overrightarrow{B_x i} + \overrightarrow{B_y j} + \overrightarrow{B_z k})$ $= (\mathbf{A}_x - \mathbf{B}_x)\hat{i} + (\mathbf{A}_y - \mathbf{B}_y)\hat{j} + (\mathbf{A}_z - \mathbf{B}_z)\hat{k}$ (27)এখন $\overrightarrow{A} - \overrightarrow{B} = \overrightarrow{C}$ হলে এবং X, Y ও Z অক্ষ বরাবর \overrightarrow{C} -এর উপাংশ যথাক্রমে C_x , C_y ও C_z হলে, $\vec{C} = C_x \hat{i} + C_y \hat{j} + C_z \hat{k}$ অর্থাৎ $C_x = (A_x - B_x), C_y = (A_y - B_y)$ এবং $C_z = (A_z - B_z)$ অতএব. লম্বির মান. $|\overrightarrow{C}| = |\overrightarrow{A} - \overrightarrow{B}| = \sqrt{C_x^2 + C_y^2 + C_z^2}$ $= \sqrt{\{(A_x - B_x)^2 + (A_y - B_y)^2 + (A_z - B_z)^2\}}$ (28)

বিঃ দ্রঃ দ্বিমাত্রিক ক্ষেত্রে দুটি উপাংশ যথা 🏠 ও 🧘 সংশ্লিষ্ট রাশিগুলো থাকবে।

দুটি অবস্থান ভেষ্টরের শীর্ষবিন্দুর সংযোগকারী ভেষ্টর 2.22 (উপাহ্শ পম্বতি)


মূলবিন্দু O-এর সাপেক্ষে দুটি বিন্দু P ও Q-এর স্থানাজ্ঞ যথাক্রমে (x_1, y_1, z_1) ও (x_2, y_2, z_2) [फिज) २१ (क)] राज $\overrightarrow{OP} = x_1\hat{i} + y_1\hat{j} + z_1\hat{k}$ ७ $\overrightarrow{OQ} = x_2\hat{i} + y_2\hat{j} + z_2\hat{k}$

$$\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP}$$

$$\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP}$$

$$\overrightarrow{r}_{12} = (x_2 - x_1) \hat{i} + (y_2 - y_1) \hat{j} + (z_2 - z_1) \hat{k}$$

$$(29)$$

$$|\vec{PQ}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$
 (30)

জনুরূপভাবে চিত্র ১ ২৭ (খ) থেকে দেখানো যায়,

$$\vec{QP} = \vec{r}_{21} = (x_1 - x_2) \, \vec{i} + (y_1 - y_2) \, \vec{j} + (z_1 - z_2) \, \vec{k}$$
(31)

$$\P | \overrightarrow{QP} | = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$
(32)

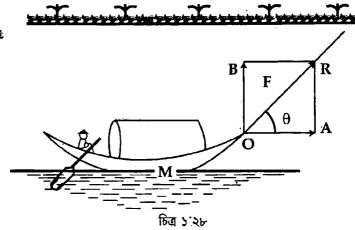
এটিই হল দুটি বিন্দুর সংযোগকারী ভেন্তরের মান।

উদাহরণ : P ও Q বিন্দু দুটির স্থানাজ্ঞ যথাক্রমে (2,3,4) এবং (4,6,8) হলে PQ ভেষ্টর রাশি এবং এর মান হবে যথাক্রমে,

$$\overrightarrow{PQ} = (4-2)\hat{i} + (6-3)\hat{j} + (8-4)\hat{k} = 2\hat{i} + 3\hat{j} + 4\hat{k}$$

$$\overrightarrow{PQ} = \sqrt{2^2 + 3^2 + 4^2} = \sqrt{4 + 9 + 16} = \sqrt{29}$$

১٠১২ ভেষ্টর বিভাজনের দৃষ্টান্ত


<u>) নৌকার গুণ টানা</u> ঃ মনে করি M একটি নৌকা। এর O বিন্দুতে গুণ বেঁধে OR বরাবর নদীর পাড় দিয়ে F বলে টেনে নেওয়া হচ্ছে। বিভাজন পম্বতি দ্বারা O বিন্দুতে F-কে দুটি উপাংশে বিভাজিত করা যায় যথা—অনুভূমিক উপাংশ ও উল্লম্ব উপাংশ।

অনুভূমিক উপাংশ = F cos heta, এর দিক OA বরাবর।

উল্লম্ব উপাংশ = F sin θ, এর দিক

OB বরাবর।

বলের অনুভূমিক উপাংশ F cos θ নৌকাকে সামনের দিকে এগিয়ে নিয়ে যায় এবং উল্লম্ব উপাংশ F sin θ নৌকাটিকে পাড়ের দিকে টানে। কিন্তু নৌকার হাল দ্বারা উল্লম্ব

F sin 0

С

W

(켁)

 $F \cos \theta$

B

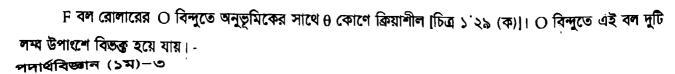
D

B

চিত্র ১'২৯

 $F \cos \theta$

sin


(平)

উপাংশ F sin θ প্রতিহত করা হয়। গুণ যত লম্বা হবে, θ -এর মান তত কম হবে ফলে F sin θ -এর মান কম হবে এবং F cos θ -এর মান বেশি হবে। ফলে নৌকা দ্রুত সামনের দিকে এগিয়ে যাবে।

২। লন-রোলার চালনা : তলের উপর দিয়ে কোন বস্তৃকে ঠেলা বা টানা হলে তল ও বস্তৃর মধ্যে ঘর্ষণ বল ক্রিয়াশীল হয় এবং বস্তৃর গতিকে বাধা দেয়। বস্তৃর ওজন বেশি হলে ঘর্ষণ বলও বেশি হয়। রোলারকে ঠেলে বা টেনে গতিশীল করা হয়।

```
ঠেলার ক্ষেত্রে ঃ ধরা যাক,
রোলারের ওজন = \overrightarrow{W}
```

রোলারের হ্রাতলের উপর প্রযুক্ত বল = F

বলের অনুভূমিক উপাংশ = F cos θ , এর দিক OB বরাবর সামনের দিকে

এবং উল্লম্ম উপাংশ = F sin θ , এর দিক OC বরাবর নিচের দিকে ক্রিয়াশীল যা রোলারের ওজন বৃদ্ধি করে। সুতরাং রোলারের মোট ওজন হয় (W + R sin θ)। ফলে রোলার প্রকৃত ওজনের চেয়ে তারী হয়ে যায় বলে ঘর্ষণ বলের মানও বেড়ে যায়। তাই রোলার ঠেলা কন্টকর হয়।

টানার ক্ষেত্রে ঃ ধরা যাক, রোলারের ওজন = 📈

রোলারের হাতলের উপর প্রযুক্ত বল = \overrightarrow{F}

F বল Ο বিন্দুতে অনুভূমিক রেখা OB-এর সাথে θ কোণে ক্রিয়াশীল [চিত্র ১ ২৯ (খ)]। F বল দুটি লম্ম উপাৎশে বিভাজিত হয়ে যায়।

অনুভূমিক উপাংশ = $F \cos \theta$, এর ক্রিয়ায় রোলারটি সামনের দিকে এগিয়ে যাবে

এবং উল্লম্ব উপাংশ = F sin heta, এর ক্রিয়া OD বরাবর উপ্বরের দিকে হওয়ায় রোলারের মোট ওজন হ্রাস পায়। ফলে রোলারের ওজন হয় (W — F sin heta)। ফলে টানার ক্ষেত্রে রোলার হান্ধা অনুভূত হয় এবং ঘর্ষণ বলও হ্রাস পায়। ফলে রোলার টানা সহজতর হয়।

সুতরাং, লন-রোলার ঠেলা অপেক্ষা টানা সহজতর।

১.১৩ ভেক্টর রাশির গুণন

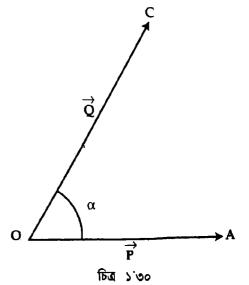
Multiplication of vectors

দুটি দিক রাশি বা ভেষ্টর রাশির গুণফল সাধারণত দুই প্রকার, যথা—

(১) স্কেলার গুণন বা ডট গুণন (Scalar or Dot product)

(২) ভেষ্টর গুণন বা রুস গুণন (Vector or Cross product)

এই দুটি গুণন বা গুণফল নিম্নে পৃথক পৃথকভাবে আলোচনা করা হল।


১.১৩.১ স্কেলার গুণন বা ডট গুণন

সংজ্ঞা ঃ দুটি ভেক্টর রাশির স্কেলার গুণফল একটি স্কেলার রাশি হবে যার মান রাশি দুটির মান এবং তাদের মধ্যবর্তী কোণের কোসাইনের (cosine) গুণফলের সমান। ভেক্টর রাশি দুটির মাঝে (•) চিহ্ন দিয়ে ডট গুণফল প্রকাশ করা হয় এবং পড়তে হয় "প্রথম রাশি ডট দ্বিতীয় রাশি।"

ুবা, স্কেলার গুণফল দুটি ভেক্টরের মানের গুণফলের সাথে তাদের মধ্যবর্তী কোণের কোসাইনের গুণফল।

ব্যাখ্যা ঃ মনে করি \overrightarrow{P} ও \overrightarrow{Q} দুটি ভেষ্টর রাশি। তীর চিহ্নিত OA ও OC সরলরেখা রাশি দুটির মান ও দিক নির্দেশ করছে [চিত্র ১ ৩০]। এরা পরস্পরের সাথে α কোণে আনত। তাদের ক্বেলার বা অদিক গুণফল = \overrightarrow{P} . \overrightarrow{Q} দ্বারা নির্দেশ করা হয় এবং পড়তে হয় \overrightarrow{P} ডট \overrightarrow{Q} । কাজেই সংজ্ঞা অনুসারে পাই,

$$\overrightarrow{P}.\overrightarrow{Q} = |\overrightarrow{P}|\overrightarrow{Q}| \cos \alpha$$

বা, $\overrightarrow{P}.\overrightarrow{Q} = PQ \cos \alpha$ (33)
এখানে $0 \le \alpha \le \pi$
সমীকরণ (33) হতে দেখা যায়, গুণফল একটি স্কেলার

বিশেষ দ্রষ্টব্য ঃ

ক) যদি
$$\alpha = 0^{\circ}$$
 হয়. তবে \overrightarrow{P} , $\overrightarrow{Q} = PQ \cos 0^{\circ} = PQ$! এক্ষেত্রে ভেটর দুটি পরস্পরের সমান্তরাল হবে।
(ব) যদি $\alpha = 90^{\circ}$ হয়, তবে \overrightarrow{P} , $\overrightarrow{Q} = PQ \cos 90^{\circ} = 0$ । এক্ষেত্রে ভেটর দুটি পরস্পর লম্ম হবে।
(ব) মদি $\alpha = 180^{\circ}$ হয়, তবে \overrightarrow{P} , $\overrightarrow{Q} = PQ \cos 90^{\circ} = -PQ$ । এক্ষেত্রে ভেটর দুটি পরস্পরে সমান্তরাল
এবং বিপরীতমুখী হবে।
টিলেখা : \overrightarrow{P} , $\overrightarrow{Q} = PQ \cos \alpha = Q \times P \cos \alpha$, এখানে $Q \cos \alpha = \overrightarrow{P}$ বরাবর Q -এর লম্ম

ভিল্লেখ্য । $P' \cdot Q' = PQ \cos \alpha = P \times Q \cos \alpha = Q \times P \cos \alpha$, এখানে, $Q \cos \alpha = P'$ বরাবর Q-এর লম্দ অভিক্ষেপ এবং $P \cos \alpha = \overrightarrow{Q}$ বরাবর \overrightarrow{P} -এর লম্দ অভিক্ষেপ।]

স্কেলার গুণনের উদাহরণ: বল \overrightarrow{F} এবং সরণ \overrightarrow{s} উভয়েই ভেক্টর রাশি। কিন্থু এদের স্কেলার গুণফল কাজ (W) একটি স্কেলার রাশি, অর্থাৎ

 $W = \overrightarrow{F} \cdot \overrightarrow{s} = Fs \cos \alpha$

স্থিতিশক্তি, বৈদ্যুতিক বিভব ইত্যাদিও ভেষ্টর রাশির স্কেলার গুণফলের উদাহরণ।

১·১৩·২ একক ভেক্টর রাশির স্কেলার গুণন Multiplication of unit vectors

পরস্পর সমকোণে অবস্থিত তিনটি অক্ষ বিবেচনা করি। এরা যথাক্রমে X, Y এবং Z। মনে করি এই তিনটি অক্ষ বরাবর সূচিত তিনটি একক ভেক্টর হল যথাক্রমে \hat{i}, \hat{j} এবং \hat{k} া এদের স্কেলার গুণফল বের করি।

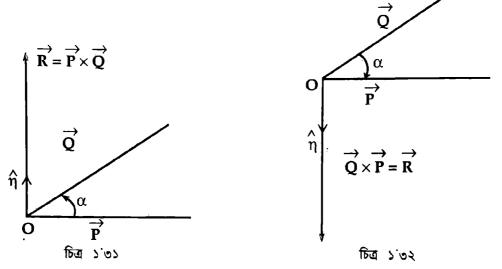
$$\therefore \hat{i} \cdot \hat{j} = \hat{j} \cdot \hat{k} = \hat{k} \cdot \hat{i} = 0$$
(36)

১·১৩৩ ভেক্টর বা ব্রুস গুণন Cross product of vectors

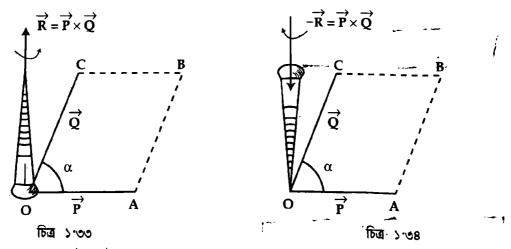
সংজ্ঞা ঃ দুটি ভেক্টর রাশির গুণফল যদি একটি ভেক্টর রাশি হয়, তবে এ গুণনকে ভেক্টর গুণন বা ক্রস গুণন বলে। এই ভেক্টর গুণফলের মান ভেক্টর রাশি দুটির মান এবং তাদের মধ্যবর্তী কোণের সাইন (sine) এর গুণফলের সমান। তেক্টর গুণফলের দিক ডানহাতি স্কু নিয়মে নির্ণয়শ্বর্কা হয়।

(34)

বইঘর.কম

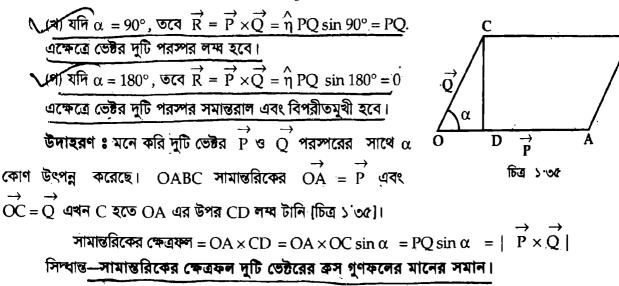

ব্যাখ্যা ঃ মনে করি \overrightarrow{P} ও \overrightarrow{Q} দুটি ভেক্টর রাশি। এরা পরস্পরের সাথে lpha কোণে O বিন্দুতে ব্রিয়া করে। অতএব এদের ভেক্টর গুণফল বা দিক গুণফল---

$$\vec{R} = \vec{P} \times \vec{Q} = \hat{\eta} |\vec{P}| \vec{Q} | \sin \alpha, \ 0 \le \alpha \le \pi$$


$$\vec{q}, \ \vec{R} = \vec{P} \times \vec{Q}$$

$$= \hat{\eta} PQ \sin \alpha \ 0 \le \alpha \le \pi$$
(37)

এখানে $\stackrel{\wedge}{\eta}$ (ইটা) একটি একক ভেক্টর যা \overrightarrow{R} এর দিক নির্দেশ করে [চিত্র ১·৩১ ও ১·৩২]।



ডান হাতি ক্ষু নিয়ম ঃ ভেটর দুটি যে সমতলে অবস্থিত সেই সমতলের উপর লম্বভাবে একটি ডান হাতি ক্ষুকে রেখে প্রথম ভেট্টর হতে দ্বিতীয় ভেট্টরের দিকে ক্ষুদ্রতম কোণে ঘুরালে ক্ষুটি যে দিকে অগ্রসর হয় সেই দিকই হবে R তথা n এর দিক।

উপরোক্ত নিয়ম অনুসারে $\overrightarrow{P} \times \overrightarrow{Q}$ এর অভিমুখ হবে উপরের দিকে [চিত্র ১০০০] এবং $\overrightarrow{Q} \times \overrightarrow{P}$ এর অভিমুখ হবে নিচের দিকে [চিত্র ১ ৩৪] অর্থাৎ প্রথম ক্ষেত্রে ডান হাতি স্কুর দিক হবে ঘড়ির কাঁটার বিপরীতমুখী (Anticlockwise) এবং দ্বিতীয় ক্ষেত্রে ঘড়ির কাঁটার দিকে (Clockwise) | Anti-clockwise direction-কে positive (ধনাত্মক) ধরা হয় এবং clockwise direction-কে Negative (ঋণাত্মক) ধরা হয়।

বিশেষ দ্রন্টব্য : (ক) যদি $\alpha = 0^\circ$ হয়,তবে $\vec{R} = \vec{P} \times \vec{O} = \hat{\eta} PQ \sin 0^\circ = 0$ এক্ষেত্রে ভেষ্টর দুটি পরস্পরের সমান্তরাল হবে। **ভেষ্টর** BG & JEWEL

১১৩৪ একক ভেষ্টরের ভেষ্টর গুণন Cross product of unit vectors

 \hat{j} \hat{j} \hat{i} \hat{k} Z \hat{k} \hat{k} \hat{b} \hat{a} \hat{b} \hat{a} \hat{b} \hat{a} \hat{b} \hat{a} \hat{b} \hat{b} \hat{a} \hat{b} $\hat{$

 $\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = 0$

 $= \hat{\eta} \cdot 1 \times 1 \times 1 = \hat{\eta}$

(a) $\hat{i} \times \hat{j} = \hat{\eta} | \hat{i} | \hat{j} | \sin 90^\circ$

পরস্পর সমকোণে অবস্থিত তিনটি অক্ষের দিকে তিনটি একক ভেক্টর বিবেচনা করি। X, Y এবং Z অক্ষের দিকে একক ভেক্টরগুলো যথাক্রমে \hat{i} , \hat{j} এবং \hat{k} [চিত্র ১'৩৬]। এদের ভেক্টর গুণফল বের করি।

(3)
$$\vec{i} \times \vec{i} = \eta | \vec{i} | \vec{i} | \sin \theta^{\alpha}$$

[∵ একক ভেষ্টর দুটি একই অক্ষ বরাবর ও α = 0°]

$$= \dot{\eta} \times 1 \times 1 \times 0 = 0$$

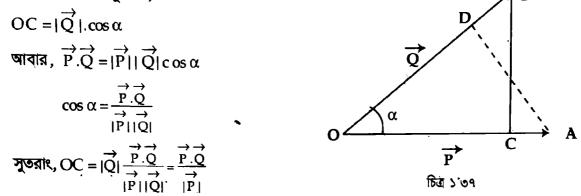
অনুরূপভাবে,

$$j^{2} \cdot j^{2} \times j^{2} = 0 - 4 \operatorname{Re} k^{2} \times k^{2} = 0$$

[·· অক্ষ দুটি পরস্পরের সাথে লম্ব, α = 90°]

(38)

সংজ্ঞানুযায়ী $\hat{\eta}$ একক ভেষ্টর \hat{i} ও \hat{j} উভয়ের উপর লম্ব। অতএব, এর দিক ধনাত্মক Z অক্ষ বরাবর। অর্ধাৎ এক্ষেত্রে $\hat{\eta}$ একক ভেষ্টর এবং \hat{k} একক ভেষ্টর অভিন।


$$\begin{array}{c} \therefore \hat{i} \times \hat{j} = \hat{k} \\ \hline \mathbf{u}_{\mathbf{7},\mathbf{7}} \mathbf{9} \mathbf{9} \mathbf{9} \mathbf{1} \mathbf{7}, \quad \hat{j} \times \hat{k} = \hat{i} \quad \mathbf{1} \mathbf{7} \mathbf{7}, \quad \hat{k} = \hat{i} \\ \hline \hat{i} \times \hat{j} = \hat{k} = -(\hat{j} \times \hat{i}) \\ \hat{j} \times \hat{k} = \hat{i} = -(\hat{k} \times \hat{j}) \\ \hat{j} \times \hat{k} = \hat{i} = -(\hat{k} \times \hat{j}) \\ \hat{k} \times \hat{i} = \hat{j} = -(\hat{i} \times \hat{k}) \end{array}$$

$$(39)$$

B

বহুঘর কম ১-১৪ ভেষ্টরের লম্ব অভিক্ষেপ বা অভিক্ষেপ Projection of a vector

মনে করি $\overrightarrow{OA} = \overrightarrow{P}$ এবং $\overrightarrow{OB} = \overrightarrow{Q} | \overrightarrow{P}$ ও \overrightarrow{Q} ভেট্টরদ্বয়ের মধ্যবর্তী কোণ $\angle AOB = \widehat{\alpha} | B$ বিন্দু হতে OA-এর উপর BC লম্ম টানি। তাহলে OC-ই \overrightarrow{P} ভেট্টরের উপর \overrightarrow{Q} ভেট্টরের লম্ম অভিক্ষেপ বা সংক্ষেপে অভিক্ষেপ। চিত্র ১ ৩৭ অনুসারে, $\ensuremath{\mathcal{A}}$ B

অনুরূপভাবে, A বিন্দু হতে OB-এর উপর লম্ম OD অভকন করলে \overrightarrow{Q} ভেষ্টরের উপর \overrightarrow{P} ভেষ্টরের অভিক্ষেপ, OD = $|\overrightarrow{P}| \cos \alpha = \frac{\overrightarrow{P} \cdot \overrightarrow{Q}}{|\overrightarrow{Q}|}$

উদাহরণ : ভেটর $\overrightarrow{P} = \hat{i} + 2\hat{j} + 2\hat{k}$ এর উপর $\overrightarrow{Q} = 4\hat{i} + 8\hat{j} - \hat{k}$ -এর লম্ম অভিক্ষেপ বা অভিক্ষেপ $= \frac{\overrightarrow{P} \cdot \overrightarrow{Q}}{|\overrightarrow{P}|} = \frac{(\hat{i} + 2\hat{j} + 2\hat{k}) \cdot (4\hat{i} + 8\hat{j} - \hat{k})}{\sqrt{(1^2) + (2)^2 + (2)^2}}$ $= \frac{4 + 16 - 2}{\sqrt{1 + 4 + 4}} = \frac{18}{\sqrt{9}} = \frac{18}{3} = 6$

১·১৫ উপাংশে বিভাজিত ভেষ্টর রাশির গুণফল Multiplication of resolved vector components

এখন আমরা উপাৎশে বিভাচ্চিত ভেষ্টর রাশির গুণফল আলোচনা করব। এ গুণফলও দুই প্রকারের ; যথা----

- (ক) স্কেলার গুণফল এবং (খ) তেন্টর গুণফল
- (ক) স্কেলার গুণফল : মনে করি \overrightarrow{A} এবং \overrightarrow{B} দুটি ভেষ্টর রাশি। এরা যথাক্রমে

$$\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k} \quad \text{and} \quad \vec{B} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k}$$

এদের স্কেলার গুণফল

$$\vec{A} \cdot \vec{B} = (A_x \hat{i} + A_y \hat{j} + A_z \hat{k}) \cdot (B_x \hat{i} + B_y \hat{j} + B_z \hat{k})$$

$$= A_x B_x (\hat{i} \cdot \hat{i}) + A_x B_y (\hat{i} \cdot \hat{j}) + A_x B_z (\hat{i} \cdot \hat{k}) + \widehat{A_y B_x} (\hat{j} \cdot \hat{i}) + A_y B_y (\hat{j} \cdot \hat{j}) + A_y B_z (\hat{j} \cdot \hat{k})$$

$$+ A_z B_x (\hat{k} \cdot \hat{i}) + A_z B_y (\hat{k} \cdot \hat{j}) + A_z B_z (\hat{k} \cdot \hat{k})$$

$$= A_x B_x + 0 + 0 + 0 + A_y B_y + 0 + 0 + 0 + A_z B_z$$

$$= A_x B_x + A_y B_y + A_z B_z$$
(40)

ভটর \mathcal{BG} & JEWEL আবার, $\overrightarrow{A} : \overrightarrow{A} = (A_x \hat{i} + A_y \hat{j} + A_z \hat{k}) .(A_x \hat{i} + A_y \hat{j} + A_z \hat{k})$ বা, $A^2 = A_x A_x + A_y A_y + A_z A_z$ বা, $A^2 = A_x^2 + A_y^2 + A_z^2$ $A = \sqrt{A_x^2 + A_y^2 + A_z^2}$ (41) অন্রপ্রভাবে, $B = \sqrt{B_x^2 + B_y^2 + B_z^2}$ (42) পুনরায়, $\overrightarrow{A} \, \equilibrium B$ -এর মধ্যবর্তী কোণ α হলে

$$\overrightarrow{A} = \overrightarrow{B} = AB \cos \alpha$$

$$\cos \alpha = \frac{\overrightarrow{A} \cdot \overrightarrow{B}}{AB}$$
(43)

সমীকরণ (40), (41) এবং (42) হতে \overrightarrow{A} , \overrightarrow{B} , \overrightarrow{A} এবং \overrightarrow{B} -এর মান নির্ণয় করে সমীকরণ (43)-এর সাহায্যে $\cos \alpha$ -এর মান জেনে α -এর মান বের করা যায়।

এখন, $A \times B$, A এবং B-এর মান নির্ণয় করে সমীকরণ (46)-এর সাহায্যে $\sin lpha$ -এর মান জেনে lpha-এর মান বের করা যায়।

২৩

বিশেষ ক্ষেত্র Special cases

দুটি ভেষ্টর বা দিক রাশি পরস্পর সমান্তরাল এবং সমকোণী হতে পারে। কখন সমান্তরাল এবং কখন সমকোণী হবে. তা এখন আলোচনা করা হবে।

(ক) সমান্তরাল ভেষ্টর (Parallel vector) ঃ মনে করি \overrightarrow{A} এবং \overrightarrow{B} দুটি ভেষ্টর, এরা পরস্পরের সমান্তরাল হলে এদের মধ্যবর্তী কোণ শূন্য হবে অর্ধাৎ $\alpha = 0^{\circ}$

$$|\overrightarrow{A} \times \overrightarrow{B}| = AB \sin \alpha = 0$$

$$\Im \text{Torset}, \ \overrightarrow{A} \times \overrightarrow{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix} = 0$$

অর্থাৎ, যদি শূন্য ভেক্টর না হয়, তবে দুটি ভেক্টর রাশির ব্রুস গুণফল শূন্য হলে তারা পরস্পর সমান্তরাল হবে।

(খ) লম্দ্র ভেক্টর (Perpendicular vector) ঃ মনে করি \overrightarrow{A} এবং \overrightarrow{B} দুটি ভেক্টর। এরা পরস্পরের লম্ম হলে এদের মধ্যবর্তী কোণ 90° হবে অর্থাৎ, $\alpha = 90^\circ$ হবে।

$$\vec{A} \cdot \vec{B} = AB \cos \alpha = AB \cos 90^{\circ} = 0$$

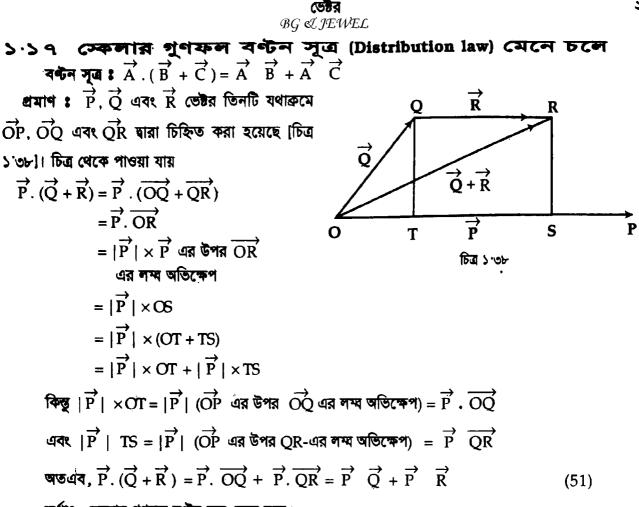
সূতরাং $\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z = 0$ (শ্ন্য) হবে ৷

অর্থাৎ, যদি শূন্য ভেক্টর না হয়, তবে দুটি ভেক্টর রাশির ডট গুণফল শূন্য হলে এরা পরস্পর লম্ব হবে ন

১১৬ স্কেলার গুণফল বিনিময় সূত্র মেনে চলে, কিন্তু ভেক্টর গুণফল তা মেনে চলে না

Dot product obeys commutative law, but cross product does not

 \vec{P} এবং \vec{Q} দুটি ভেষ্টর রাশি লই। তা হলে তাদের স্কেলার গুণফল $\vec{P} \cdot \vec{Q} = \vec{Q} \cdot \vec{P}$ ও ভেষ্টর গুণফল $\vec{P} \times \vec{Q} = -\vec{Q} \times \vec{P}$ । অতএব $\vec{P} \times \vec{Q}$ এবং $\vec{Q} \times \vec{P}$ -এর মান সমান হলেও তাদের দিক বিপরীত। অর্থাৎ $\vec{P} \times \vec{Q} \neq \vec{Q} \times \vec{P}$ ।

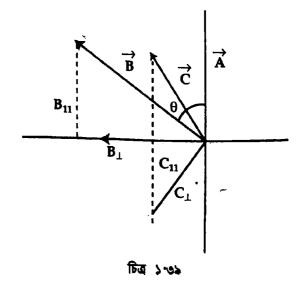

প্রমাণ ঃ পূর্বের বর্ণনা অনুসারে,
$$\overrightarrow{P}$$
 . \overrightarrow{Q} = PQ cos α (47)

আবার,
$$\vec{Q} = \vec{P} = QP \cos \alpha = PQ \cos \alpha$$
 (48)

উপরোক্ত দুটি সমীকরণ হতে প্রমাণিত হল যে, \overrightarrow{P} \overrightarrow{Q} = \overrightarrow{Q} \overrightarrow{P}

অর্থাৎ, কেন্দ্রার গৃণফল বিনিময় সূত্র মেনে চলে,
পুনরায়,
$$\overrightarrow{P} \times \overrightarrow{Q} = \widehat{\eta} PQ \sin \alpha$$
 (49)
এবং $\overrightarrow{Q} \times \overrightarrow{P} = - \widehat{\eta} PQ \sin \alpha$ (50)

 $\overrightarrow{P} \times \overrightarrow{Q} \neq \overrightarrow{Q} \times \overrightarrow{P}$, অর্থাৎ ভেন্তর গুণফল বিনিময় সূত্র মেনে চলে না ।


অর্ধাৎ, স্কেন্সার গুণফল বণ্টন সূত্র মেনে চলে।

১.১৮ ভেষ্টর গুণন বিনিময় সূত্র মেনে চলে

ৰণ্টন সূত্ৰ : $\overrightarrow{A} \times (\overrightarrow{B} + \overrightarrow{C}) = \overrightarrow{A} \times \overrightarrow{B} + \overrightarrow{A} \times \overrightarrow{C}$

প্রমাণ : ডেটর \overrightarrow{B} -কে দুটি উপাংশে বিভাজিত করি [চিত্র ১ ৩৯]। B_{11} উপাংশটি \overrightarrow{A} -এর সমান্তরালে এবং B_{\perp} উপাংশটি \overrightarrow{A} -এর অভিসম্ব বরাবর। তাহলে $\overrightarrow{B} = \overrightarrow{B}_{11} + \overrightarrow{B}_{\perp}$ । এখন \overrightarrow{A} ও \overrightarrow{B} -এর মধ্যবর্তী কোণ θ হলে $B_{\perp} = B \sin \theta$ । অতএব, $\overrightarrow{A} \times \overrightarrow{B}_{\perp}$ ভেটরের মান হবে $AB_{\perp} \sin \theta$ যা $\overrightarrow{A} \times \overrightarrow{B}$ -এর মানের সমান এবং $\overrightarrow{A} \times \overrightarrow{B}_{\perp}$ ভেটরের দিক ও $\overrightarrow{A} \times \overrightarrow{B}$ -এর দিক একই।

সুতরাং $\overrightarrow{A} \times \overrightarrow{B_{\perp}} = \overrightarrow{A} \times \overrightarrow{B}$ অনুরূপভাবে, \overrightarrow{C} -কে \overrightarrow{A} -এর সমান্তরাল ও অভিদন্দ বরাবর যথাক্রমে \overrightarrow{C}_{11} ও $\overrightarrow{C_{\perp}}$ উপাংশেঁ বিভাজিত করলে দেখান যায়, $\overrightarrow{A} \times \overrightarrow{C_{\perp}} = \overrightarrow{A} \times \overrightarrow{C}$ । বিভাজিত করলে দেখান যায়, $\overrightarrow{A} \times \overrightarrow{C_{\perp}} = \overrightarrow{A} \times \overrightarrow{C}$ । তেষ্টর যোগের উপাংশ সূত্রানুসারে আবার যেহেতু, $\overrightarrow{B} + \overrightarrow{C} = , \overrightarrow{B_{\perp}} + \overrightarrow{B}_{11} + \overrightarrow{C_{\perp}} + \overrightarrow{C}_{11}$, $= (\overrightarrow{B_{\perp}} + \overrightarrow{C_{\perp}}) + (\overrightarrow{B}_{11} + \overrightarrow{C}_{11})$ ঘতএব, $\overrightarrow{A} \times (\overrightarrow{B_{\perp}} + \overrightarrow{C}_{\perp}) = \overrightarrow{A} \times (\overrightarrow{B} + \overrightarrow{C})$ 'দ্র্যাধ্ববিজ্ঞান (১ম)- ৪

২৬

परेंधत. रुभ
धर्षम, B₁ धर्वर, C₁ (छ्छैंतर् म्र
$$\vec{A}$$
-ध्रे छेंभेत गण्द।
 $\vec{A} \times (\vec{B}_1 + \vec{C}_1) = \vec{A} \times \vec{B}_1 + \vec{A} \times \vec{C}_1$
जछध्वर, $\vec{A} \times (\vec{B} + \vec{C}) = \vec{A} \times \vec{B} + \vec{A} \times \vec{C}$ (ध्राप्तिछ)
(52)
5.>৯ कटदा कि धि धरा छिनी हे (छेंग्रे तोगि धरे m ७ n मूहि त्र्म्मां तागि दर्ग :
(5) $\vec{P} + \vec{Q} = \vec{Q} + \vec{P}$ [विनिम प्त पृ g]
(२) $(\vec{P} + \vec{Q}) + \vec{R} = \vec{P} + (\vec{Q} + \vec{R})$ [तराग पृ g]
(२) $(\vec{P} + \vec{Q}) + \vec{R} = \vec{P} + (\vec{Q} + \vec{R})$ [तराग पृ g]
(७) $\vec{m} \vec{P} = \vec{P} \vec{m}$ [विनिम प्त प्र g]
(७) $\vec{m} \vec{P} = \vec{P} \vec{m}$ [विनिम प्र प्र g]
(७) $\vec{m} (\vec{P}) = mn \vec{P}$ [तराग प्र g]
(७) $\vec{n} (\vec{P} + \vec{Q}) = n\vec{P} + n\vec{Q}$ [तर्धन प्र g]
(१) $\vec{n} (\vec{P} + \vec{Q}) = n\vec{P} + n\vec{Q}$ [वर्धन प्र g]
(१) $\vec{n} (\vec{P} + \vec{Q}) = n\vec{P} + n\vec{Q}$ [वर्धन प्र g]
(१) $\vec{P} \cdot (\vec{Q} + \vec{R}) = \vec{P} \cdot \vec{Q} + \vec{P} \vec{R} = \vec{Q} \cdot \vec{P} + \vec{R} \cdot \vec{P}$
(৮) $n (\vec{P} \cdot \vec{Q}) = (n \vec{P}) \cdot \vec{Q} = \vec{P} \cdot (n \vec{Q}) = (\vec{P} \cdot \vec{Q}) n$
(৯) $\vec{P} \times (\vec{Q} + \vec{R}) = \vec{P} \times \vec{Q} + \vec{P} \times \vec{R}$ [वर्धन प्र g]

(So)
$$m(\overrightarrow{P} \times \overrightarrow{Q}) = (m\overrightarrow{P}) \times \overrightarrow{Q} = \overrightarrow{P} \times (m\overrightarrow{Q}) = (\overrightarrow{P} \times \overrightarrow{Q})m$$

১.২০ স্কেলার রাশি ও ভেক্টর রাশির মধ্যে পার্থক্য Distinction between scalar quantity and vector quantity

	স্কেলার রাশি		ভেটর রাশি
51	যে রাশির শুধু মান আছে দিক নেই তাকে স্কেলার	51	যে রাশির মান ও দিক উভয়ই আছে তাকে ভেষ্টর
	বা অদিক রাশি বলে। যেমন দৈর্ঘ্য, ভর, আয়তন,		বা দিক রাশি বলে। যেমন সরণ, ত্বুরণ, বেগ, বল
1	দুতি, তাপমাত্রা, কাজ ইত্যাদি।		ইত্যাদি।
NoT	সাধারণ গাণিতিক নিয়মে স্কেলার রাশি যোগ,	રા	<u>সাধারণ গাণিতিক নিয়মে সাধারণত দুটি ভেক্টর</u>
	বিয়োগ বা <u>গণন ক</u> রা যায়।		রাশির যোগ, বিয়োগ বা গণন করা যায় না।
01	স্কেলার রাশি শুধু তার মানের পরিবর্তনে পরিবর্তিত	ঙা	ভেষ্টর রাশি তার মান অথবা দিক অথবা মান ও দিক
	হয়।		উভয়ের পরিবর্তনে পরিবর্তিত হয়।
81	দুটি স্কেলার রাশির কোন একটি শূন্য না হলে	81	দৃটি ভেটর রাশির কোন একটির মান শূন্য না হলেও
	এদের স্কেলার গুণফল কখনও শন্য হয় না।		এদের ভেষ্টর গণফল শ্না হতে পারে।
æ1	দুটি স্কেলার রাশির গুগনে সর্বদা একটি স্কেলার	¢	দুটি ভেষ্টর রাশির গুণফল একটি ভেষ্টর রাশি অথবা
	রাশি পাওয়া যায়।		একটি স্কেলার রাশি হতে পান্র।

ভেক্টর BG & JEWEL

১-২০ ভেষ্টর রাশির দুই প্রকার গুণনের মধ্যে পার্থক্য Distinction between two kinds of vector multiplication

ভেষ্টর রাশির স্কেলার ও ভেষ্টর গুণনের মধ্যে নিমলিখিত পার্থক্য করা যায়।

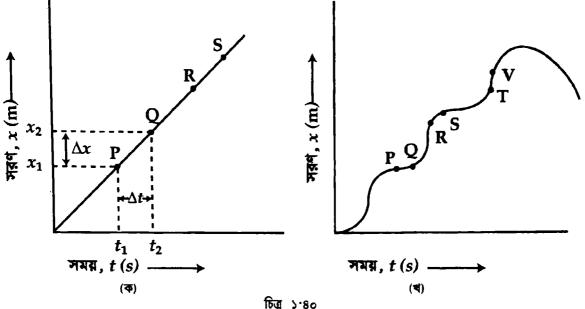
ভেটর গুণন	স্কেলার গুণন
১। দুটি ভেক্টর রাশির গুণনে গুণফল একটি ভেক্টর র হলে, এ গুণনকে রাশি দুটির ভেক্টর গুণন গুণফলকে রাশি দুটির ভেক্টর গুণফল বলে।	এবং রাশি হলে ঐ গুণনকে ভেক্টর দুটির স্কেলার গুণন বলে এবং গুণফলকে ভেক্টর দুটির স্কেলার গুণফল বলে।
 ২। P ও Q দুটি ভেক্টর রাশি হলে, P ×Q = PQ sin α এবং P ×Q = η PQ sin এখানে, α = রাশি দুটির মধ্যবর্তী কোণ এব = P ও Q যে তলে অবস্থিত তার অভিলম্বত একটি একক দিক রাশি। 	¢ η̂]
ত। দুটি ভেক্টরের ভেক্টর গুণফল বিনিময় সূত্র মানে যেমন, $\overrightarrow{P} \times \overrightarrow{Q} \neq \overrightarrow{Q} \times \overrightarrow{P}$	মেনে চলে। যেমন $\overrightarrow{P} \cdot \overrightarrow{Q} = \overrightarrow{Q} \cdot \overrightarrow{P}$
৪। দুটি ভেক্টর রাশির উভয়ের মান শূন্য না হা তাদের ভেক্টর গুণফল শূন্য হতে পারে যদি রাশি পরস্পরের সমান্তরাল হয়।	

১·২১ ভেক্টর ব্যবকলন বা ভেক্টর ডেরিভেটিভ Vector-differentiation or vector derivatives

ভেক্টর ব্যবকলন বা ভেক্টর ডেরিভেটিভ আলোচনার পূর্বে কয়েকটি প্রয়োজনীয় বিষয় জানা দরকার। ১(ক) ক্যালকুলাস (Calculus) : বিজ্ঞানের ভাষায় ক্যালকুলাস হল অবিরত পরিবর্তনশীল ক্ষুদ্রাতিক্ষুদ্র অংশ গণনার একটি শাস্ত্র। আধুনিক গণিতে এটি একটি গুরুত্বপূর্ণ শাখা।

ক্যালকুলাস দুভাগে বিভক্ত----(১) ব্যবকলন ক্যালকুলাস (Differential calculus), (২) সমাকলন ক্যালকুলাস (Integral calculus)

্র্স) অপারেটর (Operator) : অপারেটর একটি ইংরেজি শব্দ। এর অভিধানগত অর্থ হল 'চালক' বা 'সংঘটক' বা 'কার্যকারক'। কিন্তু বিজ্ঞানের ভাষায় বলা হবে— অপারেটর এক ধরনের প্রতীক বা সংকেত। এর নিজষ কোন মান নেই। যেমন বর্গ (²), ঘন (³), বর্গমূল ($\sqrt{$), sine, log ইত্যাদি। তবে এরা যখন অন্য কোন রাশির সাথে যুক্ত হয় তখন একটি নির্দিষ্ট মান বহন করে। উদাহরণম্বর্গ বলা যায় 3² = 9, 3³ = 27, $\sqrt{25} = 5$, sin 30° = 0.5 ইত্যাদি। আরও সোজা কথায় বলা যেতে পারে (10 ×) চিহ্নটির কোন মান হয় না। কিন্তু (10 × 5) চিহ্নটির মান = 50। এর অর্থ 10-কে 5 ঘারা গুণ করা। এখন যদি (10 ×) চিহ্নকৈ C ঘারা সূচিত করা হয়, তবে 10×5 = C5 হয়। অতএব C একটি অপারেটর।


সংজ্ঞা ঃ যে গাণিডিক চিহ্নের মারা একটি রাশিকে অন্য একটি রাশিতে রূপান্তর করা যায় বা কোন পরিবর্তনশীল রাশির ব্যাখ্যা দেয়া যায় তাকে অপারেটর বলে।

উল্লেখ্য, ব্যবকলন একটি অপারেটর। t-সাপেক্ষে এই অপারেটর $\frac{d}{dt}$, x-সাপেক্ষে $\frac{d}{dx}$, y-সাপেক্ষে $\frac{d}{dy}$ ইত্যাদি। সমাকলনও একটি অপারেটর। এর চিহ্ন \int অথবা Σ । ভেষ্টর ব্যবকলন অপারেটর $\overrightarrow{\nabla}$ চিহ্ন দ্বারা সূচিত করা হয় এবং এ চিহ্নকে 'ডেল' উচ্চারণ করা হয়। বিভিন্ন উপাৎশের সাহায্যে একে নিম্নলিখিতভাবে লেখা যায়,

$$\vec{\nabla} = \hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z}$$

থেহেতু স্কেন্সার এবং ডেষ্টর উভয় প্রকার রাশিকেই ব্যবকলন করা যায়, সেহেতু ব্যবকলন অপারেটর স্ক্র্লার এবং ভেষ্টর উভয় প্রকার রাশির ক্ষেত্রেই কার্যকর।

ভেটরের সময় সাপেক্ষে ব্যবকলন (Differentiation of vectors with respect to time) ঃ সময়ের সাথে কোন ভেটর রাশির পরিবর্তন হলে এ রাশির ব্যবকলন করাকে ভেটরের সময় সাপেক্ষে ব্যবকলন করা বুঝায়। যেমন গতিশীল বস্তুর অবস্থান ভেটর \vec{r} , সময় t-এর উপর নির্ভর করে। এখানে ভেটর \vec{r} সময় t-এর অপেক্ষক (function)।

ব্যাখ্যা : ধরা যাক, একটি বাস সমতল ও সোজা রাস্তার উপর দিয়ে উন্তর দিক থেকে দক্ষিণ দিকে ছুটে চলেছে। বাসটি ১ম সেকন্ডে 2m, ২য় সেকেন্ডে 4m, ৩য় সেকেন্ডে 6m এভাবে চলছে। তখন আমরা বলি যে বাসটির সরণ \overrightarrow{x} সবসময় সমান। এখন বাসটির সরণ \overrightarrow{x} -কে Y-জক্ষে এবং সময় t-কে X-জক্ষে স্থাপন করে লেখচিত্র জংকন করলে এটি সরলরেখা হবে [চিত্র ১.৪০(ক)]।

এই সরলরেখার যে কোন দুটি বিন্দু P ও Q হতে X ও Y-অক্ষের উপর লম্ম টেনে Δx ও Δt বের করতে পারি। Δx ও Δt -এর অনুপাত অর্ধাৎ ঢাল $\frac{\Delta x}{\Delta t}$ হবে বাসের বেগ। এই সরলরেখার ঢাল সর্বত্র একই মানের হবে; অর্ধাৎ বেগ সর্বত্র সমান। অর্ধাৎ যে কোন সময় ব্যবধানের জন্য (তা যতই ক্ষুদ্র হক) বেগ সমান হবে। এ অবস্থায় আমরা বলি যে, বাসটির গড় বেগ ও তাৎক্ষণিক বেগ সমান। কিন্তু বাসটি যদি বাঁকা ও উচ্-নিচ্ রাস্তায় চলে এবং ঘন ঘন বাসের বেগ কম-বেশি করতে হয়, তবে সরণ \vec{x} বনাম সময় t লেখচিত্রটি সরলরেখা না হয়ে বরুরেখা (curve) হবে [চিত্র ১.৪০ (খ)]। এক্ষেত্রে রেখার যে কোন দুটি বিন্দুর মধ্যবর্তী ঢাল অন্য বিন্দুন্বের ঢালের সমান হবে না। অর্ধাৎ ভিন্ন ভিন্ন বিন্দুতে $\frac{\Delta x}{\Delta t}$ ভিন্ন ভিন্ন হবে। এবার সময় ব্যবধান Δt যদি অত্যন্ত ক্ষুদ্র ধরা হয়, তবে সরপের পরিবর্তনের হার অর্ধাৎ বেগ ঐ স্থানের প্রকৃত বেগের প্রায় কাছাকাছি হবে। Δt যদি শুন্যের কাছাকাছি হয়,

তবে
$$\frac{\Delta x}{\Delta t}$$
 প্রকৃত বেগ হবে।
অর্থাৎ Limit $\frac{\Delta x}{\Delta t} = \vec{v}$, প্রকৃত বেগ
ক্যালকুলাসের ভাষায়,
Limit $\frac{\Delta x}{\Delta t} = \frac{d \vec{x}}{dt}$ লেখা হয়।
(53)

এটিই ভেষ্টরের সময় সাপেক্ষে ব্যবকলন। \overrightarrow{x} হল সরণ ভেষ্টর এবং $\frac{d}{dt}$ হল অপারেটর।

সমীকরণ (54)-এ সরণ \vec{x} ভেষ্টর রাশি এবং সময় t স্কেলার রাশি। সুতরাং, কোন স্কেলারের সাপেক্ষে ভেষ্টরের ব্যবকলন ভেষ্টর হয় (যেমন এক্ষেত্রে বেগ \overrightarrow{v})। স্কেলার রাশির ব্যবকলন স্কেলার রাশি হবে।

এখন \overrightarrow{x} -কে উপাহলে প্রকাশ করলে লেখা যায়,

 $\overrightarrow{x} = ix_1 + jy_1 + kz_1$, এখানে x_1, y_1, z_1 হল যথাক্রমে X, Y ও Z অক্ষের দিকে \overrightarrow{x} ভেষ্টরের উপাংশের মান। x_1, y_1, z_1 উপাংশগুলো সময় t-এর অপেক্ষক কিন্তু $\stackrel{\wedge}{i}, \stackrel{\wedge}{j}, \stackrel{\wedge}{k}$ ধ্রুবক এবং সময়ের সাপেক্ষে এদের কোন পরিবর্তন নেই ; অর্ধাৎ এদের পরিবর্তনের হার শূন্য। অতএব x-কে উপাংশে প্রকাশ করলে এর ব্যবকলন হবে,

$$\frac{d\vec{x}}{dt} = \hat{i}\frac{dx_1}{dt} + \hat{j}\frac{dy_1}{dt} + \hat{k}\frac{dz_1}{dt}$$
(55)

অবস্থান ভেটর হতৈ বেগ ও তুরণ প্রতিগাদন ঃ

ধরা যাক,
$$\overrightarrow{r}$$
 একটি অবস্থান ভেট্টর।
 $\overrightarrow{r} = \hat{i}x + \hat{j}y + \hat{k}z$
অতি ক্ষুদ্র সময়ে \overrightarrow{r} -এর পরিবর্তনের হারকে বেগ \overrightarrow{v} বলা হয়।
সুতরাং, $\overrightarrow{v} = \frac{d\overrightarrow{r}}{dt} = \hat{i}\frac{dx}{dt} + \hat{j}\frac{dy}{dt} + \hat{k}\frac{dz}{dt}$
(56)
আবার, অতি ক্ষুদ্র সময়ে বেগ \overrightarrow{v} -এব পরিবর্তনের হার হল তরণ \overrightarrow{a}

 \mathbf{T}

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d}{dt} \left(\frac{dx}{dt}\right)^{\hat{i}} + \frac{d}{dt} \left(\frac{dy}{dt}\right)^{\hat{j}} + \frac{d}{dt} \left(\frac{dz}{dt}\right)^{\hat{k}}$$
$$= \frac{d^2x}{dt^2} \hat{i} + \frac{d^2y}{dt^2} \hat{j} + \frac{d^2z}{dt^2} \hat{k}$$
(57)

কোন স্কেলার রাশিকে ব্যবকলন করার সাধারণ নিয়ম নিমন্ত্রণ ঃ

(ক) প্রথমে চল রাশিটির সহগ সংব্যাকে যাত যারা গুণন করতে হবে।

(খ) পরে চল রাশির মাতের মান হতে '1' বিয়োগ করতে হবে।

উদাহরণ ঃ মনে করি, দূরত্ব $s=16t^2$ । এখানে সহগ 16, t চল রাশি এবং 2 হল ঘাত। উপরের নিয়ম জনুসারে প্রথমে সহগ 16-কে ঘাত 2 ছারা গুণন করে পাওয়া যাবে 32 এবং চল রাশির ঘাত 2 হতে 1 বিয়োগ করলে পাওয়া যাবে 1।

$$\frac{ds}{dt} = v = 32t$$

১.২২ ভেষ্টরের সমাকলন Integration of vectors

ভেষ্টরের সাধারণ সমাকলন স্কেলার রাশির মতই হয়। মনে করি

$$\vec{A}(t) = \hat{i} A_x(t) + \hat{j} A_y(t) + \hat{k} A_z(t)$$
 ভেট্টরটি একটি মাত্র স্কেলার চলরাশি t-এর কলন তাহলে

$$\int \vec{A}(t) dt = \hat{i} \int A_x(t) dt + \hat{j} \int A_y(t) dt + \hat{k} \int A_z(t) dt$$
(58)

ভেটর রাশি : যে সব ভৌত রাশির দিক ও মান উভয়ই আছে তাদেরকে ভেট্টর রাশি বলা হয়। স্কেলার রাশি ঃ যে সব ভৌত রাশির মান আছে কিন্তু দিক নেই তাদেরকে স্কেলার রাশি বলা হয়। একক ভেটর রাশি ঃ যে ভেটর রাশির মান এক একক তাকে একক ভেটর রাশি বলে। লখি ও অংশক বা উপাংশ ঃ দুই বা ততোধিক ভেষ্টর রাশির যোগফলকে লখি এবং রাশিগলোকে লখির অংশক বা

স্মরণিকা

dx (my) = m dx	(11)
$\frac{d}{dx}(y+z) = \frac{dy}{dx} + \frac{dz}{dx}$	(iii)
$\frac{d}{dx}(x^n)=nx^{n-1}$	(iv)
$\frac{d}{dx}(yz) = y\frac{dz}{dx} + z\frac{dy}{dx}$	(v)
$\frac{d}{dx}(\sin x) = \cos x$	(vi)
$\frac{d}{dx}(\cos x) = -\sin x$	(vii)
$\frac{d}{dx}(\sin mx) = m \cos mx$	(viii)
$\frac{d}{dx}\left(\cos mx\right)=-m\sin mx$	(ix)
$\frac{d}{dx}(\tan x) = \sec^2 x$	(x)
$\frac{d}{dx} (\log_e x) = \frac{1}{x}$	(xi)
$\frac{d}{dx}(e^{nx})=ne^{nx}$	(xii)

$$\frac{d}{dx}(my) = m\frac{dy}{dx}$$
(ii)

$$\frac{d}{dx} = 1 \tag{1}$$

$$\frac{d}{dx} (my) = m \frac{dy}{dx} \tag{1}$$

1:1

মনে করি, y এবং z হল x-এর অপেক্ষক এবং m এবং n হল ধ্রুব সংখ্যা। অতএব, dx = 1

$$\int_{a}^{b} \overrightarrow{A}(t) dt = \int_{a}^{b} \frac{d\overrightarrow{B}(t)dt}{dt}$$

$$= \int_{a}^{b} d\overrightarrow{B}(t)$$

$$= [\overrightarrow{B}(t) + \overrightarrow{C}]_{a}^{b}$$

$$= \overrightarrow{B}(b) - \overrightarrow{B}(a)$$
(59)
ব্যবকলন সংক্রান্ত কয়েকটি সূত্র :

এখানে
$$\overrightarrow{\mathrm{C}}$$
 হল t নিরপেক্ষ ষৈচ্ছিক কোন ভেষ্টর

এর্প ক্ষেত্রে t = a হতে t = b সীমার মধ্যে $\overrightarrow{A}(t)$ - এর নিচ্চিত সমাকলন (Definite integral) হবে

۷

বইঘর কম একে $\overrightarrow{A}(t)$ -এর অনিচ্চিত সমাকলন (Indefinite integral) বলে। যদি এমন কোন ভেষ্টর $\overrightarrow{B}(t)$ থাকে t সাপেক্ষে যার অবকল গুণাজ্ঞ $\overrightarrow{A}(t)$ -এর সমান অর্থাৎ যদি $\overrightarrow{A}(t) = d \overrightarrow{B}(t) / dt$ হয়, তা হলে $\int \vec{A}(t) dt = \vec{B}(t) + \vec{C}$ হব।

উচ্চ মাধ্যমিক পদার্ধবিজ্ঞান

ভবস্থান ভেটর ঃ কোন বিন্দুর সাপেক্ষে অন্য কোন বিন্দুর অবস্থান যে ভেটরের সাহায্যে নির্ণয় করা হয় তাকে ভবস্থান ভেটর বলে।

নাল বা শূন্য ভেটরে ঃ যে ভেটর রাশির মান শূন্য তাকে নাল বা শূন্য ভেটর বলে। শূন্য ভেটরের পাদবিন্দু ও শীর্মবিন্দু একই।

জায়তাকার বা আয়ত একক ডেট্টর ঃ ত্রিমাত্রিক স্থানাল্ফ ব্যবস্থায় ধনাত্মক X, Y এবং Z অক্ষের দিকে ব্যবহুত যথাক্রমে \hat{i}, \hat{j} এবং \hat{k} একক ডেষ্টরগুলোকে আয়তাকার বা আয়ত একক ডেষ্টর বলে।

সম-ভেষ্টর বা সমান ভেষ্টর ঃ একই দিকে ব্রিয়ারত একাধিক সমজাতীয় ভেষ্টরের মান সমান হলে তাদেরকে সম-ভেষ্টর বা সমান ভেষ্টর বলে।

বিপরীত বা ৰণ ভেটর : বিপরীত দিকে ক্রিয়ারত দুটি সুমজাতীয় ভেটরের মান সমান হলে তাদেরকে একে অপরের বিপরীত বা ঝণ ভেটর বলে।

ষাধীন ভেক্টর ঃ কোন ভেক্টর রাশির পাদবিন্দু কোথায় হবে তা যদি ইচ্ছেমত ঠিক করা যায়, তবে ঐ ভেক্টরকে ষাধীন ভেক্টর বন্দে।

সীমাবন্ধ ভেটর ঃ যদি কোন নির্দিষ্ট বিন্দুকে ভেষ্টরের পাদবিন্দু হিসেবে ঠিক করে রাখা হয়, তবে তাকে সীমাবন্ধ ভেষ্টর বলে।

সদৃশ ভের্টর : সমজাতীয় অসম মানের দুটি ভের্টর যদি একই দিকে ক্রিয়া করে তবে তাদেরকে সদৃশ ভের্টর বলে।

বিশ্রতীপ ভেষ্টর : দুটি সমান্তরাল ভেষ্টরের একটির মান অপরটির বিপ্রতীপ হলে তাদেরকে বিপ্রতীপ ভেষ্টর বলে।

সমরেশ ডেট্টর : দুই বা ততোধিক ডেষ্টর এমন হয় যে তারা একই রেখায় বা সমান্তরালে ক্রিয়া করে, তবে তাদেরকে সমরেখ ডেষ্টর বলে।

সমতলীয় ভেটর ঃ দুই বা ততোধিক ভেটর একই তলে অবস্থান করলে তাদেরকে সমতলীয় ভেট্টর বলে।

ভেটর রাশির বিভাজন বা বিশ্লেষণ ও উপাংশ : একটি ভেষ্টর রাশিকে দুই বা তৃতোধিক ভেষ্টর রাশিতে বিভক্ত করার প্রক্রিয়াকে ভেষ্টর রাশির বিভাজন বা বিশ্লেষণ বলে। এই বিভক্ত ভেষ্টর রাশিগুলোর প্রত্যেকটিকে মূল ভেষ্টর রাশির এক একটি উপাংশ বা অংশক বলে।

ত্রিভূজ সূত্র ঃ দুটি ভেষ্টর কোন ত্রিভূজের সন্নিহিত বাহু দারা একই ব্রুমে মানে ও দিকে সূচিতৃ করা হলে ত্রিভূজের তৃতীয় বাহুটি বিপরীত ব্রুমে ভেষ্টর দুটির লম্বি নির্দেশ করে।

ভেষ্টর যোগের সামস্তরিক সূত্র ঃ কোন সামস্তরিকের একই বিন্দু হতে অঙ্কিত সন্নিহিত বাহু দুটি যদি কোন কণার উপরে একই সময়ে ক্রিয়ারত দুটি ভেষ্টর রাশির মান ও দিক নির্দেশ করে তা হলে ঐ বিন্দু হতে অঙ্কিত সামন্তরিকের কর্ণই এদের লম্বির মান ও দিক নির্দেশ করবে। একে ভেষ্টর রাশির যোজনের সামস্তরিক সূত্র বলে।

স্কেলার গুণন বা ডট গুণন : দুটি ভেষ্টর রাশির স্কেলার গুণফল একটি স্কেলার রাশি হবে যার মান রাশি দুটির মান্দের গুণফলের সাথে তাদের মধ্যরর্তী কোণের কোসাইনের (cosine) গুণফলের সমান।

তেষ্টর বা রুস গুণন ঃ দুটি ভেষ্টর রাশির গুণফল যদি একটি ভেষ্টর রাশি হয় তবে ঐ গুণনকে ভেষ্টর গুণন বা রুস গুণুন বলে। এ ভেষ্টরের গুণফলের মান ভেষ্টর রাশি দুটির মান এবং তাদের মধ্যবর্তী কোণের সাইন (sine)-এর গুণফলের সমান। ভেষ্টর গুণফলের দিক ডানহাতি স্কু নিয়মে নির্ণয় করা হয়।

জপারেটর ঃ যে গাণিতিক চিহ্নের দ্বারা একটি রাশিকে জন্য একটি রাশিতে রূপান্তর করা যায় বা কোন পরিবর্তনশীল রাশির ব্যাখ্যা দেওয়া যায় তাকে জপারেটর বলে।

প্রয়োজনীয় সমীকরণ

দুটি তেষ্টরের যোজন ঃ

$$\overrightarrow{R} = \overrightarrow{P} + \overrightarrow{Q} \qquad \dots \qquad (1)$$

$$\overrightarrow{| \mathbf{R} |} = \mathbf{R} = \sqrt{\mathbf{P}^2 + \mathbf{Q}^2 + 2\mathbf{P}\mathbf{Q}\cos\alpha} \dots$$
(2)

$$\tan \theta = \frac{Q \sin \alpha}{(P + Q \cos \alpha)}$$
(3)

একক ভেটর = তেটর ; বা
$$\hat{a} = \frac{\overrightarrow{A}}{\overrightarrow{A}}$$
 (4)

উচ্চ মাধ্যমিক পদার্থবিজ্ঞান

$$\hat{a} = \frac{x\hat{i} + y\hat{j} + z\hat{k}}{\sqrt{x^2 + y^2 + z^2}} \qquad (5)$$

একটি ভৈটরকে উপাংশে প্রকাশ :
$$\vec{r} = x \hat{i} + y \hat{j} + z \hat{k}$$
 (6)

বা,
$$\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$$

ভেটরের মান :
$$r = \sqrt{x^2 + y^2 + z^2}$$
... (7)

বা,
$$A = \sqrt{A_x^2 + A_y^2 + A_z^2}$$

ভেটর বিভাজন ঃ $\frac{P}{\sin \alpha} = \frac{Q}{\sin \alpha} = \frac{R}{\sin (\alpha + \beta)}$ (8)

नम्प्त উপাংশে বিভাজন :
$$P = R \sin \alpha \, a \, a \, q \, Q = R \cos \alpha \dots \dots \dots \dots$$
 (9)

ভেতন যোগের ডপাংশ সূত্র :
$$A + B = (A_x + B_x) i + (A_y + B_y) j + (A_z + B_z) k$$
 (10)
ভেতন বিয়োগের উপাংশ সূত্র: $\overrightarrow{A} - \overrightarrow{B} = (A_x - B_x) i + (A_y - B_y) j + (A_z - B_z) k$... (11)

দুটি ভেষ্টরের স্কেলার গুণন :

$$\overrightarrow{P} \cdot \overrightarrow{Q} = |\overrightarrow{P}| \cdot \overrightarrow{Q}| \cos \alpha \quad \dots \tag{12}$$

$$\overrightarrow{A} \quad \overrightarrow{B} = A_x B_x + A_y B_y + A_z B_z$$
(13)

$$\cos \alpha = \frac{\overrightarrow{P} \cdot \overrightarrow{Q}}{PQ}$$
(14)

দুটি ভেক্টরের ভেক্টর গুণন ঃ

$$\overrightarrow{P} \times \overrightarrow{Q} = \widehat{\eta} | \overrightarrow{P} | \overrightarrow{Q} | \sin \alpha (\widehat{\eta} \text{ upper constraints} (\widehat{\eta} \text{ upper co$$

$$\int \underbrace{\hat{i} \cdot \hat{i}}_{k} = \underbrace{\hat{j} \cdot \hat{j}}_{k} = \underbrace{\hat{k} \cdot \hat{k}}_{k} = 1$$
(17)

$$\int \left(\begin{array}{c} i \cdot j = j \cdot k = k \cdot i = 0 \\ i \cdot \hat{i} = i \cdot \hat{j} = \hat{k} \cdot \hat{k} = 0 \end{array} \right)$$
(18)
(19)

$$\underbrace{\hat{i} \times \hat{j}}_{i} = \hat{k} : \hat{j} \times \hat{k} = \hat{i} \quad \hat{k} \times \hat{i} = \hat{j}$$
(20)

ভেটর ব্যবকলন

$$\frac{d\vec{r}}{dt} = \frac{dx}{dt} \hat{i} + \frac{dy}{dt} \hat{j} + \frac{d\vec{y}}{dt} \hat{k}$$
(21)

৬২

00

নিশির মান ও দিক নিণয় কর। মনে করি লব্দি = R এখানে, P = 5.একক Q = 5 একক মধ্যবর্তী কোণ, α = 120° আমরা পাই, $R = \sqrt{P^2 + Q^2 + 2PQ \cos \alpha}$ সমীকরণ (1) হতে আমরা পাই, $R = \sqrt{(5)^2 + (5)^2 + 2 \times 5 \times 5 \times \cos 120^\circ}$ $=\sqrt{25+25+50\times(-1/2)}$ = √50 - 25 = √25 = 5 একক। জাবার, $\tan \theta = \frac{Q \sin \alpha}{P + Q \cos \alpha} = \frac{5 \sin 120^{\circ}}{5 + 5 \cos 120^{\circ}}$ যেখানে θ হচ্ছে ভেষ্টর \overrightarrow{P} এবং লম্বি \overrightarrow{R} -এর মধ্যবর্তী কোণ $= \frac{5 \times \frac{\sqrt{3}}{2}}{5 - \frac{5}{2}} \qquad \begin{bmatrix} \sin 120^\circ = \frac{\sqrt{3}}{2} \\ \cos 120^\circ = -\frac{1}{2} \end{bmatrix}$ $\forall \mathbf{n}, \, \tan \theta = \frac{5 \times \sqrt{3} \times 2}{5 \times 2} = \sqrt{3} = \tan 60^{\circ} \qquad \theta = 60^{\circ}$ অর্থাৎস্বন্ধির মান 5 একক এবং যা ভেষ্টর P এর সাথে 60° কোণ উৎপন্ন করে। 🗙 দুটি ভেক্টর রাশির বৃহত্তর লম্বি 28 একক ও ক্ষুদ্রতর লম্বি 4 একক। রাশি দুটি পরস্পরের সাথে 90° কোণে কোন একটি কণার উপর ক্রিয়া করন। লন্দির মান নির্ণয় কর। দুটি ভেষ্টর রাশি P ও Q একই দিকে ক্রিয়া করলে তাদের লম্বি বৃহত্তর হয় ও পরস্পর বিপরীত দিকে ক্রিয়া করলে তাদের লব্ধি ক্ষুদ্রতর হয়। বৃহত্তর লম্বি = P + Q = 28 (1)এবং ক্ষুদ্রতর লব্দি = P-Q = 4 (2) সমীকরণ (1) ও (2)-এর যোজন ও বিয়োজন হতে পাওয়া যায়, P = 16 একক ও $\dot{Q} = 12$ একক। আবার, আমরা পাই, R = $\sqrt{P^2 + Q^2 + 2PQ \cos \alpha}$ এখানে, α = 90° $R = \sqrt{16^2 + 12^2 + 2 \times 16 \times 12 \times \cos 90^\circ}$ = √256 + 144 + 0 = √400 = 20 এकक ্র্য। কোন একটি নদীতে একটি দাঁড়ের নৌকার বেগ স্রোতের অনুকৃলে ঘণ্টায় 18 km এবং প্রতিকৃলে ঘন্টায় 6 km। নৌকাটিকে কোন্ দিকে চালনা করলে তা সোজ্ঞা অপর পাড়ে পৌছবে এবং নৌকাটি কত বেগে চলবে? ধরা যাক স্রোতের বেগ = u এবং দাঁড়ের বেগ = v। তা হলে u + v = 18 এবং v - u = 6. সমীকরণ দুটির যোজন ও বিয়োজনে পাওয়া যায়, $v = 12 \text{ km h}^{-1}$ and $u = 6 \text{ km h}^{-1}$ ধরা যাক স্রোতের সাথে α কোণ করে নৌকাটিকে চালনা করলে তা R বেগে চলে সোজা অপর পাড়ে পৌছবে। তা হলে স্রোতের গতি বরাবর R-এর অংশ,

চিত্র ১'৪১

বা, $\alpha = 120^{\circ}$

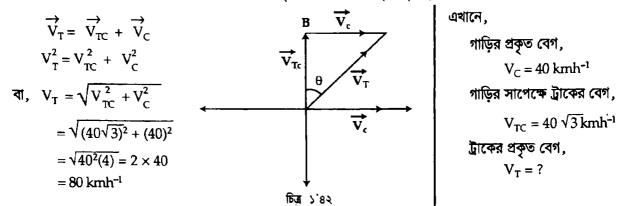
 $\cos \alpha = -\frac{u}{v} = -\frac{6}{12} = -\frac{1}{2} = \cos 120^{\circ}$

 $R\cos 90^\circ = 0 = u\cos 0^\circ + v\cos \alpha$

$$R^2 = p^2 + Q^2 + 2pQ crsd$$

 $P = 6, Q = 12, x = 126$

উচ্চ মাধ্যমিক পদার্থবিজ্ঞান


বইঘর কম

আবার, স্রোতের গতিমুখের লম্দ দিক বরাবর R-এর অংশ, $R \sin 90^\circ = R = u \sin 0^\circ + v \sin \alpha$

$$R = v \sin \alpha = v \sqrt{1 - \cos^2 \alpha} = 12 \sqrt{1 - (-\frac{1}{2})^2}$$

 $= 6\sqrt{3} = 10^{-3}$ km h⁻¹ ৪। ঘণ্টায় 40 km বেগে পূর্বদির্বে টলমান একটি গাড়ির চালক ঘণ্টায় 40 $\sqrt{3}$ km বেগে একটি ট্রাককে উত্তর দিকে চলতে দেখল। (ক) ট্রাকটি কোন্ দিকে চলছে এবং (খ) ট্রাকটির প্রকৃত বেগ কত? **b.** (1. ২০০২)

মনে করি ট্রাকটি উত্তর দিকের সাথে 🖯 কোণে পূর্বদিকে চলছে। ত্রিভুচ্চ সূত্রানুসারে আমরা পাই,

জাবার,
$$\tan \theta = \frac{V_C}{V_{TC}} = \frac{40}{40\sqrt{3}}$$
$$= \frac{1}{\sqrt{3}} = \tan 30^\circ$$
$$\theta = 30^\circ$$

উত্তর $V_{\rm T} = 80 \, \rm kmh^{-1}$ এবং $\theta = 30^{\circ}$

 $= \sqrt{1+49+36} = \sqrt{86}$

🗶 | P ও Q দুটি বিন্দুর স্থানাক্ষ যথাক্রমে (3,—4, 5) ও (2, 3, —1)। (i) এদের অবস্থান ভেক্টর নির্ণয় কর ; (ii) PO ভেট্টর রাশি এবং এর মান বের কর।

(i) মনে করি P বিন্দুর অবস্থান ভেষ্টর $\overrightarrow{r_1}$ এবং Q বিন্দুর অবস্থান ভেষ্টর $\overrightarrow{r_2}$ । আমরা জানি, $\vec{r_1} = x_1 \hat{i} + y_1 \hat{j} + z_1 \hat{k}$ (1)এখানে $x_1 = 3$, $y_1 = -4$ ও $z_1 = 5$:. সমীকরণ (1) হতে পাই, $\vec{r_1} = 3\hat{i} - 4\hat{j} + 5\hat{k}$ $\overrightarrow{\mathbf{uiqis}}, \overrightarrow{r_2} = x_2 \overrightarrow{i} + y_2 \overrightarrow{j} + z_2 \overrightarrow{k}$ (2) এখানে, $x_2 = 2$, $y_2 = 3$ ଓ $z_2 = -1$ সমীকরণ (2) হতে পাই, $\vec{r_2} = 2\hat{i} + 3\hat{j} - \hat{k}$ (ii) $\overrightarrow{PQ} = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k}$ $=(2-3)\hat{i}+\{3-(-4)\}\hat{j}+(-1-5)\hat{k}$ $=-\hat{i}+7\hat{j}-6\hat{k}$ $|\overrightarrow{PO}| = \sqrt{(-1)^2 + (7)^2 + (-6)^2}$

11

্৩8

ভেন্টর BG & JEWEL $\vec{A} = 3\hat{i} - 2\hat{j} + 6\hat{k}$ ভেষ্টর রাশিটির মান এবং \vec{A} -এর দিকে একক ভেষ্টর নির্ণয় কর। আমরা জানি, $\overrightarrow{A} = A_x \overrightarrow{i} + A_y \overrightarrow{j} + A_z \overrightarrow{k}$ হলে, এর মান $A = \sqrt{A_{1}^{2} + A_{2}^{2} + A_{2}^{2}}$ প্রদন্ত দিক রাশিটির মান A = $\sqrt{(3)^2 + (-2)^2 + (6)^2} = \sqrt{49} = 7$ ধরা যাক, A এর দিকে একক ভেষ্টর a $\hat{a} = \frac{\overrightarrow{A}}{A} = \frac{3\hat{i} - 2\hat{j} + 6\hat{k}}{7} = \frac{3\hat{i} - 2\hat{j} + 6\hat{k}}{7} = \frac{3\hat{i} - 2\hat{j} + 6\hat{k}}{7}$ ৭। $\vec{A} = 8\hat{i} - 4\hat{j}$ এবং $\vec{B} = \hat{j} - 4\hat{i}$ দুটি ভেট্টর দেয়া আছে। (ক) \overrightarrow{A} -এর মান নির্ণয় কর। (খ) \overrightarrow{B} -এর মান নির্ণয় কর। (গ) $\overrightarrow{A} + \overrightarrow{B}$ -এর মান নির্ণয় কর। (\mathbf{a}) $\overrightarrow{\mathbf{A}} = \overrightarrow{\mathbf{B}}$ -এর মান নির্ণয় কর। (\mathbf{s}) $\overrightarrow{\mathbf{A}}$. $\overrightarrow{\mathbf{B}}$ -এর মান নির্ণয় কর (b) $\overrightarrow{A} \times \overrightarrow{B}$ -এর মান নির্ণয় কর (ক) \overrightarrow{A} -এর মান $|\overrightarrow{A}| = \sqrt{A_x^2 + A_y^2}$ = $\sqrt{8^2 + (-4)^2}$ এখাঁনে, $A_x = 8$, $A_y = -4$ $= \sqrt{80}$ $= 4\sqrt{5}$ \vec{B} -এর মান $|\vec{B}| = \sqrt{B_x^2 + B_y^2}$ = $\sqrt{(-4)^2 + (1)^2}$ = $\sqrt{17}$ এখানে, $B_x = -4, B_y = 1$ (귁) (1) $(\vec{A} + \vec{B}) = 8\hat{i} - 4\hat{j} + \hat{j} - 4\hat{i} = 4\hat{i} - 3\hat{j}$ (11) $(\vec{A} + \vec{B}) = 8\hat{i} - 4\hat{j} + \hat{j} - 4\hat{i} = 4\hat{i} - 3\hat{j}$ $|\vec{A} + \vec{B}| = \sqrt{(4)^2 + (-3)^2} = 5$ এখানে, $A_x = 12$, $A_y = -5$ $(\overline{\mathbf{v}}) \stackrel{\rightarrow}{(\overline{\mathbf{A}} - \overline{\mathbf{B}})} = 8\hat{i} - 4\hat{i} - (\hat{j} - 4\hat{i})$ $= 8\hat{i} - 4\hat{j} - \hat{j} + 4\hat{i} = 12\hat{i} - 5\hat{j}$ $|\vec{A} - \vec{B}| = \sqrt{A_x^2 + A_y^2} = \sqrt{(12)^2 + (-5)^2} = \sqrt{169} = 13$ (3) $|\overrightarrow{A}, \overrightarrow{B}| = A_x B_x + A_y B_y$ $= 8 \times (-4) + (-4) \times 1 = -32 - 4 = -36$ $\overrightarrow{\mathbf{B}} \stackrel{\rightarrow}{\mathbf{A}} \times \overrightarrow{\mathbf{B}} = (8 \ \hat{i} \ -4 \ \hat{j}) \times (\hat{j} \ -4 \ \hat{i})$ $= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 8 & -4 & 0 \\ -4 & 1 & 0 \end{vmatrix}$ $= i(0) + j(0) + \hat{k}(8 - 16) = -8\hat{k}$ $|\overrightarrow{A} \times \overrightarrow{B}| = \sqrt{(-8)^2} = \sqrt{64} = 8$

00

্বহঘর.কম । যদি $\vec{A} = A_x \hat{i} + A_z \hat{j} + A_z \hat{k}$ এবং $\vec{B} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k}$ হয় তবে দেখাও যে, $\overrightarrow{A}, \overrightarrow{B} = A_x B_x + A_y B_y + A_z B_z$ [4. (41. ২০০৫, ২০০১; 51. (41. ২০০৪, ২০০০; 5. (41. ২০০১] $\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}} = (\mathbf{A}_x i + \mathbf{A}_y j + \mathbf{A}_z k) \cdot (\mathbf{B}_x i + \mathbf{B}_y j + \mathbf{B}_z k)$ $= A_x B_x i \hat{i} + A_x B_y \hat{i} \hat{j} + A_x B_z \hat{i} \hat{k} + A_y B_x \hat{j} \hat{i} + A_y B_y \hat{j} \hat{j} + A_y B_z \hat{j} \hat{k} + A_z B_x \hat{k} \hat{i}$ + $A_z B_v \dot{k} \dot{j} + A_z B_z \dot{k} \dot{k}$ $+ A_z B_y \hat{k} \hat{j} + A_z B_z \hat{k} \hat{k}$ $= A_x B_x + A_y B_y + A_z B_z \text{ (211)}$ $\vec{A} = \hat{i} + \hat{j} + \hat{k}$ এবং $\vec{B} = 3\hat{i} + 3\hat{j} + 3\hat{k}$ দুটি ভেক্টর রাশি। দেখাও যে, এরা পরস্পর সমান্তরাল। আমরা জানি $\overrightarrow{A} imes \overrightarrow{B} = 0$ হলে ভেষ্টর রাশি দুটি পরস্পর সমান্তরাল হবে। প্রশানুযায়ী $\overrightarrow{A} \times \overrightarrow{B} = \eta AB \sin \alpha = 0$ হতে হবে। এখানে, $\overrightarrow{A} \times \overrightarrow{B}$ = $\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 3 & 3 & 3 \end{vmatrix}$ = $\hat{i}(3-3) + \hat{j}(3-3) + \hat{k}(3-3)$ = 0 . $\therefore \vec{A} \times \vec{B} = \hat{\eta} |\vec{A}| |\vec{B}| \sin \alpha = 0$ $\vec{A} \times \vec{B} = \hat{\eta} |\vec{A}| |\vec{B}| \sin \alpha = 0$ $\vec{A} \times \vec{B} = \hat{\eta} |\vec{A}| |\vec{B}| \sin \alpha = 0$ $\sin \alpha = 0 = \sin 0^{\circ}$ $\alpha = 0^{\circ} \text{ wave, } \vec{A} \text{ uave, } \vec{B} \text{ cossta and } \vec{\mu} = 0$ $\vec{A} = 0^{\circ} \text{ wave, } \vec{A} \text{ uave, } \vec{B} \text{ cossta and } \vec{\mu} = 0$ $\vec{A} = 0^{\circ} \text{ wave, } \vec{A} \text{ uave, } \vec{B} \text{ cossta and } \vec{\mu} = 0$ $\vec{A} = 0^{\circ} \text{ wave, } \vec{A} \text{ uave, } \vec{B} \text{ cossta and } \vec{\mu} = 0$ $\vec{A} = 0^{\circ} \text{ wave, } \vec{A} \text{ uave, } \vec{B} \text{ cossta and } \vec{\mu} = 0$ $\vec{A} = 0^{\circ} \text{ wave, } \vec{A} \text{ uave, } \vec{B} \text{ cossta and } \vec{\mu} = 0$ $\vec{A} = 0^{\circ} \text{ wave, } \vec{A} \text{ uave, } \vec{B} \text{ cossta and } \vec{\mu} = 0$ ও B নির্ণয় কর এবং এদের স্কেলার গুণন নির্ণয় কর। $(\overrightarrow{A} + \overrightarrow{B}) + (\overrightarrow{A} - \overrightarrow{B}) = (12i - 4j + 8k) + (-6i + 12j + 10k)$ $\overrightarrow{a}, \quad 2\overrightarrow{A} = 12i - 4j + 8k - 6i + 12j + 10k = 6i + 8j + 18k$ $\overrightarrow{A} = 3i + 4j + 9k$ भूनताय, $(\overrightarrow{A} + \overrightarrow{B}) - (\overrightarrow{A} - \overrightarrow{B}) = (12i - 4j + 8k) - (-6i + 12j + 10k)$ $\vec{2B} = 12\hat{i} - 4\hat{j} + 8\hat{k} + 6\hat{i} - 12\hat{j} - 10\hat{k}$ বা. $= 18\hat{i} - 16\hat{j} - 2\hat{k}$ $\therefore \stackrel{\rightarrow}{B} = 9\hat{i} - 8\hat{j} - \hat{k}$ $\overrightarrow{A} \cdot \overrightarrow{B} = (3\hat{i} + 4\hat{j} + 9\hat{k}) \cdot (9\hat{i} - 8\hat{j} - \hat{k})$ $= 27\hat{i}\cdot\hat{i} - 32\hat{i}\cdot\hat{i} - 9\hat{k}\cdot\hat{k}$ = 27 - 32 - 9 = 27 - 41 = -14 $\overrightarrow{A} = 9i + j - 6k \otimes \overrightarrow{B} = 4i - 6j + 5k$ ভেটর দুটির স্কেলার গুণফল নির্ণয় কর এবং দেখাও যে ভেটরম্বয় পরস্পরের উপর লম্ব। রা. বো. ২০০১] আমরা জ্ঞানি, \overrightarrow{A} , \overrightarrow{B} = 0 হলে ভেষ্টর রাশি দুটি পরস্পরের উপর লম্ব হবে। \overrightarrow{A} সম্প্রমানযায়ী \overrightarrow{A} \overrightarrow{B} = \overrightarrow{A} \overrightarrow{B} cos $\overrightarrow{\theta}$ = 0 হতে হবে।

$$\overrightarrow{A} \cdot \overrightarrow{B} = A_x B_x + A_y B_y + A_z B_z$$

$$\overrightarrow{A} \cdot \overrightarrow{B} = 9 \times 4 + (1 \times -6) + (-6 \times 5) = 36 - 6 - 30 = 0$$
(यादर्फ $\overrightarrow{A} \cdot \overrightarrow{B} = 0$, किन्ध $A \neq 0$ ७ $B \neq 0$; $\cos \theta = 0 = \cos 90^\circ$
जिल्ला प्रजीत मुटि भेत्रआदात উপর मन्य।

$$= \frac{15\hat{i} - 10\hat{j} + 30\hat{k}}{35}$$
$$= \frac{3\hat{i} - 2\hat{i} + 6\hat{k}}{35}$$

 $\vec{F}_{i} = \vec{F}_{i} - \vec{F}_{j} + \vec{F}_{k}$ $\vec{F}_{i} = 4\hat{i} - \hat{j} + 3\hat{k} \otimes \vec{B} = -2\hat{i} + 2\hat{j} - \hat{k}$ ভেটর রাশিষয়ের লন্দি ভেটরের সমান্তরাল একটি একক ভেটর রাশি নির্ণয় কর।

মনে করি ভেক্টর রাশিদ্বয়ের লব্দি ভেক্টর \overrightarrow{C} এবং এই ভেক্টর রাশির সমান্তরাল একক ভেক্টর রাশি = \hat{C}

$$\dot{\hat{C}} = \frac{\vec{C}}{C}$$
 (1)

À ও B ভেট্টরছয়ের লম্খি ভেট্টর

$$\vec{C} = (\hat{4}\hat{i} - \hat{j} + 3\hat{k}) + (-2\hat{i} + 2\hat{j} - \hat{k})$$

= $2\hat{i} + \hat{j} + 2\hat{k}$
अवश् \vec{C} - अत्र भाम $C = \sqrt{C_x^2 + C_y^2 + C_z^2} = \sqrt{(2)^2 + (1)^2 + (2)^2}$
= $\sqrt{9} = 3$

সমীকরণ (1) হতে পাই,

$$\hat{C} = \frac{2\hat{i} + \hat{j} + 2\hat{k}}{3} = \frac{2}{3}\hat{i} + \frac{1}{3}\hat{j} + \frac{2}{3}\hat{k}$$

একক ভেষ্টর রাশিটি $=\frac{2}{3}\hat{i} + \frac{1}{3}\hat{j} + \frac{2}{3}\hat{k}$

 $\vec{A} = \hat{i} - \hat{k} \quad \textbf{uq:} \vec{B} = \hat{i} + \hat{j}.$ ভেটরম্বরের অভিলম্ম দিকে একক ভেটর নির্ণয় কর। [কু. বো. ২০০৫] ধরি, ভেট্টরদ্বরের অভিলম্ম দিকে একক ভেটর = $\hat{\eta}$ আমরা পাই, $\hat{\eta} = \frac{\vec{A} \times \vec{B}}{|\vec{A} + \vec{R}|}$ (1)

$$|\vec{A} \times \vec{B}|$$

$$\text{extra}, \vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 0 & -1 \\ 1 & 1 & 0 \end{vmatrix}$$

$$= \hat{i} (0+1) + \hat{j} (-1-0) + \hat{k} (1-0)$$

$$= \hat{i} - \hat{j} + \hat{k}$$

$$\text{erge} + \vec{A} \times \vec{B} + - \sqrt{(1)^2 + (-1)^2 + (1)^2} = \sqrt{1+1+1} = \sqrt{3}$$

এবং
$$|\overrightarrow{A} \times \overrightarrow{B}| = \sqrt{(1)^2 + (-1)^2 + (1)^2} = \sqrt{1 + 1 + 1} = \sqrt{3}$$

সমীকরণ (1) থেকে পাই,

$$\hat{\eta} = \frac{\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}} = \frac{1}{\sqrt{3}}\hat{i} - \frac{1}{\sqrt{3}}\hat{j} + \frac{1}{\sqrt{3}}\hat{k}$$

$$\hat{\eta} = \frac{\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}} = \frac{1}{\sqrt{3}}\hat{i} - \frac{1}{\sqrt{3}}\hat{j} + \frac{1}{\sqrt{3}}\hat{k}$$

$$\hat{\eta} = \frac{\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}} = \frac{1}{\sqrt{3}}\hat{i} - \frac{1}{\sqrt{3}}\hat{j} + \frac{1}{\sqrt{3}}\hat{k}$$

$$\hat{\eta} = \frac{\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}} = \frac{1}{\sqrt{3}}\hat{i} - \frac{1}{\sqrt{3}}\hat{j} + \frac{1}{\sqrt{3}}\hat{k}$$

$$\hat{\eta} = \frac{\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}} = \hat{i} - \hat{j}\hat{j} + 2\hat{k}$$

$$\hat{\eta} = \hat{i} + 2\hat{j} - \hat{k}$$

$$\hat{\eta} = \hat{i} + 2\hat{j} - \hat{k}$$

$$\hat{\eta} = \hat{i} + 2\hat{j} - \hat{k}$$

$$\hat{\eta} = \hat{i} + 2\hat{j} - \hat{k},$$

$$\hat{\eta} = \hat{i} + 2\hat{j} - \hat{i},$$

$$\hat{\eta} = \hat{i} + 2\hat{i} + 2\hat{j},$$

$$\hat{\eta} = \hat{i} + 2\hat{i} + 2\hat{i} + 2\hat{i} + 2\hat{i},$$

$$\hat{\eta} = \hat{i} + 2\hat{i} +$$

যেহেড়ু A.B' = 0 এবং |A|, |B| ≠ 0, অতএব ভেষ্টর দুটি পরস্পর সমকোণে অবস্থিত।

জতএব, \overrightarrow{A} . $(\overrightarrow{B} \times \overrightarrow{C}) = (\overrightarrow{A} \times \overrightarrow{B})$. \overrightarrow{C} (প্রমাণিত)

 $\mathbf{v}\mathbf{R}, \quad \overrightarrow{\mathbf{A}} = \mathbf{A}_{x} \hat{i} + \mathbf{A}_{y} \hat{j} + \mathbf{A}_{z} \hat{k}$ $\overrightarrow{B} = B_{y} \overrightarrow{i} + B_{y} \overrightarrow{j} + B_{z} \overrightarrow{k}$ $\vec{C} = C_x \hat{i} + C_y \hat{j} + C_z \hat{k}$ \overrightarrow{B} + \overrightarrow{C} = $(B_x \hat{i} + B_y \hat{j} + B_z \hat{k}) + (C_x \hat{i} + C_y \hat{j} + C_z \hat{k})$ $= (B_x + C_x)\hat{i} + (B_y + C_y)\hat{j} + (B_z + C_z)\hat{k}$ $\overrightarrow{A} \cdot (\overrightarrow{B} + \overrightarrow{C}) = (A_x \hat{i} + A_y \hat{j} + A_z \hat{k}) \cdot \{(B_x + C_x) \hat{i} + (B_y + C_y) \hat{j} + (B_z + C_z) \hat{k}\}$ $= A_{y}(B_{y} + C_{y}) + A_{y}(B_{y} + C_{y}) + A_{z}(B_{z} + C_{z})$ $= A_{y}B_{y} + A_{y}C_{y} + A_{y}B_{y} + A_{y}C_{y} + A_{z}B_{z} + A_{z}C_{z}$ জাবার, \overrightarrow{A} . $\overrightarrow{B} = (A_x \hat{i} + A_y \hat{j} + A_z \hat{k}) \cdot (B_x \hat{i} + B_y \hat{j} + B_z \hat{k})$ $\overrightarrow{A} \cdot \overrightarrow{C} = A_x B_x + A_y B_y + A_z B_z$ $\overrightarrow{A} \cdot \overrightarrow{C} = (A_x i + A_y j + A_z k) \cdot (C_x i + C_y j + C_z k)$ -AC + AC + AC

$$\overrightarrow{A} : \overrightarrow{B} + \overrightarrow{A} : \overrightarrow{C} = (A_x B_x + A_y B_y + A_z B_z) + (A_x C_x + A_y C_y + A_z C_z) 4$$
$$= A_x B_x + A_x C_x + A_y B_y + A_y C_y + A_z B_z + A_z C_z ,$$
$$\overrightarrow{A} : (\overrightarrow{B} + \overrightarrow{C}) = \overrightarrow{A} : \overrightarrow{B} + \overrightarrow{A} : \overrightarrow{C}$$
(ध्याषिष्ठ)

<ি 4 ms⁻¹বেগে দৌড়ে যাবার সময় একজন লোক 6 ms⁻¹বেগে লম্বভাবে পতিত বৃষ্টির সমুখীন হল। বৃষ্টি হতে রক্ষা পেতে হলে তাকে ৰুত কোপে ছাতা ধরতে হবে 🔋

মনে করি বৃষ্টির লম্বি বেগ উল্লম্ব দিকের সাথে hetaকোণ উৎপন্ন করে। ৰাভাস 🖟 লোক $\tan \theta = \frac{4 \text{ ms}^{-1}}{6 \text{ ms}^{-1}} = 0.666$ $\overline{\mathbf{A}}$, $\tan \theta = \tan 33.7^{\circ}$ $\theta = 33.7^{\circ}$ সুতরাং লোকটিকে উল্লম্ব দিকের সাধে 33'7° কোণে ছাতা ধরতে হবে। মুঁ চিন্দু ১'৪৩ মুঁ চিন্দু ১'৪৩ عال $\overrightarrow{A} = \hat{i} + 3\hat{j} + 2\hat{k}, \overrightarrow{B} = \hat{i} + 2\hat{j} - \hat{k}$ এবং $\overrightarrow{C} = 2\hat{i} - 3\hat{j} + 4\hat{k}$ হলে প্ৰমাণ কর বে, $(\overrightarrow{B} + \overrightarrow{C}) \times \overrightarrow{A} = \overrightarrow{B} \times \overrightarrow{A} + \overrightarrow{C} \times \overrightarrow{A}$ ঢা. বো. ২০০০] $\overrightarrow{\mathbf{A}} + \overrightarrow{\mathbf{C}} = \overrightarrow{i} + 2\overrightarrow{j} - \overrightarrow{k} + 2\overrightarrow{i} - 3\overrightarrow{j} + 4\overrightarrow{k}$ $=3\hat{i}-\hat{j}+3\hat{k}$ পদার্ধবিজ্ঞান্ (১ম)--৬

[ব. বো. ২০০৬ ; চ. বো. ২০০৪]

বইঘর.কম বামপক্ষ = $(\overrightarrow{B} + \overrightarrow{C}) \times \overrightarrow{A}$ $= (3\hat{i} - \hat{j} + 3\hat{k}) \times (\hat{i} + 3\hat{j} + 2\hat{k})$ = $\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -1 & 3 \end{vmatrix} = \hat{i} (-2 - 9) - \hat{j} (6 - 3) + \hat{k} (9 + 1)$ = $-11\hat{i} - 3\hat{j} + 10\hat{k}$ winding, $\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{A}} = (\overrightarrow{i} + 2\overrightarrow{j} - \overrightarrow{k}) \times (\overrightarrow{i} + 3\overrightarrow{j} + 2\overrightarrow{k})$ $= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -1 \\ 1 & 3 & 2 \end{vmatrix} = \begin{vmatrix} \hat{i} & (4+3) - \hat{j} & (2+1) + \hat{k} & (3-2) \\ = 7\hat{i} - 3\hat{j} + \hat{k} \end{vmatrix}$ $\begin{array}{c} \Box = \left| \begin{array}{c} \overrightarrow{\mathbf{C}} \times \overrightarrow{\mathbf{A}} = (2\hat{i} - 3\hat{j} + 4\hat{k}) \times (\hat{i} + 3\hat{j} + 2\hat{k}) \\ = \left| \begin{array}{c} \hat{i} & \hat{j} & \hat{k} \\ 2 & -3 & 4 \\ 1 & -3 & 2 \end{array} \right| = \hat{i} (-6 - 12) - \hat{j} (4 - 4) + \hat{k} (6 + 3) \\ = -18\hat{i} + 9\hat{k} \end{array}$ ডানপক = $(\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{A}}) + (\overrightarrow{\mathbf{C}} \times \overrightarrow{\mathbf{A}})$ $=(7\hat{i}-3\hat{j}+\hat{k})+(-18\hat{i}+9\hat{k})$ $= -11\hat{i} - 3\hat{j} + 10\hat{k}$ = ডানপক্ষ প্রেমাণিত) বামপক \nearrow । ভৌচন $\overrightarrow{A} = 6\hat{i} + 2\hat{j} + 3\hat{k}$ -এর উপর ভৌচন $\overrightarrow{B} = 2\hat{i} + 4\hat{j} - 2\hat{k}$ -এর অভিক্রেণ বের কর। মনে করি \overrightarrow{A} ও \overrightarrow{B} এর মধ্যবর্তী কোণ = θ \overrightarrow{A} , \overrightarrow{B} = AB cos θ সুতরাং A-এর ওপর B-এর অভিক্ষেপ $B\cos\theta = \frac{\overrightarrow{A} \cdot \overrightarrow{B}}{A}$ এখানে \overrightarrow{A} . \overrightarrow{B} = $A_x B_x + A_y B_y + A_z B_z$ $= 6 \times 2 + 2 \times 4 + 3 \times (-2)$ = 12 + 8 - 6= 14 $\P = \sqrt{A_x^2 + A_y^2 + A_z^2} = \sqrt{(6)^2 + (2)^2 + (3)^2} = \sqrt{49} = 7$ £ À এর উপর B এর অতিকেপ $B\cos\theta = \frac{14}{7} = 2$ $\vec{A} = 3\hat{i} + 2\hat{j} + \hat{k}, \vec{B} = \hat{i} + 2\hat{j} - 3\hat{k}$ are $\vec{C} = \hat{i} + \hat{j} + 2\hat{k}$ in the state of $A (B \times C) = (A \times B) C$ ৰ. বো. ২০০১] হামাণ ক্যাতে হবে যে, $A \cdot (B \times C) = (A \times B)$. C

$$\begin{array}{c} \left(\frac{\sqrt{6}}{7} \times \frac{\sqrt{6}}{$$

.

৩১। একটি কণার উপর $\vec{F} = (6i - 3j + 2k)$ N বন্দ প্রয়োগে কণাটির $\vec{r} = (2i + 2j - k)$ m সরণ হয়। বন্দ ৩২। এখাত কাজের পরিমাণ নির্ণয় কর। 4 Jonly এখানে যি. বো. ২০০৩) W = F r $\overrightarrow{F} = (\overrightarrow{6i} - \overrightarrow{3j} + 2\overrightarrow{k})N$ $\overrightarrow{F} = (2\overrightarrow{i} + 2\overrightarrow{j} - \overrightarrow{k})m$ $=(6\hat{i}-3\hat{j}+2\hat{k}).(2\hat{i}+2\hat{j}-\hat{k})$ = 12 - 6 - 2= 4 Joule W = ? ৩২। ডেট্টর পম্ধতিতে প্রমাণ কর যে, একটি রম্বসের কর্ণন্বয় পরস্পরের উপর সম্ব। OQRP একটি রম্বস এবং OR ও OP রম্বসের কর্ণ। প্রমাণ করতে হবে OR ও QP পরস্পর লম্ব। চিত্রে OOR ত্রিভুন্ধের $\overrightarrow{OR} = \overrightarrow{OO} + \overrightarrow{OR} = \overrightarrow{B} + \overrightarrow{A} = \overrightarrow{A} + \overrightarrow{B}$ আবার, OQP ত্রিভুচ্ছের $\overrightarrow{OO} + \overrightarrow{OP} = \overrightarrow{OP}$ বা, \overrightarrow{B} + OP = A \overrightarrow{A} , $\overrightarrow{OP} = \overrightarrow{A} - \overrightarrow{B}$ B Ο এখন, \overrightarrow{OR} . $\overrightarrow{OP} = (\overrightarrow{A} + \overrightarrow{B}) \cdot (\overrightarrow{A} - \overrightarrow{B})$ চিত্র ১'৪৫ = A² - B² = 0 [∵ রম্বসের সকল বাহু সমান] অতএব, OR ও OP পরস্পরের উপর লম্ম। (প্রমাণিত) ওওঁ। অবস্থান ভেক্টর $\overrightarrow{r}=x\,\widehat{i}\,+y\widehat{j}\,+z\widehat{k}$ -কে ব্যবকলন করে কিতাবে বেগ ও ত্বরণ পাওয়া যায় ? বি. বো. ২০০২; চা. বো. ২০০১] এখানে, অবস্থান ভেটর $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ আমরা জ্ঞানি, অতি ক্ষুদ্র সময়ে r-এর পরিবর্তনের হারকে বেগ বলা হয়। সুতরাং $(\overline{q} \overline{\eta}, \overrightarrow{v'} = \frac{dr}{dt} = \frac{dx}{dt}\hat{i} + \frac{dy}{dt}\hat{j} + \frac{dz}{dt}\hat{k}$ জতি ক্ষুদ্র সময়ে $\stackrel{
ightarrow}{v}$ -এর পরিবর্তনের হারকে ত্বুরণ বলা হয়। সুতরাং ত্বুরণ, $\vec{a} = \frac{d\vec{v}}{dt}$ $=\frac{d}{dt} \left(\frac{dx}{dt}\hat{i} + \frac{dy}{dt}\hat{j} + \frac{dz}{dt}\hat{k}\right)$ $=\frac{d^2x}{dt^2}\hat{i} + \frac{d^2y}{dt^2}\hat{j} + \frac{d^2z}{dt^2}\hat{k}$ पृष्टि (उठेन, $\vec{A} = \hat{i}t^2 - \hat{j}t + (2t+1)\hat{k}$ 'S $\vec{B} = 5\hat{i}t + \hat{j}t - \hat{k}t^3$ इरन $\frac{d}{dt}(\vec{A} \cdot \vec{B})$ 'S $\frac{d}{dt}$ ($\overrightarrow{A} \times \overrightarrow{B}$) निर्भन्न कन्न। [য. বো. ২০০৫ ; কু. বো. ২০০৪] धन्नान्यायी, $\overrightarrow{\mathbf{A}}$. $\overrightarrow{\mathbf{B}}$ = { $\hat{i}t^2 - \hat{j}t + (2t+1)\hat{k}$ }. ($\hat{5}it + \hat{j}t - \hat{k}t^3$) $= 5t^3 - t^2 - (0t + 1)t^3$

$$BG \notin JEWEL$$

$$\frac{d}{dt} (\vec{A} \cdot \vec{B}) = 15t^2 - 2t - (6t^3 + 3t^2) = -6t^3 + 12t^2 - 2t$$

$$\frac{d}{dt} (\vec{A} \cdot \vec{B}) = 15t^2 - 2t - (6t^3 + 3t^2) = -6t^3 + 12t^2 - 2t$$

$$\frac{d}{dt} (\vec{A} \cdot \vec{B}) = 15t^2 - 2t - (6t^3 + 3t^2) = -6t^3 + 12t^2 - 2t$$

$$\frac{d}{dt} (\vec{A} \cdot \vec{B}) = 15t^2 - 2t - (6t^3 + 3t^2) = -6t^3 + 12t^2 - 2t$$

$$\frac{d}{dt} (\vec{A} \cdot \vec{B}) = 1(4t^3 - 4t - 1) + i(5t^4 + 20t + 5) + i(3t^2 + 10t)$$

৩৫। একই সময়ে একই বিন্দুতে ক্রিয়াশীল দুটি ভেষ্টরের মান সমান। দেখাও যে, এদের লখি ভেষ্টর দুটির (চ. বো. ২০০৫) মধ্যবর্তী কোণকে সমন্বিখডিত করে।

প্রশ্নানুসারে একই সময়ে একই বিন্দুতে ক্রিয়ারত ভেষ্টরম্বয়ের মান সমান।

ধরি, ভেষ্টরহায<u>় \vec{P} ও \vec{Q} এবং এদের মধ্যবর্তী কোণ α । এদের লম্বি R. \vec{P} এর সাথে θ কোণ উৎপন্ন করে ক্রিয়া করবে,</u> আমরা পাই,

$$\tan \theta = \frac{Q \sin \alpha}{P + Q \cos \alpha}$$

$$\exists \Pi, \quad \tan \theta = \frac{Q \sin \alpha}{Q + Q \cos \alpha}$$

$$= \frac{\sin \alpha}{1 + \cos \alpha}$$

$$= \frac{2 \sin \frac{\alpha}{2} \tan \frac{\alpha}{2}}{2 \cos^2 \frac{\alpha}{2}}$$

$$= \tan \frac{\alpha}{2}$$

:: $\theta = \alpha/2$ অর্ধাৎ ভেক্টরদ্বয়ের লম্বি, ভেক্টরদ্বয়ের মধ্যবর্তী কোগকে সমদিখন্ডিত করে।

প্রশুমালা

সংক্ষিশ্ত–উত্তর প্রশ্ন ঃ

১। স্কেলার রাশি ও ডেষ্টর রাশি বলতে কি বুঝ ?	[ঢা. বো. ২০০২ ; কৃ. বো. ২০০০]
২। সমরেখ ভেষ্টর এবং বিসদৃশ ভেষ্টর কাকে বলে ?	[ঢা. বো. ২০০৪]
ত। একক ভেষ্টর ব্যাখ্যা কর।	[চ. বো. ২০০৪]
৪। ত্রিকোণিক স্থানাজ্ঞ ব্যবস্থায় অবস্থান ভেষ্টর ব্যাখ্যা কর।	[চ. বো. ২০০৪]
৫। একক ভেষ্টর কাকে বলে ?	ঢ়া. বো. ২০০৩ ; য. বো. ২০০৪, ২০০৩]
৬। অবস্থান ভেষ্টর কাকে বলে १	ঢ়ো. বো. ২০০৩ ; রা. বো. ২০০৩]
৭। সীমাবন্দ্র ভেষ্টর কাকে বলে ?	[রা. বো. ২০০৩]
৮। ব্যাসার্ধ ভেষ্টর কাকে বলে ?	রো. বো. ২০০৩ ; সি. বো. ২০০৩]
৯। আয়ত একক ভেষ্টর কাকে বলে ?	্বি. বো. ২০০৩]
১০। ভেষ্টর রাশির বিডাজন কার্কে বলে १	[য. বো. ২০০২]
১১। ভেষ্টর রাশির ত্রিভূজের সূত্রটি বিবৃত কর। ১২। ভেষ্টর রাশির সামান্তরিকের সূত্রটি বিবৃত কর। [ঢা. বো.২০০০;	য. বো. ২০০১; রা.বো. ২০০১;ব. বো. ২০০৪]

বইঘর.কম ১৩। সংজ্ঞা লিখ ৪ অবস্থান ভেষ্টর [ज. (वा. २००७ ; कृ. (वा. २००४; ठ. (वा. २००४, २००७ ; व. (वा. २००४, २००२ ; ব. বো. ২০০১; রা. বো. ২০০৫, ২০০০] নাল ডেষ্টর [চ. বো. ২০০৩ ; য. বো. ২০০২] আয়ত একক ভেষ্টর [রা. বো. ২০০৬ ; কু. বো. ২০০৬ ; ব. বো. ২০০৩ ; ঢা. বো. ২০০১] একক ভেষ্টর [ঢা. বো. ২০০৫; য. বো. ২০০৫, ২০০২ ; সি. বো. ২০০১] স্বাধীন ভেষ্টর যি. বো. ২০০২] ১৪ ৷ ভেষ্টর গুণন কাকে বলে ? [য. বো. ২০০৩ ; য. বো. ২০০৪] ১৫। দুটি ভেষ্টরের স্কেলার গুণন ও ভেষ্টর গুণনের সংজ্ঞা দাও। বি. বো. ২০০২] ১৬। ব্যাবকলনীয় অপারেটর কি ? ১৭। ভেটর ডেরিভেটিভ কি ? ১৮। তিনটি ভেষ্টরের লম্বি কখন শূন্য হয় ? রচনামূলক প্রশ্ন ঃ 🔊। দুইটি সদিক রাশির ডট্ গুণন ও ক্রস গুণন চিত্রসহ ব্যাখ্যা কর। [ব. বো. ২০০৫] 🔫 বিমাত্রিক স্থানাজ্ঞ ব্যবস্থায় একটি অবস্থান ভেষ্টরের রাশিমালা নির্ণয় কর। 🛛 [ঢা. বো. ২০০৬ ; কু. বো. ২০০১] ৩। একক ভেষ্টর ও অবস্থান ভেষ্টরের সংজ্ঞা দাও। দেখাও যে, সমজাতীয় দুটি ভেষ্টরের লখির সর্বনিম্ন মান ভেষ্টরম্বরের মানের অন্তরফলের সমান। [সি. বো. ২০০৫] ৪। ভেক্টর রাশির ত্রিভুচ্ছ সূত্রটি বিবৃত কর। ত্রিভুচ্চ সূত্র প্রয়োগ করে লম্বির মান নির্ণয় কর। 🕼 তেষ্টর রাশির সামান্তরিক সূত্রটি বিবৃত কর। সামান্তরিকের সূত্র প্রয়োগ করে লম্বির মান নির্ণয় কর। বি. বো. ২০০৪ ; রা. বো. ২০০১ ; রা. বো. ২০০১ ; য. বো. ২০০১] 🖕 দেখাও যে, একই বিন্দুতে ক্রিয়াশীল দুটি ভেষ্টর রাশির লম্বির সর্বোচ্চ ও সর্বনিম্ন মান যথাক্রমে রাশিষ্বয়ের মানের যোগফল ও বিয়োগফলের সমান। [ব. বো. ২০০৬ ; ঢা. বো. ২০০৩ ; রা. বো. ২০০১ ; য. বো. ২০০৩ ; সি. বো. ২০০৩] এটির রাশির বিভাজন কাকে বলে ? কোন ভেষ্টর রাশিকে যে কোন দুটি কোণে বিভাচ্চিত করে বিশ্রিষ্টাংশদ্বয়ের রাশিমালা বের কর। [সি. বো. ২০০৬ ; য. বো. ২০০২] অথবা, ভেক্টর বিভাজন বর্ণনা করে ভেক্টর রাশির অনুভূমিক ও উল্লম্ব উপাংশ–এর মান নির্ণয় কর। [য. বো. ২০০৬] 🖌। দুটি ভেক্টর রাশির স্কেলার ও ভেক্টর গুণন চিত্রসহ বর্ণনা কর। ঢা. বো. ২০০২ ; চ. বো. ২০০৬; ২০০০ ; কু. বো. ২০০৬ ; রা. বো. ২০০৪ ; সি. বো. ২০০৪] 🛶 দুটি ভেক্টর \overrightarrow{P} ও \overrightarrow{Q} , α কোণে আনত। এদের স্কেলার গুণন ও ভেক্টর গুণন চিত্রসহ ব্যাখ্যা কর। [রা. বো. ২০০৬ ; য. বো. ২০০৫ ; কৃ. বো. ২০০৪, ২০০২] ১০। ভেষ্টর বিয়োগের নিয়মটি ব্যাখ্যা কর। [সি. বো. ২০০৩] x_{2} | $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ হলে প্রমাণ কর যে, $r = \sqrt{x^{2} + y^{2} + z^{2}}$ ১২া দেখাও যে, ভেষ্টর রাশির যোগ বিনিময় ও সংযোজন সূত্র মেনে চলে। ১৩। দেখাও যে, দুটি ভেষ্টর রাশির ভেষ্টর গুণন বিনিময় সূত্র মানে না ; কিন্তু স্কেশার গুণন বিনিময় সূত্র মানে। ১৪। দেখাও যে, ভেষ্টর গুণন বন্টন সূত্র মেনে চলে। $d = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$ and $\vec{B} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k}$ হয়, তবে দেখাও যে, $\vec{A} \times \vec{B} = \begin{vmatrix} \hat{n} & \hat{j} & \hat{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$ **[চ. বো. ২০০৩]** $3 \oplus 1 \xrightarrow{A}, \overrightarrow{B}$ এবং \overrightarrow{C} ভেষ্টর রাশি হলে প্রমাণ কর যে, $\overrightarrow{A}.(\overrightarrow{B} \times \overrightarrow{C}) = (\overrightarrow{A} \times \overrightarrow{B}).\overrightarrow{C}$ ক্র. বো. ২০০১] ১৭। প্রমাণ কর : $\overrightarrow{A} \times (\overrightarrow{B} + \overrightarrow{C}) = \overrightarrow{A} \times \overrightarrow{B} + \overrightarrow{A} \times \overrightarrow{C}$ ১৮। যদি শূন্য ভেষ্টর না হয়, তবে দেখাও যে দুটি ভেষ্টর রাশির ডট্ গুণফল শূন্য হলে এরা পরস্পর লম্ব। ১৯। যদি শূন্য ভেষ্টর না হয়, তবে দেখাও যে দুটি ভেষ্টর রাশির ব্রুস গুণফল শূন্য হলে তারা পরস্পর সমান্তরাল। ২০। প্রমাণ কর যে, $\overrightarrow{A}.(\overrightarrow{B}+\overrightarrow{C}) = \overrightarrow{A}.\overrightarrow{B} + \overrightarrow{A}.\overrightarrow{C}$ চ. বো. ২০০৪] বি. বো. ২০০৪) ২১। ভেষ্টর ব্যবকলন ব্যাখ্যা কর।

গাণিডিক সমুস্যাবলি ঃ 🔨 পুটি দিক রাশির প্রত্যেকটির মান ৪ একক। তারা একই বিন্দুতে পরস্পর 120° কোণে ক্রিয়া করে। তাদের লম্বির মান ও দিক নির্ণয় কর। [উঃ 8 একক, 60°] ২1 বায় উত্তর ও পূর্ব দিকের মধ্য দিয়ে প্রবাহিত হচ্ছে। বেগের উত্তর দিকের অংশক ঘণ্টায় 5 km এবং পূর্ব দিকের অংশক ঘণ্টায় 12 km। লন্দি বেগের মান ও দিক নির্ণয় কর। [উঃ 13 km/h, 67°30'1] [ቼঃ 13 km/h, 67°30']] ্র দুটি ভেষ্টরের মান যথাক্রমে 10 এবং 15 একক। তারা পরস্পরের সাথে সমকোণে ক্রিয়া করে। এদের ভেষ্টর গুণফলের মান বের কর। উিঃ 50 একক] (8) একটি বেগের অনুভূমিক ও উল্লম্ম উপাংশের মান যথাক্রমে 60 ms⁻¹ ও 80 ms⁻¹। বেগটির মান কত ? [উ\$ 100 ms⁻¹] ৫। দুটি কণা যথাক্রমে 12 ms⁻¹ ও 20 ms⁻¹ বেগে 120° কোণে ক্রিয়া করে কোন একটি বিন্দুকে জতিক্রম করে। 4s পরে তাদের মধ্যকার দূরত্ব কত হবে ? [উঃ 112 m ଏ**ବ**ଡ଼] ৬। একটি বস্তু কণার বেগ $6~{
m ms}^{-1}$ । তার গতির সাথে 90° কোণে $2~{
m ms}^{-2}$ এর একটি ত্বরণ ক্রিয়া করে। 4s পর কণাটির কো ও সরণ কত হবে 🤋 [ቼঃ 10 ms⁻¹; 28[·]84 m] 91 मुটি ভেটর রাশি, $\vec{P} = 8\hat{i} - 4\hat{j}$ এবং $\vec{Q} = \hat{j} - 4\hat{i}$ হলে, (i) $|\vec{P}|$, (ii) $|\vec{Q}|$, (iii) $|(\vec{P} + \vec{Q})|$, $(iv) | \overrightarrow{P} - \overrightarrow{Q} |$ and $(v) | \overrightarrow{P} \times \overrightarrow{Q} |$ and ?উঃ (i) 4√5, (ii) √17, (iii) 5, (iv) 13 এবং (v) 8] ৮। $\vec{A} = 2\hat{i} + 2\hat{j} - \hat{k}$ ও $\vec{B} = 6\hat{i} - 3\hat{j} + 2\hat{k}$ দুটি ভেষ্টর রাশি। (ক) \overrightarrow{A} ও \overrightarrow{B} এর মান নির্ণায় কর। (খ) $(\overrightarrow{2A} + \overrightarrow{3B})$ এর মান নির্ণায় কর। [উঃ (ক) 3, 7; (খ) $5\sqrt{21}$] ৯। P ও Q দুটি বিন্দুর স্থানাজ্ঞ যথাব্রুমে (4, --- 2, 1) ও (3, 1, -- 2)। (ক) এদের অবস্থান ভেক্টর নির্ণয় কর ; (খ) PO ভেষ্টর রাশি ও এর মান বের কর। $[\mathbf{\bar{S}}_{\hat{k}}(\mathbf{\bar{q}}) \ 4 \ \hat{i} \ -2 \ \hat{j} \ + \ \hat{k} \ \mathbf{\bar{S}} \ 3 \ \hat{i} \ + \ \hat{j} \ -2 \ \hat{k} \ ; (\mathbf{\bar{s}}) \ \overrightarrow{PQ} = - \ \hat{i} \ + \ 3 \ \hat{j} \ -3 \ \hat{k} \ \mathbf{\bar{S}} \ | \ \overrightarrow{PQ} | = \sqrt{19}]$ 36। যদি $\overrightarrow{P} = 2\hat{i} + 4\hat{j} - 5\hat{k}$ এবং $\overrightarrow{Q} = \hat{i} + 2\hat{j} + 3\hat{k}$ হয় তবে এদের মধ্যবর্তী কোণ নির্ণয় কর। [উঃ 101[.]49°] $\vec{A} = 2\hat{i} + 2\hat{j} - \hat{k}$ ও $\vec{B} = 6\hat{i} - 3\hat{j} + 2\hat{k}$ দুটি ভেট্টর রাশি। এদের স্কেলার গুণফল ও ভেট্টর গুণফলের মান নির্ণয় কর। [য. বো. ২০০০][উঃ 4, 5√17] 3 < 1 $\overrightarrow{A} = 3\hat{i} + 3\hat{j} - \hat{k}$ এবং $\overrightarrow{B} = 2\hat{i} + \hat{j} + 3\hat{k}$ হলে A ও B ভেট্টরন্ধয়ের অন্তর্গত কোণের মান নির্ণয় কর। । উঃ 90°] ১৩। $\overrightarrow{A} = 2\hat{i} + 2\hat{j} - \hat{k}$ ও $\overrightarrow{B} = 6\hat{i} - 3\hat{j} + 2\hat{k}$ দুটি ভেটর রাশি। এদের লম্ব অভিমুখে একটি একক ভেটর [य. (वा. २००८) (७३ $\pm \frac{\hat{i} - 10\hat{j} - 18\hat{k}}{5\sqrt{17}}$] নির্ণয় কর। ১৪। দুটি ভেটর $\overrightarrow{A} = \hat{i} - \hat{j} + \hat{k}$ এবং $\overrightarrow{B} = 2\hat{i} - 3\hat{j} + 6\hat{k}$ -এর ভেটর গুণফল এবং এদের মধ্যবর্তী কোণ নির্ণয় কর। set দেখাও যে, $\vec{A} = 5\hat{i} - 4\hat{j} + 2\hat{k}$ এবং $\vec{B} = 2\hat{i} + \hat{j} - 3\hat{k}$ ভেষ্টর দুটি পরস্পর লীন্দ। $\vec{A} = 4\hat{i} + 3\hat{j} - 5\hat{k}$ এবং $\vec{B} = 2\hat{i} + \hat{j} + 3\hat{k}$ হলে \vec{A} এবং \vec{B} -এর মধ্যবর্তী কোণ নির্ণয় কর। [**5**8 4 : 98 69°] াউঃ 98[.]69°] $\vec{A} = 2\hat{i} + \hat{k}$ এবং $\vec{B} = -\hat{i} + \hat{j} + 2\hat{k}$ হলে \vec{A} ও \vec{B} -এর মধ্যবর্তী কোণের সাইনের মান নির্ণয় কর। দেখাও যে, এরা পরস্পর লম্ব ነ**উ**៖ α = 90°) ১৮। $\vec{A} = 2\hat{i} + 2\hat{j} - \hat{k}$ ও $\vec{B} = 6\hat{i} - 3\hat{j} + 2\hat{k}$ দুটি ভেটর রাশি। \vec{A} -এর সমান্ডরালে একটি একক ভেটর $[\overline{v}_{8} \ \frac{2\hat{i}+2\hat{j}-\hat{k}}{3}]$ নির্ণয় কর। ১৯। যদি $\vec{A} = 9\hat{i} + \hat{j} - 6\hat{k}$ এবং $\vec{B} = 4\hat{i} - 6\hat{j} + 5\hat{k}$ হয়। তবে ডেষ্টর \vec{B} -এর উপর \vec{A} -এর লম্ম অভিক্ষেগ এবং 🛱 -এর উপর 🛱 -এর লম্দ অভিক্ষেপ নির্ণয় কর। ঢো. বো. ২০০৪] [উঃ 0; 0]

২০। $\overrightarrow{A} \neq \widehat{i} + \widehat{j} + \widehat{k}$ এবং $\overrightarrow{B} = 5\widehat{i} + 5\widehat{j} + \widehat{5}\widehat{k}$ দুটি ভেষ্টর রাশি। দেখাও যে এরা পরস্পর সমান্তরাল। [সি. যো. ২০০৬ (মান ভিন্ন)

উচ্চ মাধ্যস্থিক পদ্ধাৰ্থবিজ্ঞান

২১। a-এর মান কত হলে $2\hat{i} + a\hat{j} + \hat{k}$ এবং $\vec{B} = 4\hat{i} - 2\hat{j} - 2\hat{k}$ ভেষ্টর রাশি পুটি পরস্পর লম্ব হবে ? টিঃ 31 $33 + 3\hat{i} + 3\hat{j} + 3\hat{k}$ मुটি দিক রাশি $|\vec{A} \circ \vec{B}| = 3\hat{i} + 3\hat{j} + 3\hat{k}$ मुটি দিক রাশি $|\vec{A} \circ \vec{B}|$ এর ভেটর গুণন নির্ণয় কর এবং দেখাও যে এরা পরস্পর সমান্তরাল। য. বো. ২০০২) $x = \hat{i} - 2\hat{j} + \hat{k}$ $\vec{B} = 2\hat{i} - \hat{j} + \hat{k}$ এবং $\vec{C} = 2\hat{i} + \hat{j} - \hat{k}$ হলে প্রমাণ কর যে, $\vec{A} \cdot (\vec{B} \times \vec{C}) = (\vec{A} \times \vec{B}) \cdot \vec{C}$. $\mathbf{R} = 2\hat{i} - 3\hat{j} - \hat{k} \quad \overrightarrow{\mathbf{B}} = \hat{i} + 4\hat{j} - 2\hat{k} \quad \mathbf{R} = \mathbf{R} \quad \mathbf{R} \quad \mathbf{R} = \mathbf{R} \quad \mathbf{R} \quad$ २८ । $\vec{A} = 3\hat{i} + 2\hat{j} - \hat{k}$; $\vec{B} = 4\hat{i} - 5\hat{j} + 2\hat{k}$; $\vec{C} = \hat{i} - \hat{j} - \hat{k}$ হলে (i) $\vec{A} - \vec{B} + 2\vec{C}$ निर्भय कत $[\mathbf{5}:\hat{i}+5\hat{i}-5\hat{k}]$ ২৬। $\vec{P} = 2\hat{i} + m\hat{j} - 3\hat{k}$ এবং $\vec{Q} = 6\hat{i} - 3\hat{j} - 9\hat{k}$ পরস্পর সমান্তরাল হলে m-এর মান নির্ণয় কর। [ঢা. বো. ২০০৬] [উঃ m = -1] ২৭। a-এর মান কত হলে $\vec{A} = 2\hat{i} - 5\hat{j} + 3\hat{k}$ ও $\vec{B} = 2\hat{i} + a\hat{j} + 3\hat{k}$ ভেষ্টরদ্বয় পরস্পর সমান্তরাল হবে। [ঊਃ a = -5] ২৮। একটি ত্রিভূচ্বের শীর্ষবিন্দু তিনটি (2, 3, 1), (1, 1, 3) এবং (2, 2, 5) হলে ত্রিভূজটির ক্ষেত্রফল নির্ণয় কর। [উঃ <u>1</u>√53 বর্গ একক] $4 = \hat{i} - 4\hat{j} + 5\hat{k}$ ও $B = 6\hat{i} - 3\hat{j} + 2\hat{k}$ হলে \vec{B} বরাবর \vec{A} - এর অভিক্ষেপ বা অংশক নির্ণয় কর । [58 4] ৩০। দেখাও যে, \vec{A} ও \vec{B} ডেট্টর্বন্ধ পরস্পর লম্ম হবে যদি, $\vec{A} - \vec{B} = \vec{A} + \vec{B}$ হয়। ৩১ ধ্রমাণ কর ៖ $(\overrightarrow{A} \times \overrightarrow{B})^2 + (\overrightarrow{A} \cdot \overrightarrow{B})^2 = A^2 B^2$ ৩২। একটি সামান্তরিকের সন্নিহিত বাহু দুটি যথাক্রমে $\vec{A} = \hat{i} - 4\hat{j} - \hat{k}$ এবং $\vec{B} = -2\hat{i} - \hat{j} + \hat{k}$ । সামান্তরিকের ক্ষেত্রফল নির্ণয় কর। [উঃ √107] 🗱 🛪 😡 একজন লোক স্রোতহীন অবস্থায় 100 মিটার প্রশস্ত একটি নদী 4 মিনিটে সোজাসুদ্ধি সাঁতরিয়ে পাড় হতে পারে। কিন্তু স্রোত থাকলে সে একই পথে 5 মিনিটে একে অতিক্রম করতে পারে। স্রোতের গতিবেগ বের কর। উঃ 15 মিটার/মিনিটা ৩৪। দেওয়া আছে $\vec{A} = 4\hat{i} + 3\hat{j}, \vec{B} = -2\hat{j} + 5\hat{k}$ । \vec{A} ও \vec{B} একটি সামান্তরিকের দুটি সন্নিহিত বাহু নির্দেশ করলে সামান্তরিকটির ক্ষেত্রফল নির্ণীয় কর। [উঃ 26.25 একক] ৩৫। কোন কণার অবস্থান ভেষ্টর, $r=2t\,\hat{i}\,+3t^2\hat{j}\,$ হলে কণাটির বেগ ও তুরণ নির্ণয় কর। $[\overrightarrow{v}:\overrightarrow{v}=2\widehat{i}+6t\widehat{i}) \ (\overrightarrow{v}=2\widehat{i}+6t\widehat{i}) \ (\overrightarrow{v}=6\widehat{i})$ ৩৬। কোন কণার অবস্থান ভেটর $\hat{r} = [(30 \text{ ms}^{-1})t + 42 \text{ m}]\hat{i} + (53 \text{ ms}^{-1})\hat{j}$ হলে কো \hat{v} নির্ণয় কর। [य. (वा. २००८] (उ: 3⁻¹ i) ৩৭। একটি কণার উপর $\overrightarrow{F} = (6\hat{i} + 3\hat{j} - 2\hat{k})$ N বল প্রয়োগে কণাটির $\hat{r} = (3\hat{i} - 2\hat{j} + \hat{k})m$ সরণ হয়। বল দ্বারা সম্পাদিত কাজ কত ? [চ. বো. ২০০৪] টিঃ 10 Ioule] ৩৮। একটি গতিশীল কণার কোন মুহূর্তের অবস্থান ভেষ্টর $\overrightarrow{r}=\hat{i}\cos\omega t+\hat{j}\sin\omega t$ দারা নির্দেশ করা যায়, এখানে ω একটি ধ্রবক। কণাটির তাৎক্ষণিক বেগ \overrightarrow{v} ও ত্বরণ \overrightarrow{a} নির্ণয় কর এবং আরও দেখাও যে, $\overrightarrow{r} \times \overrightarrow{v}$ = একটি ধ্রবক ভেষ্টর। 🗟 $\vec{v} = \omega (-\hat{i} \sin \omega t + \hat{j} \cos \omega t); \vec{a} = -\omega^2 \vec{r}; \vec{r} \times \vec{v} = \hat{k}\omega$

২·১ বলবিদ্যা Mechanics

আমরা আমাদের চারদিকে যে সমস্ত পদার্থ দেখতে পাই, তাদের মধ্যে কোনটি স্থির, আবার কোনটি গতিশীল। পদার্থবিজ্ঞানের যে শাখায় বস্তুর স্থিতি ও গতি বিষয়ে আলোচনা করা হয় তাকে বলবিদ্যা বলে। অন্যভাবে, বলা যায়, পদার্থবিজ্ঞানের যে শাখায় পদার্থের উপর বলের ক্রিয়া আলোচিত হয় তাকে বলবিদ্যা বলে। বল সেই ব্যাহিক কারণ যা একটি বস্তুর স্থির বা গতিশীল অবস্থার পরিবর্তন ঘটায় বা ঘটানোর চেষ্টা করে। <u>বলবিদ্যা</u> মূলত দু'প্রকার। যথা–

১। স্থিতি বিদ্যা (Statics) এবং ২। গতিবিদ্যা (Dynamics)।

১। স্থিতিবিদ্যা : বলবিদ্যার যে শাখায় স্থিতিশীল বস্তুর উপর বলের ক্রিয়া আলোচনা করা হয় তাকে স্থিতিবিদ্যা বলে।

২। পতিবিদ্যা : বলবিদ্যার যে শাখায় গতিশীল বস্তুর উপর বলের ক্রিয়া আলোচনা করা হয় তাকে গতিবিদ্যা বলে।

গতিবিদ্যা আবার দু'প্রকার। যথা–সৃতিবিদ্যা (Kinematics) এবং চলবিদ্যা (Kinetics)।

সৃতিবিদ্যা : গতিবিদ্যার যে শাখায় শূধুমাত্র গতির প্রকৃতি সম্পর্কে আলোচনা করা হয় ; কিস্তু গতির কারণ অনুসম্ধান করা হয় না, তাকে সৃতিবিদ্যা বলে।

চলবিদ্যা : গতিবিদ্যার যে শাখায় গতির প্রকৃতি ও গতির কারণ আলোচনা করা হয় ; অর্ধাৎ বস্তুর গতির উপর প্রযুক্ত বলের প্রভাব আলোচনা করা হয়, তাকে চলবিদ্যা বলে।

সরলরেখা বরাবর চলমান বস্তুর গতিকে রৈখিক গতি বা একমাত্রিক গতি বলে। এ অধ্যায়ে বস্তুর রৈখিক গতি সম্বন্ধে বিস্তারিত আলোচনা করা হবে।

২·২ স্পিতি ও গতি

Rest and Motion

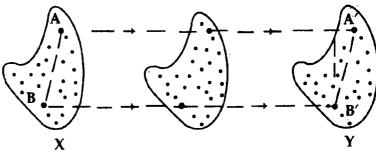
স্থিতি ঃ সময়ের পরিবর্তনের সাথে যখন কোন বস্তুর পারিপার্শ্বিকের সাপেক্ষে মীয় অবস্থানের পরিবর্তন ঘটে না, তখন এর অবস্থাকে স্থিতি বন্দে এবং ঐ বস্তুকে স্থির বস্তু বলে। যেমন, ঘরবাড়ি, গাছপালা প্রভৃতি স্থির বস্তু।

পতি ঃ সময়ের পরিবর্তনের সাথে যখন কোন বস্তুর পারিপার্শ্বিকের সাপেক্ষে ত্বীয় অবস্থানের পরিবর্তন ঘটে, তখন এর অবস্থাকে গতি বলে। এ বস্তুকে সচল বা গতিশীল বস্তু বলে। যেমন চলন্ত মানুষ, চলন্ত গাড়ি প্রভূতি গতিশীল বস্তু।

২৩ গতির প্রকারভেদ

Kinds of motion

গতি পাঁচ প্রকারের হতে পারে ; যথা----


- (১) চলন গতি (Translatory motion)
- (২) খুৰন গতি (Rotatory motion)

বইঘর.কম

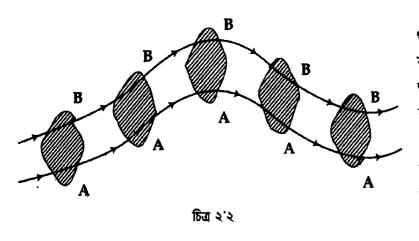
- (৩) চলন-যুঁৰ্ণন গতি বা জটিল গতি (Transla-rotatory motion)
- (8) পর্যাবৃত্ত গতি (Periodic motion) এবং
- (৫) দোলন গতি (Vibratory motion)।

(১) চলন গতি ঃ যদি কোন বস্তু এমনভাবে চলতে থাকে যে তার প্রতিটি কণা একই দিকে সমান দূরত্ব অতিক্রম করে তবে তার এই গতিকে চলন গতি বলে। যেমন একটি পাথরকে কিছু উঁচু হতে মুক্তভাবে অভিকর্ষের টানে পড়তে দিলে তা খাড়া সরলরেখায় নিচের দিকে পড়তে থাকে। সুতরাং পাথরটির গতি চলন গতি।

ধরা যাক একটি দৃঢ় বস্তু চলন গতিতে X অবস্থান হতে Y অবস্থানে পৌছল [চিত্র ২'১]। X অবস্থানে ঐ বস্তুর উপর দুটি বিন্দু A ও B। Y অবস্থানে ঐ বিন্দু দুটির অবস্থিতি A'ও B'। চলন গতির সংজ্ঞানুসারে AA'= BB'। আবার বস্তু দৃঢ় বলে AA' এবং BB' পরস্পর সমান্তরাল (অর্ধাৎ AA' II BB')। সূতরাং,

চিত্র ২°১

চলন গতিসম্পন্ন কোন বস্তুর যে কোন দুটি বিন্দু যোগ করে যে সরলরেখা পাওয়া যাবে, বস্তুটির বিভিন্ন অবস্থিতিতে তারা পরস্পরের সমান্তরালে অবস্থান করবে।


<u>চলন গতি দু</u>ই প্রকা<u>র</u>; যথা—

(ক) সরল চলন গতি বা বাজু গতি (Rectilinear motion) এবং

(খ) বক্ল চলন গতি (Curvilinear motion) ৷

(ক) সরল চলন গতি : যখন কোন বস্তু সরল পথে এমনভাবে চলতে থাকে যে তার প্রতিটি কণা একই দিকে সমপরিমাণ দূরত্ব অভিক্রম করে, তখন এই গতিকে সরল চলন গতি বলে। সরল চলন গতিবিশিষ্ট কোন একটি বস্তুর দুটি বিন্দু যোগ করে যে রেখা পাওয়া যায়, বস্তুটির বিভিন্ন অবস্থানের জন্য তারা পরস্পর সমান্তরাল থাকবে।

চিত্র ২১-এ বস্তৃটির গতি সরল চলন গতি হলে AA' ও BB' সমান ও সমান্তরাল হবে। মুক্তভাবে পড়ন্ত অথবা সরল পথ বরাবর বস্তুর গতি সরল চলন গতি।

(খ) বক্স চলন গডি : চলন গতিসম্পন বস্তু যদি বক্তপথে চলে, তবে বস্তুর ঐ গতিকে বক্ত চলন গতি বলে। জাঁকাবাকা বা বক্তপথে চলন্ত জ্বীপের গতি বক্র চলন গতি।

২'২নং চিত্রে চলন গতিসম্পন্ন একটি দৃঢ় বস্তু বরুপথে চলছে দেখানো হয়েছে। অতএব তার গতি বরু চলন গতি। এই গতিতে বস্তুর দুটি রুণা A ও B-এর সংযোগকারী রেখা তার বিভিন্ন অবস্থিতিতে


পরস্পর সমান্তরাল ও একই অভিমুখী হবে।

(২) মূর্ণন গতি ঃ যখন কোন বস্তু একটি নির্দিষ্ট বিন্দু বা অক্ষের চারদিকে চক্লাকারে পরিভ্রমণ করে,

তখন ভার গতিকে মূর্ণন গতি বলে। যেমন--- বৈদ্যুতিক পাখার গতি, ঘড়ির কাঁটার গতি ইত্যাদি।

রৈখিক গতি

তার গাতকে চলন-খূপন গাও বলে। এই গতিকে জ্বটিল বা মিশ্র গতিও বলে। যেমন গরুর গাড়ির চাকার গতি, সাইকেলের চাকার গতি ইত্যাদি চলার সময় তার চাকা চলন ও ঘূর্ণন-এই দুই গতিই প্রদর্শন করে [চিত্র ২·৩]।

(৪) পর্যাবৃত্ত গতি : যখন কোন বস্তু একটি নির্দিষ্ট সময় পর পর একই পথ পরিভ্রমণ করে বার বার একই দিকে চলতে থাকে, তখন তার গতিকে পর্যাবৃত্ত গতি বলে এবং এ নির্দিষ্ট সময়কে উত্ত গতির পর্যায়কাল বলে। যেমন পৃথিবী 365 দিনে সূর্যের চারদিকে একবার প্রদক্ষিণ করে। সুতরাৎ সূর্যের চারদিকে পৃথিবীর গতি পর্যাবৃত্ত গতি এবং এই গতির পর্যায়কাল 365 দিন। ঘড়ির কাঁটার গতি, গাড়ির সিলিভারে পিস্টনের গতি ইত্যাদিও পর্যাবৃত্ত গতির উদাহরণ।

(৫) দোলন গতি ঃ যখন কোন বস্তু একটি নির্দিষ্ট সময় অন্তর অন্তর বিপরীতমুখী হয় বা এদিক-ওদিক দোল দেয়, তখন তার গতিকে দোলন গতি বলে। যেমন দেয়াল ঘড়ির দোলকটি নির্দিষ্ট সময় পর পর তার স্থিতিশীল অবস্থার ডানে ও বামে দোল দেয়। অতএব দেয়াল ঘড়ির গতি দোলন গতি।

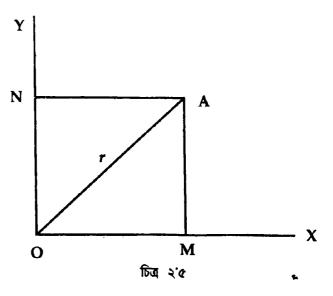
২০৪ প্রসক্ষা বিন্দু ও প্রসক্ষা কাঠামো Reference point and reference frame

যখন আমরা বলি, একটি বস্তু স্থির বা গতিশীল, তখন বুঝতে হবে কোন দ্বিতীয় বস্তুর সাপেক্ষেই প্রথম বস্তুটি স্থির আছে অথবা এর অবস্থানের পরিবর্তন হচ্ছে। কোন বস্তুর অবস্থান অপর একটি নির্দেশ বস্তুর সাপেক্ষে জানতে হলে ঐ নির্দেশ বস্তুর সজ্ঞা স্থানাজ্ঞ জ্যামিতির পন্ধতি অনুযায়ী গঠিত একটি স্থানাজ্ঞ ব্যবস্থা (co-ordinate system) সংযুক্ত আছে ধরে নিতে হয়। একে প্রসঞ্চা বা নির্দেশ কাঠামো (Reference frame) বলে। সুতরাং বলা যায়, যে স্থানাজ্ঞ ব্যবস্থার সাহায্যে বস্তুর অবস্থান নির্ণন্ন করা হয় তাক্ষে প্রসঞ্চা কাঠামো বলে। প্রসঞ্চা কাঠামোর যে বিন্দুর সাপেক্ষে বস্তুর অবস্থান নির্ণন্ন করা হয় তাক্ষে প্রসঞ্চা কাঠামো বলে। প্রসঞ্চা কাঠামোর যে বিন্দুর সাপেক্ষে বস্তুর অবস্থান নির্ণন্ন করা হয় তাক্ষে প্রসঞ্চা কাঠামো point) বলে।

<u>তিন ধরনের প্রসঞ্চা</u> কাঠামো রয়েছে। যথা—(১) একমাত্রিক প্রসঞ্চা কাঠামো, (২) দ্বিমাত্রিক প্রসঞ্চা কাঠামো এবং (৩) ত্রিমাত্রিক প্রসঞ্চা কাঠামো।

(১) একমাত্রিক প্রসঞ্চা কাঠামো (One dimensional reference frame) ঃ মনে করি একটি কণা একটি সরলরেখা OX-বরাবর গতিশীল। বিভিন্ন সময়ে কণাটির অবস্থান একটি বিন্দু সাপেক্ষে নির্ণয় করতে হয়। যে বিন্দুর সাপেক্ষে কণাটির অরস্থান নির্ণয় করা হয়, তাকে প্রসঞ্চা বিন্দু বা নির্দেশ বিন্দু বলে। চিত্রে O-কে প্রসঞ্চা বিন্দু ধরে নেয়া হয়েছে।

OX সরলরেখাকে X-অক্ষ বলা হয়। প্রসক্ষা বিন্দু O এবং X-অক্ষ নিয়ে গঠিত হয়েছে একটি একমান্ট্রিক কাঠামো। এ কাঠামোর সাহায্যে কণার যে-কোন সময়ের অবস্থান নির্ণয় করা হয় [চিত্র ২'৪]।


বইঘর কম মনে কন্নি একটি নির্দিষ্ট সময়ে কণাটি A অবস্থানে আছে। উক্ত সময়ে O বিন্দু হতে কণাটির দূরত্ব = OA = x। কণাটি স্থিতিশীল হলে x-এর একটিমাত্র মান থাকবে। আর কণাটি গতিশীল হলে x-এর মান বিভিন্ন হবে। এখানে x-কে স্থানাজ্ঞ বলা হয়। একটিমাত্র স্থানাজ্ঞ দ্বারা কণাটির অবস্থান নির্দেশিত হওয়ায় কণাটি একমাত্রিক স্থানে অবস্থিত। যে বস্তুর বিভিন্ন কণার অবস্থান একটিমাত্র স্থানাজ্ঞ হারা নির্দেশ করা হয় তাকে একমাত্রিক প্রসঙ্গ কাঠামো বলে।

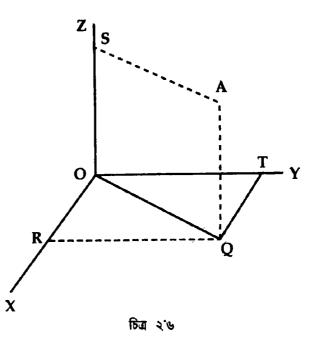
মুক্তভাবে পড়স্ত একটি বস্তুর গতি আলোচনা করলে দেখা যাবে বিভিন্ন সময়ে বস্তুর অবস্থান বিভিন্ন হবে। এর গতি একটি একমাত্রিক কাঠামো দ্বারা প্রকাশ করা যাবে। যে বিন্দু হতে বস্তুটি পড়তে শুরু করে তাকে প্রসঞ্চা **বিন্দু** বলে এবং এর গতিপথ X-অক্ষ ধরা হবে।

উদাহরণ ঃ একটি দীর্ঘ সরু দন্ড, একটি দীর্ঘ সরু সূতা, ঝুলন্ত সূতা ইত্যাদি একমাত্রিক বস্তু ভাবা যায়।

(২) দ্বিমাত্রিক প্রসক্তা কাঠামো (Two dimensional reference frame) : মনে করি একটি কণা একটি সমতলে অবস্থিত। ধরি কণাটি গতিশীল। সেজন্য বিভিন্ন সময়ে এর অবস্থান বিভিন্ন হবে। এর অবস্থান স্চিত করার লক্ষ্যে পরঙ্গর দুটি লম্বিক সরলরেখার দরকার। চিত্রে OX ও OY এর্প দুটি সরলরেখা। এই দুটি সরলরেখা পরস্পর O বিন্দুতে মিলিত হয়েছে। অতএব O হল প্রসঞ্চা বিন্দু বা মূল বিন্দু (reference or origin)। এখানে OX-কে X জক্ষ ও OY-কে Y জক্ষ বলা হয়। প্রসক্তা বিন্দু এবং জক্ষ দুটি মিলে একটি কাঠামো তৈরি হয়েছে। এর নাম শ্বিমাত্রিক প্রসঙ্গ কাঠামো [চিত্র ২ ৫]।

মনে করি একটি নির্দিষ্ট সময়ে একটি কণা A **লবস্থানে আছে। A হতে** OX-এর উপর AM এবং OY-এর উপর AN **লম্ম** টানি। তা হলে OM = AN = x; AM = ON = y! এখানে A-এর অবস্থান x ও y দুটি স্থানাজ্ঞ দ্বারা সূচিত হয়েছে। সোজা কথায় বলা যায় A হল একটি মাত্র বিন্দু যার স্থানাজ্ঞ x ও y। অতএব কোন একটি বস্তুর বিভিনু কণার দুটি স্থানাজ্ঞ থাকলে উক্ত বস্তৃটিকে বিমাত্রিক বস্তু বলে। OA যুক্ত করি। OA = r হলে উক্ত রেখার উপর C, D, E, F ইত্যাদি অনেক বিন্দু থাকবে O হতে যাদের দূরত্ব = r হবে।

উদাহরণ : ফুটবল খেলার মাঠে একটি গতিশীল ফুটবল দ্বিমাত্রিক স্থানে দৌড়াচ্ছে। পাতলা কাগজ, পাতলা ধা<u>তব পাত ইত্যাদি দি</u>মাত্রিক বস্তু।

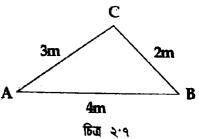

(৩) দ্রিমাত্রিক প্রসঞ্চা কাঠামো (Three dimensional reference frame) : মনে করি বায়ু ভর্তি কামরার মধ্যে একটি কণা অবস্থিত। কণাটির অবস্থান নির্দেশ করার জন্যে পরস্পর লম্বভাবে অবস্থিত তিনটি সরলরেখায় দরকার। ধরি সরলরেখা তিনটি যথাক্রমে OX, OY এবং OZ। সরলরেখা তিনটি পরস্পরকে O বিন্দুতে ছেদ কন্মেতে। অতএব O বিন্দু হল মূল বিন্দু বা প্রসঙ্গ বিন্দু। এখানে OX-কে X অক্ষ, OY-কে Y অক্ষ এবং OZ- কে Z অক্ষ বলা হয়। মূল বিন্দু O এবং তিনটি অক্ষ মিলে যে কাঠামো তৈরি হয়েছে তার নাম ত্রিমাত্রিক প্রসন্ধা িচিত্র ২'ডা।

BG & JEWEL

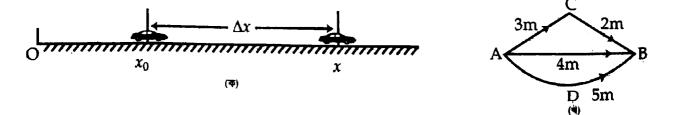
মনে করি কোন নির্দিষ্ট সময়ে কণাটি A অবস্থানে আছে। A হতে XY তলের উপর AQ লম্ম টানি। Q হতে OX-এর উপর QR এবং OY-এর উপর QT লম্ম টানি। A হতে OZ-এর উপর AS লম্ম টানি।

তাহলে OR = QT = x OT = RQ = y এবং OS = AQ = z এখানে A-এর অবস্থান x, y এবং z এই তিনটি স্থানাজ্ঞ দ্বারা নির্দেশ করা হয়েছে। মূল বিন্দু O এবং এই তিনটি স্থানাজ্ঞসহ এই কাঠামোকে ত্রিমাত্রিক কাঠামো বলে। কোন একটি বস্ত্র বিভিন্ন কণা এই কাঠামোয় অবস্থান করলে বস্তুটিকে ত্রিমাত্রিক বস্তু বলে।

উদাহরণ । টেবিল, চেয়ার, ইট, পাথর ইত্যাদি ত্রিমাত্রিক বস্তু।


২.৫ গতি সংক্রান্ত কয়েকটি প্রয়োজনীয় রাশি Some important terms relating to motion

(i) দূরত্ব (Distance) : কোন গতিশীল বস্তুর নির্দিষ্ট সময়ে অতিক্রান্ত পথের দৈর্ঘ্যকে দূরত্ব বলে। ব্যাখ্যা : মনে করি একটি বস্তু A অবস্থান হতে B অবস্থানে গেল। চিত্র ২-৭-এ বস্তুটিকে A হতে B বিন্দুতে যেতে দুটি পথ দেখান হয়েছে। প্রথম পর্থটি সরাসরি A থেকে B-তে এবং দ্বিতীয় পর্থটি ACB পথ। প্রথম কেত্রে দূরত্ব = 4m এবং দ্বিতীয় ক্ষেত্রে দূরত্ব = 3m + 2m = 5m


দূরত্ব একটি স্কেলার রাশি।

একক । এম. কে. এস. (MKS) বা এস. জাই. (SI) পম্বতিতে দূরত্বের এক্ক মিটার (metre সংক্ষেপে m)।

দুরত্বের মাত্রা 🕯 (দূরত্ব] = [L]।

(ii) সরণ (Displacement) : একটি বস্তুর গতি বর্ণনা করার জন্য বস্তুটির সকল সময়ের অবস্থান নির্দেশ করা অপরিহার্য। চিত্র ২৮ (ক)-এ একটি গাড়িকে একমাত্রিক কাঠামোতে সরল পথে গতিশীল দেখান হয়েছে।

চিত্র ২৬৮

ধরা যাক গাড়িটির আদি অবস্থান ভেষ্টর $\overrightarrow{x_0}$ । $\overrightarrow{x_0}$ -এর দৈর্ঘ্য সুবিধামত একটি মূলবিলু O থেকে ধরা হয়েছে। পরবর্তী কোন এক সময় t-এ গাড়িটি নতুন অবস্থানে পৌছেছে যার অবস্থান ভেষ্টর \overrightarrow{x} । গাড়িটির সরণ $\overrightarrow{\Delta x}$ (ডেল্টা

বইঘর.কম

x 'বা' x-এর পরিবর্তন পড়তে হবে) গাড়িটির আদি ও শেষ অবস্থান হতে অঙ্জন করা হয়েছে। এটি একটি ভেষ্টর কেননা এর মান গাড়িটির আদি ও গেষ অবস্থানের মধ্যবর্তী দূরত্বের সমান এবং এর দিক গাড়িটির গতির দিকে।

চিত্র থেকে \overrightarrow{x} এবং $\overrightarrow{x_0}$ এর সচ্চো সরণ $\overrightarrow{\Delta x}$ -এর সম্পর্ক নিম্নরূপ ঃ

$$\vec{x}_{0} + \vec{\Delta x} = \vec{x}$$

$$\vec{a}_{1} \quad \vec{x} - \vec{x}_{0} = \vec{\Delta x}$$
(1)

অতএব সরণ $\overrightarrow{\Delta x}$ হল \overrightarrow{x} এবং $\overrightarrow{x_0}$ -এর মধ্যে পার্থক্য। উল্লেখ্য গ্রীক অক্ষর ডেল্টা (Δ) যে কোন দুটি রাশির পার্থক্য নির্দেশ করে।

সংজ্ঞা ঃ কোন বস্তুর সরণ একটি ডেক্টর যার মান বস্তুটির গতিপথের শেষ এবং আদি অবস্থানের মধ্যে ন্যূনতম দূরত্ব এবং দিক হল আদি থেকে শেষ অবস্থানের দিক।

চিত্র ২·৮ (খ)-এ একটি বস্তুকে A অবস্থান হতে যাত্রা করে B অবস্থানে বিভিন্ন পথে যাওয়ার অবস্থা দেখান → হয়েছে। সকল ক্ষেত্রেই বস্তুটির সরণ = AB এবং সরণের মান = 4 m।

সরণ এবং দূরত্ব এক নয়। চিত্র ২৮ (খ)-এ AB পথে দূরত্ব 4 m, ACB পথে 5 m এবং ADB পথে 5 m; কিন্তু সরণের মান ন্যূনতম দূরত্ব অর্থাৎ 4 m।

সমীকরণ (1) ভেষ্টররূপে লেখা যায়,

 $\Delta x \hat{i} = x \hat{i} - x_0 \hat{i}$

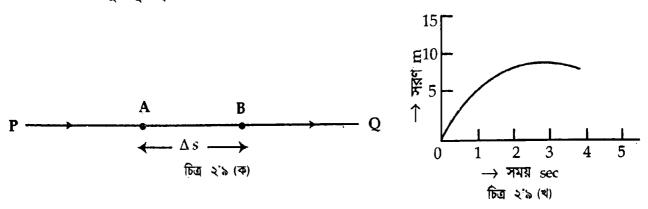
এখানে \hat{i} হল X অক্ষ বরাবর একক তেষ্টর। সাধারণত একমাত্রিক গতির ক্বেত্রে \hat{i} ব্যবহার না করলেও ক্ষতি নেই ; শুধুমাত্র রাশির উপর ভেষ্টর চিহ্ন দিলেই চলে।

সরণ যদি বিপরীত দিকে হয় তবে ঋণাত্মক চিহ্ন দ্বারা প্রকাশ করা হয়। যেমন $\Delta \vec{x} = 50 \text{ m}$ এবং $\Delta \vec{x} = -50 \text{ m}$ । দুটিই সমান মানের সরণ প্রকাশ করে ; কিন্তু একটির দিক অপরটির বিপরীত। অর্ধাৎ একটি যদি পূর্ব দিকে গতিশীল হয় তবে অপরটি পশ্চিম দিকে হবে।

সরণের একক : এম. কে. এস. ও এস. আই. পন্ধতিতে সরণের একক হল মিটার (m)।

সরপের মাত্রা সমীকরণ ঃ [সরণ] = [L]

(iii) **দুডি** (Speed) ঃ সাধারণভাবে, কোন বস্তু একক সময়ে যে দূরত্ব অতিক্রম করে তাকে দ্রুতি বলা হয়। তবে প্রকৃত অর্ধে দ্রুতি জানতে হলে গড় দুতি কাকে বলে জানা দরকার।


গড় দ্রুডি (Average speed) **ঃ** কোন বস্তু কর্তৃক অতিক্রাস্ত মোট দূরত্ব এবং মোট ব্যয়িত সময়ের ভাগকলকে গড় দ্রুডি বলে।

ব্যাখ্যা : মনে করি কোন একটি গতিশীল বস্তু মোট সময় t-এ মোট দূরত্ব s অতিক্রম করল,

গড় দ্রতি $\overline{v} =$ মোট অতিক্রান্ত দূরত্ব $= \frac{s}{t}$

রৈথিক গতি BG & JEWEL

তাৎক্ষণিক মৃতি বা দুডি (Instantaneous speed or speed) ঃ সময় ব্যবধান শৃন্যের কাছাকাছি হলে সময়ের সংগে বস্তুর দূরত্বের পরিবর্তনের হারকে তাৎক্ষণিক দুতি বা দুতি বলে।

ব্যাখ্যা ঃ মনে করি সরল পথে গতিশীল একটি বস্তু t সময়ে অবস্থান A এবং $(t + \Delta t)$ সময় পর এর অবস্থান B [চিত্র ২ ৯ (ক)]।

এখানে Δt অতি ক্ষুদ্র সময়। ধরি AB = ক্ষুদ্র দূরত্ব Δs। অর্থাৎ অতি ক্ষুদ্র সময় Δt-এ বস্তুটি অতি ক্ষুদ্র দূরত্ব Δs অতিব্রুম করছে।

গড় দুতি $\overline{v} = \frac{\Delta s}{\Delta t}$ ।

এখানে Δt আরও ক্ষুদ্র হলে, অর্থাৎ $\Delta t'$ শূন্যের কাছাকাছি হলে Δs -ও ক্ষুদ্র হবে। সেক্ষেত্রে B বিন্দুর অবস্থান A বিন্দুর খুবই কাছাকাছি হবে। এ অবস্থায় $rac{\Delta s}{\Delta t}$ বস্তুর তাৎক্ষণিক দ্রুতি নির্দেশ করবে।

তাৎক্ষণিক দুতি, $v = {Lt \over \Delta t} {\Delta s \over \Delta t} = {ds \over dt}$ ${ds \over dt}$ -কে বলা হয় সময় সাপেক্ষে দূরত্ত্বের ব্যবকলন (derivative of s with respect to t) । অতএব, $v = {Lt \over \Delta t} {\overline v}$

সুতরাং, দ্রুতির প্রকৃত সংজ্ঞা হবে—সময় ব্যবধান শূন্যের কাছাকাছি হলে গড় দ্রুতির সীমাস্তিক মান (limiting value) দ্রুতির সমান।

দুতির শুধু মান আছে, কিন্তু দিক নেই। অতএব দুতি একটি স্কেলার রাশি।

দুতির একক ঃ এম. কে. এস. ও এস. আই. পম্ধতিতে দুতির একক মিটার/সেকেন্ড (ms⁻¹)

দুতি সাধারণত দুই প্রকার ; যথা-(ক) সমন্ত্রতি (uniform speed)-এবং (খ) অসম দুতি (variable speed)।

(ক) সমদ্র্তি ঃ দ্রুতির মান যদি সবসময় ধ্রুব থাকে তবে তাকে সমদ্রুতি বলে। বস্তু সমদ্রতিতে চললে গড় দ্রুতি ও দ্রুতি একই হয়।

(খ) অসম দ্রুতি ঃ দ্রুতির মান পরিবর্তনশীল হলে অর্ধাৎ বিভিন্ন সময়ে বিভিন্ন মানের হলে তাকে অসম দ্রুতি বলে।

(iv) বেগ (velocity) ঃ দ্রুডি দ্বারা গতিশীল বস্তৃটির অবস্থান পরিবর্তনের কোন দিক বুঝা যায় না। অর্ধাৎ বস্তৃটি উত্তরে যাচ্ছে না পূর্বে যাচ্ছে, বা গতিপথে কোন দিক পরিবর্তন করেছে কিনা কিছুই জানা যায় না। শুধুমাত্র পরিমাণ জানা যায়। সুতরাং অবস্থান পরিবর্তনের হার এবং দিক উভয়ই জানার জন্য অপর একটি রাশি ব্যবহার করা বইঘর.কম

হয়, যার নাম বেগ। বেগের সংজ্ঞা দেয়ার পূর্বে গড়বেগ আলোচনা করা যাক, কেননা আমরা গড়বেগের সাহায্যে তাৎক্ষণিক বেগ বা বেগ সংজ্ঞায়িত করা হবে।

গড় বেগ (Average velocity) ঃ যে কোন সময় ব্যবধানে কোন বস্তুর মোট সরণকে ঐ সময় ব্যবধান দিয়ে ভাগ করলে যে রাশি পাওয়া যায় তাকেই বস্তুটির গড় বেগ বলে।

ব্যাখ্যা : মনে করি Δt সময় ব্যবধানে একটি বস্তুর মোট সরণ $\Delta \vec{r}$

গড় বেগ,
$$\overrightarrow{v} = \frac{\Delta \overrightarrow{r}}{\Delta t}$$

যৃদি বস্তৃটির গতি একমাত্রিক হয় এবং বস্তুটি X-জন্ধ বরাবর গতিশীল হয়, সেক্ষেত্রে বেগের একটিমাত্র উপাংশ থাকে। উপাংশটি হবে---

$$\overrightarrow{v}_{x} = \frac{\Delta x}{\Delta t} \hat{i} \qquad [\because \text{ and } \overrightarrow{v} = x \hat{i}]$$

এবং গড় বেগের মান $\overline{v_x} = \frac{\Delta x}{\Delta t}$ ।

তাৎক্ষণিক রেগ বা বেগ (Instantaneous velocity or velocity) : সময়ের ব্যবধান শৃন্যের কাছাকাছি হলে বস্তুর সরণের হারকে তাৎক্ষণিক বেগ বা বেগ বলা হয়। তাৎক্ষণিক বেগ বলতে কোন বস্তুর বিশেষ মুহূর্তের বেগ বুঝায়। কোন বস্তুর তাৎক্ষণিক বেগ নির্ণয় করতে হলে যে মুহূর্তের বেগ নির্ণয় করতে হবে ঠিক তার পূর্ববর্তী এবং পরবর্তী মুহূর্তে বস্তুটির অবস্থান জানা প্রয়োজন। পূর্ববর্তী এবং পরবর্তী মুহূর্তে বা সময়ের ব্যবধান অবশ্যই অত্যন্ত ক্ষুদ্র হতে হবে (প্রায় শৃন্যের কাছাকাছি)।

ব্যাখ্যা : ধরা যাক একটি মোটর গাড়ি 4 ঘণ্টায় 160 km দূরত্ব অতিরুম করছে। সুতরাং গাড়িটির গড় দুতি (average speed) হবে 160 km/4 hr = 40 km/hr। তবে এটা ষাভাবিক নয় যে গাড়িটি সারাক্ষণ একই দিকে 40 km/hr স্ধির দুতিতে চলেছে। কখনও রাস্তা ফাঁকা পেয়ে গাড়ির দুতি বাড়ানো হয়েছে। আবার কখনও যানজটের কারণে বা পথচারীকে পারাপারের সুযোগ দিতে বা অন্য কোন গাড়িকে আগে যাওয়ার সুযোগ দিতে গতি কমাতে হয়েছে। রাস্তাও যে একেবারে সরল পথে ছিল তাও নয়। কোথাও ডানে আবার কোথাও বায়ে বাঁক নিতে হয়েছে। অর্ধাৎ দিকেরও পরিবর্তন হয়েছে। এখন এ পথ যাত্রার সম্পূর্ণ ধারণা পেতে হলে গাড়িটির প্রতিটি মুহূর্তের দুতি ও দিক অর্ধাৎ তাৎক্ষণিক বেগ জানা দরকার। তাৎক্ষণিক বেগের ও দুতির পরিপূর্ণ ধারণা পাওয়ার ক্ষন্য নিম্নে একটি উদাহরণ দেওয়া হল।

ধরা যাক একটি মোটর গাড়ি সরল পথে স্ধির অবস্থা থেকে সক্ষেত পাওয়ার সক্ষো সক্ষো অসমত্বরণে পশ্চিম দিক থেকে পূর্ব দিকে 50 মিটার পথ অতিক্রম করার জন্য চলা শুরু করল [চিত্র ২'১০] এবং 5 সেকেন্ডে নির্দিষ্ট পথ অতিক্রম করল। সুতরাং এক্ষেত্রে গাড়ির গড় বেগ 50 m/5s = 10 ms⁻¹ হবে।

এই 5 সেকেন্ডের মধ্যে গাড়ির বেগ পরিবর্তনের সম্পূর্ণ চিত্র পাওয়ার জন্য গাড়ির চলার শুরু থেকে শেষ পর্যন্ত ধরা যাক প্রতি 0'5 সেকেন্ড পরপর গাড়ির অবস্থানের আলোকচিত্র গ্রহণ করা হল।

গাড়িটি যেহেতু রৈখিক বা একদিকে চলছে সুতরাং বিভিন্ন সময়ে গাড়ির অবস্থানকে x-অক্ষ দ্বারা নির্দেশ রতে পারি। শুর 0 শেষ সময় 0 s 2'0 s -3*5 s

চিত্র ২'১০

উপরের চিত্রে বিভিন্ন সময়ে গাড়ির অবস্থান x-এর মান লিপিবন্ধ করা হয়েছে।

সারণি	2	9	বিভিন্ন	সময়ে	গাড়ির	অবস্থান	এবং	দুতি	l

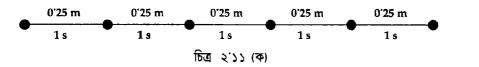
t (s)	x (m)	Δx (m)	$\frac{\Delta x}{\Delta t} = \overline{v} (m/s)$
0.0	0.0 }	3.0	$\frac{3.0}{0.5} = 6$
0.2	3.0		
1.0	7.0	4.0	$\frac{4.0}{0.5} = 8$
1.5	11.5	4.2	$\frac{4.5}{0.5} = 9$ $\frac{4.0}{0.5} = 8$ $\frac{3.5}{0.5} = 7$
2.0	15.5	4.0	$\frac{40}{0.5} = 8$
2 [.] 5	19.0	3 5	$\frac{3.3}{0.5} = 7$
3 [.] 0	23.0	4.0	$\frac{4^{\circ}0}{0^{\circ}5} = 8$
3 .5	28.0	5.0	$\frac{50}{0.5} = 10$
4.0	34.0	6.0	$\frac{5.0}{0.5} = 10$ $\frac{6.0}{0.5} = 12$
4.2	41.5 }	7.5	$\frac{7.5}{0.5} = 15$
5.0	50.0 }	8 [.] 5	$\frac{8.5}{0.5} = 17$

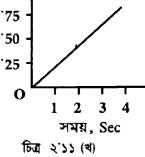
সারণী লক্ষ্য করলে দেখা যাবে সে গাড়ি য়খন সময় t = 0, গাড়ির অবস্থান (x) 0 m, পরবর্তী 0.5 s পরে গাড়ির অবস্থান x = 3m সুতরাং এ সময়ে গাড়ির গড় বেগ হবে,

$$\vec{v}_x = \vec{\Delta x} = \vec{\Delta x}$$
 = \vec{w} বস্থানের পরিবর্তন
পরিবর্তনে ব্যয়িত সময় = $\frac{3 \text{ m} - 0 \text{ m}}{0.5 \text{ s} - 0 \text{ s}} = \frac{3 \text{ m}}{0.5 \text{ s}} = 6 \text{ ms}^{-1}$

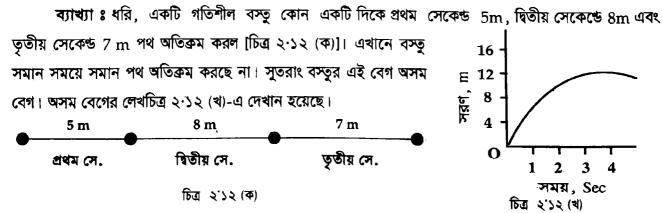
রৈখিক গতি

বইঘর.কম


দুটি বস্তু যদি কোন বিন্দু হতে পরস্পরের সাথে lpha কোণ উৎপন্ন করে v_0 এবং v সমবেগে চলতে থাকে, তবে v বেগে গতিশীল বস্তুর সাপেক্ষে v_0 বেগে গতিশীল বস্তুর আপেক্ষিক বেগ নির্ণয় করতে হলে v-এর সমান ও বিপরীত একটি বেগ নিয়ে v₀ এবং এই নতুন বেগ দ্বারা একটি সামান্তরিক অঙ্জন করতে হবে। অঙ্জিত সামান্তরিকের কর্ণ দ্বারাই নির্ণেয় আপেক্ষিক বেগের মান ও দিক নির্দেশ করা যাবে।


বেগের মান ও দিক দুই-ই আছে। সুতরাং, বেগ একটি ভেক্টর রাশি।

বেগ দুই প্রকার; যথা-(ক) সমবেগ (Uniform velocity) এবং (খ) অসমবেগ (Variable velocity)।


(ক) সমবেগ ঃ যদি বেগ সব সময় ধ্ব থাকে তবে তাকে সমবেগ বলে। কাজেই সমবেগসম্পন্ন বস্তুর বেগের মান ও দিক সময়ের সাথে অপরিবর্তিত থাকে এবং বস্তুর উপর বলের লব্দি শূন্য।

ব্যাখ্যা ঃ ২.১১ (ক) নং চিত্রে পাঁচটি বিন্দু দ্বারা 1 সেকেন্ড পর পর কোন একটি সরলরেখা বরাবর একই দিকে গতিশীল একটি বস্তুর অবস্থান প্রকাশ করা হয়েছে। এখানে পর পর দুটি বিন্দুর মধ্যবর্তী দূরত্ব 0.25m। গতি অনুসারে বস্তুটি একই অভিমুখে প্রতি সেকেণ্ড 0[.]25m দূরত্ব অতিক্রম করছে 1'00 এবং সমান সময়ে সমান পথ অতিক্রম করছে। কাজেই বস্তুর এ বেগ সমবেগ ε 0'75 দরণ এবং সমবেগের মান 0°25 ms-1 । ২০১১ (খ) নং চিত্রে সরণ বনাম সময় 0'50 লেখচিত্র দ্বারা সমবেগ দেখান হয়েছে। 0'25

(খ) অসম বেগ ঃ যদি ভিন্ন ভিন্ন সময়ে বস্তুর বেগ ভিন্ন ভিন্ন হয় তবে তাকে অসম বেগ বলে। কাজেই সময়ের সাথে সরণের হারের মান অথবা দিক অথবা উভয়েই পরিবর্তিত হলে ঐ সুরণের হারই অসম বেগ।

একটি বস্তুর সমবেগ 5 m/s। উক্তিটির অর্থ বস্তুটি একটি নির্দিষ্ট দিকে প্রতি সেকেন্ডে 5m দূরত্ব অতিব্রুম করে চলছে।

২ ৯ নং চিত্রানুযায়ী বস্তুটি যদি P বিন্দু হতে Q বিন্দু হয়ে R বিন্দুতে যেতে সর্বমোট 5 সেকেন্ড সময় ব্যয় করে তবে P হতে R অভিমুখে বস্তুটির সমবেগের মান, $\overline{v} = \frac{7\pi n}{7\pi n} = 1 m/s$ হলে বস্তুটি উক্ত সময়ে P হতে R-এ পৌছবে।

ত্বরণ (Acceleratron) ঃ যখনই কোন বস্তুর বেগের পরিবর্তন ঘটে, আমরা বলি বস্তুটি ত্বরিত হয়েছে। বস্তুর ক্রম পরিবর্তনশীল বেগ অর্থাৎ সময়ের সাথে বস্তুটির বেগের হার নির্দেশ করার জন্য যে রাশি ব্যবহার করা হয় তাই ত্বরণ। সাধারণভাবে বস্তু<mark>র বেগ পরিবর্তনের হারকে ত্বরণ বলে</mark>। ত্বরণের সংজ্ঞা দেওয়ার পূর্বে আমরা গড় তুরণ সংজ্ঞায়িত ও আলোচনা করব।

গড় ত্ব্বনণ (Average acceleration) ঃ কোন একটি গতিশীল বস্ত্র বেগের পরিবর্তন এবং ঐ পরিবর্তনের জন্য ব্যয়িত সময়ের তাগফলকে গড় ত্ব্বনণ বলে।

ব্যাখ্যা ঃ মনে করি t_0 সময়ে কোন একটি বস্তুর বেগ $\overrightarrow{v_0}$ এবং পরবর্তী t সময়ে বস্তুটির বেগ \overrightarrow{v} । এখানে সময়ের পরিবর্তন বা ব্যবধান হল $t_t - t_0 = \Delta t$ এবং বেগের পরিবর্তন $\overrightarrow{v} - \overrightarrow{v_0} = \overrightarrow{\Delta v}$

অতএব সংজ্ঞানুসারে বস্তুটির গড় ত্বুরণ,

$$\overrightarrow{a} = \frac{\overrightarrow{v} - \overrightarrow{v}_{0}}{t - t_{0}} = \frac{\Delta \overrightarrow{v}}{\Delta t}$$

একমাত্রিক গতি X-অক্ষ বরাবর হলে গড় ত্বরণ হবে,

$$\overrightarrow{a}_{x} = \frac{\Delta v_{x}}{\Delta t} \quad i$$

এর মান হবে,

$$\overrightarrow{a}_{x} = \frac{\Delta v_{x}}{\Delta t} |$$

ডাৎক্ষণিক ত্বরণ বা ত্বরণ (Instantaneous acceleration or acceleration) ঃ কোন একটি গতিশীল বস্তুর সময় ব্যবধান শূন্যের কাছাকাছি হলে বেগ পরিবর্তনের হারকে তাৎক্ষণিক ত্বরণ বা সংক্ষেপে ত্বরণ বলে।

ব্যাখ্যা ঃ ধরা য়াক, অত্যন্ত অন্ন সময়ে Δt -এ কোন বস্তুর বেগ পরিবর্তন Δv হয়। তাহলে Δv - কে Δt দ্বারা ভাগ করলে তাৎক্ষণিক বেগ পাওয়া যায়। বস্তুটির বেগের পরিবর্তনকে যে খুবই স্বল্প সময়ে এ পরিবর্তন ঘটেছে তা দিয়ে ভাগ দিলে তাৎক্ষণিক ত্বরণ পাওয়া যায়।

অতএব, তাৎক্ষণিক ত্বুরণ $\overrightarrow{a} = \stackrel{\text{Lt}}{\Delta t} \xrightarrow{\Delta v}{\Delta t}$

সময়ের ব্যবধান ∆t এত ক্ষুদ্র হতে হবে (প্রায় শুন্যের কাছাকাছি) যেন ত্ব্রণের পরিবর্তন ঐ সময় ব্যবধানের মধ্যে খুবই সামান্য হয়।

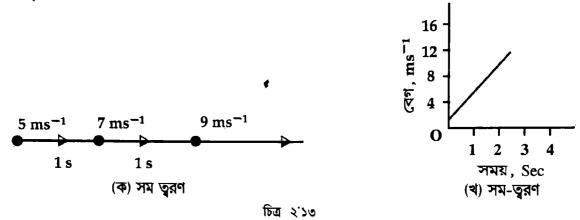
সুতরাং, কোন বিন্দুতে তাৎক্ষণিক ত্বুরণ

$$\overrightarrow{a} = \underbrace{\operatorname{Lt}}_{\Delta t} \xrightarrow{\Delta \overrightarrow{v}}_{0 \ \Delta t} = \frac{\overrightarrow{dv}}{dt}$$
with a $\overrightarrow{a} = \underbrace{\Delta \overrightarrow{v}}_{\Delta t}$

$$\overrightarrow{a} = \underbrace{\operatorname{Lt}}_{\Delta t \rightarrow 0} \overrightarrow{\overrightarrow{a}}$$

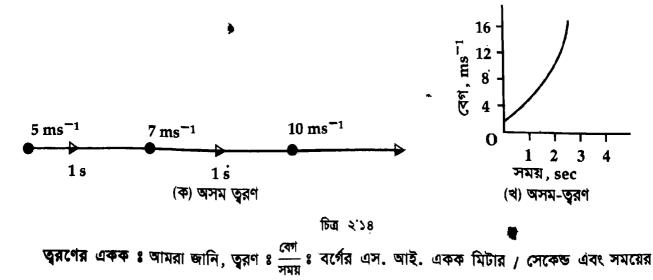
সুতরাং, তাৎক্ষণিক ত্বরণ বা ত্বরণের সংজ্ঞা নিমন্থপ ঃ সময় ব্যবধান শূন্যের কাছাকাছি হলে, গড় ত্বরণের সীমান্তিক মান ত্বরণের সমান। তুরণের মান হবে,

 $a = \left| \frac{d v}{dt} \right|$ উল্লেখ্য, কোন বিন্দুতে তাৎক্ষণিক ত্বরণ ঐ বিন্দুতে বস্তুটির বেগের লম্ব বরাবর হবে।


৬০

ত্বরণ দুই প্রকার। যথা-(ক) সমত্বরণ (uniform acceleration) ও (খ) অসমত্বরণ (variable acceleration)।

(ক) সমত্বরণ : ত্বরণ যদি সব সময় ধ্রব হয় তবে তাকে সমত্বব্ধা বলে। অভিকর্ষের টানে মুক্তভাবে পড়ন্ত বস্তুর ত্বরণ সমত্বরণ। সমত্বরণশীল বস্তূতে সমবল ক্রিয়া করে। স্বুমত্বরণে ত্বরণের মান ও দিক উভয়ই ধ্রব থাকে।


২ ১৩ (ক) চিত্রে একটি সরলরেখা বরাবর বস্তৃর পর পর সেকেন্ডের বেগ দেখিয়ে তার ত্বরণের প্রকৃতি নির্দেশ করা হয়েছে। ২·১৩ (খ) চিত্রে লেখচিত্রের সাহায্যে সমত্বরণ দেখানো হয়েছে। এখানে সমত্বরণের মান 2ms⁻²। সমত্বরণের ক্ষেত্রে লেখচিত্র সরলরেখা এবং ঢাল সর্বত্র সমানু হয়।

একটি বস্তুর সমত্বরণ 10 ms⁻²-এ উক্তি দ্বারা বুঝা যায় একই দিকে বস্তুর বেগ প্রতি সেকেন্ডেই 10 ms⁻¹ বৃষ্ণি পাচ্ছে।

অসম ত্বরণ ঃ সময়ের সাথে যখন ত্বরণ ভিন্ন-ভিন্ন হয় তাকে অসম ত্বরণ বলে। ত্বরণের মান ও দিক, কিংবা মান অথবা দিক পরিবর্তনের জন্য অসম ত্বরণ সৃষ্টি হতে পারে। বাস, ট্রেন, মোটরগাড়ি ইত্যাদির ত্বরণ অসম ত্বরণের উদাহরণ। এক কথায় গতিশীল প্রায় বস্তুর ত্বরণই অসম ত্বরণ।

২⁻১৪ (ক) ও (খ) চিত্রে যথাক্রমে সরললেখা ও লেখচিত্র দ্বারা অসম ত্বুরণ দেখান হয়েছে। লেখচিত্রে বিভিন্ন বিন্দুতে ঢাল তিন্ন তিন্ন হয়।

একক সেকেন্ড।

সুতরাৎ ত্বুরণের একক ঃ মিটার/ সেকেন্ড = মিটার সেকেন্ড = সেকেন্ড = ms-2

ত্বরণের মাত্রা সমীকরণ : ত্বরণ = $\frac{con}{\pi \pi a}$ । বেগের মাত্রা LT^{-1} এবং সময়ের মাত্রা T_{1}

সুতরাং, ত্বরণের মাত্রা = $\frac{\Gamma T^{-1}}{T}$ = $L T^{-2}$

ত্বরণের মাত্রা সমীকরণ, [ত্বুরণ] = [LT⁻²]

মন্দন (Retardation) ঃ কোন গতিশীল বস্তুর বেগ পরিবর্তনের হার ধনাত্মক ও ঝণাত্মক হতে পারে। বেগ পরিবর্তনের হার ধনাত্মক হলে তাকে ত্বরণ এবং ঝণাত্মক হলে তাকে মন্দন বলে। অর্থাৎ, **ঋণাত্মক ত্বরণকে** মন্দন বলে। বস্তুর বেগ এক সেকেন্ডে যতটুকু হ্রাস পায় জ্ঞা দ্বারা মন্দন পরিমাপ করা হয়।

মন্দনের একক ও মাত্রা সমীকরণ ত্বুরণের অনুরূপ।

[বিঃ দ্র ঃ এই বই-এ দ্রুতি, বেগ ও ত্বুরণ বলতে আমরা তাৎক্ষণিক দ্রুতি, তাৎক্ষণিক বেগ ও তাৎক্ষণিক ত্বুরণ বুঝাব]

২৬ বেগ ও ত্বরণের মধ্যে পার্থক্য

Difference between velocity and acceleration

বেগ ও ত্বুরণ দুটি পৃথক রাশি। এদের মধ্যে নিম্নলিখিত পার্থক্য রয়েছে ৪

বেগ	ত্ববণ	
১। সময়ের ব্যবধান শূন্যের কাছাকাছি হলে বস্তুর	১। সময়ের ব্যবধান শূন্যের কাছাকাছি হলে বেগ	
সরণের হারকে বেগ বলে।	বৃন্ধির হারকে ত্বুরণ বলে।	
৩। এম. কে. এস. ও জান্তর্জাতিক পম্বতিতে এর একক	৩। এম. কে. এস. ও আন্তর্জাতিক পম্ধতিতে এর	
মিটার/সে. (ms ⁻¹)।	একক মিটার/সে.² (ms ⁻²)।	
৪। এর মাত্রা সমীকরণ = $[LT^{-1}]$	৪। এর মাত্রা সমীকরণ = [LT ²]।	
৫। গতিশীল বস্তুর উপর বল ক্রিয়া না করলে এটি	৫। গতিশীল বস্তুর উপর বল ক্রিয়া না করলে এর	
সরলরেখায় সমবেগে চলে।	ত্বুরণ থাকবে না।	

২.৭ গতির সমীকরণ **Equations of motion**

পূর্বের অনুচ্ছেদে দূরত্ব, সরণ, বেগ, ত্বরণ ইত্যাদি রাশিগুলো সম্বন্ধে আলোচনা করা হয়েছে। এই রাশিগুলো পরস্পর সম্পর্কযুক্ত। এগুলোকে কয়েকটি সমীকরণের সাহায্যে প্রকাশ করা হয়। এই সমীকরণগুলোকে গতির সমীকরণ বলে। সমীকরণগুলো নিম্নে আলোচিত হল।

একমাত্রিক গতির ক্ষেত্রে বস্তু সরলরেখায় গতিশীল থাকে, তাই গতির সঞ্চো সংশ্লিষ্ট রাশিগুলো যেমন সরণ, বেগ, ত্বরণ ইত্যাদির একটি মাত্র উপাংশ থাকে (X-অক্ষ বরাবর গতশীল হলে শুধ্মাত্র X-উপাংশ থাকবে। Y ও Z উপাংশ শূন্য হবে।) নিম্নে রৈখিক গতির সমীকরণগুলো প্রতিপাদন করার সময় বস্তৃটি X-অক্ষ বরাবর গতিশীল ধরা হবে। সেক্ষেত্রে গতি সংক্রান্ত রশির প্রতীকগুলোর সজ্ঞা অক্ষ নির্দেশক পদাংক ব্যবহার না করলেও চলে। তাই সাধারণভাবে বেগ v_x কে v এবং a_x কে a দারা প্রকাশ করা হবে।

[বিঃ দ্রঃ একমাত্রিক গতির ক্ষেত্রে যেহেতু একটি বস্তু নির্দিষ্ট দিকে গতিশীল থাকে, তাই সরণ ও দুরত্ব, বেগ ও বেগের মান তথা দূতি, ত্বরণ ও ত্বরণের মান একই অর্ধ বহন করে।]

હર

রৈখিক	গতি

বইঘর.কম

<u> </u>	
(ক) প্রথম সমীকরণ—(i) সমবেগে গতিশীল বস্তুর দূরত্বের সমীকরণ ($s=vt$) বা,	$x = x_0 + v_x t \$$
মনে করি একটি বস্তৃ v সমবেগে চলছে।	
সমবেগের সংজ্ঞা হতে আমরা পাই,	
বস্তুর 1 সেকেণ্ডে অতিক্রন্ত দূরত্ব $=v imes 1$	
সুতরাং "t"" = $v \times t$	
এই t সেকেন্ডে অতিক্রান্ত দূরত্ব s দ্বারা সূচিত করলে আমরা পাই,	
$s = v \times t$	(2)
অর্থাৎ দূরত্ব = সমবেগ × সময়	
χ -অক্ষ বরাবর গতিশীল বস্তুর আদি অবস্থান x_0 এবং শেষ অবস্থান x হলে,	
$s_{-}=x_{-}-x_{0}$ হয়। সেক্ষেত্রে সমীকরণ (2)-কে লেখা যায়,	
$x - x_0 = vt$	
বা, $x = x_0 + vt$	2(a)
ক্যালকুলাস পম্বতি ঃ মনে করি একটি বস্তু নির্দিষ্ট দিকে সমবেগে গতিশীল।	
ধরি, বস্তৃটির সমবেগ= v	
জ্ঞাদি সরণ $= 0$	
t সেকেন্ডে অতিক্রান্ত দূরত্ব $\Rightarrow s$	
অতি ক্ষুদ্র সময় dt সেকেন্ডে অতিক্রান্ত দূরত্ব ds হলে	
t+dt সেকেণ্ডে অতিক্রান্ত দুরত্ব = $s+ds$	
আমরা জানি,	
বেগ, $v = \frac{ds}{dt}$	
\overline{A} t, $ds = vdt$	(3)
যখন t = 0, তখন s = 0 এবং t = t তখন s = s	
সমীকরণ (3)-কে উল্লিখিত সীমার মধ্যে সমাকলন করে পাওয়া যায়	
$\int_0^s ds = \int_0^t v dt$	
বা, $\int_0^s ds = v \int_0^t dt \ [\cdots v \xi] ds$	
বা, $s = v \times t$	(4)
যদি বস্তৃটি X-অক্ষের দিকে গতিশীল হয় এবং গতির শুরুতে অর্থাৎ যখন $t=0$, তখন s =	= x ₀ এবং যখন + +
$r_s = x$ এবং বেগ, $v = v_x$ হয়, তবে সমীকরণ (3)-কে উপরোক্ত সীমার মধ্যে সমাকলন ক	র পাই
v .t	
$\int_{x_0}^{x} ds = v_x \int_{0}^{t} dt$	
বা, $[s]_{x_0}^x = v_x [t]_0^t$	
বা, $x - x_0 = v_y t$	
বা, $x = x_0 + v_x t$	(5)
(ii) অসম বেগে গতিশীল বস্তুর সরণ, বেগ ও সময়ের সম্পর্ক : বস্তুটি অসম	
বেগ নিতে হয়।	ι ψηψη τι≪ τι τι τ, ψ"Ι
671 m6~ 人と 1	

BG & JEWEL

মনে করি সময় গণনার শুরুতে অর্থাৎ সময় t=0 , তখন বস্তৃটির আদি অবস্থান x_0 এবং t সময়ে এর অবস্থান χ ।

জতএব, বস্তুর সরণ, $\Delta x=x-x_0$ এবং জতিক্রান্ত সময় $\Delta t=t-0=t$ । আমরা জানি,

গড় বেগ
$$\overline{v} = \frac{\Delta x}{\Delta t} = \frac{x - x_0}{t}$$

বা, $x - x_0 = \overline{v} t$
বা, $x = x_0 + \overline{v} t$ (6)

শুরুতে বস্তৃটি স্থির অবস্থা থেকে যাত্রা শুরু করলে $x_0=0$ হবে,

সেক্ষেত্রে সমীকরণ (5) নিম্নরূপ হবে,

 $x = 0 + \overline{vt} = \overline{vt} \tag{6(a)}$

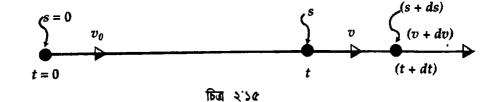
(iii) সমত্বরণে গতিশীল বস্তুর সরণ, বেগ ও সময়ের সম্পর্ক ঃ মনে করি, X-অক্ষ বরাবর a সমত্বরণে একটি বস্তু গতিশীল রয়েছে। Δt সময় ব্যবধানে বস্তুটির সরণ Δx হলে গড়বেগ,

$$\overline{v} = \frac{\Delta x}{\Delta t} = \frac{x - x_0}{t} \tag{7}$$

এখানে t=0 অর্থাৎ শুরুতে বস্তুটির অবস্থান x_0 এবং t সময়ে বস্তুটির অবস্থান |x|

এখন সমত্বরণে গতিশীল কোন বস্তুর গড়বেগ সময় ব্যবধানের শুরু এবং শেষ বেগের মানদ্বয়ের সমষ্টির অর্ধেক হয়। অর্ধাৎ

$$\overline{v}=rac{v_{0}+v}{2}$$
, এখানে $v_{0}=$ আদি বেগ ও $v=$ শেষ বেগ

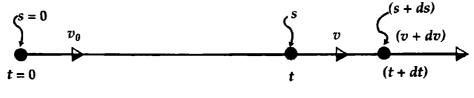

সমীকরণ (7)-এ 🖉-এর মান বসিয়ে পাওয়া যায়

$$\frac{v_0 + v}{2} = \frac{x - x_0}{t}$$
All, $x - x_0 = \frac{1}{2} (v_0 + v)t$
All, $x = x_0 + \frac{1}{2} (v_0 + v)t$
(8)

বস্তুর সরণ $\Delta x = x - x_0 = s$ লিখলে সমীকরণ (8)-কে লেখা যায়

$$s = \frac{1}{2}(v_0 + v)t$$
 8(a)

(খ) দ্বিতীয় সমীকরণ—সমত্বরণে গতিশীল বস্তুর শেষ বেগের সমীকরণ ($v = v_0 + at$ বা $v_x = v_{x0} + a_x t$) মনে করি, একটি নির্দিফ্ট দিকে একটি বস্তুর আদিবেগ v_0 এবং প্রতিসেকেন্ডে বস্তুর বেগ a পরিমাণ বৃদ্ধি পায় অর্ধাৎ সমত্বরণ $a \mid t$ সময় পরে বস্তুর বেগ v_0 নির্ণয় করতে হবে।


বস্তুটির 1 সেকেন্ডে বেগ বৃম্বি = a

" t " " " " "

এখন, শেষ বেগ = আদিবেগ + বেগ বৃশ্বি বইঘর.কম
বা,
$$v = v_0 + at$$
 (9)
অর্থাৎ, শেষ বেগ = আদি বেগ + জ্বরণ × সময়
যদি বস্তুর আদি বেগ না থাকে অর্থাৎ বস্তু স্থির অবস্থান হতে যাত্রা শুরু করে তবে $v_0 = 0$
সক্ষেত্রে $v = at$ এবং a ধ্রুব হওয়ায় $v \propto t$
কাজেই স্থির অবস্থান হতে সমত্ত্ররেণ গতিশীল বস্ত্র প্রাণত বেগ সময়ের সমানুপাতিক।
বস্তু a সমত্ত্রণের পরিবর্তে a সমমন্দন নিয়ে চললে,
 $v = v_0 - at$ (10)
যদি বস্তুটি X-জক্ষ বরাবর গতিশীল থাকে এবং $v = v_x$, $u = v_{x_0}$ ও $a = a_x$ ধরা হয়, তবে সমীকরণ (9) ও
(10) যথাক্রমে নিম্নরূপে লেখা যায় :
 $v_x = v_{x_0} + a_x t$ 9(a)

$$uqs \quad v_r = v_{r_1} - a_r t \qquad 10(a)$$

ক্যালকুলাস প্রশ্বতি : মনে করি কোন একটি দিকে u আদি বেগ সহ a সমত্বরণে গতিশীল বস্তুর বেগ অতি অল dt সময়ে v হতে বৃদ্ধি পেয়ে v + dv হয় [চিত্র ২·১৬]। তাহলে ত্বরণের

সংজ্ঞা অনুসারে,

ড্রণ
$$a = \frac{dv}{dt}$$

বা, $dv = adt$ (11)

যখন, t = 0, তখন $v = v_0$ এবং যখন t = t, তখন v = v। এই সীমার মধ্যে সমীকরণ (11)-এর উভয় পক্ষকে সমাকলন করে পাই,

	$\int_{v_0}^{v} dv = \int_{0}^{t} a dt$	
বা,	$\int_{v_0}^{v} dv = a \int_{0}^{t} dt$	
বা,	$[v]_{v_0}^v = a[t]_0^t$	
বা,	$v - v_0 = at$	
বা,	$v = v_0 + at$	(12)
বস্তু :	সম মন্দনে চললে, মন্দন = ত্বুরণ = a এবং সেক্ষেত্রে	
	$v = v_0 - at$	(13)
া বিঃ দ্রঃ X অগ	ন্ধ বরাবর গতিশীল বস্তুর ক্ষেত্রে আদিবেগ v_{x0} , শেষ বেগ v_x এবং ত্বরণ a_x ধরলে	সমীকরণ (12) পরিবর্তিত হবে 🕹
	$v_x = v_{x0} + a_x t$	(14)

অনুরূপভাবে, সমীকরণ (13) পরিবর্তিত হবে। Y বা Z অক্ষ বরাবর গতির ক্ষেত্রে x-এর স্বলে যথাব্রুমে y ব z ব্যবহার ক্রতে হবে।

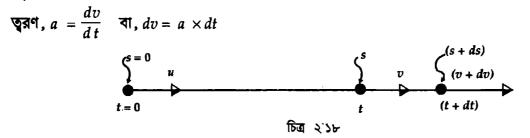
পদার্থবিজ্ঞান (১ম)-৯

(4) তৃতীয় সমীকরণ—সমত্বেণে বস্তুর অতিকাত দুবের সমীকরণ
$$(s = v_0t + \frac{1}{2}at^2$$

ম, $x = x_0 + v_0t + \frac{1}{2}a_1t^2$) :
মণে করি সঙ্গবেধায় একটি গতিশীল বস্তুর আদি বেগ = v_0 এবং সমত্বরণ = $a + t$ সময় পরে বস্তুর বেগ
ধরি = $v + 1$ যেনে করি বস্তু উক্ত সময়ে s দূরব্ব অতিকম করল । সময়ের সাথে অতিকাত দূরত্বের সম্পর্কজনিত
সমীকরণ প্রতিশাদন করতে হবে।
বস্তুর আদিবেগ = v_0 এবং শেষ বেগ = $v + 1$ জতএব এই দুই বেগের
 $\eta = \frac{v_0 + v}{2}$
মারা প্র হবার 1 সেকেন্ড গরে বস্তুর বেগ = $v_0 + 1 \times a = v_0 + a$
যারা পেষ হবার 1 সেকেন্ড গরে বস্তুর বেগ = $v - 1 \times a = v - a$
উক্ত দুই সময়ের বস্তুর গড় বেগ = $\frac{v_0 + a + v - a}{2} = \frac{v_0 + v}{2}$
কাজেই, যারা প্র হবার ন সেকেন্ড গরে বস্তুর বেগ = $v - 1 \times a = v - a$
উক্ত দুই সময়ের বস্তুর গড় বেগ = $\frac{v_0 + a + v - a}{2} = \frac{v_0 + v}{2}$
কাজেই, যারা প্র হবার ন সেকেন্ড গরে বস্তুর বেগ = $v - na$
উক্ত দুই সময়ের বস্তুর গড় বেগ = $\frac{v_0 + na + v - na}{2} = \frac{v_0 + v}{2}$
আতএব, যারা পের হবার দেবেক্ড আগে বস্তুর বেগ = $v - na$
উক্ত দুই সময়ের বস্তুর গড় বেগ = $\frac{m (R crit + crit crit = v)}{2}$
আতএব, যারা পুরু হবার যত সময় পর এবং যারা শেষ হবার তত সময় আগের বেগ বিবেচনা করলে প্রতি
কেরেই উক্ত দুই সময়ের বস্তুর গড় বেগ = $\frac{m (R crit + crit crit = v)}{2}$
আতিরাত দুরত্ব গড় বেগ — $\frac{m (R crit + crit crit = v)}{2}$
আতিরাত দুরত্ব, $s = v_0 + \frac{1}{2}at^2$ (15)
আতিরাজ দূরত্ব = আদি বেগ সময় + $\frac{1}{2} \times ত্রেগ সমর^1$
যানি বস্তুরি সমার্বের গতিলীল অবস্থা হতে যারা পুরু হবে,
তবে $v_0 = 0$ ও সমীকরণ (15) অনুযায়ী,
 $s = \frac{1}{2}at^2$
সমত্রবেগে বিতিলীল অবস্থা হতে আরা পুরু হবে,
তবে $v_0 = 0$ ও সমীকরণ (15) অনুযায়ী,
 $s = \frac{1}{2}at^2$
সমত্রেরে বেরের বর্দের সমার সমাণের সের্চিয় সমান্ব
মার্জ বিং শির আবলা বেরের সমান্ব বেগির সমান্ব বেগ্রি বির্দের সমর্ব
বাটিই সমত্বরে গেরি বিন্দের সমান্ব বেগির সমান্ব সমান্ব
সমত্র বেগে বির্দের বে বেগরে বর্দের সমান্ব বেগিরি দেশি সেশ্বি সমান্ব
বে থে $0 = 0$ ও সমীকরণ (15) অনুযায়ী,
 $s = \frac{1}{2}at^2$
সমত্র বে বেরের বর্দের বর্দের বর্দের সমান্ব বে বের্দের সমান্ব প্র বির্দ (
সম্বর বের বেরের বর্দের সমরের বর্দের সমান্ব বের্দির সমান্ব বের্দের সমের বের্দের সম্বর বের্দের স

সমমন্দনে চললে,

$$s = v_0 t - \frac{1}{2} a t^2 \tag{16}$$


যদি বস্তৃটি X-অক্ষ বরাবর গতিশীল হয় এবং t = 0 সময়ে আদি বেগ v_{x0} , অন্য যে কোন t সময়ে শেষ বেগ v_x ও সমত্বরণ a_x ধরা হয়, তবে সমীকরণ (15) লেখা যায়

$$s = v_{x_0}t + \frac{1}{2}a_xt^2$$

এখন $t = 0$ সময়ে বস্তৃটির জাদি অবস্থান x_0^2 এবং t সময়ে এর অবস্থান x হলে, $s = x - x_0$ হবে।
সেক্ষেত্রে

$$s = x - x_0 = v_{x_0}t + \frac{1}{2}a_xt^2$$

$$\exists t \ x = x_0 + v_{x_0}t + \frac{1}{2}a_xt^2$$
(17)

ক্যালকুলাস পন্ধতি : মনে করি, u আদি বেগসহ একটি বস্তু a সমত্বরণে কোন একটি দিকে গতিশীল থেকে অতি অল্প dt সময়ে ds দূরত্ব অতিক্রম করল [চিত্র ২'১৮]। উক্ত সময়ে বস্তুর বেগ বৃদ্ধি dv হলে, ত্বরণের সংজ্ঞা অনুসারে,

বস্তুটি t সেকেন্ড শেষে v বেগ প্রান্ত হলে উক্ত সমীকরণকে সমাকলন এবং সরল করে আমরা পাই, $v = v_0 + at$ [সমীকরণ (12) দ্রন্টব্য] কিন্তু বেগের সংজ্ঞা অনুসারে, $v = \frac{ds}{dt}$

$$\frac{ds}{dt} = v_0 + at \quad \text{all}, \, ds = (v_0 + at) \, dt \quad \text{all}, \, ds = v_0 \, dt + at \, dt \tag{18}$$

যখন t = 0, তখন s = 0 এবং যখন t = t তখন s = s, এই সীমার মধ্যে সমীকরণ (18)-এর উভয় পক্ষকে সমাকলন করে পাই,

$$\int_{0}^{s} ds = \int_{0}^{t} v_{0} dt + \int_{0}^{t} at dt$$

$$\exists I, \int_{0}^{s} ds = v_{0} \int_{0}^{t} dt + a \int_{0}^{t} t dt$$

$$\exists I, s = v_{0} [t]_{0}^{t} + a \left[\frac{t^{2}}{2}\right]_{0}^{t}$$

$$\exists I, s = v_{0}t + \frac{1}{2}at^{2}$$

$$\exists I, s = v_{0}t - \frac{1}{2}at^{2}$$

$$(19)$$

(ম) চতুর্থ সমীকরণ—সমত্বরণে বস্তুর আদি বেগ, শেষ বেগ এবং দূরত্বের মধ্যে সম্পর্ক ($v^2=v_0^2 + 2as$ বা, $v_x^2 = v_{x0}^2 + 2a (x - x_0)$ । মনে করি কোন একটি সরলরেখা বরাবর a সমত্বরণে গতিশীল একটি বস্তুর আদি বেগ = v_0 ; t সময় পরে তার শেষ বেগ = v এবং উক্ত সময়ে বস্তুটি s দূরত্ব অতিক্রম করে। v, v_0 , $a \, \Im s$ -এর সম্পর্কজনিত সমীকরণ প্রতিপাদন করতে হবে।

১ম পন্দাভি : সমীকরণ (12) ও (15) হতে পাই, $v = v_0 + at$ ও $s = v_0t + \frac{1}{2}at^2$ । এখন, $v = (v_0 + at)$ -এর বর্গ হতে পাওয়া যায়, $v^2 = (v_0 + at)^2$ বা, $v^2 = v_0^2 + 2v_0at + a^2t^2$ বা, $v^2 = v_0^2 + 2a \left(v_0t + \frac{1}{2}at^2\right)$ বা, $v^2 = v_0^2 + 2as \left[s = v_0t + \frac{1}{2}at^2\right]$ (21)

এটি আদি বেগ, শেষ বেগ এবং অতিক্রান্ত দূরত্বের মধ্যে সম্পর্ক বা এটি সমত্বরণে গতিশীন বস্তুর সরণের সাথে বেগের সম্পর্ক।

আদিবেগ
$$v_0 = 0$$
 হলে, সমীকরণ (20) হতে পাই,
 $v^2 = 2as$
সমত্বরণের ক্ষেত্রে $a =$ ধ্ব (22)
 $v^2 \propto s$
বা, $v \propto \sqrt{s}$

অর্ধাৎ, সমত্বরণে গতিশীল বস্তুর শেষ বেগ সরণের বর্গমূলের সমানুগাতিক।

X-অক্ষ বরাবর গতিশীল বস্তুর ক্ষেত্রে যদি $u = v_{x0}$, $v = v_x$, $a = a_x$ এবং $s = x - x_0$ ধরা হয়, তবে সমীকরণ (21)-কে লেখা যায়,

 $v_x^2 = v_{x0}^2 + 2a_x \left(x - x_0\right) \tag{23}$

এখানে v_{x_0}, v_x, a_x, x ও x_0 যথাক্রমে বস্তুটির আদি বেগ, শেষ বেগ, সমত্বরণ, আদি অবস্থান ও শেষ অবস্থান নির্দেশ করে।

২য় পন্ধতি : সমত্বরণে গতিশীল কোন বস্তুর ক্ষেত্রে

গড়বেগ,
$$\overline{v} = \frac{v_0 + v}{2}$$
 এখানে $v_0 =$ আদিবেগ ও $v =$ শেষ বেগণ
আবার, $v = v_0 + at$
বা, $at = v - v_0$
বা, $t = \frac{v - v_0}{a}$
 $s = \overline{v} \times t = \frac{v_0 + v}{2} \times \frac{v - v_0}{a}$
 $= \frac{v^2 - v_0^2}{2a}$
 $v^2 - v_0^2 = 2as$
সুতরাৎ $v^2 = v_0^2 + 2as$

বইঘর.কম

বস্তু স্থিতিশীল অবস্থা হতে সমত্রণে যাত্রা শুরু করলে, $v_0 = 0$ এবং সমীকরণ (21) অনুসারে, $v^2 = 2as$

$$v^2 = v_0^2 - 2as$$

(24)

ক্যালকুলাস পন্ধতি ঃ মনে করি u আদিবেগসহ একটি বস্তু a সমত্বরণে চলে অতি অল্প dt সময়ে ds দূরত্ব অতিব্রুম করে ও dv পরিমাণ বেগের পরিবর্তন ঘটে। কিন্তু নির্দিষ্ট দিকে কোন একটি বস্তুর স্থান পরিবর্তনের হারকে বেগ বলে এবং বেগ, $v = \frac{ds}{dt}$ । আবার, কোন একটি বস্তুর বেগ বৃন্দির হারকে ত্বুরণ বলে এবং ত্বুরণ

$$a = \frac{dv}{dt} \quad \text{Al}, \ a = \frac{dv}{ds} \times \frac{ds}{dt} = \frac{dv}{ds} \times v$$

$$v. \ dv = a.ds \tag{25}$$

যখন s = 0, তখন $v = v_0$ এবং যখন s = s তখন v = v, এই সীমার মধ্যে সমীকরণ (25)-এর উভয় পক্ষকে সমাকলন করে পাই

$$\int_{v_0}^{v} v dv = \int_0^s a ds$$
A1,
$$\int_{v_0}^{v} v dv = a \int_0^s a ds$$
A1,
$$\left[\frac{v^2}{2}\right]_{v_0}^{v} = a[s]_0^s \quad [\because a = \$[\P]]$$
A1,
$$\frac{v^2}{2} - \frac{v_0^2}{2} = as$$
A1,
$$\frac{v^2}{2} = \frac{v_0^2}{2} + as$$
A1,
$$v^2 = v_0^2 + 2as$$

(26)

বস্তুটি X-অক্ষ বরাবর গতিশীল হলে, যখন $x = x_0$ এবং যখন x = x তখন $v = v_x$ । এই সীমার মধ্যে সমীকরণ (25)-এর উভয় পক্ষকে সমাকলন করে পাই,

$$\int_{v_{x0}}^{v_{x}} v dv = \int_{x_{0}}^{x} a ds$$
বা,
$$\int_{v_{x0}}^{v_{x}} v dv = a \int_{x_{0}}^{x} ds \qquad [\because a = 4]$$
বা,
$$\left[\frac{v}{2}\right]_{v_{x0}}^{v_{x}} = a[s]_{x_{0}}^{x}$$
বা,
$$\frac{v_{x}^{2}}{2} - \frac{v_{x0}^{2}}{2} = a [x - x_{0}]$$
বা,
$$v_{x}^{2} = v_{x0}^{2} + 2a (x - x_{0})$$
সমত্রেণে গতিশীল বস্ত্র ক্ষেত্রে এটিই আদি বেগ, শেষ বেগ এবং দ্রত্বের মধ্যে সম্পর্ক।
বস্তু a সমত্বরণে না চলে a সম-মন্দনে চললে
 $v^{2} = v_{0}^{2} - 2as$

(27)

চতুর্থ সমীকরণ---সমত্বরণে বস্তুর t-তম সেকেন্ডে অতিক্রান্ত দুরত্ব ঃ

মনে করি, একটি নির্দিষ্ট দিকে a সমত্বরণে গতিশীল একটি বস্তুর আদি বেগ = v_0 । গতিশীল থাকা অবস্থায় কোন একটি বিশেষ সেকেন্ডে বস্তু কর্তৃক অতিক্রান্ত দূরত্ব বের করতে হবে। মনে করি t-তম সেকেন্ডে অতিক্রান্ত দূরত্ব = s_t । এটি বস্তুর t সেকেন্ডের অতিক্রান্ত দূরত্ব হতে (t-1) সেকেন্ডের অতিক্রান্ত দূরত্বের বিয়োগফলের সমান হবে।

$$s_{t} = t \operatorname{Crees} \operatorname{ubsets} \operatorname{vag} - (t-1) \operatorname{Crees} \operatorname{ubsets} \operatorname{vag}$$

$$= v_{0}t + \frac{1}{2}at^{2} - \{v_{0}(t-1) + \frac{1}{2}a(t-1)^{2}\}$$

$$= v_{0}t + \frac{1}{2}at^{2} - \{v_{0}t - v_{0} + \frac{1}{2}a(t^{2} - 2t + 1)\}$$

$$= v_{0}t + \frac{1}{2}at^{2} - \{v_{0}t - v_{0} + \frac{1}{2}at^{2} - at + \frac{1}{2}a\}$$

$$= at + \frac{1}{2}at^{2} - v_{0}t + v_{0} - \frac{1}{2}at^{2} + at - \frac{1}{2}a$$

$$= v_{0} + at - \frac{1}{2}a = v_{0} + \frac{1}{2}a(2t - 1)$$

$$(28)$$

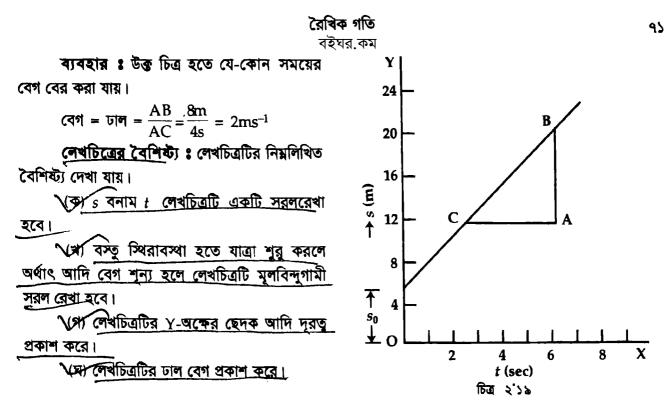
বস্তু স্থিতিশীল অবস্থা হতে যাত্রা শুরু করলে, $v_0=0$ $^{-i}$

$$\therefore s_t = \frac{1}{2} a \ (2t - 1) \tag{29}$$

বস্তু a সমত্রণে না চলে a সমমন্দনে চললে, $s_t = v_0 - \frac{1}{42}a(2t-1)$ (30)

২ ৮ গতি বিষয়ক কয়েকটি লেখচিত্র Some graphs relating to motion

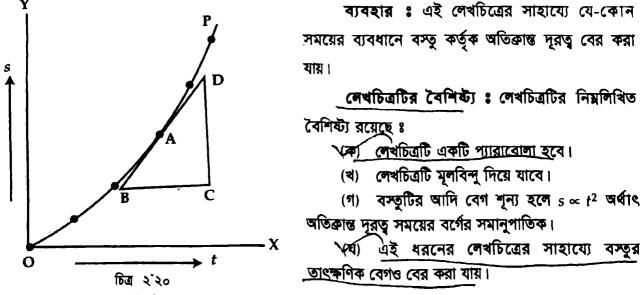
উপরোক্ত বিষয় আলোচনা করার আগে আমরা আলোচনা করব লেখ এবং লেখচিত্র বা রেখা চিত্র (Graph) কি ? এর জবাবে বলা হবে সমতলিক ক্ষেত্রে দুটি চলকের ক্রমজোড় হচ্ছে লেখ এবং ক্রমজোড়গুলো যখন ছক কাগজে স্থাপন করা হয় তখন তাকে লেখচিত্র বলে।


মনে করি f, x-এর একটি অপেক্ষক (function) অর্ধাৎ $f = f(x) \mid f$ বনাম x ছক কাগচ্চে স্থাপন করে যে সরল বা বক্ররেখা পাওয়া যাবে তার নাম লেখ (curve) এবং অক্ষ দুটিসহ পুরো চিত্রটিকে লেখচিত্র বা রেখাচিত্র (Graph) বলা হয়।

এখন কতকগুলো গতিবিষয়ক রাশির লেখচিত্র অক্ষন করে তা বিশ্লেষণ করা হবে।

১। সমবেগে গতিশীল বস্তুর অতিক্রান্ত দূরত্বের সমীকরণ 💲

আমরা জানি,
$$s = s_0 + v \times t$$
 (31)
এখানে v ধ্রব রাশি $s \propto t$


এটি একটি একন্নাত সমীকরণ। ছক কাগন্ধের X-অক্ষে t এবং Y-অক্ষে s অর্ধাৎ দূরত্ব বনাম সময় লেখ অজ্ঞন করলে লেখটি একটি সরলরেখা হবে। চিত্র ২'১৯-এ লেখচিত্রটি দেখান হল।

২। সমত্বরণে গতিশীদ বস্তুর অতিক্রান্ত দূরত্বের সমীকরণ 💲

আমরা জানি $s = v_0 t + \frac{1}{2}at^2$

এই সমীকরণে দুটি উপাদান রয়েছে, প্রথমটি হল সময় t এবং দ্বিতীয়টি হল s। t-কে X-অক্ষে এবং s-কে Y-অক্ষে স্থাপন করে লেখচিত্রটি অজ্ঞকন করা হয়। এই লেখচিত্রটি প্যারাবোলা হবে এবং মূলবিন্দু দিয়ে অতিক্রম করবে [চিত্র ২'২০]।

তাৎক্ষণিক বেগ নির্ণয় ঃ চিত্র ২ ২০-এ A বিন্দুতে একটি স্পর্শক অংকন করে এ বিন্দু হতে সমদূরত্বে দুটি রেখাংশ AB ও AD নিয়ে BCD সমকোণী ত্রিভূজ অংকন করি। এখন A বিন্দুতে,

তাৎক্ষণিক বেগ = ঢাল = $\frac{CD}{BC}$ পাওয়া যাবে

A বিন্দুর উপরে বা নিচে বিভিন্ন বিন্দুতে অনুরূপভাবে বেগ নির্ণয় করলে ঐ সমস্ত বিন্দুতে তাৎক্ষণিক বেঁগ পাওয়া যায় এবং দেখা যাবে যে প্রত্যেকটি বেগ তিন্নতর।

৩। সমত্বরণে গতিশীল বস্তুর শেষ বেগের সমীকরণ ঃ

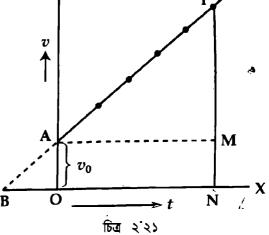
আমরা জানি, $v = v_0 + at$

BG & JEWEL

এই সমীকরণে দুটি উপাদান রয়েছে, প্রথমটি হল সময় t এবং দ্বিতীয়টি হল বেগ v + t-কে X-অক্ষে এবং v-কে Y-অক্ষে স্থাপন করে লেখচিত্রটি টানা হয়। এই লেখচিত্রটিকে v বনাম t লেখচিত্র বলে। লেখচিত্রটি একটি সরলরেখা হবে (চিত্র ২ ২১)। Y

ব্যবহার ঃ এই লেখচিত্রের সাহায্যে একটি নির্দিষ্ট সময়ের ব্যবধানে বস্তুর বেগ নির্ণয় করা যায়।

লেখচিত্রের বৈশিষ্ট্য : লেখচিত্রটির নিম্নলিখিত বৈশিষ্ট্য রয়েছে ঃ


(ক) শেখচিত্রটি একটি সরলরেখা হবে।

(খ) বস্তুর আদি বেগ শূন্য হলে v ∝ t এবং লেখটি মূলবিন্দুগামী হবে।

(গ) লেখচিত্রের Y-অক্ষের ছেদক বস্তুর'আদি বেগ প্রকাশ করে।

(घ) এটি একটি একঘাত সমীকরণের লেখচিত্র।

লেখচিত্র হতে $v = v_0 + at$ প্রতিপাদন ঃ

v বনাম t লেখচিত্র হতে আমরা $v = v_0 + at$ সমীকরণ নির্ণয় করতে পারি। চিত্রে P বিন্দু হতে OY অক্ষের উপর PY লম্ব টানি।

মনে করি t সময়ে বস্তুর চূড়ান্ত বেগ = v = OYএখন, OY = OA + AY, অর্থাৎ $v = v_0 + AY$ আবার রেখাটির ঢাল, $a = \frac{PM}{AM} = \frac{AY}{AM} = \frac{AY}{t}$ বা, AY = at অতএব, $v = v_0 + at$ (প্রমাণিত)

8। লেখচিত্র হতে $s = v_0 t + \frac{1}{2} a t^2$ প্রতিপাদন :

চিত্র ২'২১ এ v বনাম t লেখচিত্রটি একটি সরলরেখা। এই লেখচিত্র হতে আমরা $s = v_0 t + \frac{1}{2} a t^2$ সমীকরণ নির্ণয় করতে পারি।

চিত্রে PN \perp OX ; AM \perp OY ধরি, আদি বেগ = v_0 , সমত্বরণ = a, ON = t এবং t সময়ে অতিক্রান্ত দূরত্ব = sএখন, s = OAPN ক্ষেত্রের ক্ষেত্রফল = OAMN আয়তক্ষেত্রের ক্ষেত্রফল + AMP ত্রিভূজের ক্ষেত্রফল = OA \times ON $+\frac{1}{2}$ \times AM \times PM = $v_0 t$ $+\frac{1}{2} \times$ AM \times PM আবার ঢাল, a $= \frac{PM}{AM} = \frac{PM}{t}$ বা, -PM = atঅতএব, s = $v_0 t$ $+\frac{1}{2} t$ $\times at$ = $v_0 t$ $+\frac{1}{2} at^2$ (প্রমাণিত)

২ ৯ পড়স্ত বস্তুর সূত্র

Laws of falling bodies

ি কোন বস্তুকে অভিকর্ষ বলের প্রভাবে মুক্তভাবে পড়তে দিলে বস্তুর গতি তিনটি সূত্র মেনে চলে। 1589 খ্রিস্টাব্দে বিজ্ঞানী গ্যালিলিও (Galileo) এই সূত্র তিনটি আবিক্ষার করেন। এগুলোকে পড়স্ত বস্তুর সূত্র বলা হয়। সূত্রগুলো নিম্নে প্রদন্ত হল ঃ

১ম সূত্র ঃ বায়ুশূন্য স্থানে বা বাধাহীন পথে সকল বস্তুই নিন্চল অবস্থা হতে যাত্রা করে সমান দ্রুততার নিচে নামে অর্থাৎ সমান সময়ে সমান দুরত্ব অতিক্রম করে।

বইঘর.কম

ব্যাখ্যা ঃ ছোট, বড় ও বিভিন্ন ওন্ধনের কতকগুলো বস্তু একই উচ্চতা হতে ও স্থিরাবস্থা হতে ছেড়ে দিলে বাধাহীন পথে তারা সমান দুততায় অর্ধাৎ ত্বরণে গতিশীল থাকবে এবং একই সময়ে মাটিতে পড়বে।

২য় সূত্র : বাধাহীন পথে পড়স্ত বস্তুর নির্দিষ্ট সময়ে প্রান্ত বেগ ঐ সময়ের সমানুগাতিক। কোন পড়স্ত বস্তু t সময়ে v বেগ প্রান্ত হলে, গাণিতিকভাবে লেখা যায়, $v \propto t$

ব্যাখ্যা ঃ অভিকর্ষের টানে স্থিরাবস্থা হতে বাধাহীন পথে নিচের দিকে পড়বার সময় কোন বস্তুর বেগ যদি এক সেকেন্ড পরে v হয় তবে তার বেগ দুই সেকেন্ড পরে $v \times 2$, তিন সেকেন্ড পরে $v \times 3$ ইত্যাদি হবে। সাধারণভাবে বলা যায় যে, কোন একটি পড়ন্ত বস্তুর বেগ t_1 ও t_2 সময়ে যথাক্রমে v_1 ও v_2 হলে,

 $\frac{v_1}{t_1} = \frac{v_2}{t_2} \quad \text{an,} \quad \frac{v_1}{v_2} = \frac{t_1}{t_2} \quad \frac{v - t_1}{t_2}$

তয় সূত্র ঃ বাধাহীন পথে পড়স্ত বস্তৃর নির্দিষ্ট সময়ে অতিক্রাস্ত দুরত্ব ঐ সময়ের বর্গের সমানুপাতির্ক। কোন পড়স্ত বস্তু t সময়ে h দূরত্ব অতিক্রম করলে গাণিতিক নিয়মে লেখা যায়, $h \propto t^2$ ।

ব্যাখ্যা : অভিকর্ষের টানে স্থিতাবস্থা হতে বাধাহীন পথে নিচের দিকে পড়বার সময় কোন বস্তু যদি প্রথম সেকেন্ডে h দূরত্ব অতিক্রম করে তবে বস্তুটি দুই সেকেন্ডে 2² × h, তিন সেকেন্ডে 3² × h ইত্যাদি দূরত্ব অতিক্রম করবে।

কান্ডেই বস্তৃটি t_1 ও t_2 সেকেন্ডে যথাক্রমে h_1 ও h_2 দূরত্ব অতিক্রম করলে,

 $\frac{h_1}{t_1^2} = \frac{h_2}{t_2^2} \quad \text{at,} \quad \frac{h_1}{h_2} = \frac{t_1^2}{t_2^2} \quad \therefore \quad h \propto t^2$

গিনি ও পালক পরীক্ষা (Guinea and Feather Experiment) : এটা নিউটনের একটি পরীক্ষা। এই পরীক্ষার সাহায্যে তিনি পড়ন্ত বস্তুর প্রথম সূত্রের সত্যতা নিরূপণ করেন। এই পরীক্ষায় একটি গিনি বা ষর্ণ মুদ্রা এবং একটি পালক ব্যবহার করা হয়েছিল বলে এই পরীক্ষার নাম হয় গিনি ও পালক পরীক্ষা।

যন্ত্রের বর্ণনা ঃ এই পরীক্ষায় এক মিটার লম্মা দুই মুখ খোলা মোটা ফাঁপা একটি শক্ত কাচ নল M নেয়া হয়। নলের এক প্রান্তে একটি ধাতব টুপি C থাকে। নলের অপর প্রান্তে একটি স্টপ-কক S লাগানো আছে যাতে নলটিকে একটি বায়ু নিম্ফাশন যন্ত্রের সাথে যুক্ত করা যেতে পারে [চিত্র ২·১৮]।

কার্য পম্পতি ঃ প্রথমে ধাতব টুপি C খুলে একটি গিনি ও একটি পালককে নলের মধ্যে ঢুকানো হয়। নলের অপর প্রান্ত বায়ু নিম্ফাশন পাম্পের সাথে যুক্ত করে স্টপ-কক S খুলে দিয়ে নলের মধ্য হতে সমস্ত বায়ু বের করে নিয়ে স্টপ-ককটি বন্ধ করা হয়। এ অবস্থায় নলটিকে হঠাৎ উল্টিয়ে ধরলে দেখা যাবে গিনি এবং পালক নলের অপর প্রান্তে একই সক্ষো উপনীত হয়েছে। পুনরায় বাতাস ঢুকিয়ে নলটিকে উল্টিয়ে ধরলে গিনিটিকে পালকের পূর্বেই নলের অপর প্রান্তে উপনীত হতে দেখা যাবে। এ থেকে প্রমাণিত হয়

চিত্র ২'২২

যে, বায়ুশূন্য স্থানে সকল বস্তুই নিম্চল অবস্থা হতে যাত্রা করে সমান দ্রুততায় নিচে নামে। অতএব প্রথম সূত্রটি প্রমাণিত হল।

২·১০ উল্লম্ব পতন বা উত্থানশীল বস্তুর গতির সমীকরণ Equations of motion of a vertically falling or ascending body

বাধাহীন পথে কোন বস্তুকে প্রাথমিক বেগ _{৩০} সহকারে সোজা উপরের দিকে বা নিচের দিকে নিক্ষেপ কর**লে** অথবা একটি বস্তুকে অভিকর্ষের টানে পড়তে দিলে পড়ন্ত বস্তুর ক্ষেত্রে রৈখিক গতির সমীকরণসমূহ (অনুক্ষেদ ২'৭ BG & JEWEL

দ্রন্টব্য) প্রয়োগ করা যায়। পৃড়স্ত বস্তুর উপর যে ত্বরণ হয়, তা অভিকর্ষের টানে হয়ে থাকে। এই ত্বরণকে অভিকর্ষঞ্ল ত্বরণ বলে [বিস্তারিত সম্তম অধ্যায়ে আলোচনা করা হবে]। একে 'g' দ্বারা প্রকাশ করা হয়। ভূ-পৃষ্ঠ হতে উপরের দিকে এর মান কমে। তবে ভূ-পৃষ্ঠের কাছাকাছি অঞ্চলে এর মান 9.8 ms⁻², যা প্রায় ধ্রুব থাকে।

পড়ন্ত বস্তুর গতির ক্ষেত্রে রৈখিক গতির সমীকরণগুলো ব্যবহারের সময় ত্বরণ 'a' এর পরিবর্তে অভিকর্ষজ ত্বরণ g এবং দূরত্ব 's' এর পরিবর্তে উচ্চতা h ধরলে গতির সমীকরণগুলো নিম্নরূপ হয়।

(ক) খাড়া নিচের দিকে নিক্ষিন্ড বস্তুর গতির সমীকরণ

t সময় পর বস্তুর বেগ,	$v = v_0 + gt$	(32)
-----------------------	----------------	------

t সময়ে অতিক্রান্ত দূরত্ব,
$$h = v_0 t + \frac{1}{2}gt^2$$
 (33)

h দূরত্ব অতিরুমান্তে বেগ, $v^2 = v_0^2 + 2gh$ (34)

দ-তম সেকেন্ডে অতিক্রান্ত উচ্চতা,
$$h_t = v_0 + \frac{1}{2}g(2t-1)$$
 (35)

(খ) পড়স্ত বস্তুর গতির সমীকরণ

পতনশীল বস্তুর আদি বেগ , $v_0=0$	
উপবোক্ত সমীকবণগলো হতে আমবা পাই	

$$t$$
 সময় পর বেগ, $v = gt$ (36)

- t সময়ে অতিক্রান্ত দূরত্ব, $h = \frac{1}{2}gt^2$ (37)
- h দূরত্ব অতিরুমান্তে বেগ, $v^2 = 2gh$ (38)
- t-তম সেকেন্ডে অতিক্রান্ত উচ্চতা, $h_t = \frac{1}{2} g (2t 1)$ (39)

(গ) খাড়া উপরের দিকে নিক্ষিন্ত বস্তুর গতির সমীকরণ

সময় পর বেগ,
$$v = v_0 - gt$$
 (40)

t সময়ে অতিক্রান্ত উচ্চতা,
$$h = v_0 t - \frac{1}{2}gt^2$$
 (41)

h উচ্চতা অতিক্রমান্তে বেগ,
$$v^2 = v_0^2 - 2gh$$
 (42)

$$t-$$
তম সেকেন্ড অতিক্রান্ত উচ্চতা, $h_t = v_0 - \frac{1}{2}g(2t-1)$ (43)

এ ক্ষেত্রে বস্তু অভিকর্ষীয় বলের বিপরীত দিকে যাওয়ায় g ঋণ রাশি। সকল কালক করে ক্রম মান মর্বাধিক উচ্চায়ার পৌরায়, চলান দেব বেল

মনে রাখতে হবে বস্তু যখন সর্বাধিক উচ্চতায় পৌছায়, তখন তার শেষ বেগ, v=0

আরও প্রয়োজনীয় কতকগুলো সমীকরণ নিম্নে আলোচিত হল ঃ

সর্বাধিক উচ্চতায় সমীকরণ :

t

মনে করি, সর্বাধিক উচ্চতা =
$$h$$

জামরা পাই, $v^2 = v_0^2 - 2gh$ [: সর্বাধিক উচ্চতায় $v = 0$]
বা, $0 = v_0^2 - 2gh$
বা, $2gh = v_0^2$

(44)

$$\sqrt{1}, \frac{2gh = v_0^2}{2g}$$

এখানে v_0 = আদি বেগ বা নিক্ষিণ্ত বেগ ও g = অভিকর্ষীয় ত্বরণ।

নির্দিষ্ট উচ্চতায় পৌঁছতে অতিবাহিত সময় : মনে করি কোন সর্বাধিক উচ্চতায় পৌঁছতে ব্যয়িত সময় =

জামরা পাই,
$$h = v_0 t - \frac{1}{2}gt^2$$

বা, $\frac{1}{2}gt^2 - v_0 t + h = 0$

$$t = \frac{v_0}{g} \pm \frac{\sqrt{v_0^2 - 2gh}}{g}$$
(45)

ৰস্তুর সর্বাধিক উচ্চতায় পৌছতে অতিবাহিত সময় : মনে করি সর্বাধিক উচ্চতায় পৌছতে ব্যয়িত সময় = t

জামরা পাই,
$$v = v_0 - gt$$

বা, $0 = v_0 - gt$ বা, $gt = v_0$
 $t = \frac{v_0}{g}$
(46)

এখানে, vo = বস্তুর আদে বেগ ও g = আওক্বায় ওয়গ। বস্তুর উত্থান-পতনে অতিবাহিত সময় ঃ মনে করি, বস্তুর সর্বাধিক উচ্চতায় পৌছার পরবর্তী মৃহূর্ত হতে ঐ একই দূরত্ব নিচে নামতে t1 সময় অতিবাহিত হয়। তা হলে,

$$h = \frac{1}{2}gt_1^2$$

$$t_1 = \sqrt{\frac{2}{g} \times h} = \sqrt{\frac{2}{g} \times \frac{v_0^2}{2g}} = \frac{v_0}{g} = t$$

কাজ্বেই, পতনে অতিবাহিত সময় = উত্থানে অতিবাহিত সময়।

যাওয়া-আসা বা উত্থান-পতনে অভিবাহিত সময় বা ত্রমণ কাল

$$\overline{T} = t + t_1 = t + t = 2t$$

$$\overline{T}, \quad \overline{T} = \frac{2v_0}{g}$$
(47)

এখানে, u = আদি বেগ ও g = অভিকর্ষীয় ত্বরণ।

কোন নির্দিন্ট উচ্চতায় বস্তুর বেগ ঃ মনে করি কোন নির্দিন্ট উচ্চতায় বস্তুর বেগ = v

আমরা পাই, $v^2 = v_0^2 - 2gh$

V

$$=\pm\sqrt{v_0^2-2gh} \tag{48}$$

স্বিভিঃ সময়ের শ্রেক্ষিতে এবং পারিপার্শ্বিক বস্তৃর সাপেক্ষে যদি কোন বস্তৃ তার অবস্থানের পরিবর্তন না ঘটায় ভবে তার অবস্থাকে স্থিতি বলে।

স্মরাণকা

গতি ঃ সময়ের প্রেক্ষিতে এবং পারিপার্শ্বিক বস্তুর সাপেক্ষে যদি কোন বস্তু তার অবস্থানের পরিবর্তন ঘটায় তবে তার অবস্থাকে গতি বলে।

প্রসন্স কাঠামো ঃ যে দৃঢ় বস্তু বা বিন্দুর সাপেকে কোন স্থানে অন্য বিন্দু বা বস্তুকে নির্দিষ্ট করা হয়, তাকে প্রসন্ধা কাঠামো বলে।

সরণ ঃ কোন বস্তুর সরণ একটি ভেষ্টর যার মান বস্তুটির শেষ এবং আদি অবস্থানের মধ্যে ন্যূনতম দূরত্ব এবং দিক হল আদি থেকে শেষ অবস্থানের দিকে।

পড় দুটি : কোন বস্তু কর্তৃক অতিক্রান্ত মোট দূরত্ব এবং মোট ব্যয়িত সময়ের ভাগফলকে গড় দুটি বলে।

ভাঁৱন্দীৰৰ দুভি বা দুভি : সময় ব্যবধান শূন্যের কাছাকাছি হলে সময়ের সজ্ঞা বস্তুর দূরত্বের পরিবর্তনের হারকে তাৎকশিক দুভি বা দুভি বলে।

গড় বেগ ঃ যে কোন সময় ব্যবধানে কোন বস্তুর মোট সরণকে ঐ সময় ব্যবধান দিয়ে ভাগ করলে যে রাশি পাওয়া যায় তাকেই বস্তুটির গড় বেগ বলে।

তাৎকণিক বেগ বা বেগ ঃ সময় ব্যবধান শূন্যের কাছাকাছি হলে সময়ের সজ্ঞো বস্তুর সরণের পরিবর্তনের হারকে তাৎকণিক বেগ বা বেগ বলে।

গড় ত্বরণ ঃ কোন একটি গডিশীল বস্তুর বেগের বৃষ্ধি এবং ঐ বৃষ্ধির জন্য ব্যয়িত সময়ের ভাগফলকে গড় তুরণ বলে। তাৎক্ষণিক ত্বরণ বা ত্বরণ ঃ সময় ব্যবধান শূন্যের কাছাকাছি হলে কোন একটি গডিশীল বস্তুর বেগ বৃষ্ধির হারকে তাৎক্ষণিক তুরণ বা তুরণ বলে।

গতির সমীৰূরণ ঃ গতিবিষয়ক সংকেতগুলোকে কতকগুলো সমীকরণের সাহায্যে প্রকাশ করা হয়। এদেরকে গতির সমীকরণ বলে।

পদ্ধস্ত বস্তুর সূত্র ঃ পড়স্ত বস্তুর তিনটি সূত্র রয়েছে। সূত্রগুলো নিমে বিবৃত হল।

১ম সূত্র ? বায়শুন্য স্থানে সকল বস্তুই স্থির অবস্থান হতে যাত্রা করে সমান সময়ে সমান পথ অভিক্রম করে।

২র সূত্র : বাধাইনি পথে পড়ন্ত বস্তুর নির্দিই সময়ের প্রান্ত বেগ এ সময়ের সমানুপাতিক।

ওর সূত্র ঃ বাধাহীন পথে পড়ন্ত বস্তৃর নির্দিষ্ট সময়ের অভিক্রান্ত দূরত্ব ঐ সময়ের বর্গের সমানুপাতিক।

¹ বস্তৃটি সম-মন্সনে গতিশীল হলে 'a' এর পরিবর্তে '– a' হবে। ² খাড়া নিচের দিকে নিক্ষিশ্ত বস্তুর ক্ষেত্রে ₈ ধনাত্মক এবং খাড়া উপরের দিকে নিক্ষিশ্ত বস্তুর কেত্রে ₈ ঋণাত্মক হবে।

প্রয়োজনীয় সমীকরণ	
গড় দুডি, $\overline{v} = \frac{\Delta s}{\Delta t}$	(1)
তাৎক্ষণিক দুন্তি, $v = \frac{ds}{dt}$	(2)
গড় বেগ, $\vec{v} = \frac{\Delta \vec{r}}{\Delta t}$	(3)
ডাৎক্ষণিক বেগ, $\overrightarrow{v} = \frac{d\overrightarrow{r}}{dt}$	(4)
$\overrightarrow{v_x} = v_x = \frac{dx}{dt}$	(4a)
মধ্য বেগ, $\frac{\overrightarrow{v_0} + \overrightarrow{v}}{2}$	(5)
গড় ত্ব্রণ, $\vec{a} = \frac{\Delta \vec{v}}{\Delta t}$	(6)
$\bar{a}_x = \frac{\Delta v_x}{dt}$	6(a)
তাৎক্ষণিক ত্বুরণ, $\vec{a} = \frac{d\vec{v}}{dt}$	(7)
$a_x = \frac{dv_x}{dt}$	7(a)
সমবেগে গতিশীল বস্তুর দূরত্বের সমীকরণ ঃ s = vt	(8)
$x = x_0 + v_x t$	(8) 8(a)
সমত্বরণে 1 গতিশীল বস্তুর গতির সমীকরণ $ ho$ $v_{0}=v_{0}+at$	(0)
$v_x = v_{x_0} + a_x t$	(9) 9(a)
$s = v_0 t + \frac{1}{2} a t^2$	(10)
$s = v_0 t + \frac{1}{2} a t^2$ $x = x_0 + v_{x_0} t + \frac{1}{2} a_x t^2$	10(a)
$\frac{v^2 = v_0^2 + 2as}{v_x^2 = v_{x0}^2 + 2a(x - x_0)}$	(11)
	11(a)
$s_t = v_0 + \frac{1}{2}a(2t - 1)$	(12)
পড়ন্ত বস্তুর গতির সমীকরণ ঃ v = gt	(12)
$h = \frac{1}{2}gt^2$	·(13) ·(14)
$v^2 = 2gh$	(14)
$h_t = \frac{1}{2}g(2t-1)$	(16)
খাড়াভাবে² নিক্ষিশ্ত বস্তুর গডির সমীকরণ ঃ	()
$v = v_0 \pm gt$	<u>(</u> 17)
$v^2 = v_0^2 \pm 2gh$	(18)
$h = v_0 t \cdot \pm \frac{1}{2} g t^2$	(19)
$h_t = v_0 + \frac{1}{2}g(2t - 1)$	(20)

উচ্চ মাধ্যমিক পদার্থবিজ্ঞান

BCATIENEC

$$\begin{bmatrix} 2\pi/4 \pi \sqrt{16} & 9^{44} & \frac{1}{\sqrt{2}\sqrt{16}} & \frac{1}{\sqrt{16}} & \frac{1}{\sqrt{16}}$$

$$47 \quad 0.96 = v_0 + \left(\frac{2 \times 16 - 1}{2}\right)f = v_0 + \frac{31}{2}f$$

(2)

উচ্চ মাধ্যমিক পদার্ধবিজ্ঞান

BG & JEWEL সমীকরণ (2) হতে সমীকরণ (1) বিয়োগ করে পাওয়া যায়, 0.24 = 4f $f = \frac{0.24}{4} = 0.06 \text{ m/s}^2$ এখন f-এর মান সমীকরণ (1)-এ বসিয়ে পাওয়া যায়, $0.72 = v_0 + \frac{23}{2} \times 0.06 = v_0 + 0.69$ \triangleleft $\sqrt{y_{0}} = 0.03 \, \text{m/s}$ একটি ট্রেন 10 ms-1 আদিবেগে এবং 3 ms-2 সমত্রেণে চলছে। যখন 60 m পথ অতিক্রম করবে তখন ট্রেনটির বেগ কন্ত ? [ঢা. বো. ২০০২ ; রা. বো. ২০০৪] আমরা জানি, এখানে, $v^2 = v_0^2 + 2 as$ $v_0 = 10 \text{ ms}^{-1}$ $a = 3 \, \text{ms}^{-2}$ $=(10)^2 + 2.3.60$ $s = 60 \, {\rm m}$ =100 + 360 = 460v = ? $v = \sqrt{460}$ = 21'45 ms⁻¹ (৮) একটি বস্তু স্ধির অবস্থান হতে যাত্রা আরম্ভ করে প্রথম সেকেন্ডে 1 m দূরত্ব অতিক্রম করে। পরবর্তী 1 m রিত্ব অতিক্রম করতে বিস্তৃটির কড সময় চাগবে বের কর। [রা. বো. ২০০৬ ; সি. বো. ২০০৪] আমরা জানি, $s = v_0 t + \frac{1}{2} a t^2$ এখানে. $v_0 = 0$ বা, $1 = 0 \times t + \frac{1}{2}a(1)^2$ $t = 1 \sec \theta$ s = 1 m \overline{a} , $a = 2 \, \text{ms}^{-2}$ আবার. $v' = v_0 + at$ এখানে. $v' = 0 + 2.(1) = 2 \text{ ms}^{-1}$ $v_0 = 0$ $s' = v't' + \frac{1}{2}at'^2$ $a = 2 \text{ ms}^{-2}$ **A**, $1 = 2.t' + \frac{1}{2} \times 2 \times t^2$ $v' = 2 \text{ ms}^{-1}$ বা. $1 = 2t' + t'^2$ $s' = 1 \,\mathrm{m}$ $\overline{\mathbf{A}}, \ t'^2 + 2t' - 1 = 0$ t = ? $t' = \frac{-2 \pm \sqrt{(2)^2 - 4 \times 1 \times (-1)}}{2 \times 1}$ $=\frac{-2\pm\sqrt{4+4}}{2}$ $=\frac{-2\pm\sqrt{8}}{2}$ $=\frac{-2\pm 2\sqrt{2}}{2}$ $=-1\pm\sqrt{2}$ $t' = -1 + \sqrt{2}$ seven that $t' = -1 - \sqrt{2}$ = 0.41 sec**অথবা = --** 2'41 sec কিন্তু ঋণান্ত্রক মান গ্রহণযোগ্য নয়। ¥ = 0 41 sec ধরাবস্থাঁ হতে চলতে আরম্ভ করে 625 m দুরত্ব অতিক্রম করলে একটি বস্তুর বেগ 125 ms⁻¹ হল। জুরণ Vn 20 রা. বো. ২০০২] নিশর কর। আমরা জানি, $v^2 = v_0^2 + 2 as$ এখানে,

$$\overline{\mathbf{q}}$$
 $v^2 = 2 as$
 $v_0 = 0$
 $\overline{\mathbf{q}}$
 $a = \frac{v^2}{2 s}$
 $v = 125 \text{ ms}^{-1}$
 $\frac{(125)^2}{2 \times 625} = 12.5 \text{ ms}^{-2}$
 $a = ?$

የ৮

্য ব্যৈষ্ঠিক গাঁ	
বইঘর.ব	^{ত্ম} স্বির অবস্থান থেকে 10 s সমত্বরণে চালাল। অতঃগর
10 min সমবেগে চালানোর পর ব্রেক চেপে 5 s সমরের মধ্যে	
হলে গাড়ি কর্তৃক অতিক্রান্ত মোট দূরত্ব কড ?	বি. বো. ২০০২]
স্ধির অবস্থান থেকে যাত্রা শুরুর পর যে ত্বরণে চলে গাড়িা	
চলে। এই ডুরণ a হলে,	
আমরা জানি,	এখানে,
$v = v_0 + at$ $4 = 0 + a \times 2$	আদিবেগ, $v_0 = 0$
$a = \frac{4}{2} = 2 \text{ ms}^{-2}$	সময়, t = 2s শেষ বেগ, v = 4 ms ⁻¹
2	তাৰ তেন, <i>0</i> = 4 115 জুৱণ, <i>a</i> = ?
	1 11 . 3 11
এই ত্ব্রণে প্রথম 10 s-এ অতিক্রান্ত দূরত্ব,	এখানে,
$s_1 = v_0 t_1 + \frac{1}{2} a t_1^2$	জাদিবেগ , $v_0 = 0$
$=0+\frac{1}{2}\times 2\times (10)^2$	জুরণ, a = 2 ms ⁻²
= 100 m	সময়, $t_1 = 10 \text{ s}$
	দ্রত্ব, s ₁ = ?
এই 10 s পরে বেগ v হলে সেই বেগে পরবর্তী 10 min	1
চলবে। এখন	এখানে,
$v_1 = v_0 + at_1$ = 0 + 2 × 10 = 20 ms ⁻¹	$v_1 = 20 \text{ ms}^{-1}$
এই বেগে 10 min-এ অভিক্রান্ত দূরত্ব ₅₂ হলে,	সময়, $t_2 = 10 \min = 10 \times 60 \text{ s}$
$s_2 = v_1 t_2 = 20 \times 10 \times 60$ = 12000 m	দ্রত্ব, s ₂ = ?
= 12000 m	এখানে,
শেষ 5 s-এ অতিক্রান্ত দূরত্ব s ₃ হলে,	জাদিবেগ, $v_1 = 20 \text{ ms}^{-1}$
$s_3 = \left(\frac{v_1 + v_2}{2}\right) t_3 = \left(\frac{20 + 0}{2}\right) \times 5$	শেষ বেগ , $v_2=0$
$=50 \mathrm{m}$	সময়, t ₃ = 5 s দূরত্ব, s ₃ = ?
অতিক্র্রান্ত মোট দূরত্ব s হলে,	ଏମହୁ, s ₃ = ?
$s = s_1 + s_2 + s_3$ = 100 m + 12000 m + 50 m	
= 100 m + 12000 m + 50 m = 12150 m	
(১) একটি রাইকেলের গৃনি একটি তন্তাকে ঠিক তেদ	করতে পারে। যদি গুলির বেগ চার গুণ করা হর, ভবে
অনুরূপ করটি তন্তা তেদ করতে পারবে ? মনে করি, একটি ডক্তার পুরুত্ব:= <i>x</i>	[চ. বো. ২০০১]
প্রথম ক্ষেত্রে, আদি বেগ = v ₀	
শেষ বেগ = 0	
ভুরণ = a	
সরণ = χ	
$v^2 = v_0^2 - 2as$ [সূত্র অনুসারে] $0 = v_0^2 - 2ax$	
$\overline{\mathbf{q}}_{i}, a = \frac{v_0^2}{2x}$	
"' " [–] 2x दिछीয় ক্ষেত্রে, তক্তার সংখ্যা n ধরলে মোট পুরুত্ব = nx	
মাৰ্থা দেৱল, তেওঁ ন গাঁও n নমগে যোগ নুমুখ – nx আদি বেগ = $4v_0$	
শেষ বেগ – ০	
ত্বরণ = $\frac{v_0^2}{2x}$	
2 x	

উচ্চ মাধ্যমিক পদার্ধবিজ্ঞান BG & JEWEL 50 এখন, 0 = $(4v_0)^2 - 2 \times \frac{v_0^2}{2x} \times nx$ \overline{a} , $nv_0^2 = 16v_0^2$ J670 ়েন্দ্র তন্ত্রার সংখ্যা = 16 স্থ্রি ভূমির সাধে 30° কোণে আনড একটি মসৃণ তল বরাবর একটি বস্তু অভিকর্বের টানে স্ধিরাবস্থা হতে সর**ন** চনন গতিতে 9'8 m দুরত্ব অতিক্রম করার গর কত বেগ দাভ করবে **?** .5 এখানে, = 0 v_0 আমরা পাই, $v^2 = v_0^2 + 2as^2$ $= 9.8 \,\mathrm{m}$ নির্ণেয় বেগ, $v = \sqrt{v_0^2 + 2as}$ $a = g \cos(90^\circ - 30^\circ)$ $=\sqrt{0+2\times 4^{9}}\,\mathrm{ms}^{-2}\times 9^{8}\,\mathrm{m}$ $= 9.8 \times \frac{1}{2} \text{ ms}^{-2}$ $= 9.8 \text{ ms}^{-1}$ = 4[·]9 ms⁻⁻² 60° 30° চিত্র ঃ ২'২৩) একটি গাড়ি চলা শুরু করার 4 s পরের বেগ 8 ms⁻¹ ও 7 s পরের বেগ 23 ms⁻¹। গড় ত্বরণ নির্ণয় কর। মনে করি গড় ত্বুরণ = \overline{a} (1) artice, $\Delta v = (23 - 8) \text{ ms}^{-1}$ = 15 ms^{-1} $\Delta t = (7 - 4) \text{ s} = 3 \text{ s}$ আমরা পাই, $\overline{a} = \frac{\Delta v}{\Lambda t}$ সমীকরণ (1) হতে নির্ণেয় ত্বুরণ $\vec{a} = \frac{15 \text{ ms}^{-1}}{3 \text{ s}}$ = 5 ms⁻² ১২। X-অকে গতিনীদ একটি বস্তৃকণার ts-এর অবস্থান $x = \left(\frac{t^2}{2} - 2\right)$ ছারা নির্দেশ করা যার, এখানে s-এ সময় 🖞 ও মিটারে অবস্থানাক্ষ 🗴 স্থারা প্রকাশিত। (ক) 2 s পরে কণাটির তাৎক্ষণিক বেগ, (খ) 25 ও 38 অবকাশে গড় বেগ ও (গ)· 3 s-এ অতিক্রান্ত দূরত্ব নির্ণর 🐄 । প্রশ্নানুসারে, (ক) t 5 পরে তাৎকণিক বেগ, $v = \frac{dx}{dt} = \frac{d}{dt} \left(\frac{t^2}{2} - 2 \right) = t$ t = 2 s পরে তাৎক্ষণিক বেগ, $v = 2 \text{ ms}^{-1}$ 2s ও 3s শেষে কণার অবস্থান যথাক্রমে, (척) $x_2 = \left(\frac{2^2}{2} - 2\right) \mathbf{m} = 0 \, \mathrm{eff}$

বইঘর.কম

$$x_3 = \left(\frac{3^2}{2} - 2\right) \mathbf{m} = 2.5 \mathbf{m}$$

 $2 \, \mathrm{s} \,$

কণাটি যাত্রা শুরুর পর হতে 3 s সময়ের মধ্যে ঋণ x-অক্ষের দিক হতে 2m অতিক্রম করে শূন্য অবস্থানে এসে x-অক্ষের দিকে 2.5 m অগ্রসর হয়।

> (1) (2)

স : বি s-এ অতিক্রান্ত দ্রত্ব = (2 + 2'5) m = 4'5 m
 একটি মটর গাড়ি ঘন্টায় 90 km বেগে চলে। ব্রেক চেপে একে 1 min-এ ধামিয়ে দেয়া হল। মন্দন এবং স্থিতিতে আসার পূর্ব মুহূর্ত পর্যন্ত জান্তান্ত দ্রত্ব নির্ণয় কর।
 মনে করি, মন্দন = a এবং অতিক্রান্ত দ্রত্ব = s
 এখানে,
 v_n = 90 km/hr

আমরা পাই, $v = v_0 - at$ and $s = v_0 t - \frac{1}{2}at^2$ সমীকরণ (1) হতে পাই, $0 = 25 - a \times 60$ $\boxed{\mathbf{A}}, \ a = \frac{25}{60} = \frac{5}{12} \,\mathrm{ms}^{-2}$

= 90 km/hr $t = \frac{90 \times 1000}{1 \times 60 \times 60} = 25 \text{ ms}^{-1}$ $t = 1 \text{ min} = 1 \times 60 = 60 \text{ s}$ v = 0

পুনঃ সমীকরণ (2) হতে পাই,

$$S = 25 \times 60 - \frac{1}{2} \times \frac{5}{12} \times 60 \times 60$$

= 750 m

(8) একটি বন্দুকের গুলি একটি দেওয়ালের মধ্যে 3 cm ভেদ করার পর বেগ অর্ধেক হারায়। গুলিটি দেওয়ালের মধ্যে আর কতদূর তেদ করবে ? [রা. বো. ২০০৫]

১ম কেরে,

$$v^2 = v_0^2 - 2as$$

বা, $\frac{v_0^2}{2^2} = v_0^2 - 2a \times 0.03$
বা, $\frac{v_0^2}{4} - v_0^2 = -0.06a$
বা, $0.06a = \frac{4v_0^2 - v_0^2}{4} = \frac{3v_0^2}{4}$
বা, $a = \frac{3v_0^2}{0.24} = \frac{v_0^2}{0.08}$
 $a = \frac{v_0^2}{0.08}$
২য় কেরে,
 $v^2 = v_0^2 - 2as$
বা, $0^2 = \left(\frac{v_0}{2}\right)^2 - 2\frac{v_0^2}{0.08}s$
বা, $0 = \frac{v_0^2}{4} - \frac{v_0^2s}{0.04}$
বা, $\frac{v_0^2s}{0.04} = \frac{v_0^2}{4}$
বা, $s = \frac{0.04}{4}$
 $s = 0.01 \, \text{m}$
দার্থাবিজ্ঞান (১ম) - ১১ ·

এখানে,
১ম কেঁব্রে, ধরি,
জাদি বেগ =
$$v_0$$

শেষ বেগ = $\frac{v_0}{2}$
দূরত্ব, $s = 3 \text{ cm} = 0.03 \text{ m}$
মন্দন, $a = ?$
২য় ক্ষেত্রে
জাদি বেগ = $\frac{v_0}{2}$
শেষ বেগ = 0
মন্দন, $a = \frac{v_0^2}{0.08}$
দূরত্ব, $s = ?$

উচ্চ মাধ্যমিক পদার্থবিজ্ঞান BG & JEWEL 🦫। একটি বন্দুকের গুলি কোন দেয়ালের মধ্যে 0 04 m প্রবেশ করার পর অর্ধেক বেগ হারায়। গুলিটি দেয়ালের ঢা. বো. ২০০১; য. বো. ২০০০] জার কড দূর প্রবেশ করতে পারবে ? ১ম কেত্রি ১ম ক্ষেত্রে v^2 $= v_0^2 - 2as$ ধরি আদিবেগ $= v_0$ $\Rightarrow \left(\frac{v_0}{2}\right)^2 = v_0^2 - 2 \times a \times 04$ ∴ শেষ বেগ = v₀/2 $= 04 \, \mathrm{m}$ দূরত্ব, s $\implies \frac{v_0^2}{4} = v_0^2 - 08 a$ = ? মন্দন, a ২য় ক্ষেত্রে আদিবেগ $= v_0 / 2$ $\Rightarrow 08a = \frac{3v_0^2}{4}$ = 0 শেষ বেগ $= 9.375 \text{ ms}^{-2}$ মন্দন, a $\Rightarrow a = \frac{3v_0^2}{32} = 9.375v_0^2$ =? দূরত্ব, s بر ২য় ক্ষেত্রে $v^2 = v_0^2 - 2as$ $\implies 0 = \left(\frac{v_0}{2}\right)^2 - 2 \times 9^{\circ} 375 v_0^2 s$ $\implies 18.75 v_0^2$. $s = v_0^2/4$ $\Rightarrow s = \frac{v_0^2}{4 \times 1875 v_0^2}$ = 0.0133 m্র্রিড) একটি বস্তু প্রথম 2s-এ 30 m এবং পরবর্তী 4 s-এ 150 m দূরত্ব গেল। বস্তুটির ত্বরণ কত ? ত্বরণ স্থির থাকলে বস্তুটি এরপুর 1s-এ কত পথ অতিক্রম করবে ? মনে করি আদি বেগ $= v_0$ এবং ত্ব্রণ = a১ম 2s-এ অতিক্রান্ত দূরত্ব $s = v_0 t + \frac{1}{2}at^2$ এখানে s = 30 m (1)সমীকরণ (1) হতে পাই t = 2 s $30 = v_0 \times 2 + \frac{1}{2} a \ (2)^2$ বা, $v_0 + a = 15$ ১ম 2s এবং পরিবর্তী 4 s অর্থাৎ (2 + 4) = 6s-এর অতিক্রান্ত দূরত্ব (2) $s_2 = v_0 \times 6 + \frac{1}{2}a (6)^2 = 30 + 150 = 180$ (3) \overline{a} , $v_0 + 3a = 30$ (2) এবং (3) হতে পাই $v_0 + 3a = 30$ $v_0 + a = 15$ 2a = 15বিয়োগ করে $a = \frac{15}{2} = 75 \,\mathrm{ms}^{-2}$ এখন (2)-এ a-এর মান বসিয়ে পাই , $v_0 + 7.5 = 15$ $v_0 = 15 - 7.5 = 7.5 \text{ ms}^{-1}$ এখন ১ম হতে শেষ পর্যন্ত অর্ধাৎ মোট (2 + 4 + 1) = 7s-এ অতিক্রান্ত দূরত্ব $s_3 = v_0 t + \frac{1}{2} a t^2$ $= 7.5 \times 7 + \frac{1}{2} \times 7.5 \times (7)^2 = 236.25 \text{ m}$ ∴ শেষোক্ত সেকেন্ডের অতিক্রান্ত দূরত্ব ঃ $s_4 = 236^{\circ}25 - (30 + 150)$

 $= 236^{\circ}25 - 180 = 56^{\circ}25 \text{ m}$

/**ট্রিখিক গতি** বিইঘর কম ি (ি একটি ট্রেন স্ধির অবস্থান হতে 10ms⁻² ত্বরণে চলতে আরম্ত করন। একই সময়ে একটি গাড়ি 100ms⁻¹ সমবেগে ট্রেনের সমান্তরালে চলা শুরু করন। ট্রেন গাড়িটিকে কখন পিছনে ফেলবে ? [ঢা. বো. ২০০৫] [ঢা. বো. ২০০৫] মনে করি, ট্রেনটি t সময় পরে s দূরত্বে গাড়িটিকে পিছনে ফেলবে। এখন, ট্রেনের ক্ষেত্রে, এখানে. ট্রেনের আদিবেগ, $v_{01} = 0$ $s = v_{o1}t + \frac{1}{2}a_1t^2$ টেনের,ত্বরণ, $a_1 = 10 \text{ ms}^{-2}$ $s = 0 + \frac{1}{2} \times 10 \times t^{-2}$ গাড়ির আদিবেগ, $v_{02} = 100 \text{ ms}^{-1}$ বা, গাড়ির ত্বরণ, a₂ = 0 বা. $s = 5t^2$ (1)এবং গাড়ির ক্ষেত্রে. $s = v_{02}t + \frac{1}{2}a_2t^2$ বা, s = 100t + 0(2)= 100tসমীকরণ (1) ও (2) হতে পাই, $5t^2 = 100t$ $t = \frac{100}{5} = 20s$ 💬 এক খন্ড প্রস্তরকে 98 ms-1 বেগে খাড়া উপরের দিকে নিক্ষেপ করা হলে-ক) কতক্ষণ ধরে এটি উপরে উঠবে १ (খ) 4 s পরে এর বেগ কত হবে ? (গ) যাত্রাম্থানে ফিরে আসতে এর কত সময় লাগবে ? (ক) মনে করি নির্ণেয় সময় = t জামরা পাই $t = \frac{v_0}{g}$ এখানে, $v_0 = 98 \,\mathrm{ms}^{-1}$ এবং $g = 9.8 \,\mathrm{ms}^{-2}$ (1) $t = \frac{98 \text{ ms}^{-1}}{98 \text{ ms}^{-2}}$ $\overline{1}, t = 10 \text{ s}$ (খ) মনে করি নির্পেয় বেগ = v $v = v_0 - gt$ $\exists t, v = 98 \text{ ms}^{-1} - 9.8 \text{ ms}^{-2} \times 4 \text{ s}$ (2)বা, $v = 58.8 \,\mathrm{ms}^{-1}$ (গ) মনে করি নির্ণেয় সময় = T $T = \frac{2v_0}{g} = \frac{2 \times 98 \text{ ms}^{-1}}{9.8 \text{ ms}^{-2}} = 20 \text{ s}$ 🔕 একটি বস্তুকে 180 m উচ্চ একটি মিনারের চূড়া হতে ফেলে দেয়া হল। একই সময়ে অন্য একটি বস্তুকে 60 ms⁻¹বেগে খাড়া উপরের দিকে নিক্ষেপ করা হল। কখ<u>ন এবং কোধায়</u> তারা মিলিত হবে ? মনে করি নিক্ষিন্ত হবার t সময় পর ভূমি হতে h উচ্চতায় তারা মিনিত হবে J= V1+V2 ১ম বস্তুর ক্ষেত্রে আমরা পাই উচ্চতা = $v_0 t + \frac{1}{2}gt^2$ ৰা, $(180 - h) = 0 + \frac{1}{2}gt^2 = \frac{1}{2}gt^2$ (1) $[v_0 = 0]$ ২য় কম্তুর ক্ষেত্রে (180 — h) m উচ্চতা = $v_0 t - \frac{1}{2} g t^2$ 180 m বা, $h = v_0 t - \frac{1}{2} g t^2$ (2) এখন সমীকরণ (1) এবং (2) যোগ করে পাই $v_0 t = 180$ (3)

60

BG & JEWEL

সমীকরণ (3) হতে পাই এখানে, $v_0 = 60 \text{ ms}^{-1}$ $60 \text{ ms}^{-1} \times t = 180 \text{ m}$ বা, t = <u>180 m</u> 60 ms^{-1} t = 3 sএখন ৮-এর মান সমীকরণ (1)-এ বসিয়ে পাই, $180 - h = \frac{1}{2} \times 9^{\circ}8 \,\mathrm{ms}^{-2} \times (3s)^2$ বা, 180 - h = 44.1বা, h = 180 - 44'1 = 135'9 mনিক্ষিম্ত হবার 3 s পর ভূমি হতে 135'9 m উপরে তারা মিলিত হবে। O। একটি মিনারের শীর্ষদেশ হতে একটি বন্দ্র্বের গুলি অনুভূমিকভাবে 980 ms⁻¹ বেগে ছোঁড়া হল এবং এটি 2s পরে ভূমি স্পর্শ করন। মিনারের উচ্চতা এবং মিনারের পাদদেশ হতে যে স্থানে গুলি ভূমি স্পর্শ করন তার দূরত্ব বের কর । মনে করি মিনারের পাদদেশ হতে নির্ণেয় দূরত্ব = s এখানে, $v = 980 \,\mathrm{ms}^{-1}$ আমরা পাই t = 2s $s = v \times t$ (1)সমীকরণ (1) হতে পাই. $s = 980 \text{ ms}^{-1} \times 2s = 1960 \text{ m}$ মনে করি মিনারের উচ্চতা = h এখানে, $v_0 = 0$ $g = 9.8 \,\mathrm{ms}^{-2}$ $h = v_0 t + \frac{1}{2}gt^2$ (2) সমীকরণ (2) হতে পাই, $\dot{h} = 0 + \frac{1}{2} \times 9.8 \,\mathrm{ms}^{-2} \times (2 \,\mathrm{s})^2$ বাঁ, $h = 196 \,\mathrm{m}$ ২১) একজন লোক 48.0 ms⁻¹ বেগে একটি বল খাড়া উপরের দিকে নিক্ষেপ করে। বলটি কত সময় শূন্যে ধাঁৰুবে এঁবং সৰ্বোচ্চ কত উপরে উঠবে ? রো. বো. ২০০০] এখানে. আমরা জানি, আদি বেগ $v_0 = 48^{\circ}0 \,\mathrm{ms}^{-1}$ $T = \frac{2v_0}{g}$ শেষ বেগ, v = 0 $= \frac{2 \times 48}{9.8}$ আঃ তুরণ, g = 9'8 ms⁻² নির্ণেয় সময়, T = ? $= 9.795 \,\mathrm{s}$ সর্বোচ্চ উচ্চতা, H = ? সবোচ্চ উচ্চতা, H = $\frac{v_0^2}{2g}$ = $\frac{(48)^2}{2 \times 9'8}$ = 117'55 m 🔄 একটি বৃস্তুকে 98 ms⁻¹ বেশে খাড়া উপরের দিকে নিক্ষেপ করা হলে দেখাও যে, 3s এবং 17s সময়ে বস্তুর বেগছয়ের মান সমান কিন্তু দিক বিপরীতমুখী। [সি. বো. ২০০১] আমরা জানি, প্রথম কৈত্রে, $v_0 = 98 \text{ ms}^{-1}$ $\theta_0 = 90^\circ$ t = 3 s $v = v_0 \sin \theta_0 - gt$ $= 98 \times \sin 90^{\circ} - 9.8 \times 3$ = 98 - 29.4 $= 68^{\circ}6 \text{ ms}^{-1}$ ন্দ্রাবার, দ্বিতীয় ক্ষেত্রে, $v = 98 \times \sin 90^{\circ} - 9.8 \times 17$ $= 98 - 166^{\circ}6$ $= -68^{\circ}6 \,\mathrm{ms}^{-1}$

সুতরাৎ 3 5 এবং 17 5 সময়ে বস্তুর বেগন্বয়ের মান সমান কিন্তু দিক বিপরীতমুখী থাকে। (প্রমাণিত)

বইঘর.কম ©ি 9'2ms⁻¹বেগে একটি ক্ষুদ্র বস্তুকে খাড়া উপরের দিকে নিক্ষেপ করা হল। এটি কড সময় পরে ড্-পৃষ্ঠে [কু. বো. ২০০২] **ফিরে অসিবে ?** (g = 9'8 ms⁻²)। মনে করি, বস্তুটির ভ্রমণকাল = T আমরা জানি, $v_0 = 9.2 \text{ ms}^{-1}$ $g = 9.8 \text{ ms}^{-2}$ $T = \frac{2v_0}{g}$ $T = \frac{2 \times 92}{98} = 1.878 \text{ s}$ (8) একটি বস্তুকে খাড়া উপরের দিকে 50ms⁻¹ বেগে নিক্ষেপ করা হল। বস্তুটি যখন 100m উঁচুতে থাকবে তখন এর বেগ কত হবে ? এখানে, আমরা জানি. আদি বেগ, v₀ = 50 ms⁻¹ অভিকৰ্ষন্ধ ত্ব্বগ, g = 9[.]8 ms⁻² $v^2 = v_0^2 - 2gh$ $v^2 = (50)^2 - 2 \times 9.8 \times 100$ = 2500 - 1960 = 540উচ্চতা, h = 100 m $= \pm 7.3 \text{ms}^{-1}$ υ । বেগের দুটি মান রয়েছে। এর অর্থ হল উপরে উঠার সময় 100m উচ্চতায় বেগ 7[.]3ms⁻¹ এবং নিচে নামার সময় ঐ উচ্চতায় বেগ — 7⁻3 ms⁻¹] $\mathbf{Q}^{\mathcal{N}}$ ২৫। সমত্বরণে গতিশীল বস্তুর ক্ষেত্রে, $s=v_0t+rac{1}{2}at^2$ সমীকরণ হতে ক্যালকুলাসের সাহায্যে দেখাও যে, $v = v_0 + at$ $s = v_0 t + \frac{1}{2} a t^2$ আমরা জানি, $v = \frac{ds}{dt}$ $= \frac{d}{dt} \{ v_0 t + \frac{1}{2} a t^2 \}$ $= \frac{d}{dt} (v_{\rm o}t) + \frac{d}{dt} \left(\frac{1}{2}at^2\right)$ $= v_0 \frac{d(t)}{dt} + \frac{1}{2} a \times \frac{d}{dt} (t^2) \quad [\because v_0 \ \Im \ a \ \mathtt{A} \ \mathtt{A}$ $= v_0 + \frac{1}{2}a \times 2t$ $= v_0 + at$ / বা, $v = \dot{v}_{o} + at$ (প্রমাণিত)। () $s = \frac{1}{3}t^{3} + 3t$ সূত্রানুসারে একটি বস্তু সরলরেখায় চলছে। 2s পরে এর বেগ নির্ণয় কর। [ঢা. বো. ২০০৩] এখানে, t = 2 s v = ? মনে করি, গতিবেগ = v আমরা জানি, $v = \frac{ds}{dt}$ এখন, $s = \frac{1}{3}t^3 + 3t$ s-কে সময় t-এর সাপেক্ষে ব্যবকলন করে পাই, $\frac{ds}{dt} = \frac{d}{dt} \left(\frac{1}{3} t^3 + 3t \right)$ $v = \frac{1}{3} \times 3t^2 + 3 = t^2 + 3$ বা, 2s পরে বস্তুটির বেগ $v = (2)^2 + 3 = 4 + 3 = 7$ 4 $\Phi \Phi$ প্রশাল সংকিশ্ত-উত্তর প্রশ্ন ঃ ১। স্বিতি ও গতি বলতে কি বুঝ ? ২। মধ্য বেগ কাকে বলে ? ঢা. বো. ২০০৪] ৩। তাৎক্ষণিক তুরণ কাকে বলে ? [কু. বো. ২০০৪] ৪। ব্যবকলনের সাহায্যে তাৎক্ষণিক বেগের সুৎজ্ঞা দাও। য়. বো. ২০০৪] ৫। সরণ, বেগ ও তুরণের একক ও মাত্রা সমীকরণ লিখ। ৬। ব্যবকলনের সাহায্যে তাৎক্ষণিক ত্বরণের সংজ্ঞা দাও। যি. বো. ২০০৪] ৭। গড় বেগ কাকে বলে ? গড় বেগ থেকে কিডাবে তাৎক্ষণিক বেগ পাওয়া যায় ব্যাখ্যা কর। বি. বো. ২০০৫, ২০০৩; চ. বো. ২০০০]

bC^{*.}

BG & JEWEL

৮। সুষম ত্বুরণ বলতে কি বুঝ ? [ঢা. বো. ২০০৬ ; রা. বো. ২০০২] ৯। তাৎক্ষণিক বেগ ও তাৎক্ষণিক ত্বুরণ চিত্রসহ ব্যাখ্যা কর। [কু. বো. ২০০০] ১০। সংজ্ঞা দাও ঃ তাৎক্ষণিক বেগ [য. বো. ২০০৬ ; রা. বো. ২০০৬, ২০০১; ঢা. বো. ২০০৫, ২০০১; চ. বো. ২০০৩] সমবেগ [রা. বো. ২০০১] গড় বেগ [রা. বো. ২০০১] সরণ, ত্বরণ [সি. বো. ২০০৫] , পর্যাবৃত্ত গতি, চলন গতি। ১১। আপেক্ষিক বেগ কাকে বলে ? 1 ১২। বিভিন্ন মাত্রার প্রসঞ্চা কাঠামো বলতে কি বুঝ ? রচনামূলক প্রশ্ন : ১। দেখাও যে, স্বির অবস্থান হতে সমত্বরণে চলমান বস্তুর অতিক্রান্ত দূরত্ব সময়ের বর্গের সমানুপাতিক। ঢ়া. বো. ২০০৪] ২। দেখাও যে, $v_x{}^2 = v_{x_0}{}^2 + 2a_x (x - x_0)$, এখানে প্রতীকগুলো প্রচলিত অর্থ বহন করে। [চ. বো. ২০০৬, ২০০১ ; রা. বো. ২০০৪ ; সি. বো. ২০০৪ ; ঢা. বো. ২০০২ ; ব. বো. ২০০১] ৩। প্রমাণ কর যে, $x = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$, এখানে প্রতীকগুলো প্রচলিত অর্থ বহন করে। [ব. বো. ২০০৩] ৪। X-অক্ষ বরাবর সমত্বরণে গতিশীর্ল একটি কণার দর্ন প্রমাণ কর যে, $x = x_0 + v_{x0}t + \frac{1}{2}a_xt$, প্রতীকগুলো প্রচলিত অর্ধে ব্যবহুত। [সি. বো. ২০০৫] ৫। সমত্বরণের ক্ষেত্রে প্রতিপাদন কর ঃ $v = v_0 + at$ এবং $v^2 = v_0^2 + 2a (x - x_0)$, এখানে প্রতীকগুলো প্রচলিত অর্থ বহন করে। রা. বো. ২০০১] ৬। ক্যালকুলাসের সাহায্যে গতির নিম্নোক্ত সমীকরণটি প্রতিপাদন কর ঃ $v_x^2 = v_{x_0}^2 + 2a_x (x - x_0)$, এখানে প্রতীকগুলো প্রচলিত অর্থ বহন করে। [ব. বো. ২০০৬ ; য. বো. ২০০১] ৭। স্থির অবস্থান হতে সমুত্বরণে চলমান বস্তুর জন্য দেখাও যে, বস্তুর প্রান্তবেগ সরণের বর্গমূলের সমানুপাতিক। ৮। পড়ন্ত বস্তুর সূত্রগুলো বিবৃত ও ব্যাখ্যা কর। ৯। দ্রুতি ও বেগের মধ্যে পার্থক্য কর। ১০। বেগ ও ত্বুরণের মধ্যে পার্থক্য কর। ১১। ক্যালকুলাস পন্ধতিতে $s = v_0 t + rac{1}{2} a t^2$ সমীকরণটি প্রতিপাদন কর, যেখানে প্রতীকগুলো প্রচলিত অর্থ বহন করে। [ঢা. বো. ২০০৫] ১২। বেগ বনাম সময় লেখচিত্র হতে $v=v_0+at$ সমীকরণ প্রতিপাদন কর। ১৩। বেগ বনাম সময় লেখচিত্র হতে $s = v_0 t + \frac{1}{2} a t^2$ সমীকরণটি প্রতিপাদন কর। [য. বো. ২০০২ ; ঢা. বো. ২০০১] ১৪। খাড়াভাবে উপর দিকে নিক্ষিশ্ত বস্তুর সর্বাধিক উচ্চতার রাশিমালা বের কর। ১৫। খাড়াভাবে উপর দিকে নিক্ষিণ্ত বস্তুর উত্থান-পতনের রাশিমালা বের কর। গাণিতিক সমস্যাবলি ঃ 🚱 কোন একটি বস্তুর সরলরেখায় 10 s-এর অতিক্রান্ত দূরত্ব 8 m। গড় বেগ নির্ণয় কর। [𝔅ึ 0.8 ms^{−1}] একটি বস্তু স্থিতিশীল অবস্থা হতে যাত্রা করে 2 ms⁻² সমত্রণে চলতে লাগল। (ক) 5 s পর বস্তুর বেগ কত ? (খ) 5s-এ বস্তু কত দূরত্ব অতিক্রম করবে ? (গ) **কতক্ষণ পর এর বে**গ 50 ms⁻¹ হবে ? (ঘ) 5th s-এ এটি কত দূরত্ব যাবে ? [উঃ (ক) 10 ms⁻¹, (খ) 25 m, (গ) 25 s (ঘ) 9 m] [ঘূণ্টায় 40 km বেগে চলন্ড একটি গাড়িকে 6s যাবত 1 5 ms⁻² হারে ত্বরিত করা হল, এর শেষ বেগ কত হবে এবং [উঃ (ক) 10 ms⁻¹, (খ) 25 m, (গ) 25 s (ঘ) 9 m] [5: 20'11 ms⁻¹, 93'66 m] তুরণকালে এটি কত দূর চলবে ? 🚱 একটি বস্তু স্থিতিশীল অবস্থা হতে যাত্রা করে 5 ms⁻² সমত্বরণে চলতে লাগল। 5s -এ বস্তু কত পথ অতিক্রম করবে নির্ণয় কর। [ቼঃ 62[·]5 m] @ একটি বস্তু স্থিতিশীল অবস্থা হতে যাত্রা করে 5 ms⁻² সমত্বরণে চলতে লাগল। কতক্ষণ পর এর বেগ 396 km/h হবে বের কর। [58 22 s] 🕞 একটি বস্তুর প্রথম 4s এর গড় বেগ 30 cm s⁻¹ এবং পরবর্তী 4s-এর গড় বেগ 10 cms⁻¹। বস্তুটি সমমন্দন গতিশীল আছে ধরে এর আদি ব্রেগ এবং মন্দন বের কর। $[5 \text{ s} 5 \text{ cm}\text{s}^{-2}]; 40 \text{ cm}\text{s}^{-1}]$ ৭) একটি গাড়ি 50 ms⁻¹ বেগে চলছিল। গাড়ির চালক ব্রেক চেপে 5 ms⁻² মন্দন সৃষ্টি করল। (ক) এর বেগ 8 s পর কত হবে ? (খ) এই 8 5 এ গাড়ি কত গড় বেগে চলবে ? (গ) 8 s-এ গাড়ি কত দূরে যাবে ? (মৃ) 8th s-এর শুরুতে তাৎক্ষণিক বেগ কত হবে ? [উঃ (ক) 10 ms⁻¹, (খ) 30 ms⁻¹, (গ) 240 m, (মৃ) 15 ms⁻¹]

৮৬

	ৰেহ্বন্ধ. বাফ	0	64
	No.	~=°	
	্রি একটি মটর গাড়ি ঘণ্টায় 316 8 km বেগে চলে। ব্রেক চেপে একে 2 mi ত আসার পর্ব মহত পর্যন্ত অতিক্রান্ত দরত বের কর।	in-এ থামিয়ে দেয়া হল	। মন্দন এবং
স্থিতি			
	তি একটি কর্ণা স্থির অবস্থা হতে 5 ms ⁻² সমত্বরণে চলতে থাকলে 5th সেকে	ণ্ড এটি কড দূরত্ব অতিব্রু	ম করবে বের
কর।	0		[ចះ 22 [·] 5 m]
	🜔 একটি বস্তু 5th সেকেন্ডে 50 m এবং 10th সেকেন্ডে 100 m দূরত্ব জা বগ এবং (গ) 20 s-এ অতিক্রান্ত দূরত্ব নির্ণয় কর। [উঃ (ক	ইক্রম করে। বস্তৃটির (ক) ত্বরণ, (খ) 🔒
আঁদি (বস এবং (গ) 20 s-এ অতিক্রান্ত দূরত্ব নির্ণয় কর।] উঃ (ক) 10 ms ⁻² , (◄) 5 ms ⁻¹ ,	(গ) 2100 m] (
-	🕥 সরলরেখায় চলে কোন একটি বুস্তু প্রথম 4s-এ 160 m এবং পরবর্তী 4	l s-এ 320 m দূরত্ব অগি	ইক্রম করে।
বস্ত্রা	র সমত্বরণ ধরে এর আদি বেগ ও ত্বরণ নির্ণয় কর।	_	s^{-2} , 20 ms ⁻¹]
	(২) 98 m উঁচু একটি মিনারের চূড়া হতে একটি বস্তৃকে ছেড়ে দেয়া হল। এক	ই সময়ে অন্য একটি বৃস্তু	
24.5 1	ns ⁻¹ বেগে খাড়া উপরের দিকে নিক্ষেপ করা হল। কখন এবং কোথায় বস্তু দুটি মি		4 s, 19 6 m]
<u>_</u>	(১৩) একটি ট্রেন স্থির অবস্থান হতে 5ms ⁻² তুরণে চলতে শুরু করল। একই		
দ্রনের	সমন্তিরালে চলা শুরু করল। ট্রেন গাড়িটিকে কখন পিছনে ফেলবে?		ভর 8 20s]
	<u>(8)</u> একটি বন্দুকের গুলি কোন দেয়ালের মধ্যে 0 [.] 08m প্রবেশ করার পর অর্ধেক 🖓	বেগ হারায়। গুলোট দেয়া	লের মধ্যে আর
কতদূর	। প্রবিশ করতে পারবে ?	[কু. বো. ২০০৫] 🖼	-
	(১০) একটি বন্দুকের গুলি কোন দেয়ালের মধ্যে 0.06m প্রবেশ করার পর অর্ধেক।	বেগ হারায়। ণুলিটি দেয়া	লের মধ্যে আর্দ
কতদূর	ব প্রবেশ করতে পারবে ?	[ব. বো. ২০০৫] উন্তর	∛ 8 0'02 m]∕ _
	_ 🚱 একটি রাইফেলের গুলি নির্দিষ্ট পুরুত্বের একটি তক্তা ভেদ করতে পারে।	ঐরপ 16টি তক্তা ভেদ ক	রতে হলে এর
বেগ ব	PO199 200 200 ?	`	[উঃ 4 গুণ]
	তি 9 20 ms ⁻² মন্দন সৃষ্টিকারী বল প্রয়োগ করে একটি গাড়িকে 40 m দূরে থ	ামানো হলে গাডিটির অ	~
কর।			উঃ 40 ms⁻¹]
	প্রি দোটরগাড়ি $16~{ m ms}^{-1}$ এবং $12~{ m ms}^{-1}$ বেগে একই সময়ে মাত্রা শুরু ক		
গাটি	দুটির ত্বরণ যথ্যব্রমে 5 ms ⁻² এবং 4 ms ⁻² হলে তাদের গন্তব্যে পৌছতে কত সময় লে	রে এবং একং গলবেরে দেব গেচিল একং গলবেরে দেব	জ কাজ চিলা গ
sin o	104 844 444 0 ms - 4444 ms - 264 61648 4643 611266 46 444 61		
		[উঃ 8 s, 256	
~ <	্রিস্ট্রী একটি মোটরগাড়ি সরলরেখা বরাবর 20 ms ⁻¹ বেগে চলছে। গাড়ির চাল	ক 100 m দূরে 36 km	h⁻¹ গাতসামা্
ানদে	পর্ক চিহ্ন দেখতে পেলেন। ব্রেক কষে গাড়িটিতে কত মন্দন সৃষ্টি করলে ঐ স্থানে গা		
নিদে	ণ চিহ্ন পর্যন্ত পৌছতে গাড়িটির কত সময় লাগবে ?		ns ^{−2} , 6 [°] 67 s]
	🛛 🐼 একটি মোটরগাড়ি 30 ms ⁻¹ বেগে চলছে। এ অবস্থায় ব্রেক কষায় গাড়িটি	র বেগ সমত্বরণে কমে :	5 sec পরে 12
ms ⁻¹	হল ।(ক) গাড়িটির ত্বরণ ও (খ) পঞ্চম সেকেন্ডে অতিক্রান্ত দূরত্ব নির্ণয় কর।	টিঃ — 3 [·] 6 п	15 ⁻² ; 13 8 m]
	্র্ব্র)। একটি বস্তু 50 m উপর হতে অভিকর্ষের টান পড়ে 3 m পুরু বালু ভেদ কর		
আর ব	কত গুভীরে যেতে পারবে ?		উঃ 1 m]
	(২২) একটি বাঘ 8 m মিটার সম্মুখে একটি হরিণকে দেখতে পেয়ে স্থিরাবস্থা হয	$\sqrt{9}$ 1mc ⁻² today tota (5	[III I • •] बारायाचि जन्म
পালক	। হরিণটি টের পেয়ে 3 ms ⁻¹ সমবেগে চলতে থাকলে কতক্ষণ পরে ও কত দূর	ত mbarry বালটি কবি	
পারবে	•		
		୬] ————————————————————————————————————	8s @ 32m]
	🛿 🕢 একটি বস্তুকে খাড়া উপরের দিকে 100 ms ⁻¹ বেগে নিক্ষেপ করা হল। ব	210 444 300m 66 (C	থাকবে ওখন
<u>ଅ</u> ମ୍ମ (কিন্ উত্তর :	$\pm 64^{\circ}2ms^{-1}$
V	$\frac{1}{100}$ $$	বস্তৃ। ৫র ম্যাচতে পোছবা	র প্রাক্তালে বেগ
40 3	বে ? মাটিতে পড়তে কত সময় লাগবে ?	[উত্তর ঃ 31 ⁻ 3n	ns ⁻¹ ; 3 [·] 19 <i>s</i>]
r .	হিল 1kg ভরের একটি বস্তৃকে পৃথিবীর টানে মুক্তভাবে পড়তে দেয়া হল। কত	<u>সকেন্ড প</u> র এর বেগ <u>95</u>	<u>ms⁻¹</u> হবে ?
		₹ V[উত্তর ঃ 97s]
	🐠 একটি প্রস্তর খন্ডকে 30 ms ⁻¹ বেগে খাড়াভাবে উপরের দিকে নিক্ষেপ কর	া হল। এটি কত উপরে	উঠবে এবং ঐ
উচ্চত	য়ি উঠুতে কত সময় লাগবে ? $[g = 10 \text{ ms}^{-2}]$	ľ	ቼ៖ 45 m , 3s]
	্র্বি) কত বেগে একটি প্রস্তুর খন্ডকে খাড়াভাবে উপরে নিক্ষেপ করলে এটি 20 m	ু উচ্চে উঠবে ? [g = 10	0 ms ⁻²]
V	To The Th	-	🔁 20 ms ⁻¹]
-	🔊 একটি ক্রিকেট বলকে খাড়া উপরের দিকে নিক্ষেপ করা হল এবং এটি (6 সেকেণ্ডে ওঠা-নামা ব	হরে। সর্বাধিক
ড উচ্চত	ায় উঠতে কত সময় লাগবে এবং এই উচ্চতা কত হবে নির্ণয় কর। [g = 10 ms ⁻²]	_ /	[উ ঃ 3s, 45 m]
	🔊 । 150 m উঁচু হতে একটি পাথর ভূমিতে পতিত হঁয়। (ক) ভূমিতে পৌছতে		
-	দরার মুহূর্তে এর বেগ কত ? [g = 9'8 ms ⁻²]	ডিঃ 5 [.] 53 s	$5, 54^{\circ}2 \text{ ms}^{-1}$

তি দ্বিমাত্রিক গতি TWO DIMENSIONAL MOTION

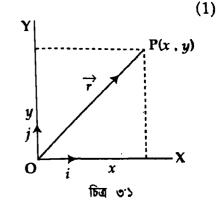
৩°১ সূচনা Introduction

দ্বিতীয় অধ্যায়ে সরণ, বেগ, ত্বুরণ ইত্যাদি একমাত্রিক প্রসঞ্চা কাঠামোতে প্রকাশ করা হয়েছে এবং সেগুলো সরলরৈখিক গতি বর্ণনায় ব্যবহার করা হয়েছে। এ অধ্যায়ে ঐ রাশিগুলো দ্বিমাত্রিক ও ত্রিমাত্রিক প্রসঞ্চা কাঠামোতে প্রকাশ করা হবে এবং গতির সমীকরণ প্রতিপাদন করা হবে। উল্লেখ্য যে, ত্রিমাত্রিক প্রসঞ্চা কাঠামো হতে সহজেই একটি উপাংশ বাদ দিয়ে দ্বিমাত্রিক প্রসঞ্চা কাঠামোতে রূপান্তর করা যায়।

কোন বস্তুর গতি দ্বিমাত্রিক তলে বিবেচনা করলে তাকে দ্বিমাত্রিক গতি বলে। নিক্ষিন্ত বস্তু বা প্রাসের গতি, বৃত্তাকার গতি প্রভৃতি দ্বিমাত্রিক গতির উদাহরণ। এ অধ্যায়ে প্রাসের গতি, বৃত্তাকার গতি, কৌণিক সরণ ও কৌণিক বেগ, রৈখিক বেগ ও ত্বরণের সজ্ঞা যথাক্রমে কৌণিক বেগ ও ত্বরণের সম্পর্ক আলোচনা করা হবে। এ ছাড়া কৌণিক গতি বিষয়ক সমীকরণ প্রতিপাদন করা হবে।

৩°২ দ্বিমাত্রিক ও ত্রিমাত্রিক প্রসক্ষা কাঠামোয় গতি সংক্রাস্ত বিভিন্ন রাশির ভেক্টর রূপ Necessary terms in vector form relating motion in two and three dimenstional reference frame (ক) অবস্থান ডেক্টর

প্রসক্ষা কাঠামোর মূল বিন্দুর সাপেক্ষে কোন বিন্দুর অবস্থান যে ভেক্টরের সাহায্যে নির্ণয় করা হয় তাকে অবস্থান ভেক্টর বলে। [দ্বিতীয় অধ্যায়ে অবস্থান ভেক্টর সম্পর্কে বিস্তারিত আলোচনা করা হয়েছে]।


ব্যাখ্যা ঃ একটি কণার অবস্থান যদি 📝 দ্বারা সূচিত করা হয়, তবে দ্বিমাত্রিক প্রসক্তা কাঠামো ব্যবস্থায় আমরা লিখতে পারি,

$$\vec{r} = x\hat{i} + y\hat{j}$$

এখানে, \hat{i} ও \hat{j} যথাক্রমে X ও Y-অক্ষ বরাবর একক ভেষ্টর এবং x ও y হচ্ছে \overrightarrow{r} -এর উপাংশের মান।

ত্রিমাত্রিক কাঠামোয় লেখা যায়, $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$

এখানে \hat{i} , \hat{j} ও \hat{k} যথাক্রমে X, Y ও Z-অক্ষ বরাবর একক ভেষ্টর এবং x, y ও z হল \overrightarrow{r} -এর উপাংশের মান।

(খ) সরণ ঃ কোন একটি গতিশীল বস্তুর অবস্থান তেষ্টর পরিবর্তনকে এ বস্তুর সরণ বলে। বস্তুটি যে পথেই আদি অবস্থান হতে শেষ অবস্থানে যাক না কেন এই অবস্থানের ন্যূনতম দূরত্ব হবে সরণের পরিমাণ এবং আদি অবস্থান হতে শেষ অবস্থানের দিকই হবে সরণের দিক। অতএব অবস্থানের পরিবর্তন দ্বারা সরণ . ধ্রুঁকাশ করা যায়।

ব্যাখ্যা ঃ ধরা যাক, মূলবিন্দু O-এর সাপেক্ষে একটি কণার গাদি অবস্থান P এবং শেষ অবস্থান Q। আদি অবস্থান ভেষ্টর $Q(x_{2}, y_{2})$ $\overrightarrow{DP} = \overrightarrow{r_1}$ এবং শেষ অবস্থান ভেষ্টর, $Q = \overrightarrow{r_2}$ [চিত্র ৩ ২] । Δ'n P ও Q-এর স্থানাজ্ঞ যথাব্রুমে $P(x_1, y_1)$ ও $Q(x_2, y_2)$ এখন, ত্রিভুচ্চ সূত্র অনুসারে, $\overrightarrow{r_1} + \Delta \overrightarrow{r} = \overrightarrow{r_2}$ বा. $\Delta \overrightarrow{r} = \overrightarrow{r_2} - \overrightarrow{r_1}$ 0 (2) $\Delta \overrightarrow{r}$ হল কণাটির সরণ। চিত্র ৩২ দ্বিমাত্রিক ক্ষেত্রে $\Delta r, \overrightarrow{r_1}$ ও $\overrightarrow{r_2}$ -এর উপাংশ $\Delta \vec{r} = \Delta x \hat{i} + \Delta y \hat{j}$ $\overrightarrow{r_1} = x_1 \overrightarrow{i} + y_1 \overrightarrow{j}$ এবং $\vec{r_2} = x_2 \hat{i} + y_2 \hat{j}$ জতএব, $\Delta \overrightarrow{r} = \overrightarrow{r_2} - \overrightarrow{r_1}$ লেখা যায়, $\Delta \overrightarrow{r} = (\Delta x)\hat{i} + (\Delta y)\hat{j} = (x_2\hat{i} + y_2\hat{j}) - (x_1\hat{i} + y_1\hat{j})$ $= (x_2 - x_i)\hat{i} + (y_2 - y_1)\hat{j}$ (3)বামপক্ষে ও ডানপক্ষে i ও j-এর সহগ সমান। $\Delta x = x_2 - x_1$ এবং $\Delta y = y_2 - y_1$ Δx ও Δy হচ্ছে যথাক্রমে X ও Y-জক্ষ বরাবর $\Delta \overrightarrow{r}$ -এর উপাংশ। তিমাত্রিক ক্ষেত্রে : তিমাত্রিক কাঠামোয় P ও Q এর স্থানাজ্ঞ $P(x_1, y_1, z_1)$ ও $Q(x_2, y_2, z_2)$ । কণাটির সরণ, $\Delta \overrightarrow{r} = (\Delta x) \hat{i} + (\Delta y) \hat{j} + (\Delta z) \hat{k}$ (4) Δx , Δy ও Δz যথাক্রমে X, Y ও Z-অক্ষ বরাবর $\Delta \overrightarrow{r}$ -এর উপাংশ।

(গ) তাৎক্ষণিক বেগ বা বেগ ঃ সময় ব্যবধান শূন্যের কাছাকাছি হলে বস্তুর সরণের হারকে তাৎক্ষণিক ৰেগ বা বেগ ৰলে।

ধরা যাক, একটি কণার অবস্থান ভেষ্টর 📝 এবং ক্যালকুলাসের নিয়ম অনুসারে,

$$\vec{v} = \frac{d\vec{r}}{dt}$$
(5)

(ৰু) ন্বিমাত্ৰিক ক্ষেত্ৰে

দিমাত্রিক ক্ষেত্রে অবস্থান ভেষ্টর, $\vec{r} = x\hat{i} + y\hat{j}$

$$\begin{array}{l} \textbf{CAP1}, \overrightarrow{v} &= \frac{d}{dv} \left(x \widehat{i} + y \widehat{j} \right) = \left(\frac{dx}{dt} \right) \widehat{i} + \left(\frac{dy}{dt} \right) \widehat{j} \\ &= v_x \widehat{i} + v_y \widehat{j} \end{array}$$
 (6).

এখানে, v_x ও v_y যথাক্রমে X ও Y-অক্ষ বরাবর \overrightarrow{v} -এর উপাংশ।

(ii) ত্রিমাত্রিক ক্ষেত্রে :

ত্রিমাত্রিক ক্ষেত্রে অবস্থান ভেষ্টর,

$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$$

$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$$

$$\vec{r} = \frac{d\vec{r}}{dt} = \frac{d}{dt}(x\hat{i} + y\hat{j} + z\hat{k})$$

$$= \left(\frac{dx}{dt}\right)\hat{i} + \left(\frac{dy}{dt}\right)\hat{j} + \left(\frac{dz}{dt}\right)\hat{k}$$

$$= v_x\hat{i} + v_y\hat{j} + v_z\hat{k}$$
(7)

এখানে, v_x , v_y ও v_z যথাক্রমে X, Y ও Z অক্ষ বরাবর \overrightarrow{v} -এর উপাংশ।

ত্বরণ বা তাৎক্ষণিক ত্বরণ : সময় ব্যবধান শূন্যের কাছাকাছি হলে সময়ের সাথে বস্তুর বেগ বৃন্ধির হারকে ত্বরণ বা তাৎক্ষণিক ত্বরণ বলে। একে 'a' দ্বারা প্রকাশ করা হয়। এটি একটি ভেক্টর রাশি। ত্বরণের সাধারণ সমীকরণ হল $\vec{a} = \frac{d\vec{v}}{dt}$ । নিমে বিভিন্ন প্রসঞ্চা কাঠামোতে উপাংশের মাধ্যমে ত্বরণ প্রকাশ করা হল।

একমাত্রিক প্রসঙ্গ কাঠামোর ক্রেত্রে ঃ

X-অক্ষে গতিশীল বস্তুর ক্ষেত্রে

$$\overrightarrow{a} = a_x \overrightarrow{a}$$

অনুরূপভাবে, Y ও Z-অক্ষে গতিশীল বস্তুর ক্ষেত্রে যথারুমে $\overrightarrow{a} = a_v \widehat{j}$ ও $\overrightarrow{a} = a_z \widehat{k}$

দ্বিমাত্রিক ক্ষেত্রে :

একটি বস্তু বা কণা XY তলে গতিশীল হলে,

$$\overrightarrow{a} = a_x \widehat{i} + a_y \widehat{j}$$
(8)

এখানে a_x, a_y হছে X ও Y জক্ষ বরাবর $\overrightarrow{a'}$ -এর উপাংশ।

অনুরূপভাবে, XZ ও YZ তলে গতিশীল বস্তুর ক্ষেত্রে যথাব্রুমে,

 $\overrightarrow{a} = a_x \overrightarrow{i} + a_z \overrightarrow{k} \, \, \mathfrak{S} \, \overrightarrow{a} = a_y \overrightarrow{j} + a_z \overrightarrow{k}$

ত্রিমাত্রিক ক্ষেত্রে ঃ

ত্রিমাত্রিক স্থানাজ্ঞ ব্যবস্থায়,

$$\overrightarrow{a} = a_x \widehat{i} + a_y \widehat{j} + a_z \widehat{k}$$
⁽⁹⁾

এখানে, a_x , a_y , a_z হচ্ছে X, Y ও Z অক্ষ বরাবর \overrightarrow{a} -এর উপাংশ।

৩-৩ সরণ ও বেগের উপাংশগুলোর মধ্যে সম্পর্ক

Relation among the components of displacement and velocity

আমরা জানি,

$$\overrightarrow{v} = x\widehat{i} + y\widehat{j} + z\widehat{k}$$

$$\overrightarrow{v} = \frac{d\overrightarrow{r}}{dt} = \frac{dx}{dt}\widehat{i} + \frac{dy}{dt}\widehat{j} + \frac{dz}{dt}\widehat{k}$$
(10)

বইঘর.কম

 \overrightarrow{v} -কে উপাংশে প্রকাশ করা যায়,

$$\overrightarrow{v} = v_x \widehat{i} + v_y \widehat{j} + v_z \widehat{k} = \frac{dx}{dt} \widehat{i} + \frac{dy}{dt} \widehat{j} + \frac{dz}{dt} \widehat{k}$$
(11)

উভয় পক্ষের \hat{i} \hat{j} ও \hat{k} -এর সহগগুলো সমান, অতএব

$$v_x = \frac{dx}{dt}, v_y = \frac{dy}{dt}, v_z = \frac{dz}{dt}$$
(12)

 v_x , v_y , v_z হল যথাক্রমে X, Y ও Z অক্ষ বরাবর \overrightarrow{v} -এর উপাংশ।

৩°৪ গতির সমীকরণ (ভেক্টর রূপ) Equations of motion (Vector form)

সূচনা ঃ গতি সংক্রান্ত সংকেতগুলোর মধ্যে যে সম্পর্ক রয়েছে তাকে গতির সমীকরণ বলে র্ন সমত্বরণে গতিশীল বস্ত্র তাৎক্ষণিক ত্বরণ যে কোন সময় ব্যবধান বা অবকাশের গড় ত্বরণের সমান থাকে। এই ত্বরণ = \vec{a} । আরো ধরা হয় যে, এই গতির প্রাথমিক ও মূল শর্তাদি হল সময় গণনার শুরুতে সময় t = 0, আদি অবস্থান ভেক্টর = \vec{r}_0 এবং আদি বেগ = \vec{v}_0 ।

(ক) $\vec{v} = \vec{v}_0 + \vec{a} t$ অর্ধাৎ t সময় অবকাশে দ্বিমাত্রিক তলে সমত্বরণে গতিশীল একটি বস্তৃর শেষ বেগের সমীকরণ প্রতিপাদন।

সমত্বরণে একটি গতিশীল বস্তু বিবেচনা করি।

ধরি X-অক্ষ বরাবর এর আদি বেগ v_{x0} , ত্বরণ a_x , যাত্রা কাল = t এবং t সময় পর বস্তৃটির বেগ v_x [চিত্র ৩·৩]।

আমরা জানি,
$$v = v_0 + at$$

উক্ত সমীকরণ অনুসারে X-অক্ষে গতিশীল বস্তুর ক্ষেত্রে পাই,
 $v_x = v_{x0} + a_x t$ (13)
অনুরূপভাবে Y-অক্ষে গতিশীল বস্তুর ক্ষেত্রে পাই,
 $v_y = v_{y0} + a_y t$ (14)
Z-অক্ষে গতিশীল বস্তুর ক্ষেত্রে পাই,
 $v_z = v_{z0} + a_z t$ (15)
বিগ $v_x = v_{x0} + v_{x0}$
 $v_x = t = t$

চিত্র ৩৩

বস্তুটি কোন দিকে গতিশীল থাকলে, তার বেগের উপাংশসমূহ সমীকরণ (13), (14) এবং (15) হতে পাওয়া যায়। সুতরাং ৮ সময়ে বস্তুটির বেগ

$$\vec{v} = v_x \hat{i} + v_y \hat{j} + v_z \hat{k}$$
ati,
$$\vec{v} = (v_{x0} + a_x t) \hat{i} + (v_{y0} + a_z t) \hat{j} + (v_{z0} + a_z t) \hat{k}$$
ati,
$$\vec{v} = (v_{x0} \hat{i} + v_{y0} \hat{j} + v_{z0} \hat{k}) + (a_x \hat{i} + a_y \hat{j} + a_z \hat{k}) t$$
ati.
$$\vec{v} = \vec{v_0} + \vec{a} t$$
(16)
atticn
$$\vec{v_0}$$
 aryofilial mithican wat \vec{a} aryofilial states

(খ) $\vec{r} = \vec{r_0} + \vec{v_0}t + \frac{1}{2}\vec{a}t^2$ অর্ধাৎ t সময় অবকাশে সমত্বরণে গতিশীন একটি বস্তৃ কর্তৃক ছিমাত্রিক তলে অতিক্রান্ত দূরত্বের সমীকরণ প্রতিপাদন।

সমত্বরণে একটি গতিশীল বস্তু বিবেচনা করি। ধরি X-জক্ষ বরাবর এর জাদি বেগ v_{x0} , যাত্রার শুরুতে জর্ধাৎ t = 0 সময়ে সরণ = x_0 , ত্বরণ = a_x , t সময়ের সরণ = x। উক্ত সময়ে অতিক্রান্ত দূরত্ব = s। এখন s-এর মান নির্ণয় করি। উল্লেখ্য আদি অবস্থায় সরণ ভেষ্টর জর্ধাৎ t = 0 সময়ে $\overrightarrow{r} = \overrightarrow{r_0}$

আমরা জানি, $s = v_0 t + \frac{1}{2} at^2$, অতএব শর্তানুসারে, X-অক্ষে গতিশীল বস্তুর ক্ষেত্রে লেখা যায় $s = x - x_0 = v_{x0}t + \frac{1}{2}a_xt^2$ বা, $x - x_0 = v_{x0}t + \frac{1}{2}a_xt^2$ বা, $x = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$ (17) সরল : $0 \qquad x_0 \qquad x \qquad t = t$

অনুরপভাবে Y-অক্ষে গতিশীল বস্তুর ক্ষেত্রে লেখা যায়

$$y = y_0 + v_{y0}t + \frac{1}{2}a_y t^2$$
 (18)
একইডাবে Z-অক্ষে গতিশীল বস্তুর ক্ষেত্রে পাওয়া যায়

$$z = z_0 + v_{z0}t + \frac{1}{2}a_z t^2 \tag{19}$$

জ্বতএব কোন একটি বস্তু কোন দিকে গতিশীল থাকলে তার সরণের উপাংশসমূহও সমীকরণ (16), (17) এবং (18) হতে পাওয়া যায়। সুতরাং বস্তুটির সরণ

$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$$

$$\vec{r} = (x_0 + v_{x0}\dot{t} + \frac{1}{2}a_xt^2)\hat{i} + (y_0 + v_{y0}t + \frac{1}{2}a_yt^2)\hat{j} + (z_0 + v_{z0}t + \frac{1}{2}a_zt^2)\hat{k}$$

$$\vec{r} = (x_0\hat{i} + y_0\hat{j} + z_0\hat{k}) + (v_{x0}\hat{i} + v_{y0}\hat{j} + v_{z0}\hat{k})t + \frac{1}{2}(a_x\hat{i} + a_y\hat{j} + a_z\hat{k})t^2$$

$$\vec{r} = \vec{r_0} + \vec{v_0}t + \frac{1}{2}\vec{a}t^2$$
(20)

এখানে, $\overrightarrow{r_0}$, $\overrightarrow{v_0}$ ও \overrightarrow{a} যথাক্রমে বস্তৃটির আদি অবস্থায় ভেষ্টর, আদি বেগ ও ত্বরণ নির্দেশ করছে।

(গ) $\vec{v} \cdot \vec{v} = \vec{v_0} \cdot \vec{v_0} + 2\vec{a} \cdot \vec{s}$ বা, $v^2 = v_0^2 + 2\vec{a} \cdot \vec{s}$ বা, $v^2 = v_0^2 + 2\vec{a} \cdot (\vec{r} - \vec{r_0})$ অর্ধাৎ দ্বিমাত্রিক তলে সমত্বরণে গতির ক্বেত্রে সময় নিরপেক্ষ দ্বুরেড্বের সমীকরণ প্রতিপাদন।

মনে করি ধিমাত্রিক তলে কোন একটি বস্তু সমত্বরণে চলছে। এর আদি বেগ = $\overrightarrow{v_0}$ এবং সম-ত্বরণ = \overrightarrow{a} । বস্তুর যাত্রা কাল t। ধরি t সময় পর এর বেগ = \overrightarrow{v} এবং সরণ = \overrightarrow{s} । s-এর মান নির্ণয় করতে হবে।

বস্তুটির আদি অবস্থান ভেষ্টর $\overrightarrow{r_0}$ এবং t সময়ে অবস্থান ভেষ্টর \overrightarrow{r} হলে, সরণ

$$s = \Delta r = \overrightarrow{r} - \overrightarrow{r_0}$$

আমরা জানি, $\vec{v} = \vec{v_{0}} + \vec{a} t$ উক্ত সমীকরণের উভয় পার্শ্বব্লেই স্কেলার বা ডট্ গুণ করে পাই, $\vec{v} \cdot \vec{v} = (\vec{v_0} + \vec{a}, t) \cdot (\vec{v_0} + \vec{a}, t)$ বা, $\vec{v} \cdot \vec{v} = \vec{v_0} \cdot \vec{v_0} + \vec{v_0} \cdot \vec{a} t + (\vec{a}, t) \cdot \vec{v_0} + (\vec{a}, t) \cdot (\vec{a}, t)$ বা, $\vec{v} \cdot \vec{v} = \vec{v_0} \cdot \vec{v_0} + 2 \vec{v_0} \cdot \vec{a} t + \vec{a} \cdot \vec{a} t^2$ বা, $\vec{v} \cdot \vec{v} = \vec{v_0} \cdot \vec{v_0} + 2 \vec{a} \cdot (\vec{v_0}t + \frac{1}{2}\vec{a}t^2)$ $\vec{v} \cdot \vec{v} = \vec{v_0} \cdot \vec{v_0} + 2 \vec{a} \cdot \vec{c} + \vec{r_0}$) [$\because \vec{s} = \vec{r} - \vec{r_0}$] বা, $\vec{v}^2 = v_0^2 + 2 \vec{a} \cdot \vec{s}$ (21) $\vec{v} \cdot \vec{v} = v_0^2 + 2 \vec{a} \cdot \vec{s}$ (21a) [$\because \vec{v} \cdot \vec{v} = v^2$ এবং $\vec{v_0} \cdot \vec{v_0} = v_0^2$] বা, $\vec{v}^2 = v_0^2 + 2 \vec{a} \cdot \vec{r} - \vec{r_0}$) (21b) এটিই হল সমত্বরণে গতিশীল বস্তুর সময় নিরপেক্ষ অভির্জান্ত দ্রত্বের সমীকরণ ।

৩·৫ গতির ভেক্টর সমীকরণসমূহের বিডিনু উপাংশে পৃথককরণ বা বিডাজন

Resolution of vector equations of motions

ভেক্টরে প্রকাশিত গতির বিভিন্ন সমীকরণ সহজেই উপাংশে পৃথককরণ বা বিভাজন করা যায়। এই অধ্যায়ে যেহেতু দ্বিমাত্রিক গতি আলোচনা করা হচ্ছে, তাই যে কোন তলে উপাংশে বিভাজন আলোচনা করা হবে। ধরা যাক, XY তলে দ্বিমাত্রিক গতি বিবেচনা করা হচ্ছে।

(ক) $\overrightarrow{v} = \overrightarrow{v_0} + \overrightarrow{a}_{\ddagger}$ সমীকরণের উপাংশে বিভাজন

X ও Y আক্ষ বরাবর শেষ বেগ \overrightarrow{v} , আদিবেগ $\overrightarrow{v_0}$ এবং ত্বরণ \overrightarrow{a} -এর উপাংশ যথাক্রমে $\overrightarrow{v_x}$ ও $\overrightarrow{v_{y_1}}, \overrightarrow{v_{0x}}$ ও $\overrightarrow{v_{0y}}$ এবং $\overrightarrow{a_x}$ ও $\overrightarrow{a_y}$ হলে,

$$\vec{v}_{0} = v_{0x}\hat{i} + v_{0y}\hat{j}$$
$$\vec{v} = v_{x}\hat{i} + v_{y}\hat{j}$$
 and
$$\vec{a} = a_{x}\hat{i} + a_{y}\hat{j}$$

এই উপাত্তগুলো $\overrightarrow{v} = \overrightarrow{v_0} + \overrightarrow{a}t$ সমীকরণে বসিয়ে পাই,

$$v_{x}\hat{i} + v_{y}\hat{j} = v_{0x}\hat{i} + v_{0y}\hat{j} + a_{x}t\hat{i} + a_{y}t\hat{j}$$

= $(v_{0x} + a_{x}t)\hat{i} + (v_{0y} + a_{y}t)\hat{j}$

উপরের সমীকরণের উভয় পার্শ্বের একক ভেষ্টর 🏦 ও jُ-এর সহগগুলো সমান।

षाउधन,
$$v_x = v_{0x} + a_x t$$
 (22)

$$v_y = v_{0y} + a_y t$$
(23)

1001

(খ)
$$\overrightarrow{r} = \overrightarrow{r_0} + \overrightarrow{v_0}t + \frac{1}{2}\overrightarrow{a}t^2$$
 সমীকরণের উপাংশে বিভাজন

X ও Y जफ বরাবর অবস্থান ভেটর \overrightarrow{r} , আদি অবস্থান ভেটর $\overrightarrow{r_0}$, আদিবেগ $\overrightarrow{v_0}$ এবং ত্বরণ \overrightarrow{a} -এর উপাংশ যথাক্রমে \overrightarrow{x} ও \overrightarrow{y} , $\overrightarrow{x_0}$ ও $\overrightarrow{y_0}$, $\overrightarrow{v_{0_x}}$ ও $\overrightarrow{v_{0_y}}$ এবং $\overrightarrow{a_x}$ ও $\overrightarrow{a_y}$ হলে,

$$\vec{r} = x\hat{i} + y\hat{j}$$

$$\vec{r}_0 = x_0\hat{i} + y_0\hat{j}$$

$$\vec{v}_0 = v_{0x}\hat{i} + v_{0y}\hat{j}$$

$$\vec{a} = a_x\hat{i} + a_y\hat{j}$$

এখন, এই উপাংশগুলো $\overrightarrow{r} = \overrightarrow{r_0} + \overrightarrow{v_0}t + \frac{1}{2}\overrightarrow{a}t^2$ সমীকরণে বসিয়ে পাই,

$$\hat{xi} + \hat{yj} = x_0\hat{i} + y_0\hat{j} + v_{0x}\hat{i}t + v_{0y}\hat{j}t + \frac{1}{2}a_x\hat{i}t^2 + \frac{1}{2}a_yjt^2$$
$$= (x_0 + v_{0x}t + \frac{1}{2}a_xt^2)\hat{i} + (y_0 + v_{0y}t + \frac{1}{2}a_yt^2)\hat{j}$$

উপরের সমীকরণের উভয় পার্শ্বের একক ভেষ্টর \hat{i} ও \hat{j} -এর সহগগুলো সমান।

জতএব,
$$x = x_0 + v_{0x}t + \frac{1}{2}a_xt^2$$
 (24)

1

(গ) $v^2 = v_0^2 + 2\overrightarrow{a.s}$ বা $\overrightarrow{v.v} = \overrightarrow{v_0.v_0} + 2\overrightarrow{a.(r-r_0)}$ সমীকরণের উপাংশে বিভাজন আমরা জানি,

$$v^2 = v_0^2 + 2\overrightarrow{a} \cdot \overrightarrow{s}$$

$$\overrightarrow{v}, \overrightarrow{v}, \overrightarrow{v} = \overrightarrow{v_0}, \overrightarrow{v_0} + 2\overrightarrow{a}, (\overrightarrow{r} - \overrightarrow{r_0})$$

$$\begin{array}{l} \hline \mathbf{q}, \ (v_x \, \hat{i} \, + \, v_y \, \hat{j}) . (v_x \, \hat{i} \, + \, v_y \, \hat{j}) = \ (v_{x_0} \, \hat{i} \, + \, v_{y_0} \, \hat{j}) . (v_{x_0} \, \hat{i} \, + \, v_{y_0} \, \hat{j}) + \\ 2(a_x \, \hat{i} \, + \, a_y \, \hat{j}) . [(\overrightarrow{x} \, - \, \overrightarrow{x_0}) \, \hat{i} \, - (y \, - \, y_0) \, \hat{j}] \end{array}$$

$$\begin{array}{l} \boxed{\mathbf{A}}, \ v_x^2 + v_y^2 = v_{x_0}^2 + v_{y_0}^2 + 2a_x \ (x - x_0) + 2a_y \ (y - y_0) \\ [\because \hat{i} \cdot \hat{i} = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k} = 1 \ (\texttt{A} \underbrace{\mathbf{A}} \underbrace{\hat{i} \cdot \hat{j}}_{j} = \hat{j} \cdot \hat{k} = \hat{k} \cdot \hat{j} = 0] \end{array}$$

যেহেতু X ও Y অক্ষ পরস্পর নির্ভরশীল নয়,

সুতরাং, উভয় পক্ষের X উপাংশগুলো সমান এবং Y উপাংশগুলোও সমান।

$$v_x^2 = v_{x_0}^2 + 2a_x \left(x - x_0\right) \tag{26}$$

এবং
$$v_y^2 = v_{y_0}^2 + 2a_y (y - y_0)$$
 (27)

৩°৬ নিক্ষিশ্ত বস্তুর গতি Projectile Motion

কোন একটি বস্তৃকে অনুভূমিকের সাথে তির্বকতাবে উপরের দিকে নিক্ষেণ করা হলে তাকে প্রক্ষেণক বা প্রাস (Projectile) বলে। নিক্ষিণ্ড বস্তুর গতিকে প্রাসের গতি বলে। তির্যকতাবে নিক্ষিণ্ড টিল বা বন্দুকের গুলির গতি প্রাস গতির উদাহরণ।

বইঘর.কম

কয়েকটি প্রয়োজনীয় সংজ্ঞা (Some necessary definitions) 🕯

(ক) নিক্ষেপণ বেগ (Velocity of projection) ? যে আদি বেগে কোন একটি নিক্ষিণ্ত বস্তৃকে উপরের দিকে নিক্ষেপ করা হয়, তাকে নিক্ষেপণ বেগ বলে।

(খ) নিক্ষেপণ কোণ (Angle of projection) ঃ নিক্ষেপণ বেগ এবং অনুভূমিক তলের মধ্যবর্তী কোণকে নিক্ষেপণ কোণ বলে। একে সাধারণত lpha বা heta ঘারা প্রকাশ করা হয়।

(গ) সঞ্চার বা বিচরণ পথ (Trajectory) ঃ যে পথে নিক্ষিন্ত বস্তৃটি গমন করে তাকে সঞ্চার বা বিচরণ পথ বলে।


(ঘ) নিক্ষেপণ বিন্দু (Point of projection) ঃ যে বিন্দু হতে একটি বস্তৃকে উপরের দিকে নিক্ষেপ করা হয়, তাকে নিক্ষেপণ বিন্দু বলে।

(ঙ) বিচরণ কাল বা ভ্রমণ কাল (Time of tlight) ঃ নিক্ষেপের মুহূর্ত হতে সমতলে ফিরে আসতে নিক্ষিন্ত বস্তুর যে সময় লাগে তাক্তে ভ্রমণ কাল বা বিচরণ কাল বলে। একে সাধারণত T দ্বারা প্রকাশ করা হয়।

(চ) পাল্লা (Range) ঃ নিক্ষেপণ বিন্দু ও বিচরণ পথের শেষ প্রান্ত বিন্দুর মধ্যবর্তী রৈখিক দূরত্বকে পাল্লা বলে। একে সাধারণত R দ্বারা সূচিত করা হয়।

৩৬ তির্থকভাবে বাধাহীন পথে উপর দিকে নিক্ষিন্ত বস্তুর বা প্রাসের গতির সমীকরণ Equation of motion of a freely moving body thrown obliquely vertically upward or motion of a projectile

মনে করি, একটি বস্তু কণাকে O বিন্দু হতে v_0 আদি বেগে অনুভূমিকের সাথে α কোণে তির্যকভাবে নিক্ষেপ করা হল। নিক্ষেপ করার মুহূর্তে $x_0 = 0$, $y_0 = 0$ । গতি বিষয়ক আলোচনায় বাতাসের বাধাকে উপেক্ষা করা হয়। O বিন্দুকে মূল বিন্দু ধরে অনুভূমিক ও উলম্ব বরাবর X ও Y অক্ষ বিবেচনা করি। আদি বা প্রাথমিক বেগকে অনুভূমিক ও উলম্ব দুটি অংশে বিভক্ত করি। অতএব t = 0 সময়ে x-অক্ষ বরাবর বেগের অনুভূমিক অংশক

মনে করি, t সময় পরে বস্তৃকণাটি p স্থানে পৌছল। এখন এর বেগ $= \overrightarrow{v}$ । p বিন্দুর স্থানাজ্জ (x, y) অর্থাৎ X-জক্ষ হতে এর দূরত্ব y এবং Y-জক্ষ হতে এর দূরত্ব x।

এখন কণাটি $\overrightarrow{v_0}$ আদি বেগে g অভিকর্ষীয় ত্বরণের প্রভাবে গমন করছে। এক্ষেত্রে ভূমির সমান্তরালে g এর কোন প্রভাব নেই। সুতরাং বেগের অনুভূমিক উপাংশ অপরিবর্তিত থাকবে, কেননা g খাড়া নিচের দিকে ক্রিয়া করে।

 \overrightarrow{v} কে দুটি উপাংশে ভাগ করা যায়, আদি বেগ v-এর অনুভূমিক উপাংশ $v_{x_0} = v_0 \cos \alpha$ এবং উল্লম্ব উপাংশ $v_{y_0} = v_0 \sin \alpha$ ।

গতির সমীকরণ (13) হতে পাই,

$$v_x = v_{x_0} + a_x t$$
 এখানে $a_x = 0$
 $v_x = v_{x_0} = v_0 \cos \alpha$

সুতরাং
$$t$$
 সময়ে ভূমির সমান্তরালে কণাটির সরণ
 $x = ON = v_0 \cos \alpha \times t$
বা, $t = \frac{x}{v_0 \cos \alpha}$
(28)

এখন বেগের খাড়া উপাংশ (সমীকরণ 14)

$$v_y = v_{y_0} + a_y t$$
, সমীকরণে
 $a_y = -g$

এবং $v_{y_0} = v_0 \sin \alpha$ বসিয়ে পাওঁয়া যাবে

[চিত্রানুসারে a_y উপরের দিকে ধনাত্মক। কিন্তু _৪-এর দিক খাড়া নিচের দিকে হওয়ায়, _৪ খণাত্মক।]

 $v_y = v_0 \sin \alpha - gt$

অতএব, t সময়ে কণাটির উল্লম্ব সরণ

$$y = PN = y_0 + v_{y_0}t + \frac{1}{2}a_yt^2 \qquad [সমীকরণ (25) হতে]$$

= 0 + $v_0 \sin \alpha t - \frac{1}{2}gt^2$
= $v_0 \sin \alpha t - \frac{1}{2}gt^2$ (29)

সমীকরণ (28) হতে t-এর মান সমীকরণ (29)-এ বসিয়ে আমরা পাই,

$$y = v_0 \sin \alpha \cdot \frac{x}{v_0 \cos \alpha} - \frac{1}{2} g \left(\frac{x}{v_0 \cos \alpha} \right)^2$$

= $x \tan \alpha - \frac{1}{2} g \frac{x^2}{v_0^2 \cos^2 \alpha}$
= $x \tan \alpha - \frac{g x^2}{2 v_0^2 \cos^2 \alpha}$ (30)

সমীকরণ (30)-এ α , g এবং v_0 ধ্রবক। সুতরাং

$$\left. \begin{array}{l} \tan \alpha = b \\ a \operatorname{qe} \left\{ \frac{g}{2v_0^2 \cos^2 \alpha} = c \right\} \quad \underbrace{\operatorname{gqe}} \ \operatorname{qe} \left\{ \operatorname{q} \left\{ \operatorname{qe} \left\{ \operatorname{qe} \left\{ \operatorname{qe} \left\{ \operatorname{q} \left\{ \operatorname{qe} \left\{ \operatorname{qe} \left\{ \operatorname{qe} \left\{ \operatorname{q} \left\{ \operatorname{q} \left\{ \operatorname{q} \left\{ \operatorname{q} \left\{ \operatorname{q} \left\{ \operatorname{$$

সমীকরণ (30)-কে লেখা যায়,

$$y = bx - cx^2 \tag{31}$$

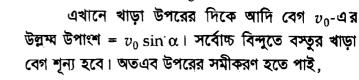
এই সমীকরণটি অধিবৃষ্ণের একটি সাধারণ সমীকরণ।

সুতরাং সিম্মান্ত করা যায় যে, বাধাহীন পথে উপরের দিকে ডির্যকভাবে নিক্ষিন্ত একটি বস্তু কণার বা প্রাসের গডিপথ একটি অধিবৃদ্ধ বা প্যারাবোলা (parabola)।

(i) নিক্ষিন্ত বস্তুর বা প্রানের সর্বোচ্চ অতিক্লান্ত উচ্চতা (Greatest height attained by a projectile)

মনে করি O বিন্দু হতে v_0 আদি বেগে ভূমির সাথে α কোণে উপর দিকে বস্তৃটি নিক্ষেপ করা হল। বিচরণ পথের সর্বোচ্চ বিন্দু A। A হতে AM খাড়া রেখা O বিন্দুগামী অনুভূমিক M বিন্দুতে হেদ করে। বিচরণ শেষে প্রক্ষিন্ত বস্তুটি অনুভূমিক তলের B বিন্দুতে পতিত হল। মনে করি AM সর্বোচ্চ উচ্চতা = H। H-এর মান নির্ণয় করতে হবে।

দ্বিমাত্রিক গতি


বইঘর.কম

আমরা জানি,

 v_0

0

(সর্বোচ্চ বিন্দুতে বেগের উল্লম্ব উপাংশ) 2 = (আদি বেগের উল্লম্ব উপাংশ) $^2 - 2gH$

$$0 = (v_0 \sin \alpha)^2 - 2gH.$$
বা, $2gH = v_0^2 \sin^2 \alpha$
বা, $H = \frac{v_0^2 \sin^2 \alpha}{2g}$ (32)

এখন v_0 , α এবং g-এর মান জেনে H-এর মান বের করা যায়। $\alpha = 90^\circ$ হলে

$$\mathbf{H} = \frac{v_0^2}{2g}$$

(ii) সর্বোচ্চ উচ্চতায় পৌছার সময় (Time to reach the greatest height)

B

মনে করি, সময় = t, অতএব আমরা পাই

A

Μ

চিত্র ৩৬

Н

শেষ বেগ = আদি বেগ — gt; এখানে খাড়া উপরের দিকে আদি বেগ v_0 -এর উল্লম্ব উপাংশ = $v_0 \sin \alpha$ । সর্বোচ্চ উচ্চতায় পৌছলে বস্তুর শেষ বেগ শূন্য হয়। অতএব উপরের সমীকরণ হতে পাই,

$$0 = v_0 \sin \alpha - gt$$

$$\exists t, \quad gt = v_0 \sin \alpha$$

$$t = \frac{v_0 \sin \alpha}{g}$$

$$(33)$$

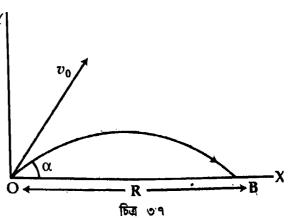
 v_0 , α and g-an high corrections and $(\alpha q \alpha q)$ and $(\alpha q \alpha q)$

(iii) বিচরণকাল বা ভ্রমণকাল (Time of flight)

মনে করি বিচরণকাল = T

কিন্তু আমরা জানি, সর্বোষ্ঠ বিন্দুতে আরোহণ কাল = সর্বোষ্ঠ বিন্দু হতে অবতরণ কাল।

$$T = t + t = 2t$$


$$\exists t, \quad T = \frac{2 v_0 \sin \alpha}{g}$$
(34)
$$[t = \frac{v_0 \sin \alpha}{g}]$$

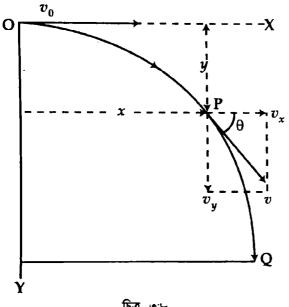
 v_0 , lpha এবং g-এর মান জেনে T-এর মান বের করা যায়।

(iv) অনুভূমিক পাল্লা (Horizontal range)

প্রক্ষিন্ত বিন্দু ও বিচরণ পথের শেষ প্রান্ত বিন্দুর মধ্যবর্তী অনুভূমিক দূরত্বকে অনুভূমিক পাল্লা বলে অথবা T সময়ে প্রাসটি অনুভূমিক দিকে যে দূরত্ব অতিক্রম করে তাই অনুভূমিক পাল্লা। একে R দারা সূচিত করা হয় এখানে O প্রক্ষিন্ত বিন্দু এবং B বিচরণ পথের শেষ প্রান্ত বিন্দু।

R = আদি বেগের অনুভূমিক উপাংশ 🗙 বিচরণ কাল বা, $R = v_0 \cos \alpha \times T$ $\mathbf{A}, \quad \mathbf{R} = v_0 \cos \alpha \times \frac{2 \, v_0 \sin \alpha}{\sigma}$ বা, $R = \frac{v_0^2 \cdot 2 \sin \alpha \cdot \cos \alpha}{g}$ বা, $R = v_0^2 \cdot \frac{\sin 2\alpha}{g}$ (35) v_0 , α এবং g-এর মান জেনে R-এর মান নির্ণয় করা হয়। পদার্ধবিজ্ঞান (১ম)–১৩

(32 a)


(v) সর্বাধিক অনুভূমিক পাল্লা (Maximum horizontal range)

কোন স্থানে একটি নির্দিষ্ট বেগে নিক্ষিপ্ত বস্তুর বা প্রাসের অনুভূমিক পাল্লা সর্বাধিক হবে যদি sin 2
$$\alpha$$

সর্বোচ্চ এবং sin 2 α = 1 বা α = 45°। কান্ডেই সর্বাধিক অনুভূমিক পাল্লা
 $R_{max} = \frac{v_0^2}{\alpha}$ (36)

সিম্বান্ত ঃ বায়ুর বাধা না থাকলে একটি বস্তৃকে অনুভূমিকের সাথে 45° কোণে উপরের দিকে নিক্ষেপ করলে তার অনুভূমিক পাল্লা সর্বাধিক হবে।

৩ ৮ অনুভূমিকভাবে নিক্ষিন্ত বস্তুর বা প্রাসের গতির সমীকরণ Equation of motion of a horizontal projectile

ধরি একটি বস্তুকে O বিন্দু হতে v_0 বেগে অনুভূমিক দিকে নিক্ষেপ করা হল [চিত্র ৩ ৮]। বায়ুর বাধা ও উচ্চতার সাথে _৪-এর পরিবর্তন অগ্রাহ্য করলে নিক্ষিপ্ত বস্তুর গতিপথের যে কোন বিন্দুতে অনুভূমিক বেগ অভিন্ন

এবং v_0 হবে। কিন্তু নিক্ষিগত বস্তুর বেগের খাড়া উপাংশ না থাকায় অভিকর্ষীয় ত্ব্বণের দরুন খাড়া নিচের দিকে বস্তুর বেগ সময়ের সমানুপাতে বৃদ্ধি পাবে। ধরি t সেকেন্ড পরে বস্তুটি অনুভূমিক দিকে x দূরত্ব ও খাড়া নিচের দিকে y দূরত্ব অতিক্রম করে P বিন্দুতে এল এবং P বিন্দুতে বস্তুটির বেগ v ও v-এর অনুভূমিক ও উল্লম্ব অংশকের মান যথাক্রমে v_x ও v_y । তা হলে,

$$v_x = v_0 = v \cos \theta$$

$$v_y = 0 + gt = gt = v \sin \theta$$

$$v = \sqrt{v_x^2 + v_y^2}$$

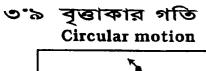
 $\tan \theta = \frac{v_y}{v_x}$

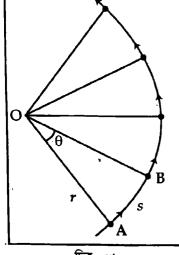
এখানে অনুভূমিকের সাথে v-এর কৌণিক ব্যবধান θ.

(37) [· · অনুভূমিক দিকে ত্বরণ = 0]

চিত্র ৩৮

আবার, $x = v_0 \times t$


ও
$$y = \frac{1}{2} gt^2$$
 (38) [েউল্লম্ব দিকে আদি বেগ = 0]


সমীকরণ (37) হতে t-এর মান সমীকরণ (38)-এ বসিয়ে পাওয়া যায়----

$$y = \frac{1}{2}g\left(\frac{x}{v_0}\right)^2$$
 (39)
 $x^2 = \frac{2v_0^2}{g}y$
উপরের সমীকরণে $\frac{2v_0^2}{g} = 4A$ বসিয়ে পাওয়া যায়,
 $x^2 = 4Ay$ (40)

এটি একটি অধিবৃদ্ধের সমীকরণ। কাচ্চেই বাধাহীন পথে অনুভূমিকতাবে নিক্ষিন্ত বস্তুর ৰা প্রাসের গতিপথ প্যা<u>রাবোলা (Parabola) বা</u> অধিবৃত্ত রচনা করে।

95

সংজ্ঞা ঃ কোন বস্তুকণা যদি কোন অক্ষ বা বিন্দুকে কেন্দ্র করে একটি বৃদ্তাকার পথে গতিশীল থাকে, তবে বস্তুকণার এই গতিকে বৃদ্তাকার গতি বলে। বৃত্তাকার গতি এক ধরনের ঘূর্ণন গতি এবং বস্তু যে অক্ষের চারদিকে ঘুরে তাকে ঘূর্ণন অক্ষ (axis of rotation) বলে ।

উদাহরণ : একটি ছোট পাথরকে একটি সুতা দিয়ে বেঁধে সুতার অপর প্রান্ত হাতে ধরে পাথরটিকে ঘুরাতে থাকলে দেখা যাবে যে, পাথরটি একটি বৃত্তাকার পথে ঘুরছে [চিত্র ৩ ৯]। যথার্থ বলতে পাথরের প্রতিটি কণা এক একটি আলাদা বৃত্তাকার পথে ঘুরছে। চলন্ত গাড়ির চাকার গতি, বৈদ্যুতিক পাখার গতি, গ্রামোফোন রেকর্ড-এর গতি ইত্যাদি একই রকমের। বস্তুর এই গতিই বৃত্তাকার গতি।

চিত্র ৩'৯

ব্যাসার্ধ ভেষ্টর : বৃত্তপথে ঘূর্ণনরত বস্তুর কেন্দ্র ও কণার মধ্যে সংযোগকারী সরলরেখাকে ব্যাসার্ধ ভেষ্টর বলে। চিত্র ৩'৯-এ কণাটি যখন A অবস্থানে তখন এর ব্যাসার্ধ ভেষ্টর $\overrightarrow{r} = \overrightarrow{OA}$; এর মান, ব্যাসার্ধ $\overrightarrow{OA} = r$.

বুন্তাকার গতির প্রকারভেদ (Kinds of rotational motion)

বৃত্তাকার গতি দুই প্রকারের ; যথা— (১) সম-বৃত্তাকার গতি (Uniform circular motion) ও (২) অসম-বৃত্তাকার গতি (Non-uniform circular motion)

(১) সম-বৃত্তাকার গতি ঃ যদি কোন বস্তুকণা কোন বিন্দুকে কেন্দ্র করে বৃত্তাকার পথে সমান সময়ে সমান কোণ উৎপন্ন করে ঘূরতে থাকে, তবে সেই গতিকে সম-বৃত্তাকার গতি বলে।

(২) অসম-বৃত্তাকার গতি ঃ যদি কোন বস্তুকণা কোন বিন্দুকে কেন্দ্র করে বৃত্তাকার পথে নির্দিষ্ট সময়ে ভিনু ভিনু কোণ উৎপনু করে ঘুরতে থাকে, তবে সেই গতিকে অসম বৃত্তাকার গতি বলে।

৩°১০ কৌণিক সরণ ও কৌণিক বেগ Angular displacement and angular velocity

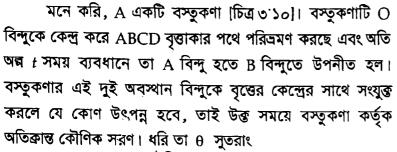
কৌণিক সরণ ঃ কোন বস্তৃ বা কণা কোন বিন্দুকে কেন্দ্র করে ঘুরার সময় যে কৌণিক দূরত্ব অতিক্রম করে তাকে উক্ত বস্তৃ বা কণার কৌণিক সরণ বলে।

ব্যাখ্যা ঃ মনে করি, t সময়ে একটি কণা A হতে B অবস্থানে গেল [চিত্র ৩'৯]। তাহলে ঐ সময়ে কণাটির কৌণিক সরণ = ∠AOB = 0। কৌণিক সরণের একক রেডিয়ান। তবে কখনও কখনও 0-কে ডিগ্রী বা গ্রেডিয়ানে প্রকাশ করা হয়।

ধরা যাক, একটি কণা t সময়ে A অবস্থান হতে B অবস্থানে গেল। এতে কণাটির বৃত্তের পরিধির অতিক্রান্ত দূরত্ব = s এবং কেন্দ্রে উৎপন্ন কোণ heta।

এখন রেডিয়ানের সংজ্ঞানুযায়ী,

$$\theta$$
 (রেডিয়ান) = $\frac{\overline{q}$ ওচাপ}{\overline{q}াসার্ধ = $\frac{s}{r}$


(41)

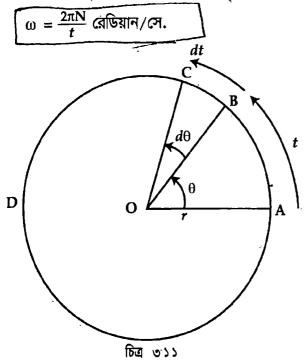
সমীকরণ (41)-এ s = r হলে, $\theta = 1$ রেডিয়ান হয়। সুতরাং 1 রেডিয়ানের নিম্নোক্ত সংজ্ঞা দেয়া যায়। সংজ্ঞা : কোন বৃত্তের ব্যাসার্ধের সমান দৈর্ঘ্যের বৃত্তচাপ বৃত্তের কেন্দ্রে যে কোণ উৎপন্ন করে তাকে 1 রেডিয়ান বলে। কণাটি বৃত্তাকার পথে যদি একবার সম্পূর্ণ ঘুরে আসে তবে কেন্দ্রে উৎপন্ন কোণ হবে $\theta = \frac{\eta \hat{a} \hat{k}}{\frac{1}{\alpha | \pi | 4}} = \frac{2\pi r}{r} = 2\pi$ রেডিয়ান = 360° (ডিগ্রী)

অতএব, 1 বার ঘূণন =
$$2\pi$$
 রোডয়ান = 360°
:. 1 রেডিয়ান = $\frac{360^{\circ}}{2\pi}$ = 57.3° (প্রায়)
অন্যভাবে, $1^{\circ} = \frac{2\pi}{360^{\circ}} = 0.0175$ রেডিয়ান।

কৌণিক বেগ ঃ যদি কোন বস্তুকণা একটি বিন্দুকে কেন্দ্র করে বৃত্তাকার পথে ঘুরে, তা হলে কণাটি একক সময়ে যে নির্দিষ্ট কৌণিক দূরত্ব অতিক্রম করে, তাকে তার কৌণিক বেগ বলে। একে
ে (ওমেগা) দ্বারা সূচিত করা হয়। একে সাধারণত রেডিয়ান/সে. এককে পরিমাপ করা হয়।

উল্লেখ্য, বৃত্তের চারদিক একবার ঘুরে আসতে বস্তৃকণার যে সময়ের প্রয়োজন তাকে কণাটির পর্যায়কাল এবং প্রতি সেকেন্ডে বৃত্তের চারদিকে যতবার ঘুরে তাকে কণাটির কম্পাজ্ঞ বলে। পর্যায়কালকে T দ্বারা ও কম্পাজ্ঞকে n দ্বারা ব্যস্ত করা হয় ।

কৌণিক বেগ =
$$\frac{\overline{(a)}}{\overline{(a)}}$$
 সময়
বা, $\omega = \frac{\theta}{t}$


(42)

বস্তুকণাটি যদি T সেকেন্ডে বৃত্তের চারদিকে একবার ঘুরে আসে, তবে

$$\omega = \frac{2\pi}{T}$$
 রেডিয়ান/সে.

এখানে, T হল বৃত্তপথে কণাটির পর্যায়কাল।

আবার, বস্তুকণাটি যদি t সেকেণ্ডে বৃত্তের চারদিকে N বার ঘুরে, তবে

С О В Т С О Н А К С О А А

(43)

(44)

বস্তুকণাটি প্রতি সেকেণ্ডে বৃত্তের চারদিকে n সংখ্যক বার ঘুরে এলে, অর্থাৎ কম্পাজ্ঞ n হলে কৌণিক বেগ হবে,

$$\omega = 2\pi n$$
 রেডিয়ান/সে.। (45)

এখন সমীকরণ (43) এবং সমীকরণ (45) হতে আমরা পাই,

$$\frac{2\pi}{T} = 2\pi n$$

$$\overline{\neg 1}, \quad \frac{1}{T} = n$$

$$\therefore \quad n = \frac{1}{T}$$
(46)

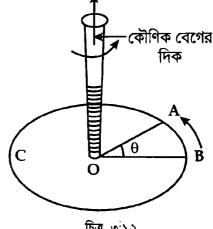
এটিই হল পর্যায়কাল এবং কম্পাজ্জের মধ্যে সম্পর্ক। গড় কৌণিক বেগ ঃ যদি বস্তুকণার গতি অসম বৃত্তাকার গতি হয় তবে সেক্ষেত্রে কৌণিক সরণ এবং অতিবাহিত সময়ের অনুপাতকে গড় কৌণিক বেগ বলে।

অতি ক্ষুদ্র সময় ব্যবধান Δt -এর মধ্যে কৌণিক সরণ Δθ হলে গড় কৌণিক বেগ হবে

$$\overline{\overline{\omega}} = \frac{\Delta \Theta}{\Delta t}$$
 (47)

তাৎক্ষণিক কৌণিক বেগ বা কৌণিক বেগ ঃ কোন নির্দিষ্ট মূহুর্তে কৌণিক বেগ জানতে হলে সময় ব্যবধান ক্ষুদ্র হতে ক্ষুদ্রতর করতে হয়। অবশেষে যখন সময় ব্যবধানের সীমাস্থ মান প্রায় শূন্য হয় তখন ঐ সময় ব্যবধানের জন্য যে গড় কৌণিক বেগ পাওয়া যাবে, তা-ই তাৎক্ষণিক কৌণিক বেগ বা কৌণিক বেগ। সুতরাং তাৎক্ষণিক কৌণিক বেগ,

$$\begin{split}
\omega &= & \begin{array}{cc} Lt & \underline{\Delta\theta} \\ \Delta t &\to 0 & \underline{\Delta t} \end{array} = \frac{d\theta}{dt} \end{split} \tag{48}$$


উপরের সমীকরণ হতে তাৎক্ষণিক কৌণিক বেগ বা কৌণিক বেগের সংজ্ঞা নিম্নরূপ ঃ

সংজ্ঞা ঃ সময় ব্যবধান শূন্যের কাছাকাছি হলে কৌণিক সরণের পরিবর্তনের হারকে তাৎক্ষণিক কৌণিক বেগ বা কৌণিক বেগ বলে।

কৌণিক বেগের দিক (ভেক্টর রূপ)

কৌণিক বেগ একটি ভেক্টর রাশি। এর মান ও দিক দুই-ই আছে। একটি ডান পাকের স্কুর সাহায্যে এর দিক নির্দেশ করা যায়।

একটি কণা ABC বৃত্তাকার পথে ঘুরতে থাকলে ঐ বৃত্তের কেন্দ্র O-এ একটি ডান পাকের স্কুর অগ্রভাগ বৃত্ত-তলের অভিলম্বভাবে স্থাপন করে কণাটির ঘূর্ণনের সাথে এবং কণাটি যে ক্রমে ঘুরছে সেই ক্রমে স্কুটিকে ঘুরালে তার গতির দিকই হবে কণাটির কৌণিক বেগের দিক [চিত্র ৩১২]।

চিত্র ৩১২

কৌণিক বেগের একক (Units of angular velocity)

কৌণিক বেগ একটি পরিমাণমূলক রাশি। অতএব এর একক আছে। নিম্নে এর একক আলোচিত হল। আমরা জানি, কৌণিক বেগ = কৌণিক সরণ সময

অর্থাৎ , $\omega = \frac{\theta}{t}$

এখন কোণকে তিনটি এককে প্রকাশ করা হয় হেতু কৌণিক বেগের তিনটি একক আছে। এরা যথাক্রমে রেডিয়ান/সে., ডিগ্রি/ সে. এবং প্রেডিয়ান/সে.। তবে এই তিনটি এককের মধ্যে রেডিয়ান/সে.-ই কৌণিক বেগের প্রচলিত একক।

কৌণিক বেগের মাত্রা সমীকরণ (Dimension of angular velocity)

কৌণিক বেগের সংজ্ঞা হতেই এর মাত্রা সমীকরণ নির্ণয় করা যায়। অতএব কৌণিক বেগের মাত্রা সমীকরণ,

$$\begin{bmatrix} \omega \end{bmatrix} = \frac{\theta}{t} = \frac{[\alpha n n]}{[\pi n n n]} = \frac{[\overline{q} \overline{g} \overline{g} \overline{g} \overline{g} \overline{n} n n n]}{[\pi n n n]} = \frac{[\overline{q} \overline{g} \overline{g} \overline{g} \overline{n} n n]}{[\overline{q} \overline{g} \overline{g} \overline{n} n n]}$$

$$= \frac{[\underline{L}]}{[\underline{L}] \times [\underline{T}]}$$

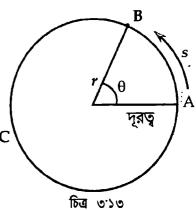
৩.১১ কৌণিক বেগ ও রৈখিক বেগের মধ্যে সম্পর্ক Relation between angular velocity and linear velocity

আমরা জানি, রৈখিক পথে নির্দিষ্ট দিকে কোন একটি বস্তুর প্রতি সেকেন্ডের রৈখিক সরণই রৈখিক বেগ এবং বৃত্তাকার পথে কোন একটি বস্তুর প্রতি সেকেন্ডের কৌণিক সরণই কৌণিক বেগ ৷ রৈখিক বেগকে v_0 জথবা v এবং কৌণিক বেগকে ω দ্বারা প্রকাশ করা হয় ৷ রৈখিক বেগ এবং কৌণিক বেগের সম্পর্কজনিত সমীকরণটি এখন প্রতিপাদন করা হবে ৷

মনে করি একটি বস্তুকণা r ব্যাসার্ধবিশিষ্ট একটি বৃত্তের পরিধি বরাবর ω সমকৌণিক বেগে ঘুরছে [চিত্র ৩ ১৩]। যদি T সেকেণ্ডে কণাটি বৃত্তের সম্পূর্ণ পরিধি একবার ঘুরে আসে তবে কৌণিক বেগের সংজ্ঞানুসারে,

এখন যদি বৃত্তাকার পথে না ঘুরে কণাটি v বেগে একই সময়ে সরলরেখায় বৃত্তের পরিধির সমান পথ T সময়ে অতিরুম করে, তবে

$$v = \frac{7}{\sqrt{3}} \frac{7}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac$$

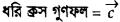

বা,
$$\frac{1}{\omega} = \frac{r}{v}$$

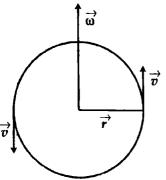
বা, $v = \omega r$ (51)
বিরুদ্ধ প্রদানি (কারিকরাসের সাহায়ে) ও মনে করি রসকর্যাটি ৫ সময়ে ন রামার্চিপিট ব্যক্ত

বিকল্প পর্ম্মাত (ক্যালকুলাসের সাহায্যে) ঃ মনে কার বস্তুকণাটি t সময়ে r ব্যাসাধবিশিষ্ট বৃত্তের s বৃত্তচাপ অতিক্রম করে এবং কেন্দ্রে 0 রেডিয়ান কোণ উৎপন্ন করে।

সুতরাৎ সমীকরণ (41) হতে পাই,

এখন উভয় পক্ষকে t-এর সাপেক্ষে ব্যবকলন করে পাই,


চললে w = ধ্রুবক। অতএব v ∝ r অর্থাৎ রৈখিক বেগ ঘূর্ণন অক্ষ হতে দূরত্বের সমানুপাতিক। উদাহরণ----ধান মাড়াইয়ের চাতালে দূরবর্তী গরুকে সবচেয়ে বেশি বেগে হাঁটতে হয়।



 $v = \omega \times r$ সমীকরণের ভেক্টর রূপ

Vector form of the equation $\tilde{v} = \omega \times r$

আমরা জানি, ݽ একটি ভেক্টর রাশি এবং বৃত্তের ব্যাসার্ধ বা ব্যাসার্ধ ভেক্টরও একটি ভেক্টর রাশি। অতএব রাশি দুটির ব্রুস গুণফলও (cross product) একটি ভেক্টর রাশি হবে।

চিত্র ৩'১৪

 $\therefore \quad \overrightarrow{c} = \overrightarrow{\omega} \times \overrightarrow{r}$ বা, \overrightarrow{c} ভেষ্টরের মান (i) $c = \omega r \cdot \sin 90^\circ$ [$\vdots \vec{\omega} \perp \vec{r}$] $di, c = \omega r$ ক্রস গুণনের নিয়মানুসারে \overrightarrow{c} ভেষ্টরের মান এবং \overrightarrow{v} ভেষ্টরের মান এক। পুনঃ $v=\omega imes r$ । অতএব মান ও দিক বিবেচনা করলে \overrightarrow{c} এবং ভেষ্টর \overrightarrow{v} একই।

$$\vec{c} = \vec{v}$$
 (ii)

সমীকরণ (i) এবং (ii) হতে আমরা পাই,

 $\overrightarrow{v} = \overrightarrow{\omega} \times \overrightarrow{r}$

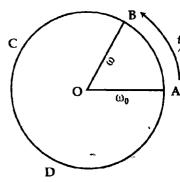
এটিই হল রৈখিক বেগ এবং কৌণিক বেগের সম্পর্কের ভেক্টর রূপ।

সংজ্ঞা ঃ অসমকৌণিক বেগে গতিশীল কোন একটি বস্তুর কৌণিক বেগ পরিবর্তনের হারকে কৌণিক ত্বরণ বলে। বস্তুর কৌণিক বেগ একক সময়ে যে পরিমাণ বৃষ্ণি হয় তা দ্বারা কৌণিক ত্বরণ পরিমাপ করা হয়। একে α দ্বারা সূচিত করা হয়।

মনে করি একটি বস্তুকণা বৃত্তাকার পথে ঘুরছে। ধরি A অবস্থানে এর কৌণিক বেগ ω_0 এবং t সেকেন্ড পরে B অবস্থানে এর কৌণিক বেগ ω [চিত্র ৩ ১৫] ।

কৌণিক ত্বুরণ,
$$\alpha = \frac{\omega - \omega_o}{t}$$
 (52)

যদি Δt সময় ব্যবধানে কণাটির কৌণিক বেগের পরিবর্তন $\Delta \omega$ হয়, তবে গড় কৌণিক ত্বুরণ $\overline{lpha}=rac{\Delta \omega}{\Delta t}$ 52(a) তাৎক্ষণিক কৌণিক তুরণ বা কৌণিক ত্বুরণ,

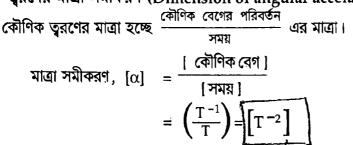

$$\alpha = \frac{Lt}{\Delta t \to 0} \frac{\Delta \omega}{\Delta t} = \frac{d\omega}{dt}$$
(b) আমরা জানি, কৌণিক বেগ, $\omega = \frac{d\theta}{dt}$

$$\alpha = \frac{d\omega}{dt} = \frac{d}{dt} \left(\frac{d\theta}{dt}\right)$$

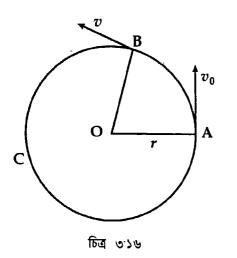
$$= \frac{d^2\theta}{dt^2}$$
(c)

সমীকরণ 52(b) হতে কৌণিক ত্বরণ বা তাৎক্ষণিক কৌণিক ত্বরণের নিম্মেক্ত সংজ্ঞা দেয়া যায়----

সময় ব্যবধান শূন্যের কাছাকাছি হলে সময়ের সাথে বস্তুর কৌণিক বেগের পরিবর্তনের হারকে কৌণিক ত্বরণ বা তাৎক্ষণিক কৌণিক ত্বরণ বলে।


চত্র ৩১৫

(iii)


200

সেকেণ্ড² (deg s⁻²)

কৌণক ত্বরণের মাত্রা সমীকরণ (Dimension of angular accelaration)

কৌণিক ত্বুরণ ও রৈখিক ত্বুরণের মধ্যে সম্পর্ক ৩'১৩ Relation between angular accelaration and linear accelaration

ধরি একটি বস্তুকণা O-কে কেন্দ্র করে r ব্যাসার্ধের একটি বুত্তাকার পথের পরিধি ABC বরাবর অসম গতিতে চলে অতি অল্প সময় t - এ A হতে B-তে পৌছল [চিত্র ৩'১৬]। A ও B বিন্দুতে কণাটির রৈখিক বেগ যথাব্রুমে v_0 ও v এবং কৌণিক বেগ যথাক্রমে ω_0 ও ω হলে রৈখিক তুরণের সংজ্ঞা অনুসারে,

(53)

ে রৈখিক ত্বরণ,
$$a = \frac{v - v_0}{t}$$

 $= \frac{\omega r - \omega_0 r}{t}$ [$v = \omega r$].
চিত্র ৩১৬
কিন্তু কৌণিক ত্বরণের সংজ্ঞান্সারে কৌণিক ত্বরণ $\alpha = \frac{\omega - \omega_0}{t}$

বিকল্প পন্ধতি (ক্যালকুলাসের সাহায্যে) ঃ মনে করি একটি বস্তৃকণা r ব্যাসার্ধবিশিষ্ট [চিত্র ৩ ১৬] বৃত্তের পরিধি বরাবর অসম বৃত্তাকার গতিতে আবর্তন করছে। বস্তুকণাটির t সময়ে রৈখিক বেগ = v, কৌণিক বেগ = ω , রৈখিক তুরণ =a এবং কৌণিক তুরণ $=\alpha$ ।

আমরা জানি,

 $a = \alpha r$

$$v = \omega r$$
 53 (a)
 $\alpha = \frac{d\omega}{dt}$
এবং $a = \frac{dv}{dt}$
সমীকরণ 53 (a)-এর উভয়পক্ষকে t-এর সাপেক্ষে ব্যবকলন করে পাই,
 $\frac{dv}{dt} = \omega \frac{dr}{dt} + \frac{d\omega}{dt}r = \frac{rd\omega}{dt} [r = \xi]$

বা,
$$a = \alpha r$$
 [$\because \frac{d\omega}{dt} = \alpha$]

অর্থাৎ বিশেষক তারণ = কৌণিক তারণ × ব্যাসার্ধ

৩**·১৪ কৌণিক গতি বিষয়ক সমীকরণ** Equations relating angular motion

সমকৌণিক ত্বরণে বৃত্তাকার পথে গতিশীল বস্তুর কৌণিক গতির সমীকরণ সরলরেখায় সমত্বরণে গতিশীল বস্তুর রৈখিক গতির সমীকরণের অনুরূপ। নিচে সংক্ষেপে কৌণিক গতির সমীকরণগুলো প্রতিপাদন করে দেখান হল ঃ

১। সমকৌণিক ত্বরণে গতিশীল বস্তুর সময়ের সাথে কৌণিক বেগের সম্পর্ক :

ধরা যাক ω_0 আদি কৌণিক বেগসহ lpha সমকৌণিক ত্বরণে বৃত্তাকার পথে আবর্ত্তনরত একটি ক্ষুদ্র বস্তুর অতি অঙ্গ dt সময়ের কৌণিক বেগের পরিবর্তন $d\omega$ । তা হলে কৌণিক ত্বরণের সংজ্ঞা অনুসারে,

 $\alpha = \frac{d\omega}{dt}$

t সেকেন্ড শেষে বস্তুকণার কৌণিক বেগ ω হলে, 0 ও t সময় সীমার মধ্যে উক্ত সমীকরণটিকে সমাকলন করে পাওয়া যায়,

$$\int_{\omega_0}^{\omega} d\omega = \alpha \int_0^t dt$$
বা, $[\omega]_{\omega_0}^{\omega} = \alpha [t]_0^t$
বা, $\omega - \omega_o = \alpha t$
 $\therefore \omega = \omega_0 + \alpha t$
এটিই সমকৌণিক ত্বনেণ গতিশীল বস্ত্র সময়ের সাথে কৌণিক বেগের সম্পর্কজ্ঞনিত সমীকরণ।

সমকৌণিক মন্দনের ক্ষেত্রে অনুরূপ সমীকরণ, $\omega=\omega_0-lpha t$

২। সমকৌণিক ত্বরণে গতিশীল বস্তুর কৌণিক সরণের সাথে সময় বা কৌণিক বেগের সম্পর্ক ঃ

ধরা যাক একটি ক্ষুদ্র বস্তুর আদি কৌণিক বেগ ω_0 ও সমকৌণিক ত্বরণ α । অতি অল্প dt সময়ের ব্যবধানে কৌণিক বেগের পরিবর্তন $d\omega$ ও কৌণিক সরণের পরিবর্তন $d\theta$ । তাহলে কৌণিক ত্বরণের সংজ্ঞানুসারে কোন মুহূর্তের তাৎক্ষণিক ত্বরণ,

$$\alpha = \frac{d\omega}{dt} \quad \forall \quad \omega = \frac{d\theta}{dt}$$

$$\overline{\Phi} = \frac{d\omega}{dt} = \frac{d\omega}{d\theta} \cdot \frac{d\theta}{dt} = \omega \frac{d\omega}{d\theta}$$

বা, $\omega d\omega = \alpha d\theta$

ধরি t সেকেন্ড শেষে কণাটির কৌণিক সরণ θ ও কৌণিক বেগ ω । তা হলে 0 ও t সময় সীমার মধ্যে সমাকলন করে পাওয়া যায়,

	$\int_{\omega_0}^{\omega} \omega d\omega = \alpha \int_0^{\theta} d\theta$	
বা,	$\left[\frac{\omega^2}{2}\right]_{\omega_0}^{\omega} = \alpha \left[\Theta\right]_0^{\Theta}$	
বা,	$\omega^2 - \omega_0^2 = 2\alpha\theta$ $\omega^2 = \omega_0^2 + 2\alpha\theta$	(56)

এটিই সমকৌণিক ত্বরণে গতিশীল বস্তুর কৌণিক সরণের সাথে কৌণিক বেগের সম্পর্কজনিড সমীকরণ।

(54)

(55)

উচ্চ মাধ্যমিক পদার্থবিজ্ঞান BG & JEWEL

সমকৌণিক মন্দনের ক্ষেত্রে অনুরূপ সমীকরণ, $\omega^2 = \omega_0^2 - 2\alpha\theta^4$ (57) পুনঃ সমীকরণ (54)-এ $\omega = \omega_0 + \alpha t$ বসিয়ে পাওয়া যায়, বা, $(\omega_0 + \alpha t)^2 = \omega_0^2 + 2\alpha\theta$ বা, $\omega_0^2 + 2\omega_0 \alpha t + \alpha^2 t^2 = \omega_0^2 + 2\alpha\theta$ বা, $2\alpha\theta = 2\omega_0 \alpha t + \alpha^2 t^2$ $= 2\alpha \left(\omega_0 t + \frac{1}{2} \alpha t^2 \right)$ $\theta = \omega_0 t + \frac{1}{2} \alpha t^2$ (58)

এটিই সমকৌণিক ত্বুরণে গতিশীল বস্তুর সময়ের সাথে কৌণিক সরণের সম্পর্কজনিত সমীকরণ। সমকৌণিক মন্দনের ক্ষেত্রে অনুরূপ সমীকরণটি,

$$\theta = \omega_0 t - \frac{1}{2} \alpha t^2 \tag{59}$$

কাজেই বৃত্তাকার পথে চলমান বস্তুকণার গতির সাধারণ সমীকরণ হল ঃ

$$\begin{split} \omega &= \omega_0 \pm \alpha t \\ \theta &= \omega_0 t \pm \frac{1}{2} \alpha t^2 \\ \omega^2 &= \omega_0^2 \pm 2\alpha \theta \\ \bullet \end{split}$$
 (60)

৩°১৫ কৌণিক বেগ ও রৈখিক বেগের মধ্যে পার্থক্য Distinction between angular velocity and linear velocity

কৌণিক বেগ ও রৈখিক বেগের মধ্যে নিম্নলিখিত পার্থক্য করা যায় ঃ

কৌণিক বেগ	রৈখিক বেগ
(১) কৌণিক পথে একটি বস্তুর কৌণিক সরণের	(১) নির্দিষ্ট দিকে রৈখিক পথে কোন একটি বস্তুর
হারকে কৌণিক বেগ বলে।	স্থান পরিবর্তনের হারকে এর রৈখিক বেগ বলে।
(২) একক সময়ের অতিক্রান্ত কৌণিক দূরত্ব দ্বারা	(২) একক সময়ের অতিক্রান্ত রৈখিক দূরত্ব দ্বারা
কৌণিক বেগ পরিমাপ করা হয়।	রৈখিক বেগ পরিমাপ করা হয়।
(৩) এর সমীকরণ, $\omega=rac{d heta}{dt}$, এখানে dt খুবই ক্ষুদ্র।	(৩) এর সমীকরণ, $v=rac{ds}{dt}$, এখানে t খুবই ক্ষুদ্র।
(8) এর মাত্রা সমীকরণ [T^{-1}] ।	(8) এর মাত্রা সমীকরণ [LT ^{−1}]।
<u>র একক হল ব্রেডিয়ান/সে.,ডিগ্রী/সে. এ</u> বং	(৫) এর একক মিটার/সে.।
গ্রেডিয়ান/ সে.।	
(৬) রৈখিক বেগকে বৃত্তপথের ব্যাসাধ দ্বারা ভাগ	(৬) কৌণিক বেগকে বৃত্তপথের ব্যাসার্ধ দ্বারা গুণ
করলে কৌণিক বেগ পাওয়া যায়, যথা ঃ $\omega = \frac{v}{r}$ ।	করলে রৈখিক বেগ পাওয়া যায়, যথা $v = r\omega$
(প) বিস্তৃ সমকৌ <u>ণিক বেগে চললেও এর রৈখিক ত</u> ্বরণ	(৭) বৃস্তৃ সমরৈখিক বেগে চললে এর রৈখিক তরণ
থাকে।	থাকে না।
🔴 (৮) আবর্তনরত কোন বস্তুর বিভিন্ন কণার কৌণিক	(৮) আবর্তনরত কোন একটি বস্তুর বিভিন্ন কণার
বেগ সর্বদা একই থাকে।	রৈখিক বেগ বিভিন্ন হয়।

৩[.]১৬ সুষম বৃত্তাকার গতি Uniform circular motion

বৃত্তাকার পথে সমদ্রুডিতে ঘূর্ণায়মান কোন বস্তুকণার গতিকে সুষম বৃত্তাকার গতি বলে। সুষম বৃত্তাকার গতিতে সময়ের সাথে বস্তুর বেগের মান অপরিবর্তিত থাকলেও বেগের অভিমুখের পরিবর্তনের দরুন বেগের পরিবর্তন হবে। কাজেই বেগের অভিমুখ পরিবর্তনের জন্য বস্তুর উপর একটি বল তথা ত্বরণ ক্রিয়া করে। এই ত্বরণের অভিমুখ গতিপথের লন্দ্ব বরাবর বৃত্তের কেন্দ্রমুখী। এই ত্বরণকে কেন্দ্রমুখী বা অভিলন্দ্ব ত্বরণ বলে।

দ্বিমাত্রিক গতি

বইঘর.কম কেন্দ্রমুখী বা অভিলম্ব ত্বরণের সংজ্ঞা ঃ কোন বস্তুকণা যখন বুত্তাকার পথে ঘুরতে থাকে তখন বৃত্তের ব্যাসার্ধ বরাবর এবং কেন্দ্রের অভিমুখে বস্তুকণার উপর যে ত্বরণ ক্রিয়া করে তাকে কেন্দ্রমুখী বা অভিলম্ব তুরুণ বলে।

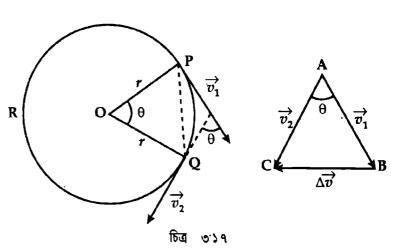
কেন্দ্রমুখী ত্বরণের মান ও দিক : ধরি O কেন্দ্রবিশিষ্ট ও r ব্যাসার্ধের PQR বৃত্তাকার পথে একটি বস্তুকণা v সমদ্র্তিতে ঘ্রে t সময়ে P অবস্থানে ও $(t + \Delta t)$ সময়ে Q অবস্থানে পৌছল এবং $\angle POQ = \theta$ [চিত্র ৩.১৬]। কাজেই Δt সময়ে কণাটির অতিক্রান্ত দূরত্ব $\Delta s = v\Delta t =$ বৃত্তচাপ PQ। P ও Q বিন্দুতে বস্তুকণাটির তাৎক্ষণিক বেগ $\overrightarrow{v_1}$ ও $\overrightarrow{v_2}$ উক্ত বিন্দুদ্বয়ে অভিকত স্পর্শক অভিমুখী হবে। এই বেগদ্বয়ের উভয়ের মান v-এর সমান কিন্তু দিক ভিন্ন। Δt সেকেন্ডে বেগের পরিবর্তন ($\overrightarrow{v_2} - \overrightarrow{v_1}$)-কে $\Delta \overrightarrow{v}$ দ্বারা সূচিত করলে, $\Delta \overrightarrow{v}$ -এর মান ভেষ্টরের ত্রিভুজ সূত্র হতে পাওয়া যাবে। একই বিন্দু A হতে $\overrightarrow{v_1}$ ও $\overrightarrow{v_2}$ ভেষ্টর দুটি যথাক্রমে তীর চিহ্নিত AB ও AC সরলরেখা দ্বারা মানে ও দিকে নির্দেশ করে B ও C যোগ করি। তা হলে BC রেখা $\Delta \overrightarrow{v}$ -কে মানে ও দিকে নির্দেশ করবে।

বর্ণনানুসারে OP, OQ ও PQ দ্বারা গঠিত ত্রিভূজ OPQ ও ত্রিভূজ ABC সদৃশকোণী। কেননা উভয়ই সমদ্বিবাহু ত্রিভূজ এবং ∠BAC = ∠POQ = θ । কাজেই, ∠ABC = ∠ACB = φ হলে,

 $\varphi = \left(90^\circ - \frac{\theta}{2}\right)$ আবার সদৃশ ত্রিত্জের ধর্মানুসারে, $\frac{\Delta v}{v} = \frac{v\Delta t}{r}$ (প্রায়) $\frac{\Delta v}{\Delta t} = \frac{v^2}{r}$ খানে বন্তচাপ PO-কে জ্যা PO-এ

এখানে বৃত্তচাপ PQ-কে জ্যা PQ-এর সমান ধরা হয়েছে। Δt ক্ষুদ্র হলে, সম্পর্কটি প্রায় সঠিক বিবেচনা করা যায়। কেননা এমতাবস্থায় বৃত্তচাপ PQ ও জ্যা PQ প্রায় সমান ধরা যায়।

$$a = Lt_{\Delta t \to 0} \left| \frac{\Delta \overrightarrow{v}}{\Delta t} \right| = \frac{v^2}{r}$$
(61)


$$\therefore r$$
ব্যাসার্ধের বৃত্তাকার পথে v সমদ্রতিতে আবর্তনরত বস্তুর উপর সর্বদাই বৃত্তপথের কেন্দ্রের দিকে একটি বুরণ $a = \frac{v^2}{r}$ ক্রিয়া করে।

অবস্থান ভেটর ঃ প্রসঞ্চা কাঠামোর মূল বিন্দুর সাপেক্ষে কোন বিন্দুর অবস্থান যে ভেটরের সাহায্যে নির্ণয় করা হয় তাকে অবস্থান ভেটর বলে।

সরণ ঃ কোন একটি গতিশীল বস্তুর অবস্থান ডেষ্টরের পরিবর্তনকে সরণ বলে।

ভাৎক্ষণিক বেগ বা বেগ ঃ সময় ব্যবধান শূন্যের কাছাকাছি হলে বস্তুর সরণের হারকে তাৎক্ষণিক বেগ বা বেগৃ বলে। তাৎক্ষণিক ভ্বরণ বা ভ্বরণ ঃ সময় ব্যবধান শূন্যের কাছাকাছি হলে সময়ের সাথে বেগ বৃন্ধির হারকে তাৎক্ষণিক ভ্বরণ বা ভুরণ বলে।

প্রাস বা প্রক্ষেপক ঃ কোন একটি বস্তুকে অনুভূমিকের সাথে তির্যকভাবে উপরের দিকে নিক্ষেপ করা হলে তাকে প্রাস বা প্রক্ষেপক বলে।

নিক্ষেপণ কোণ ঃ নিক্ষেপণ বেগ এবং অনুভূমিক তলের মধ্যবর্তী কোণকে নিক্ষেপণ কোণ বলে।

বিচরণ কাল বা ভ্রমণ কাল ঃ নিক্ষেপের মৃহুর্ত হতে সমতলে ফিরে আসতে নিক্ষিণ্ত বস্তুর যে সময় লাগে তাকে ভ্রমণ কাল বা বিচরণ কাল বলে।

পার্র্বা ঃ নিক্ষেপণ বিন্দু ও বিচরণ পথের শেষ প্রান্ত বিন্দুর মধ্যবর্তী রৈখিক দূরত্বকে পার্ল্লা বলে।

বৃত্তাকার গতি : কোন বস্তুকণা যদি কোন অক্ষ বা বিন্দুকে কেন্দ্র করে একটি বৃত্তাকার পথে গতিশীল থাকে, তবে বস্তুকণার এই গতিকে বৃত্তাকার গতি বলে।

ব্যাসার্ধ ভেষ্টর : বৃত্তুপথে ঘূর্ণনরত বস্তুর কেন্দ্র ও কণার মধ্যে সংযোগকারী সরলরেখাকে ব্যাসার্ধ ভেষ্টর বলে।

কৌণিক সরণ : কোন বস্তু কোন বিন্দুকে কেন্দ্র করে ঘুরার সময় যে কৌণিক দূরত্ব অতিক্রম করে তাকে উক্ত বস্তুর কৌণিক সরণ বলে।

ৰৌপিৰ বেগ : যদি কোন বস্তুকণা একটি বিন্দুকে কেন্দ্ৰ করে বৃত্তাকার পথে ঘুরে, তাহলে কণাটি একক সময়ে যে নির্দিষ্ট কৌণিক দূরত্ব অতিক্রম করে তাকে তার কৌণিক বেগ বলে।

তাৎক্ষণিক কৌণিক বেগ বা কৌণিক বেগ ঃ সময় ব্যবধান শূন্যের কাছাকাছি হলে কৌণিক সরণের পরিবর্তনের হারকে তাৎক্ষণিক কৌণিক বেগ বা কৌণিক বেগ বলে।

কৌণিক ভ্বরণ ঃ অসম কৌণিক বেগে গতিশীল কোন একটি বস্তুর কৌণিক বেগ পরিবর্তনের হারকে কৌণিক ভ্বরণ বলে।

তাৎক্ষণিক কৌণিক ত্বরণ বা কৌণিক ত্বরণ ঃ সুময় ব্যবধান শূন্যের কাছাকাছি হলে সময়ের সাথে বস্তুর কৌণিক বেগের পরিবর্তনের হারকে তাৎক্ষণিক কৌণিক ত্বরণ বা কৌণিক ত্বরণ বলে ।

সুষম বৃদ্ভাকার গতি : বৃত্তাকার পথে সমদ্রতিতে ঘূর্ণায়মান কোন বস্তুকণার গতিকে সুষম বৃত্তাকার গতি বলে।

কেন্দ্রমুখী বা অভিনন্দন ত্বরণ ঃ কোন বস্তুকণা যখন বৃত্তাকার পথে ঘূরতে থাকে তখন বৃত্তের ব্যাসার্ধ বরাবর এবং কেন্দ্রের অভিমুখে বস্তৃকণার উপর যে ত্বরণ ক্রিয়া করে তাকে কেন্দ্রমূখী বা অভিলন্দ ত্বরণ বলে।

প্রয়োজনীয় সমীকরণ

বেগ, $\overrightarrow{v} = \frac{d\overrightarrow{r}}{dt}$	}	(1)
ভেটর র্শ, $\vec{v} = \hat{i} v_x + \hat{j} v$	y	(-)
$\rightarrow d\vec{v}$		

$$\begin{array}{c} \left\langle \mathbf{v}_{\mathbf{x}}^{\mathbf{x}} \mathbf{n}, \ \vec{a} \ = \frac{d \cdot \vec{v}}{d t} \\ \left\langle \mathbf{v}_{\mathbf{x}}^{\mathbf{x}} \mathbf{n}, \ \vec{a} \ = \hat{i} \ a_{x} + \hat{j} \ a_{y} \end{array} \right\rangle$$

গতির সমীকরণের ভেক্টর রূপ

$$\vec{v} = \vec{v}_0 + \vec{a} t$$

$$\vec{v} = \vec{v}_0 + \vec{a} t$$
(3)

$$v' \cdot v' = v_0 \cdot v_0 + 2 a s$$
 (5)

ভূমির সাথে তির্যকতাবে নিক্ষিত বস্তুর গতির ক্ষেত্রে ঃ

$$y = ax + bx^2 \tag{6}$$

্রসিকে উচ্চতা, H =
$$\frac{v_0^2 \sin^2 \alpha}{2g}$$
 (7)

$$t = \frac{v_0 \sin \alpha}{g} \tag{8}$$

(8)
विচরণ কাল.
$$T = \frac{2 v_0 \sin \alpha}{1 + 1}$$

্বিচরণ কাল,
$$T = \frac{2 v_0 \sin \alpha}{g}$$
 (9)

$$g = \frac{v_0^2 \sin 2\alpha}{2}$$

$$(10)$$

$$\sqrt{7}$$
সর্বাধিক অনুভূমিক গাল্লা, $R_{max} = \frac{v_0^2}{g}$ (11)

202

বইঘর.কম

$$\omega = \frac{2\pi N}{2}$$

×,

(12)

 $\omega \in$

কৌণিক ত্বরণ,
$$\alpha = \frac{d\omega}{dt}$$

= $\frac{\omega}{t}$ (13)

 $= \theta/t$ $= 2\pi / T$

 $=2\pi n$ = v / r $= d\theta / dt$

 $= 2\pi N/t$

কৌণিক বেগ, ω

$$\begin{split} \omega &= \omega_0 \pm \alpha t \\ \omega^2 &= \omega_0^2 \pm 2\alpha\theta \\ \theta &= \omega_0 t \pm \frac{1}{2}\alpha t^2 \end{split} \tag{14}$$

$$(14)$$

$$(14)$$

$$(15)$$

কেন্দ্রমুখী বা অভিলম্ব ত্ব্রণ
$$a = \frac{b^2}{r}$$

সমাধানকৃত উদাহরণ

একটি জীপ গাড়ী প্রথমে পূর্বদিকে 30 km ও পরে উত্তর দিকে 40 km দূরত্ব অভিক্রম করে গন্তব্য স্থানে পৌছে। গাড়ির লন্দি সরণের মান ও দিক নির্ণয় কর। 10 s-এ গন্তব্য স্থানে যায় ধরে গড়বৈগের মান নির্ণয় কর। পূর্ব ও উত্তর দিক অভিমুখী একক ভেষ্টর যথাক্রমে i ও j ধরে লন্দি সরণকে লেখা যায়,

$$\vec{r} = 30 \hat{i} + 40 \hat{j}$$

' নির্ণেয় সরণের মান, $|\vec{r}| = \sqrt{30^2 + 40^2}$ km = 50 km
অভিমুখ পূর্ব দিকের সাথে θ কোণে উত্তর দিকে হলে,

$$\tan \theta = \frac{y}{x} = \frac{40 \text{ km}}{30 \text{ km}} = 1.333 = \tan 53^{\circ}8'$$

$$\theta = 53^{\circ}8'$$

নির্ণেয় গড়বেগের মান, $\overline{v} = \frac{|\vec{r}|}{t} = \frac{50 \text{ km}}{10 \text{ s}} = 5 \text{ kms}^{-1}$

্র্বি (২) একটি বোমার বিমান 147 ms⁻¹বেগে অনুভূমিক বরাবর চলার পথে 490 m উঁচু হতে একটি বোমা কেলে দিল। বায়ুর বাধা উপেক্ষা করে বোমাটি কখন ও কোথায় মাটিতে পণ্ডিত হবে ? কেলার মুহূর্ত হতে 5 s পরে বোমার দুতি নির্ণয় কর।

প্রশ্নান্সারে খাড়া নিচের দিকে অতিরুম্ভ দূরত্ব,
$$y = \frac{1}{2}gt^2$$

কাজেই, 490 m $=\frac{1}{2} \times 98 \text{ ms}^{-2} \times t^2$
 $t = \sqrt{\left(\frac{490 \times 2}{98}\right)} \text{ s} = 10 \text{ s}$
আবার অনুভূমিক সরণের মান, $x = v_{0x} \times t$
 $= 147 \text{ (ms}^{-1}) \times 10 \text{ s} = 1470 \text{ m}$
 5 s পরে বোমার দ্রতি, $v = \sqrt{(gt)^2 + v_{0x}^2}$
 $= \sqrt{\{98 \text{ (ms}^{-2}) \times 58^2\} + (147 \text{ ms}^{-1})} = 154.95 \text{ ms}^{-1}$
(a) একটি বস্তুর বেগ $8s$ -এ (4 $\hat{i} + 2\hat{j}$) ms⁻¹ হতে বৃন্দি পেরে (12 $\hat{i} - 4\hat{j}$) হল। গড় ভূরণ নির্পর কর।
প্র ভূরণ নির্পর করা।
প্র ভূরণ $= \frac{\Lambda \vec{v}}{\Delta t} = \frac{(8\hat{i} - 6\hat{j}) \text{ ms}^{-1}}{8s}$
 $= \left(\hat{i} - \frac{3}{4}\hat{j}\right) \text{ ms}^{-2}$

<u>BG</u> & JEWEL ও গড় ত্বেগের মান, $\bar{a} = \sqrt{1^2 + \left(-\frac{3}{4}\right)^2} \text{ ms}^{-2} = 1.25 \text{ ms}^{-2}$ (8।)কোন কণার অবস্থান ভেষ্টর \overrightarrow{r} = [(30 ms⁻¹) t + 4'2 m] \hat{i} + [5'3 ms⁻¹] \hat{j} হলে বেগ নির্পয় কর। আমরা জানি, $\vec{v} = \frac{d\vec{r}}{dt}$ যি. বো. ২০০৪] $= \frac{d}{dt} [(30 \text{ ms}^{-1}) t + 42 \text{ m}] \hat{i} + \hat{j} \frac{d}{dt} (53 \text{ ms}^{-1}) \hat{j}$ $= 30 \,\mathrm{ms}^{-1} \,\hat{i}$ ৫। অনুভূমিকের সাথে 30° কোণ করে ভূ-পৃষ্ঠ থেকে 40 ms⁻¹ বেগে একটি বুলেট হোঁড়া হল। বুলেটটি 30 m দুরে অবস্থিত এইকটি দেওয়ালকে কত উচ্চতায় আঘাত করবে ? [b. (al. 2005] প্রশ্ন অনুসারে, নিচের চিত্র অনুযায়ী বুলেটটি y উচ্চতায় P বিন্দুতে আঘাত করবে। P y y 30 30° 04 - 30 m· ⇒ A ন্ধ তেওঁচ আমরা জানি, $x = v_0 \cos \theta_0 t$ এখানে. $30 = 40 \times \cos 30^{\circ} \times t$ $= 40 \, \text{ms}^{-1}$ $30 = 40 \times \frac{\sqrt{3}}{2} \times t$ বা. = 30 m $t = \frac{3}{2\sqrt{3}}$ = 30° এখন, $y = v_0 \sin \theta_0 t - \frac{1}{2}gt^2$ = $40 \times \sin 30^{\circ} \times \frac{3}{2\sqrt{3}} - \frac{1}{2} \times 9.8 \times \left(\frac{3}{2\sqrt{3}}\right)^{2}$ $= 40 \times \frac{1}{2} \times \frac{3}{2\sqrt{3}} - \frac{1}{2} \times 98 \times \frac{9}{4\times 3}$ $= \frac{30}{\sqrt{3}} - \frac{4.9 \times 3}{4} = 13.65 \,\mathrm{m}$ $equal y = x \tan \alpha - \frac{gx^2}{2v_0^2 \cos^2 \alpha}$ এখানে, $\alpha = 30^{\circ}$ $g = 9.8 \text{ ms}^{-2}$ $v_0 = 40 \text{ ms}^{-1}$ $y = 30 \times \tan 30^{\circ} - \frac{9^{\circ}8 \times (30)^2}{2 \times (40)^2 \cos^2 30^{\circ}}$ = 17.32 - 3.67 $= 30 \, \mathrm{m}$ = 13[.]65 m 🖕 🖉 একটি ফুটবলকে ভূমির সাথে 30° কোণে 40 ms⁻¹ বেগে কিক করা হল। 2 sec পরে ফুটবলের বেগের হিবে নির্ণন্ন কর। াঁ ঢা. বো. ২০০৬] মান ক মনে করি, ফুটবলটি যে বিন্দু হতে কিক করা হল সেটি মূলবিন্দু এখানে, এবং খাড়া উপরের দিক Y অক্ষ ধনাত্মক। শেষ বেগের অনুভূমিক ও উন্নদ্দ উপাংশ যথাব্রুমে v_x ও v_y হলে, নিক্ষেপ কোণ = 30° জাদি বেগ, $v = 40 \text{ ms}^{-1}$ সময়, t = 2 sec $v = \sqrt{v_x^2 + v_y^2}$ শেষ বেগ, v = ? আদি বেগের অনুভূমিক ও উরন্দ উপাংশ যথাক্রমে v_{x_0} ও v_{y_0} হলেঁ, আমরা পাই, $= v_{x_0} + a_x t = v_0 \cos \theta + a_x t$ $= v_0 \cos \theta \qquad [আনুভূমিক ত্বগ, a_x = 0]$ v_x $= 40 \cos 30^{\circ}$ $= 34^{\circ}64 \text{ ms}^{-1}$

বইঘর.কম

এবং
$$v_y = v_{y_0} + a_y t = v_0 \sin \theta + a_y t$$

বা, $v_y = 40 \sin 30^\circ + (-9.8) \times 2$ [উল্লম্ম উপাংশ নিয়মূখী হওয়ায় $a_y = -g = -9.8 \text{ ms}^{-2}$]
 $= 20 - 19.6$
 $= 0.4 \text{ ms}^{-1}$
 $\therefore v = \sqrt{v_x^2 + v_y^2} = \sqrt{(34.64)^2 + (0.4)^2}$
 $\sqrt{ = \sqrt{1199.9 + 0.16} = \sqrt{1200}$
 $= 34.64 \text{ ms}^{-1}$

?

আমরা জানি,
$$v = \sqrt{v_x^2 + v_y^2}/4$$

আবার, $v_x = v_{x_0} + a_x t$
 $= 20 \text{ ms}^{-1} + 0 \times 3/$
 $= 20 \text{ ms}^{-1}$
এবং $v_y = v_{y_0} + a_y t$
 $= 0 - 9.8 \text{ ms}^{-2} \times 3 \text{ s}$
 $= -29.4 \text{ ms}^{-1}$
 $v = \sqrt{(20)^2 + (-29.4)^2} \text{ ms}^{-1}$
 $= 35.58 \text{ ms}^{-1}$
এখানে,
আদি অনুভূমিক বেগ, $v_{x_0} = 20 \text{ ms}^{-1}$
আদি উল্লম্ব বেগ, $v_{y_0} = 0$
অনুভূমিক ত্ব্রণ, $a_x = 0$
উল্লম্ব ত্ব্রণ, $a_y = -g = -9.8 \text{ ms}^{-2}$
[ছাদের উপরের দিকে a_y ধনাত্মক, g নিম্নুয়ী হওয়ায় a_y
খণাত্মক]

(৮) 50 m উঁচু একটি দালানের উপর হতে একটি পাথর 2 ms⁻¹ বেগে গড়িয়ে পড়ল। দালানের কিনারা হতে কত ٢

দুরে পাথরটি ভূমিতে পড়বে এবং পড়তে কত সময় লাগবে ? প্রশানুসারে, পাথরটির বেগের অনুভূমিক উপাংশ $v_{0x} = 2 \text{ ms}^{-1}$ এবং উল্লম্ম উপাংশ $v_{0y} = 0$ । পাথরটি উপর হতে অভিকর্ষজ ত্বরণ 'g'-এর প্রভাবে নিচে পড়ছে। 'g'-এর দিক খাড়া নিচের দিকে। এক্ষেত্রে $a_y = -g$ এবং $a_x = 0$ । আমরা জানি.

$$t = \sqrt{\frac{2h}{g}} = \sqrt{\frac{2 \times 50}{9.8}} = \sqrt{\frac{100}{9.8}} = 3.19 \text{ s}$$

3.19 s সময়ে অতিক্রান্ত অনুভূমিক দূরত্ব

$$\frac{x}{2} = v_{0x} \times t = 2 \text{ ms}^{-1} \times 3 \text{ 19} \text{ s} = 638 \text{ m}}{2}$$
where $x = 2 \text{ m} \times 3 \text{ 19} \text{ s} = 638 \text{ m}}$
where $x = 2 \text{ m} \times 3 \text{ 19} \text{ s} = 638 \text{ m}}$
where $x = 2 \text{ m} \times 3 \text{ 19} \text{ s} = 638 \text{ m}}{2}$
where $x = 2 \text{ m} \times 3 \text{ m} \text{ m} \text{ s} = 225 \text{ m} \text{$

۶

উচ্চ মাধ্যমিক পদার্থবিজ্ঞান BG & JEWEL (১) একটি গাড়ির চাকা 20 মিনিট 50 সেকেন্ডে 250 বার খুরে 1 km পথ অতিরুম করে। চাকার পরিধি ও গরিধিস্থ একটি কণার রৈখিক বেগ নির্ণয় কর। N ধরি রৈখিক বেগ, = v V এখানে, N = 250 বার আমরা পাই, $v = \omega r$ t = 20 মিনিট 50 সেকেন্ড = 1250 s $=\frac{2\pi N}{t}r$ $2\pi r \times N = s = 1 \text{ km} = 10^3 \text{ m}$ চাকার পরিধি $2\pi r = \frac{s}{N} = \frac{10^3 \text{ m}}{250} = 4 \text{ m}$ ও $v = \frac{2\pi r \times N}{t} = \frac{10^3 \text{ m}}{1250 \text{ s}}$ $= 0.8 \, \text{ms}^{-1}$ 🕄 একটি কণা 1.5 m বৃদ্তাকার পথে প্রতি মিনিটে 120 বার আবর্তন করে। এর (ক) রৈখিক বেগ, (খ) পর্যায়কাল এবং (গ) কৌণিক বেগ কত 🤋 রা. বো. ২০০১] আমরা জানি, এখানে, রৈখিক বেগ, v = wr বৃত্তাকার পথের ব্যাসার্ধ, r = 1.5 mআবর্তন বা কম্পন সংখ্যা, $n = \frac{120}{1 \text{ min}} = \frac{120}{60 \text{ s}}$ $= 2 \text{ s}^{-1} = 2 \text{ Hz}$ $=2\pi nr$ 7) $= 2 \times 3143 \times 2 \times 1.5$ $= 2s^{-1} = 2Hz$ $= 18^{\circ}858 \text{ ms}^{-1}$ (খ) পৰ্যায়কাল, $T = \frac{t}{N} = \frac{60}{120} = 0.5s$ (গ) কৌণিক বেগ, $\omega = 2\pi n = \frac{2\pi}{T} = \frac{2 \times 3.142}{0.5} = 12.568 \text{ rads}^{-1}$ (২৩) পৃথিবীর চারদিকে চাঁদের কক্ষপথের ব্যাসার্ধ 3'85 × 105 km। কক্ষপথ একবার প্রদক্ষিণ করতে সময় লাগে 27'3 দিন। চাঁদের কৌণিক দুটি বের কর। 👘 🖓 রা. বো. ২০০২ আমরা জানি. এখানে, কৌণিক দুডি, $\omega = \frac{2\pi}{T}$ পর্যায়কাল, T = 27.3 দিন $\overline{\mathbf{A}}, \ \omega = \frac{2 \times 3^{\circ} 143 \text{ rad s}^{-1}}{27^{\circ} 3 \times 24 \times 36 \times 10^{2}} = \frac{2 \times 3^{\circ} 143 \times 10^{-6}}{2^{\circ} 73 \times 24 \times 0^{\circ} 36}$ $= 27^{\circ}3 \times 24 \times 60 \times 60 \text{ s}$ $2.73 \times 2.4 \times 0.36$ $= 2.665 \times 10^{-6} \text{ rad s}^{-1}$ J 🔇 🕄 একটি গ্রামোকোন রেকর্ড সম-কৌণিক বেগে ঘুরছে। রেকর্ডের উপর কেন্দ্র হতে 0.12 ও 0.18 m দুরের বিন্দুতে রৈখিক বেগের অনুপাত নির্ণয় কর। আমরা পাই, $v = \omega r$ (1)ধরি, ঐ দুই বিন্দুতে বেগ যথাক্রমে v_1 ও v_2 এখানে, তা হলে, সমীকরণ (1) অনুসারে, $\frac{v_1}{r_1} = \frac{v_2}{r_2}$ $r_1 = 0.12 \text{ m}$ $r_2 = 0.18 \text{ m}$ **9941**, $\frac{v_1}{v_2} = \frac{r_1}{r_2} = \frac{0.12}{0.18} = 2$ 3 ১৫) একটি প্রাসের অনুভূমিক পাল্লা 96 m এবং আদিবেগ 66 ms⁻⁻¹। নিক্ষেপ কোণ কত १ [কু. বো. ২০০৩ ; চ. বো. ২০০০] আমরা জানি, $R = \frac{v_0^2 \sin 2\theta_0}{g}$ $\Rightarrow \sin 2\theta_0 = \frac{R \times g}{v_0^2}$ দেয়া আছে, R = 96 m $\Rightarrow \sin 2\theta_0 = \frac{96 \times 9^{\cdot}8}{(66)^2}$ $v_0 = 66 \,\mathrm{ms}^{-1}$ = 9'8 ms⁻² \Rightarrow sin 2 θ_0 = 2159779 = ? $2\theta_0 = 12.473$ $= \theta_0 = 6.24^\circ$ (211) 🕒 একটি প্রাসের অনুভূমিক পাক্লা 79'53 m এবং বিচরণকাল 5'3 sec। নিক্ষেপণ বেগ ও নিক্ষেপণ কোগ [চ. বো. ২০০৪] নির্ণয় কর। আমরা জানি, $T = \frac{2v_0 \sin \theta_0}{1 + 1}$ এখানে. R = 79'53 m $R = \frac{v_0^2 \sin 2\theta_0}{g}$ (1)T = 5.3 sec $g = 9.8 \text{ ms}^{-1}$

(2)

$$\begin{aligned} & \pi \hat{\mathbf{l}} \hat{\mathbf{s}} \hat{\mathbf{s}}_{1}^{T} \left(\mathbf{j} \in (2) \text{ crite strik}^{T}, \mathbf{f}_{1}^{T} \mathbf{g}_{2}^{T} \frac{2n_{1} \cdot \mathbf{s}_{1} \cdot \mathbf{s}_{2}}{\frac{n_{2}^{2} 2 \sin \theta_{0}}{98}} \right) \\ & \quad \frac{53}{n_{2}^{2} \cos \theta_{0}} \end{aligned} \tag{3} \\ & \quad \frac{53}{79 \cdot 53} = \frac{1}{v_{0} \cos \theta_{0}} \end{aligned} \tag{3} \\ & \quad \pi \hat{\mathbf{l}} \hat{\mathbf{s}}_{0} \cos \theta_{0} = 15006 \end{aligned} \tag{3} \\ & \quad \pi \hat{\mathbf{l}} \hat{\mathbf{s}}_{0} \cos \theta_{0} = 15006 \end{aligned} \tag{3} \\ & \quad \pi \hat{\mathbf{l}} \hat{\mathbf{s}}_{0} \cos \theta_{0} = \frac{92}{8} \times 53 = 2597 \end{aligned} \tag{4} \\ & \quad \pi \hat{\mathbf{s}}_{0} = \frac{92}{8} \times 53 = 2597 \end{aligned} \tag{4} \\ & \quad \pi \hat{\mathbf{s}}_{0} = \frac{92}{8} \times 53 = 2597 \end{aligned} \tag{4} \\ & \quad \pi \hat{\mathbf{s}}_{0} = \frac{60^{\circ \circ}}{98} \end{aligned} \tag{5} \\ & \quad \pi \hat{\mathbf{s}}_{0} = \frac{60^{\circ \circ}}{15006} = 17306 \end{aligned} \qquad \qquad (a) \\ & \quad \pi \hat{\mathbf{s}}_{0} = 60^{\circ \circ} \end{aligned} \\ & \quad \pi \hat{\mathbf{s}}_{0} = \frac{60^{\circ \circ}}{15006} \end{aligned} \qquad \qquad (b) \quad \pi \hat{\mathbf{s}}_{1} = \frac{2v_{0} \sin^{1}}{9} \end{aligned} \qquad \qquad (c) \quad \pi \hat{\mathbf{s}}_{1} = \frac{1}{0} \cdot \frac{1$$

1

প্রমালা

-

वनुमाना	
সংকিশ্ত-উত্তর প্রশ্ন :	
১। ত্রিমাত্রিক স্থানাজ্ঞ ব্যবস্থায় অবস্থান ভেষ্টর ব্যাখ্যা কর।	[ता. (वा. २००৫ ; व. (वा. २००८)
২। কৌণিক বেগের সংজ্ঞা ও এককসমূহ উল্লেখ কর।	. [চ. বো. ২০০৪]
৩। সমত্রণবিশিষ্ট একটি গতির উদাহরণ দাও।	[৮. বো. ২০০৩]
৪। নিম্নলিখিত রাশিগুলোর সংজ্ঞা দাও ঃ	
(i) প্রাস রো. বো. ২০০২, ২০০০; ঢা. বো. ২০০০]	
(ii) নিক্ষেপণ বেগ (vii) পাল্লা	(xii) 주재해 통
(n) নিক্ষেপণ বেগ (vn) পার্রা (iii) নিক্ষেপণ কোণ (viii) ব্যাসার্ধ ভেষ্টর (iv) নিক্ষেপণ বিন্দু (ix) কৌণিক সরণ রো. বো. ২০০১] (v) বিচরণ পথ (x) কৌণিক বেগ	(xiii) কৌণিক ত্বরণ [রা. বো. ২০০১]
(iv) নিক্ষেপণ বিন্দু (ix) কোণিক সরণ রো. বো. ২০০১)	(xiv) कन्मुभू वेल
(v) $ 4baq $ $\forall 4$ (x) (a) (a)	(xv) কেন্দ্রমুখী ত্বরণ
(v_i) বিচরণ কাল। (x_i) পর্যায় কাল ৫। স্ট্রিয়ারিক স্কেন্দ্র স্বার্গ স্ক্রেন্দ্র ব্রহার ব	(xvi) স্পর্শী ভুরণ। [রা. বো. ২০০২]
৫। দির্মাত্রিক ক্ষেত্রে সরণ ভেষ্টর বলতে কি বুঝ ? ৬। প্রাস গতির ক্ষেত্রে সর্বাধিক উচ্চতার সমীকরণটি শিখ।	[য়া. বো. ২০০২] [য. বো. ২০০৪]
ও । এজেষ্টাইল কাকে বলে ?	[ঢা. বো. ২০০০]
৮। একটি প্রাসের উড্ডয়ন কালের সমীকরণটি লিখ।	[ঢা. বো. ২০০০]
৯। রৈখিক বেগ ও কৌণিক বেগের সংজ্ঞা দাও।	
১০। অনুভূমিক পাল্লা কি १ এর রাশিমালা বের কর।	х х
১১। সুষম বুত্তাকার গতি কি ? 🛛 👔	[য. বো. ২০০৪]
১২। প্রীস কি ? [ব. বো. ২০০৪, ২০০২; ক ৃ.	বো. ২০০৩; রা. বো. ২০০০; য. বো. ২০০১]
১৩। ঘূণায়মান বস্তুর পর্যায়কাল ও কম্পাক্ত বলতে কি বুঝ ? এদের ম	ধ্য সম্পর্ক কি ?
>8। প্রাসের গতিপথ কির্প ?	(0
১৫। একুটি বস্তু কত ডি্রি কোণে নিক্ষেপ করলে এর অনুভূমিক পালা স	বোধিক হয় ? [রা. বো. ২০০২]
১৬। কৌণিক বেঁগ ও কৌণিক ত্বরণের একক ও মাত্রা লিখা।	
১৭। প্রাস ও অনুভূমিক পাল্লা কাকে বলে ?	[সি. বো. ২০০৫]
রচনামূলক প্রশ্ন ঃ	\rightarrow .
১। সমতলে গতিশীল একটি বস্তুকণার অবস্থান ভেষ্টর $ec{r}$, বেগ $ec{v}$ ও	ত্বরণ a -কে তাদের উপাৎশের সাহায্যে প্রকাশ
\overline{a}	· · · ·
২। দ্বিমাত্রিক গতির ক্ষেত্রে প্রমাণ কর যে, $\vec{r} = \vec{r_0} + \vec{v_0}t + \frac{1}{2}\vec{a}t^2$, যে	ধানে প্রতীকগুলো প্রচলিত অর্থ বহন করে।
-	যি বো ১০০৫
৩। $\overrightarrow{r} = \overrightarrow{r_0} + \overrightarrow{v_0}t + \frac{1}{2}\overrightarrow{a}t^2$ সমীকরণটি প্রতিপাদন কর। এখানে চিহণ অথবা, দেখাও যে, $\overrightarrow{r} = \overrightarrow{r_0} + \overrightarrow{v_0}t + \frac{1}{2}\overrightarrow{a}t^2$, যেখানে প্রতীকগুলো প্রচলি ৪। দেখাও যে, $t = 0$ সময়ের অবস্থান ভেক্টরের সাপেক্ষে যে কোন এক স $\overrightarrow{a}t^2$ দ্বারা প্রকাশ করা যায়। এখানে, $\overrightarrow{v_0} =$ আদি বেগ ও $\overrightarrow{a} = \overline{\gamma}$ যম তুরণ।	গুলো প্রচলিত অর্ধ বহন করে। [ব. বো. ২০০৫]
জথবা, দেখাও যে, $r^2 = r_0^2 + v_0^2 t + \frac{1}{2} a t^2$, যেখানে প্রতীকগুলো প্রচলি	ত অর্থ বহন করে।[.ঢাবো. ২০০৫]
8। দেখাও যে, t = 0 সময়ের অবস্থান ভিল্টরের সাপেক্ষে যে কোন এক স্থান ভিল্টরের স্থাপেক্ষে যে কোন এক স্থাপেক্ষেরে ভাবের স্থাপেক্ষে যে কোন এক স্থান ভিল্টরের স্থাপেক্ষে যে কোন এক স্থাপের স্থাপের ব্যুর্বের স্থাপেক্ষে যে কোন এক স্থাপেক্ষে যে কোন এক স্থাপের স	সময় t-এর অবস্থান ভেঁটর $\vec{r}_{1} = \vec{r}_{0} + \vec{v}_{0}t + \frac{1}{2}$
$\vec{a} t^2$ দ্বারা প্রকাশ করা যায়। এখানে, $v_0'=$ আদি বেগ ও $\vec{a}_1'=$ সুষম ত্বুরণ।	
[চ. বো. ২০০৪, ২০০০; সি. বো. ২০০৪, ২০০	৯০; রা. বো. ২০০৩, ২০০০; কৃ. বো. ২০০৩;
য বো ১০	৯৩, ২০০০; ব. বো. ২০০২; কু. বো. ২০০০]
$\mathcal{E} \mid \mathcal{L} F A H G \mathcal{L} I, (i) \overrightarrow{v} \overrightarrow{v} = \overrightarrow{v_0} \overrightarrow{v_0} + 2\overrightarrow{a} \overrightarrow{s} \mid \qquad \overrightarrow{v} \overrightarrow{v_0} = \overrightarrow{v_0} \overrightarrow{v_0} + 2\overrightarrow{a} \overrightarrow{s} \mid \qquad \overrightarrow{v} \overrightarrow{v_0} = \overrightarrow{v_0} \overrightarrow{v_0} = v_0$	
$\begin{array}{cccc} t \in \mathcal{L} \\ t \in \mathcal{L} \\ \hline t \in \mathcal{L} \\$	- r ₀ .) [য. বো. ২০০৪]
(iii) $v_x^2 = v_{x0}^2 + 2 a_x (x - x_0)$	দ দ হ [ঢা. বো. ২০০০]
এখানে প্রতীকগুলো প্রচলিত অর্থ বহন করে। 👘 🖓	
৬। দেখাও যে একটি বস্তু তির্যকতাবে শৃন্যে নিক্ষিত হলে তার দিমান্রি	ন গঙ্গিষ্ঠ অধিবন্ত হয়।
রো. বো. ২০০২ ; কু. বো. ২০০২ ; ব. বো. ২০০২; সি. (বা. ২০০১ য বো ২০০১
জথবা, দেখাও যে প্রাসের গতিপথে অর্ধবৃত্ত অধিবৃত্তাকার।। চ. বো. ২০০৫	: রা.বা. ২০০৪ ব বো ২০০৪, ক বো ২০০৬
৭। দেখাও যে, প্রাসের সর্বাধিক অনুভূমিক পাল্লা, $\mathrm{R}=rac{v_0^2}{g}$ । v_0 আদি (এয়নহ ভূমির সাবে 0 ₀ কোণে শূন্যো নাক্ষনত
বস্তুর গতির সমীকরণ প্রতিষ্ঠা কর 📖 👘 👘 👘	
বস্তুর গাওর সমাকরণ শ্রাওতা কর। ৮। একুটি প্রাসের সর্বোচ্চ অতিক্রান্ত দূরত্ব, সর্বোচ্চ উচ্চতায় উঠার সা	ময় ও বিচরণ কালের জন্য বা লিমালা প্রতিপাদন
🔰 ৯। একটি প্রান্সের অনুভূমিক পাল্লার রার্শিমালা বের কর এবং দেখাও	যে নিক্ষেপণ কোণ 45° হলে অনভমিক পালা
সর্বাধিক হবে ।	বি বো ২০০০ বা বো ২০০২
১০। রৈখিক রেগ ও কৌণিক বেগের সংজ্ঞা দাও। তাদের মধ্যে সম্পর্ক	স্থাপন কর।
[ঢা.	বো. ২০০২; ব. বো. ২০০২; কু. বো. ২০০১]
১১। রোখক বেগ ও কোনেক বেগের মধ্যে পার্থক্য কর।	[চ. বো. ২০০২]
$3 \ge 1$ (त्रिशांख त्य, $\vec{v} = \vec{\omega} \times \vec{r}$ (त्रा. (त्रा. २००৫, २००	२; क. ला. २००८. २००५: ए। ला. २००५)
১৬। কৌনিক তুরণের সংজ্ঞা দাও। কৌনিক তুরণ ও রৈষিক তুরণের মা	
ANT CALLTA AND IN JOINT BAR IN ANT A COLUMN AND A COLUMN AND IN THE	

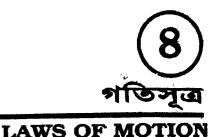
বইঘর.কম

১৪। স্বির কৌণিক ত্ববে ঘূর্ণায়মান একটি বস্তুকণার ক্ষেত্রে দেখাও যে,

(i) $\omega = \omega_0 + \alpha t$ (ii) $\theta = \omega_0 t + \frac{1}{2} \alpha t^{\circ}$ (iii) $\omega^2 = \omega_0^2 + 2\alpha \theta$ (iv) $\theta_t = \omega_0 + \frac{1}{2} \alpha (2t - 1)$

১৫। সুষম বৃত্তাকার গতি বলতে কি বুঝ i দেখাও যে r ব্যাসাধবিশিষ্ট একটি বৃত্তাকার পথে v_0 সম-দ্রুতিতে ঘূর্ণনরত [কু. বো. ২০০১; রা. বো. ২০০৩] বস্তুরুণার অভিনস্ম ত্বরণ-এর মান. $a = \frac{v^2}{2}$ । এটি গতিপথের লম্ব দিকে ক্রিয়া করে। ১৬। দেখাও যে, বৃত্তাকার পথে সমদ্রতিতে আবর্তনরত বস্তুর ত্বরণ গতিপথের লম্ব দিকে ক্রিয়া করে।

১৭। সম-বৃত্তীয় গতির ক্ষেত্রে কেন্দ্রমুখী তুরণের মান ও দিক নির্ণয় কর। [ঢা, বো. ২০০৪ ; কু. বো.২০০১] গাণিতিক সমস্যাবলি ঃ


্রি) সরণ $\overrightarrow{r}=4x^2t^3\widehat{i}+2y^2t^2\widehat{j}$ হলে ব্যবক্ষানের সাহাঁয্যে বেগ ও তুরণ নির্ণয় কর।

 $[\overline{v}_{i} = 12x^{2}t^{2}i + 4y^{2}t^{2}i + 4y^{2}$ ২। একটি বস্তু কণাকে অনুভূমিকের সাথে 30° কোণে 50 ms⁻¹ বেগে উপর দিকে নিক্ষেপ করা হল। বস্তুটি সবাঁধিক [58 31 25 m, 2 5 s] ৰুত উচ্চতা অতিক্রম করবে এবং ঐ উচ্চতা অতিক্রম করতে কন্ত সময় লাগবে ? (g = 10N/kg) 💥 (তা) একটি ফুটবলকে ভূমির সাথে 30° কোণে 30 ms⁻¹ বেগে কিক করাঁ হল। 1 sec পরে ফুটবলের বেগের মান কত [চ. বো. ২০০২] টিঃ 26 495 ms⁻¹] হবে? ় 🛹 ৪। একটি দালানের ছাদ হতে একটি পাথর অনুভূমিকভাবে 40 ms⁻¹ বেগে নিক্ষেপ করা হল। 5 s পরে এর বেগ কত ? [উঃ 63[·]25 ms⁻¹] 🕼 একটি প্রাস অনুভূমিকের সাথে 30° কোণে 40 ms⁻¹ বেগের উপর দিকে নিক্ষিণত হলে তার বিচরণকাল নির্ণয় কর। 168 4 s (g = 10 N/kg)(৬) একটি বস্তুকণাকে অনুভূমিকের সাথে 15° কোণে $30~{
m ms}^{-1}$ বেগে নিক্ষেপ করা হল। g-এর মান $10~{
m N/kg}$ হলে [উঃ 77[·]9**6**m] অনুভূমিক পাল্লা নির্ণয় কর। একটি বস্তু 50 ms⁻¹ বেগে উপর দিকে নিক্ষিন্ত হল। যদি অভিকর্ষজ ত্বরণ 10 N/kg হয়, তবে সর্বাধিক অনুভূমিক পাল্লা নির্ণয় কর। [উঃ 250 m] (৮) অনুভূমিকের সাথে 60° কোণ করে ভূ-পৃষ্ঠ হতে 60 ms⁻¹ বেগে একটি বুলেট হোঁড়া হল। বুলেটটি 50 m দূরে একটি, দালানকৈ কত উচ্চতায় আঘাত করবে ? **ច្រឹះ 73 m**] រ (৯))একটি কণা প্রতি মিনিটে বৃত্তাকার পথে 10 বার আবর্তন করে। কণাটির কৌণিক বেগ নির্ণয় কর।।উঃ104 rad s⁻¹ (১০)। একটি বস্তু কণা প্রভি মিনিটে 300 বার আবর্তন করে। বৃষ্ণের ব্যাসার্ধ 0.4 m হলে, এর রৈখিক বেগ 🗖 🕸 ? [𝔅: 12.56 ms⁻¹] 🕼। বৃত্তাকার পথে 314 ms⁻¹ সমদ্রতিতে একটি কণা প্রতি সেকেন্ডে 10টি পূর্ণ আবর্তন সম্পন্ন করে। বৃত্তাকার পথের ব্যাসাধ কৃত্ ? [রা. বো. ২০০১] [উঃ 0[.]05 m], 🜜২)। একটি প্রাসের অনুভূমিক পাল্লা 40m এবং আদি বেগ 33 ms⁻¹। নিক্ষেপ কোণ কত 🤋 13:2289 🗸 ਓ 30 m উঁচু দালানের উপর হতে একটি পাথর নিচে গড়িয়ে পড়ল। পাথরটি দালানের কিনারা হতে 10 m দূরে ভূমি স্পর্শ করল । গড়িয়ে পড়ার মুহূর্তে পাথরটির বেগ ও ভূমিতে পড়তে সময় নির্ণয় কর । [℃: 4 05 ms⁻¹ : 2 47 s] 🖋 🕼 একটি গ্রামোফোন রেকর্ড সমকৌণিক বেগে ঘুরছে। গ্নেকর্ডের কেন্দ্র হতে 0.25 m এবং 0.30 m দূরের বিন্দুথে রৈখিক র্বেগের অনুপাত নির্ণয় কর। 5:5:6 ্বিক্রী একটি গ্রামোফোন রেকর্ড প্রতি মিনিটে 7৪ বার ঘুরছে। সুইচ বন্ধ করে একে 30s-এ থামান হল। কৌণিক মন্দন ডিঃ 0.272 rad s⁻¹ একটি বস্তু সমদ্রতিতে বৃস্তাকার পথে প্রতি মিনিটে 600 বার ঘুরে। বস্তৃটির পর্যায়কাল ও কৌনিক বেগ নির্ণ কর। ၆ 0'272 rad s-1 ତ: 0'16, 62'8 rad s-1 🔊 একটি দেয়াল ঘড়ির মিনিটের কাঁটার দৈর্ঘ্য 0.18 m হলে এর প্রান্ডের রৈথিক বৈগ নির্ণয় কর। — 🖓 🖏 3.14 × 10+ ms-1 🕹) একটি হাত ঘড়ির সেকেন্ড, মিনিট ও ঘণ্টার কাঁটার দৈর্ঘ্য যথাক্রমে 0.015 m, 0.0125 m এবং 0.01 m হ 陵፡ 157×10-4, 218×10-5, ዓጞ፡ 145×10-6 ms-1 প্রত্যেকের দোষ প্রান্তের রৈখিক বেগ নির্ণয় কর। (১৯) একটি মিনারের শীর্ষদেশ হতে 200 ms⁻¹ বেগে ¹³নুভূমিকভাবে নিক্ষিন্ত একটি গুলি 5s পরে ভূমিতে পতিত হল ুমিনারের উচ্ট এবং গুলির অনুভূমিক অতিক্রান্ত দূরত্ব নির্ণয় কর। 101 122 5 m, 1000 m ৫০) স্থিরাবস্থা হতে একটি কণাকে 3'14 rads-2 সম কৌগিক ভুরণে বৃত্তাকার থথে ঘুরালে 20 সেরেকন্ডে কণাটি কং উত্তর 8.62.8 rads-1 ,200 বার কৌণিক বেগু লাভ করবে ? এ সময়ে কণাটি কতক্র যুরবে ? হি)। 8m ব্যাসাধবিশিষ্ট একটি বৃস্তাকার পথে একটি গাড়ি মণ্টায় 50 km রেগে চলছে। গাড়িটির কৌণিক বেগ নির্ণ

्र [छिखब : 1 74 rads-1 কর। . چمب পৃথিবী হতে চন্দ্রের দূরত্ব 384 × 105 km এব এটি পৃথিবীকে বৃত্তাকান্ত্র কঙ্গপথে 27.3 দিনে একবার প্রদক্ষি করে। চন্দ্রের রৈখিক দ্রুতি নির্ণর কর। े छिखेत : 1 022 kms⁻¹

২ত) একটি কৃত্রিম উপগ্রহ 7000 km ব্যাসার্ধ বিশিষ্ট যুন্তাক্ষার কক্ষপথে পৃথিবীকৈ প্রদ্বক্ষিণ করছে। উপগ্রহটির পর্যায়কা উত্তর : 5 325 ms> 2hr হলে কন্দ্রমুখী ত্রণ কত ?

পৃথিবীকে একবার প্রদক্ষিণ করলে এর কৌণিক ও রৈখিক বেগ াগণম্ব কর। [উত্তর 🕯 1,047 × 10 grads -1 : 6 806 kms-1

৪'১ সুচনা

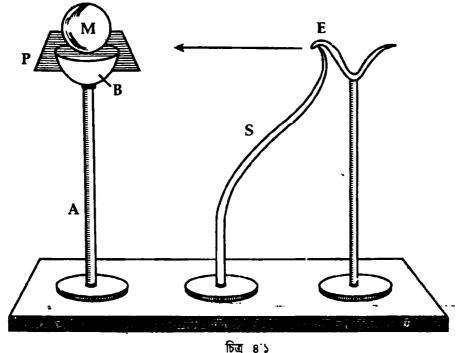
Introduction

পূর্ববর্তী অধ্যায়গুলোতে সমবেগে ও সমত্বরণে বস্তুর গতির বিভিন্ন দিক সম্বন্ধে আলোচনা করা হয়েছে; কিন্তু কিভাবে স্থির বস্তু গতিন্মল হয় অথবা সমবেগে গতিন্মিল বস্তুর মধ্যে ত্বরণ সৃষ্টি হয় তা আলোচনা করা হয়েনি। বিখ্যাত বিজ্ঞানী স্যার আইজ্যাক নিউটন (Sir Isaac Newton) তাঁর "ফিলোসোফিয়া ন্যাচারালিস ম্যাথমেটিকা" নামক অমর গ্রন্থে বস্তুর গতি, বেগ ও তরের মধ্যে নিবিড় সম্পর্কযুক্ত তিনটি সূত্র প্রকাশ করেন। তার নাম অনুসারে সূত্রগুলোকে নিউটনের গতিসূত্র বলে। এ সূত্রগুলোর সাহায্যে গতিবিদ্যা সুদৃঢ় বৈজ্ঞানিক ভিন্তির উপর প্রতিষ্ঠিত হয়েছে। এ অধ্যায়ে সূত্রগুলোর বর্ণনা ও ব্যাখ্যা প্রদান করা হবে এবং বল ও তরের সাথে গতির সম্পর্ক আলোচনা করা হবে। এ ছাড়া ঘর্ষণ ও ঘর্ষণের প্রকারতেদ আলোচনা করা হবে। সূত্রগুলো বর্ণনার জাগে জড়তা, বল, ভরবেগ ইত্যাদি সম্বন্দেধ প্রাথমিক ধারণা প্রদান করব।

৪'২ জড়তা বা জাড্য ও বল

Inertia and Force

জড়তা ঃ আমরা জানি কোন বস্তু নিজে নিজে তার স্থির বা গতিশীল অবস্থার পরিবর্তন করার ক্ষমতা রাখে না। কোন একটি বাহ্যিক ক্রিয়া অর্ধাৎ বলের প্রভাবে বস্তুর স্থির বা গতিশীল অবস্থার পরিবর্তন ঘটে বা ঘটতে প্রয়াস পায়। উপরের ব্যাখ্যা থেকে জড়তার নিমন্নূপ সংজ্ঞা দেয়া যায় ঃ


সংজ্ঞা ঃ প্রত্যেক জড় পদার্থই তার নিজের স্থির বা গতিশীল অবস্থা অক্ষুণ্ন রাখার চেন্টা করে। পদার্থের এই ধর্মকে জড়তা বলে। যেমন টেবিলের উপর একখানা বই স্থিতিশীল অবস্থায় রয়েছে। এটি আবহমান কাল স্থির থাকবে। আবার চলন্ত একটি ফুটবল সব সময় চলতেই চাইবে। জড়তা বস্তুর একটি মৌলিক ধর্ম।

জড়তা দুই প্রকার, যুপা---

- (**১) স্বিতি জড়তা** (Inertia of rest) এবং
- (২) গতি অড়তা (Inertia of motion)

(১) স্বিতি জড়তা : স্বির বস্তু সব সময় স্বির গাকতেই চায়। এর নাম স্বিতি জড়তা। স্বিতি জড়তা বস্তুর তরের সমান্পাছিক। তর বুন্দি পেলে স্নিতি জড়চা বৃদ্ধি পায়। স্বিতি জড়তার কয়েকটি দুউান্ন

(i) মুদ্রা ও কালের পরীক্ষা : ৪ ১ চিত্রে A একটি দন্ড, S একটি স্পিং এবং E একটি আংটা। A দন্ডের মাথায় B একটি কাল বা বাটি স্থাপন করা হয়েছে। বাটির উপর একটি কার্ড বোর্ড P রাখি। কার্ড বোর্ডের উপর একটি ভারী মার্বেদ ক্র্য়েপদ করি। স্প্রিং-এর মাথা ও কার্ড রোর্ড একই সমতলে থাকে। S স্পিং E আংটায় আটকিয়ে রাখি। এখন আংটা সরিয়ে নিলে স্প্রিং কার্ড বোর্ডে জোরে অ ঘাত করবে। ফলে কার্ড বোর্ড দ্রুত সরে যাবে এবং M মার্বেলটি তার স্থিতি জড়ডার দর্ন বাটির মধ্যে পড়বে। (ii) হঠাৎ গাড়ি চলতে শুরু করলে আরোহীর শরীরের নিচের ভাগ গাড়ির গতিপ্রান্ত হয় এবং গাড়ির সাথে এগিয়ে চলে। কিন্তু শরীরের উপরের ভাগ স্থিতি জড়তার জন্যে স্থির থাকে। ফলে আরোহী পেছনের দিকে হেলে গড়ে।

(iii) ধৃলিময় পোশাক ছড়ি দিয়ে আঘাত করলে পোশাক সরে যায়। কিন্তু ধৃলিকণা স্পিতি জড়তার জন্যে নিচে পড়ে যায়।

(iv) ক্যারাম বোর্ডের একটি গুটির উপর আর একটি গুটি থাকলে নিচের গুটিকে স্ট্রাইকার দিয়ে র্জেরে আঘাত করলে নিচের গুটিটি সরে যায়। কিন্তু উপরের গুটিটি স্থিতি জড়তার জন্যে স্থির থাকে। নিচের গুটিটি সরে যাবার কারণে উপরের গুটিটি সেই স্থান অধিকার করে।

(v) ঘোড়া হঠাৎ দৌড়াতে শুরু করলে আরোহীর শরীরের নিচের অংশ ঘোড়ার পিঠের সাথে যুক্ত থাকায় গতিপ্রাশ্ত হয় এবং এগিয়ে চলে। কিন্তু শরীরের-ওণ্নরের অংশ স্থিতি জ্ঞড়তার জন্যে স্থির থাকে। ফলে আরোহী পেছনের দিকে হেলে পড়ে।

(২) গতি জড়তা : গৃতিশীল বস্তু যে ধর্মের দর্ন একই সরলরেখায় গতিশীল থাকতে চায় তাকে গৃতিজড়তা বলে।

গতি জড়তার কয়েকটি দৃষ্টান্ত :

(i) চলন্ত গাড়ি হঠাৎ থেমে গেলে আরোহীর শরীরের নিম্নভাগ স্থিতিতে আসে। কিন্তু শরীরের উপরিভাগ গণ্টি জড়তার জন্যে সামনের দিকে এগিয়ে যায়। ফলে আরোহী সামনের দিকে ঝুঁকে পড়ে। অভিজ্ঞ আরোহী এই গণ্টি সামলাবার জন্যে পেছনের দিকে হেলে চলন্ত গাড়ি হতে নেমে থাকে।

(ii) চলন্ত গাড়ির কামরায় কোন আরোহী একটি রবারের বল সোজা উপরের দিকে হুড়লে তা গতি চ্বড়তার জন্যে গাড়ির সাথে সাথে চলতে থাকে এবং কিছুক্ষণ পর আরোহীর হাতে ফিরে আসে। আরোহী ও বল উভয়েই গাড়ির গতি পায়। সুতরাং আরোহী ও বল একই দূরত্বে এগিয়ে যায় এবং বলটি আরোহীর হাতে ফিরে আসে।

(iii) যখন সার্কাসে ধাবমান ঘোড়ার পিঠ হতে খেলোয়াড় উপর দিকে লাফ দেয় তখন সে গতি চ্চড়তার দর্নুন পুনরায় ঘোড়ার পিঠে ফিরে আসে।

(iv) জামরা ক্রীড়া প্রতিযোগিতায় লাফ দিবার জাগে কিছুদূর পেছন হতে দৌড়ে শরীরকে গতি জড়তার প্রভাবে রেখে বেশি অগ্রসর হবার চেন্টা করি। বল (Force) ঃ মনে করি টেবিলের উপর একটি বই আছে। বইটিকে নড়াবার জন্য হাত দিয়ে বইটির উপর 'কোন কিছু' (Something) প্রয়োগ করি। একটি ফুটবল গোলরক্ষকের দিকে ছুটে আসছে। গোলরক্ষক হাত দিয়ে ফুটবলের উপর 'কোন কিছু' প্রয়োগ করে ফুটবলকে থামিয়ে দিল। বইটিকে গতিশীল বা ফুটবলটি থামাবার জন্য এই যে 'কোন কিছু' প্রযোগ করা হয় এর নাম বল (Force)।

আবার কোন ব্যক্তি আচ্চাল দিয়ে 'কোন কিছু' প্রয়োগ করে একটি ভারী টেবিলকে নড়াতে চাইল। কিন্তু সক্ষম হল না। এই 'কোন কিছু' এর নামও বল। উপরের উদাহরণগুলো হতে বলের নিম্নলিখিত সংজ্ঞা দেয়া যেডে পারে।

সংজ্ঞা ঃ যে ব্যাহিক কারণ বস্তুর গতি বা স্থিতি অবস্থার পরিবর্তন ঘটায় বা ঘটাতে চায় তাকে বল বলে। বল একটি ভেষ্টর রাশি। এর মান ও দিক আছে।

৪'৩ বলের প্রকারভেদ

Kinds of forces

প্রকৃতিতে আমরা বিভিন্ন ধরনের বলের সক্ষো পরিচিত হলেও এবং এদের বিভিন্ন নামকরণ থাকলেও সব বল কিন্তু মৌলিক বল নয়। যে সকল বল মূল বা অকৃত্রিম অর্ধাৎ অন্য কোন বল থেকে উৎপন্ন হয় না বরং অন্যান্য বল এ সকল বনের প্রকাশ তাকে মৌলিক বল বলে।

মৌলিকতা অনুসারে প্রকৃতিতে চার ধরনের বল আছে। অন্য যে কোন ধরনের বলকে এই চারটি বলের যে কোন একটি বা একাধিক বল দ্বারা ব্যাখ্যা করা যায়। মৌলিক বলগুলো হল ঃ

মহাকৰ্ষ বল (Gravitational force)

উড়িৎ-চুম্বকীয় বল (Electromagnetic force)

স্বেল নিউক্লীয় বল (Strong nuclear force)

_ ৪+ দুবল নিউক্লীয় বল (Weak nuclear force)

১। মহাকর্ষ বল ঃ মহাবিশ্বের যে কোন দুটি বস্তুর মধ্যে এক ধরনের আকর্ষণ বল ক্রিয়াশীল রয়েছে। এই আকর্ষণ বলকে মহাকর্ষ বল বলা হয়। এই বলের পরিমাণ ক্রিয়াশীল বস্তু দুটির ভরের গুণফলের সমানুপাতিক এবং বস্তুদ্বয়ের মধ্যবর্তী দূরত্বের বর্গের ব্যস্তানুপাতিক। বিজ্ঞানীরা ধারণা করেন যে বস্তুদ্বয়ের মধ্যে এক প্রকার কণার পারস্পরিক বিনিময়ের দ্বারা এই মহাকর্ষ বল ক্রিয়াশীল হয়। এই ধরনের ক্রণার নামকরণ করা হয়েছে গ্রাভিটন (Graviton)।

২। তড়িৎ-চুম্বকীয় বল ঃ দুটি আহিত বা চার্জিত বস্তৃর মধ্যে এবং দুটি চুম্মক পদার্ধের মধ্যে এক ধরনের বল ক্রিয়াশীল থাকে। এদেরকৈ যথাক্রমে কুলম্মের তড়িৎ এবং চৌম্মক বল বলা হয়। তড়িৎ এবং চৌম্মক বল আকর্ষণ এবং বিকর্ষণ উত্তয় ধরনের হতে পারে। তড়িৎ এবং চৌম্মক বল পরস্পর ঘনিষ্ঠভাবে সম্পর্কিত। বস্তৃত আপেক্ষিক গতিতে পরিভ্রমণরত দুটি আহিত কণার মধ্যে ক্রিয়াশীল বলই হচ্ছে তড়িৎ-চুম্মকীয় বল। যখন তড়িৎ আধান বা চার্চ্চগুলো গতিশীল হয়, তখন তারা চৌম্মক ক্ষেত্র সৃষ্টি করে। আবার পরিবর্তী (varying) চৌম্মক ক্ষেত্র তড়িৎ ক্ষেত্রের উৎস হিসেবে কান্ধ করে।

স্থিতিস্থাপক বল, আণবিক গঠন, রাসায়নিক বিক্রিয়া ইত্যাদিতে তড়িৎ-চুম্বকীয় বলের প্রকাশ ঘটে।

৩। সবল নিউক্লীয় বন ঃ একটি পরমাণুর নিউক্লিয়াস প্রোটন ও নিউট্রন দ্বারা গঠিত। এদেরকে সমষ্টিগতভাবে বলা হয় নিউক্লিয়ন (Nucleon)। নিউক্লিয়াসের মধ্যে সমধর্মী ধনাজ্বক আধানযুক্ত প্রোটনগুলো খুব কাছাকাছি থাকায় এদের মধ্যে কুলন্দের বিকর্ষণ বল প্রবল হওয়া উচিত এবং নিউক্লিয়াস তেল্লো যাওয়ার কথা। কিন্তু বাস্তবে অনেক নিউক্লিয়াসই স্থায়ী। নিউক্লিয়নের মধ্যে যে মাধ্যাকর্ষণ বল কাজ করে তা এত নগণ্য যে এই বল কুলন্দের বিকর্ষণ বলকে প্রতিমিত (balance) করতে পারে না। সুতরাং নিউক্লিয়াস অবশ্যই অন্য এক ধরনের সবল বল কাজ করে যা নিউক্লিয়াসকে ধরে রাখে। এই বলকে বলা হয় সবল নিউক্লীয় বল। বিজ্ঞানীদের ধারণা যে নিউক্নিয়নের মধ্যে মেসন (Meson) নামে এক প্রকার কণার পারস্পরিক বিনিময়ের দ্বারা এই বল ক্রিয়াশীল হয়। এই বল আকর্ষণধর্মী এবং নিউক্লিয়াসের বাইরে ক্রিয়াশীল নয় ; অর্থাৎ স্বল্প পরিসরে (short range) এই বল ক্রিয়াশীল।

8। দুর্বল নিউক্লীয় বল : প্রকৃতিতে বেশ কিছু মৌলিক পদার্থ (elements) রয়েছে যাদের নিউক্লিয়াস স্বতঃস্ফৃর্তভাবে ভেজো যায় (যেমন ইউরেনিয়াম, থোরিয়াম ইত্যাদি)। এই সমস্ত নিউক্লিয়াসকে বলা হয় তেজস্ক্রিয় নিউক্লিয়াস। তেজস্ক্রিয় নিউক্লিয়াস থেকে তিন ধরনের রশ্মি বা কণা নির্গত হয় যাদেরকে আলফা রশ্মি (α-rays), বিটা রশ্মি (β-rays) এবং গামা রশ্মি (γ-rays) বলা হয়।

কেজ স্ক্রিয় নিউ ক্রিয়াস থেকে যখন বিটা কণা নির্গত হয় তখন একই সঙ্গে শক্তিও নির্গত হয়। কিন্তু পরীক্ষালব্ধ ফলাফল থেকে দেখা যায় যে, নিউ ক্রিয়াস থেকে যে পরিমাণ শক্তি নির্গত হয় তা বিটা কণার গতিশক্তির চেয়ে বেশি। মাতাবিকতাবেই বিজ্ঞানীদের মাঝে প্রশ্ন ওঠে যে β-কণা যদি শক্তির সামান্য অংশ বহন করে, তবে অবশিষ্ট শক্তি যায় কোথায় ? 1930 সালে ড রিউ. পৌউলি (W. Pauli) প্রস্তাব করেন সে অবশিষ্ট শক্তি অন্য এক ধরনের কণা বহন করে যা β-কণার সজোই নির্গত হয়। এই কণাকে বলা হয় নিউট্রিনো (neutrino)। এই β-কণা এবং নিউট্রিনো কণার নির্গমন চত্র্থ একটি মৌলিক বলের কারণে ঘটে যাকে বলা হয় দুর্বল নিউক্লীয় বল। এই বল সবল নিউক্লীয় বা তড়িৎ-চুম্বকীয় বলের তুলনায় খুবই দুর্বল। এই বলের কারণে অনেক নিউ ক্রিয়াসের ভাজান প্রক্রিয়া সংঘটিত হয়।

চারটি মৌলিক বলের পরিমাপের আপেক্ষি<u>ক সবলতা তুলনা করলে দেখা যায় যে সবচেয়ে</u> শক্তিশালী বল হচ্ছে সবল নিউক্লীয় বল এবং সবচেয়ে দুর্বল হল মহার্ক্ষ বল।

সুবল এবং দুর্বল উভয় ধরনের নিউক্লীয় বলের ক্রিয়ার পাল্লা (range) খুবই স্বল্প পাল্লাবিশিষ্ট (short range)। এগুলো নিউক্লিয়াসের পৃষ্ঠের বাইরে ক্রিয়াশীল হয় না। পক্ষান্তরে মহাকর্ষ এবং তড়িৎ-চুম্বকীয় বলের পাল্লা প্রায় অসীম।

চারটি মৌলিক বলের আপেক্ষিক সবলতা সম্দর্শ্বে ধারণা লাতের জন্য যদি সবল নিউক্লীয় বলের মান 1 ধরা <u>হয় তবে দুর্বল নিউক্লীয় বল, তড়িৎ-চুম্বকীয় বল এবং মহাকর্ষ বলের আপেক্ষিক সবলতার মান হবে যথাক্রমে</u> 10⁻¹², 10⁻² ও 10⁻³⁹ । বলের একীভূতকরণ (Unification of Forces): চারটি মৌলিক বলের মধ্যে সম্পর্ক স্থাপনের জন্য বিজ্ঞানীরা বহু বছর ধরে চেন্টা চালিয়ে যাচ্ছেন। পূর্বে তড়িৎ বল এবং চৌম্বক বলকে ষতন্ত্র মৌলিক বল হিসেবে বিবেচনা করা হত। উনিশ শতকের অনেক বৈজ্ঞানিক পরীক্ষায় প্রাশ্ত ফলাফল পর্যালোচনা করলে দেখা যায় যে তড়িৎ বল এবং চৌম্বক বলের মধ্যে একটা সম্পর্ক থাকা যাতাবিক। জেম্স ক্লার্ক ম্যাক্সওয়েল (J. C. Maxwell) কর্তৃক আবিক্ষৃত তড়িৎ-চুম্বকীয় তন্ত্বের মাধ্যমে এই দুই বলের মধ্যে সম্পর্ক চূড়ান্তভাবে প্রতিষ্ঠিত হয়।

সালাম, ওয়াইনবার্গ এবং গ্লাসো অনেক গবেষণার মাধ্যমে বলের একীভূতকরণ তত্ত্বের অপরিসীম উন্নতি সাধন করেছেন। তাদের সন্মিলিত প্রচেস্টায় দুর্বল নিউক্লীয় বল এবং তড়িৎ চুম্বকীয় বলের মধ্যে মাত্র কয়েক বছর আগে সম্পর্ক স্থাপিত হয়েছে।

সুতরাং দেখা যাচ্ছে যে অতীতের তড়িৎ বল এবং চৌম্মক বল একীভূত হয়ে রূপ নিয়েছে তড়িৎ-চুম্মকীয় বলের এবং হালে দুর্বল নিউক্লীয় বল এবং তড়িৎ-চুম্মকীয় বলের একীভূত তত্ত্ব আবিচ্চৃত হয়েছে। বিজ্ঞানীদের একান্তিক প্রচেফ্টার ফলে হয়ত একদিন সকল মৌলিক বলের সমন্বয়ে মহা একীভূত ক্ষেত্রতত্ত্ব (Grand unified field theory) আবিষ্ফৃত হবে। তা হলে বিশ্বব্রন্ধান্ডের সৃষ্টি রহস্যের অনেক অজ্ঞানা তথ্য আবিষ্ণৃত হবে।

৪'৪ তরবেগ

Momentum

ভূরবেগের দুটি সংজ্ঞা দেয়া যায়, একটি ভাষাগত, অপরটি গাণিতিক। সংজ্ঞা দুটি নিমে বিবৃত হল **ঃ**

তাৰাগত সংজ্ঞা ঃ ভর ও বেগের সমনয়ে বস্তুতে যে ধর্মের উত্তব হয় তাকে বস্তুর তরবেগ বলে। একে p দারা প্রকাশ করা হয়। একটি গতিশীল বস্তুর তর এবং বেগের গুণফল দিয়ে তরবেগ পরিমাপ করা হয়। বস্তুর তর 'm' এবং বেগ 'v' হলে তরবেগ,

p = ভর × বেগ = mv এর অভিমুখ বেগের অভিমুখ। এটি একটি ভেক্টর বা দিক রাশি।

ভরবেগের ডেষ্টর রূপ ভরবেগ, p = mv

গাণিতিক সংজ্ঞা : কোন একটি বস্তুর ভর ও বেগের গুণফলকে তার ভরবেগ বলে। গতি জড়তা বস্তুর ভরবেগের সমানুপাতিক।

তরবেগের একক (Unit of momentum)

ভরবেগ পরিমাপ করা যায়। অতএব এটি একটি রাশি। সুতরাং এর একক রয়েছে।

এম. কে. এস. (M. K. S.) ও এস. আই. পম্বতিতে ভরবেগের একক কিলোগ্রাম-মিটার/সেকেন্ড।

ভরবেগের মাত্রা সমীকরণ (Dimension of momentum)

ভরবেগের সংজ্ঞা হতে এর মাত্রা সমীকরণ বের করা যায়। অতএব ভরবেগের মাত্রা সমীকরণ হল

 $[\overline{S} \overline{S} \overline{S}] = [\overline{S} \overline{S}] \times [\overline{C} \overline{S} \overline{S}] = [M] \times \begin{bmatrix} L \\ T \end{bmatrix} = [MLT^{-1}]$

৪'৫ নিউটনের গতিসুত্র Newton's laws of motion

8004. V.V.1

বিজ্ঞানী নিউটন বস্তুর ভর, বল ও গতির মধ্যে তিনটি সূত্র প্রদান করেন। সূত্রগুলো নিমে বিবৃত ও ব্যাখ্যা

করা হল।

৪'৫'১ নিউটনের প্রথম সূত্র

Newton's first law

বাইরে থেকে কোন বন বস্তুর উপর প্রযুক্ত না হলে অর্থাৎ বস্তুর উপর বিলৈর লন্দি শুন্য হলে স্থির বস্তু স্থির থাকে এবং গতিশীল বস্তু সমবের্গে সরলরেখার চলতে থাকে। এই সূত্রকে জড়তা এবং বলের সংজ্ঞা নির্দেশক সূত্র বলা হয়।

কাজ্জেই বল $\overrightarrow{F} = 0$ হলে, শেষ বেগ, $\overrightarrow{v} =$ আদি বেগ, $\overrightarrow{v_0}$

প্রথম সূত্রের ব্যাখ্যা :

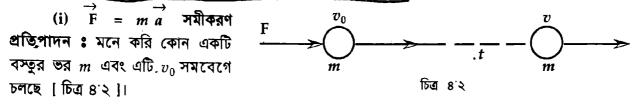
নিউটনের গতিসূত্রের প্রথম সূত্রটি একদিকে বস্তুর একটি মৌলিক বৈশিষ্ট্য আলোচনা করে। এই মৌলিক বৈশিষ্ট্যের নাম **জড়তা।** সূত্রটি অপর দিকে বলের সংজ্ঞা ও কার্য আলোচনা করে। এক কথায় প্রথম সূত্র হতে দুটি বিষয় জানা যায়—একটি জড়তা, অপরটি বলের সংজ্ঞা।

কোন বস্তৃই নিজ হতে তার স্ধির বা গতিশীল অবস্ধার পরিবর্তন ঘটাতে পারে না। যে যেমন ররেছে, তেমনি থাকতে চায়। বস্তৃর এই ধর্মকে জড়তা বলে। এজন্যে প্রথম সূত্রকে জড়তা সূত্র বলা হয়। জড়তা দুই প্রকার; যথা ঃ (ক) স্ধিতি জড়তা এবং (খ) গতি জড়তা

স্থির বস্তু সব সময় স্থির থাকতে চায়। এর নাম স্থিতি চ্নড়তা। আর গতিশীল বস্তু সর্বদাই সমবেগে একই সরলরেখায় চলতে চায়। এর নাম গতি জড়তা।

১২০

কাজেই স্ধির বস্তু যে ধর্মের দরুন স্ধির অবস্ধায় থাকতে চায় তাকে স্ধিতি জড়তা এবং গতিশীল বস্তু যে ধর্মের দরুন সমবেগে একই সরলরেখায় গতিশীল থাকতে চায় তাকে গতি জড়তা বলে।


প্রথম সূত্রের দ্বিতীয় অংশ অনুসারে বস্তুর স্ধির অবস্থা অথবা সমবেগ অবস্থার পরিবর্তন একমাত্র বাহ্যিক বল প্রয়োগেই সম্ভব। কাজেই এই অংশ হতে বলের আর একটি সংজ্ঞা পাওয়া যায়। যা বস্তুর স্ধির অথবা সমবেগ অবস্থার পরিবর্তন ঘটায় বা ঘটাতে প্রয়াস পায়, তাই বল।

৪'৫'২ নিউটনের দ্বিতীয় সূত্র Newton's second law

কোন একটি বস্তুর ভরবেগের পরিবর্তনের হার প্রযুক্ত (লম্বি) বলের সমানুপাতিক এবং বল যে দিকে প্রযুক্ত হয় ভরবেগের পরিবর্তন সেদিকে ঘটে। <u>এই সূত্রকে বল পরিমাপের ও প্রকৃতি নির্দেশে</u>র সূত্র বলা যায়।

দ্বিতীয় সূত্রের ব্যাখ্যা ঃ

এই সূত্রের সাহায্যে বলের অভিমুখ, পরিমাপ, গুণগত বৈশিষ্ট্য, ত্ব্বণের সঞ্চো বলের সম্পর্ক, একক বুল, বলের একক ও বলের নিরপেক্ষ নীতি সম্বন্ধে জানতে পারা যায়।

ধরি একটি ধ্রুব বল (constant force) F এই বস্তুর উপর তার গতির দিকে t সময় ধরে ক্রিয়া করল। ফলে বস্তুর বেগ পরিবর্তিত হল।

মনে করি t সময় পরে বস্তুর বেগ হল
$$\overrightarrow{v}$$

বস্তুর আদি ভরবেগ = ভর × আদিবেগ = $m \overrightarrow{v_0}$
বস্তুর শেষ ভরবেগ = ভর × শেষ বেগ = $m \overrightarrow{v}$
t সময়ে বস্তুর ভরবেগের পরিবর্তন = $m \overrightarrow{v} - m \overrightarrow{v_0}$
ভরবেগের পরিবর্তনের হার = $\frac{m \overrightarrow{v} - m \overrightarrow{v_0}}{t} = m \left(\frac{\overrightarrow{v_0} - \overrightarrow{v_0}}{t}\right)$
= $m \overrightarrow{a}$ [$\because \overrightarrow{a} = \frac{\overrightarrow{v} - \overrightarrow{v_0}}{t}$ = বলের ক্রিয়াজনিত সৃষ্ট ত্বুরণ]

এখন দ্বিতীয় সূত্র হতে জানি যে,

$$\vec{F} \propto \boldsymbol{\nabla}$$
 ভরবেগের পরিবর্তনের হার
 $\vec{F} \propto \boldsymbol{m} \vec{a}$
বা, $\vec{F} = k \boldsymbol{m} \vec{a}$ (1)

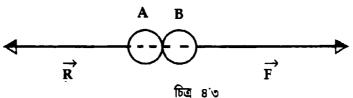
এখানে k সমানুপাতিক ধ্রবক। একে একক বলের সংজ্ঞার সাহায্যে দূর করা হবে।

একক বলের সংজ্ঞা ঃ একক তরের কোন বস্তুর উপর একক ত্বরণ সৃষ্টি করতে যে বল প্রযুক্ত হর, তাকে একক বল বলে। অর্থাৎ,

যখন m = 1 একক, $|\vec{a}| = 1$ একক, তখন $|\vec{F}| = 1$ একক।

উচ্চ মাধ্যমিক পদার্থবিজ্ঞান 255 BG & JEWEL সমীকরণ (1)-এ মানগুলো বসিয়ে আমরা পাই, $1 = k \cdot 1 \times 1$ k = 1সুতরাং একক বলের উপরোক্ত সংজ্ঞা অনুযায়ী আমরা পাই, $\overrightarrow{F} = ma$ (2)অর্ধাৎ 'বল = ভর 🗙 তুরণ এটিই হল বলের মান নির্দেশক সমীকরণ। (ii) ক্যালকুলাস পন্ধতিতে $\overrightarrow{\mathbf{F}} = \overrightarrow{ma}$ স্মীকরণ প্রতিপাদন যদি m ভরের কোন বস্তু \overrightarrow{v} বেগে গতিশীল হয়, তবে বস্তুটির ভরবেগ \overrightarrow{P} হবে, $\vec{P} = m\vec{v}$ সুতরাৎ, বস্তৃটির ভরবেগের পরিবর্তনের হার = $\frac{d \overrightarrow{P}}{dt} = \frac{d}{dt} (m \overrightarrow{v})$ এখন বস্তৃটির উপর F বল প্রযুক্ত হলে নিউটনের দিতীয় সূত্র অনুসারে, ----- $\vec{F} \propto \frac{d\vec{P}}{dt}$ $\propto \frac{d}{dt} (m\vec{v}) \propto m\frac{d}{dt}\vec{v} \quad [\because m - \underline{4}]$ $\propto m \overrightarrow{a}$ $\overrightarrow{a} = \frac{d \overrightarrow{v}}{dt}$ বা. $\vec{F}' = k m \vec{a}$ পূর্বের ন্যায় একক বলের সংজ্ঞা থেকে k=1 দেখানো যায়। সুতরাং, $\vec{F} = m\vec{a}$ উপরের আলোচনায় বস্তৃটির উপর একটিমাত্র প্রযুক্ত বল বিবেচনা করা হয়েছে। কিন্তু বস্তৃটির উপর \overrightarrow{F}_1 , \overrightarrow{F}_2 , \overrightarrow{F}_3 \overrightarrow{F}_n ইত্যাদি বল ক্রিয়াশীল হলে, বস্তুটির উপর ক্রিয়াশীল নিট বল $\sum \overrightarrow{F}$ হবে, $\Sigma \overrightarrow{F} = \overrightarrow{F_1} + \overrightarrow{F_2} + \overrightarrow{F_3} + \dots \overrightarrow{F_n}$ সেক্ষেত্রে নিউটনের গতির দিতীয় সূত্র হবে, $\Sigma \overrightarrow{F} = m\overrightarrow{a}$ তরণের দিক হবে নিট বলের দিক বরাবর। নিউটনের দ্বিতীয় সূত্র হতে প্রথম সূত্র প্রতিপাদন : নিউটনের দ্বিতীয় সূত্র অনুযায়ী আমরা পাই, $\overrightarrow{F} = \overrightarrow{ma}$, এখানে \overrightarrow{F} হল প্রযুক্ত বল, 'm' বস্তুর ভর এবং \overrightarrow{a} হল বলের জন্য সৃষ্ট ত্বরণ। যখন $\overrightarrow{F} = 0$; অর্থাৎ বস্তৃটিতে বাইরে থেকে কোন বল প্রযুক্ত না হয়, তখন $\overrightarrow{a} = 0$ হয়। [কেননা m = 0 হতে পারে না]। সুতরাং, যখন $\overrightarrow{F} = 0$ তখন $\overrightarrow{a} = 0$ Г $\frac{dv}{dt}$

বা,
$$\frac{dv}{dt} = 0$$
 $\overrightarrow{a} =$


সুতরাৎ বাইরে থেকে বস্তুর উপর বল প্রযুক্ত না হলে বস্তুর বেগের পরিবর্তন হয় না ; অর্ধাৎ বস্তুর অবস্থার কোন পরিবর্তন হয় না। বস্তু যদি গতিশীল থাকে তবে সমবেগে সরলরেখায় গতিশীল থাকবে। অথবা বস্তৃটি স্থির থাকলে, স্থিরই থাকবে। এটাই নিউটনের প্রথম সূত্র।

৪'৫'৩ নিউটনের ভৃতীয় সূত্র Newton's third law

প্রত্যেক ক্রিয়ার একটি সমান ও বিপরীত প্রতিক্রিয়া রয়েছে। অর্থাৎ প্রত্যেক ক্রিয়ামূলক বলের একটি সমান ও বিপরীত প্রতিক্রিয়ামূলক বল রয়েছে। এই সূত্রকে বস্তৃসমূহের মধ্যে বলের পারস্পরিক ক্রিয়ার সূত্র বলা যায়। কাচ্ছেই ক্রিয়ামূলক বল \overrightarrow{F} ও প্রতিক্রিয়ামূলক বল \overrightarrow{R} হলে, $\overrightarrow{F} = -\overrightarrow{R}$

ভৃতীয় সূত্রের ব্যাখ্যা :

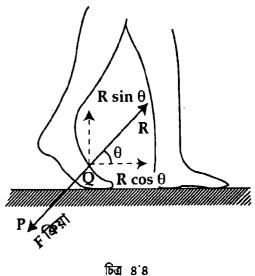
নিউটনের তৃতীয় সূত্রানুসারে যদি একটি বস্তু A অপর একটি বস্তু B-এর উপর বল প্রয়োগ করে, তা হলে B বস্তুণ্ড A বস্তুর উপর সমান ও বিপরীতমুখী বল প্রয়োগ করবে [চিত্র ৪ ৩]।

A-এর দ্বারা প্রযুক্ত বল হল ক্রিয়া এবং B-এর দ্বারা প্রযুক্ত বল হল প্রতিক্রিয়া। কান্ডেই ক্রিয়া \overrightarrow{F} ও প্রতিক্রিয়া \overrightarrow{R} হলে, $\overrightarrow{F} = -\overrightarrow{R}$

ক্রিয়া ও প্রতিক্রিয়া দুটি ভিন্ন বস্তুর উপর প্রযুক্ত হয় ! ক্রিয়া না থাকলে প্রতিক্রিয়াও থাকে না। ক্রিয়া বা প্রতিক্রিয়া বলের কার্যকাল t হলে $\overrightarrow{F} \times t = -\overrightarrow{R} \times t$ (3)

অর্ধাৎ , ক্রিয়াজনিত বলের যাত = -- প্রতিক্রিয়াজনিত বলের ঘাত।

এটি স্ধির বা গতিশীল যে-কোন বস্তুর ক্ষেত্রে সমভাবে প্রযোজ্য]


ভৃতীয় সূত্রের করেকটি উদাহরণ ঃ

(i) টে**বিলের উপর বই থাকা :** একটি টেবিলের উপর বই রাখা হলে বই-এর ওজন টেবিলের উপর লম্মভাবে চাপ প্রয়োগ করবে। এটিই ক্রিয়া। নিউটনের গতির তৃতীয় সূত্রানুস্নারে টেবিল বই-এর উপ্প্রর উপরের দিকে সমপরিমাণ বল প্রয়োগ করবে। এটি হল প্রতিক্রিয়া। ক্রিয়া এবং প্রতিক্রিয়া সমান ও বিপরীত হওয়ায় বইটি টেবিলের উপর সাম্যাবস্থায় থাকে।

(ii) ৰন্দ্মুক হতে গুলি হোঁড়া ঃ যখন বন্দুক হতে শিকারী গুলি হোঁড়ে তখন সে পেছন দিকে একটা ধাৰা অনুতব করে। প্রাথমিক অবস্ধায় বন্দুক ও গুলি উভয়েরই বেগ শূন্য থাকে। ফলে তাদের মিলিত ভরবেগ শূন্য থাকে। গুলি হোঁড়া হলে তা সামনের দিকে একটা ভরবেগ প্রান্ত হয়। নিউটনের তৃতীয় সূত্রানুসারে বন্দুকটি গুলির সমান ও বিপরীত ভরবেগ প্রান্ত হবে অর্ধাৎ বন্দুকটি সমান ভরবেগে পেছনের দিকে যাবে এবং শিকারী পেছন দিকে ধাৰা অনুতব করবে।

(iii) নৌকা থেকে লাফ দেয়া ঃ যখন আরোহী নৌকা হতে নদী<u>র পাড়ে রাফিয়ে</u> পড়ে, তখন নৌকাটিকে পেছনে হুটে যেতে দেখা যায়। আরোহী নৌকার উপর যে ব<u>ল প্রয়োগ</u>্র্ফরে তাতে নৌকাটি পেছনে যায়। নিউটিনের তৃতীয় সূত্রানুসারে নৌকাও আরোহীর উপর সমান ও বিপরীতমুখী বল প্রয়োগ করে। ফলে আরোহী তীরে পৌঁছায়।

(iv) পায়ে হাঁটা ঃ আমরা যখন পায়ে হেঁটে চলি তখন সামনের পা মাটির উপর লম্বভাবে নিচের দিকে একটা বল প্রয়োগ করে। এর নাম ক্রিয়া। মাটিও সামনের পায়ের তলার উপর সমান ও বিপরীতমুখী বল প্রয়োগ করে। এর নাম প্রতিক্রিয়া। ক্রিয়া এবং প্রতিক্রিয়া সমান এবং বিপরীত হওয়ায় সামনের পা স্থির থাকে। কিন্তু পেছনের পা মাটির উপর Q বিন্দুতে তির্থকভাবে \overrightarrow{F} পরিমাণ বল QP বরাবর ক্রিয়া করে [চিত্র ৪ ৪] । এই বল অনুভূমিকের সাথে θ কোণ উৎপন্ন করে। নিউটনের তৃতীয় সূত্রানুসারে মাটি পায়ের তলার উপর সমান ও বিপরীতমুখী প্রতিক্রিয়া বল প্রয়োগ করে। মনে করি প্রতিক্রিয়া

বল \overrightarrow{R} । ফলে $\overrightarrow{R} = \overrightarrow{F}$ । প্রতিক্রিয়া বলের অনুভূমিক অংশক $R \cos \theta$ আমাদেরকে সামনের দিকে এগিয়ে নেয় এবং উল্লম্ব অংশক $R \sin \theta$ শরীরের ওজন বহন করতে সাহায্য করে।

কিন্তু পিচ্ছিল পথে চলা শক্ত হয়। কারণ পথ পিচ্ছিল হলে মাটির উপর যথেষ্ট বল প্রয়োগ করা পায়ের পক্ষে সম্ভব হয় না। ফলে পায়ের উপর মাটির প্রতিক্রিয়া বল এবং সাথে সাথে প্রতিক্রিয়া বলের জনুভূমিক অংশক কম হয়। এজন্যে পিচ্ছিল পথে চলা শক্ত হয়। মার্বেলের তৈরি মেঝে, বালুকাময় রাস্তায় হাঁটতে একই সমস্যা।

(v) ব্যাট-বলে আঘাত ঃ যখন ব্যাট দিয়ে বলকে আঘাত করা হয়, তখন বলের উপর ব্যাটের ক্রিয়ার ফলে বলটি সামনে যায় এবং ব্যাটের উপর বলের সমান ও বিপরীতমুখী প্রতিক্রিয়ার ফলে ব্যাটও খানিকটা পেছনে সরে যায়।

৪⁄৬ বলের একক ও মাত্রা

Units and dimension of force

আমরা জানি, একক ভরের উপর প্রযুক্ত হয়ে যে বল একক ত্বরণ সৃষ্টি করে, তাকে একক বল বলে। এম. কে.এস. (MKS) ও এস. আই. (SI) পন্ধতিতে বলের একক নিউটন (Newton,সংক্ষেপে N)। সংজ্ঞা : যে বল 1 kg ভরবিশিষ্ট কোন একটি বস্তৃতে প্রযুক্ত হয়ে 1 ms⁻² ত্বরণ সৃষ্টি করে তাকে 1

Newton বলে।

ĺ

 $\therefore 1 \underline{N} = 1 \, \underline{kg} \times 1 \, \underline{ms}^{-2}$

ব্যাখ্যা : 10 নিউটন (N) বল কথাটির অর্ধ কি ?

জবাবে বলা হবে এটি ঐ বল যা 1 কিলোগ্রাম (kg) ভরের উপর ক্রিয়া করে 10 মিটার/ সে.² (ms⁻²) ত্বরণ সৃষ্টি করে। অথবা এটি ঐ বল যা 10 কিলোগ্রাম ভরের উপর ক্রিয়া করে 1 মিটার/সে.² ত্বরণ সৃষ্টি করে। অতএব বলের মাত্রা সমীকরণ নিম্নরূপ ঃ

বল] = [ভর] × [ত্বরণ]
=
$$[M] \times \left[\frac{L}{T^2}\right]$$

= $[MLT^{-2}]$

৪'৭ ঘাতবল ও বলের ঘাত

Impulsive force and impulse of a force

সংজ্ঞা ঃ খুব কম সময়ের জন্য প্রচন্ড বল ক্রিয়া করলে তাকে ঘাতবল বলে। বল এবং বলের ক্রিয়াকালের গুণফলকে বলের ঘাত বা শুধু ঘাত বলে। একে J দ্বারা সূচিত করা হয়। এটি একটি ভেষ্টর রাশি।

ব্যাখ্যা ঃ ধরা যাক, কোন বস্তুর উপর বল \overrightarrow{F} খুব অল্প সময় t ধরে ক্রিয়া করে। সংজ্ঞানুসারে বলের ঘাত,

$$\overrightarrow{J} = \overrightarrow{F} t = m\overrightarrow{a} t$$
(4)

ক্যালকুলাসের সাহায্যে \vec{J} -এর প্রকাশ : যদি বল \vec{F} কোন বস্তৃর উপর t_1 হতে t_2 পর্যন্ত অত্যন্ত অল সময়ের জন্য ক্রিয়াশীল হয়, তবে ক্যালকুলাসের সাহায্যে লেখা যায়,

$$\overrightarrow{J} = \int_{t_{1'}}^{t_2} \overrightarrow{F} dt$$
(5)

ক্রিয়াশীল বল $\overline{\mathbf{F}}$ ধ্রুব হলে সমীকরণ (5)-কে লেখা যায়,-

$$\overrightarrow{J} = \overrightarrow{F} \int_{t_1}^{t_2} dt = \overrightarrow{F} [t]_{t_1}^{t_2} = \overrightarrow{F} (t_2 - t_1).$$

$$= \overrightarrow{F} t \text{ under } t_2 - t_1 = t \text{ tail exists}$$
(6)

ঘাতবলের উদাহরণ ঃ ব্যাট দিয়ে ক্রিকেট বলে আঘাত করা, বৃহৎ ইমারত প্রস্তুতের সময় স্টীল হাতুড়ী দিয়ে মাটিতে পিন পোতা, ক্যারামের স্ট্রাইকার দিয়ে গুটিতে আঘাত করা, ট্রেনে ট্রেনে সংঘর্ষ, কামান হতে গুলি ছোঁড়া, বোমা বিস্ফোরণ হওয়া ইত্যাদি ঘাতবলের উদাহরণ। কেননা এসব ক্ষেত্রে বলের ক্রিয়াকাল খুব অঙ্গ, কিস্তু প্রযুক্ত বলের মান প্রচন্ড। অবশ্য ঘাতবলের বেগের পরিবর্তন হয় হঠাৎ ও যথেষ্ট, কিস্তু সূরণ তেমন হয় না বলা যায়।

বলের ঘাত ও ভরবেগের মধ্যে সম্পর্ক

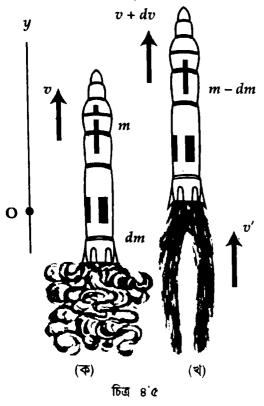
Relation between impulse and momentum

ভেক্টরের সাহায্যে সম্পর্ক প্রতিষ্ঠা

আমরা জানি,

আবার,
$$\overrightarrow{F} = \overrightarrow{p} \overrightarrow{a}$$

 $\overrightarrow{I} = \overrightarrow{F} t$


ঘাতবল অত্যস্ত অল্প সময়ের জন্য ক্রিয়াশীল বলে ত্বুরণ ও গড় ত্বুরণ সমান ধরা যায়। এখন বঁস্তুটির আদিবেগ $\overrightarrow{v_0}$ এবং শেষ বেগ \overrightarrow{v} হলে আমরা পাই,

$$J = m\left(\frac{\overrightarrow{v} - \overrightarrow{v_0}}{t}\right)t$$

= $m\left(\overrightarrow{v} - \overrightarrow{v_0}\right)$
বা, $\overrightarrow{J} = m\overrightarrow{v} - m\overrightarrow{v_0}$ (7)
অর্থাৎ, বলের ঘাত = তরবেগের পরিবর্তন।
ঘাতের একক ও মাত্রা সমীকরণ

সমীকরণ (7) হতে দেখা যায় যে, বলের ঘাত বা ঘাতের একক ও মাত্রা ভববেগের একক ও মাত্রা<u>র জনর</u>প। সুতরাং ঘাতের একক kgms⁻¹ এবং এর মাত্রা সমীকরণ [MLT⁻¹]।

৪'৮ রকেটের গতি Motion of a rocket

কৃত্রিম উপগ্রহের বহুল ব্যবহার অত্যাধুনিক যোগাযোগ ব্যবস্থার উন্নয়নে এবং মহাকাশ গবেষণায় বিরাট অবদান রেখেছে। এর মূলে রয়েছে রকেট চালনার উত্তরোত্তর উন্নৃতি সাধন। পিছনের <u>সরু পথ দিয়ে</u> উচ্চ চাপের

গ্যাস অত্যন্ত জোরে নির্গমনের ফলে রকেট সম্মুখের দিকে ধাবিত হয়। দ্রুত গতির এই উষ্ণ গ্যাস রকেটের মধ্যি জ্বালানি দহনে উৎপন্ন হয়। ছিদ্র পর্যে গ্যাস নির্গমন হল ক্রিয়া এবং এর ফলে যে প্রতিক্রিয়া সৃষ্টি হয় তা রকেটকে গ্যাস প্রবাহের বিপরীত দিকে চালিত করে।

যদিও গ্যাস হান্ধা কিন্তু উচ্চ বেগের কারণে নির্গত গ্যাসের ভরবেগ খুব বেশি হয়। ভরবেগের সংরক্ষণ নীতি অনুযায়ী রকেটও সমান কিন্তু বিপরীতমুখী ভরবেগ প্রান্ত হয় এবং উচ্চবেগে উপরে ওঠে যায়।

জ্বালানি হিসেবে রকেটে সাধারণত তরল হাইড্রোজ্বেন এবং দহনের জন্য তরল অক্সিজেন থাকে। বিশেষ প্রক্রিয়ায় এবং নিয়ন্ত্রিত হারে তরল হাইড্রোজেন ও অক্সিজেনকে দহন প্রকোষ্ঠে প্রবেশ করানো হয়। জ্বালানির দহন ক্রিয়ার ফলে উৎপন্ন উত্তপ্ত উচ্চ চাপের গ্যাস অত্যস্ত উচ্চ বেগে রকেটের নিচের দিকে নির্গমন পথ দিয়ে বেরিয়ে আসে। [চিত্র ৪'৫]

নিম্নে রকেটের গতির সমীকরণ প্রতিপাদন করা হল—

চিত্র (ক)-এ রকেট উৎক্ষেপণের পরমুহূর্তের অবস্থা দেখান হয়েছে। মনে করি তখন রকেটের ভর (m) (জ্বাদানিসহ) এবং এর ঊর্ধ্বমুখী বেগ v। সুতরাং রকেটের ভরবেগ = mv

মনে করি ক্ষুদ্র সময় অবকাশে dm পরিমাণ গ্যাস রকেটের নিচের ছিদ্রপথে নির্গত হয়েছে। চিত্র (খ)-এ t + dt সময় পরের অবস্থা দেখান হয়েছে। ধরা যাক রকেটের সাপেক্ষে নির্গত গ্যাসের নিম্নমুখী বেগ v_r।

এখন পৃথিবীর সাপেক্ষে নির্গত গ্যাসের বেগ (v') হবে,

 $\vec{v'} = \vec{v} - \vec{v_r}$ | চিত্রে উধ্বমুখী বেগ ধনাত্মক ধরা হয়েছে, সুতরাং নিম্নমুখী বেগ v_r খণাত্মক হবে]

এবং এর ভরবেগ,

$$dm \overrightarrow{v}' = dm (\overrightarrow{v} - \overrightarrow{v_r})$$

এখন dt সময় অবকাশে dm পরিমাণ গ্যাস নির্গত হওয়ার ফলে রকেটের ভর কমে (m — dm) হয় এবং বেগ বৃষ্ণি পেয়ে v + dv হয়। সুতরাং dt সময় অবকাশে রকেটের ভরবেগ হয়,

$$(m - dm) (v + dv)$$

অতএব, $t + dt$ সময়ে
মোট ভরবেগ = রকেটের ভরবেগ + নির্গত গ্যাসের ভরবেগ
= $(m - dm) (v + dv) + dm (v - v_r)$
= $mv + mdv - vdm - dmdv + vdm - v_r dm$

 $= mv + mdv - v_r dm$ [dmdv $\frac{1}{2}$ $\frac{1}{2$

(8)

এখন আমরা ঘাত-ভরবেগ সূত্র (impulse-momentum theorem) প্রয়োগ করতে পারি। এই সূত্র অনুসারে কোন সিস্টেমের (system) উপর ক্রিয়াশীল লখ্দি (resultant) বল এবং বলের ক্রিয়াকালের গুণফল সিস্টেমের ভরবেগের পরিবর্তনের সমান হয়।

এখন রকেট সিস্টেমের উপর একমাত্র বহিস্থ ক্রিয়াশীল বল হল রকেটের ওজন অর্থাৎ ---mg। g-এর দিক নিম্নমুখী হওয়ায় ঋণ চিহ্ন ব্যবহার করা হয়েছে। এখানে বাতাসের বাধা উপেক্ষা করা হয়েছে।

্র জতএব dt সময়ে ভরবেগের পরিবর্তন বা পার্থক্য হবে t এবং t+dt সময়ে ভরবেগের পার্থক্যের সমান। জর্মাৎ

$$dt$$
 সময়ে ভরবৈগের পরিবর্তন = $(m - dm)(v + dv) + dm(v - v_r) - mv$
= $mv + mdv - v_r dm - mv$ [সমীকরণ (8) ব্যবহার করে]
= $mdv - v_r dm$

এখন দাত-ভরবেগ সূত্র প্রয়োগ করে আমরা পাই,

$$F \times dt = mdv - v_r dm$$

- mgdt = mdv - v_r dm
$$dv = dm = mdv - v_r dm$$
 [:: F = - mg]

বা, $-mg = m\frac{dv}{dt} - v_r \frac{dm}{dt}$ বা, $m\frac{dv}{dt} = v_r \frac{dm}{dt} - mg$

ভেষ্টর নিয়মে লিখলে,

$$m\left(\frac{d\overrightarrow{v}}{dt}\right) = \overrightarrow{v_r}\left(\frac{dm}{dt}\right) - m\overrightarrow{g}$$

$$(9)$$

কিন্তু, $\frac{d v}{dt}$ হল রকেটের ত্বরণ। সুতরাং বামপক্ষ রকেটের উপরে লম্ধি বল নির্দেশ করে। ডানপক্ষের প্রথম রাশি হল রকেটের ঘাতবল এবং দ্বিতীয় রাশি রকেটের ওজন। অর্থাৎ রকেটের উপরে ক্রিয়াশীল লম্ধি বল রকেটের ঘাতবল ও ওজনের পার্থক্যের সমান।

সমীকরণ (10)-এর উভয় পক্ষ m দ্বারা ভাগ করে, আমরা রকেটের তাৎক্ষণিক ত্বরণ 'a' পেতে পারি। অর্থাৎ

$$\overrightarrow{a} = \frac{d\overrightarrow{v}}{dt} = \frac{\overrightarrow{v_r}}{m} \left(\frac{dm}{dt}\right) - \overrightarrow{g} \quad ...$$
(10)

সমীৰূৱণ (10) থেকে নিম্নোক্ত সিম্বান্তসমূহে উপনীত হওয়া যায় ঃ

১) গ্যাসের নির্গমনের বেগ v. বেশি হলে রকেটের তরণ বেশি হবে।

সি গ্রাস নির্গমনের হার $\left(\frac{dm}{dt}\right)$ বেশি হলে ত্বরণ বেশি হবে।

ন্দ্র্চা রকেটের ভর 'm' কম হলে তুরণ বাড়বে।

(8) পৃথিবী পৃষ্ঠ হতে রকেট যত উপরে উঠবে 'g'-এর মান তত কমতে থাকবে। ফলে রকেটের ত্বরণ বাড়তে থাকবে।

বিঃ দ্রঃ মহাশূন্যে g = 0 হলে, রকেটের ত্বরণ $\overrightarrow{a} = \frac{v_r}{m} \left(\frac{dm}{dt} \right)$ হবে।]

৪'৯ ভরবেগের নিত্যতা সূত্র বা ভরবেগের সংরক্ষণ বিধি Principle of conservation of momentum

নিউটনের গতির তৃতীয় সূত্র হতে আমরা একটি নতুন নীতি সম্পর্কে ধারণা পাই। এর নাম ভরবেগের মিত্যতা সূত্র। সূত্রটি নিচে বিবৃত হল ঃ

সূত্র ঃ দুই বা ততোধিক বস্তুতে ক্রিয়া ও প্রতিক্রিয়া ছাড়া জন্য কোন ব্যহ্যিক বল ক্রিয়াশীল না হলে যে-কোন একদিকে ঐ বস্তুগুলোর মোট রৈখিক তরবেগের কোন পরিবর্তন হবে না। এর নাম ভরবেগের নিত্যতা সূত্র। একে রৈখিক তরবেগের সংরক্ষণ বিধিও বলা হয়ে থাকে।

<u>এটি ছোট-বড় পার্ধিব বা মহাজাগতিক সব বস্তুর ক্ষেত্রে সমভাবে প্রযোজ্য।</u>

নিউটনের তৃতীয় গতি সূত্র অনুসরণে সূত্রটির গাণিতিক প্রমাণ নিচে দেয়া হল ঃ

মনে করি কোন একটি সরল রেখায় m_1 এবর্ং m_2 ভরের দুটি বস্তুকণা যথাক্রমে $\vec{u_1} \otimes \vec{u_2}$ বেগে একই দিকে চলছে [চিত্র ৪ ৬]। এখানে $\vec{u_1} > \vec{u_2}$ । কোন এক সময়ে প্রথম বস্তুকণাটি পেছনের দিক হতে দ্বিতীয় বস্তুকণাটিকে ধারুা দিল এবং এর পর বস্তুকণা দুটি একই সরলরেখায় ও একই দিকে যথাক্রমে $\vec{v_1} \otimes \vec{v_2}$ বেগে চলতে লাগল।

นก করি ধার্জাজনিত ক্রিয়া ও প্রতিক্রিয়ার কার্যকাল t । তা হলে বস্তুকণা দুটির আদি ভরবেগের সমষ্টি = $m_1 \vec{u_1} + m_2 \vec{u_2}$ বস্তুকণা দুটির শেষ ভরবেগের সমষ্টি = $m_1 \vec{v_1} + m_2 \vec{v_2}$ ভরবেগের নিত্যতা সূত্রানুসারে প্রমাণ করতে হবে যে, $m_1 \vec{u_1} + m_2 \vec{u_2} = m_1 \vec{v_1} + m_2 \vec{v_2}$ প্রমাণ :

প্রথম বস্তু কণার ভরবেগের পরিবর্তনের হার
$$= \frac{m_1 \overrightarrow{v_1} - m_1 \overrightarrow{u_1}}{t}$$

= প্রতিক্রিয়া বল = $\overrightarrow{F_1}$

= প্রথম বস্তুকণার উপর দ্বিতীয় বস্তুকণার প্রতিক্রিয়া বল।

দ্বিতীয় বস্তুকণার ভরবেগের পরিবর্তনের হার

$$=\frac{m_2\vec{v_2} - m_2\vec{u_2}}{t} = \text{Gaut} \quad \text{and} \quad \vec{F_2}$$

= দ্বিতীয় বস্তৃকণার উপর প্রথম বস্তৃকণার প্রযুক্ত বল।

কিন্তু বস্তৃকণা দুটির ভরবেগের পরিবর্তনের হার (অর্থাৎ ক্রিয়া বল ও প্রতিক্রিয়া বল) সমান ও বিপরীত। অর্ধাৎ

বস্তুকণা দুটির আদি ভরবেগের সমষ্টি = বস্তুকণা দুটির শেষ ভরবেগের সমষ্টি।

অধাৎ
$$\sum m \overrightarrow{v} =$$
ধ্ব ভেটর। (11)

সুতরাং দুটি বস্তু<u>র মধ্যে ক্রিয়া ও প্রতিক্রিয়াজনিত বলের</u> ফলে মোট তরবেগের <u>কোন পরিবর্তন হ</u>য় না, একটি বস্তু যে পরিমাণ ভরবেগ হারায়, অপরটি ঠিক সমপরিমাণ ভরবেগ লাভ করে অর্ধাৎ ধার্কার আগে ও পরে মোট তরবেগ একই থাকে। অতএব তরবেগের নিত্যতা সূত্রটি প্রমাণিত হল।

উল্লেখ্য : ক্রিয়া বল $\overrightarrow{F_2}$ এবং প্রতিক্রিয়া বল $\overrightarrow{F_1}$ -এর কার্যকাল সমান। কাজেই ঘাত দুটি সমান ও বিপরীত অর্থাৎ

$$\overrightarrow{F_2 \times t} = -\overrightarrow{F_1 \times t}$$
, united to organization (12)

গতিসূত্র

বইঘর.কম

৪'১০ ভরবেগের নিত্যতা সূত্রের উদাহরণ

Examples of principle of conservation of momentum

বাস্তব অভিজ্ঞতা হতে আমরা ভরবেগের নিত্যতা সূত্রের কয়েকটি উদাহরণ দিতে পারি ঃ

(১) বন্দুকের পশ্চাৎ বেগ : কোন একটি বন্দুক হতে গুলি ছুঁড়লে তা পেছনের দিকে ধার্ক্বা দেয়। ভরবেগের নিত্যতা সূত্রের সাহায্যে এর ব্যাখ্যা প্রদান করা যায়।

গুলি ছোঁড়ার আগে বন্দুক ও গুলি উভয়েই স্থির থাকে। অতএব বন্দুকের ভরবেগ শূন্য এবং গুলির ভরবেগ শূন্য। সুতরাং তাদের মোট আদি ভরবেগ শূন্য। গুলি ছোঁড়ার পর বারুদের বিস্ফোরণের ফলে গুলি একটি বেগে সামনের দিকে যায়। ফলে এটি সামনের দিকে একটি ভরবেগ প্রাশ্ত হয়। ভরবেগের নিত্যতা সূত্র অনুসারে গুলি ছোঁড়ার পরেও তাদের মোট ভরবেগ শূন্য হবে। যদি তাই হয়, তবে বন্দুককেও গুলির সমান ও বিপরীতমুখী একটি ভরবেগ লাভ করতে হবে। ফলে বন্দুককে অবশ্যই পেছনের দিকে গতিপ্রাশ্ত হতে হবে।

মনে করি M ভরের একটি বন্দুক হতে m ভরের একটি গুলি \overrightarrow{v} বেগে বের হয়ে গেল। মনে করি গুলি ছোঁড়ার পর বন্দুকের বেগ = \overrightarrow{V}

গুলি ছোঁড়ার আগে তাদের মোট ভরবেগ = 0

গুলি ছোঁড়ার পরে তাদের মোট ভরবেগ

= বন্দুকের ভরবেগ + গুলির ভরবেগ

 $= \overrightarrow{MV} + \overrightarrow{mv}$

কিন্তু ভরবেগের নিত্যতা সূত্র অনুসারে আগের ও পরের ভরবেগ সমান।

$$\overrightarrow{MV} + \overrightarrow{mv} = 0$$

$$\overrightarrow{T}, \quad \overrightarrow{mv} = -\overrightarrow{MV} = M(-\overrightarrow{V})$$
(13)

অর্থাৎ, গুলির ভর × গুলির বেগ = বন্দুকের ভর × বন্দুকের পন্চাৎ বেগ।

উপরের সমীকরণ হতে আরো প্রমাণিত হয় যে, গুলি ছোঁড়ার পরে গুলি এবং বন্দুকের ভরবেগ সমান ও বিপরীতমুখী। এ থেকে নিউটনের গতি বিষয়ক তৃতীয় সূত্র প্রমাণিত হয়।

উপরের সমীকরণ অনুসারে,

$$\frac{\overrightarrow{v}}{|\overrightarrow{v}|} = \frac{M}{m} > 1$$
$$|\overrightarrow{v}|$$
$$|\overrightarrow{v}| > |\overrightarrow{v}|$$

অর্থাৎ, গুলির বেগ > বন্দুকের পশ্চাৎ বেগ।

(২) নৌকা হতে লাফ : নদীর ঘাটে ভাসমান নৌকা হতে লাফ দিয়ে সামনের দিকে তীরে নামলে নৌকাটি পেছনে সরে যায়। একেও ভরবেগের নিত্যতা সূত্রের সাহায্যে ব্যাখ্যা করা যায়।

মনে করি নদীর ঘাট্টে ভাসমান নৌকা স্থির অবস্থায় রয়েছে এবং একজন মানুষ নৌকার উপর রসে আছেন . ধরি মানুষের ভর = m এবং নৌকার ভর = M

লাফ দেয়ার পূর্বে নৌকা এবং মানুষের বেগ শূন্য হওয়ায় তাদের মোট ভরবেগ

= মানুষের ভরবেগ + নৌকার ভরবেগ

 $= m_{..} \times 0 + \mathbf{M} \times 0 = 0$ (*[-1])

মনে করি মানুষটি \overrightarrow{v} বেগে নৌকা হতে সামনের দিকে তীরে লাফিয়ে পড়ল। অতএব সে সামনের দিকে একটি ভরবেগ প্রাশ্ত হবে। কিন্তু লাফ দেয়ার পরে ক্রিয়া ও প্রতিক্রিয়ার দরুন মানুষ ও নৌকার মোট ভরবেগ অবশ্যই শূন্য হতে হবে।

সুতরাং নৌকার বেগ মানুষের বেগের বিপরীতমুখী হবে। নচেৎ তাদের মোট ভরবেগ শূন্য হবে না।

মন্দৈ করি নৌকার বেগ = \overrightarrow{V}

লাফ দেয়ার পরে তাদের মোট ভরবেগ = $\vec{m v} + \vec{MV}$

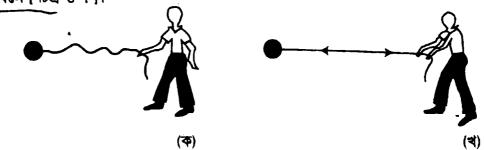
ভরবেগের নিত্যতা সূত্র অনুসারে লাফ দেয়ার আগের ও পরের মোট ভরবেগ সমান।

$$\overrightarrow{mv} + \overrightarrow{MV} = 0$$

বা,
$$mv = -MV'$$

বা, $mv = M(-V)$

অর্ধাৎ, মানুষের তর × মানুষের বেগ = নৌকার তর × নৌকার পশ্চাৎ বেগ।


উল্লেখ্য : যে সব ধাৰায় বা সংঘৰ্ষে আদি গতিশক্তির সমষ্টি শেষ গতিশক্তির সমষ্টির সমান সে সব ধাৰাকে স্বিতিস্থাপক ধাৰা বলে। <u>সাধারণত স</u>ব ধার্কা বা সংঘর্ষই অস্বিতিস্থাপক।

৪'১১ বিভিন্ন প্রকার ক্রিয়া ও প্রতিক্রিয়া

Different types of actions and reactions

ক্রিয়া ও প্রতিক্রিয়ার ফলে বিভিন্ন প্রকার বলের সৃষ্টি হয়। বলের প্রকৃতি অনুসারে তাদের বিভিন্ন প্রকার নামকরণ করা হয়। নিচে ক্রিয়া-প্রতিক্রিয়াজ্বনিত কয়েকটি বলের উল্লেখ করা হল ঃ

(i) টান (Pull) ঃ <u>কোন দুঢ় বা নমনীয় বস্তুর উপর দৈর্ঘ্য বরাবর বল প্রয়োগ করে টানলে প্রযুক্ত</u> বলকে টান বলে [চিত্র ৪ ৭]।

(ii) টেনসন (Tension) : একটি লোহার বন B-কে সুতার সাহায্যে ঝুলালে বনের ওচ্চন সুতাকে নিচের দিকে টানে [চিত্র ৪'৮]। এটাই ক্রিয়া। এর নাম টেনসন। নিউটনের তৃতীয় সূত্র অনুসারে সুতা লোহার বলটিকে সমান বলে উপরের দিকে টানে। এর নাম প্রতিক্রিয়া। সুতার মধ্যে যে প্রতিক্রিয়া বলের উদ্ভব হল এর মান লোহার বলের ওজনের সমান। এই উদ্ভূত বলকে টেনসন বা টান বলে। এমনিভাবে, একটি বস্তু আপর একটি বস্তুর সাথে যুক্ত থেকে যে বল সুক্তি করে তাকে টেনসন বা টান বলে। যদি লোহার ওজন \overrightarrow{W} এবং টান \overrightarrow{T} হয়, তবে স্থিরাবস্থায়, $\overrightarrow{W} = \overrightarrow{T}$

(iii) ধার্কা (Push) ই কোন বস্তুর উপর সামনের দিকে বল প্রয়োগ করাকে ধার্কা বলে। বাইরে থেকে দরজা খোলার সময় আমরা যে বল প্রয়োগ করে থাকি তার নাম ধার্কা।

(iv) **আকর্ষণ বা বিকর্ষণ** (Attraction or Repulsion) **ঃ** এই দুটি বল দূর হতে ক্রিয়া করে। সমজাতীয় দুটি চুম্মক মেরু বা চার্জ পরস্পরকে বিকর্ষণ করে এবং বিপরীতধর্মী দুটি চুম্মক মেরু বা চার্জ পরস্পরকে আকর্ষণ করে।

(v) **ঘর্ষণ** (Friction) ঃ একটি বস্তু অন্য একটি বস্তুর উপর দিয়ে গতিশীল হলে বা গতিশীল হতে চাইলে , তাদের মিলন তলে গতিরোধমূলক একটি বল উৎপন্ন হয়। এই বলকে ঘর্ষণ বলে।

মাটির উপর দিয়ে একটি ফুটবলকে গড়িয়ে দিলে নিউটনের প্রথম সূত্রানুযায়ী এটি চিরকাল চলার কথা। কিন্তু তা না হয়ে ফুটবলটি থেমে যায়। কারণ মাটির ঘর্ষণ ফুটবলের গতি রোধ করে।

৪'১২ বলের ভারসাম্য বা সাম্যাবস্থা Equilibrium of forces

যখন কোন বস্তৃর উপরে ক্রিয়ারত দুই বা ততোধিক বল প্রয়োগের ফলে বস্তৃটি স্থির অবস্থায় থাকে কিংবা সমবেগে সরলরেখায় চলে তখন বস্তৃটি সাম্যাবস্থায় রয়েছে বলা হয়। অন্যভাবে বলা যেতে পারে বস্তৃটির উপর প্রযুক্ত লখি বল F শূন্য হলে বস্তৃটির অবস্থার কোন পরিবর্তন হবে না ; অর্ধাৎ বস্তৃটি স্থির অবস্থায় থাকলে ঐ অবস্থায়ই থাকবে কিংবা চলমান হলে সরলরেখায় সমবেগে চলমান থাকবে। সূতরাং বলের ভারসাম্য বা সাম্যাবস্থার নিম্নরূপ সংজ্ঞা দেয়া যেতে পারে।

সংজ্ঞা ঃ কোন বিন্দু বা বস্তৃতে দুই বা ততোধিক বদ ক্রিয়া করায় উক্ত বিন্দু বা বস্তৃতে বলের লব্দি যদি শূন্য হয়, তবে তাকে বলের তারসাম্য বলে।

ব্যাখ্যা ঃ একটি বস্তুর উপরে অনেকগুলো বল বিভিন্ন দিক থেকে ক্রিয়াশীল হয়, তবে সংজ্ঞানুসারে বস্তুর উপরে ক্রিয়ারত সকল বলের ভেষ্টর সমষ্টি শূন্য হলে বস্তুটি সাম্যাবস্থায় থাকবে। গাণিতিকভাবে লেখা যায়,

 $\overrightarrow{\Sigma F} = \overrightarrow{F_1} + \overrightarrow{F_2} + \overrightarrow{F_3} + = 0$ (14)

 $\Sigma \overrightarrow{F}$ ক্রিয়ারত সকল বলের ভেষ্টর সমষ্টি বুঝায়। এখন কোন একটি ভেষ্টর শূন্য হবে যদি এর প্রতিটি লম্দ উপাংশ আলাদাভাবে শূন্য হয়। ত্রিমাত্রিক তলে $\Sigma \overrightarrow{F}$ এর তিনটি লম্দ উপাংশ যথা ΣF_x , ΣF_y ও ΣF_z রয়েছে। সাম্যাবস্থার শর্ত অনুসারে প্রতিটি লম্দ উপাংশ শূন্য হবে। অর্থাৎ

$\Sigma F_x = F_{1x} + F_{2x} + F_{3x} +$		= 0	(15)
$\Sigma F_{y} = F_{1y} + F_{2y} + F_{3y} +$	e a	= 0	(16)
$\Sigma F_z = F_{1z} + F_{2z} + F_{3z} +$		= 0	(17)

জন্যভাবে বলা যেতে পারে একটি বস্তু সাম্যাবস্থায় বা সুস্থির থাকবে যদি এর ত্বরণ শূন্য হয়। ব্যাখ্যা ঃ নিউটনের ধিতীয় সূত্র থেকে আমরা পাই,

$$\Sigma \overrightarrow{F} = \Sigma ma$$

এখন ত্বর্গ \overrightarrow{a} শূন্য হলে অর্ধাৎ বস্তুটির ত্বরণ না থাকলে $\Sigma F = 0$ হবে।

আমরা জ্ঞানি বল একটি ভেষ্টর রাশি। সুতরাং ভেষ্টরসমূহের লব্দি নির্ণয়ের সূত্রসমূহ (যেমন সাধারণ সূত্র, ত্রিভূজ্ব সূত্র, বহুভূচ্চ সূত্র, সামান্তরিক সূত্র ইত্যাদি) বলসমূহের লব্দি নির্ণয়ের ক্ষেত্রেও প্রযোজ্য।

বলের ভারসাম্য বা বস্তুর সাম্যাবস্থা প্রমাণের জন্য নিম্নে কয়েকটি উদাহরণ ও সূত্র আলোচনা করা হবে।

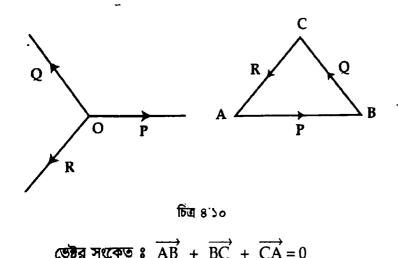
১। দুটি বলের ভারসাম্য ঃ চিত্র ৪·৯-এ দুটি সমান এবং বিপরীত বল একটি বস্তুর উপরে ক্রিয়াশীল দেখান হয়েছে।

চিত্র ৪ ৯ (ক) 🔑 দুটি সমান বল F বস্তুটির দুই বিপরীত পৃষ্ঠে বিপরীত দিকে ক্রিয়াশীল। অর্থাৎ বল দুটি একই রেখায় বিপরীত মুখে ক্রিয়া করে। ফলে লব্দি শূন্য। সুতরাৎ বলদ্বয় বস্তুটির সাম্যাবস্থা সৃষ্টি করে।

চিত্র ৪ ৯ (খ)-এ বল দুটি সমান এবং বিপরীতমুখী। ক্রিয়াবিন্দু একই সরলরেখায় না হওয়ায় বস্তৃটির কোন সরণ না ঘটলেও ঘূর্ণনের সৃষ্টি হবে। ফলে বস্তৃটি সাম্যাবস্থায় থাকবে না।

সুতরাং, যখন দুটি বল ক্রিয়া করে তখন সাম্যাবস্থার শর্ত হল :

১। বল দুটি সমান ও বিপরীতমুখী হতে হবে।


২। বল দুটি একই সরলরেখায় ক্রিয়া করবে।

২। তিনটি অসমাস্তরাল বলের ভারসাম্য ঃ তিনটি অসমান্তরাল বলের ভারসাম্য প্রমাণের জন্য আমরা বলের ত্রিভূচ্জ সূত্র ও লামীর সূত্র (Lami's theorem) আলোচনা করব।

বল ত্রিভুজ সূত্র

"এক বিন্দুতে ক্রিয়াশীল ডিনটি বল এমন হয় যে ডাদেরকে পরিমাণে ও দিকে একটি ত্রিভুজের ক্রমানুসারে ডিনটি বাহু দ্বারা প্রকাশ করা যায়, তবে এরা সাম্যাবস্থার সৃষ্টি করে।"

O বিন্দুতে ক্রিয়ারত তিনটি বল \overrightarrow{P} , \overrightarrow{Q} , \overrightarrow{R} -কে পরিমাণ ও দিক উভয়ার্থে ABC ত্রিভুজ্জের যথাক্রমে AB, BC এবং CA বাহু দ্বারা সূচিত করা হয়েছে [চিত্র ৪'১০]। প্রমাণ করতে হবে যে, বলগুলো স্থির অবস্থায় রয়েছে।

ABC ত্রিভূব্দের একটি ক্রমে AB, BC বাহু দারা প্রকাশিত এক বিন্দুগামী দুটি বল P, Q-এর লম্বি বিপরীতক্রমে তৃতীয় বাহু AC দারা প্রকাশিত। এই লম্বি AC এবং CA দারা প্রকাশিত তৃতীয় বল R পরস্পর সমান কিন্তু বিপরীতমুখী হওয়ায় এরা একে অপরকে নিষ্ক্রিয় করে। অতএব P, Q, R বল তিনটি সাম্যাবস্থার সৃষ্টি করে।

$$\overrightarrow{P} + \overrightarrow{Q} + \overrightarrow{R} = 0$$
 (18)

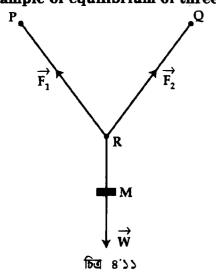
বা,
$$\Sigma \vec{F} = 0$$

(19)

নমার উপপাদ্য (Lami's theorem) ঃ উপরের বর্ণনানুযায়ী যেহেতু $\overrightarrow{\mathrm{P}}, \overrightarrow{\mathrm{Q}}$ ও $\overrightarrow{\mathrm{R}}$ বল তিনটির লম্বি শৃন্য, সুতরাং ত্রিভুঙ্জের নিয়ম অনুযায়ী আমরা পাই,

$$\frac{P}{\sin \angle ACB} = \frac{Q}{\sin \angle CAB} = \frac{R}{\sin \angle ABC}$$
(20)

অর্থাৎ $P \propto sin \angle ACB$; $Q \propto sin \angle CAB$; এবং $R \propto sin \angle ABC \mid$ কাজেই, এক বিন্দুতে ক্রিয়ারত তিনটি বল যদি সাম্যাবস্থায় থাকে, তবে প্রত্যেকটি বল অপর বল দুটির অন্তর্ভুক্ত কোণের সাইনের (sine) সমানুগাতিক হবে। একে লামীর উপপাদ্য বলে।


উপরের আলোচনা থেকে তিনটি অসমান্তরাল বলের সাম্যাবস্থার জন্য আমরা নিম্নোক্ত শর্তগুলি পাই—

১। বলগুলো একই সমতলে অবস্থিত থাকবে;

২। বলগুলো একই বিন্দুতে ভিন্ন ভিন্ন দিকে ক্রিয়া করবে ;

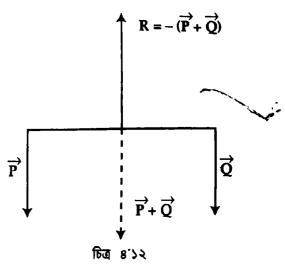
- ৩। যে কোন একটি বল অপর দুটির লম্বির সমান ও বিপরীতমুখী হবে।
- ৪। বলের ত্রিভুচ্জ সূত্র ও লামীর উপপাদ্য প্রযোজ্য হবে।

তিনটি অসমান্তরাল বলের সাম্যাবস্থার উদাহরণ 91 Example of equilibrium of three non-parallel forces

মনে করি একটি দেয়াল আছে। উক্ত দেয়ালের মাঝামাঝি স্থান বরাবর অনুভূমিকভাবে দুটি পেরেক লাগাই। মনে করি পেরেক দুটি P ও Q । পেরেক দুটির সার্থে একটি লম্মা সুতা PRQ বাঁধি। R বিন্দুতে একটি বস্তৃ_M ঝুলাই [চিত্র ৪'১১]। ধরি এর ওজ্জন $\stackrel{
ightarrow}{W}$ । সুতাটির RP ও RQ জংশে উপর দিকে সুতার টান বা ঊর্ধ্বমুখী বল ক্রিয়া করবে। মনে করি বল দুটি যথাক্রমে $\overrightarrow{F_1}$ এবং $\overrightarrow{F_2}$ । এক্ষেত্রে $\overrightarrow{F_1}$, $\overrightarrow{F_2}$ এবং \overrightarrow{W} বল তিনটি সাম্যাবস্থা প্রতিষ্ঠা করবে।

৪। তিনটি সমান্তরাল বলের ভারসাম্য বা সাম্যাবস্থা

নিম্নলিখিত শর্তগুলো পূরণ করলে তিনটি সমান্তরাল বল সাম্যাবস্থা প্রতিষ্ঠা করবে।


(১) বল তিনটি একই সমতলে ক্রিয়া করবে।

(২) বল তিনটি পরস্পর সমান্তরাল হতে হবে।

(৩) যে কোন একটি বল অপর দুটি বলের লম্বির সমান ও বিপরীতমখী হতে হবে।

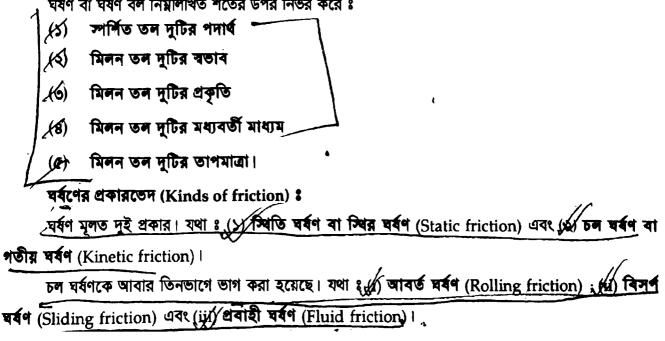
BG & JEWEL

প্রমাণ : চিত্র ৪'১২-এ তিনটি সমান্তরাল বল P, Q ও R একটি বস্তৃর উপর ক্রিয়া করছে। এই তিনটি বলের ক্রিয়ার ফলে বস্তৃটি সাম্যাবস্থায় আছে। \overrightarrow{P} ও \overrightarrow{Q} -এর লন্দি $(\overrightarrow{P} + \overrightarrow{Q})$ ডট্ ডট্ চিহ্নের সরলরেখা দ্বারা দেখান হয়েছে। উপরের শর্ত অনুসারে তৃতীয় বল \overrightarrow{R} লন্দি $(\overrightarrow{P} + \overrightarrow{Q})$ -এর সমান ও বিপরীতমুখী হবে এবং এই দুটি বল একই সরলরেখায় ক্রিয়াশীল হবে।

জতএব, R =
$$-(\overrightarrow{P} + \overrightarrow{Q})$$

বা, $\overrightarrow{P} + \overrightarrow{Q} + \overrightarrow{R} = 0$

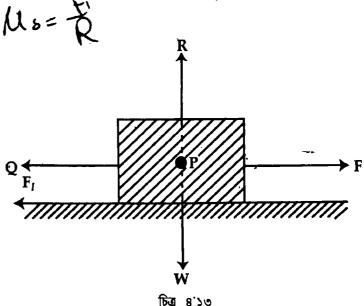
(21)


উদাহরণ ঃ দাঁড়িপাল্লা দিয়ে ওজন করার সময় দুই পাল্লার একটিতে বস্তুর ওজন ও অপরটিতে বাটখারার ওজন এবং নিক্তি দন্ডের মাঝখানে উর্ধ্বমুখী বল সাম্যাবস্থায় থাকে। এই তিনটি বল পরস্পর সমান্তরাল।

৪'১৩ ঘৰ্ষণ

সংজ্ঞা ঃ একটি বস্তু অন্য একটি বস্তুর উপর দিয়ে গডিশীল হলে বা গতিশীল হতে চাইলে তাদের মিলনতলে গতিরোধমূলক একটি বল উৎপনু হয় যা গতিকে ব্যাহত করে। এই বলকে ঘর্ষণ বা ঘর্ষণ বল বলে।

ব্যাখ্যা : একটি বস্তুকে মেঝের উপর দিয়ে গড়িয়ে দিলে বস্তুটি খানিকটা এগিয়ে গিয়ে থেমে যায়। এর কারণ বস্তুর কোন তলই পুরোপুরি মসৃণ নয়। তা খানিকটা উঁচু-নিচু। যখন একটি বস্তু অপর একটি বস্তুর সংস্পর্শে থেকে চলবার চেফ্টা করে তখন একটির উঁচু অংশ অপরটির নিচু অংশে ঢুকে যায় এবং তাদের মিলনতলে গতিরোধমূলক একটি বল উৎপন্ন হয়। এই গতিরোধমূলক বলকেই ঘর্ষণ বলে।


ম্বর্<u>ষণ বলের নির্জেরতা (Dependence of friction)</u> মর্যণ বা ঘর্ষণ বল নিমলিখিত শর্তের উপর নির্জর করে ঃ

(১) স্থিতি ঘর্ষণ (Static friction)

পরস্যরের স্পর্শে বা সংস্পর্শে থেকে একটি বস্তু যতক্ষণ অপরটির উপর স্থির থাকে, তত্তক্ষণ তাদের মিলন তলে যে ঘর্ষণ ক্রিয়া করে, তাকে স্থিতি ঘর্ষণ বা স্থির-স্থার্ষণ বলে। এর মান শূন্য থেকে একটি নির্দিষ্ট মান পর্যন্ত হতে পারে।

ব্যাখ্যা : ধরা যাক, একটি টেবিলের উপর একটি কাঠের রক (block) রাখা আছে। রকটির ওজন 📈 টেবিলের উপর খাড়া নিচের দিকে ক্রিয়া করছে। নিউটনের তৃতীয় সূত্র অনুসারে টেবিলও রকটির তারকেন্দ্র P বরাবর W-এর সমান ও বিপরীতমুখী বল R প্রয়োগ করছে। এই দুটি বল একই সরলরেখায় ক্রিয়াশীল, ফলে রকটি স্বির অবস্থায় থাকবে। এখন টেবিলের সমান্তরালে রকটির উপর F বল প্রয়োগ করলে যদি রকটিতে কোন গতির সঞ্চার না

হয়, তবে বুঝতে হবে যে ঐ বলের বিপরীতে সমান মানের একটি বল ব্লকটিতে ক্রিয়া করছে। এ বলটিই স্থিতি ঘর্ষণ।

এবার প্রযুক্ত বল F -কে আস্তে আস্তে বাড়ানো হলে দেখা যাবে F -এর একটি নির্দিষ্ট মানের জন্য ব্লকটির মধ্যে গতির সঞ্চার হওয়ার উপক্রম হয়েছে। ঐ নির্দিষ্ট মানের চেয়ে প্রযুক্ত বলের মান বেশি হলেই ব্লকটিতে গতির সৃষ্টি হবে। F -এর যে মানের জন্য ব্লকটিতে গতির সঞ্চার হওয়ার উপক্রম হয়, ঐ অবস্থায় ঘর্ষণ বলের মানকে সীমান্ত ঘর্ষণ বলে।

সুতরাৎ সীমান্ত ঘর্ষণের নিম্নরূপ সংজ্ঞা দেয়া যায় ঃ

সংজ্ঞা ঃ পরস্পরের সংস্পর্শে অবস্থিত দুটি বস্তুর একটি অপরটির উপর দিয়ে গডিশীল হওয়ার আগের মুহুর্তে তার গতিরোধমূলক যে বলের সৃষ্টি হয় তাকে সীমান্ত ঘর্ষণ বলে। অন্যডাবে বলা যায়, স্থিতি ঘর্ষণের সর্বোচ্চ মান্ই সীমান্ত ঘর্ষণ। একে F_i দ্বারা সূচিত করা হয়।

স্ধিতি ধর্ষণের সূত্র

Laws of static friction

স্পিতি ঘর্ষণ কতকগুলো নিয়ম মেনে চলে। এদেরকৈ স্পিতি ঘর্ষণের সূত্র বলে। সূত্রগুলো নিচে দেয়া হল ঃ

(১) স্বিতি ন্বর্ষণ বস্তুর গতির বিপরীত দিকে ক্রিয়া করে।

(২) স্বিষ্ঠি ঘর্ষণের পরিমাণ স্বয়ং সামঞ্চস্যপূর্ণ অর্ধাৎ গতি রোধের নিমিন্তে যে পরিমাণ বলের প্রয়োজন ঠিক সে পরিমাণ বলই ক্রিয়া করে।

- (৩) সীমান্দ ঘর্ষণ সর্বদা অভিলম্ব প্রতিক্রিয়ার সমানুপাতিক।
- (৪) ঘর্ষপের মান স্পর্শতলের প্রকৃতি ও অবস্থার উপর নির্তর করে।
- (৫) ঘর্ষণ বলের মান স্পর্শতলের ক্ষেত্রফলের উপর নির্ভর করে না।

ন্ধিতি ঘৰ্ষণ গুণাজ্ঞ Coefficient of static friction

সংজ্ঞা ঃ পরস্পরের সংস্পর্শে অবস্থিত দূটি বস্তুর সীমাস্থ ঘর্ষণ এবং অভিলম্ব প্রতিক্রিয়ার অনুপাতকে স্থিতি ঘর্ষণ গুণাজ্ঞ বলে। একে μ দিয়ে প্রকাশ করা হয়।

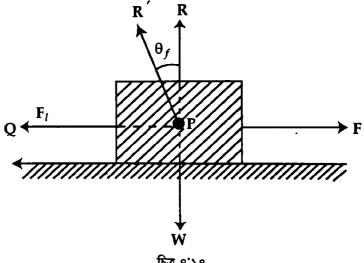
ব্যাখ্যা ঃ মনে করি সীমাস্থ ঘর্ষণ =
$$\overrightarrow{F_l}$$
 এবং অভিলম্ব প্রতিক্রিয়া = \overrightarrow{R} ।
স্থিতি ঘর্ষণ গুণাজ্ঞ = $\frac{\overline{N}}{\overline{M}}$ মাস্থ ঘর্ষণ
অভিলম্ব প্রতিক্রিয়া
 $\overrightarrow{A}, \mu_s = \frac{F_l}{R} = ধ্ব সংখ্যা ।$ (22)

এর কোন একক নেই। এটি একটি সংখ্যা জ্ঞাপক রাশি।

ঘর্ষণ কোণ (Angle of friction) ঃ সীমাস্থ ঘর্ষণের ক্ষেত্রে অভিলম্ম প্রতিক্রিয়া ও সীমাস্থ ঘর্ষণের লম্বিকে 'লম্বি প্রতিক্রিয়া' বলে। এই লম্বি প্রতিক্রিয়া ও অভিলম্ব প্রতিক্রিয়ার মধ্যবর্তী কোণকে ঘর্ষণ কোণ বলে।

সংজ্ঞা ঃ সীমাস্থ ঘর্ষণের ক্বেত্রে ঘর্ষণ বল এবং অভিলম্ব প্রতিক্রিয়া লম্বির সাথে অভিলম্ব প্রতিক্রিয়া যে কোণ উৎপন্ন করে তাকে ঘর্ষণ কোণ বলে। একে θ_f দ্বারা সূচিত করা হয়।

চিত্র ৪⁻১৪-এ সীমাস্থ ঘর্ষণ F_l এবং অভিলম্ব প্রতিক্রিয়া R-এর লম্বি প্রতিক্রিয়া R'। সংজ্ঞানুসারে, লম্বি প্রতিক্রিয়া R' এবং অভিলম্ব প্রতিক্রিয়া R-এর মধ্যবর্তী কোণ θ_f হচ্ছে ঘর্ষণ কোণ।


ঘর্ষণ কোণের মান নির্ণয় ঃ চিত্র হতে

 $\frac{R'\sin\theta_f}{R'\cos\theta_f} = \frac{F_I}{R}$

বা, $\theta_f = \tan^{-1} (F_I/R)$

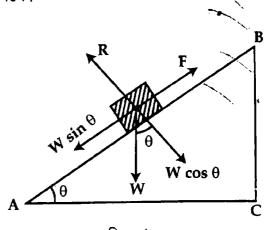
বা, $\tan \theta_f = \frac{F_l}{R}$

সমীকরণ (24)-কে (23) দ্বারা ভাগ করে পাই,

(23)

(26)

(25)


আবার, ঘর্ষণ গুণাজ্ঞ $\mu_s = \frac{F_l}{R}$ $\therefore \theta_f = \tan^{-1} \mu_s$ (27) এটিই হল ঘর্ষণ গুণাজ্ঞ এবং ঘর্ষণ কোণের রাশ্মিলা।

গতিসূত্র বইঘর.কম

স্বিতি বা নিশ্চল কোণ (Angle of repose) \$

সংজ্ঞা ঃ অনুভূমিকের সাথে নত তলের যে কোণের জন্য নত তলের উপরিস্থিত কোন বস্তু গতিশীল হওয়ার উপক্রম হয়, সেই কোণকে স্থিতি বা নিশ্চল কোণ বলে।

ব্যাখা : চিত্র ৪'১৫-এ একটি বস্তু AB নত তলের সাথে θ কোণে রাখা আছে। মনে করি বস্তুটির ওজন \overrightarrow{W} , ঘর্ষণ বল \overrightarrow{F} এবং প্রতিক্রিয়া বল \overrightarrow{R} । বস্তুর ওজন \overrightarrow{W} -কে দুটি উপাংশে বিভাজিত করা যায়। নত তলের লম্মদিকে W-এর উপাংশ W $\cos \theta$ এবং নত তল বরাবর উপাংশ W $\sin \theta$ । W $\cos \theta$ প্রতিক্রিয়া বল R-এর বিপরীত দিকে এবং W $\sin \theta$ ঘর্ষণ বল F-এর বিপরীত দিকে ক্রিয়াশীল। বস্তুটি যেহেতু স্থিতি অবস্থায় আছে,

অতএব, W sin θ = F

এখন θ কোণ বাড়তে থাকলে $W \sin \theta$ বৃদ্ধি পাবে। ফলে সমীকরণ (i) অনুসারে F-এর মান বাজুবে। ধরা যাক, একটি নির্দিষ্ট কোণ θ_s -এর জন্য বস্তৃটি গতিশীল হওয়ার উপক্রম হয়, অর্থাৎ যখন $\theta = \theta_s$, তখন $F = F_l + \theta_s$ কোণই স্থিতি বা নিন্চল কোণ। সুতরাং সমীকরণ (i) হতে পাই,

$$W \sin \theta_s = F_l$$
 (ii)

এ অবস্থায়
$$W \cos \theta_s = R$$
 (iii)

সমীকরণ (ii)-কে সমীকরণ (iii) দ্বারা ভাগ করে পাই,

$$\tan \theta_s = \frac{F_l}{R} = \mu_s$$

$$\exists I, \quad \theta_s = \tan^{-1}\left(\frac{F_l}{R}\right) = \tan^{-1}(\mu_s)$$
(28)

সমীকরণ (27) ও (28) হতে পাই,

অর্থা ঘর্ষণ কোণ ও স্থিতি বা নিন্চল কোণ পরস্পর সমান।

উল্লেখ্য : স্থিতি কোণ শুধুমাত্র নত তলের ক্ষেত্রে প্রযোজ্য। কিন্তু ঘর্ষণ কোণ সমতল ও নত তল উভয়ের ক্ষেত্রেই প্রযোজ্য।

৪·১৪ চল ঘৰ্ষণ বা গতীয় ঘৰ্ষণ Kinetic friction

সংজ্ঞা : পরস্পরের স্পর্শে বা সংস্পর্শে থেকে একটি বস্তু অপরটির উপর দিয়ে চলাচল করার সময় যে ঘর্ষপের সৃষ্টি হয়, তাকে চল ঘর্ষণ বা গতীয় ঘর্ষণ বলে। চল ঘর্ষণ বা গতীয় ঘর্ষণ সীমাঁস্থ স্থিতি ঘর্ষণের চেয়ে কম।

গতীয় ঘর্ষণ বা চল ঘর্ষণের সূত্র

Laws of kinetic friction

গতীয় দর্যণ বা চল ঘর্ষণ কতকগুলো সূত্র মেনে চলে। এদেরকে চল ঘর্ষণের সূত্র বলা হয়। সূত্রগুলো নিম্নরূপ ঃ (৫) চল ঘর্ষণ সর্বদা বস্তুর গতির বিপরীত দিকে ক্রিয়া করে।

২০ একের সাপেক্ষে অন্যের আপেক্ষিক গতির পরিবর্তন না হলে চল ঘর্ষণ অভি<u>লম্ব প্রতি</u>ক্রিয়ার সমানুপাতিক

্র প্রে চল ঘর্ষণ মিলন তলের ক্ষেত্রফলের উপর নির্তর করে না, মিলন তল দুটির প্রকৃতি ও অবস্থার উপর নির্তর করে।

🔨 🖉 বেগ বেশি না হলে চল ঘর্ষণ বেগের উপর নির্ভর করে না।

চল ঘৰ্ষণ বা গতীয় ঘৰ্ষণ গুণাজ্ঞ

Co-efficient of kinetic friction

সংজ্ঞা ঃ গতীয় ঘর্ষণ বা চল ঘর্ষণ ও অভিলম্ব প্রতিক্রিয়ার অনুপাতকে গতীয় ঘর্ষণ বা চল ঘর্ষণ গুণাজ্ঞ বলে। একে µ_k দিয়ে প্রকাশ করা হয়।

ব্যাখ্যা : মনে করি একটি তলের উপর দিয়ে একটি বস্তু সমবেগে চলছে। এ অবস্থায় ঘর্ষণ বল F_k এবং অভিলম্ম প্রতিক্রিয়া \hat{R} ।

গতীয় ঘৰ্ষণ বা চল ঘৰ্ষণ গুণাজ্ঞ =
$$\frac{100$$
 য় ঘৰ্ষণ বা চল ঘৰ্ষণ বল
অভিলম্ম প্ৰতিক্ৰিয়া
বা $\mu_k = \frac{F_k}{R} = একটি ধ্ৰবক।
তথ্য কোন অকক নেই। এটি একটি সংখ্যা জ্ঞাপক রাশি।
(29)$

গতীয় বা চল ঘর্ষণ কোণ : গতীয় ঘর্ষণ ও অর্ভিলম্ব প্রতিক্রিয়ার লন্দির সাথে অভিলম্ব প্রতিক্রিয়া যে কোণ উৎপনু করে তাকে চল ঘর্ষণ কোণ বলে।

একে θ_k দ্বারা সূচিত করা হয়।

স্থিতি ঘর্ষণ কোণের সমীকরণ (সমীকরণ 27) ন্যায় দেখান যায়,

$$\theta_k = \tan^{-1} \mu_k$$

বস্তুর ত্বুরণ ও ঘর্ষণ গুণাচ্চ্বের মধ্যে সম্পর্ক

মনে করি, M ও N দুটি বস্তু। স্থির বস্তু M এর উপর N বস্তুটি গতিশীল রয়েছে [চিত্র ৪'১৬]। ধরা যাক, N বস্তুর ভর =m এবং এর উপর প্রযুক্ত বল = P ও N বস্তুর ত্বরণ = a। **R**

গতীয় ঘর্ষণ গুণাজ্ঞ μ_k হলে সমীকরণ (29) অনুসারে গতীয় ঘর্ষণ বল,

 $F_k = \mu_K R$, এখানে R অভিলম্ব প্রতিক্রিয়া।

সুতরাং, N বস্তৃটির উপর কার্যকর বল, F = প্রযুক্ত বল — গতীয় ঘর্ষণ বল। অর্ধাৎ, F = P — μ_k R (31) আবার, F = ma

and,
$$F = ma$$

$$a = \frac{F}{m} = \frac{P - \mu_k R}{m}$$
(32)

(30)

প) গতীয় ঘর্ষণ গুণাজ্ঞ
$$\mu_k$$
 বেশি হলে ত্বরণ কম হবে।
পি) $P - \mu_K R = 0$, অর্থাৎ $P = \mu_k R$ হলে, ত্বরণ শূন্য হবে। এক্ষেত্রে বস্তুটি সমবেগে চলবে।

৪·১৫ আবর্ত ঘর্ষণ ও প্রবাহী ঘর্ষণ

Rolling friction and fluid friction

আবর্ড ঘর্ষণ ঃ যখন কোন বস্তু অপর কোন তলের উপর দিয়ে গড়িয়ে চলে, তখন যে ঘর্ষণের সৃষ্টি হয় তাকে আবর্ড ঘর্ষণ বলে।

বইঘর.কম

উদাহরণ ঃ ফুটবল, মার্বেল গুটি, লন-রোলার ইত্যাদি মাটির উপর দিয়ে চলার সময় এই ধরনের ঘর্ষণ সৃষ্টি হয়।

প্রবাহী ঘর্ষণ ঃ যদি কোন তরল বা বায়বীয় পদার্ধের গডিপথে একটি স্থির বস্তু থাকে কিংবা কোন গডিনীল বস্তু তরল বা বায়বীয় পদার্থের ডেতর দিয়ে যেতে চায় তখন যে ঘর্ষণের সৃষ্টি হয়, তাকে প্রবাহী ঘর্ষণ বলে।

উদাহরণ ঃ স্থির তলের উপর দিয়ে তরল বা বায়বীয় পদার্থ প্রবাহিত হবার সময়, নদীতে নৌকা চলার সময় পানি ও নৌকার মধ্যে এ ধরনের ঘর্ষণ সৃষ্টি হয়।

৪·১৬ ঘর্ষণের সুবিধা এবং অসুবিধা

Advantages and disadvantages of friction

কোন কোন ক্ষেত্রে ঘর্ষণজ্বনিত বল আমাদের উপকারে আসে এবং কোন কোন ক্ষেত্রে অসুবিধা সৃষ্টি করে। এখন আমরা ঘর্ষণের সুবিধা ও অসুবিধা আলোচনা করব।

সুবিধা : ঘর্ষণজনিত বাধার জন্যে রাস্তায় হাঁটা, কাঠে ফ্রু পুঁতে রাখা, বেন্টের সাহায্যে যন্ত্রপাতি ঘুরানো, দেয়ালে ঠেস দিয়ে মাটিতে মই রাখা, দেয়াশলাই হতে আগুন পাওয়া, সেতারে ঝংকার তোলা, যাঁতায় গম পেষা সম্ভব হয়। কোন কোন ক্ষেত্রে যেমন উঁচু রাস্তায় বালি ছড়িয়ে যানবাহন উঠাতে, ব্রেক চেপে গাড়ি থামাতে ঘর্ষণ বল বাড়ানোর প্রয়োজন হয়ে পড়ে।

অসুবিধা : যন্ত্রপাতির পরস্পরের সংস্পর্শে অবস্থিত বিভিন্ন অংশের ঘর্ষণের ফলে প্রচুর তাপের সৃষ্টি হয় এবং যন্ত্রপাতি দ্রুত ক্ষয়প্রান্ত হয়। এ কারণে যন্ত্রপাতির পরস্পর সংস্পর্শে অবস্থিত গতিশীল অংশে সুবিধামত পিচ্ছিল তরল পদার্থ অথবা ধাতব পদার্থের গুঁড়া, অথবা গোলাকার ধাতব পদার্থ ব্যবহার করে ঘর্ষণ বল কমিয়ে দেয়া হয়। সাইকেলের চাকায় যে বর্তুলাকার ধাতব পদার্থ থাকে তা অক্ষদণ্ড ও চাকার মধ্যকার ঘর্ষণ বল কমিয়ে দেয় এবং যন্ত্রকে দীর্ঘায়ু করে।

স্মরণিকা

জড়তা ঃ প্রত্যেক বস্তৃই এর নিজের স্থিতি বা গতিজনিত অবস্থাকে অক্ষুণ্ন রাখার চেম্টা করে। বস্তুর এই ধর্মকে জড়তা বলে। জড়তা দু প্রকার, যথা—(১) স্থিতি জড়তা ও (২) গতি জড়তা।

বলঃ বল সেই বাহ্যিক কারণ যা কোন একটি বস্তুর স্থিতি বা গতিশীল অবস্থার পরিবর্তন ঘটায় বা পরিবর্তন ঘটাতে চায়। বল = ভর × ত্বুরণ।

মৌলিক বল ঃ যে বল মূল বা অকৃত্রিম তার নাম মৌলিক বল। মৌলিক বল চার ধরনের। যথা—(১) মহাকর্ষ বল (২) তড়িৎ–চুম্বকীয় বল ; ৩) সবল নিউক্লীয় বল ও (৪) দুর্বল নিউক্লীয় বল।

ভরবেগ ঃ কোন একটি বস্তুর তর ও বেগের গুণফল দ্বারা তরবেগ মাপা হয়।

ভরবেগের নিত্যতা সূত্র ঃ দুই বা তভোধিক বস্তুকে ক্রিয়া ও প্রতিক্রিয়া ছাড়া অন্য কোন বাহ্যিক বল ক্রিয়াশীল না হলে যে কোন একদিকে এ বস্তুগুলোর মোট রৈখিক ভরবেগের কোন পরিবর্তন হবে না। এটিই ভরবেগের নিত্যতা সূত্র।

নিউটনের গতিসূত্র :

১ম সূত্র ঃ বাইরে থেকে কোন বল বস্তুর উপর প্রযুক্ত না হলে স্থির বস্তু স্থির থাকে এবং গতিশীল বস্তু সমবেগে সরলরেখায় চলতে থাকে।

২য় সূত্র ঃ কোন একটি বস্তুর ভরবেগের পরিবর্তনের হার প্রযুক্ত (লব্ধি) বলের সমানুপাতিক এবং বল যে দিকে প্রযুক্ত হয় ভরবেগের পরিবর্তন সেদিকে ঘটে।

ওয় সূত্র ঃ প্রত্যেক ক্রিয়ার একটি সমান ও বিপরীত প্রতিক্রিয়া আছে।

ষাত বল ঃ খুব কম সময়ের জন্য প্রচন্ড বল ক্রিয়া করলে তাকে ঘাত বল বলে।

বলের ঘাত ঃ ঘাত বল ও বলের ক্রিয়া কালের গুঁণফলকে বলের ঘাত বা শুধু ঘাত বলে।

বল ত্রিভুজ সূত্র ঃ এক বিন্দুতে ক্রিয়াশীল তিনটি বল এমন হয় যে তাদেরকে পরিমাণে ও দিকে একটি ত্রিভুজের ক্রমানুসারে তিনটি বাহু দ্বারা প্রকাশ করা হয়, তবে এরা সাম্যাবস্থার সৃষ্টি করে।

বলের ভারসাম্য ঃ কোন বিন্দু বা বস্তৃতে দুই বা ততোধিক বল ক্রিয়া করায় উক্ত বিন্দু বা বস্তৃতে বলের লব্দি যদি শূন্য হয়, তবে তাকে বলের ভারসাম্য বলে। লামীর উপপাদ্য ঃ এক বিন্দুতে ক্রিয়ারত তিনটি বল যদি সাম্যাবস্থায় থাকে, তবে প্রত্যেকটি বল অপর বল দুটির অন্তর্ভুক্ত কোণের সাইনের সমানুপাতিক হবে। একে লামীর উপপাদ্য বলে।

ঘর্ষণ বল ঃ যখন একটি বস্তু অপর একটি বস্তুর সংস্পর্শে থেকে চলতে থাকে বা চলতে চেম্টা করে তখন তাদের মিলনতলে গতি বা গতির প্রয়াস যে দিকে তার বিপরীতে যে বিরুষ্ধ বলের সৃষ্টি হওয়ায় বস্তুর গতি বাধাপ্রাম্ত হয় তাকে তাদের মিলন তলের ঘর্ষণ বল বলে।

সীমাস্থ ঘর্ষণ বল বা ঋণ ঘর্ষণ : পরস্পরের সংস্পর্শে অবস্থিত দুটি বস্তুর একটি অপরটির উপর দিয়ে গতিশীল হওয়ার আগের মুহুর্তে তার গতিরোধমূলক যে বলের সৃষ্টি হয় তাকে সীমাস্থ ঘর্ষণ বল বা সীমাস্থ ঘর্ষণ বলে। স্থিতি ঘর্ষণের সর্বোচ মানই সীমাস্থ ঘর্ষণ।

চল ঘৰ্ষণ বা গতীয় ঘৰ্ষণ গুঁণাজ্ঞ : গতীয় ঘৰ্ষণ বা চল ঘৰ্ষণ ও অভিলস্ম প্ৰতিক্ৰিয়ার অনুপাতকে গতীয় ঘৰ্ষণ বা চল ঘৰ্ষণ গুঁণাজ্ঞ বলে।

গতীয় বা চল ঘর্ষণ কোণ ঃ ঘর্ষণ বল এবং অভিলম্ব প্রতিক্রিয়ার লম্ধির সাথে অভিলম্ব প্রতিক্রিয়া যে কোণ উৎপন্ন করে তাকে চল ঘর্ষণ কোণ বলে।

প্রয়োজনীয় সমীকরণ

তরবেগ,
$$\vec{p} = m\vec{v}$$
 (1)
বেগ, $\vec{F} = m\vec{a}$

$$= m \, \frac{(\overrightarrow{v} - \overrightarrow{v_0})}{t} \tag{2}$$

$$\overrightarrow{\mathbf{U}} = \overline{\mathbf{q}} (\overrightarrow{\mathbf{m}} \overrightarrow{\mathbf{n}} \overrightarrow{\mathbf{u}} = \overrightarrow{\mathbf{m}} \overrightarrow{v} - \overrightarrow{\mathbf{m}} \overrightarrow{u} = \overrightarrow{\mathbf{F}} \times t$$
(3)

রকেটের ত্বেরণ,
$$\vec{a} = \frac{v_r}{m} \left(\frac{dm}{dt}\right) - \vec{g}$$
 (4)

প্রেবেগের নিত্যতা ঃ
$$m_1 \vec{u}_1 + m_2 \vec{u}_2 = m_1 \vec{v}_1 + m_2 \vec{v}_2$$
 (5)

বা,
$$\sum m \vec{v} =$$
ধ্ব ভেষ্টর। (6)

$$m\vec{v} = -\vec{MV}$$
 (7)

বলের ভারসাম্য :
$$\Sigma \overrightarrow{F} = 0$$
 (8)

घर्षণ ४
$$\mu_s = \frac{F_l}{R}$$
 (9)

$$all_k = \frac{F_k}{F_k}$$

$$(10)$$

$$\mu = \tan \theta_f \tag{11}$$

সমাধানকৃত উদাহরণ

🔪 ১। একটি বস্তুর উপর 5 N বল 10 s ক্রিয়া করে। ভরবেগের পরিবর্তন নির্ণয় কর।

মনে করি, ভরবেগের পরিবর্তন =
$$m v - mv_0$$

আমরা পাই, $F = \frac{mv - mv_0}{t}$
 $m v - mv_0 = F \times t$
ভরবেগের পরিবর্তন = $mv - mv_0 = F \times t = 5N \times 10 \text{ s}$
= 50 kg ms⁻¹

1

$$\begin{array}{c} \sqrt{165 \operatorname{rgs}} \\ \sqrt{25 \operatorname{vs}} \\ \sqrt{25 \operatorname$$

বা,
$$a = \frac{v_2 - v_1}{t_3}$$

 $a = \frac{0 - 20}{5} \text{ ms}^{-2}$
 $= -4 \text{ ms}^{-2}$
প্ৰযুক্ত বল,
 $F = ma$

= 1000 × (- 4) N = - 4000 N

¢

গতির বিপরীতে ক্রিয়াশীল হওয়ায় প্রযুক্ত বল ঋণাত্ত্বক।

= (50 + 950) kg = 1000 kg প্রযুক্ত বল, F = ?

ঋণাত্মক ত্বুরণ, a = ?

উচ্চ মাধ্যমিক পদার্থবিজ্ঞান 785 BG & JEWEL 8) 5 টনের একটি ট্রাক ঘণ্টায় 36 km বেগে চলছে। এটি 4 m দূরত্বে থামাতে হলে কত বলের প্রয়োজন $\sqrt{6}$ $\sqrt{6}$ $\sqrt{6}$ $\sqrt{6}$ $\sqrt{6}$ $\sqrt{6}$ $\sqrt{6}$ $\sqrt{6}$ $\sqrt{6}$ F [a. (al. 2003) আমরা জানি . এখানে. F = ma(1)জাদিবেগ, $v_0 = 36 \text{ kmh}^{-1} = \frac{36 \times 1000}{60 \times 60} = 10 \text{ ms}^{-1}$ এবং $v^2 = v_0^2 - 2 as$ (2) সমীকরণ (2) হতে পাই, ট্রাকের ভর, m = 5 টন = 5000 kg $0 = (10 \text{ ms}^{-1})^2 - 2 a \times (4 \text{ m})$ **দূরত্ব,** s = 4 m $a = \frac{100 \text{ m}^2\text{s}^{-2}}{8\text{m}} = 12.5 \text{ ms}^{-2}$ ালেষ বেগ, v = 0 $F = ma = 5000 \text{ kg} \times 12.5 \text{ ms}^{-2} = 62.500 \text{ N}$ রাধাদানকারী বল, F = ? ৫। 4N-এর একটি বল 2 kg ভরের একটি স্থির বস্তুর উপর ব্রিয়া করে। ত্বুরণ নির্ণয় কর। 5 s-এ বস্তুটি কত দূরত্ব অভিক্রম করে ও কত বেগ লাভ করে ? এখানে, কল $\overrightarrow{F} = 4 \, \mathrm{N}$ তর, $m = 2 \, \mathrm{kg}$ মনে করি ত্বুরণ = a জামরা পাই, F = ma(1)সমীকরণ (1) হতে পাই, $a = \frac{F}{m} = \frac{4 N}{2 k g} = 2 m s^{-2}$ এখানে, $v_0 = 0$ t = 5 swith $v \to \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \nu$ $\Im \cdot s = v_0 t + \frac{1}{2} \overrightarrow{a} t^2$ $5 \, \mathrm{s}$ পরের বেগ, $v = 0 + 2 \, \mathrm{ms}^{-2} \times 5 \, \mathrm{s}$ $= 10 \text{ ms}^{-1}$ ও 5 s-এ অতিকান্ত দূরত্ব, $s = v_0 t + \frac{1}{2} at^2 = 0 \times 5s + \frac{1}{2} \times 2 \text{ ms}^{-2} \times (5 \text{ s})^2 = 25 \text{ m}$ 🚯 900 kg ভরের একটি মোটর ট্রাক ঘন্টায় 60 km বেগে চলে। ব্রেক চেপে ট্রাকটিকে 50 m দূরে থামানো হল। যদি মাটির খর্ষণজ্ঞনিত বল 200 N হয়, তবে ব্রেকজনিত বলের মান নির্ণয় কর। মনে করি মোট বাধাদানকারী বল = F আমরা পাই. এখানে, m = 900 kg F = F₁ + F₂ পুন, v^2 = $v_0^2 - 2as$ কাজেই 0^2 = $\left(\frac{50}{3}\right)^2 - 2 \cdot a.50$ v = 0 $v_0 = \frac{60 \times 1000}{60 \times 60} = \frac{50}{3}$ m/s s = 50 m $F_1 = 300$ বল এবং (1) \overline{a} , $a = \frac{50 \times 50}{9 \times 100} = \frac{25}{9} \text{ m/s}^2$ = মাটির ঘর্ষণজনিত বল = 200 N এখন $F = ma = 900 \times \frac{25}{9} = 2500 \text{ N}$ সমীকরণ (1) হতে পাই, 2500 = F₁ + 200 বা, F₁ = 2500 - 200 = 2300 N ব্ৰেকজনিত বল = 2300 N প্রী স্বিরাবস্থা থেকে 40 kg ভরবিশিক্ট কোন বস্তু নির্দিষ্ট বলের জিয়ার ফলে 2 s পর 15 ms⁻¹ বেগ অর্জন করে। এর উপর কি পরিমাণ বল কাজ করছে এবং 4 s পর এর গতিশক্তি কত হবে ? [য. বো. ২০০১] এখানে, দি প আমরা জানি, $v = v_0 + at$ v_0 = 0 $15 = 0 + a \times 2$ $= 15 \text{ ms}^{-1}$ $a = \frac{15}{2} \text{ ms}^{-2}$ = 2s $= 40 \, \text{kg}$ এখন, F= ma = ? $=40 \times \frac{15}{2}$ F = ? = 300 N

গতিসূত্র বইঘর.কম

ি ৮ 1000 kg ভরের একটি মোটর গাড়ি ঘণ্টায় 30 ms⁻¹ বেগে চলাকালে রাস্তার বাঁক ঘুরে 31 m দুরে একটি শিশুকে রাস্তার উপর দেখতে পায়। মোটর গাড়ির চালক সজ্ঞো সজ্ঞো ইঞ্জিন বন্ধ করে দিল এবং ব্রেক চাপল। ফলে গাড়িটি শিশু হতে 1m পিছনে থেমে গেল। মন্দনকারী বল নির্ণয় কর। গাড়িটি থামাতে কত সময় লাগবে ?

মনে করি মন্দনকারী বল = F জামরা পাই, F = ma (1) এবং $v^2 = v_0^2 - 2as$ (2) সমীকরণ (2) হতে পাই, $0 = (30 \text{ ms}^{-1})^2 - 2a \times (30 \text{ m})$

বা,
$$a = \frac{(30 \text{ ms}^{-1})^2}{2 \times 30} = 15 \text{ ms}^{-2}$$

সমীকরণ (1)-এ *m* ও *a*-এর মান বসিয়ে পাই,

$$F = 1000 \text{ kg} \times 15 \text{ ms}^{-2} = 15000 \text{ N}$$

পুনরায় নির্ণেয় সময় t হলে সমীকরণ, $v = v_0 - at$ হতে পাই,

$$0 = 30 \text{ ms}^{-1} - 15 \text{ ms}^{-2} \times t$$
$$t = \frac{30 \text{ ms}^{-1}}{15 \text{ ms}^{-2}} = 2 \text{ s}$$

ি kg ভরের একটি বন্দুক হডে 0`01 kg ভরের একটি গুলি 300 ms⁻¹ বেগে বের হয়ে গেল। বন্দুকের পশ্চাৎ বেগ নির্ণয় কর।

মনে করি বন্দুকের পশ্চাৎ বেগ = V ভরবেগের নিত্যতা সূত্র হতে আমরা পাই, MV = mv (1) $v = 300 \text{ ms}^{-1}$

সমীকরণ (1) হতে পাই, $V = \frac{mv}{M} = \frac{0.01 \text{ kg} \times 300 \text{ ms}^{-1}}{6 \text{ kg}} = 0.5 \text{ ms}^{-1}$

প্রথম বস্তূর বেগ ধনাত্মক বিবেচনা করলে দ্বিতীয় বস্তূর বেগ ঋণাত্মক। আমরা জ্বানি,

আমরা জ্ঞান,		এখানে.	
$m_1v_1 + m_2v_2 = m_1u_1 + m_2u_2$	(1)	, m, =	= 5 kg
মনে করি, বস্তুদ্বয় মিলিত হবার পর বেগ = v 5 × v + 3v = 5×4 + 3×(-2)		-	= 3 kg
$5 \times 0 + 30 = 3 \times 4 + 5 \times (-2)$		-	$= 4 \mathrm{ms}^{-1}$
বা, 8v = 14		•	$= -2 \mathrm{ms}^{-1}$
$v = \frac{14}{9} = 1.75 \mathrm{ms}^{-1}$		•	$= v_2 = v$
8 - 1/0 mb	1.	01	

মিলিত বস্তু 175 ms⁻¹ বেগে উত্তর দিকে চলবে।

QN 🕥 40 kg ও 60 kg ভরের দুটি বস্তু যথাক্রমে 10 ms⁻¹ ও 5 ms⁻¹ বেগে পরস্পর বিপরীত দিক থেকে আসার সময় একে অপরকে ধাৰা দিন। ধাৰার পর বস্তুদ্বয় একত্রে যুক্ত হয়ে কত বেগে চলবে ?

বি. বো. ২০০২, সি. বো. ২০০২ ; চ. বো. ২০০১ ; য. বো. ২০০০; রা. বো. ২০০১] প্রথম বস্তুর বেগ ধনাত্মক বিবেচনা করলে দ্বিতীয় বস্তুর বেগ ঋণাত্মক।

এখানে, m = 1000 kg $v_0 = 30 \text{ ms}^{-1}$ v = 0s = (31 - 1) m = 30 m

আমরা জানি, $m_1v_1 + m_2v_2 = m_1u_1 + m_2u_2$ (1)মনে করি, যুক্ত অবস্থায় বস্তুদ্বয়ের বেগ = v $m_1 = 40 \text{ kg}$ $40 \times v + 60v = 40 \times 10 + 60 (-5)$ $m_2 = 60 \text{ kg}$ $u_1 = 10 \text{ ms}^{-1}$ বা, 100v = 400 - 300100v = 100 $u_2 = -5 \,\mathrm{ms}^{-1}$ বা, $v_1 = v_2 = v$ $v = 1 \, \text{ms}^{-1}$ ১২। একজন সাইকেল চালক 8 ${
m ms}^{-1}$ বেগে চলাকালে সাইকেল চালানো বন্ধ করে লক্ষ করেন যে 49 m দূরত্ব অতিক্রমের পর সাইকেলটি থেমে যায়। সাইকেলের টায়ার ও রাস্তার মধ্যকার ঘর্ষণ বল নির্ণয় কর। [আরোহীসহ সাইকেলের ভর = 147 kg] ধরি ঘর্ষণ বল = F ও F-এর জন্য সৃষ্ট মন্দন = a (1) (1) $v_0 = 8 \text{ ms}^{-1}$ m = 147 kg s = 49 mআমরা পাই, $v^2 = v_0^2 - 2as^2$ সমীকরণ (1) হতে পাই, F = $ma = \frac{m(v_0^2 - v^2)}{2s}$ $= 147 \text{ kg} \frac{\{(8 \text{ ms}^{-1})^2 - 0\}}{2 \times 49 \text{ m}}$ = 96 N১৩। একটি বস্তু স্ধিরাবস্থায় ছিল। 15 N-এর একটি বল এর উপর 4 সেকেন্ড ধরে কাজ করে এবং তারপর আর কোন কাজ করন না। বস্তুটি এরপর 9 সেকেন্ডে 54 m দূরত্ব গেন। বস্তুটির ডর বের কর। [চ. বো. ২০০৩] যেহেতু বলটি বস্তুর উপর 4s ক্রিয়ার পর আর ক্রিয়া করে না সেহেতু বস্তুটি শেষ 9s সময় সমবেগে যাবে। , all in the second sec F = 10 $t_1 = 4 \text{ s}$ $t_2 = 9 \text{ s}$ s = 54 m -0 (CP) $v = \frac{s}{t_2}$ 1510 $=\frac{54}{9}$ = 6 ms⁻¹ $v_0 = 0$ (যেহেতু বস্তু স্থির) আমরা জানি, $v = v_0 + at_1$ \overline{a} , $6 = 0 + a \times 4$ বা, 6 = 4a বা, $a = \frac{6}{4}$ $a = 1.5 \,\mathrm{ms}^{-2}$ আবার, F = ma বা, 15 = m × 15 বা, $m = \frac{15}{1.5}$ m = 10 kg১৪। 10 N এর একটি বলু 2 kg তরের একটি স্থির বস্তুর উপর ক্রিয়া করে। যদি 4s পর বলের ক্রিয়া বন্ধ হয়ে যায় তবে প্রথম থেকে ৪s-এ বস্তুটি কর্ত দূরত্ব অভিক্রম করবে ? **চি.** বো. ২০০০] দেয়া আছে, আমরা জানি, F = ma F = 10 N \overline{a} , $a = \frac{F}{m}$ = $\frac{10}{2} = 5 \,\mathrm{ms}^{-2}$ m = 2 kg১ম ক্ষেত্রে, ১ম 4 s-এ অতিক্রান্ত দুরত্ব, আদিবেগ, $v_0 = 0$ সময় t = 4s $s_1 = v_0 t + \frac{1}{2} a t^2$ ত্বণ, a = ? $= 0 \times 4 + \frac{1}{2} \times 5 \times 4^2$ দূরত্ব, s₁ = ? = 40 m Ý ১ম 4 s পর কম্তুটির বেগ, ২য় ক্ষেত্রে, বেগ, v = 20 ms⁻¹ $v = v_0 + at$ = 0 + 5.4সময়, t = 4,s $= 20 \text{ ms}^{-1}$ দূরত্ব, s₂ = ?

পরবর্তী 4s-এ অতিক্রান্ত দূরত্ব, $= vt = 20 \times 4$ S₂ $= 80 \, \mathrm{m}$ ১ম হতে মোট ৪s-এ অতিক্রান্ত দূরত্ব $s = s_1 + s_2$ = 40 + 80= 120 m ১৫। একটি বস্তুর উপর 7N মানের একটি বল প্রয়োগ করা হলে বস্তুটি 3 ms⁻² ত্বরণ প্রাশ্ত হয়। বস্তুটির ভর কত ? বস্তুটির উপর 5N মানের আর একটি বল 7N মানের বলের সাথে 60° কোণে প্রয়োগ করলে বস্তুটির ত্বরণ কত হবে ? [সিঁ. বো. ২০০৩] প্রথম অংশ ঃ আমরা জানি, এখানে, F = maF = 7N $7 = m \times 3$ $m = \frac{7}{3} = 2.33 \text{ kg}$ $a = 3 \, \text{ms}^{-2}$ m = ?দ্বিতীয় অংশ ঃ মনে করি, লম্ধি বল R এখানে, এখন, $R = (P^2 + Q^2 + 2PQ \cos \alpha)^{\frac{1}{2}}$ P = 7N $R = (7^2 + 5^2 + 2 \times 7 \times 5 \times \cos \frac{60^\circ}{2})^{\frac{1}{2}}$ Q = 5N $\alpha = 60^{\circ}$ $= \left(49 + 25 + 2 \times 7 \times 5 \times \frac{1}{2}\right)^{\frac{1}{2}}$ $=(74+35)^{\frac{1}{2}}=(109)^{\frac{1}{2}}$ = 10.44 N \mathbf{V} আবার, R = ma' এখানে, $a' = \frac{R}{m}$ = $\frac{10.44}{2.33}$ ms⁻² R = 10.90 Nm = 2.33 kga' = ? $= 4.48 \text{ ms}^{-2}$ উত্তর ঃ বস্তৃটির ভর 2:33 kg এবং ত্বরণ 4:48 ms⁻² ১৬। 0.05 kg ভরের একটি বস্তু 0.2 ms⁻¹ অনুভূমিক বেগে একটি খাঁড়া দেয়ালে ধাক্বা দিয়ে $0.1~{
m ms}^{-1}$ বেগে বিপরীত দিকে ফিরে গেল। বলের ঘাঁত বের কর। [ব. বো. ২০০৬ (মান ভিন্ন)] ধরি বলের ঘাত =] এখানে, আমরা পাই, J = P × t ও P = $\frac{m(v-v_0)}{t}$ m = 0.05 kg $v_0 = 0.2 \text{ ms}^{-1}$ $J = m(v - v_0)$ $v = -0.1 \text{ ms}^{-1}$ (আদি বেগের সাপেক্ষে শেষ J = 0.05 × (— 0.1 — 0.2) বেগ বিপরীতম্থী র = __0.015 kg-ms⁻¹ (ঋণচিহ্ন প্রমাণ করে যে, J ও v-এর জভিমুখ জভিন্ন)। বেগ বিপরীতমুখী হেতু ঋণচিহ্ন ব্যবহৃত হয়েছে)। $|J| = 0.015 \text{ kg-ms}^{-1}$ ১৭। 16 N-এর একটি বল 4 kg ভরের উপর 4s ক্রিয়া করে। বস্তুটির (ক) বেগের পরিবর্তন ও (খ) বলের ঘাত নির্ণয় কর। মনে করি বেগের পরিবর্তন = \overrightarrow{v} – \overrightarrow{v}_0 এখানে বল, $\overrightarrow{F} = 16 \text{ N}$ m' = 4 kgt = 4 sও বলের ঘাত 😑 J $\overrightarrow{J} = \overrightarrow{F} \times t = \overrightarrow{mv} - \overrightarrow{mv}_0$ আমরা পাই, $\vec{F} = \frac{m(v - v_0)}{t}$ (1)

পদার্থবিজ্ঞান (১ম)-১ই

উচ্চ মাধ্যমিক পদার্থবিজ্ঞান

সমীকরণ (1) হতে পাই, $(v - v_0) = \frac{F \times t}{m} = \frac{16N \times 4 \text{ s}}{4 \text{ kg}} = 16 \text{ ms}^{-1}$ ও বলের যাত, J = F × t = 16N × 4 s = 64 N s = ভরবেগের পরিবর্তন

১৮। অনুভূমিক দিকে গতিশীল 2 kg ডরের একটি লৌহ গোলক 5 ms⁻¹বেগে একটি দেয়ালে লম্বভাবে ধারা খেয়ে 3ms⁻¹ বেগে বিপরীত দিকে ফিরে গেল। বলের ঘাত কত ? [ব. বো. ২০০৬]

4রি বলের ঘাত = J
আমরা পাই,
 $J = F \times t$
এবং $F = \frac{m(v - v_0)}{t}$
 $J = \frac{m(v - v_0)}{t} \times t$
 $= m(v - v_0)$
 $J' = 2 \times (-3 - 5)$
 $= -16 kg ms^{-1}$
 $| J | = 16 kg ms^{-1}$ এখানে,
m = 2 kg
 $v_0 = 5 ms^{-1}$
 $v = - 3 ms^{-1}$
[আদি বেগের সাপেক্ষে বেগ বিপরীতমুখী হওয়ায়
খণচিহ্ন ব্যবহৃত হয়েছে]
J = ?

১৯। 20 ms⁻¹ বেগে আগত 0.2kg ডরের একটি ক্রিকেট বলকে একজন খেলোয়াড় ক্যার্ট (catch) ধরে 0.1s সময়ের মধ্যে থামিয়ে দিল। খেলোয়াড় কর্তৃক প্রযুক্ত গড় বল কত ?

আমরা জানি. এখানে, বলের ঘাত = ভরবেগের পরিবর্তন বলটির ভর, m = 0°2 kg বা, $J = mv - mv_0$ অাদিবেগ, $v_0 = 20 \text{ ms}^{-1}$ বা, $Ft = mv - mv_0$ শেষ বেগ, v = 0 $\mathbf{F} = \frac{mv - mv_0}{t}$ বা, সময়, t = 0°1 s $= \frac{0.2 \times 0 - 0.2 \times 20}{0.1}$ = -20Nপ্রযুক্ত গড় বল, F = ? [গতির বিপরীতে হওয়ায় প্রযুক্ত বল ঋণাত্মক]

🔨 √ ৫০। একটি টেবিলের উপর 1kg ভরের একটি বই আছে। টেবিলের তল বরাবর 3N বল প্রয়োগ করলে বইটি চলার উপক্রম হয়। টেবিল ও বই-এর মধ্যে স্থিতি ঘর্ষণ গুণাচ্চ্র নির্ণয় কর।

আমরা জানি,এখানে, $\mu_s = \frac{F_l}{R}$ অভিলম্ম প্রতিক্রিয়া, $R = 3\overline{2}$ -এর ওজনবা, $\mu_s = \frac{3}{9.8}$ $= 1 \times 9.8 \text{ N}$ বা, $\mu_s = \frac{3}{9.8}$ घर্ষণ বল, $F_l = 3N$ $\simeq 0.3$ স্থিতি ঘর্ষণ গুণাঙ্ক, $\mu_s = ?$

২১। একটি রকেট প্রতি সেকেন্ডে 0'07 kg জ্বালানি খরচ করে। রকেট থেকে নির্গত গ্যাসের বেগ 100 kms⁻¹ হলে রকেটের উপর কত বল ক্রিয়া করে ? (এখানে অভিকর্ষ বলের প্রডাব উপেক্ষা করা যেতে পারে)।

দেয়া আছে,

প্রতি সেকেন্ডে জ্বালানি খরচ, <u>dm</u> = 0[.]07 kg

এবং নির্গত গ্যাসের বেগ,

 $v_r = 100 \text{ kms}^{-1} = 1 \times 10^5 \text{ ms}^{-1}$

আমরা জানি, F = $m \frac{dv}{dt} = v_r dm/dt - mg$

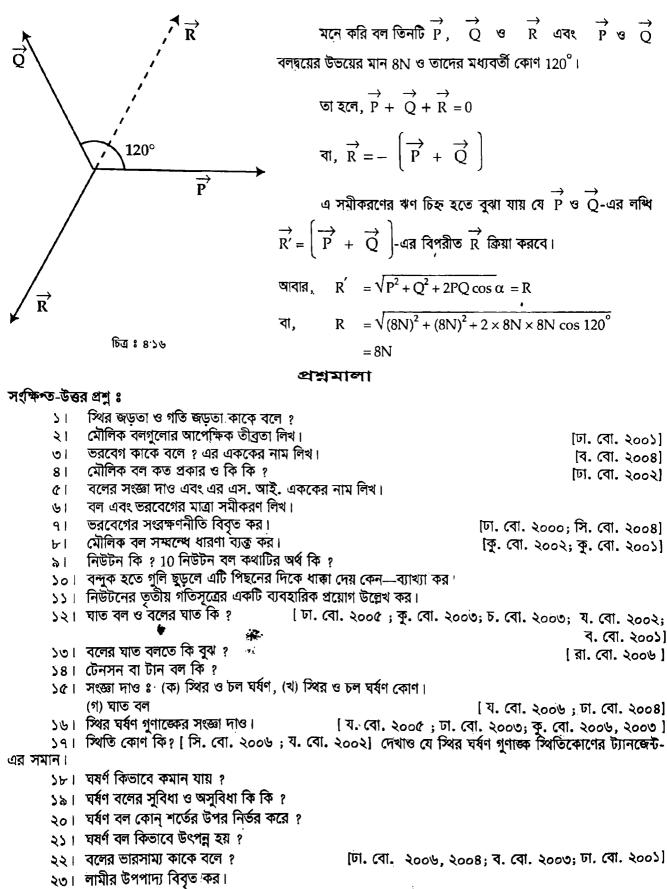
অভিকর্ষ বলের প্রভাব না থাকলে, রকেটের উপর ক্রিয়াশীল বল,

$$F = v_r \frac{dm}{dt} = 1 \times 10^5 \text{ ms}^{-1} \times 0.07 \text{ kg}$$
$$= 7 \times 10^3 \text{ N}$$

বইঘর.কম ২২। একটি রকেট ঊর্ধ্বমুখী যাত্রার প্রথম 2 সেকেন্ডে এর ভরের <u>1</u>ন্ত অংশ হারায়। রকেট হতে নিজ্জাস্ত গ্যাসের গতিবেগ 2500 ms⁻¹ হলে রকেটের ত্বরণ বের কর।

ধশ্লান্সারে,
$$dm = \frac{m}{50}$$

 $dt = 2 \text{ s}$
 $v_r = 2500 \text{ ms}^{-1}$
আমরা জানি,
 $m \frac{dv}{dt} = v_r \frac{dm}{dt} - mg$
বা, $\frac{dv}{dt} = a = \frac{v_r}{m} \left(\frac{dm}{dt}\right) - g$
বা, $a = \frac{2500 \text{ ms}^{-1}}{m} \cdot \frac{m}{50 \times 2 \text{ s}} - 9.8 \text{ ms}^{-2}$
 $= 25 \text{ ms}^{-2} - 9.8 \text{ ms}^{-2}$
 $= 15.2 \text{ ms}^{-2}$


২৩। 70 kg ভরের একটি বাক্সকে 500 N অনুভূমিক বলে মেঝের উপর দিয়ে টানা হচ্ছে। বাক্সটি যখন চলে তখন বাক্স ও মেঝের মধ্যবর্তী ঘর্ষণ সহগ 0'50। বাঙ্কের ত্বরণ নির্ণয় কর। [কু.রো. ২০০৬ (মান ভিন্ন) ; য. বো. ২০০৪]

এখানে, আমরা জানি, m = 70 kg μ = 0'50 অভিলম্ব প্রতিক্রিয়া = 70 × 9'8 N = 686 N অনুভূমিক বল, F₁ = 500 N ঘৰ্ষন বল, $F_k = \mu_k R$ বা, $F_k = 0.50 \times 686 \text{ N}$ = 343 N ত্রণ, a = ? আবার, লম্বি বল, $\mathbf{F} = \mathbf{F}_1 - \mathbf{F}_k$ = (500 - 343) N = 157 N এখন, F = ma $a = \frac{F}{m} = \frac{157 \text{ N}}{70 \text{ kg}}$ = 2'24 ms⁻² ২৪। 4 kg ভরের একটি বস্তুকে 10 ms-2 ত্বরণের গতিশীল করতে কত বল প্রয়োগ করতে হবে ? [পথের ঘর্ষণ বল 2'5 N kg⁻¹] [ব. বো. ২০০১] আমরা জানি, এখানে, কাৰ্যকর বল, $\mathbf{F} = \mathbf{P} - \mathbf{F}_k$ কম্তুর জ্র, m = 4 kg 40 = P - 10ত্বণ, a = 10 ms⁻² বা, P = 50 Nকার্যকর বল, F = ma = 4 × 10 = 40N প্রযুক্ত বল = 50N ঘৰ্ষণ বল = 2.5 N kg-1 মোট ঘৰ্ষণ বল, $F_{K} = 2.5 \times 4 = 40N$ 1 প্রযুক্ত বল, P = ?

 $\mathcal{R}_{\mathcal{G}}$ ২৫। তিনটি সমতলীয় বলের এককালীন ক্রিয়ায় একটি বস্তু সাম্যাবস্থায় আছে। এদের মধ্যে দুটি বলের প্রত্যেকের মান ৪ N এবং বল দুটির মধ্যবর্তী কোণ 120°। তৃতীয় বলটি নির্ণয় কর।

আমরা পাই, $\Sigma F = 0$

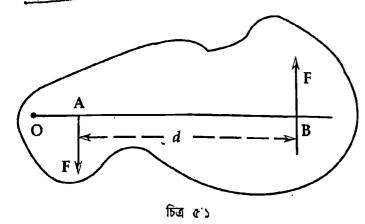
286

২৪। একটি বস্তু সাম্যাবস্থায় থাকবে যদি এর ত্বরণ শূন্য হয়---ব্যাখ্যা কর।

বহুঘর.কম বি. বো. ২০০০] ২৫। ঘৰ্ষণ বল কি? [সি. বো. ২০০৬, ২০০৩] ২৬। আবর্ত ঘর্ষণ ও স্থিতি ঘর্ষণ গুণাচ্চক কাকে বলে? [য. বো. ২০০৩; ব. বো. ২০০২; ঢা. বো. ২০০০] ২৭। ঘৰ্ষণ কি? রচনামূলক প্রশ্ন ঃ বস্তুর জ্বড়তা বলতে কি বুঝ ? স্থিতিজ্বড়তা ও গতিজড়তা উদাহরণসহ ব্যাখ্যা কর। 21 মৌলিক বল কত প্রকার ও কি কি ? [ঢা. বো. ২০০২, কু. বো. ২০০০] এ বলগুলো ব্যাখ্যা কর। ২। [কু. বো. ২০০২] মৌলিক বলগুলো কোথায় কার্যকর ? এদের তীব্রতার তুলনা কর। বলের একীভূতকরণ বলতে কি বুঝ ? 01 নিউটনের প্রথম গতিসূত্রটি বিবৃত কর এবং ব্যাখ্যা কর। 81 নিউটনের দ্বিতীয় গতিসূত্রটি বিবৃত কর ও ব্যাখ্যা কর। CI নিউটনের গতির তৃতীয় সূত্রটি বিবৃত কর ও ব্যাখ্যা কর। 61 নিউটনের গতিসূত্রসমূহ বিবৃত কর। $\vec{F}=m\vec{a}$ সমীকরণটি প্রতিপাদন কর। 91 [ज. ता. २००৫ ; य. ता. २००৫, २००७, २००४; त. ता. २००৫, २००२ ; সি. বো. ২০০১; রা. বো. ২০০০; কু. বো. ২০০৫, ২০০০] নিউটনের দ্বিতীয় গতিসূত্রটি বিবৃত কর। F = ma সমীকরণটি বের কর এবং একক বলের সংজ্ঞা দাও। ৯। 🚏 নিউটনের দিতীয় গতিসূত্র বিবৃত কর। এটি হতে কিভাবে প্রথম সূত্র পাওয়া যায় ব্যাখ্যা কর। ১০। নিউটনের গতিবিষয়ক দ্বিতীয় সূত্র থেকে বল পরিমাপের রাশিমালা নির্ণয় কর এবং তা থেকে দেখাও যে, বস্তুর উপর নীট বল শূন্য হলে বস্তুর বেগ অপরিবর্তিত থাকে। [সি. বো. ২০০৫] ১১। যাতবল বলতে কি বুঝ ? প্রমাণ কর যে বলের ঘাত এবং ভর বেগের পরিবর্তন সমান। [সি. বো. ২০০৫ ; রা. বো. ২০০৩] ১২। ভরবেগের নিত্যতা স্বুত্রটি বিবৃত কর এবং প্রমাণ কর। । সি. রো. ২০০৬, ২০০২; রা. বো. ২০০৫, ২০০২; চ. বো. ২০০২; কৃ. বো. ২০০১; ব. বো. ২০০১; ঢা. বো. ২০০০] ১৩। ভরবেগের সূত্রটি বিবৃত ও ব্যাখ্যা কর। [কু. বো. ২০০৪; সি. বো. ২০০২] ১৪। বলের ঘাত বলতে কি বুঝ ? বলের ঘাতের ধারণা হতে ভরবেগের নিত্যতা সূত্রটি প্রমাণ কর। ১৫। নিউটনের গতির তৃতীয় সূত্রটি বিবৃত কর। এর সাহায্যে ভরবেগের নিত্যতা সূত্রটি প্রমাণ কর। ১৬। একটি রকেটের কার্যনীতি ব্যাখ্যা কর। ঘাত–ভরবেগের পরিবর্তন সূত্র ব্যবহার করে রকেটের তুরণের রাশিমালা প্রতিপাদন কর। অথবা, রকেটের ধার্কান্ধনিত বলের রাশিমালা নির্ণয় কর। বি. বো. ২০০২] ১৭। ঘর্ষণ কাকে বলে ? স্থির ঘর্ষণ ও চল ঘর্ষণের সূত্রগুলো বর্ণনা কর। ঢ়া. বো. ২০০০; ব. বো. ২০০১] ১৮। স্থিতি কোণ ও ঘর্ষণ কোণের মধ্যে সম্পর্ক স্থাপন কর। [য. বো. ২০০৬ ; রা. বো. ২০০৬] ১৯। ঘর্ষণ কোণ ও স্থিতি কোণ কি? দেখাও যে এরা পরস্পর সমান। [য. বো. ২০০৪] ২০। নিউটনের দ্বিতীয় সূত্র হতে দেখাও যে m ভরের একটি বস্তুর আদি বেগ v_0 অভিমুখে F পরিমিত সমবল t সময় ক্রিয়া করলে তার বেগ বৃদ্ধি পেয়ে $v = v_0 + \frac{F}{m} t$ হবে। ২১। ভেষ্টর চিত্রের সাহায্যে বিভিন্ন বলের ভারসাম্য ব্যাখ্যা কর। ২২। দেখাও যে কোন বিন্দুতে ক্রিয়ারত তিনটি বল যদি সাম্যাবস্থায় থাকে, তবে প্রত্যেকটি বল অপর বল দুটির অন্তর্ভুক্ত কোণের সাইনের সমানুপাতিক। গাণিতিক সমস্যাবলি : ১। 40 N এর একটি বল 10 kg ভরের একটি স্থির বস্তুর উপর ক্রিয়া করে। ত্বরণ বের কর। 58 4 ms⁻² ২। আকটি ধ্রব বল 50 kg ভরের একটি বস্তুর উপর ক্রিয়া করে 4 ms-? ত্বরণ সৃষ্টি করে। বলের মান নির্ণয় কর। डिः 200 N ৩। 30 ms⁻¹ বেগে গতিশীল 50 kg ভারের একটি বস্তুর ভরবেগ নির্ণয় কর। [\$ 1500 kg ms⁻¹] 8। (ক) 5 N বল কোন বস্তুর উপর 6 s ক্রিয়া করে। ভরবেগের পরিবর্তন নির্ণয় কর। [**Gi** 30 kg ms⁻¹] খে) একটি বস্তুর ভর 0.05 kg। 0.04 ms⁻² ত্বরণ সৃষ্টি করতে কড বল প্রয়োগ করতে হবে ? 13: 0'002 N ৫। 100 kg জর বিশিষ্ট একটি বস্তুর ওপর 100 N বল 5 s ব্যাপী ক্রিয়া করে। বস্তুটির জরবেগের পরিবর্তন বা বলের ঘাত বের কর। ស្រី៖ 500 kg ms⁻¹] ৮। 40 N বল 5 kg ভরের একটি স্থির বস্তুর উপর 5 s ক্রিয়া করল। বস্তুটির বেগের পরিবর্তন বের কর। 158 40 ms⁻¹] ৯। 100 N বল 25 kg ভরের একটি স্থির বস্তুর উপর 5 s ক্রিয়া করে। বেগের মান নির্ণয় কর। [\$ 20 ms⁻¹]

১০। একটি বল 100 kg ভরের একটি বস্তুর উপর 10 s ক্রিয়া করে একে স্বিতিশীল অবস্থা হতে 200 m টেনে নিয়ে যায়। বলের মান নির্ণয় কর।
১১। 2 kg ভরের একটি বস্তুর উপর 4N বল 10 s ক্রিয়া করে। বস্তুটির (ক) ত্বরণ, (খ) প্রাম্ত বেগ এবং (গ) অতিক্রা দূরত্ব নির্ণয় কর। [উঃ (ক) 2 ms ⁻² , (খ) 20 ms ⁻¹ এবং (গ) 100 m
১২। একটি ধ্রুব বল 10 kg ভরের একটি স্থির বস্তৃর ওপর 3 s ক্রিয়া করে থেমে যায়। বস্তৃটি পরবর্তী 3s-এ 36 n দূরত্ব অতিক্রম করলে বলের মান নির্ণয় কর। [উঃ 40 N
১৩। 50 N এর একটি বল 10 kg ভরের একটি স্থির বস্তৃর উপর ক্রিয়া করে। যদি 4 s পরে বলটি ক্রিয়া না করে তব প্রথম হতে 8 s–এ বস্তৃ কত দূরত্ব অতিক্রম করবে নির্ণয় কর। [উঃ 120 n
১৪। সমত্বরণে ধাবমান 3 kg ভরের একটি বস্তু এর গতির 5th সেকেন্ডে ও 8th সেকেন্ডে যথাক্রমে 018 m এব 030 m দূরত্ব অতিক্রম করে। ক্রিয়াশীল বলের মান নির্ণয় কর।
১৫। 40 kg এবং 60 kg ভরের দুটি বস্তু পরস্পর বিপরীত দিকে যথাক্রমে 10 ms ⁻¹ এবং 2 ms ⁻¹ বেগে যাওয়ার প একে অপরকে ধান্ধা দিল। ধান্ধার পর বস্তু দুটি এক সাথে যুক্ত থেকে কত বেগে চলতে থাকবে?
১৬। 5 kg ভরের একটি বস্তু 10 ms ⁻¹ বেগে চলন্ত অবস্থায় 3 ms ⁻¹ বেগে একই দিকে গতিশীল 2 kg ভরের অপর এক বস্তুর সাথে মিলিত হয়ে এক হয়ে যায়। মিলিত হয়ে একটি বস্তুতে পরিণত হওয়ার পর এর বেগ কত হবে ? [উঃ 8 ms ⁻¹
১৭। 5 kg ভরের একটি বন্দুক হতে 0 [.] 01 kg ডরের একটি গুলি 400 ms ⁻¹ বেগে বের হয়ে গেল। বন্দুকের পশ্চাৎ বে নির্ণায় কর।
১৮। 15 kg ভরের একটি বস্তুর উপর কত বল প্রয়োগ করলে 1 মিনিটে এর বেগ 3.6 kms ⁻¹ বৃষ্ণি পাবে? ^শ টিঃ 900 N
১৯। 0.01 kg ভরের একটি বুলেট 4 kg ডরের একটি রাইফেল হতে 200 ms ⁻¹ বেগে নিক্ষিশ্ত হল, রাইফেলের পশ্চা বেগ বের কর।
্র ৩০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০
চায় তবে রাইদ্রুফলের ভর নির্ণয় কর। [উন্তর ৪ 1'5 kg
২) 1 মেঝের সাথে 37° কোণ করে 30kg ওজনের একখন্ড ব্লককে 200N বল দারা টানা হচ্ছে। যদি মেঝে ও ব্লকের
মধ্যে গতার যথ্য গুণাব্দ 0.3 হর, তথে ব্লকের ত্বরণ দেশর কর। 🛛 🔰 🛛 👔 ডিওর 🖇 3.58ms^-
🔊 । 36 kg ভরের একটি বস্তুর উপর কত বল প্রয়োগ করলে 1 মিনিটে তার বেগ 15 km/hr বৃদ্ধি পাবে ? [25 N
প্রুষ্ঠ। 400 kg ভরের একটি মটর গাড়ি মিনিটে 30 km বেগে চলে। ব্রেক চেপে একে 100 m দূরত্বে থামিয়ে দেয়া হল
যদ্দি মাটির ঘর্ষণ জনিত বল 1000N হয়, তবে ব্রেক জনিত বলের মান নির্ণয় কর। [উঃ 49×10^3 N \odot] দুটি তলের মধ্যকার স্থির ঘর্ষণ কোণ 60° । তাদের ঘর্ষণ গুণাঙ্ক কত ?
্রের একটি মার্বেল 20 s চলার পর থেমে গেল। ঘর্ষ
বলের মানু নির্ণয় কর। টিঃ 0.02 N
${\bf Q}_{\rm P}$ । 1 kg ভরের একটি বস্তু 30° কোণে জানত একটি অমসৃণ তলে চরম স্থিরাবস্থায় জাছে। ঘর্ষণ গুণাঙ্ক ও জভিল প্রতিক্রিয়া নির্ণয় কর। ${\bf Q}_{\rm P}$ ${\bf Q}_{\rm P}$
১৯। 50 kg ভরের এক ব্যক্তি 1950 kg ভরের একটি গাড়ি স্থিরাবস্থা থেকে প্রথম 10 সেকেন্দ্র সমন্তরণে চালাল
অতঃপর 10 মিনিট সমবেগে চালানের পর ব্রেক চেপে 1 সেকেন্ডের মধ্যে গাঁড়ি থামাল। যাত্রা শুরুর 4 সেকেন্ড পর গাঁডির বেগ
ms ⁻¹ হলে গাড়ি কর্তৃক অতিক্রান্ত মোট দূরত্ব এবং গাড়ি ধামাতে প্রযুক্ত বলের মান বের কর।
[फ . (वा. २००२ ; फें : 12110 m ; 40,000 N
😡। 5 kg ভরের একটি বস্তু 10 ms ⁻¹ বেগে উন্তর দিকে এবং 3 kg ভরের অপর একটি বস্তু 5 ms ⁻¹ বেগে দক্ষিণ দিবে একট সবলবেশ বর্বাবর চলা অবস্থায় একে জপবরে ধারা দিল। ধারার পর বয়কায় মধ্যের জনসংস্থান করা বেগে সে ক্রান্স বিবা
একই সরলরেখা বরাবর চলা অবস্থায় একে অপরকে ধারুা দিল। ধারুার পর বস্তুদ্বয় সংযুক্ত অবস্থায় কত বেগ এবং কোনু দি চলবে ? [উঃ 4:375 ms ⁻¹ , উত্তর দিকে
় 🚱। 0.6 kg ভরের একটি ফুটবল 25 ms ⁻¹ বেগে গতিশীল থাকা অবস্থায় একচ্চন খেলোয়াড় সন্ধোরে লাথি খারল; ফ
বলটি একইদিকে 40 ms ⁻¹ বেগ প্রাশ্ত হল। খেলোয়াড়ের পা কর্তৃক প্রযুক্ত বলের ঘাত কত ? টিঃ 9 kg ms ⁻¹
প্র্র্জ)। কোন মেঝেতে স্থাপিত 500 N-এর একটি কাঠের বাঙ্গের উপর 200 N বল প্রয়োগ করলে বাঙ্গটি চলা শুরু করে মেঝে ও কাঠের বাঙ্গের মধ্যবর্তী ঘর্ষণ গুণাজ্ঞ নির্ণয় কর।
তি । 200 kg ভরের একটি মোটর গাড়ি ঘণ্টায় 108 km বেগে চলে। ব্রেকের সাহায্যে গাড়িটিকে 20 m দূরত্বে ধামিরে দেয়া হল। বাঁধাদানকারী বলের মান বের কর। টেঃ 4500 N
তি। 36 kg ভরের একটি বস্তুর উপর কত বন্দ প্রয়োগ করলে 1 মিনিটে এর বেগ 15 kmh ⁻¹ বৃষ্দি পাবে ? ।উঃ 2'5 N তি । 25 kg ভরের একটি বস্তুর উপর কত বন্দ ক্রিয়া করলে, ত্বরণ 8 ms ⁻² হবে ? । ।উঃ 200 N

LAWS OF CIRCULAR MOTION


হ'১ সূচনা [⊄] Introduction

নিউটনের ১ম সূত্র থেকে আমরা জানি প্রত্যেক বস্তু যে অবস্থাতে থাকে বাইরে থেকে এ অবস্থার পরিবর্তন দরতে চেম্টা করলে 'জড়তা' ধর্মের দরুন বস্তু সেই চেম্টাকে বাধা দেয়। বস্তুর ভরের হ্রাস-বৃদ্ধিতে জড়তারও হাস-বৃদ্ধি ঘটে। ঘূর্ণন গতির ক্ষেত্রেও জড় বস্তু তার অবস্থার পরিবর্তনের প্রকাশকে প্রতিরোধের চেম্টা করে অর্থাৎ হূর্ণন গতির ক্ষেত্রেও এক ধরনের জড়তা প্রকাশ পায়। এই জড়তা নির্ভর করে ঘূর্ণাক্ষের সাপেক্ষে বস্তুর বিভিন্ন কণার চর ও তার বিন্যাসের উপর।

ঘূর্ণন গতির ক্ষেত্রে রৈখিক গতির অনুরূপ বেগ, ত্বরণ, ভরবেগ, বল ইত্যাদি রাশিগুলো রয়েছে। এই সমস্ত রাশিগুলো কৌণিক মানের উপর নির্ভর করে, তাই এদের সঞ্চো সংশ্লিফ্ট গতিসূত্রকে কৌণিক গতিসূত্র বলে। এই মধ্যায়ে আমরা দ্বন্দু, জড়তার ভ্রামক, কৌণিক ভরবেগ, কৌণিক গতির জন্য নিউটনের সূত্র, টর্ক, কেন্দ্রমুখী বল এবং এদের সঞ্চো সংশ্লিফ্ট গতির বিভিন্ন দিক আলোচনা করব।

c.২ ঘন্দু বা কাপল্ হা হা হা চাল Couple

সংজ্ঞা : একটি বস্তুর দুটি বিভিন্ন বিন্দুতে প্রযুক্ত দুটি সমান, সমান্তরাল এবং বিপরীতমুখী বলকে মন্দু বা যুগল (Couple) বলে।

ব্যাখ্যা ঃ মনে করি কোন দৃঢ় বস্তুর A এবং B বিন্দুতে একই মানের দুটি সমান্তরাল এবং বিপরীতমুখী বল প্রয়োগ করা হল [চিত্র ৫ ১]। এমতাবস্থায় এই দ্বন্দ্বের ক্রিয়ায় বস্তুটি আর সাম্যাবস্থায় থাকতে পারবে না, তার ঘূর্ণন ঘটবে। দ্বন্দ্র প্রাক্ত হলেই বস্তু ঘুরার সুযোগ পায়। ঘন্দ্ব প্রয়োগের সময় বল দুটির মধ্যবর্তী লম্দ্র দূরত্ব AB-কে ঘন্দ্বের বাহু (Arm) বলা হয়। যে কোন একটি বলের মান এবং বল দুটির

মধ্যবর্তী লম্দ্র দেরতের গুণফল হারা হন্দের ভ্রামক পরিমাপ করা হয়। দ্বন্দের ভ্রামককে অনেক সময় টর্ক (Torque) বলা হয়। F যদি দ্বন্দের একটি বল হয় এবং AB বল দুটির মধ্যবর্তী লম্দ্র দূরত্ব হয়, তবে

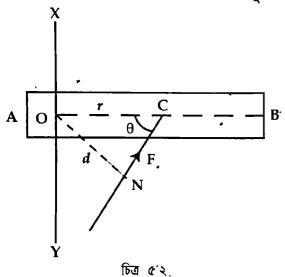
দল্পের ভ্রামক = $F \times AB = F \times d$

এই ভামক ধনাত্মক ও ঝণাত্মক হতে পারে। যে স্বন্দের প্রয়োগে বস্তু ঘড়ির কাঁটার বিপরীত দিকে (anti-clockwise) ঘুরে, তার ভ্রামককে ধনাত্মক ভ্রামক ; আর যে স্বন্দের প্রয়োগে বস্তু ঘড়ির কাঁটার দিকে (clockwise) ঘুরে তার ভ্রামককে ঝণাত্মক ভ্রামক বলে।

উচ্চ মাধ্যমিক পদার্থবিজ্ঞান

BG & JEWEL

ম্বন্দের ভ্রামকের মাত্রা সমীকরণ (Dimension of moment of a couple)


দ্বন্দের ভ্রামকের মাত্রা সমীকরণ,

[দুন্দেুর ভ্রামক] = [বল × দূরত্ব] = [MLT⁻² × L] = [ML²T⁻²]

শ্রেণ্ড টর্ক বা বলের ভ্রামক Torque or Moment of a force

কোন দৃঢ় বস্তু একটি বিন্দুকে কেন্দ্র করে ঘুরতে পারে। যেমন দেয়ালে ঝুলানো ফটো পেরেক ও সুতার সংযোগ বিন্দুর সাপেক্ষে ঘুরতে থাকে ; আবার গাড়ির চাকা তার অক্ষের সাপেক্ষে ঘুরতে পারে।

কোন নির্দিষ্ট অক্ষের চারদিকে ঘূর্ণায়মান কোন বস্তৃতে ত্বরণ সৃষ্টির জন্যে প্রযুক্ত দ্বন্দ্বের ভ্রামককে টর্ক বা বলের ভ্রামক বলে। একে au (টাউ) দ্বারা সূচিত করা হয়।

ব্যাখ্যা ঃ ধরা যাক, O বিন্দুতে একটি পাতলা পাত অনুভূমিক অবস্থায় এমনভাবে আবন্ধ আছে যে তা উল্লম্ব অক্ষ XOY-এর চতুর্দিকে O-কে কেন্দ্র করে ঘুরতে পারে [চিত্র ৫ ২] । পাতটিকে তার কোন বিন্দু C-তে বল প্রয়োগ করে ঘুরালে দেখা যায় যে,

(১) প্রযুক্ত বলের মান যত বেশি হবে, তার ঘূর্ণন সৃষ্টির ক্ষমতাও তত বেশি হবে।

 (২) O হতে প্রযুক্ত বল F-এর লম্ম দূরত্ব d যত বেশি হবে, এ বলে ঘূর্ণন সৃষ্টির ক্ষমতাও তত বেশি হবে।
 (৩) বলের ক্রিয়ামুখ O বিন্দু অভিমুখী হলে,
 পাতটিতে কোন ঘূর্ণন হবে না।

উপরোক্ত কারণে কোন অক্ষ বা বিন্দুর সাপেক্ষে কোন বলের ভ্রামকের মান বলের পরিমাণ ও অক্ষ হতে বলের ব্রিয়া রেখার লম্ব দূরত্ব *d-*এর গুণফল দ্বারা নির্দিষ্ট হয়।

 $\tau = d \times F$

-+-

(1)

বা, বলের ভ্রামক বা টর্ক = বল × লম্ব দূরত্ব

চিত্র ৫ ২-এ Ο হতে F বলের ক্রিয়াবিন্দু C-এর দূরত্ব = r ও F বলের ক্রিয়ারেখা NC-এর দূরত্ব = d এবং ∠NCO= θ নির্দেশ করা হয়েছে।

কাজেই, ON = d = r sin θ

 $\tau = d \times F = r F \sin \theta$

ভেষ্টর বীজগণিতের সাহায্যে ৫-কে নিম্ন উপায়ে লেখা হয়,

$$\vec{\tau} = \vec{r} \times \vec{F}$$

(2)

এখানে, \vec{r} ও \vec{F} যথাক্রমে অবস্থান ভেষ্টর ও প্রযুক্ত বল। r ও \vec{F} যে তলে অবস্থিত τ -এর দিক হবে ঐ তলের অভিলম্ম বরাবর। ঘড়ির কাঁটার বিপরীত দিকে অর্থাৎ বামাবর্তে (anti-clockwise) ঘূর্ণনের জন্য τ -এর অভিমুখ হচ্ছে উপর দিকে এবং মান ধনাত্মক। ঘড়ির কাঁটার দিকে অর্থাৎ দক্ষিণাবর্তে (clockwise) ঘূর্ণনের জন্য τ -এর অভিমুখ নিচের দিকে এবং মান ঋণাত্মক।

সমীকরণ (2) অনুসারে টর্কের নিম্নোক্ত গাণিতিক সংজ্ঞা দেয়া যায়।

সংজ্ঞা ঃ অক্ষের সাপেক্ষে ঘূর্ণনরত বস্তুর উপর যে বিন্দুতে বল ক্রিয়াশীল ঐ বিন্দুর অবস্থান ভেক্টর ও প্রযুক্ত বদের ডেক্টর গুণফলকে টর্ক বলে।

টর্ক বা বলের ভামকের একক (Unit of torque or moment of a force)

এস. আই. পম্বতিতে টর্ক বা বলের ভ্রামকের একক নিউটন-মিটার (N-m)।

টর্ক বা বলের ভ্রামকের মাত্রা সমীকরণ (Dimension of torque or moment of force)

টর্ক বা বলের ভ্রামকের সংজ্ঞা হতে এর মাত্রা সমীকরণ প্রতিপাদন করা যায়। বলের ভ্রামকের মাত্রা সমীকরণ,

[টর্ক বা বলের ভ্রামক] = [বল × দূরত্ব] = [MLT⁻² × L]

$$= [ML^2T^{-2}]$$

৫ ৪ টর্ব ও কৌণিক ত্বুরণের মধ্যে সম্পর্ক

Relation between torque and angular accelerations

আমরা জ্ঞানি সরলরেখায় চলমান কোন বস্তৃতে ত্বুরণ সৃষ্টির জন্যে বল প্রয়োগের প্রয়োজন। তেমনি নির্দিষ্ট অক্ষের চারদিকে ঘূর্ণায়মান কোন বস্তৃতে ত্বুরণ সৃষ্টির জন্যে একটি দ্বন্দ্বের প্রয়োজন হয়। এই দ্বন্দ্বের ভ্রামককে টর্ক বলে।

ধরি একটি বস্তু একটি নির্দিষ্ট অক্ষ AB-এর চারদিকে a সমকৌণিক বেগে ঘুরছে। এখন তার উপর একটি যুগল প্রয়োগ করায় তার কৌণিক বেগ বৃদ্ধি পাবে অর্থাৎ বস্তুতে কৌণিক ত্বরণ সৃষ্টি হবে। বস্তৃতে সৃষ্ট এই কৌণিক ত্বরণ তার প্রত্যেকটি কণার কৌণিক ত্বরণের সমান। কিন্তু ঘূর্ণাক্ষ হতে কণাগুলো বিভিন্ন দূরত্বে অবস্থান করে বিভিন্ন রৈখিক ত্বরণ লাভ করবে। ঘূর্ণাক্ষ হতে:কণার দূরত্ব যত বেশি হবে রৈখিক ত্বরণের মানও তত বেশি হবে।

ধরি বস্তুটি m_1, m_2, m_3 ইত্যাদি ভরের কতকগুলো কণার সমন্বয়ে গঠিত এবং ঘূর্ণাক্ষ হতে কণাগুলোর দূরত্ব যথাব্রুমে r_1, r_2, r_3 ইত্যাদি।

বর্ণনা অনুসারে, বস্তুটির প্রত্যেকটি কণার কৌণিক ত্বুরণ, $lpha=rac{d\omega}{dt}$

তা হলে m_1 ভরের বস্তু কণাটির রৈখিক ত্বরণ = $r_1 \frac{d\omega}{dt}$

ঐ কণার উপর প্রযুক্ত বল = ভর imes রৈখিক ত্বরণ = $m_1 r_1 \, {d \omega \over dt}$

হূর্ণাক্ষের সাঁপেক্ষে কণাটির উপর ক্রিয়ারত বলের ভ্রামক = বল \times ঘূর্ণাক্ষ হতে বস্তু কণার দূরত্ব $= m_1 r_1 \frac{d\omega}{dt} \times r_1 = m_1 r_1^2 \frac{d\omega}{dt}$

অনুরূপভাবে লেখা যায় m_2 , m_3 , m_4 , ... ইত্যাদি ভরের বস্তৃকণার উপর ক্রিয়ারত বলের ভ্রামক যথাক্রমে $m_2r_2^2\frac{d\omega}{dt}$, $m_3r_3^2\frac{d\omega}{dt}$, $m_4r_4^2\frac{d\omega}{dt}$ ইত্যাদি।

তা হলে উপরোক্ত ভ্রামকগুলোর সমষ্টিই উক্ত বস্তুর উপর ক্রিয়ারত দ্বন্দের ভ্রামক বা টর্ক,

$$\tau = m_1 r_1^2 \frac{d\omega}{dt} + m_2 r_2^2 \frac{d\omega}{dt} + m_3 r_3^2 \frac{d\omega}{dt} + m_4 r_4^2 \frac{d\omega}{dt} + = (m_1 r_1^2 + m_2 r_2^2 + m_3 r_3^2 + \dots) \frac{d\omega}{dt} = \frac{Id\omega}{dt} = I\alpha$$

$$\therefore \tau = I \frac{d\omega}{dt} = I\alpha$$
(3)

বা, টর্ক = জড়তার ভ্রামক × কৌণিক ত্বরণ। কৌণিক ত্বরণের আবর্তনরত বস্তৃকণার উপর জিরারত ছন্দ্বের টর্ক হবে ঘূর্ণাব্দের সাপেক্ষে তার জড়তার ভ্রামক ও কৌণিক ত্বরণের গুণফলের সমান।

আবার $\frac{d\omega}{dt} = 1$ হলে, $\tau = I$

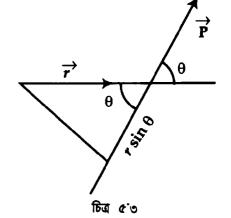
কোন অক্ষের চারদিকে ঘূর্ণায়মান কোন দৃঢ় বস্তুর উপর যে টর্ক ক্রিয়া করলে তাতে একক কৌণিক ত্বরণের সৃষ্টি হয় তাকে এ অক্ষের সাপেক্ষে তার জড়তার ভ্রামক বলে।

৫'৫ কৌেণিক ভরবেগ

Angular momentum

সংজ্ঞা ঃ ঘূর্ণনরত কোন বস্তৃকণার ব্যাসার্ধ ভেষ্টর ও রৈখিক ভরবেগের তেষ্টর গুণফলকে কৌণিক ভরবেগ বলে।

ব্যাখ্যা ঃ মনে করি 📝 = ঘূর্ণন কেন্দ্রের সাপেক্ষে কোন বস্তৃকণার ব্যাসার্ধ ভেষ্টর


> এবং $\overrightarrow{\mathbf{P}}$ = বস্তুর রৈখিক ভরবেগ অতএব, সংজ্ঞানুসারে বস্তুটির কৌণিক ভরবেগ

> > $\overrightarrow{\mathbf{L}} = \overrightarrow{r} \times \overrightarrow{\mathbf{P}}$ (4)

বুএটি একটি ভেক্টর রাশি।

মান ও দিক : কৌণিক ভরবেগের মান

 $\mathbf{L} = rp\sin\theta$

এখানে θ হচ্ছে \overrightarrow{r} ও \overrightarrow{p} -এর মধ্যবর্তী কোণ [চিত্র ৫'৩]। ঘূর্ণন কেন্দ্র হতে ভরবেগের ক্রিয়ারেখার লম্ম দূরত্ব হচ্ছে $r \sin \theta$ । অতএব, কোন বস্তৃকণার ভরবেগ ও ঘূর্ণন কেন্দ্র হতে ভরবেগের ক্রিয়া রেখার লম্ম দূরত্বের গুণফল কৌণিক ভরবেগের মান নির্দেশ করে।

 \overrightarrow{r} ও \overrightarrow{p} যে তলে অবস্থিত \overrightarrow{L} এর দিক হবে ঐ তলের লম্ম বরাবর। রুস গুণনের নিয়ম দ্বারা \overrightarrow{L} -এর দিক নির্ধারিত হবে।

জনুসিম্বান্ত : কণাটি বৃদ্তাকার পথে বৃত্তের কেন্দ্রের সাপেক্ষে গতিশীল হলে, \overrightarrow{r} ও \overrightarrow{p} -এর মধ্যবর্তী কোণ $\theta = 90^\circ$ । সেক্ষেত্রে

 $L = rp \sin \theta = rp = r(mv) = mr (r \omega) = mr^2 \omega \qquad \dots \qquad (5)$ একক ও মাত্রা সমীকরণ ঃ এম. কে. এস. ও এস. আই. পদ্ধতিতে কৌণিক ভরবেগের একক হলে
kgm²s⁻¹ এবং মাত্রা সমীকরণ

৫৬ কৌণিক ভরবেগ এবং কৌণিক বেগের মধ্যে সম্পর্ক Relation between angular momentum and angular velocity

মনে করি একটি বস্তু 🛛 কৌণিক বেগে একটি অক্ষের চারদিকে ঘুরছে। বস্তুটি অনেকগুলো বস্তুকগার সমষ্টি হলে আমরা লিখতে পারি,

$$L = l_1 + l_2 + l_3 + \dots + l_n$$

[এখানে l1, l2 ln পরস্পর সমান্তরাশ।]

বইঘর.কম
বা, L =
$$r_1p_1 + r_2p_2 + r_3p_3 + r_np_n$$

= $r_1m_1v_1 + r_2m_2v_2 + r_nm_nv_n$
= $r_1m_1\omega r_1 + r_2m_2\omega r_2 + r_nm_nv_n$
= $m_1r_1^2\omega + m_2^2r_2^2\omega + r_nm_nv_n$
= $\omega \sum mr^2$
= $I\omega$
Sector L = $I\omega$ (6)

200

কৌণিক গতিসত্র

এটি হল কৌণিক ভরবেগ এবং কৌণিক বেগের সম্পর্ক। উক্ত সম্পর্ক হতে কৌণিক ভরবেগের অপর একটি সংজ্ঞা দেয়া যেতে পারে।

সংজ্ঞা : খূর্ণন অক্ষ সাপেক্ষে কোন একটি বস্তুর জড়তার ভ্রামক এবং কৌণিক বেগের গুণফলকে কৌণিক তরবেগ বলে।

৫ ৭ খুর্ণায়মান বস্তুর গতিশক্তি Kinetic energy of a rotating body

ধরি একটি দৃঢ় বস্তু একটি নির্দিষ্ট অক্ষ AB-এর চারদিকে a সমকৌণিক বেগে ঘুরছে। স্থির অবস্থা হতে শুরু করে এই কৌণিক বেগে গতিশীল করতে বস্তুর উপর কিছু কাজ করতে হয়েছে যা বস্তুতে গতিশক্তিরূপে সঞ্চিত হয়েছে। এই গতিশক্তিই আবর্ত বা ঘূর্ণন গতিশক্তি।

যেহেড়ু বস্তৃটি 🛯 সমকৌণিক বেগে ঘুরছে কাচ্ছেই তার প্রতিটি কণার কৌণিক বেগ হবে 🖉 । কিন্তু ঘূর্ণাক্ষ হতে বিভিন্ন কণার দূরত্ব বিভিন্ন হেড়ু এদের রৈষিক বেগ অবস্থান ভেদে বিভিন্ন হবে।

কান্দেই বস্তৃটি $m_1, m_2, m_3 \dots m_n$ ভরের কণার সমন্বয়ে গঠিত হলে ও ঘূর্ণাক্ষ হতে কণাগুলোর দূরত্ব যথাক্রমে r_1, r_2, r_3 r_n হলে m_1 ভরের কণাটির রৈখিক বেগ, $v_1 = \omega r_1$ । কান্দেই তার গতিশক্তি = $\frac{1}{2}m_1v_1^2 = \frac{1}{2}m_1\omega^2r_1^2$

অনুরূপভাবে লেখা যায়,

 m_2 তরের কণাটির গতিশক্তি
 $= \frac{1}{2}m_2v_2^2 = \frac{1}{2}m_2\omega^2r_2^2$
 m_3 তরের কণাটির গতিশক্তি
 $= \frac{1}{2}m_3v_3^2 = \frac{1}{2}m_3\omega^2r_3^2$
 m_n তরের কণাটির গতিশক্তি
 $= \frac{1}{2}m_nv_n^2 = \frac{1}{2}m_n\omega^2r_n^2$

সমগ্র বস্তুটির গতিশক্তি,

K.
$$\mathbf{E}_{r} = \frac{1}{2}m_{1}v_{1}^{2} + \frac{1}{2}m_{2}v_{2}^{2} + \frac{1}{2}m_{3}v_{3}^{2} + \dots + \frac{1}{2}m_{n}v_{n}^{2}$$

$$= \frac{1}{2}m_{1}\omega^{2}r_{1}^{2} + \frac{1}{2}m_{2}\omega^{2}r_{2}^{2} + \frac{1}{2}m_{3}\omega^{2}r_{3}^{2} + \dots + \frac{1}{2}m_{n}\omega^{2}r_{n}^{2}$$

$$= \frac{1}{2}(m_{1}r_{1}^{2} + m_{2}r_{2}^{2} + m_{3}r_{3}^{2} + \dots + m_{n}r_{n}^{2})\omega^{2} = \frac{1}{2}I\omega^{2}$$
(7)

ঘূর্ণায়মান বস্তুর গতিশক্তি,

<u>K. E_r = $\frac{1}{2}$ × জড়তার ভ্রামক × কৌণিক বেগ² ।</u>

এখন
$$\omega = 1$$
 একক হলে, সমীকরণ (4) থেকে পাই,

 $\omega = 1$ data etc., Matasi (4) ta K. E. = $\frac{1}{2}$ I বা, I = 2 K. E.

অর্থাৎ, কোন নির্দিষ্ট অক্ষ বরাবর একক সমকৌণিক বেগে ঘূর্ণনরত কোন দৃঢ় বস্তুর জড়তার ভ্রামক, সংখ্যাগতভাবে এর গতিশক্তির দ্বিগুণ। অন্যভাবে বলা যায়, কোন নির্দিষ্ট অক্ষ বরাবর একক সমকৌণিক বেগে ঘূর্ণনরত বা আবর্তনরত কোন বস্তুর গতিশক্তি সংখ্যাগতভাবে এর জড়তার ভ্রামকের অর্ধেক।

৫'৮ কৌণিক গতির জন্য নিউটনের সূত্র Newton's law for angular motion

রৈখিক গতির ক্ষেত্রে নিউটনের গতিসূত্রগুলো পূর্বের অধ্যায়ে আলোচনা করা হয়েছে। বস্তুর কৌণিক গতির ক্ষেত্রেও নিউটনের গতিসূত্রগুলো ভিন্নরূপে প্রযোজ্য। নিম্নে সূত্রগুলো বিবৃত ও ব্যাখ্যা করা হল।

(১) প্রথম সূত্র : কোন বস্তুর উপর টর্ক ক্রিয়াশীল না হলে স্থির বস্তু স্থির অবস্থানে এবং ঘূর্ণনরত বস্তু সমকৌণিক বেগে ঘুরতে থাকবে।

ব্যাখ্যা : সূত্রানুযায়ী বাহ্যিক টর্কের ক্রিয়াতেই কেবলমাত্র বস্তুর কৌণিক বেগের তথা কৌণিক ভরবেগের পরিবৃর্তন সম্ভব। টর্কের ক্রিয়া ছাড়া বস্তুর কৌণিক বেগ হবে সমকৌণিক বেগ। আর বস্তু আপনা হতেই তার কৌণিক ভরবেগের উপর প্রভাব ফেলতে পারে না। কৌণিক ভরবেগের পরিবর্তনকারীই হচ্ছে টর্ক। সুতরাং, বস্তুর উপর টর্কের লম্বি শূন্য হলে এ বস্তুর কৌণিক ত্বরণও শূন্য হবে।

(২) দ্বিতীয় সূত্র ঃ <u>দ</u>ূর্ণনরত কোন বস্<u>তুর কৌণিক ভরবেগের পরিবর্তনের হার ঐ বস্তুর উপর ক্রিয়া</u>শীন টর্কের সমানুপাতিক <u>এবং টর্ক যে দিকে ক্রিয়া</u> করে কৌণিক ভরবেগে<u>র পরিবর্তনও ঐ</u> দিকে ঘটে।

ব্যাখ্যা ঃ সূত্রানুযায়ী কৌণিক ভরবেগ L = I ω -এর পরিবর্তনের হার $rac{dL}{dt}$ প্রযুক্ত টর্ক au-এর সমানুপাতিক।

অর্থাৎ,
$$\tau \propto \frac{dL}{dt} \propto I \frac{d\omega}{dt}$$

 $\propto I\alpha$
বা, $\tau = KI \alpha$

এখানে K একটি সমানুপাতিক ধ্রুবক। এস. আই. এককে K = 1

$$\therefore \overrightarrow{\tau} = I\alpha$$
(8)

টর্ক _{দ-}এর অভিমুখেই কৌণিক ভরবেগের পরিবর্তন dL সংঘটিত হবে।

বর্ণনা অনুযায়ী কৌণি ত্বিণের উৎসই টর্ক।

তৃতীয় সূত্র : প্রত্যেক ক্রিয়ামূলক টর্কের একটি সমান ও বিপরীত প্রতিক্রিয়ামূলক টর্ক আছে।

ব্যাখ্যা ঃ বস্তু A অপর একটি বস্তু B-এর উপর $\vec{\tau_{12}}$ টর্ক প্রয়োগ করলে B বস্তুও A-এর উপর সমান ও বিপরীতমুখী টর্ক $\vec{\tau_{21}}$ প্রয়োগ করবে। এখানে A কর্তৃক B-এর উপর প্রযুক্ত টর্ক $\vec{\tau_{12}}$ ক্রিয়ামূলক টর্ক ও B কর্তৃক A-এর উপর প্রযুক্ত টর্ক $\vec{\tau_{21}}$ ব্রুয়োমূলক টর্ক ও B কর্তৃক A-এর উপর প্রযুক্ত টর্ক $\vec{\tau_{21}}$ হচ্ছে প্রতিক্রিয়ামূলক টর্ক।

$$\vec{\tau}_{12} = -\vec{\tau}_{21}$$
 $\forall \tau_{12} = \tau_{21}$

প্রতিক্রিয়ামূলক টর্কের দিক ক্রিয়ামূলক টর্কের বিপরীতমুখী, তাই ঋণাত্মক চিহ্ন ব্যবহার ব্বরা হয়েছে।

ንው

৫ ৯ কৌণিক ভরবেগের সংরক্ষণ সূত্র Conservation law of angular momentum

কৌণিক গতির জন্য নিউটনের প্রথম সূত্র হতে আমরা জানি বাহ্যিক টর্কের ক্রিয়াতেই কেবলমাত্র বস্তুর কৌণিক বেগের তথা কৌণিক ভরবেগের পরিবর্তন হয়। টর্কের ক্রিয়া না থাকলে বস্তুটি সমকৌণিক বেগে ঘুরতে থাকে। অর্থাৎ সময়ের সাপেক্ষে কৌণিক বেগ ধ্রুব হয়। ফলে কৌণিক ভরবেগও ধ্রুব হয়। একে কৌণিক ভরবেগের সংরক্ষণ সূত্র বলে। সুতরাং বলা যায়, কোন বস্তুর উপর টর্কের লখি শুন্য হলে বস্তুটির কৌণিক ভরবেগ সংরক্ষিত থাকে।

গাণিতিক প্রমাণ : আমরা জানি কৌণিক ভরবেগ,

$$L = I\omega$$

(9)

এখানে L বস্তুর কৌণিক ভরবেগ, I জড়তার ভ্রামক এবং 🛛 কৌণিক বেগ।

সমীকরণ (9)-কে সময়ের সাপেক্ষে ব্যবকলন করে পাওয়া যায়,

$$\frac{d\mathbf{L}}{dt} = \frac{d}{dt} \left(\mathbf{I}\boldsymbol{\omega} = \mathbf{I} \frac{d\boldsymbol{\omega}}{dt} \right)$$

$$\widehat{\Phi} \overline{\varphi} \quad \frac{d\omega}{dt} = \alpha$$

জতএব, $\frac{dL}{dt} = I\alpha = \tau$ [নিউটনের কৌণিক গতির ২য় সূত্র অনুসারে]

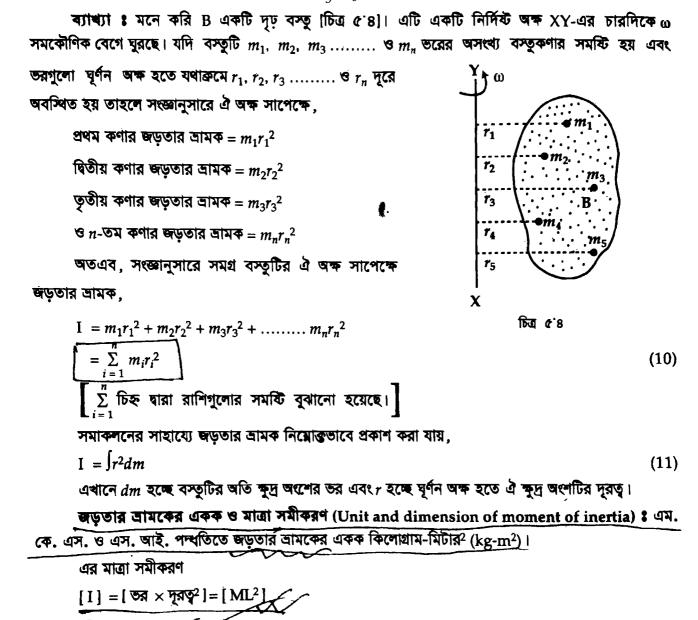
এখন $\tau = 0$, অর্ধাৎ বস্তুর উপর টর্ক ক্রিয়াশীল না হলে,

$$\frac{dL}{dt} = 0$$

L = ধ্ৰুবক

কাজেই, বস্তুর উপর ক্রিয়ারত বহিস্থ টর্কের লব্দি শূন্য হলে, ঘূর্ণায়মান বস্তুর কৌণিক ভরবেগের পরিবর্তন হবে না। এটিই কৌণিক ভরবেগের সংরক্ষণ সূত্র।

৫'১০ জড়তার ভ্রামক এবং চক্রগতির ব্যাসার্ধ Moment of inertia and radius of gyration


ন্সড়তার ভ্রামক

Moment of inertia

যখন কোন দৃঢ় বস্তু একটি নির্দিষ্ট অক্ষে আবন্ধ থাকে, তখন ঐ বস্তুর উপর বল প্রয়োগ করলে, আবন্ধ থাকার কারণে বস্তুটি সরলরেখায় চলতে পারে না। বস্তুটি অক্ষের চারদিকে ঘুরে এক্টু বস্তুর প্রতিটি কণার কৌণিক সরণ হয়। অক্ষের সাপেক্ষে বস্তুর এ ধরনের গতিকে ঘূর্ণন বা আবর্তন গতি বলে। অক্ষ বস্তুর ভেতরে বা বাইরে থাকতে পারে।

একটি দৃঢ়বস্তু কোন একটি স্থির অক্ষের চারদিকে আবর্তিত হতে থাকলে ঐ অক্ষের সাপেক্ষে বস্তুটির চ্নড়তার ভ্রামক বলতে অক্ষ হতে প্রতিটি কণার দূরত্বের বর্গ কণাটির ডরের গুণফলের সমস্টিকে বুঝায়। সুতরাং, চ্নড়তার ভ্রামকের নিয়োক্ত সংজ্ঞা দেয়া যায় ঃ

সন্জা ঃ কোন অক্ষ সাপেক্ষে ঘূর্ণনরত কোন দৃঢ় বস্তুর প্রতিটি কণার ডর এবং জব্দ হতে তাদের প্রত্যেকের লম্ব দূরত্বের বর্গের গুণফলকে জড়তার ভ্রামক বলে।

চক্রগতির ব্যাসার্ধ

Radius of gyration

কোন দৃঢ় বস্তুর মোট ভরকে যদি একটি নির্দিষ্ট বিন্দুতে কেন্দ্রীভূত ধরা হয় যাতে একটি নির্দিষ্ট অক্ষের সাপেক্ষে ঐ কেন্দ্রীভূত বস্তুকণার জড়তার ভ্রামক অক্ষ সাপেক্ষে সমগ্র দৃঢ় বস্তুর জড়তার ভ্রামকের সমান হয় তাহলে লেখা যায়,

$$I = \sum mr^2 = MK^2$$
(12)

এখানে, $M = \sum m$ = সিয়া বস্তুটির ভর

এবং K = ঘূর্ণন অক্ষ হতে যে বিন্দুতে সমগ্র ভর কেস্ত্রীভূত আছে, এ বিন্দুর দুরত্ব।

K-কে চক্রগতির ব্যাসার্ধ বলা হয়।

অতএব, চরুগতির ব্যাসার্ধের নিম্নোক্ত সংজ্ঞা দেয়া যায় 💈

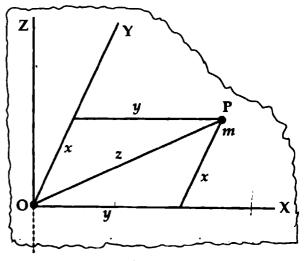
সংজ্ঞা ঃ বদি কোন দৃঢ় বস্তুর একটি নির্দিষ্ট বিশু বেধানে বস্তুটির সমস্ত ভর কেন্দ্রীভূত আছে ধরা হর এবং ঘূর্ণন অক্ষ সাণেক্ষে এ বিশ্বুতে জড়তার ভ্রামক সমগ্র বস্তুটির জড়তার ভ্রামকের সমান হর, তবে অক্ষ হতে এ বিশ্বর দূরত্বকে চব্রুণ্ডির ব্যাসার্ধ বলা হয়। সমীকরণ (12) হতে পাই,

$$K = \sqrt{\frac{1}{M}}$$
(13)

নির্দিষ্ট অক্ষের সাপেক্ষে কোন বস্তুর চক্রগতির ব্যাসার্ধ 0'2 m বলতে বুঝায় যে ঐ অক্ষ হতে 0'2 m দূরে বস্তুটির সমগ্র ভর কেন্দ্রীভূত আছে বিবেচনা করে জড়তার ভ্রামক নির্ণয় করলে বস্তুটির মোট জড়তার ভ্রামক পাওয়া যাবে।

৫.১১ জড়তার ভ্রামক সংক্রান্ত দুটি উপপাদ্য Two theorems relating moment of inertia

কোন একটি বিশেষ অক্ষের সাপেক্ষে দৃঢ় বস্তুর জড়তার ভ্রামক নির্ণয়ের দুটি সহজ্ঞ উপপাদ্য আছে।


উপপাদ্য দুটির একটিকে (১) লম্ব অক্ষসমূহের উপপাদ্য এবং অপরটিকে (২) সমান্তরাল অক্ষসমূহের উপপাদ্য বলে। নিম্নে পাত আকৃতির বস্ত্র ক্ষেত্রে উপপাদ্য দুটি আলোচনা করা হল।

(১) লম্ব অক্ষ উপপাদ্য (Perpendicular axes theorem) ঃ কোন পাতলা সমতল পাতের তলে অবস্থিত দুটি পরস্পর লম্ব অক্ষের সাপেক্ষে পাতটির স্তড়তার ভ্রামক্বয়ের সমষ্টি ঐ পাতে অবস্থিত দু অক্ষের ছেদ বিন্দুতে অংকিত লম্ব অক্ষ সাপেক্ষে পাতটির স্তড়তার ভ্রামকের সমান হবে।

ব্যাখ্যা ঃ মনে করি কোন সমতল পাতের উপর অবস্থিত দুটি পরস্পর লম্ম অক্ষ OX এবং OY বরাবর এদের জড়তার ভ্রামক যথাক্রমে I_x ও I_y । ধরি ঐ পাতে অবস্থিত দুই অক্ষের ছেদ বিন্দুতে অংকিত লম্ম OZ বরাবর পাতের জড়তার ভ্রামক I_z । প্রমাণ করতে হবে যে, I_x + I_y = I_z

জংকন : একটি পাতলা সমতল পাত নিই। এই পাতের উপর OX এবং OY দুটি পরস্পর লম্ম অংকন করি [চিত্র ৫.৫.]।

এখন OX এবং OY অক্ষ দুটির ছেদ O-তে পাতের উপর লম্ম টানি।

প্রমাণ ঃ সমতল পাতের উপর P একটি বিন্দু নিই যার ভুচ্চ কোটি x, y এবং z। এখন P বিন্দুতে m ভরের একটি কণা বিবেচনা করি। OZ অক্ষ সাপেক্ষে কণাটির জড়তার ভ্রামক = mz²।

OZ জক্ষ সাপেক্ষে সমগ্র পাতের জড়তার ভ্রামক $I_z = \Sigma mz^2 = \Sigma m (x^2 + y^2) = \Sigma mx^2 + \Sigma my^2$ (14) কিন্তু, $\Sigma my^2 = I_x$ এবং $\Sigma mx^2 = I_y$ অতএব সমীকরণ (14) হতে পাই

$$I_{z} = I_{y} + I_{x}$$

$$I_{z} = I_{x} + I_{y}$$
(15)

উপপাদ্যটি প্রমাণিত হল।

(২) সমান্তরাল অক উপপাদ্য (Parallel axes theorem) ঃ যে কোন অক্ষের সাপেকে কোন সমতন পাতনা পাতের জড়তার ভ্রামক পাচটির তারকেন্দ্রগামী তার সমান্তরাল অক্ষের সাপেকে জড়তার ভ্রামক এবং পাতের তর ও এ দুই অক্ষের মধ্যবর্তী দূরত্বের বর্গের গুণফলের সমন্টির সমান। ব্যাখ্যা ঃ ধরা যাক কাগজের তলে অবস্থিত AB কোন একটি অক্ষ এবং CD তার সমান্তরাল আর একটি অক্ষ। CD অক্ষটি M তরের পাতলা সমতল পাতের তারকেন্দ্র G দিয়ে অতিক্রান্ত [চিত্র ৫'৬]। যদি সমান্তরাল অক্ষদ্বয় AB ও CD-এর মধ্যবর্তী দূরত্ব h এবং AB ও CD-এর সাপেক্ষে পাতটির জড়তার দ্রামক যথাক্রমে I ও I_G হয় তবে উপপাদ্য অনুসারে প্রমাণ করতে হবে যে, $I = I_G + Mh^2$

প্রমাণ : ধন্নি পাতটি m_1, m_2, m_3 ইত্যাদি ভরের বস্তুকণার সমন্বয়ে গঠিত। CD অক্ষ হতে কণাগুলোর দূরত্ব যথাক্রমে x_1, x_2, x_3 ইত্যাদি। তা হলে AB অক্ষের সাপেক্ষে m_1 ভরের কণার জড়তার ভ্রামক

 $= m_1(x_1 + h)^2 = m_1x_1^2 + m_1h^2 + 2m_1x_1h$

অনুরূপভাবে AB অক্ষের সাপেক্ষে m_2 ভরের কণার জড়তার ভ্রামক

= $m_2 x_2^2 + m_2 h^2 + 2m_2 x_2 h$; m_3 তরের কণার জড়তার ড্রামক = $m_3 x_3^2 + m_3 h^2 + 2m_3 x_3 h$ ইত্যাদি।

: AB অক্ষের সাপেক্ষে সমগ্র পাতের জড়তার ভ্রামক I

হলে উপরোক্ত চ্রুড়তার দ্রামকগুলোর সমষ্টির সমান।

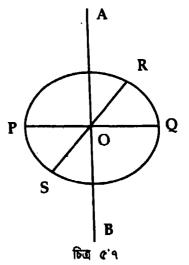
 $I = m_1 x_1^2 + m_1 h^2 + 2m_1 x_1 h + m_2 x_2^2 + m_2 h^2 + 2m_2 x_2 h + m_3 x_3^2 + m_3 h^2 + 2m_3 x_3 h + \dots$

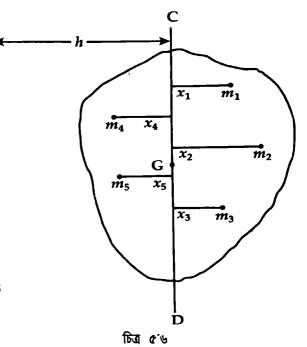
 $= \Sigma m x^2 + h^2 \Sigma m + 2h \Sigma m x.$

এখানে, Σmx = CD অক্ষের সাপেক্ষে সমগ্র পাতের ভর ভ্রামক। কিন্তু সমগ্র পাতের শুদ্ধন G বিন্দু দিয়ে CD রেখা বরাবর নিম্নমুখে ব্রিয়া করায় CD অক্ষের সাপেক্ষে পাতটির ভর ভ্রামক,

 $\sum mx = 0 \quad \text{Sign} \quad \Sigma m = M \quad \text{Sign} \quad \Sigma m = M \quad \text{Sign} \quad \Sigma m x^2$ $\therefore \quad I = I_G + Mh^2 \qquad (16)$

১। বৃত্তাকার চাকতির যেকোন ব্যাসের সাপেকে জড়তার ভামক (Moment of inertia of a circular disc about any diameter)


M ভরবিশিষ্ট ও r ব্যাসার্ধের একটি চাকতি নেয়া হল।


ধরা যাক, PQ ব্যাসের সাপেক্ষে বৃস্তাকার চাকতির জড়তার ভ্রামক = I। অতএব, লম্ম-ব্যাস RS সাপেক্ষেও এ চাকতির জড়তার ভ্রামক = I

এখন, উক্ত দুই লম্ম-ব্যাসের ছেদবিন্দু অর্ধাৎ চাকতির কেন্দ্রবিন্দু O দিয়ে চাকতির তলের অভিলম্ম বরাবর গমনকারী AB অক্ষের সাপেক্ষে [চিত্র ৫'৭] চাকতির ভ্রামক I_{AB} হলে, ল্যুম্ম-অক্ষ উপপাদ্য অনুসারে,

$$I_{AB} = I + I = 2I$$

আমরা জানি, M ভরবিশিষ্ট এবং r ব্যাসার্ধের একটি বৃদ্তাকার চাকতির পৃষ্ঠের অভিলম্ম বরাবর চাকতির কেন্দ্র দিয়ে গমনকারী অক্ষের সাপেক্ষে চাকতির জড়তার দ্রামক হল <u>সিr²</u>।

অতএব,
$$l_{AB} = \frac{Mr^2}{2}$$

 $2I = \frac{Mr^2}{2}$
বা, $I = \frac{Mr^2}{4}$ (17)

২। বৃত্তাকার চাকতির পৃষ্ঠের অভিলম্বতাবে গমনকারী স্পর্শকের সাপেকে চাকতির জড়তার ভামক (Moment of inertia of a circular disc about a tangent perpendicular to its plane)

ধরা যাক, r ব্যাসার্ধের এবং M ভরবিশিষ্ট একটি বৃত্তাকার চাকতির পৃষ্ঠের অভিলম্মভাবে গমনকারী RS একটি স্পর্শক। চাকতির কেন্দ্র O দিয়ে গমনকারী PQ অপর একটি অক্ষ যা RS অক্ষের সমান্তরাল [চিত্র ৫'৮]।

এখন সমান্তরাল অক্ষ উপপাদ্য অনুযায়ী স্পর্শক RS এর সাপেক্ষে চাকতির জড়তার ভ্রামক I হলে আমরা পাই,

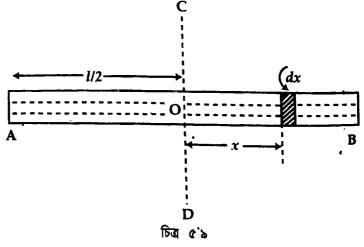
$$I = I_{PQ} + Mr^2$$

জাবার, আমরা জানি r ব্যাসার্ধের এবং M ভরের একটি বৃত্তাকার চাকতির পৃষ্ঠের অভিলম্ম বরাবর চাকতির কেন্দ্র দিয়ে গমনকারী অক্ষের সাপেক্ষে জড়তার ভ্রামক হল $\frac{Mr^2}{2}$ ।

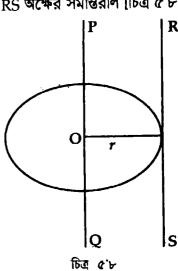
স্তরাং, I_{PQ} =
$$\frac{Mr^2}{2}$$

I = $\frac{Mr^2}{2}$ + Mr²
= $\frac{3}{2}$ Mr²

৫'১২ কয়েঁকটি বিশেষ ক্ষেত্রে জড়তার ভ্রামক ও চক্রগতির ব্যাসার্ধ নির্ণয়


Determination of moment of inertia and radius of gyration for some special cases

(18)


১। সরু ও স্বম দন্ডের মধ্যবিন্দু দিয়ে ও তার দৈর্ঘ্যের অভিলন্দ্রভাবে অতিক্রান্ত আক্রে সাপেক্ষে মূর্ণায়মান ঐ দন্ডের জড়তার ভ্রামক: $1 = \frac{M}{12}$

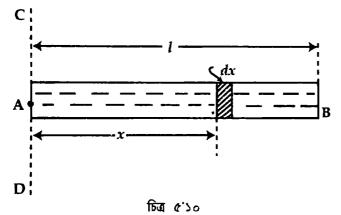
ধরি । দৈর্ঘ্য ও M ভরবিশিষ্ট একটি সুষম সরু দণ্ড AB-এর দৈর্ঘ্যের মধ্যবিন্দু O দিয়ে ও দৈর্ঘ্যের লম্বভাবে অতিক্রান্ত অক্ষ CD-এর চতুর্দিকে ঘুরছে [চিত্র ৫'৯] । এই অক্ষের সাপেক্ষে তার জড়তার ভ্রামক ও চক্রগতির ব্যাসার্ধ নির্ণয় করতে হবে।

দন্ডটি সুষম হেতৃ তার প্রতি একক দৈর্ঘ্যের ভর = $\frac{M}{l}$ । কাচ্ছেই CD অক্ষ হতে x দুরে অবস্থিত dx দৈর্ঘ্যের একটি ক্ষুদ্র অংশের ভর dM হলে $dM = \frac{M}{l} dx \mid dx$ অংশটি ক্ষুদ্র হওয়ায় তার প্রতিটি কণা CD অক্ষ হতে x দুরে অবস্থিত গণ্য করা যায়। সুতরাং CD অক্ষের সাপেক্ষে dx অংশের জড়তার ভ্রামক = $dM \times x^2 = \frac{M}{l} \times dx \times x^2$

এবং একে x = 1/2 এবং x = -1/2 সীমার মধ্যে সমাকলন করলে সমগ্র দন্ডের জড়তা ভ্রামক পাওয়া যাবে।

CD অক্ষের সাপেক্ষে সমগ্র দণ্ডটির জড়তার ভ্রামক,

$$I = \int_{-1/2}^{1/2} \left(\frac{M}{l}\right) \times dx \times x^{2} = \frac{M}{l} \int_{-1/2}^{1/2} x^{2} dx = \frac{M}{l} \left[\frac{x^{3}}{3}\right]_{-l/2}^{l/2}$$
$$= \frac{M}{3l} \left[\left(\frac{l}{2}\right)^{3} - \left(-\frac{l}{2}\right)^{3}\right] = \frac{M}{3l} \left(\frac{l^{3}}{8} + \frac{l^{3}}{8}\right) \qquad \therefore \boxed{I = \frac{M}{12} l^{2}}$$
(19)


ধরি চক্রগতির ব্যাসার্ধ K

$$MK^{2} = \frac{M}{12}l^{2}$$

$$K = \frac{l}{\sqrt{12}} = \frac{l}{2\sqrt{3}}$$

২। সরু সুষম দন্ডের এক প্রান্ত দিয়ে ও তার দৈর্ঘ্যের লম্বভাবে অতিক্রান্ত অক্ষের সাপেকে তার জড়তার ভ্রামক :

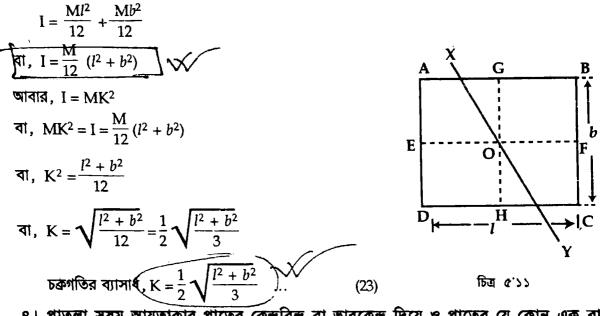
ধরি AB একটি সরু ও সুষম দন্ড। এর ভর M ও দৈর্ঘ্য l । দন্ডটি তার এক প্রান্ত বিন্দু A দিয়ে ও দৈর্ঘ্যের লম্মভাবে অতিক্রান্ত CD-এর চারদিকে যুরছে [চিত্র ৫'১০]। এই CD অক্ষের সাপেক্ষে দন্ডটির জড়তা ভ্রামক ও চক্রগতির ব্যাসার্ধ নির্ণয় করতে হবে।

বর্ণনা অনুসারে দণ্ডটি সুষম হওয়ায় তার প্রতি একক দৈর্ঘ্যের ভর $\frac{M}{l}$ । সুতরাং CD অক্ষ হতে x দুরে অবস্থিত দণ্ডটির d_x দৈর্ঘ্যের একটি ক্ষুদ্র অংশের ভর $dM = \frac{M}{l} dx$ । অংশটি ক্ষুদ্র হেতু এর প্রতিটি কণা CD অক্ষ হতে x দূরে অবস্থিত গণ্য করা যায়।

(20)

CD অক্ষের সাপেক্ষে দণ্ডটির এই ক্ষুদ্র অংশের জড়তার ভ্রামক = $\frac{M}{I} \times dx \times x^2$

এখন একে x = 0 ও x = l এই সীমার মধ্যে সমাকলন করলে, CD অক্ষের সাপেক্ষে সমগ্র লন্ডের জড়তার ভ্রামক পাওয়া যাবে।


নির্দেয় জড়তার ভ্রামক, I =
$$\int_{x=0}^{x=l} \left(\frac{M}{l}\right) \times dx \times x^{2} = \frac{M}{l} \int_{x=0}^{x=l} x^{2} dx$$
$$= \frac{M}{l} \left[\frac{x^{3}}{3}\right]_{0}^{l} = \frac{M}{3l} \times l^{3}$$
$$\therefore I = \frac{1}{3} \frac{Ml^{2}}{l}$$
(21)
এখন চক্রগতির ব্যাসার্ধ K হলে, MK² = $\frac{1}{3} Ml^{2}$

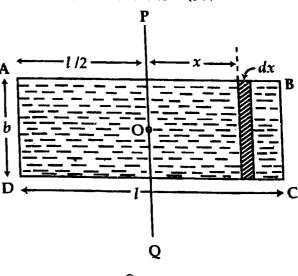
$$\frac{1}{\sqrt{3}} K = \frac{1}{\sqrt{3}}$$
(22)

৩। সুষম পাতলা ভায়তাকার পাতের কেন্দ্রবিন্দু বা তারকেন্দ্র দিয়ে লম্বতাবে অতিক্লান্ত অক্ষের সাপেকে জড়তার ভ্রামক :

ধরি একটি সুষম পাতলা আয়তাকার পাত ABCD [চিত্র ৫'১১]। এর ভর M, দৈর্ঘ্য ! = AB = CD ও প্রস্থ = b = AD = BC ।পাতটি তার কেন্দ্রবিন্দু বা ভার কেন্দ্র O দিয়ে লম্বভাবে অতিক্রান্ত অক্ষ XOY অক্ষের সাপেক্ষে ঘুরছে। এখন, EF অক্ষর O বিন্দুগামী এবং AB বাহুর সমান্তরাল এবং GH অক্ষ O বিন্দুগামী এবং AD বাহুর সমান্তরাল। EF এবং GH পরস্পর লম্ম। XOY অক্ষ EF ও GH-এর উপর লম্ম।

লম্ম-অক্ষ উপপাদ্য অনুসারে XOY অক্ষের সাপেক্ষে ঐ পাতের জড়তার ভ্রামক,

৪। পাতলা সুষম আয়তাকার পাতের কেন্দ্রবিন্দু বা তারকেন্দ্র দিয়ে ও পাতের যে কোন এক বাহুর সমান্তরালভাবে অতিক্রান্ত অক্ষের সাপেক্ষে ঘূর্ণায়মান ঐ পাতের জড়তার ভ্রামক ঃ


ধরি একটি পাতলা ও সুষ্ম আয়তাকার পাত ABCD [চিত্র ৫'১২]। এর ভর M ও দৈর্ঘ্য = l = AB = CD ও প্রস্থ = b = AD = BC

পাতটি তার কেন্দ্রবিন্দু O দিয়ে এবং তার প্রস্থ AD বা BC-এর সমান্তরালে অতিক্রান্ত অক্ষ PQ-এর চতুর্দিকে ঘুরছে। এই PQ অক্ষের সাপেক্ষে পাতটির জড়তার ভ্রামক ও চক্রগতির ব্যাসার্ধ নির্ণয় করতে হবে।

পাতটি সুষম হেতু তার প্রতি একক ক্ষেত্রফলের ভর = <u>M</u> ।×b কাজ্জেই PQ অক্ষ হতে x দূরে অবস্থিত ↑ —

পাতটির ক্ষুদ্র dx দৈর্ঘ্য ও b প্রস্থবিশিষ্ট একটি সরু আয়তাকার ফালির ভর = $\frac{M}{l \times b} \times (b \times dx) = \frac{M}{l} \times dx$ পাতটি সরু ২ওয়ায় ঐ সরু অংশের প্রতিটি বিন্দু PQ জক্ষ হতে x দূরত্বে অবস্থিত গণ্য করা যায়।

 \therefore PQ অক্ষের সাপেক্ষে এই ফালিটির জড়তার ভ্রামক = $\frac{M}{l} \times dx \times x^2$

সমগ্র পাতটিকে প্রস্থের সমান্তরালে অনুরূপ কতকগুলো সমান সরু ফালিতে বিভক্ত করা যায়। তা হলে Pa অক্ষের সাপেক্ষে এই ফালিগুলোর জড়তার ভ্রামকের সমষ্টিই সমগ্র পাতটির জড়তার ভ্রামক নির্দেশ করবে। x = — 1/2 ও x = 1/2 এই সীমার মধ্যে উপরোক্ত সরু ফালির জড়তার ভ্রামকের সমাকলন করলে PO অক্ষের সাপেক্ষে পাতটির জড়তার ভ্রামক পাওয়া যাবে। ধরি পাতটির জড়তার ভ্রামক = I

$$I = \int_{-l/2}^{l/2} \left(\frac{M}{l}\right) dx \times x^{2} = \frac{M}{l} \int_{-l/2}^{l/2} x^{2} dx$$
$$= \frac{M}{l} \left[\frac{x^{3}}{3}\right]_{-l/2}^{l/2} = \frac{M}{3l} \left[(l/2)^{3} - (-l/2)^{3}\right] = \frac{M}{3l} \times \frac{2l^{3}}{8}$$
$$\exists I, I = \frac{1}{12} Ml^{2}$$
(24)

এখন চব্রুগতির ব্যাসার্ধ K হলে,

$$MK^{2} = \frac{Ml^{2}}{12}$$

$$K = \frac{l}{\sqrt{12}} = \frac{l}{2\sqrt{3}}$$
(25)

এভাবে দেখানো যায় যে, দৈর্ঘ্যের সমান্তরাণে ও দন্ডের কেন্দ্রবিন্দু দিয়ে অতিক্রান্ত অক্ষের সাপেক্ষে দন্ডটির জড়তার ভ্রামক, I = $rac{\mathrm{M}b^2}{12}$ এবং চক্রাকার ব্যাসার্ধ, K = $rac{b}{2\sqrt{3}}$ ।

৫। নিজ অক্ষের চতুর্দিকে ঘূর্ণায়মান একটি নিরেট চোঙের জড়তার ভ্রামক ও চক্রগতির ব্যাসার্ধ :

ধরি একটি সুষম নিরেট চোঙ C-এর ভর M, দৈর্ঘ্য । ও ব্যাসার্ধ r [চিত্র ৫'১৩]। এটি নিচ্চ জক্ষ PQ-এর চতুর্দিকে ঘূরছে। PQ সাপেক্ষে এর জড়তার ভ্রামক ও চক্রগতির ব্যাসার্ধ নির্ণয় করতে হবে। বর্ণনা অনুসারে চোঙটির আয়তন = πr² ×l

চোঙের উপাদানের ঘনত্ব =
$$\frac{\Box}{\Box}$$
 আয়তন = $\frac{M}{\pi r^2 l}$

Q Tod C 30 PQ-এর চতুর্দিকে x ব্যাসার্ধ ও dx বিস্তারবিশিষ্ট একটি ফাঁপা সমাক্ষীয় পাতলা চোঙ বিবেচনা করি।

এই পাঁতলা চোঙের প্রস্বচ্ছেদ = 2πxdx, জায়তন = 2πx × dx×l ও ভর = জায়তন × ঘনত্ব

$$= 2\pi x \times dx \times l \times \frac{M}{\pi r^2 l}$$
$$= \frac{2Mxdx}{r^2}$$

dx বিস্তারের এই চোঙটি পাতলা হেতৃ তার প্রতিটি কণা PQ হতে x দূরে বিবেচনা করা যায়। কাজেই PQ-এর সাপেক্ষে এই পাতলা চোঙের জড়তার ভ্রামক

$$=\frac{2Mxdx}{r^2} \times x^2 = \frac{2M}{r^2} x^3 dx$$

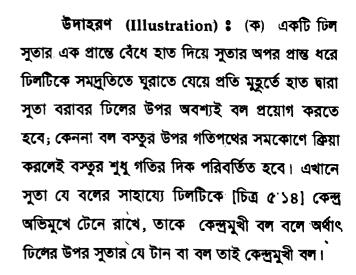
সমগ্র চোঙটিকে সমাক্ষীয় অনুরূপ অনেকগুলো পাতলা ফাঁপা চোঙের সমন্বয়ে গঠিত বিবেচনা করা যায়। কাজেই x = 0 ও x =r এই সীমার মধ্যে উপরোক্ত ফাঁপা চোঙের জড়তার ভ্রামককে সমাকলন করলে নিজ্ঞ অক্ষ PO-এর সাপেক্ষে সমগ্র চোঙটির জড়তার ভ্রামক I পাওয়া যাবে।

$$I = \int_{0}^{r} \frac{2M}{r^{2}} x^{3} dx = \frac{2M}{r^{2}} \int_{0}^{r} x^{3} dx = \frac{2M}{r^{2}} \left[\frac{x^{4}}{4} \right]_{0}^{r}$$
$$= \frac{2M}{4r^{2}} \left[r^{4} - 0 \right]$$
$$I = \frac{1}{2} Mr^{2}$$
(26)

এক্ষেত্রে চব্রুগতির ব্যাসার্ধ K হলে,

বলকে কেন্দ্রান্ডিক বা অভিকেন্দ্রিক বলও বলা হয়।

চিত্র ৫'১৪


$$MK^{2} = \frac{1}{2}Mr^{2}$$

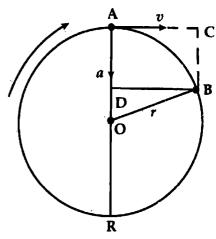
$$(\therefore K = \frac{r}{\sqrt{2}})$$

৫ ১১ কেন্দ্রমুখী বল Centripetal force

বাহ্যিক বল প্রয়োগ না করলে সকল গতিশীল বস্তু গতি চ্বড়তার দরুন সরলরেখায় সমবেগে চলতে থাকে। একটি বস্তৃকে বৃত্তাকার পথে গতিশীল রাখতে হলে তার সরলরেখায় গতিশীল থাকার প্রবণতাকে প্রতি মুহূর্তে কেন্দ্রের দিকে ক্রিয়াশীল বল প্রয়োগ দ্বারা প্রতিরোধ করতে হয়। এই বলই কেন্দ্রমুখী বল (Centripetal Force)।

কিন্দ্রমুখী বলের সংজ্ঞা : যখন কোন বস্তু বৃত্তাকার পথে ঘুরতে থাকে তখন যে বল সর্বদা বস্তুর উপরে এ বৃত্তের কেন্দ্র অভিমুখে ক্রিয়া করে বস্তৃটিকে বৃত্তপথে গতিশীল রাখে তাকে কেন্দ্রমুখী বল বলে। এই

(খ) এক গোছা চাবিকে চেইন-এর এক প্রান্তে বেঁধে অপর প্রান্ত হাতে ধরে ঘুরালে চেইনটি চাবির উপর যে বল প্রয়োগ করে তার নাম কেন্দ্রমুখী বল।


পৃথিবী ও সূর্যের মধ্যকার মহাকর্ষীয় বল হতে পৃথিবী চারদিকে এবং ইলেকট্রন ও নিউক্লয়াসের মধ্যকার তড়িতাকর্ষণ বল হতে ইলেকট্রন নিউক্লিয়াসের চতুর্দিকে ঘুরবার প্রয়োজনীয় কেন্দ্রমুখী বল লাভ করে।

(27)

কেন্দ্রমুম্বী বলের সমীকরণ প্রতিপাদন—যদিও ৩নং অধ্যায়ে কেন্দ্রমুম্বী বা অভিলম্ম ত্বুরণের সমীকরণ বের করা হয়েছে তবুও তা এ অধ্যায়ে অন্য পন্ধতিতে বের করা হবে। কেন্দ্রমুম্বী ত্বুরণের রাশি ব্যবহার করে নিউটনের গতির দ্বিতীয় সূত্র প্রয়োগ করে কেন্দ্রমুম্বী বলের রাশিমালা প্রতিপাদন করা হবে।

মনে করি m ভরবিশিষ্ট একটি বস্তুকণা O বিন্দুকে কেন্দ্র করে r ব্যাসার্ধবিশিষ্ট একটি বৃদ্তাকার পথ ABRA-এ v সমদুতিতে ঘুরতে ঘুরতে কোন এক সময়ে A বিন্দুতে এসে পৌঁছল [চিত্র ৫ ১৫]। যদি বস্তুকণার উপর কেন্দ্রমুখী বল ক্রিয়া না করত তবে তা স্পর্শক AC-এর দিকে অগ্রসর হত। এমতাবস্থায় মনে করি অতি অল্প সময় t- এ বস্তুটি A বি্ন্দু হতে C বিন্দুতে পৌঁছত। অতএব আমরা পাই,

চিত্র ৫'১৫

কিস্তু যেহেতু বস্তুর উপর কেন্দ্রমুখী বল ক্রিয়া করছে, সেহেতু তা A হতে C বিন্দুতে না গিয়ে কেন্দ্রমুখী বল কর্তৃক সৃষ্ট ত্বরণ a-এর জন্য বৃস্তাকার পথে চলে উক্ত সময়ে A হতে B বিন্দুতে এসে AOR ব্যাসের সমান্তরালে CB-এর সমান দূরত্ব অতিক্রম করে গণ্য করা যায়।

কাজেই বর্গনা অনুসারে বৃত্তাকার পথে সমদ্রতিতে গতিশীল বস্তুর A হতে অতি অল্প t সময়ে B-তে যাওয়ার অর্থ উক্ত সময়ে বেগের জন্য AC দূরত্ব যাওয়া ও পরে C হতে ত্বরণের জন্য AC-এর সমকোণে CB-এর সমান দূরত্ব অতিক্রম করা।

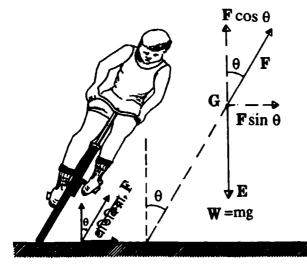
$$CB = v_0 + \frac{1}{2}at^2 \quad \text{at}, \ CB = 0 + \frac{1}{2}at^2 = \frac{1}{2}at^2 \tag{29}$$

এখন B হতে AOR ব্যাসের উপর BD লম্ব টেনে ACBD সামান্তরিকটি পূর্ণ করি। তা হলে, চিত্র ও বর্ণনা হতে আমরা পাই,

799

বৃন্তাকার পথে ঘূর্ণনরত বস্তুর উপর ক্রিয়ারত কেন্দ্রমুখী বল F হলে নিউটনের গতির দ্বিতীয় সূত্র (F = ma) অনুযায়ী,

$$\mathbf{F} = m \frac{v^2}{r} \tag{31}$$

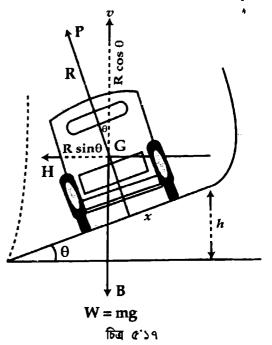

$$F = \frac{mv^2}{r} = \frac{m\omega^2 r^2}{r} = m\omega^2 r$$
(32)

উল্লেখ্য : ভেষ্টরের সাহায্যে লেখা যায়, $\vec{F} = -m\omega^2 \vec{r} \cdot \vec{r} = -\omega^2 \vec{r}$ কল্তের সাপেক্ষে বস্তুর অবস্থান বা ব্যাসার্ধ ডেষ্টর। \vec{F} ও \vec{r} পরস্পর বিপরীতমুখী হওয়ায় ঋণাত্মক চিহ্ন ব্যবহৃত হয়েছে।

৫ ১২ যানবাহন ও রাস্তার বাঁক Vehicles and banking of roads

(১) বক্ত পথে সাইকেল আরোহীর গতি : কোন সাইকেল আরোহী বক্ত পথে চলার সময় সাইকেলসহ তার শরীরকে কেন্দ্রের দিকে হেলিয়ে রাখে। বক্ত পথে চলার সময় কেন্দ্রমুখী বলের অভাবে তার উপর ক্রিয়ারত গতি জড়তাই তাকে রাস্তার অপর পাড়ে ছিটকিয়ে ফেলার চেন্টা করে। এই প্রবণতাকে প্রশমিত করার জন্য সাইকেল আরোহী সাইকেলসহ তার শরীরকে বক্ত পথে কেন্দ্রের দিকে হেলিয়ে রাখে। এভাবে কেন্দ্রমুখী বল সৃন্টি করে।

ধরা যাক, একন্ধন সাইকেল আরোহীকে v সমদ্রতিতে r ব্যাসার্ধবিশিষ্ট কোন বৃত্তাকার পথে মোড় ঘুরার সময় মোড়ের কেন্দ্রের দিকে উল্লস্বের সাথে ө কোণে হেলে থাকতে হয় [চিত্র ৫ ১৬]। আরও ধরা যাক সাইকেলসহ



$$\overline{q} = \frac{v^2}{rg}$$

আরোহীর ওজন W = mg এবং সাইকেলের উপর রাস্তার প্রতিক্রিয়া বল F। তা হলে তাদের মিলিত ওজন ভারকেন্দ্র দিয়ে সোজা নিচের দিকে GE বরাবর এবং F বল উল্লম্ব রেখার সাথে θ কোণে উপরের দিকে ক্রিয়া করবে। ভারসাম্যাবস্থায় মোড়ের কেন্দ্র বরাবর, F-এর জংশক, F sin $\theta = \frac{mv^2}{r}$ এবং উল্লম্ব

বরাবর F-এর অংশক, F cos
$$\theta$$
 = W = mg ।
 $\tan \theta = \frac{F \sin \theta}{F \cos \theta} = \frac{mv^2}{r} + W$
 $= \frac{mv^2}{r} \div mg = \frac{v^2}{rg}$
(33)

সূর্তরাং (i) আরোহীকে বেশি বেগে মোড় নিতে উল্লস্ব রেখার সাথে বেশি কোণ করে হেলে থাকতে হবে। (ii) উল্লস্ব রেখা হতে মোড়ের কেন্দ্রের দিকে কম বাঁকের রাস্তায় কম এবং বেশি বাঁকের রাস্তায় বেশি হেলে থাকতে হবে। (২) রেল লাইন বা রাস্তা ঢালু রাখা ঃ বক্রপথে মোটর বা রেলগাড়ি চলার সময় একটি কেন্দ্রমুখী বলের প্রয়োজন হয়। কেন্দ্রমুখী বলের অভাবে গতি জড়তার কারণে যানবাহন উল্টে যাওয়ার সম্ভাবনা থাকে। এই জড়তাকে

প্রশমিত করার জন্য বরুপথে বাইরের রেল বা রাস্তা ভেতরের দিকের চেয়ে কিছুটা উঁচু করে কেন্দ্রমুখী বল সৃষ্টি করা হয়। এ ব্যবস্থাকে <mark>রাস্তার ব্যাংকিং</mark> (Banking of road) বলে।

সমতল রাস্তা ও চাকার ঘর্ষণে যে কেন্দ্রমুখী বল পাওয়া যায় তা ক্ষেত্রবিশেষে প্রয়োজনের তুলনায় কম হয় এবং এ সব ক্ষেত্রে গাড়ি আস্তে না চালালে রাস্তা হতে পিছলিয়ে কাত হয়ে পড়ার সম্ভাবনা থাকে। কিন্তু মোড়ের রাস্তার কেন্দ্র যে দিকে সেই পার্শ্ব অপেক্ষা অপর পার্শ্ব উঁচু হলে রাস্তা ও চাকার মধ্যকার ঘর্ষণ বলের মান একটি নির্দিফ্ট পরিমাণ বৃন্ধি পায়। ফলে এ রাস্তায় গাড়ির বেগ একটি নির্দিফ্ট সীমার মধ্যে থাকলে গাড়ি প্রয়োজনীয় কেন্দ্রমুখী বল রাস্তা হতে সংগ্রহ করে চলতে পারে।

ধরা যাক, W = mg ওজ্বনের একটি গাড়ি v দুতিতে r ব্যাসার্ধবিশিষ্ট একটি রাস্তায় মোড় নিচ্ছে এবং রাস্তাটি অনুভূমিকের সাথে θ কোণে আনত [চিত্র ৫ ১৭]। এ অবস্থায় গাড়ির ভারকেন্দ্র G দিয়ে mg খাড়া নিচের দিকে GB বরাবর এবং রাস্তার অভিলম্ব প্রতিক্রিয়া R উল্লম্ব রেখা GV-এর সাথে θ কোণে আনত হয়ে GP বরাবর ক্রিয়া করছে। ভারসাম্য অবস্থায় অনুভূমিক রেখা GH বরাবর R-এর অংশক,

R sin
$$\theta = \frac{mv^2}{r}$$

এবং উল্লম্ম রেখা GV বরাবর R-এর জংশক,
R cos $\theta = mg$
 $\tan \theta = \frac{R \sin \theta}{R \cos \theta} = \frac{mv^2}{r} \div mg = \frac{v^2}{rg}$
বা, $\tan \theta = \frac{v^2}{rg}$ (34)
সূতরাং (i) v বেশি হলে, θ -ও বেশি হতে হবে।
(ii) বেশি বাঁকের রাস্তায় θ বড় হতে হবে।

অনুসিম্ধান্ত ঃ রেল লাইনের ক্ষেত্রে যদি বহিস্থ লাইনটি অন্তস্থ লাইন অপেক্ষা h উচ্চতায় থাকে এবং দুটি লাইনের মধ্যবর্তী দুরত্ব যদি x হয়, তবে

$$\sin \theta = \frac{h}{x}$$
(35)
धादार $\tan \theta = \frac{h}{\sqrt{x^2 - h^2}}$
(36)
धादार θ कुम्र दरा, $\tan \theta = \sin \theta = \frac{h}{x}$

৫.১৩ ব্রৈখিক ও কৌণিক গতির মধ্যে সাদৃশ্য Similarities between linear and angular motion

রৈখিক গতি ও ঘূর্ণন গতির মধ্যে কতকগুলো সাদৃশ্য পরিলক্ষিত হয়। যেমন—

√
িরেখিক গতির ক্ষেত্রে বস্তুর রৈখিক ভরবেগ = ভর × বেগ =mv

ঘূর্ণন গতির ক্ষেত্রে বস্তুর কৌণিক ভরবেগ = জড়তার দ্রামক imes কৌণিক বেগ = I ω

্রিখিক গতির ক্ষেত্রে রৈখিক ত্রেণের উৎস বল এবং বল = ভর imes ত্বরণ, ma=m $rac{dv}{dt}$

কৌণিক গতির ক্ষেত্রে কৌণিক তুরণের উৎস টর্ক এবং টর্ক = জড়তার ভ্রামক imes কৌণিক তুরণ = Ilpha = I $rac{d\omega}{dt}$

্রিখিক গতির ক্ষেত্রে গতিশক্তি = $\frac{1}{2} \times \overline{a} \times ($ রৈখিক বেগ)² = $\frac{1}{2} mv^2$

মূর্ণন গতির ক্ষেত্রে, গতিশক্তি = $\frac{1}{2} \times$ জড়তার ভ্রামক × (কৌণিক বেগ)² = $\frac{1}{2}$ I ω^2

উপরোক্ত আলোচনা হতে বুঝা যায় যে,

াক) রৈখিক গতিতে বস্তুর ভরের যে ভূমিকা, কৌণিক গতির ক্ষেত্রে স্কড়তার ভ্রামকেরও সেই ভূমিকা।

(খ) সংক্ষেপে বলা যায় যে, রৈখিক গতির ক্ষেত্রে বস্তুর ভর ও ঘূর্ণন গতির ক্ষেত্রে জড়তার ভ্রামক দুটি সদৃশ রাশি। অবশ্য রাশি দুটি সমান নয়। বস্তুর ভর অপরিবর্তিত থাকলে রৈখিক জড়তা অপরিবর্তিত থাকে। কিন্তু বিভিন্ন ঘূর্ণাক্ষের সাপেক্ষে জড়তার ভ্রামক বিভিন্ন মান ধারণ করে।

স্মরণিকা

ছন্দু বা কাপন : একটি বস্তুর দুটি বিভিন্ন বিন্দুতে প্রযুক্ত দুটি সমান, সমান্তরাল এবং বিপরীতমুখী বলকে দ্বন্দু বা কাপল বলে।

টর্ক ঃ অক্ষের সাপেকে ঘূর্ণনরত বস্তুর উপর যে বিন্দুতে বল ক্রিয়াশীল ঐ বিন্দুর অবস্থান ভেষ্টর ও প্রযুক্ত বলের ভেষ্টর গুণফলকে টর্ক বলে।

কৌণিক ভরবেগ । ঘূর্ণনরত কোণ বস্তৃকণার ব্যাসার্ধ ডেক্টর ও রৈখিক ভরবেগের ভেক্টর গুণফলকে কৌণিক ভরবেগ বলে।

জড়তার ভ্রামক ঃ কোন জক্ষ সাপেক্ষে ঘূর্ণনরত কোন দৃঢ়^{*}বস্তুর প্রতিটি কণার ভর এবং জক্ষ হতে তাদের প্রত্যেকের লম্ম দূরত্বের বর্গের গুণফলকে জড়তার ভ্রামক বলে।

কৌণিক ভরবেগের সংরক্ষণ সূত্র ঃ বস্তুর উপর ক্রিয়ারত বহিস্থ টর্কের লন্দি শূন্য হলে, ঘূর্ণায়মান বস্তুর কৌণিক ভরবেগের পরিবর্তন হবে না। একে কৌণিক ভরবেগের সংরক্ষণ সূত্র বলে।

চরুগতির ব্যাসার্ধ : যদি কোন দৃঢ় বস্তুর একটি নির্দিষ্ট বিন্দু যেখানে বস্তুটির সমস্ত ডর কেন্দ্রীভূত আছে ধরা হয় এবং ঘূর্ণন অক্ষ সাপেক্ষে এ বিন্দুতে জড়তার ভ্রামক সমগ্র বস্তুটির জড়তার ভ্রামকের সমান হয়, তবে এ অক্ষ হতে এ বিন্দুর দূরত্বকে চরুগতির ব্যাসার্ধ বলা হয়।

লম্ব জঙ্গ উপপাদ্য : কোন পাতলা সমতল পাতের তলে অবস্থিত দুটি পরস্পর লম্ব অক্ষের সাপেক্ষে পাতটির জড়তার ভ্রামকদ্বয়ের সমষ্টি এ পাতে অবস্থিত দু' অক্ষের ছেদ বিন্দুতে অঞ্চিত লম্ব সাপেক্ষে পাতটির জড়তার ভ্রামকের সমান হবে।

সমান্তরাল অক্ষ উপপাদ্য ঃ যে কোন অক্ষের সাপেক্ষে কোন সমতল পাতলা পাতের জড়তার ভ্রামক পাতটির ভার কেন্দ্রগামী এবং তার সমান্তরাল অক্ষের সাপেক্ষে জড়তার ভ্রামক এবং পাতের ভর ও দুই অক্ষের মধ্যবর্তী দূরত্বের বর্গের গুণফলের সমষ্টির সমান।

কেন্দ্রমুখী বল ঃ যখন কোন বস্তু বৃত্তাকার পথে ঘুরতে থাকে তখন যে বল সর্বদা বস্তুর উপরে ঐ বৃত্তের কেন্দ্র অভিমুশ্বে ক্রিয়া করে বস্তৃটিকে বৃত্তপথে গতিশীল রাখে তাকে কেন্দ্রমুখী বল বলে।

নিউটনের কৌণিক গতিসূত্র ঃ

প্র**ধম সূত্র ঃ** কোন বস্তুর উপর টর্ক ক্রিয়াশীল না হলে স্থির বস্তু স্থির অবস্থানে এবং ঘূর্ণনরত বস্তু সমকৌণিক বেগে ঘূরতে থাকবে।

দ্বিতীয় সূত্র ঃ ঘূর্ণনরত কোন বস্তুর কৌণিক ভরবেঁগের পরিবর্তনের হার ঐ বস্তুর উপর ক্রিয়াশীল টর্কের সমানুপাতিক এবং টর্ক যে দিকে ক্রিয়া করে কৌণিক ভরবেগের পরিবর্তনও ঐ দিকে ঘটে।

ভূষ্টীয় সূত্র ঃ প্রত্যেক ক্রিয়ামূলক টর্কের একটি সমান ও বিপরীত প্রতিক্রিয়ামূলক টর্ক আছে।

প্রয়োজনীয় সমীকরণ

প্রয়োজনীয় সমীকরণ		
ছল্পের ভ্রামক = বল × লম্ব দূরত্ব = F×d	(1)	
টর্ক বা বলের ভ্রামক = বল $ imes$ লম্ব দূরত্ব= $\mathbf{F} imes d$	(2)	
$\overrightarrow{\tau} = \overrightarrow{r} \times \overrightarrow{F}$	(3)	
$\tau = \mathrm{I}d\omega /dt = \mathrm{I}\alpha$	(4)	
$L = I\omega$	(5)	
K. $\mathbf{E} = \frac{1}{2} \mathbf{I} \boldsymbol{\omega}^2$	(6)	
$\mathbf{I} = \Sigma m r^2$	(7)	
$= MK^2$	(8)	
$I_z = \Sigma mx^2 + \Sigma my^2 = I_x + I_y$	(9)	
$I = I_G + Mh^2$	(10)	
$K = \sqrt{\frac{1}{m}}$	(11)	
$a=\frac{v^2}{r}=\omega^2 r$	(12)	
$\mathbf{F} = \frac{mv^2}{r} = m\omega^2 r$	(13)	
$\tan \Theta = \frac{v^2}{rg}$	(14)	
$\tan \theta = \sin \theta = \frac{h}{x}$ (θ হেল)	(15)	
, 🗸 সমাধানকৃত উদায	হরণ	
-১। হাইদ্রোজেন পরমাণুর ইলেকটন নিউক্লিয়াসকে কেন্দ্র ক 2.21 × 10 ⁶ ms ⁻¹ সমস্তিতে ঘূরছে। ইলেকটনের উপর ক্রিয়ারত লম আবর্তনে ইলেকটনের কত সময় লাগে ? [ইলেকটনের ভর = 9.1 × 1 ধরি লম্ব ত্বরণ = a , কেন্দ্রমুখী বল = F ও একবার ত্বাবর্তনে ব্যয়িত স আমরা পাই, (i) $a = \frac{v^2}{r}$ $a = \frac{(2.21 \times 10^6 \text{ ms}^{-1})^2}{5.3 \times 10^{-11} \text{ m}}$	0 ⁻³¹ kg] [সি. বো. ২০০১]	
(ii) $5'3 \times 10^{-11} \text{m}$ $= \frac{4'884}{5'3} \times 10^{23} \text{ ms}^{-2} = 9'215 \times 10^{22} \text{ ms}^{-2}$ (ii) $F = \frac{mv^{2}}{r}$ $F = 9'1 \times 10^{-31} \text{ kg} \times 9'215 \times 10^{22} \text{ ms}^{-2}$ $= 83'86 \times 10^{-9} \text{ N}$ (iii) $v = \omega r = \frac{2\pi}{T} r$	এখানে, m= 9 [.] 1 × 10 ^{_31} kg	
$T = \frac{2\pi r}{v} = \frac{2 \times 3^{2} 142 \times 5^{3} \times 10^{-11} \text{ m}}{2^{2} 21 \times 10^{6} \text{ ms}^{-1}} = 1.5 \times 10^{-16} \text{ s}$ χ । একটি ঘূর্ণনরত কণার ব্যাসার্ধ তেটর $r = (2\hat{i} + 2\hat{j} - \hat{k})$ m এবং প্রযুক্ত বল $\vec{F} = (6\hat{i} + 3\hat{j} - 3\hat{k})$ N হলে টর্কের মান ও দিক নির্ণর কর।		
जामता छानि, $\vec{\tau} = \vec{r} \times \vec{F}$ $= \begin{vmatrix} i & j & k \\ 2 & 2 & -1 \\ 6 & 3 & -3 \end{vmatrix}$ $= \hat{i} (-6+3) - \hat{j} (-6+6) + \hat{k} (6-12)$ $= -3\hat{i} - 6\hat{k}$	এখানে, ব্যাসার্ধ ভেটর, $\overrightarrow{r} = (2\hat{i} + 2\hat{j} - \hat{k})m$ বল, $\overrightarrow{F} = (6\hat{i} + 3\hat{j} - 3\hat{k})N$ টর্ক, $\overrightarrow{\tau} = ?$ টর্কের মান, $\tau = ?$	

 $\vec{\tau} = -(3\hat{i} + 6\hat{k})$ N-m τ -धत्र भान = $\sqrt{(-3)^2 + (-6)^2} = \sqrt{9 + 36} = \sqrt{45}$ উखत $\xi = (3\hat{i} + 6\hat{k})$ N-m, $\sqrt{45}$ سا 500 g ভরের একটি বস্তু 2 m ব্যাসার্ধের বৃত্তাকার পথে আবর্তন করছে। আবর্তনকাল 10 s হলে বস্তৃটির কৌণিক ভরবেগ বের কর। আমরা জানি, L = Iw এখানে, এখানে, $\omega = \frac{2\pi}{T}$ বস্তুর ভর, m = 500 g = 0.5 kg বন্তুাকার পথের ব্যাসার্ধ, r = 2 m এবং $I = mr^2$ জতএব, L = $mr^2 \times \frac{2\pi}{T} = \frac{2\pi mr^2}{T} = \frac{2 \times 3.14 \times 0.5 \times (2)^2}{10}$ = 1.256 kg m²s⁻¹ আবর্তনকাল, T = 10 s কৌণিক ভরবেগ, L = ? স্তর্। একটি চাকার তর 5 kg এবং কোন অক্ষ সাপেক্ষে চক্রগতির ব্যাসার্ধ 0'2 m। এর জড়তার ভ্রামক কত ? চাৰ্কাটিতে 2 rad s⁻² কৌণিক ত্বুরণ সৃষ্টি করতে কত মানের টর্ক প্রয়োগ করতে হবে **?** [ঢা. বো. ২০০৪] আমরা জানি, $I = MK^2$ এখানে. $= 5 \times (0^{2})^{2}$ M = 5 kg $= 5 \times 0.04$ K = 0.2 m $= 0.2 \, \text{kg} \, \text{m}^2$ I = ?١ এখানে, আবার, $I = 0.2 \text{ kgm}^2$ $\tau = I\alpha$ $\alpha = 2 \text{ rad s}^{-2}$ $= 0.2 \times 2$ = 0.4 N-m $\tau = ?$ 🖈। 0°250 kg ভরের একটি পাধর খন্ডকে 0°75 m লম্বা একটি সুতার এক প্রাস্তে বেঁধে বৃত্তাকার পথে প্রতি মিনিটে 90 বার ঘুরালে সুতার উপর ৰুত টান পড়বে 🕴 [ব. বো. ২০০১] এখানে, আমরা জানি, m = 0.25 kg r = 0.75 m $\omega = 2\pi \frac{\text{N}}{t} = 2\pi \times \frac{90}{60}$ $F = m\omega^2 r$ F $= 0.25 \times (3\pi)^2 \times 0.75$ $= 0.25 \times (3 \times 3.14)^2 \times 0.75$ = 16.66 N $= 3\pi \text{ rads}^{-1}$ 🖌। 0°15 kg ভরের একটি পাধর খন্ডকে 0°75m লম্বা একটি সৃতার এক গ্রাস্তে বেঁধে বৃদ্তাকার পথে প্রচি মিনিটে 90 বার ঘুরালে সূতার উপর টান নির্ণয় কর ৷ যি. বো. ২০০৫ ; চ. বো. ২০০৬ / আমরা জানি. এখানে, $m = 0.15 \, \text{kg}$ $F = m \omega^2 r$ $r = 0.75 \,\mathrm{m}$ $= 0.15 \times (3\pi)^2 \times 0.75$ $\omega = 2\pi \frac{N}{t} = 2\pi \times \frac{90}{60}$ '= 9'98 N $= 3\pi \text{ rad s}^{-1}$ ৭। 0'1 kg তরের একটি পাধরকে 0'5 m লম্বা একটি সুতার সাহায্যে কক্ষপথে ঘুরানো হচ্ছে। পাধরটি প্রতি মিনিটে বৃদ্ভগথে 30 বার পূর্ণ-ঘূর্ণন সম্পন্ন করে। সুতার টান নির্ণর কর। | য. বো. ২০০৬] আমরা জানি, এখানে, $F = m\omega^2 r$ m $= 0.1 \, \text{kg}$ $= 0.1 \times \pi^2 \times 0.5$ $=0.5 \,\mathrm{m}$ 7 $= 0.1 \times 9.87 \times 0.5$ $=2\pi n=2\pi \frac{N}{t}=2\pi \frac{30}{60}$ ω = 0'4935 N

=πrads⁻¹

উচ্চ মাধ্যমিক পদার্থবিজ্ঞান BG & JEWEL 295 া একটি চাকার ডর 5 kg এবং চক্রগতির ব্যাসার্ধ 25 cm। এর জড়তার ভ্রামক কত? চারদিকে 1 rad క-2কৌণিক ত্বরণ সৃষ্টি করতে কড মানের টর্ক প্রয়োগ করতে হবে ? [চ. বো. ২০০১] [5. (वा. २००১) এখানে, আমরা জানি. M = 5 kg $I = Mk^2$ k $= 25 \, \mathrm{cm}$ $I = 5 \times (0.25)^2$ = 0.25 m $= 0.3125 \text{ kg} \cdot \text{m}^2$ I = ? জাবার, $\tau = I\alpha$ এখানে. $I = 0.3125 \text{ kg} - \text{m}^2$ $\tau = 0.3125 \times 4$ = 1°25 N-m $\alpha = 4 \text{ rads}^{-2}$ $\tau = ?$ ৯। একজন সাইকেল চালক ঘন্টায় 35'28 km বেগে চলাকালীন 32'6 m ব্যাসার্ধের একটি মোড়ে বাঁক নেঁয়। উল্লম্প্রের সাথে তার আনডি কোণের ট্যানজেন্ট বের কর। [$g=9.8~{
m ms}^{-2}$] জামরা পাই, $\tan \theta = \frac{v^2}{r \rho}$ এখানে, $v = 3528 \text{ km h}^{-1}$ $\tan \theta = \frac{(9.8 \text{ ms}^{-2})^2}{32.6 \text{ m} \times 9.8 \text{ ms}^{-2}} = 0.3$ $=\frac{35^{\circ}28\times10^{3}\text{m}}{60\times60\text{s}}=9^{\circ}8\,\text{ms}^{-1}$ $r = 32^{\circ}6m$ $g = 9.8 \,\mathrm{ms}^{-2}$ ় সি রেললাইনের একটি বাঁকের ব্যাসার্ধ 98 m এবং লাইনের দুই পাতের মধ্যবর্তী দূরত্ব 1'525 m l ভিতরের পাত অপেকা বাইরের পাত কতখানি উঁচু হলে বাইরের পাতে কোনরূপ চাপ প্রয়োগ না করে একটি ট্রেন 9'8 ms⁻¹ দুতিতে বাঁক নিতে পারবে ? মনে করি নির্ণেয় উচ্চতা = h এখানে, $r = 98 \, \mathrm{m}$ $g = 9.8 \,\mathrm{ms}^{-2}$ জামরা পাই, $\tan \theta = \frac{v^2}{r q}$ $= 9.8 \text{ ms}^{-1}$ $\tan \theta = \frac{(9.8 \text{ ms}^{-1})^2}{98 \text{ m} \times 9.8 \text{ ms}^{-2}} = 0.1$ = 1.525 m θ -এর মান ক্ষুদ্র হেড় $\tan \theta = \sin \theta = \frac{h}{r}$ লেখা যায় $\sin \theta = 0.1 = \frac{h}{r}$ $\mathbf{\overline{A}}, \quad h = 0.1 \times x = 0.1 \times 1.525 \text{ m} = 0.1525 \text{ m}$ 😡 একটি রেল লাইনের বাঁকের ব্যাসার্ধ 200 m এবং রেল লাইনের পাঁত্বয়ের মধ্যবর্তী দূরত্ব 1 m। ঘণ্টায় 50.4 km বেগে চলন্ত গাড়ির ক্ষেত্রে প্রয়োজনীয় ব্যাংকিং-এর জন্য বাইরের লাইনের পাতকে ভিতরের লাইনের পাত লপেক্ষা কতটুকু উঁচু করতে হবে ? [সি. বো. ২০০৩] মনে করি, উচ্চতা = hএখানে. $= 200 \, \mathrm{m}$ আমরা পাই, $\tan \theta = \frac{v^2}{r \sigma}$ $= 9.8 \,\mathrm{m}$ $\tan \theta = \frac{(14)^2}{200 \times 9.8} = 0.1$ $= 50^{\circ}4$ km h⁻¹ 50'4 × 1000 θ -এর মান ক্ষুদ্র হলে, $\tan \theta = \sin \theta = \frac{h}{r}$ লেখা যায়, 60×60 $= 14 \, \text{ms}^{-1}$ এবং $\sin \theta = \frac{h}{r}$ = 1m x h 0.1 বা, h $= 0.1 \times 1$ $= 0.1 \,\mathrm{m}$ h

১ ১০ একটি বৃদ্তাকার পাতের ব্যাসার্ধ 0'3m এবং প্রতি বর্গমিটার ক্ষেত্রের তর 0'1 kg। এর কেন্দ্র দিয়ে এবং তলের অভিনন্দ্রতাবে অভিক্রান্ত অক্ষের সাপেক্ষে জড়তার দ্রামক নির্ণয় কর।

এখানে, r একটি বৃত্তাকার পাতের কেন্দ্র দিয়ে এবং এর পৃষ্ঠের $= 0.3 \,\mathrm{m}$ M = ক্ষেত্রফল × প্রতি বর্গমিটারে ভর জন্দিন্দজাবে জন্দিরান্ত জন্দের সাপেক্ষে জড়তার ভ্রামক $\ {
m I}={1\over 2}{
m M}r^2$ $=\pi r^2 \times$ প্রতি বর্গমিটারে ভর $1 = \frac{1}{2} \times (9 \times 3^{1} 14 \times 10^{-3} \text{ kg}) \times (0^{3} \text{ m})^{2}$ $= 3.14 \times (0.3 \text{ m})^2 \times 0.1 \text{ kgm}^{-2}$ $= 12.717 \times 10^{-4} \text{ kgm}^2$ $= 9 \times 3.14 \times 10^{-3}$ kg

২৫। 100 m ব্যাসের বৃস্তাকার পথে কোন মোটর সাইকেল আরোহী কত বেগে ঘুরলে উন্নম্ব তলের সাথে তিনি 30° কোণে আনত থাকবেন ? [চ. বো. ২০০৬ ; কৃ. বো. ২০০২ ; ঢা. বো. ২০০৩]

wind

$$\sin \theta = \frac{0^2}{rg}$$
 $a < 100$
 $v = \sqrt{rg \tan \theta}$
 $r = \frac{100}{2} = 50 \text{ m}$
 $= \sqrt{(50m) (9^8 \text{ms}^{-2}) \tan 30^\circ}$
 $g = 9^8 \text{ms}^{-2}$
 $= \sqrt{50m \times 9^8 \text{ms}^{-2} \times 0.5773}$
 $\theta = 30^\circ$
 $v = 16.82 \text{ms}^{-1}$
 $v = ?$

। _____ = 16.82 ms⁻¹ ১৪। 100 m ব্যাসাৰ্ধবিশিষ্ট এৰুটি বাঁকা পথে 60 kmh⁻¹ বেগে গাড়ি চালাতে হলে পথটিকে কড ডিগ্ৰী কোঁণে আনত রাখতে হবে 🔋 [য. বো. ২০০৩ 🖌

জামরা জানি, $\tan \theta = \frac{v^2}{rg}$	এখানে,
0	$r = 100 \mathrm{m}$
$\tan \theta = \frac{50 \times 50}{3 \times 3 \times 100 \times 9^{\circ}8}$	$v = 60 \text{ kmh}^{-1} = \frac{50}{3} \text{ ms}^{-1}$
বা, $\tan \theta = 0.2834$	$\theta = ?$
θ = 15.82°	অভিকর্ষজ ত্বরণ, $g = 9.8 \text{ ms}^{-2}$

১৫। 3,4 ও 5 একক তরের তিনটি কণার স্থানাক্ষ যথাক্রমে (4,0,-1), (3,-2,3) ও (2,1,4)। z-অক্ষের সাপেক্ষে তাদের জড়তার ভ্রামক ও চক্রগতির ব্যাসার্ধ নির্ণয় কর।

আমরা পাই,
$$I_z = \sum m_i x_i^2 + \sum m_i y_i^2 = \sum m_i (x_i^2 + y_i^2)$$

প্রশ্নান্যায়ী, $I_z = 3 (4^2 + 0^2) + 4(3^2 + (-2)^2) + 5(2^2 + 1^2)$
 $= 48 + 52 + 25 = 125 - 979$

চক্রগতির ব্যাসার্ধ K হলে, $\sum m_i K^2 = I$

 $\overline{\mathbf{A}}$, $(3+4+5)\mathbf{K}^2 = 125$

$$K = \sqrt{\frac{125}{12}} = 3.227$$
 এकक

্র্র্ড। কোন অক্ষ সাপেকে একটি বস্তুর জড়তার ভ্রামক 100 kgm²। উক্ত অক্ষ সাপেকে বস্তুটির চক্রগতির ব্যাসার্ধ কত ? (বস্তুটির ওজন 9'8 N)

আমরা জানি. এখানে, $I = MK^2$ বা, $K^2 = \frac{I}{M}$ বা, $K = \sqrt{\frac{I}{M}}$ $K = \left(\frac{100}{1}\right)^{\frac{1}{2}} = 10$ K = 10m

জড়তার ভ্রামক, I = 100 kgm² खत, M = $\frac{9.8}{9.8}$ kg = 1 kg চক্রগতির ব্যাসার্ধ, K = ?

উচ্চ মাধ্যমিক পদার্থবিজ্ঞান 298 BG & JEWEL ্র্স। একটি ঘূর্ণায়মান লোহার গৌলকের তর 0'03kg। ঘূর্ণন অক্ষ হতে এর দূরত্ব 1'5m। অক্ষ সাপেন্দি ব্রডতার ভ্রামক নির্ণয় কর। এখানে, আমরা জানি . জর, m = 0.03 kg $I = mr^2$ দ্বর্গন অক্ষ হতে দূরত্ব, r=1.5m $I = 0.03 \times (1.5)^2$ $= 0.0675 \, \text{kgm}^2$ জড়তার ভ্রামক, I = ? ১৮। 0.01 kg ভর ও 0.08 m দৈর্ঘ্যের একটি দুঙের এক প্রান্তের চারদিকে একটি বস্তু দৈর্ঘ্যের অভিলম্বতাবে প্রতি মিনিটে 50 বার খুরছে। এর কৌণিক গতিশক্তি নির্ণয় কর। আমরা পাই, K.E_r . = $\frac{1}{2}$ I ω^2 প্রশ্নানুযায়ী, I = $\frac{1}{3}$ m l², m = 0.01 kg, l = 0.08 m ଓ কৌণিক বেগ, $\omega = \frac{2\pi N}{t} = \frac{2 \times 3.14 \times 50 \text{ rad}}{60 \text{ s}} = \frac{5}{3} \times 3.14 \text{ rad s}^{-1}$ নির্ণেয় কৌণিক গতিশক্তি, K. E_r. = $\frac{1}{2}\left(\frac{1}{3}ml^2\right) \times \omega^2$ $= \frac{1}{2} \left\{ \frac{1}{3} \times 0.01 \, \text{kg} \times (0.08 \, \text{m})^2 \right\} \times \left(\frac{5}{3} \times 3.14 \, \text{rad s}^{-1} \right)^2$ = 2[·]92 × 10⁻⁴ J একটি রাস্তা 60m ব্যাসার্ধে বাঁক নিরেছে। এ স্থানে রাস্তাটি 6m চওড়া এবং এর ভিতরের কিনারা হ রের কিনারা 0'6m উঁচু। সর্বোচ্চ ৰুত বেগে ঐ স্থানে নিরাপদে বাঁক নেয়া সম্ভব 🔋 h = 0.6mθ tm02.1= চিত্ৰ ঃ ৫'১৮ আমরা জানি, নিরাপদ বাঁকের জন্য, এখানে. $\sin \theta = \frac{0.6}{6} = 0.1 \quad \cancel{2} \checkmark = \cancel{2}$ $\tan \theta = \frac{v^2}{rg}$ $\theta = \sin^{-1}(0.1) = 5.74^{\circ}$ বা, $v^2 = rg \tan \theta$ $\tan \theta = \tan 5.74^\circ = 0.1$ $v^2 = 60 \times 9.8 \times 0.1$ বা. ব্যাসাধ, r = 60 m = 58.8 $g = 9.8 \text{ ms}^{-2}$ $v = \sqrt{58.8}$ সর্বোচ্চ বেগ, v =? $= 7.67 \text{ms}^{-1}$ কোন অক্ষ সাপেক্ষে একটি লৌহ নির্মিত বস্তুর চক্রগতির ব্যাসার্ধ 0.5 m। বস্তুটির তর 0.5 kg হলে এর ন্দুড়তার ভ্রামক কত 📍 ক. বো. ২০০০] দেয়া আছে, $I = MK^2$ $= 0.5 \times (0.5)^{2}$ Κ $=0.5 \,\mathrm{m}$ $= 0.125 \text{ kg m}^2$ M = 0.5 kg

প্রশালা

=?

সংকিশ্ত-উত্তর প্রশ্ন :

১। সমবেগে চলমান বস্তুর ত্বরণ ধাকে না, কিন্তু বৃত্তাকার পথে সমদ্র্তিতে চলতে থাকলেও বস্তুর তুরণ ঘটে কেন ?

২। বাঁকা পথে অতি দুত গতিশীল গাড়ি কেন উল্টে যায়—ব্যাখ্যা কর।

৩। নিম্নলিখিত ঘটনাসমূহ ব্যাখ্যা কর 🕯

(ক) বৃন্তাকার পথে চলার সময় সাইকেল আরোহীর গা আপনা-আপনি খাড়া অবস্থা হতে বৃন্তাকার পঞ্চের কেন্দ্রের দিকে অবনত হয়ে যায়।

(খ) বাঁকের মুখে রাস্তা কিবো রেল লাইন কাত করে রাখা হয়।

(গ) গাড়ি মোড় ঘুরার সময় তার আরোহী বাঁকের কেন্দ্রের বিপরীত দিকে ঝুঁকে পড়ে।

। য. বো. ২০০৬ ; ঢা. বো. ২০০০; চ. বো. ২০০১; সি. বো. ২০০১; রা. বো. ২০০০] ৪। টর্ক কাকে বলে ? [ঢা. বো. ২০০৫ ; কৃ. বো. ২০০৪; সি. বো. ২০০৩] বা, টৰ্ক বলতে কি বুঝা [য. বো. ২০০৫ ; কৃ. বো. ২০০০ ; চ. বো. ২০০৬, ২০০২] ৫। কৌণিক ভরবেগ কাকে বলে, ? ক. বো. ২০০৩] ৬। কেন্দ্রমুখী বল বলতে কি বুঝা? । য. বো. ২০০৬ ; ব. বো. ২০০৫ ; সি. বো. ২০০৩ ; ৭। জড়তার মোমেন্ট বা ভ্রামক কাকে বলে? রা. বো. ২০০১; চ. বো. ২০০০] [সি. বো. ২০০৪] ৮। কৌণিক ভরবেগের ভেষ্টর সংজ্ঞা দাও? ৯। কৌণিক গতি সঞ্জান্ত নিউটনের দ্বিতীয় সূত্রটি বিবৃত কর। **চি.** বো. ২০০২] [রা. বো. ২০০৬, চ. বো. ২০০৬, ব. বো. ২০০৬ ; সি. বো. ২০০২] ১০। চক্রগতির ব্যাসার্ধ কাকে বলে ? | কৃ. বো. ২০০১] ১১। টর্কের মাত্রা কি ? ১২। সংজ্ঞা দাও ঃ রা. বো. ২০০১] কৌণিক বেগ, কৌণিক তুরণ [ঢা. বো. ২০০৬ ; চ. বো. ২০০৪, ২০০২] কৌণিক ভরবেগ, [সি. বো. ২০০৬, ২০০২ ; ঢা. বো. ২০০৪; রা. বো. ২০০১] চক্রগতির ব্যাসার্ধ [ঢা. বো. ২০০৪; রা. বো. ২০০০] কেন্দ্রমুখী বল, জড়তার ভ্রামক মনু, টৰ্ক চি. বো. ২০০৩]। কেন্সুমুখী ত্বুরণ [চ. বো. ২০০৩ ; রা. বো. ২০০১] রচনামূলক প্রশ্ন : ১। রৈখিক বেগ ও কৌণিক বেগের মধ্যে সম্পর্ক প্রতিষ্ঠা কর। [ঢা. বো. ২০০৫] ২। টর্ক বলতে কি বুঝ ? দেখাও যে, কোন স্থির অক্ষের চারদিকে ঘূর্ণায়মান একটি বস্তুর উপর ক্রিয়ারত টর্ক তার জড়তার ভ্রামক ও কৌণিক ত্বরণের গুণফলের সমান। বা, τ = Iα সমীকরণটি প্রতিপাদন কর। কু. বো. ২০০৪; ঢা. বো. ২০০৪; ব. বো. ২০০২; সি. বো. ২০০৩; য. বো. ২০০২ ; চ. বো. ২০০২] [ব. বো. ২০০৬ ; চ. বো. ২০০৫] অথবা, প্রমাণ কুর যে, <u>ব্রু I</u> যখন প্রতীকগুলো প্রচলিত অর্ধ বহন করে। চ. বো. ২০০৪] ৩। L = Iw সমীকরণটি প্রতিপাদন কর। ৪। কৌণিক ভরবেগ বা ভরবেগের ভ্রামকের সংজ্ঞা দাও। একটি স্বির অক্ষের চারদিকে ঘূর্ণায়মান একটি দৃঢ় বস্তুর কৌণিক তরবেগের জন্য একটি রাশিমালা প্রতিপাদন কর। রা. বো. ২০০১; কৃ. বো. ২০০০] ৫। টর্ক ও কৌণিক ত্বরণ কাকে বলে ? এদের মধ্যে সম্পর্ক স্থাপন কর। ৬। একটি কণার কৌণিক ডরবেগের সংজ্ঞা দাও। দেখাও যে, সময়ের সাথে কোন বস্তুকণার কৌণিক ভরবেগের পরিবর্তনের হার তার উপর ক্রিয়ারত টর্কের সমান। [কু. বো. ২০০০] ৭। কৌণিক গতির জন্য নিউটনের সূত্র বিবৃত ও ব্যাখ্যা কর। **[**চ. বো. ২০০২] ৮। কৌণিক ভরবেগের সংরক্ষণ সূত্র বর্ণনা ও ব্যাখ্যা কর। যি. বো. ২০০২] ৯। প্রমাণ কর যে, একক সমকৌণিক বেগে আবর্তনরত কোন দৃঢ় বস্তুর গতিশক্তি সংখ্যাগতভাবে এর জড়তার ভ্রামকের অর্ধেক। ঢ়া. বো. ২০০১] ১০। দৃঢ বস্তুর জড়তার ভ্রামক কি ? প্রমাণ কর যে, একক সমকৌণিক বেগে আবর্তনরত কোন দৃঢ় বস্তুর জড়তার ভ্রামক সংখ্যাগতভাবে এর গতিশক্তির দ্বিগুণ। ঢা. বো. ২০০১] ১১। কোন অক্ষের সাপেকে ঘূর্ণায়মান কোন বস্তুর গতিশক্তির সমীকরণ নির্ধারণ কর। ১২। জড়তার ভ্রামক সংক্রান্ত উপপাদ্য দুটি ব্যাখ্যা কর। কি. থো. ২০০২] ১৩। জড়তার ভ্রামকের উপর লন্দ অক্ষসমূহের উপপাদ্য বিবৃত ও ব্যাখ্যা কর। [ঢা. বো. ২০০৬; রা. বো. ২০০২; সি বো. ২০০২] ১৪। চ্বড়তার ভ্রামক বুঝিয়ে দাও। চ্বড়তার ভ্রামক সম্পর্কে অক্ষ উপপাদ্য দুটি চিহ্নিত কর। [সি. বো. ২০০৫] ১৫। চন্ডতার ভ্রামকের উপর সমান্তরাল অক্ষসমূহের উপপাদ্য বিবৃত কর ও এর একটি প্রয়োগ দেখাও। ১৬। একটি সরু ও সুষম দন্ডের এক প্রান্ত দিয়ে এবং দৈর্ঘ্যের অভিলম্মভাবে অতিক্রান্ত অক্ষের সাপেক্ষে তার চ্রড়তার ভ্রামক নির্ণয় কর। [য. বো. ২০০১; চ. বো. ২০০৫] ১৭। একটি পাতলা ও সুযম বৃস্তাকার চাকতির তর M ও ব্যাসার্ধ r1। যে কোন একটি ব্যাসের সাপেক্ষে চাকতির জড়তার ভ্রামক নির্ণয় কর। [কু. বো. ২০০৩; রা. বো. ২০০১] ১৮। একটি সরু ও সুষম দন্ডের মধ্যবিন্দু দিয়ে এর দৈর্ঘ্যের সাথে লম্মভাবে গমনকারী অক্ষের সাপেক্ষে দন্ডের জড়তার ভ্রামক এবং [ব. বো. ২০০৬; চ. বো. ২০০৩ ; সি. বো. ২০০৬, ২০০৪, ২০০২; চক্রগতির ব্যাসার্ধের রাশিমালা নির্ণয় কর। রা. বো. ২০০৬, ২০০২ ; য. বো. ২০০৫, ২০০১] ১৯। রাস্তার ব্যার্থকিং বলতে কি বুঝ ? রাস্তার মোড়ে আনতি কোণের রাশিমালা নির্ণয় কর। ২০। কেন্দ্রমুখী বল বলতে কি বুঝ ? m তরের একটি বস্তু r ব্যাসার্ধের একটি বৃষ্ণাকার পথে v সমদ্রতিতে ঘুরছে। দেখাও যে, কেন্দ্রমুখী বন, $F = \frac{mv^2}{r}$ । কু. বো. ২০০৩; ব. বো. ২০০১; সি. বো. ২০০১; রা. বো. ২০০০; চ. বো. ২০০০] অধবা, বৃত্তাকার পথে আবর্তনরত কোন বস্তুর উপর ক্রিয়াশীল কেন্দ্রমুখী বলের রালিমালা প্রতিপাদন কর।

২১। কেন্দ্রমুখী বন কি । এর রাশিমানা প্রতিপাদন কর।

ንቁ

দ আ দ দ উচ্চ মধ্যমিক্স পাদার্প্রবিজ্ঞান দ জ দ দ জ

গাণিতিক সমস্যাবুলি ঃ

৩০০ kg তরের একটি পাধরকে 0.6 m লন্দা একটি সুতার সাহায্যে বেঁধে অপর প্রান্তের চারদিকে অনুভূমিক বৃত্তাকার পথে প্রতি
 মিনিটে 150 বার ঘুরানো হন। সুতার টান নির্ণয় কর।
 [উঃ 29.6 N]

(ব) 4g ভরবিশিষ্ট এফটি বস্তুকে 15m দীর্ঘ সুতার সাহায্যে বৃন্তাকার পথে ঘুরানো হছে। বস্তুটি 5 সেকেন্ডে 20 বার পূর্ণ আবর্তন করছে। সুতার টান নির্ণয় কর।

m (3) একচ্চন মোটর সাইকেল আরোহী 100 m ব্যাসার্ধের বৃত্তাকার পথে কত বেগে মোড় নিলে উল্লম্ম তলের সাথে 30° কোণে আনতে থাকবে m ? [$m s^2$ = 9'8 ms⁻²]

َلَّا ﷺ 50 km/hr বেগে 60 m ব্যাসার্ধের একটি রাস্তায় মোড় নিতে হলে অনুভূমিকের সাথে রাস্তাটির আনতি কোণ বা ব্যার্থকিং কোণ কড হওয়া প্রয়োজন ?

॥৬। 5 m চওড়া কোন একটি রাস্তার মোড়ের বৃত্তাকার অংশের ব্যাসার্ধ 367m। রাস্তার কেন্দ্র যে পার্শ্বে ঐ পার্শ্ব অপেক্ষা অপর পার্শ্ব কত উচু হলে এ রাস্তায় সর্বোচ্চ 6 ms⁻¹ সমদ্রতিতে গাড়ি চালানো যাবে ?

্বি) কোন অক্ষ সাপেক্ষে একটি বস্তুর জড়তার ভ্রামক 100 kg-m²। উক্ত অক্ষ সাপেক্ষে বস্তুটির চব্রুগতির ব্যাসার্ধ নির্ণয় কর। (বস্তুটির ওজন 29:4 N)

🕞) একটি চাকার শুর 10kg এবং চব্রুগতির ব্যাসার্ধ 0.5m। এর জড়তার ভ্রামক নির্ণয় কর।

[ঢা. বো. ২০০০] উন্তর : 2'5 kgm²] একটি চাকার ভর 4kg এবং চক্রগতির ব্যাসার্ধ 25 cm। এর জড়তার ভ্রামক নির্ণয় কর। চাকাটিতে 2 rads⁻² কৌণিক ত্বুরণ সৃষ্টি করতে কত,মানের টর্ক প্রয়োগ করতে হবে ? [য. বো. ২০০০] উন্তর : 0'25kgm² ; 0'5N-m]

্ত্র)/একটি ঘূর্ণায়মান লোহার গোলকের ভর 0.5 kg। ঘূর্ণন অক্ষ হতে এর দূরত্ব 1 m। অক্ষ সাপেক্ষে জড়তার ভ্রামক নির্ণয় কর। [উঃ 0.5 kg-m²]

🗮 🎸 । একটি সিলিন্ডারের শুর 40 kg এবং ব্যাসার্ধ 0 115 m। সিলিন্ডারটির অক্ষের সাপেক্ষে এর জড়তার ভ্রামক 1 0 kg-m²। সিলিন্ডারটি যখন 1 5 ms⁻¹ বেগে অনুভূমিকভাবে গড়াতে থাকে তখন তার মোট গতিশস্তি কত ? [উঃ 95 J]

১২। ব্যাসার্ধ ভেষ্টর $\overrightarrow{r} = x\hat{i} + y\hat{j} + z\hat{k}$ এবং বল $\overrightarrow{F} = F_x\hat{i} + F_y\hat{j} + F_y\hat{k}$ হলে টর্ক $\overrightarrow{\tau}$ নির্ণয় কর।

 $[\textcircled{B}: (yF_x - zF_y) \stackrel{\frown}{i} + (zF_x - xF_z) \stackrel{\frown}{j} + (xF_y - yF_x) \stackrel{\frown}{k}]$

তেন্দ্রগামী লম্ব বরাবর অক্ষের সাপেক্ষে একটি চাকতি ঘুরছে। এই অক্ষের সাপেক্ষে চাকতির জড়তার ভ্রামক 1.5 kg-m²। টর্ক প্রয়োগের ফলে চাকতিটি স্থির অবস্থান থেকে সমকৌণিক ত্বরণে ঘুরে 6 সেকেন্ড পরে 6πrads⁻¹ কৌণিক বেগ প্রাশ্ত হল। টর্কের মান নির্ণয় কর।

২ /৪। 40 kg ভরবিশিষ্ট একটি বালক নাগরদোলার প্রান্তভাগে চড়ে 25 m ব্যাসবিশিষ্ট বৃস্তাকার পথে 5 rpm কৌণিক বেগে পাক খান্দে। বালকটির কৌণিক ভরবেগ নির্ণয় কর।

৵ ৫। একটি ফ্লাই হুইলের জড়তার ভ্রামক 0.05 kgm²। এর কৌণিক বেগ ৪ সেকেন্ডে 60 rmp হতে 300 rpm পর্যন্ত বৃন্দি পেলে হুইলের উপর ক্রিয়ারত টর্কের মান নির্ণয় কর।

১৬। হাইদ্রোন্জেন নিউক্লিয়াসকে কেন্দ্র করে ইলেকট্রন 5'3 × 10⁻¹¹ m ব্যাসার্ধের বৃত্তাকার পথে চলে 1'51 × 10⁻¹⁶ s-এ একবার ঘূরে আসে। কৌণিক ভরবেগ নির্ণয় কর। [উঃ 1'07× 10⁻³⁴ kg m²s⁻¹]

্র্রুন। কৌশিক ভরবেগ কত হলে 480 kgm² জড়তার দ্রামকে কৌশিক বেগ 5 rad s⁻¹ হবে? [উঃ2400 kg m²s⁻¹]

১৮। কি পরিমাণ টর্কের ক্রিয়ায় 250 kg m² চ্র্র্ড়তার ভ্রামকের কৌর্ণিক ত্বরণ 4 rads⁻² হবে ? টেঃ1000 Nm]

১৯। একটি চাকতির ব্যাস 2 m ও ডর 20 kg। 1800 rpm কৌণিক দ্রুতিতে চাকতির কৌণিক ডরবেগ কত হবে?

স্থিত। একটি ফ্লাই হুইলের কৌণিক বেগ 2π rad s⁻¹ হতে 6π rad s⁻¹-এ উন্নীত করতে 100 J কান্ধ সম্পন্ন করতে হয়। হুইলটির জড়তার ভ্রামক নির্ণয় কর।

২১। 2.4 kg ভর ও 0.2 m চক্রগতির ব্যাসার্ধসম্পন্ন একটি চাকতিতে কি পরিমাণ টর্ক ক্রিয়া করলে তার কৌণিক ত্বরণ 3 rad s⁻² হবে ?

২২। একটি মোটর 80 N m মানের টর্ক উৎপন্ন করে প্রতি সেকেন্ডে 10 বার ঘুরছে। এর ক্ষমতা নির্ণয় কর। 🛛 [উঃ 5026'55 W] ২৩। 5 kg ভর ও 0.5 m চরুগতির ব্যাসার্ধবিশিষ্ট একটি চাকা প্রতিমিনিটে 300 বার ঘুরছে। চাকাটির গতিশক্তি নির্ণয় কর।

[उँ: 616⁻87 J]

(8) 10 kg ভরের একটি বস্তু 4 m দৈর্ঘ্যের একটি নগণ্য ভরের সুতার এক প্রান্তে বেধে অপর প্রান্তের চারদিকে ঘুরানো হলে বস্তুটির উর্ডতার ভ্রামক কত হবে ?

296

৬.১ সুচনা Introduction

কাজ, শক্তি ও ক্ষমতা এ তিনটি শব্দ আমাদের অতি পরিচিত। আমরা দৈনন্দিন জীবনে কাজ শব্দটিকে শারীরিক কিংবা মানসিক যে কোন কাজের জন্য ব্যবহার করে থাকি। তাই সাধারণ অর্ধে কোন কিছু করার নামই কাজ। যেমন রিক্শাওয়ালা যখন রিক্সা টানে তখন সে কাজ করে। কুলি যখন মাল বহন করে তখন সে কাজ করে, ঘোড়া যখন গাড়ি টানে তখন এটি কাজ করে ইত্যাদি। এ থেকে স্পষ্ট যে কাজ শব্দটি দৈনন্দিন জীবনে কোন নির্দিষ্ট অর্ধে ব্যবহৃত না হয়ে ব্যাপক অর্ধে ব্যবহৃত হয়। পদার্থবিজ্ঞানে কাজ বলতে নির্দিষ্ট অকটি অর্ধ বুঝায়। আবার ক্ষমতা ও শক্তি উত্তয়ই সাধারণভাবে একই অর্ধে ব্যবহার করি। কিন্তু প্রকৃতপক্ষে এরা এক নয়। এ অধ্যায়ে কাজ, ক্ষমতা ও শক্তির প্রকৃত ব্যাখ্যা এবং এদের সম্পর্কিত বিতিন্ন সম্পর্ক আলোচনা করা হবে।

৬ ২ কাজ Work

পদার্থবিজ্ঞানের ভাষায় কোন বস্তুর উপর বল প্রয়োগ করলে বলের অভিমুখে যদি বস্তৃটির সরণ ঘটে তবে ক্রিয়াশীল বল কান্ধ করেছে বুঝায়। কান্ধের নিম্নোক্ত সংজ্ঞা দেয়া যায়।

সংজ্ঞাঃ কোন বস্তুর উপর বল প্রয়োগে বস্তুর সরণ ঘটলে প্রযুক্ত রল ও বলের অভিমুখে সরশের উপাংশের গুণফলকে কাজ বলে।

উপরের সংজ্ঞা থেকে স্পষ্ট যে কোন বস্তুর উপরে শুধু বল প্রয়োগ করলেই কান্ধ হয় না। যেমন একটি কাঠের গুড়ির উপর বল প্রয়োগ করা হল ; কিন্তু গুড়িটির কোন স্থানান্তর হল না। সুতরাং প্রযুক্ত বল কোন কান্ধ করল না। অতএব, সিন্ধান্ত এই যে, বস্তুর উপর বল প্রয়োগ করলে যদি বলের ক্রিয়া রেখায় এ বস্তুর স্থানান্তর না ঘটে, তবে কান্ধ সম্পাদিত হয় না।

বলের হারা কাজ বা ধনাত্মক কাজ :

কাজের জন্য বলের প্রয়োজন। বল দুভাগে কাজ করতে পারে। যথা-(১) বলের ছারা বা বলের দিকে কাজ এবং (২) বলের বিরুদ্ধে বা বলের বিপরীত দিকে কাজ।

১। বলের দ্বারা কাজ ঃ যদি বল প্রয়োগে বলের প্রয়োগ বিন্দু বলের ক্রিয়ার অভিমুখে সরে যার বা বলের দিকে সরণের ধনাত্মক উপাংশ থাকে তবে বলের দ্বারা কাজ হয়েছে বুঝায়। বলের দ্বারাকৃত কাজকে ধনাত্মক কাজ বলে।

উদাহরণ ঃ

(ক) একটি বস্তুকে ছাদের উপর হতে নিচে ফেলা হল। এক্ষেত্রে বলের দ্বারা কান্ধ হল বুঝায়।

(খ) একটি ফুটবল চলস্ত অবস্থায় আছে। বল প্রয়োগ করার ফলে ফুটবলটি বলের দিকে সরে গেল। এ ক্ষেত্রেও বদের দ্বারা কান্ধ হয়েছে বুঝায়। BG & JEWEL

২। বলের বিরুদ্দে কাজ বা ঝাণাত্মক কাজ :

সংজ্ঞা ঃ বল প্রয়োগের ফলে যদি বলের প্রয়োগ বিন্দু বলের ফ্রিয়ার বিপরীত দিকে সরে যায় বা বলের দিকে সরণের ঋণাত্মক উপাংশ থাকে তবে যে কাজ সম্পাদিত হবে তাকে বলের বিরুম্ঘে কাজ বা ঋণাত্মক কাজ বলে।

উদাহরণ :

(ক) একটি বস্তৃকে মাটি হতে টেবিলের উপর উঠানো হল। এক্ষেত্রে অভিকর্ষ বলের বিরুদ্ধে সরানো হল। অতএব বলের বিরুদ্ধে কাজ হয়েছে বুঝাবে।

(খ) সমবেগে গতিশীল একটি গাড়ি ব্রেক করলে কিছুদূর গিয়ে থেমে যাবে। এক্ষেত্রে ব্রেক্জনিত বল গাড়ির গতির বিপরীত দিকে ক্রিয়া করায় বলের বিরুদ্ধে কাজ হয়েছে বুঝাবে।

৬৩ কাজের পরিমাপ (ধ্রুব বলের ক্ষেত্রে)

Measurement of work (In case of constant force)

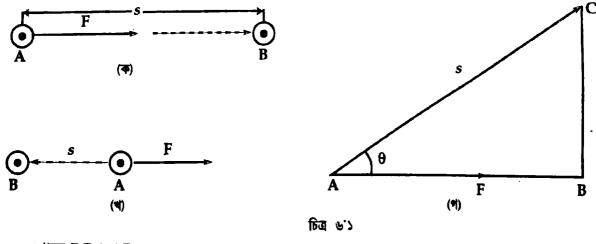
সময়ের প্রেক্ষিতে বলের মান ও দিরু পরিবর্তন না হলে তাকে ধ্রুব বল বলে।

মনে করি A বিন্দুতে অবস্থিত কোন একটি বস্তুর উপর AB বরাবর F বল প্রযুক্ত হওয়ায় বস্তুটি A বিন্দু হতে B বিন্দুতে যেতে s দূরত্ব অতিক্রম করল [চিত্র ৬১ (ক)]। তা হলে,

কৃত কান্ধ = বলের মান × বলের ক্রিয়া রেখা বরাবর সরণের মান

বা,
$$W = F \times s$$
 (1)

(2)


(3)

যদি বল প্রয়োগের ফলে বস্তুর তথা বলের প্রয়োগ বিন্দুর সরণ, বলের বিপরীত দিকে AB = s হয় [চিত্র ৬ ১(খ)] তবে,

কৃত কাচ্চ = বলের মান × বলের ক্রিয়া রেখা বরাবর সরণের মান

 $W = F \times (-s) = -F \times s$

ঋণ চিহ্ন বল ও সরণ বিপরীতমুখী বুঝাতে ব্যবহুত হয়েছে।

এখানে $BC \perp AB$

. কৃত কাজ, W = বলের মান × বলের ক্রিয়া রেখা বরাবর সরণের মান

বা, $W = Fs \cos \theta$

= ব**লে**র মান × বলের দিকে সরণের উপাংশের মান।

= সরণের মান × সরণের দিকে বলের উপাংশের মান।

ভেষ্টর বীজগণিতের সাহায্যে কান্সকে নিম্নলিখিতভাবে প্রকাশ করা যায় ঃ

কাজকে বল ও সরণ এই দুটি তেষ্টর রাশির স্কেলার গুণফল মারা পরিমাপ করা হয়। মনে করি বল F একটি ভেষ্টর বা দিক রাশি এবং সরণ s একটি ভেষ্টর বা দিক রাশি অতএব কাজ = বল . সরণ বা W = F. s $\vec{s} \cdot \vec{F} = Fs \cos \theta$, $[s \cos \theta]$ হল বল F-এর দিকে সরণের উপাংশ বা অংশক] (4) এখানে $\theta = \overrightarrow{F}$ এবং \overrightarrow{s} -এর মধ্যবর্তী কোণ। (ক) $W = F', s' = Fs \cos \theta = Fs \cos \theta^{\circ}$ = Fs $[:: \cos 0^\circ = 1]$ এখানে কাজ ধনাত্মক (positive)। এক কথায় ও সুন্মকোণ হলে কাজ ধনাত্মক। কাজ ধনাত্মক হলে ব<u>লের দারা কাজ বুঝায়</u>। (খ) 0 = 90° হলে $W = \overline{F} \cdot s \cos \theta = F \cdot s \cos 90^\circ = 0 \quad [\because \cos 90^\circ = 0]$ জুর্ধাৎ heta = 90° হলে বল হারা কান্সের পরিমাণ শূন্য হবে। (গ) $\theta = 180^\circ$ হলে কাজ ঋণাত্মক (negative) হবে অধাৎ

$$W = F. s = Fs \cos 180^\circ = -Fs$$
 [:: cos 180° = -1]

কাজ খণাত্মক হলে বলের বিরুম্খে কাজ বুঝায়।

উপরের সমীকরণগুলো হতে সিম্বাস্ত করা যায় যে, বল প্রয়োগের ফলে যদি বলের প্রয়োগ বিন্দুর সরণ ঘটে তবেই কান্স সাধিত হবে। এটিই কান্সের শর্ত।

কান্স দুটি দিক রাশি \overrightarrow{F} ও \overrightarrow{s} এর ডট বা স্কেলার গুণফল। এটি একটি স্কেলার রাশি। কান্সের শুধুমাত্র মান রয়েছে।

কতকগুলো বল যদি একসাথে বস্তুর উপর কাজ করে, তবে প্রতিটি বল দ্বারা কাজের পরিমাণ পৃথক পৃথকতাবে নির্ণয় করে সবগুলোকে একত্রে যোগ করে মোট কাজের পরিমাণ পাওয়া যায়। অর্থাৎ মোট কাজের পরিমাণ

$$W = w_1 + w_2 + w_3 + \dots + w_n$$

এখানে w_1, w_2, w_3, w_n ইত্যাদি হল যথাক্রমে $\overrightarrow{F_1}, \overrightarrow{F_2}, \overrightarrow{F_3}, \overrightarrow{F_n}$ ই ত্যাদি বল দারা কৃত কান্দ।

শূন্য কান্ত :

কান্ধ পরিমাপের সংজ্ঞা এবং সমীকরণ অনুসারে বল প্রয়োগের ফলে যদি বলের প্রয়োগ বিন্দুর সরণ না ঘটে, তবে কান্ধ W = 0।

সুতরাৎ শূন্য কান্দের নিম্নোক্ত সংজ্ঞা দেয়া শ্বায়।

সংজ্ঞা ঃ বল প্রয়োগের ফলে যদি বস্তুর সরণ না হয় (͡s = 0), অর্ধাৎ বলের প্রয়োগ বিন্দু স্থির থাকে অথবা প্রয়োগ বিন্দু বলের উল্লম্ব অতিমুখে (θ = 90°) সরে যায়। তবে বলের ঘারা শৃন্য কান্ধ হয়েছে বুঝাবে।

উদাহরণ ঃ

(ক) একজন লোক একটি ভারী বাঙ্গ মাধায় নিয়ে দাঁড়িয়ে ধাকলে লোকটি কোন কাজ রুরছে না, কারণ বাঙ্গটির কোন সরণ নেই।

(খ) স্রোতের বিরুদ্দে সাঁতার কেটে স্থির থাকলে কোন কাচ্চ করা হয় না।

(5)

(গ) একটি বস্তু দড়িতে বেঁধে বৃত্তাকার পথে ঘ্রালে কোন কাজ হবে না। কেননা প্রতি মৃহুর্তে বস্তৃটির বেগ বা সরণ বস্তুর অবস্থান বিন্দু হতে বৃত্তের স্পর্শক বরাবর এবং বলের দিক কেন্দ্রমুখী। অর্ধাৎ কেন্দ্রমুখী বল ও সরণের অন্তর্ভুক্ত কোণ 90°। সুতরাং, কেন্দ্রমুখী বল যারা কৃত কাজ শূন্য।

কাজ শূন্য হওয়ার শর্ত :

আমরা জানি, কাজ

 $W = \overrightarrow{F} \cdot \overrightarrow{s} = Fs \cos \theta$

উপরের সমীকরণের ডানপাশে F, s ও cos θ তিনটি রাশি রয়েছে। এদের যে কোন একটি শূন্য হলে ডানপক্ষ অর্থাৎ কাজ শূন্য হবে।

(ক) যদি বস্তৃতে বল প্রয়োগ না করা হয় তবে কাজ W = 0 হবে।

(খ) বল প্রয়োগ করার ফলে যদি বস্তুর সরণ না ঘটে, তবে W = 0 হবে।

(গ) যদি $\cos \theta = 0$ হয়, অর্ধাৎ $\theta = 90^\circ$ হয়, তবে W = 0 হবে। এ অবস্থা ঘটবে যখন বল F ও সরণ

<u>s-এর মধ্যবর্তী কোণ 90° হবে।</u>

৬-৪ বলের দ্বারা কাজ ও বলের বিরুদ্দে কাজের পার্থক্য Distinction between work done by and against a force

অথবা, ধনাত্মক কাজ ও ঋণাত্মক কাজের পার্থক্য Distinction between positive and negative work

বলের হারা কাজ	বলের বিরুদ্ধে কাজ
১। যদি বল প্রয়োগের ফলে বলের দিকে বলের	১। যদি বল প্রয়োগের ফলে বলের বিপরীত দিকে
প্রয়োগ বিন্দুর সরণ ঘটে বা বলের দিকে সরণের	বলের প্রয়োগ খিন্দুর সরণ ঘটে বা বলের দিকে সরণের
ধনাত্মক উপাংশ থাকে তবে ঐ সরণের জন্য	ঋণাত্মক উপাংশ থাকে তবে ঐ সরণের জন্য
কৃতকান্ধকে বলের দারা কান্ধ বলে।	কৃতকান্ধকে বলের বিরুদ্ধে কাজ বলে।
🔪। বলের দ্বারা কাজ ধনাত্রক রাশি।	ি বলের বিরুদ্ধে কাজ ঋণাত্মক রাশি।
<u>৩। বলের দ্বারা কাজ হলে বস্তৃতে ত্বিরণের) সৃষ্টি</u>	২০া বলের বিরুদ্ধে কাজ হলে বস্তুর উপর মন্দন
<u>र</u> स्।	<u>স্যি হয়</u> ।
্ব বলের দারা কাজ হলে স্থিতিশক্তি হ্রাস পায়।	সোঁ বলের বিরন্ধে কাজ হলে স্থিতিশক্তি বৃন্ধি পায়।
্বে বলের দ্বারা কাজ হলে গতিশক্তি বৃন্ধি পায়।	্বা বলের বিরুদ্ধে কাজ হলে গতিশক্তি হাস পায়।
ে সন্ বলের ঢাবা কাজের ক্ষেত্রে $90^\circ < \theta \ge 0^\circ$	্র্দা বলের বিরুদ্ধে কাজের ক্ষেত্রে 180° ≥0 < 90°।

৬৫ কাজের একক ও মাত্রা সমীকরণ Unit and dimension of work

কাজের একক আলোচনা করার আগে একক কাজ কি তা জানা দরকার। কোন বস্তুর উপর একক বন প্রয়োগে বনের ক্রিয়ারেখা বরাবর যদি বস্তুর একক সরণ হয়, তবে যে পরিমাণ কাজ সম্পন্ন হয়, তাকে একক কাজ বনে। এস. আই. বা আন্তর্জাতিক পন্ধতি : এ পন্ধতিতে কাচ্ছের পরম একক হল চ্লুল (Joule)। এক নিউটন বল প্রয়োগের ফলে বলের ক্রিয়া রেখা বরাবর বস্তুর সরণ যদি এক মিটার হয়, তবে যে কান্স সম্পন্ন হয় তাকে এক স্থুন বলে।

<u>। 1 জ</u>ল = 1 নিউটন × 1 মিটার।

ভাৎপর্য : ধরা যাক 50 J পরিমাণ কাজ সম্পন্ন করা হয়েছে।

এখন, 50 J = 50 N × 1 m = 1 N × 50 m = 5 N × 10 m ইত্যাদি।

সুতরাং, 50 J কাজ সম্পাদন বলতে বুঝায় 50 N বল প্রয়োগ করে বলের দিকে 1 m সরণ ঘটান বা 1 N বল প্রয়োগ করে 50 m সরণ ঘটান ; কিংবা 5N বল প্রয়োগ করে 10 m সরণ ঘটান ইত্যাদি।

পারমাণবিক পদার্থবিজ্ঞানে কাজ পরিমাপের জন্য **ইলেকটন ডোল্ট** (eV) নামে পরিচিত একটি সুবিধাজনক একক ব্যবহার করা হয়। এক তোল্ট বিভব পার্ধক্যে একটি ইলেকটনের অর্জিত শক্তিই এক ইলেকটন তোল্ট।

 $1 eV = 1.6 \times 10^{-19}$ जून |

বিদ্যুৎবিজ্ঞানে কান্ধের আর একটি ব্যবহারিক একক আছে। এর নাম **কিলোওয়াট-খণ্টা (K. W. H.)। এক** কিলোওয়াট ক্ষমতাসম্পন্ন কোন উৎস এক খণ্টায় যে পরিমাণ কান্ত সম্পন্ন করে তাকে এক কিলোওয়াট-খণ্টা বলে।

কান্ডের মাত্রা সমীকরণ :

কাজের মাত্রা সমীকরণ, $[W] = [বল] \times [সরণ] = [MLT^{-2}] [L] + [ML^{2}T^{-2}]$

৬৬ অভিকর্ষীয় কাজ

Gravitational Work

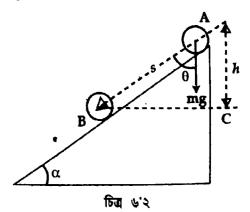
অভিকর্ষ বলের দরুন কৃত কাজ 😮

 (১) মনে করি 'm' ভরবিশিষ্ট একটি বস্তুকে অভিকর্ষ বলের প্রভাবে 'h' উচ্চতা হতে ফেলা হল। কৃত কাজ = বল × সরণ বা, W = F × h = mgh [: F = mg] বা, W = ভর × অভিকর্ষীয় ত্বরণ × উচ্চতা

অভিকর্ষ বলের দিক নিচের দিকে এবং এক্ষেত্রে সরণও নিচের দিকে। অর্থাৎ, বল ও সরণ একই দিকে হওয়ায় কান্ধ ধনাত্মক।

(২) 'm' ভরবিশিষ্ট একটি বস্তুকে অভিকর্ষ বলের বিরুদ্ধে 'h' উচ্চতা উপরে উঠালে

কৃত কাজ = ভর × অভিকর্ষীয় ত্বরণ × উচ্চতা বা, W = mgh


এক্ষেত্রে বল ও সরণ বিপরীত দিকে হওয়ায় এই

কাজ ঋণাত্মক।

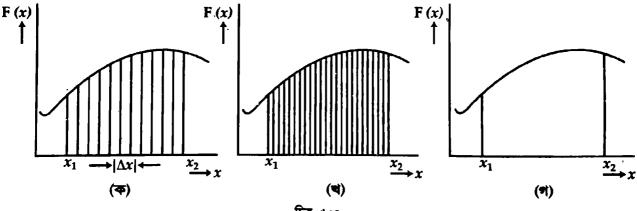
(৩) মনে করি '*m*' ভরবিশিষ্ট একটি বস্তু কোন একটি মসৃণ নততল বেয়ে A হতে B-তে সরে এল। যদি g অভিকর্ষীয় ত্বরণ হয়, তবে অভিকর্ষ বল mg বস্তুটিকে খাড়াভাবে নিচের দিকে টানবে।

ধরি সরণের অভিমুখ এবং অভিকর্ষ বলের অতিমুখের মধ্যে θ কোণ আছে এবং AB = s

অভিকর্ষ বল mg-এর দিকে সরণের অংশ = s cos θ

(7)

উচ্চ মাধ্যমিক পদার্থবিজ্ঞান $BG \mathcal{CJEWEL}$


যদি তল না থাকত তবে বস্তুটি যে সময়ে A হতে B-তে যায়, সে সময়ে তা AC = h দ্বত্ব নিচে নামত। $h = s \cos \theta$ কৃত কাজ, $W = mgs \cos \theta$ বা, W = mgh (8) তলটি অনুভূমিকের সাথে α কোণে অবস্থান করলে, $\theta = (90^\circ - \alpha)$ $W = mgs \cos (90^\circ - \alpha) = mgs \sin \alpha$ [8(a)]

৬৭ পরিবর্তনশীল বল কর্তৃক কৃত কাজের সমীকরণ Equation of work done by variable force

৬·৫ অনুচ্ছেদে অভিকর্ষীয় কাজ আলোচনা করার সময় বল অপরিবর্তনশীল ধরা হয়েছে। ষণ্ণ উচ্চতায় বলের পরিবর্তন খুবই নগণ্য। কিন্তু পৃথিবী পৃষ্ঠের বেশ উপরের দিকে কিংবা নিচের দিকে অভিকর্ষীয় বলের মান কমতে ধাকে। সেক্ষেত্রে বল ধ্রুব ধরা যায় না। বল একটি ভেষ্টর রাশি; সুতরাং এর দিক ও মান উভয়ই আছে। প্রথমে বলের মান পরিবর্তনশীল বিবেচনা করে আমরা নিম্নে কৃত কাজের সমীকরণ বের করব।

(ক) বলের মান যখন পরিবর্তনশীল : ধরি কোন একটি পরিবর্তনশীল বল \overrightarrow{F} বস্তুর উপর X-অক্ষ বরাবর ক্রিয়া করায় বস্তুটি X-অক্ষ বরাবর x_1 অবস্থান থেকে x_2 অবস্থানে সরে গেল এবং বলটি মানের সাপেক্ষে পরিবর্তী। এই পরিবর্তী বল দ্বারা বস্তুটির সরণ ($x_2 - x_1$) ঘটাতে সম্পাদিত কান্ধ নিশ্লোক্ত উপায়ে বের করতে পারি।

এখন মোট সরণ $(x_2 - x_1)$ কে বহুসংখ্যক অতি ক্ষুদ্র ক্ষুদ্র সমমানের সরণ Δx -এ বিভক্ত করা হল [চিত্র ৬৩ (ক)]।

চিত্র ৬ণ্ড

ফলে প্রতিটি ক্ষুদ্র সরণের শুরুতে বস্তুর উপর যে বল ক্রিয়া করে এ বলের ক্রিয়াতেই এ সরণ সংঘটিত হয়েছে বিবেচনা করা যায়। প্রতিটি ক্ষুদ্র জংশে ক্রিয়ারত বল ভিন্ন ভিন্ন মানের। সুতরাং x_1 অবস্থান থেকে $x_1 + \Delta x$ পর্যন্ত ক্ষুদ্র সরণের ক্ষেত্রে F_1 বল ক্রিয়ানীল হলে কৃত কান্ধ,

 $\Delta W_1 = F_1 \Delta x$

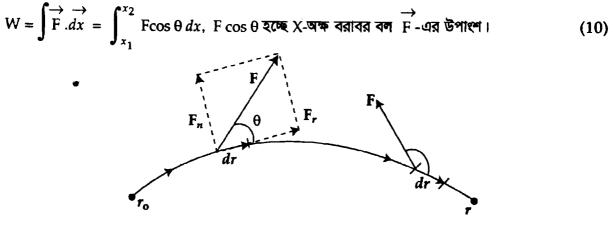
অনুরূপডাবে $x_1 + \Delta x$ থেকে $x_1 + 2\Delta x$ পর্যন্ত সরণ Δx -এর ক্ষেত্রে F_2 বল ক্রিয়াশীল হলে কৃত কাচ্চ,

 $\Delta W_2 = F_2 \Delta x$

মোট সরণ $(x_2 - x_1)$ কে যদি এরূপ N সমসংখ্যক ক্ষুদ্র সরণ Δx -এ বিভক্ত করা হয় তবৈ মোট কান্ধ হবে এই ক্ষুদ্র ক্ষুদ্র অংশের সর্রণের জন্য কান্ধের সমষ্টির সমান।

$$\overline{\boldsymbol{\varphi}} \boldsymbol{\nabla} \ \overline{\boldsymbol{\varphi}} \ \overline{\boldsymbol{\varphi}} \boldsymbol{\nabla} \ \overline{\boldsymbol{\varphi}} \ \overline{\boldsymbol{\varphi}} \ \overline{\boldsymbol{\varphi}} \ \overline{\boldsymbol{\varphi}} \boldsymbol{\nabla} \ \overline{\boldsymbol{\varphi}} \ \overline{\boldsymbol{\varphi}} \ \overline{\boldsymbol{\varphi}} \ \overline{\boldsymbol{\varphi}} \ \overline{\boldsymbol{\varphi}} \ \overline{\boldsymbol$$

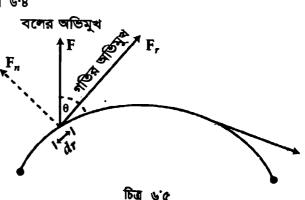
লক্ষণীয় যে প্রতিটি ক্ষুদ্র অংশ Δx-এ বলের মান ধ্রুব ধরা হয়েছে। কিন্তু এটা সম্পূর্ণ সঠিক নয়। ঐ প্রতিটি ক্ষুদ্র অংশকে যদি আরও ক্ষুদ্র ক্ষুদ্র অংশে ভাগ করি [চিত্র ৬৩ (খ)] এবং নব ক্ষুদ্র অংশের জন্য বল ধ্রুব ধরি, তবে কৃত কাজের মান আরও সঠিক হবে। এভাবে ক্ষুদ্র অংশ আরও ক্ষুদ্র অর্থাৎ Δx যদি প্রায় শূন্যের কাছাকাছি হয় এবং বিভক্ত অঞ্চলের সংখ্যা N-কে অসীম করা হয়। তবে সঠিক মান পাওয়া যাবে। অতএব, কাজের সঠিক মান লেখা যায়।


$$W = Lt \sum_{\Delta x \to 0}^{N} F_k \Delta x$$

ক্যালকুলাসের ভাষায়,

$$Lt \sum_{\Delta x \to 0}^{N} F_k \Delta x = \int_{x_1}^{x_2} F(x) dx$$

$$W = \int_{x_1}^{x_2} F(x) dx \qquad (9)$$


 $= x_1$ ও x_2 সীমার মধ্যে আবন্ধ লেখচিত্রের ক্ষেত্রফল [চিত্র ৬.৩ (গ)]

বল ও সরণের মধ্যবর্তী কোণ ৪ হলে [চিত্র ৬-৪]

চিত্র ৬•৪

(খ) বলের মান ও দিক উতরই যখন পরিবর্তনশীল ঃ বল মানে ও অভিমুখে পরিবর্তনশীল হলে এ বলের ক্রিয়ায় বস্তু একটি রেখায় গতিশীল হতে পারে। বস্তুটির গতি দ্বিমাত্রিক বা ত্রিমাত্রিক। এ ক্ষেত্রে রেখাটির কোন বিন্দুতে অংকিত স্পর্শক দ্বারা এ বিন্দুতে বস্তুর গতি অভিমুখ নির্দিষ্ট হবে। এক্ষেত্রে সরণ = 7।

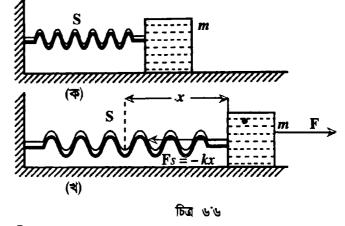
কাজেই এই প্রকার বলের কৃত কাজ নির্ণয়ে সমগ্র গতিপথকে অতি ক্ষুদ্র ক্ষুদ্র সরণ $d \to -$ এর সমষ্টি হিসেবে গণ্য করা যায়।

প্রত্যেক ক্ষুদ্র সরণের শুরুতে বস্তুর উপর যে বল F ক্রিয়ারত থাকে এ বল উক্ত সরণের জন্য অপরিবর্তী বিবেচনা করা যায়। ধরি কোন একটি ক্ষুদ্র সরণ dr এবং এ সরণের জন্য ক্রিয়ারত বল F-এর মধ্যবর্তী কোণ ৪। বলটিকে dr বরাবর একটি অংশে এবং তার লম্ম দিকে অপর একটি অংশে বিভক্ত করি। ধরি জংশক দুটি থ্যাক্রমে

 $F_r = F \cos \theta$ এবং $F_n = F \sin \theta$

এই ক্ষুদ্র সঁরণের জন্য বলের F_n অংশক কর্তৃক কৃত কাজ শূন্য, কেননা এই ক্ষুদ্র সরণ ও F_n-এর মধ্যবর্তী কোণ 90°। তা হলে এ ক্ষুদ্র সরণের জন্য কৃত কাজ

$$dW = F \, dr \cos \theta = \overrightarrow{F} \cdot d\overrightarrow{r}$$
কাজেই গতিপথের r_0 অবস্থান হতে r অবস্থানে স্থানান্তরের ক্ষেত্রে কৃত কাজ,
$$W = \int_{r_0}^{r} (F \cos \theta) \, dr = \int_{r_0}^{r} \overrightarrow{F} \cdot d\overrightarrow{r}$$
(11)


৬৮ পরিবর্তনশীল বল কর্তৃক কৃত কাজের উদাহরণ Examples of work done by variable force

(ক) স্থিং প্রসারণে সম্পাদিত কাজ (বল $\propto x$)

মনে করি একটি অনুভূমিক আদর্শ স্প্রিং-এর এক প্রান্ত দেয়ালের সাথে আটকিয়ে অপর প্রান্তে m ভরের একটি বস্তু যুক্ত রয়েছে। বস্তৃটি অনুভূমিক এবং ঘর্ষণ্বিহীন তলের উপর দিয়ে চলাচল করতে পারে।

বস্তৃটিকে টেনে স্প্রিং S-কে দৈর্ঘ্য বরাবর বিকৃত করলে স্থিতিস্থাপক ধর্মের দর্ন প্রযুক্ত বলের বিপরীত স্প্রিং-এ প্রত্যায়নকারী বলের উদ্ভব হবে। স্থিতিস্থাপক সীমা অতিক্রম না করলে, প্রত্যায়নী বলের মান হুকের সূত্রানুযায়ী দৈর্ঘ্য পরিবর্তনের সমানুপাতিক হবে।

মনে করি F_s অনুভূমিক বল প্রয়োগে বস্তুটিকে বাম হতে ডান দিকে সরানোর ফলে এর দৈর্ঘ্য অনুভূমিক বরার্বর x পরিমাণ বৃদ্ধি

পেল। এই ক্রিয়ার দরুন স্প্রিং-এ — kx পরিমাণ প্রত্যায়নী বল উৎপন্ন হবে। কেননা

$$F_s \propto x.$$
All,
$$F_s = -kx$$
(12)

[এই প্রত্যায়নী বলের দিক বস্তৃটির সরণের বিপরীত দিকে হওয়ায় ঋণাত্মক চিহ্ন ব্যবহৃত হয়েছে।] এখানে k একটি ধ্রুব সংখ্যা। একে স্প্রিং ধ্রুবক (spring constant) বলা হয়। স্প্রিঘটিকে প্রসারিত করতে হলে সমমানের বাহ্যিক বল প্রয়োগ করতে হবে। মনে করি প্রযুক্ত বল F।

$$\mathbf{F} = -\mathbf{F}_c = -(-kx) = kx \tag{13}$$

স্প্রির্ঘটিকে x1 অবস্থান হতে x2 অবস্থানে প্রসারিত করতে প্রযুক্ত বল কর্তৃক সম্পাদিত কাজের পরিমাণ

$$W = \int_{x_{1}}^{x_{2}} \overrightarrow{F}(x) d\overrightarrow{x} = \int_{x_{1}}^{x_{2}} F(x) dx \qquad [\because \overrightarrow{F} \lor d\overrightarrow{x} - \varDelta \overrightarrow{a} \checkmark 4 \Im \overrightarrow{a} \widecheck{e} (\overrightarrow{a})]$$
$$= \int_{x_{1}}^{x_{2}} kx dx = k \int_{x_{1}}^{x_{2}} x dx = \frac{1}{2} k [x^{2}]_{x_{1}}^{x_{2}} = \frac{1}{2} k [x_{2}^{2} - x_{1}^{2}]$$
$$W = \frac{1}{2} k x_{2}^{2} - \frac{1}{2} k x_{1}^{2} \qquad (14)$$

এই কাজ ধনাত্মক। সাধিত কাজ স্প্রিং-এর মধ্যে স্থিতিশক্তি হিসেবে সঞ্চিত থাকে।

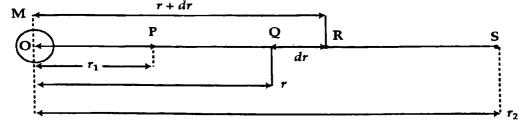
স্প্রিং-এর আদি অবস্থান $x_1=0$ এবং শেষ অবস্থান $x_2=x$ ধরলে,

$$W = \frac{1}{2}x^2 \tag{15}$$

জর্ধাৎ, সরণের পরিমাণ x হলে সঞ্চিত স্থিতিশক্তির পরিমাণ হবে $rac{1}{2}ar{k}x^2$ ।

[পুনঃ, স্প্রিং-এর দৈর্ঘ্য x পরিমাণ সংকুচিত হলেও সঞ্চিত স্থিত স্থিতি শক্তির পরিমাণ W = $rac{1}{2}kx^2$ হবে] ।

(খ) মহাকর্ষীয় ক্ষেত্রে কৃত কাজ
$$\left(2 r \propto \frac{1}{r^2} \right)$$


Work done in gravitational field

আমরা জানি কোন একটি বৃহদাকার গুরুতার বস্তুর চারদিকে যে স্থান জুড়ে এর আকর্ষণ বল অনুভূত হয়, সেই স্থানকে উক্ত বস্তুর মহাকর্ষীয় ক্ষেত্র বলে।

মনে করি একটি গুরুতার বস্তৃর তর M এবং এর তারকেন্দ্র O । O হতে r দূরত্বে Q বিন্দুতে m তরের একটি বস্তৃ স্থাপন করি। অতএব OQ = r । মহাকর্ষীয় সূত্র হতে বস্তু দুটির মধ্যে মহাকর্ষীয় বল

$$F_1 = G \frac{Mm}{r^2}$$
(16)

এই বল QO রেখা বরাবর ক্রিয়া করে। Q হতে dr দূরত্বে R একটি বিন্দু বিবেচনা করি। অতএব OR = r + dr যেহেতু Q ও R বিন্দু দুটি খুবই কাছাকাছি, সেহেতু এই দূরত্বের মধ্যে F₁ ধ্রুব ধরা যায়। ছোট

বস্তুটিকে Q হতে R বিন্দুতে নিতে বাইরের কোন উৎসকে মহাকর্ষীয় বলের বিপরীত দিকে সমপরিমাণের একটি বল প্রয়োগ করতে হবে। ধরি এই বল F_2

$$- F_2 = G \frac{Mm}{r^2}$$
(17)

এই বল Q হতে R বিন্দুর দিকে ক্রিয়া করবে।

এখন, ছোট বস্তুটিকে Q হতে R বিন্দুতে নিতে বাইরের উৎস কর্তৃক কৃত কাজ

$$dW = \overrightarrow{F_2} \cdot d\overrightarrow{r} = F_2 dr \qquad [এখানে \overrightarrow{F_2} \otimes d\overrightarrow{r} - এর মধ্যবর্তী কোণ শূন্য]$$
বা, $dW = \frac{GMm}{r^2} dr$
(18)

ছোট বস্তুটিকে P হতে S বিন্দুতে নিতে কৃত কাজ

$$W = \int dW = \int_{r_1}^{r_2} \frac{GMm}{r^2} dr = GMm \int_{r_1}^{r_2} \frac{1}{r^2} dr = GMm \int_{r_1}^{r_2} r^{-2} dr$$
$$= GMm \left[\frac{r^{-2+1}}{-2+1} \right]_{r_1}^{r_2} = GMm \left[\frac{r^{-1}}{-1} \right]_{r_1}^{r_2} = GMm \left[-\frac{1}{r} \right]_{r_1}^{r_2}$$

উচ্চ মাধ্যমিক পদার্থবিজ্ঞান BG & JEWEL

$$= -GMm \left(\frac{1}{r_2} - \frac{1}{r_1}\right)$$
$$= GMm \left[\frac{1}{r_1} - \frac{1}{r_2}\right]$$
$$W = GMm \left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$

[সমাকলন-এর মাত্রা পরিবর্তন করে]

(19)

উক্ত সমীকরণ হতে দেখা যাচ্ছে যে বাইরের উৎস কর্তৃক মহাকর্ষীয় বলের বিপরীতে কাজ ধনাত্মক।

৬৯ শক্তি

Energy

কোন ব্যক্তি, বস্তু বা পদার্থের কাজ করার সামর্থ্য বা ক্ষমতাকে এর শক্তি বলে। একটি বস্তু এই শক্তি তার আপেক্ষিক অথবা পারিপার্শ্বিক অবস্থা বা অবস্থানের সাপেক্ষে অথবা গতির দরুন অর্জন করতে পারে। বিশেষ অবস্থায় বস্তু মোট যে পরিমাণ কাজ সন্্দান করতে পারে, তা ঘারাই শক্তি পরিমাপ করা হয়। যার কাজ করার সামর্থ্য যত বেশি তার শক্তিও তত বেশি। আর যার কাজ করার সামর্থ্য যত কম তার শক্তিও তত কম। অতএব বলা যায় কাজ শক্তির মাপকাঠি। যদি বলা হয় কোন বস্তু W পরিমাণ কাজ করল, তবে বুঝতে হবে যে, তার ব্যয়িত শক্তির মান W।

মোটর ইঞ্জিনে পেটোলের বাম্পা, বাম্পীয় ইঞ্জিনে জলীয় বাম্পের চাপ পিস্টনকে চালায়। সুতরাং বাম্পের শক্তি আছে। রিদ্যুতেরও শক্তি আছে। এই শক্তিতেই ট্রেন, ট্রাম, কল-কারখানা চলে। শক্তি আছে বলেই এই মহাবিশ্ব চলছে। শক্তির অভাবে জগৎ অচল।

যখন কোন বস্তু বলের বিরুদ্ধে কান্ধ করে, তখন তা শক্তি হারায়। আবার কোন বস্তুর উপর বল ক্রিয়া করলে তা শক্তি লাভ করে।

শক্তির একক ও মাত্রা সমীকরণ (Unit and dimension of energy)

কাজ দ্বারাই শক্তির পরিমাপ করা হয় অর্থাৎ কাজই শক্তির মাপকাঠি। অতএব কাজ এবং শক্তির একক ও মাত্রা সমীকরণ সম্পূর্ণ অভিন্ন।

শক্তিকে বিভিন্ন ভাগে বিভক্ত করা হয়েছে; যথা— 🏹 দ্র ব্রাত

(১) যান্ত্ৰিক শক্তি (Mechanical energy) (২) তাপ শক্তি (Heat energy) (৩) শব্দ শক্তি (Sound energy) (৪) আলোক শক্তি (Light energy) ৫) চুম্মক শক্তি (Magnetic energy) (৬) বিদ্যুৎ শক্তি (Electric energy) (৭) রাসায়নিক শক্তি (Chemical energy) (৮) পারমাণবিক শক্তি (Atomic energy) (৯) সৌরশক্তি (Solar energy) ।

যান্ত্রিক শক্তি ঃ কোন বস্তুর মধ্যে তার পারিপার্শ্বিক অবস্থা বা অবস্থানের সাপেক্ষে অথবা গতির জন্য কাজ করার সামর্থ্য তথা শক্তি থাকে, তবে এ শক্তিকে যান্ত্রিক শক্তি বলে।

এই অধ্যায়ে আমরা যান্ত্রিক শক্তি আলোচনা করব। এটি প্রধানত দুই প্রকার ; যথা----

- (১) গতিশক্তি (Kinetic energy) । একে সংক্ষেপে K. E. লেখা হয় এবং
- (২) বিভৰ বা স্পিতিশক্তি (Potential energy)। একে সংক্ষেপে P. E. লেখা হয়।

৬•১০ গতিশস্তি

Kinetic energy

সংজ্ঞা ঃ গতিশক্তির অর্থ গতিজনিত শক্তি, অর্ধাৎ গতিশীল অবস্থা থাকার ফলে কোন একটি বস্তু কাজ করার জন্য যে সামর্থ্য অর্জন করে তাকে ঐ বস্তুর গতিশক্তি বলে।

রাইফেলের একটি গুলি লক্ষ্যবস্তুতে সন্ধোরে আঘাত করার পর তা বস্তুর বাধা অতিক্রম করে ধানিকটা ঢুকে যায়। অর্থাৎ গুলি কিছু কাজ করে। গুলি যতক্ষণ বন্দুকের ভিতর থাকে ত্রতক্ষণ তার এই কাজ করার সামর্থ্য থাকে না। কাজেই বুঝা যায় গুলি এই কাজ করার সামর্থ্য অর্থাৎ শক্তি অর্জন করে গতি হতে। বায়ুর গতির দিকে নৌকা চালালে তার গতি বৃদ্ধি পায় এবং বিপরীত দিকে চালালে তার গতি হ্রাস পায়। নৌকা পানির বাধা অতিক্রম করার শক্তি সংগ্রহ করে গতি হতে।

<u>আরও সংক্ষেপে বলা যায়, গতির জন্য বস্তুতে যে শক্তির উত্তব হয় তাকে তার গতিশক্তি বলে।</u> দোলায়মান দোলক, ঘূর্ণায়মান ফ্লাই হুইল, নিক্ষিন্ত তীর, চলন্ত ফুটবল, প্রচন্ড ঝড়, চলন্ত সাইকেল ইত্যাদি সকলের শক্তিই গতিশক্তি। কোন গতিশীল বস্তু গতিতে থাকাকালীন অর্থাৎ স্থিতিতে আসার পূর্ব মুহুর্ত পর্যন্ত যে পরিমাণ কাজ সম্পন্ন করে তা দ্বারা তার গতিশক্তি পরিমাপ করা হয়।

গতিশক্তির পরিমাপ (Measurement of K. E.) 🕯

রৈখিক গতির ক্ষেত্রে : গতিশীল বস্তু স্থিতিতে আসার পূর্ব মুহূর্ত পর্যস্ত যে পরিমাণ কাজ সম্পনু করে তাই গতিশক্তির পরিমাপ।

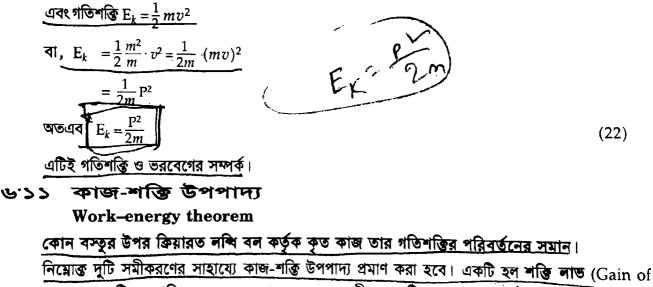
মনে করি, 'm' ভরবিশিষ্ট একটি বস্তু AB বরাবর v বেগে চলছে। গতির বিপরীত দিকে BA বরাবর তার উপর F পরিমাণ ধ্রুব বল প্রয়োগ করা হল। এতে সম-মন্দনের সৃষ্টি হবে। মনে করি, সম-মন্দন = a এবং বস্তুটি A হতে s দূরত্ব অতিক্রম করার পর B বিন্দুতে এসে থেমে গেল। এ ক্ষেত্রে শেষ বেগ = 0. চিত্র ৬'৮ গতিশক্তি = স্থিতিতে আসার পূর্ব মুহূর্ত পর্যন্ত কৃত কাজ বল × স্থিতিতে জাসার পূর্ব মুহূর্ত পর্যন্ত অতিক্রান্ত দূরত্ব $= \mathbf{F} \times \mathbf{s}$ নিউটনের ২য় গতি সূত্র হতে আমরা জানি, বল = ভর × ত্বুরণ বা মন্দন $\mathbf{F} = ma$ বর্ণনা অনুসারে, $0 = v^2 - 2as$ বা, $2as = v^2$ বা, $s = \frac{v^2}{2a}$ উপরের সমীকরণে F এবং s-এর মান বসিয়ে আমরা পাই, গতিশক্তি = ma $\times \frac{v^2}{2a} = \frac{1}{2}mv^2$ বা, K. E. = $\frac{1}{2}mv^2$ অর্থাৎ গতিশক্তি (K. E.) = $\frac{1}{2}mv^2 = \frac{1}{2} \times ভর \times বেগ^2$ (20)উপরের সমীকরণ হতে আমরা সিন্ধান্তে আসতে পারি যে, 'ক) কোন মুহুর্তে বস্তুর গতিশক্তি (K. E.) = ঐ মুহুর্তে বস্তুর বেগের বর্গ ও ভরের গুণফলের অর্ধেক। (খ) দির্দিন্ট ভনের কোন ব্রহ্নুর গতিশক্তি K. E. $\propto \pi^2$ অর্থাৎ বেগের বর্গের সমানুপাতিক কেননা <u>m धुर</u>। (গ) গতিশক্তি = $\frac{1}{2} \frac{(\overline{S}_{3}(\overline{S}_{1})^{2})}{\overline{S}_{3}} = -$ ক্যালকুলাস পম্পতি ঃ ধরা যাক, m ভরের একটি বস্তুর উপর নির্দিষ্ট দিকে F বল প্রয়োগ করে গতিশীল করা হয়। বলের দিক অপরিবর্তী, কিন্তু মান পরিবর্তনশীল। বস্তুটির সরণ X-অক্ষ বরাবর।

$$W = \int F dx = \int madx \qquad [\because F = ma]$$
$$= m \int a dx$$

ত্বরণ a-কে লেখা যায়',

$$a = \frac{dv}{dt} = \frac{dv}{dx}\frac{dx}{dt} = \frac{dv}{dx}v = v\frac{dv}{dx}$$
$$W = m\int \frac{vdv}{dx}dx = m\int vdv$$

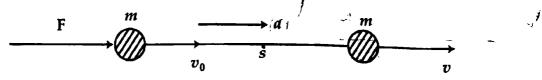
ধরা যাক, বস্তুতে ক্রিয়াশীল বল বস্তুটির বেগ 0 হতে v-তে উন্নীত করে


জতএব, W =
$$m \int_0^v v dv = m \left[\frac{v^2}{2} \right]_0^v$$

= $\frac{mv^2}{2} = \frac{1}{2} mv^2$

এই কৃত কাজই হচ্ছে বস্তুটির গতিশক্তি।

$$\mathbf{E}_k = \frac{1}{2} m v^2 \tag{21}$$


গতিশক্তি ও তরবেগের সম্পর্ক ঃ

m ভরের একটি বস্তু v বেগে গতিশীল হলে এর ভরবেগ, P = mv

energy) আর অপরটি হল শক্তি ক্ষয় (Loss of energy)। সমীকরণ দুটি সাধারণভাবে কাজ-শক্তি উপপাদ্য নামে পরিচিত।

(১) **শক্তি লান্ড ঃ** মনে করি '*m*' ভরবিশিষ্ট একটি বস্তু 'v₀' আদি বেগে চলছে। গৃতির দিকে নির্দিষ্ট মানের একটি বল F বস্তুর উপর প্রয়োগ করলে বস্তুর বৈগ বৃদ্ধি পাবে। ফলে বস্তু শক্তি লাভ করবে। মনে কুরি s দূরত্ব অতিক্রম করার পর শেষ বেগ 'v' হল। তা হলে কৃত কান্জ, W = F × s l

চিত্র ৬'৯
বন্দ কর্তৃক সৃষ্ট জুরণ,
$$a = \frac{F}{m} = \frac{v^2 - v_0^2}{2s}$$
 [:: $v^2 = v_0^2 + 2as$]
বা, $F = ma = m\left(\frac{v^2 - v_0^2}{2s}\right)^2$

ንዖዮ

কাজ, শীক্ত ও ক্ষমতা
বইঘর.কম
কৃত কাজ, W = F×s =
$$m\left(\frac{v^2 - v_0^2}{2s}\right)$$
 × s = $\frac{1}{2}m(v^2 - v_0^2)$
W = $\frac{1}{2}mv^2 - \frac{1}{2}mv_0^2$ = $\frac{1}{2}m\cdot(\sqrt{v} - V_0^{\nu})$.. (23)
= শেষ গতিশক্তি – আদি গতিশক্তি।

ንዮቃ

বলের দ্বারা কৃত কাজ = শক্তি লাভ = গতিশক্তির পরিবর্তন

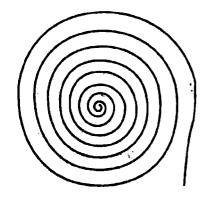
(২) শক্তি ক্ষয় : মনে করি, 'm' ভরবিশিষ্ট একটি বস্তু 'v₀' আদি বেগে চলছে। গতির বিপরীত দিকে নির্দিষ্ট মানের বল প্রয়োগ করলে তার বেগ কমবে এবং বলের বিরুদ্বে কাজ করতে গিয়ে বস্তু শক্তি হারাবে।

গতির বিপরীতে F বল প্রয়োগে মন্দন a হলে এবং s দূরত্ব অতিক্রমের পর বস্তুর বেগ v হলে, মন্দনের ক্ষেত্রে,

$$a = \frac{v_0^2 - v^2}{2s}$$
কাজেই: কৃত কাজ, $W = Fs = ma \times s = m\left(\frac{v_0^2 - v^2}{2}\right)$
 $W = \frac{1}{2}mv_0^2 - \frac{1}{2}mv^2$
(24)

বলের বিরুদ্দে কৃত কাজ - শক্তি ক্ষয়

কৃত কাজ = গতিশক্তির পরিবর্তন


সুতরাং কোন বস্তু<mark>র উপর ক্রিয়ারত লখি বল কর্তৃক কৃত কাজ তার গতিশন্তির পরিবর্তনের সমান</mark>। এটি '**কাজ-শন্তি উপপাদ্য'** নামে পরিচিত। সমীকরণ (23) ও (24) উপপাদ্যটি প্রমাণ করে।

৬·১২ স্থিতিশক্তি বা বিভব শক্তি Potential energy

স্থিতিশক্তির দুটি সংজ্ঞা দেওয়া যেতে পারে ঃ

(১) স্বিডিশক্তির অর্ধ স্বিডিজনিত শক্তি অর্ধাৎ নির্দিষ্ট অবস্থানে বা অবস্থায় স্বিতিশীল থাকার দর্ন বস্তু যে শক্তি প্রাশ্ত হয় তাকে স্বিতিশক্তি বা বিভব শক্তি বলে।

(২) কোন বস্তুর বিভিন্ন অংশের পরিবর্তনের দর্ন অথবা পারিপার্শ্বিক সাপেক্ষে বস্তুর অবস্থানের দরুন বস্তু যে শক্তি প্রাশ্ত হয় তাকে এ বস্তুর স্থিতিশক্তি বা বিভব শক্তি বলে। যেমন ছাদের উপর রক্ষিত একখন্ড ইট, পানির ট্যাংকে রক্ষিত পানি ইত্যাদি কম-বেশি শক্তি প্রাশ্ত হয়। এর্প সকল শক্তিই স্থিতিশক্তি। স্থিতিশক্তির আরও কয়েকটি উদাহরণ নিম্নে দেয়া হল ঃ

চিত্র ড'১০

(ক) খেলনার মোটর গাড়িতে স্প্রিং লাগানো থাকে [চিত্র ৬১০]। এই স্প্রিং-এ দম দিলে তা আকারে ছোট হয়। এই আকার পরিবর্তনের জন্য আমরা কাজ করি যা স্থিতিশক্তিরূপে স্প্রিং-এ সঞ্চিত হয়। দম ছেড়ে দিলে স্প্রিং-এর পাঁাচ খুলে পুনরায় পূর্বের অবস্থায় ফিরে আসে। স্প্রিং-এর সাথে খেলনার চাকা লাগানো থাকে। ফলে চাকা ঘুরতে থাকে অর্থাৎ স্থিং স্থিতি শক্তির দরুন গাড়ি চালাতে কাজ করে।

(খ) হাত ঘড়িতে স্থিতিস্থাপক স্প্রিং-এর সাথে ঘড়ির চাকা যুক্ত থাকে [চিত্র ৬'১০]। এই স্প্রিং-এ দম দিলে তা আকারে ছোট হয়। এই আকার পরিবর্তন তথা দম দেওয়ার জন্য আমরা কাচ্চ করি যা স্প্রিং-এর মধ্যে স্থিতিশক্তিরূপে সঞ্চিত হয়। স্থিৎ-এর সাথে ঘড়ির কাঁটার এমন একটি সংযোগ থাকে যে স্থিৎ প্যাঁচ খুলে উন্টা দিকে ঘুরে আগের অবস্থায় ফিরে আসার সময় ঘড়ির কাঁটা ঘুরতে থাকে। স্থিৎ-এর স্থিতিশক্তি গতিশক্তিতে পরিণত হয়।

এর্প ধনুকের ছিলাতে তীর লাগিয়ে টানলে, ধাতব পাতকে বাঁকালে, রবারকে প্রসারণ করলে সকলেই আকার পরিবর্তনের জন্য স্থিতিশক্তি লাভ করে।

(গ) উচ্চে অবস্থিত পানিতে, পাহাড়ের চূড়ায় বরফে এবং আকাশের মেঘে অবস্থান পরিবর্তনের জন্য স্থিতিশক্তি সঞ্চিত থাকে।

স্থিতিশক্তির পরিমাপ (Measurement of P. E.)

কোন একটি বস্তু বর্তমান অবস্থা হতে অন্য কোন স্বাভাবিক বা প্রমাণ অবস্থানে আসতে যে পরিমাণ কাজ সম্পনু করে তাই স্থিতিশক্তির পরিমাপ।

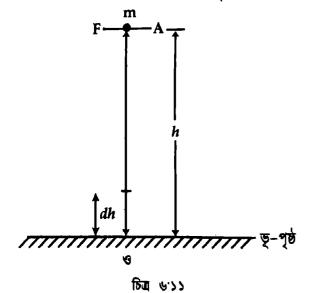
স্পিভিশক্তির প্রকারভেদ (Types of potential energy)

স্বিতিশক্তি বা বিভব শক্তি বিভিন্ন প্রকার, যথা ঃ

্দ্য অভিকৰ্ষীয় স্থিতিশক্তি বা অভিকৰ্ষীয় বিভব শক্তি (Gravitational potential energy)

ৰ্থা স্থিতিস্থাপক বিভব শক্তি (Elastic potential energy)

২০) <u>তড়িৎ বিভৰ শক্তি (Electric potential energy)</u>


৬'১৩ অভিকর্ষীয় স্পিডি শক্তি বা বিভব শক্তি Gravitational Potential energy

কোন একটি বস্তুকে অভিকর্ধের বিরুদ্ধে উপরে তুলতে বাইরের কোন উৎস বা এজেন্টের প্রয়োজন হয়। এই কাজ বস্তুর মধ্যে স্থিতিশক্তি বা বিভব শক্তি হিসেবে সঞ্চিত থাকে। এর নাম অভিকর্ষীয় বিভব শক্তি। এক্ষেত্রে ভূ-পৃষ্ঠকে প্রমাণ্য তল (reference level) হিসেবে বিবেচনা করা হয়।

এখন শক্তির পরিমাপ করা যাক—

ক্যালকুলাস পন্ধতি : মনে করি m ভরের একটি বস্তুকে ভূ-পৃষ্ঠ থেকে অভিকর্ষ বলের বিরুদ্ধে অতি ক্ষুদ্র উচ্চতা dh পর্যন্ত উঠানো হল। এতে কৃত কাজ

বা

$$dW = \overrightarrow{F} \cdot d\overrightarrow{h}$$

, $dW = Fdh$ (25)

এখানে F = বাহ্যিক উৎস কর্তৃক প্রযুক্ত বল এবং F ও dh-এর মধ্যবর্তী কোণ শূন্য।

একটি বস্তুইক উপরে উঠাতে হলে এর ওচ্চনের সমপরিমাণ বল উপর দিকে প্রয়োগ করতে হবে।

প্রযুক্ত বল, F = বস্তুর ওজন = mg

সুতরাৎ, বস্তুটিকে h উচ্চতায় A স্থানে উঠাতে হলে মোট কৃত কান্ধের পরিমাণ সমীকরণ (25)-এ প্রদন্ত ক্ষুদ্র কান্ধের সমন্টির সমান।

790.

কাজ, শব্তি ও ক্ষমতা বইঘর.কম অভিকর্ষীয় বিভব শব্তি = বস্তুটিকে ভূ-পৃষ্ঠ থেকে h উচ্চতায় তুলতে মোট কৃত কাজ।

 $P. E. = \int_0^h F dh = \int_0^h mg dh$

ষন্ন উচ্চতার জন্য g-এর মান ধ্রুব ধরে আমরা লিখতে পারি,

P.E. =
$$mg \int_{0}^{h} dh = mg [h]_{0}^{h} = mg [h-0] = mgh$$

অর্থাৎ অভিকর্ষীয় বিভব শক্তি

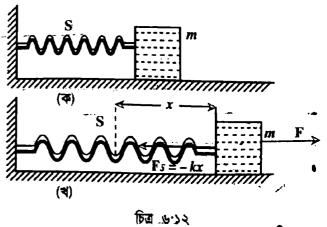
 $P.E. = mgh \tag{26}$

797

উল্লেখ্য বস্তু যতই নিচে নামতে থাকবে h-এর মান ততই কমবে এবং অভিকর্ষীয় বিভব শক্তিও কমতে থাকবে। তৃ-পৃষ্ঠে h = শূন্য হওয়ায় অভিকর্ষীয় বিভব শক্তি শূন্য হবে।

কোন বস্তুর অভিকর্ষীয় বিভব শক্তির মান প্রামাণ্য তলের সাপেক্ষে বস্তুর অবস্থানের উপুরে নির্ভর করে। সমুদ্র পৃষ্ঠকে প্রামাণ্য তল বিবেচনা করে কোন অবস্থানের বিভব শক্তি এবং কোন উঁচু পাহাড়ের চূড়া প্রামাণ্য তল বিবেচনা করলে এ একই অবস্থানের বিভব শক্তি এক হবে না, ভিন্নতর হবে। প্রকৃতপক্ষে কোন স্থানের বিভব শক্তির পরম মান নির্ণয় করা যায় না, বিভব প্রমাণ তল বা প্রসঞ্চা তল সাপেক্ষে বিভব শক্তির পরিবর্তন নির্ণয় করা হয়।

বিভব শক্তির মান ধনাত্মক এবং ঋণাত্মক উচ্ডয়ই হতে পারে। এটা নির্ভর করে প্রসঞ্চা বা প্রামাণ্য তলের উপরে। ভূ-পৃষ্ঠকে প্রামাণ্য তল বিবেচনা করলে উপরের দিকে বিভব শক্তি ধনাত্মক হবে আবার ভূগর্ভে বা খনিতে বিভব শক্তি ঋণাত্মক হবে।


৬[·]১৪ স্থিতিস্থাপক বিভব শক্তি Elastic potential energy

স্থিতিস্থাপক সীমার মধ্যে একটি বস্তুর উপর বল প্রয়োগ করা হলে বস্তুর বিকৃতি ঘটে।-বিকৃতি ঘটাতে বস্তুর উপর কাজ সাধিত হয়। এই কাজ বস্তুর মধ্যে স্থিতি বা বিভব শক্তি হিসেবে সঞ্চিত থাকে। এর নাম স্থিতিস্থাপক বিভব শক্তি।

নিম্নে স্প্রিং-এর বিভব শক্তি আলোচনা করা হল।

স্প্রিং-এর বিতব শক্তি ঃ ধরি একটি অনুভূমিক আদর্শ স্প্রিং-এর এক প্রান্ত দেওয়ালের সাথে আটকানো এবং অপর প্রান্তে m ভরবিশিষ্ট একটি বস্তৃ যুক্ত আছে। বস্তৃটি অনুভূমিকও ঘর্ষণহীন তলের উপর দিয়ে যাতায়াত করতে পারে [চিত্র ৬-১২]। বস্তুটিকে টেনে স্প্রিংটিকে দৈর্ঘ্য

বরাবর বিকৃত করলে স্থিতিস্থাপক ধর্মের দরুন প্রযুক্ত বলের বিপরীতে স্প্রিং-এ প্রত্যায়নী বলের উদ্ভব ঘটবে। F জনুভূমিক বল প্রয়োগে বস্তুটিকে বাম হতে ডানদিকে দৈর্ঘ্য জনুভূমিক বরাবর তার দৈর্ঘ্য x পরিমাণ বৃদ্ধি-পেলে স্প্রিং-এ — kx পরিমাণ প্রত্যায়নী বল উৎপন্ন হবে। এখন বস্তুটিকে x দূরত্ব সরাতে তার উপর এর সমান ও বিপরীতমুখী F = kx বল প্রয়োগ করে কাচ্চ করতে হবে। এই সম্প্রসারণে প্রযুক্ত বল দারা কৃত কাচ্চই হবে বস্তুটির মধ্যে সঞ্চিত বিভব শক্তি।

সুতরাং বিভব শক্তি,
$$U = \int_{0}^{x} F dx = \int_{0}^{x} kx \, dx$$

$$= k \int_{0}^{x} x \, dx = \frac{1}{2} k \left[x^{2} \right]_{0}^{x} = \frac{1}{2} k x^{2}$$
(27)

স্প্রিংটিকে দৈর্ঘ্য x পরিমাণ সংকুচিত করলেও সঞ্চিত বিভব শক্তি $\frac{1}{2} kx^2$ হবে।

৬ ১৫ শক্তির রূপান্তর Transformation of energy

এই মহাবিশ্ব জুড়ে শক্তি বিভিন্ন রূপে বিরাজিত। বিভিন্ন প্রকার শক্তি পরস্পরের সাথে সম্ফন্ধযুক্ত। এক শক্তিকে অন্য শক্তিতে রূপান্তর সম্ভব। এর নামই শ**ন্তির রূপান্তর** (Transformation of energy)। শক্তি রূপান্তরের কর্য়েকটি উদাহরণ নিম্নে প্রদন্ত হল।

্র্যে পানি উচ্চ স্থান হতে নিম্ন স্থানে প্রবাহিত হয়। উচ্চ স্থানে থাকার সময় তার শক্তি স্থিতিশক্তি। নিম্ন স্থানে প্রবাহিত হবার সময় স্থিতিশক্তি গতিশক্তিতে রূপান্তরিত হয়। এই গতিশক্তির সাহায্যে টারবাইন ঘুরিয়ে বিদ্যুৎ শক্তি উৎপন্ন করা হয়। অর্থাৎ যান্ত্রিরু শক্তি বিদ্যুৎ শক্তিতে রূপান্তরিত হল।

 (২) বিদ্যুৎ শক্তি যখন বৈদ্যুতিক বাতির মধ্য দিয়ে প্রবাহিত হয় তখন আমরা আলো পাই। এক্ষেত্রে বিদ্যুৎ শক্তি আলোক শক্তিতে রূপান্তরিত হল।

্রার্জ বৈদ্যুতিক ইস্ত্রিতে তড়িৎ বা বিদ্যুৎ চালনা করে তাপ উৎপন্ন করা হয়। এই তাপের সাহায্যে কাপড়-চোপড় ইস্ত্রি করা হয়। এক্ষেত্রে বিদ্যুৎ শক্তি তাপ শক্তিতে এবং তাপ শক্তি যান্ত্রিক শক্তিতে রূপাস্তরিত হল।

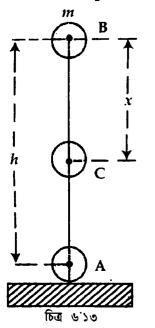
বৈদ্যুতিক পাখার মধ্য দিয়ে বিদ্যুৎ প্রবাহিত করলে পাখা ঘূরতে থাকে। এ স্থলেও বৈদ্যুতিক শক্তি যান্ত্রিক শক্তিতে রূপ্যন্তরিত হল।

(8) একটি কাঁচা লোহার উপর অন্তরীত (insulated) তামার তার জড়িয়ে বিদ্যুৎ চালনা করলে লোহার পাতটি চুম্বকে পরিণত হয়। এক্ষেত্রে বিদ্যুৎ শক্তি চুম্বক শক্তিতে রূপান্তরিত হল।

(৫) ক্যালসিয়াম, পটাসিয়াম, রুবিডিয়াম প্রভৃতি ধাতুর উপর আলো পড়লে ইলেকটন নির্গত হতে দেখা যায়। ফটো-ইলেকটিক কোষ এই নীতির উপর প্রতিষ্ঠিত। এরুপ একটি কোষে আলো ফেলে বিদ্যুৎ প্রবাহ তৈরি করা হয়। এক্ষেত্রে আলোক শক্তি বিদ্যুৎ শক্তিতে রূপান্তরিত হল।

্রা দুই হাতের তালু পরস্পরের সাথে ঘষলে তাপ উৎপন্ন হয়। এক্ষেত্রে যান্ত্রিক শক্তি তাপ শক্তিতে রূপান্তরিত হল।

্র্ব) ফটোগ্রাফিক ফিল্মের উপর আলোক সম্পাত করে রাসায়নিক ক্রিয়ার মাধ্যমে আলোক চিত্র তৈরি করা হয়। এক্ষেত্রে আলোক শক্তি রাসায়নিক শক্তিতে রূপান্তরিত হল।


(৮) ওষুধের কারখানায় শ্রবণোত্তর বা শন্দোত্তর তরজ্ঞোর সাহায্যে জীবাণু ধ্বংস করা হয় এবং কর্পূরকে পানিতে দ্রবণীয় করা হয়। এ ছাড়া শন্দোত্তর তরজ্ঞা দ্বারা বস্ত্রাদির ময়লাও পরিক্ষার করা হয়। এসব ক্ষেত্রে শব্দ শক্তি যান্ত্রিক শক্তিতে রূপান্তরিত হল।

শিক্তি আমরা জানি বৈদ্যুতিক ঘণ্টা বিদ্যুতের সাহায্যে চলে। টেলিফোনও বিদ্যুতের সাহায্যে চলে। দুই ক্ষেত্রেই আমরা শব্দ শুনতে পাই। এস্থলে বিদ্যুৎ শক্তি শব্দ শক্তিতে রূপান্তরিত হল।

৭৯০) কর্মলা পোড়ালে তাপ উৎপন্ন হয়। রাসায়নিক ক্রিয়ার ফলে এটি ঘটে। এক্ষেত্রে রাসায়নিক শক্তি তাপ শক্তিতে রূপান্তরিক্র হল।

() বিদ্যুৎ কোষে রাসায়নিক দ্রব্যের বিক্রিয়ার ফলে বিদ্যুৎ উৎপন্ন হয়। এক্ষেত্রে রাসায়নিক শক্তি তড়িৎ বা বিদ্যুৎ শক্তিতে রূপান্তরিত হল। শক্তি যখন একরৃপ হতে অন্যরূপে পরিবর্তিত হয় তখন এর কোন ঘাটতি বা বাড়তি ঘটে না। অর্থাৎ শক্তির বিনাশ ও সৃষ্টি উভয়ই অসম্ভব। যখন এক প্রকার শক্তি বিলুপ্ত হয় তখন তা অন্যরূপে কোথাও আত্মপ্রকাশ করে। এর নাম শক্তির নিত্যতা বা শক্তির অবিনশ্বরতা (Conservation of Energy)। এ সম্পর্কে একটি সূত্র বা বিধি আছে। এর নাম শক্তির নিত্যতা সূত্র বা শক্তির নিত্যতা বিধি। একে শক্তির সংরক্ষণ সূত্রও বলা হয়।

৬১৬ যান্ত্রিক শস্তির নিত্যকা বা সংরক্ষণ সূত্র Principle of conservation of mechanical energy

aservation of mechanical energy এই সূত্রানুসারে "শক্তি অবিনশ্বর : এর সৃষ্টি বা বিনাশ নেই। এটি কেবল একরূপ হতে অন্য এক বা একাধিক রুপে পরিবর্তিত হতে পারে। রূপান্তরের আগে ও পরে মোট শক্তির পরিমাণ নির্দিষ্ট এবং অপরিবর্তনীয়।" একে শক্তির অবিনাশিতাবাদও বলা হয়। প্রমাণ (Proof) ঃ নিম্নের দৃষ্টান্ত দ্বারা শক্তির নিত্যতা সূত্র প্রমাণিত

হয়।

(ক) পড়স্ত বস্তুর ক্ষেত্রে : ''বিনা বাধায় উচ্চ হতে নিন্নে পড়স্ত বস্তুর যে কোন মুহূর্তে স্থিতিশক্তি এবং গতিশক্তির সমর্ফি সমান।''

মনে করি 'm' ভরবিশিষ্ট একটি বস্তুকে পৃথিবী পৃষ্ঠের A বিন্দু হতে অভিকর্ষ বলের বিরুদ্ধে খাড়া h উচ্চতায় উঠিয়ে B বিন্দুতে স্থাপন করা হল। B বিন্দুতে থাকাকালীন বস্তুর সমস্ত শক্তিই স্থিতিশক্তি এখন B বিন্দুতে বস্তুর স্থিতিশক্তি, P. E_B = mgh B বিন্দুতে বস্তুর গতিশক্তি, K. E_B = 0

B বিন্দুতে বস্তুর মোট যান্ত্রিক শক্তি = স্থিতিশক্তি + গতিশক্তি

$$= P E_B + K E_B = mgh + 0 = mgh$$
(28)

বস্তুটিকে B বিন্দু হতে ছেড়ে দিলে তা অভিকর্ষ বলের প্রভাবে নিচে নামতে থাকবে। বস্তুটি যতই নিচে নামবে ততই তার বেগ বৃন্ধি পাবে অর্থাৎ স্থিতিশস্ত্রি গতিশস্তিতে রূগান্তরিত হবে। বিনা বাধায় পড়লে বস্তু যে গরিমাণ স্থিতিশক্তি হারাবে ঠিক সমপরিমাণ গতিশস্ত্রি লাভ করবে। ফলে সর্বত্র স্থিতিশস্ত্রি ও গতিশস্ত্রির সমষ্টি সমান ধাকবে।

ধরি t সময় পর বস্তুটি x দূরত্ব অতিক্রম করে C কিন্দুতে এল। C বিন্দুতে বস্তুর স্থিতিশক্তি ও গতিশক্তি হুই-ই থাকবে। কারণ তা এখনও মাটি হতে উপরে আছে এবং তা কিছু বেগ প্রাশ্ত হয়েছে।

C বিন্দুতে স্থিতিশক্তি, P. $E_C = ভর \times$ অভিকর্ষীয় ত্বরণ \times উচ্চতা $= mg \ (h - x)$

C বিন্দুতে গতিশক্তি, K.
$$E_C = \frac{1}{2}mv^2 = \frac{1}{2}m(v_0^2 + 2gx)$$

 $= \frac{1}{2}m \times 2gx = mgx \quad [\cdots v_0 = 0]$

C বিন্দুতে বস্তুর মোট যান্ত্রিক শক্তি = স্থিতিশক্তি + গতিশক্তি = P. E_C + K. E_C

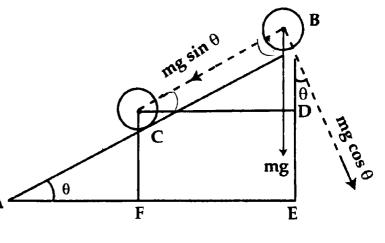
$$= mg(h - x) + mgx$$

= mgh - mgx + mgx = mgh (29)

সমীকরণ (28) এবং (29) হতে আমরা সিদ্ধান্ত গ্রহণ করতে পারি যে,

 $P. E_B + K. E_B = P. E_C + K. E_C = mgh$

অর্থাৎ <u>অভিকর্ষ বলের প্রভাবে মুক্তভাবে পর্ড</u>ন্ত বস্তুর মোট শক্তির পরিমাণ একটি ধ্রব রাশি। অতএব ছিক শক্তির নিডাতা সত্র প্রমাণিত হল। বস্তু যতেই নিচে নামবে ততেই তার স্থিতিশক্তি হ্রাস পাবে এবং গতিশক্তি বৃদ্ধি পাবে। কিস্তু তাদের যোগফল সর্বদা স্থির থাকবে। বস্তুটি যখন মাটি স্পর্শ করবে তখন স্থিতিশক্তি এবং গতিশক্তি উত্তয়েই লোপ পেয়ে তাপ শক্তি, শব্দ শক্তি, যান্ত্রিক শক্তি প্রভৃতিতে রূপান্তরিত হবে।


উল্লেখ্য : বাধাহীন পথে এবং স্থিরাবস্থা হতে পড়স্ত বস্তু প্রথম সেকেন্ডে $\frac{1}{2}mg^2$, দ্বিতীয় সেকেন্ডে $\frac{3}{2}mg^2$, তৃতীয় সেকেন্ডে $\frac{5}{2}mg^2$,t-তম সেকেন্ডে $\frac{1}{2}mg^2$ (2t - 1) পরিমাণ স্থিতিশক্তি হারাবে এবং সমপরিমাণ গতিশক্তি লাভ করবে ; কেননা $s_t = \frac{(2t-1)}{2}g$ এবং t-তম সেকেন্ডে হারানো স্থিতিশক্তি = $mg \times s_t = \frac{1}{2}mg^2$ (2t - 1) ।

(খ) আনত তল বরাবর গতিশীল বস্তুর ক্ষেত্রে ঃ ধরা যাক ভূমি AFE-এর সাথে θ কোণে আনত একটি মসৃণ তল AB-এর উপর B বিন্দুতে m ভরের একটি বস্তু রাখা আছে এবং AFE হতে বস্তুটির উচ্চতা BE=h

[চিত্র ৬ ১৪]। তা হলে B বিন্দুতে বস্তুর স্থিতিশক্তি = mg × BE = mgh ও B বিন্দুতে বস্তুর গতিশক্তি = 0 (v₀ = 0)

B বিন্দুতে বস্তুর মোট শক্তি = স্থিতিশক্তি + পচ্চিগব্তি = mgh + 0 = mgh ।

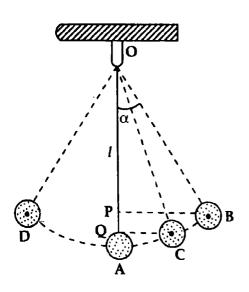
এখন ধরা যাক বস্তুটি ছেড়ে দেয়ায় তা B বিন্দু হতে তল বরাবর x দূরত্ব অতিক্রম করার পর C বিন্দুতে পৌছল এবং A C বিন্দুতে বস্তুর বেগ v হল। ধরা যাক CD II AFE এবং CF = y ।

বর্ণনা অনুসারে আনত তল বরাবর বস্তুর উপর ক্রিয়াশীল বল

 $= mg \cos(90^\circ - \theta) = mg \sin \theta$

ত্বরণ, $a = g \sin \theta$ এবং সরণ = x

C বিন্দুতে বস্তুর স্থিতিশক্তি = $mg \times CF = mgy = mg (BE - BD) = mg (h - x \sin \theta)$ C বিন্দুতে বস্তুর গতিশক্তি = $\frac{1}{2}mv^2 = \frac{1}{2}m \times 2gx \sin \theta$ ($v_0 = 0$ এবং $v^2 = v_0^2 + 2as$) = $mgx \sin \theta$


সুতরাং C বিন্দুতে বস্তুর মোট শক্তি = স্বিতিশক্তি + গতিশক্তি

$$= mg (h - x \sin \theta) + mgx \sin \theta$$
$$= mgh$$

B বিন্দুতে বস্তুর মোট শক্তি = C বিন্দুতে বস্তুর মোট শক্তি। সুতরাং প্রমাণিত হল যে, আনত তল বরাবর গতিশীল বস্তুর মোট শক্তি সর্বদা একই থাকে।

উল্লেখ্য ঃ তল বরাবর x পরিমাণ সরণে কৃত কাজ = $mgx \sin \theta = mg \times BD = ওজন \times আদি ও অন্ত$ অবস্থানের মধ্যে (উন্নম্ব) উচ্চতা।

(গ) আন্দোলিত সরল দোলকের ক্ষেত্রে ঃ ধরা যাক একটি সরল দোলকের কার্যকর দৈর্ঘ্য । = OA, দোলক পিন্ডের তর m, কৌণিক বিস্তার α, দোলনের সর্বোচ্চ বিন্দু B বা D এবং সর্বনিম্ন বিন্দু A [চিত্র ৬ ১৫]।

দোলক B অথবা D বিন্দুতে পৌঁছালে তা মুহূর্তের জন্য স্থির অবস্থায় থাকবে এবং যতই D অথবা B হতে A-এর দিকে যাবে তার বেগ ততই বৃষ্দি পাবে। সর্বনিম্ন বিন্দু A অতিক্রম করার সময় দোলকের বেগ সর্বাধিক হবে। সূতরাং B অথবা D বিন্দুতে দোলকের সমস্ত শক্তি স্থিতিশক্তি এবং A বিন্দুতে দোলকের সমস্ত শক্তি গতিশক্তি। দোলক যত B অথবা D হতে A-এর দিকে যাবে তার স্থিতিশক্তি তত গতিশক্তিতে এবং দোলক A হতে যত B অথবা D-এর দিকে যাবে তার গতিশক্তি তত স্থিতিশক্তিতে রূপান্তরিত হবে।

ধরা যাক দোলকটি OB অবস্থিতি হতে কোন এক মুহূর্তে OC অবস্থিতিতে পৌছল এবং OC অবস্থিতিতে দোলকটির বেগ v হল। OA-এর উপর BP ও CQ লম্ম হলে বর্ণনা অনুসারে, A বিন্দুর সাপেক্ষে OB অবস্থিতিতে দোলকের স্থিতিশক্তি = $mg \times AP$

 OB অবস্ধিতিতে দোলকের গতিশক্তি = 0

OB অবস্ধিতিতে দোলকের মোট শক্তি = স্থিতিশক্তি + গতিশক্তি

$$= mg \times AP + 0 = mg \times AP$$

আবার OC অবস্থিতিতে দোলকের স্থিতিশক্তি = $mg \times AQ$ OC অবস্থিতিতে দোলকের গতিশক্তি = $\frac{1}{2}mv^2 = \frac{1}{2}m \times 2g \times PQ = mg \times PQ$ ($v_o = 0$ এবং $v^2 = v_o^2 + 2gs$) = $mg \times (AP - AQ)$ OC অবস্থিতিতে দোলকের মোট শক্তি = স্থিতিশক্তি + গতিশক্তি

$$mg \times AQ + mg \times (AP - AQ) = mg \times AP$$

OB অবস্থিতিতে দোলকের মোট শক্তি = OC অবস্থিতিতে দোলকের মোট শক্তি। সুতরাং প্রমাণিত হল আন্দোলিত দোলকের অনুসৃত পথের যে কোন অবস্থিতিতে তার মোট শক্তির পরিমা সর্বদা একই থাকে।

উল্লেখ্য : OA অবস্থিতিতে দোলকের বেগ v_m হলে, v_m -ই সর্বোচ্চ বেগ।

OA অবস্থিতিতে তার মোট শক্তি = $\frac{1}{2}mv_m^2$ শক্তির নিত্যতা সূত্র অনুসারে, $\frac{1}{2}mv_m^2 = mg \times AP$ কিন্তু , AP = OA - OP = OA - OB $\cos \alpha = l(1 - \cos \alpha) = 2l \sin^2(\alpha/2)$ কান্ডেই, $\frac{1}{2}mv_m^2 = mg \times 2l \sin^2(\alpha/2)$ $v_m = 2\sqrt{gl} \sin(\alpha/2) =$ সোলকের সর্বোচ্চ বেগ। (30) গৃতিশক্তি ও বিভব শক্তির মধ্যে পার্থক্য :

গতিশস্তি	বিভব বা স্ধিতি শক্তি
১। কোন একটি গতিশীল বস্তু গতির জন্য যে শক্তি লাভ করে তাকে ঐ বস্তুর গতি শক্তি বলে।	১। নির্দিষ্ট অবস্থানে বা স্থিতিশীল অবস্থায় কোন বস্তুর মধ্যে যে পরিমাণ শক্তি সঞ্চিত থাকে, তাকে এ বস্তুর বিভব শক্তি বলে।
২। বস্তু স্থিতিতে আসার পূর্ব মৃহুর্ত যে পরিমাণ কাজ সম্পন্ন করে তা দ্বারা গতিশক্তি পরিমাপ করা হয়।	২। বস্তু এক অবস্থান হতে অন্য অবস্থানে আসতে যে পরিমাণ কাজ সম্পন্ন করে তা দ্বারা বিভব শক্তি পরিমাপ করা হয়।
তা <u>গতিশক্তির সমীকরণ হল</u> 1 <u>2 mv²।</u>	>>>। অভিকর্ষীয় বলের ক্ষেত্রে বিভব শক্তির সমীকরণ হল mgh।
রেগ বৃদ্ধিতে বস্তুর গতিশক্তি বৃদ্ধি পায়। বেগ হাসে বস্তুর গতিশক্তি হ্রাস পায়।	১ উচ্চতা বৃদ্ধিতে বস্তুর বিভব শক্তি বৃদ্ধি পায়। উচ্চতা হ্রাসে বস্তুর বিভব শক্তি হ্রাস পায়।
<u>৫০ গতিশক্তি একটি স্কেলার রাশি।</u>	🕢 বিশুব শক্তি একটি স্কেলার রাশি।

৬ ১৭ শক্তির অপচয় Dissipation of energy

আমরা জানি শক্তি অবিনশ্বর। শক্তি শুধু একরূপ হতে অন্য রূপে রূপান্তরিত হতে পারে ; রূপান্তরের পূর্বে ও পরে মোট শক্তির কোন পরিবর্তন হয় না। লর্ড কেলভিন (Lord Kelvin) প্রথম উপলম্ধি করেন যে, শক্তি অবিনশ্বর হলেও প্রত্যেক রূপান্তরে কিছু শক্তি এমনভাবে আত্মপ্রকাশ করে যে, তা প্রয়োজনীয় কোন কাচ্চে লাগে না। শক্তির এই অকার্যকর রূপান্তরের নাম শক্তির অপচয়। কোন যন্ত্র হতে কাজ পাবার জন্য এ যন্ত্রে শক্তি সরবরাহ করতে হয়। কিন্তু প্রযুক্ত বা প্রদন্ত (input) শক্তি এবং প্রান্ত বা লব্ধ (output) শক্তি সমান হয় না। লব্ধ শক্তি কিছু কম হয়। যেমন রেলগাড়ির বাম্পীয় ইঞ্জিনে তাপ শক্তি যান্ত্রিক শক্তিতে পরিণত হয়। কিন্তু যান্ত্রিক শক্তির কিছু অংশ রেলের চাকার এবং বিয়ারিং-এর ঘর্ষণ বল অতিকম করতে তাপ শক্তিরূপে নন্ট হয়।

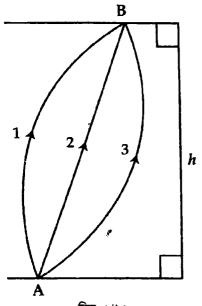
মহাবিশ্বে নিয়ত একরৃপ শক্তি অন্যরূপ শক্তিতে রূপান্তরিত হচ্ছে। প্রত্যেক রূপান্তরে কিছু না কিছু শক্তি অকার্যকর কাজে ব্যয় হচ্ছে।

৬'১৮ কার্য বা কর্মদক্ষতা Efficiency

কোন যন্ত্রের কর্মদক্ষতা বলতে কার্যকর শক্তি এবং প্রদন্ত মোট শক্তির অনুপাতকে বুঝায়। একে সাধারণত ম (ইটা) দ্বারা প্রকাশ করা হয় এবং সংক্ষেপে দক্ষতাও বলে।

সংজ্ঞানুসারে η = কার্যকর শক্তি (output) প্রদন্ত মোট শক্তি (input)

যেমন কোন যন্ত্রের কর্মদক্ষতা 80% বলতে বুঝা যায় যে, 100 একক শক্তি সরবরাহ করলে তার মাত্র 80 একক শক্তি কাজে লাগবে এবং 20 একক শক্তির অপচয় হবে।


ম<u>নে করি কোন যন্ত্রে E₁ প</u>রিমাণ শক্তি প্রদান করা হল এবং E₂ পরিমাণ শক্তির অপচয় ঘটন।

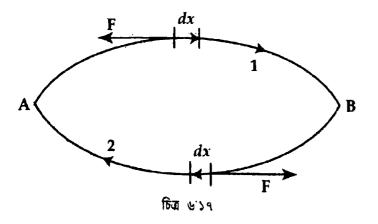
১৯৬

এদের নিম্নলিখিত সংজ্ঞা দেয়া যেতে পারে ঃ

(১) যে বন কোন বস্তুর উপর ক্রিয়া করলে তাকে যে কোন পথে ঘুরিয়ে পুনরায় প্রাথমিক অবস্থানে আনলে বন কর্তৃক কৃত কাজ শূন্য হয় তাকে সংরক্ষণশীন বন বনে। উদাহরণ—অভিকর্ষীয় বল, বৈদ্যুতিক বল, আদর্শ স্প্রিং-এর বিকৃতি প্রতিরোধী বল প্রভৃতি। আর যে বন কোন বস্তুর উপর ক্রিয়া করলে তাকে যে কোন পথে ঘুরিয়ে পুনরায় প্রাথমিক অবস্থানে আনলে এ বন কর্তৃক কৃত কাজ শূন্য হয় না তাকে অসংরক্ষণশীন বন বলে। উদাহরণ—ঘর্ষণ বল, সান্দ্র বল প্রভৃতি।

(২) কোন বলের ক্রিয়া অতিমুখ যদি বস্তুর গতি অতিমুখের উপর নির্ভর না করে তবে ঐ বলই সংরক্ষণশীল বল, আর যদি নির্ভর করে তবে ঐ বল অসংরক্ষণশীল বল।

ধরি m ভরের একটি বস্তুকে A বিন্দু হতে উপরে উঠিয়ে B বিন্দুতে স্থাপন করা হল এবং এতে বস্তুটির উল্লম্ম সরণ h হল [চিত্র ৬ ১৬]। এই স্থানান্তর 1নং, 2নং বা 3নং পথে হলেও প্রত্যেক পথের সকল বিন্দুতে অভিকর্ষীয় বল mg খাড়া নিচের দিকে ক্রিয়া করে এবং প্রত্যেক পথে অভিকর্ষীয় বলের ক্রিয়া রেখা বরাবর বস্তুর সরণ h। এই তিন পথের প্রত্যেক পথে কৃত কাজের পরিমাণ সমান এবং কৃত কাজ W = -- mgh ।


জাবার বস্তুটিকে A বিন্দু হতে 1নং পথে B বিন্দুতে এনে পুনরায় তাকে B বিন্দু হতে A বিন্দুতে স্থানান্তর করলে, প্রথম স্থানান্তরে অভিকর্ষীয় বলের বিপরীত দিকে সরণ = h ও কৃত কাজ $W_1 = -m_{gh}$ এবং দিতীয় স্থানান্তরে অভিকর্ষীয় বলের অভিমুখে সরণ = h ও কৃত কাজ $W_2 = m_{gh}$.

চিত্র ৬'১৬

মোট কৃত কাজ, $W_2 + W_1 = mgh + (-mgh) = 0$

কাজেই অভিকর্ষীয় বল সংরক্ষণশীল বল এবং এই বল কর্তৃক কৃত কাজ পুনরুম্থার করা সম্ভন। সংরক্ষণশীল বলের বৈশিষ্ট্য অনুসারে তার আর একটি সংজ্ঞা দেয়া যায়। যেমন যে বলের ক্রিয়ায় কোন বস্তুকে এক বিন্দু হতে অপর কোন বিন্দুতে নিয়ে যেতে এ বল কর্তৃক কৃত কাজ শুধু বিন্দুষয়ের অবস্থানের উপর নির্ভর করে—পথের উপর নির্ভর করে না তাকে সংরক্ষণশীল বল বলে।

জারার ধরি একটি বস্তুকে মসৃণ জনুভূমিক মেঝের উপর দিয়ে ঠেলে A বিন্দু হতে 1নং পথে B বিন্দুতে জানা হল [চিত্র ৬ ১৮]। এই ক্ষেত্রে ঘর্ষণ বল বস্তুর গতি অভিমুখের বিপরীতে ক্রিয়া করবে। কাজেই এই স্থানান্তরে ঘর্ষণ বলের বিরুদ্যে কান্ধ করতে হবে ; কারণ ঘর্ষণ বল সর্বদাই গতিপ্রতিরোধী বল। গতিপথে একটি ক্ষুদ্র সরণ dxএবং এই সরণ গড় F ঘর্ষণ বলের বিপরীতে সংঘটিত হলে, কৃত কাজ W = – Fdx ।

নং পথে A হতে B পর্যন্ত নিতে মোট কৃত কাজ এর্পছোট ছোট কৃত কাজের সমষ্টির সমান ও মোট কৃত কাজ, W₁ = — ∫₁ Fdx । এখন যদি বস্তুটিকে B হতে 2নং পথে পুনরায় A বিন্দুতে নিয়ে যাওয়া হয় তবে এই ক্ষেত্রেও ঘর্ষণ বল বস্তুর গতিপথের বিপরীতে ক্রিয়া করবে।

কাজেই এই ক্ষেত্রেও কৃত কাজ,
$$J$$
 $W_2 = - \int_2 F dx.$

উভয় ক্ষেত্রে কাজ ঘর্ষণ বলের বিরুদ্ধে হওয়ায় উভয় কাজ ঝণাত্মক এবং তাদের যোগফল শূন্য হবে না। জর্মাৎ $W_1 + W_2 = -\int_1^1 F dx - \int_2^1 F dx \neq 0$

কাজেই ঘর্ষণ বল কর্তৃক কৃত কাজ পুনরুম্ধার করা সম্ভব নয়। অতএব ঘর্ষণ বল অসংরক্ষণশীল বল। সংরক্ষণশীল ও অসংরক্ষণশীল বল ক্ষেত্রের বৈশিষ্ট্য অনুযায়ী দেখান যায় যে,

কোন বস্তৃকে অভিকর্ষ বল F-এর বিরুদ্ধে মাটি হতে h উপরে তুলতে কান্ধের পরিমাণ = — Fh। এখন তাকে সেখান থেকে ছেড়ে দিলে মাটিতে ফিরে আসতে অভিকর্ষ বল দ্বারা কান্ধের পরিমাণ হবে + Fh.

সুতরাং বস্তুর মাটি হতে উপরে উঠার পর আবার মাটিতে ফিরে আসতে অভির্ব্ধ বল দ্বারা কান্দের পরিমাণ (– Fh + Fh) শূন্য হবে। সুতরাং অভিকর্ষ বা মাধ্যাকর্ষণ রল সংরক্ষণশীল বল। তেমনি বিদ্যুৎ বল, চৌম্বক বল ইত্যাদি সংরক্ষণশীল বল।

অপর পক্ষে, ঘর্ষণের ক্ষেত্রে, ঘর্ষণ বল বস্তুকে চলতে বাধা দেয়। সেজন্যে এর দ্বারা বস্তুর উপর কাজ ঋণ হয়। <u>অতএব ঘর্ষণ বল হল অসংবক্ষণশীল বল</u>।

৬ ২০ সংরক্ষণশীল বল ও অসংরক্ষণশীল বলের মধ্যে পার্থক্য Distinction between conservative and non-conservative force

সংরক্ষণশীল বল ও অসংরক্ষণশীল বলের মধ্যে নিম্নলিখিত পার্থক্য করা যায় ঃ

সংরক্ষণশীন বন	অসংরক্ষণশীল বল
১। সংরক্ষণশীল বল ক্ষেত্রে একটি বস্তৃকে যে কোন	১। অসংরক্ষণশীল বল ক্ষেত্রে একটি বস্তৃকে যে
পথে ঘুরিয়ে পুনরায় প্রাথমিক অবস্থানে আনলে ঐ বল	কোন পথে ঘুরিয়ে পুনরায় প্রাথমিক অবস্থানে আনলে ঐ
কর্তৃক কৃত কাজ শূন্য হবে।	বল কর্তৃক কৃত কাজ শূন্য হবে না।
২। সংরক্ষণশীল বলের ক্রিয়া অভিমুখ বস্তৃর গতি	২। অসৎরক্ষণশীল বলের ক্রিয়া অভিমুখ বস্তুর গতি
অভিমুখের উপর নির্ভরশীল নয়।	অভিমুখের উপর নির্ভরশীল।
১০ সংবক্ষণশীল বল কর্তৃক কৃত কাজ সম্পূর্ণরূপে	. 🕼 অসংৱক্ষণশীল বল কর্তৃক কৃত কাজ সম্পূর্ণরূপে
<u>পুনরুম্বার করা সম্ভব</u> ।	পুনরুম্বার করা সম্ভব নয়।
৪। বস্তৃর উপর সংরক্ষণশীল বল কর্তৃক কৃত কাজ	৪। বস্তুর উপর অসংরক্ষণশীল বল কর্তৃক কৃত
গতিপথের প্রাথমিক ও শেষ বিন্দুর উপর নির্ডরশীল।	কাজ শুধু গতিপথের প্রাথমিক ও শেষ অবস্থানের উপর
	নির্ভরশীল নয়।
<u>দা সংরক্ষণশীল বলের ক্রিয়ায় যান্ত্রিক শক্তির</u>	😿। অসৎরক্ষণশীল বলের ক্রিয়ায় যান্ত্রিক শক্তির
<u>নিত্যতার সত্র পালিত হয়।</u>	নিত্যতার সূত্র সংরক্ষিত হয় না।

৬.২১ ক্ষমতা

Power

কোন একটি উৎসের (agent) কান্স করার হারকে ক্ষমতা বলে এবং একক সময়ের কৃত কান্স হারা ক্ষমতা পরিমাপ করা হয়। বলের ক্রিয়ায় বস্তুর সরণ দুত না ধীরে কিভাবে সম্পন্ন হয়েছে কান্ডের পরিমাণ দ্বারা তা বুঝা যায় না—বুঝা যায় ক্ষমতা দ্বারা।

মনে করি কোন ব্যক্তি বা উৎস t সময়ে W পরিমাণ কাচ্চ সম্পন্ন করে।

একক সময়ের কৃত কাজ বা ক্ষমতা,

$$P = \frac{\overline{\operatorname{ans}}}{\overline{\operatorname{yax}}} = \frac{W}{t}$$
(32)

 \overrightarrow{F} পরিমিত একটি ধ্রব বল কোন কণার উপর dt সময় ক্রিয়া করে $d\overrightarrow{r}$ সরণ ঘটালে, এ ধ্রব বল কর্তৃক উক্ত সময়ে কৃত কাজ, $dW = \overrightarrow{F} d\overrightarrow{r}$ কণাটির উপর ঐ মুহুর্তে প্রযুক্ত ক্ষমতা,

 $P = \frac{dW}{dt} = \overrightarrow{F} \cdot \frac{d\overrightarrow{r}}{dt}$ কাজেই এ মুহূর্তের বেগ, \overrightarrow{v} হলে $\frac{d\overrightarrow{r}}{dt} = \overrightarrow{v}$ ও $P = \overrightarrow{F} \overrightarrow{v}$ <u>ক্ষমতা কেবলার রাশি।</u>

ক্ষমতার একক (Unit of power)

ক্ষমতার সংজ্ঞা হতে এর একক বের করা যায়।

ক্ষমতা = $\frac{\overline{\text{Args}}}{\overline{\text{Args}}} = \frac{\overline{\text{Args}}}{\overline{\text{Args}}} = \underline{\overline{\text{Args}}} / (\overline{\text{Args}} (J/\text{sec}))$

এস. জাই. বা জান্তর্জাতিক পন্ধতিতে ক্ষমতার একক জুল/সে. বা ওঁয়াট (watt)। এক সেকেন্ডে এক স্থুল কান্ধ করার ক্ষমতাকে এক জুল/সে, বা এক-ওয়াট বলে।

"কোন যন্ত্রের ক্ষমতা 50 জুল/সে.।"—উক্ত উক্তি দারা বৃঝি যন্ত্রটি প্রতি সেকেন্ডে 50 জুল কাজ করতে পারে।

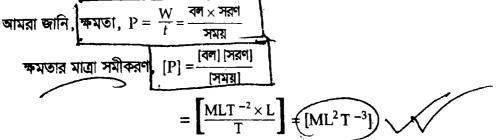
ওয়াট অপেক্ষা বড় মানের আরও একটি একক ক্ষমতা প্রকাশের জন্য ব্যবহৃত হয়। এর নাম **কিলোওয়াট** (K. W.)।

অধ-ক্ষমতা : প্রতি সেকেন্ডে 746 জুল কাজ করার ক্ষমতাকে এক অধ-ক্ষমতা বলে।

<u>1 অশ-ক্ষমতা = 746 জুল/সে = 746 ওয়াট (Watt)</u>

(খ) বৈদ্যুতিক ব্যবহারিক একক ঃ ক্ষমতার বৈদ্যুতিক ব্যবহারিক একককে ওয়াট (Watt) বলে। 'ওয়াট' পরিমাপের আন্তর্জাতিক পন্দ্রতিতেও ক্ষমতার একক।

<u>1 ও</u>য়াট = 1 জুল/সে:


<u>1 কিলোওয়াট = 1000 ওয়াট</u>। অর্থাৎ কিলোওয়াট ওয়াট অপেক্ষা এক হাজার গুণ বড়। আধুনিক কালে কিলোওয়াট অপেক্ষা হাজার গুণ বড় অর্থাৎ ওয়াট অপেক্ষা দশ লক্ষ গুণ বড় ক্ষমতার আর একটি একক ব্যবহৃত হচ্ছে। এর নাম **যেগাওয়াট** (Mega watt)।

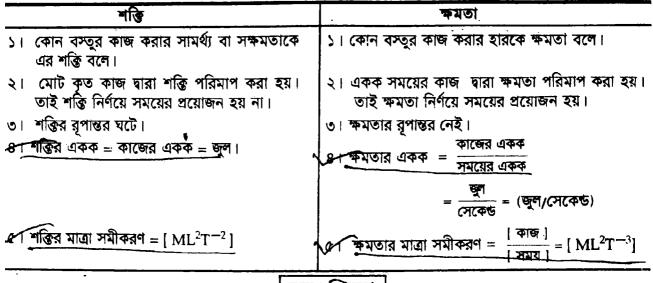
1 মেগাওয়াট (MW) = 1000 কিলোওয়াট

= 10⁶ ওয়াট = <u>10⁶ জল</u>/সে.)

'কোন বিদ্যুৎ উৎপাদন কেন্দ্রের ক্ষমতা 2 মেগাওয়াট'। এর অর্থ—কেন্দ্রের সরবরাহকৃত বিদ্যুৎ শক্তি দ্বারা প্রতি সেকেন্ডে 2×10° জুল বা 2 মেগা-জুল কাজ করা যায়।

ক্ষমতার মাত্রা সমীক<u>রণ (Dimension of power)</u>

৬ ২২ কাজ ও ক্ষমতার মধ্যে পার্থক্য


Distinction between work and power

কান্ধ ও ক্ষমতার মধ্যে নিম্নলিখিত পার্থক্য রয়েছে ঃ

কান্ত্র	ক্ষমতা	
১। বল প্রয়োগে সরণ ঘটলে বল এবং বলের দিকে সরণের	১। কোন একটি উৎসের কাজ করার হারকে	
জ্রংশকের গুণফলকে কাজ বলে।	ক্ষমতা বলে।	
<u> भाषा = [ML²T⁻²]</u>	ম ক্রমতার মাত্রা = $[ML^2T^{-3}]$	
 কাজ ঋণাত্মক ও ধনাত্মক উভয় প্রকারের হতে পারে। 	ত। ক্ষমতার কোন রক্ষরের নেই।	
প্রাজের একক জল।	প ক্ষমতার একক ওয়াট।	
প। কাজ পরিমাপে সময়ের প্রযোজন হয় না।	প ক্ষমতার পরিমাপে সমযের প্রয়োচন হয়।	

৬ ২৩ শক্তি ও ক্ষমতার মধ্যে পার্থক্য Distinction between energy and power

শক্তি ও ক্ষমতার মধ্যে নিম্নলিখিত পার্থক্য রয়েছে ঃ

স্মরণিকা

কাজ ঃ কোন বস্তুর উপর বল প্রয়োগে সরণ ঘটলে প্রযুক্ত বল ও বলের অভিমুখে সরণের উপাগ্রশের গুণফলকে কাজ বলে। বলের মারা কাজ 🛿 যদি বল প্রয়োগের ফলে বলের দিকে বলের প্রয়োগ বিন্দুর সরণ ঘটে বা বলের দিকে সরণের ধনাত্মক উপাংশ ধাকে তবে ঐ সরণের জন্য কৃত কান্ধকে বলের দ্বারা কান্ধ বলে।

বলের বিরুদ্দে কাজ ঃ যদি বল প্রয়োগের ফলে বলের বিপরীত দিকে বলের প্রয়োগ বিন্দুর সরণ ঘটে বা বলের দিকে সরণের ঋণাত্মক উপাৎশ থাকে তবে ঐ সরণের জন্য কৃত কাজকে বলের বিরুদ্ধে কাজ বলে।

এক জুল : এক নিউটন বল প্রয়োগের ফলে বলের ক্রিয়া রেখা বরাবর বস্তুর সরণ যদি এক মিটার হয়, তবে যে কাজ সম্পন্ন হয় তাকে এক জুল বলে।

এক ইলেকট্রন ভোল্ট : এক ভোল্ট বিতব পার্থক্যে একটি ইলেকট্রনের অর্জিত শক্তিই এক ইলেকট্রন ভোল্ট।

শক্তি : কোন ব্যক্তি, বস্তু বা পদার্থের কাজ করার সামর্থ্য বা ক্ষমতাকে শক্তি বলে।

ষান্ত্রিক শক্তি : কোন বস্তুর মধ্যে তার পারিপার্শ্বিক অবস্থা বা অবস্থানের সাপেক্ষে অথবা গতির জন্য কাজ করার সামর্থ্য তথা শক্তি থাকে, তবে এ শক্তিকে যান্ত্রিক শক্তি বলে।

গতিশক্তি ঃ গতিশীল অবস্থা থাকার ফলে কোন একটি বস্তু কাজ করার জন্য যে সামধ্য অর্জন করে তাকে ঐ বস্তুর গতিশক্তি বলে। অথবা, গতির জন্য বস্তুতে যে শক্তির উদ্ভব হয় তাকে তার গতিশক্তি বলে।

স্বিতিশক্তি : নির্দিষ্ট অবস্থানে বা অবস্থায় স্থিতিশীল থাকার দরুন বস্তু যে শক্তি গ্রান্ত হয় তাকে স্থিতিশক্তি বলে।

কাজ শক্তি উপপাদ্য : কোন বস্তুর উপর ক্রিয়ারত পশ্বি বল কর্তৃক কৃত কাজ তার গতিশক্তির পরিবর্তনের সমান। এটি কাজ-শব্তি উপপাদ্য নামে পরিচিত।

যান্ত্রিক শুক্তির নিত্যতা বা সরেকণ সূত্র : শক্তির সৃষ্টি বা বিনাশ নেই। এটি কেবল একরুপ হতে অন্য এক বা একাধিক রূপে পরিবর্তিত হতে পারে। রূপান্তরের আগে ও পরে মোট শুক্তির পরিমাণ নির্দিষ্ট ও অপরিবর্তনীয়। একে শক্তির নিত্যতা বা সংরক্ষণ সূত্র বলে।

কার্য বা কুর্ম দক্ষতা : কোন যন্ত্রের কর্মদক্ষতা বলুতে কার্যরত শক্তি এবং প্রদন্ত মোট শক্তির অনুপাতকে বুঝায়।

সংরক্পশীল বল : যে বল কোন বস্তুর উপর ক্রিয়া করলে তাকে যে কোন পথে ঘুরিয়ে পুনরায় প্রাথমিক অবস্থানে মানলে বল কর্তৃক কৃত কাজ শূন্য হয় তাকে সংরক্ষণশীল বল বলে। অসংরক্ষণশীল বল ঃ যে বল কোন বস্তুর উপর ক্রিয়া করলে তাকে যে কোন পথে ঘুরিয়ে পুনরায় প্রাথমিক অবস্থানে

দ্বানলে এ বল কর্তৃক কৃতকাজ শুন্য হয় না তাকে অসংরক্ষণশীল বল বলে।

ক্ষমতা ঃ কোন একটি উৎসের কান্ধ করার হারকে ক্ষমতা বলে।

এক ওয়াট : এক সেকেন্ডে এক জুল কান্ধ করার ক্ষমতাকে এক জুল / সে. বা এক ওয়াট বলে।

এক অৰ ক্ষমতা : প্ৰতি সেকেন্ডে 746 জুল কাজ করার ক্ষমতাকে এক অশ্ব ক্ষমতা বলে।

প্রয়োজনীয় সমীকরণ

কৃত কান্ধ, W = বলের মান $ imes$ বলের ক্রিয়া রেখা বরাবর সরণের মান = $F imes s$	(1)
\rightarrow \rightarrow	

 $W = F \times s$

W = Fs cos 0 (0 হল F ও s এর মধ্যবর্তী কোণ)

ভুড়িকর্ষ বলের দর্ন কৃত কাজ, W = mgh

(2) (3)

(4)

· • • # - -

200

কাজ, শক্তি ও ক্ষমতা
বইঘর.কম
ক্যালকুলাসের ভাষায় কৃত কাজ,
$$W = \int_{r_0}^{r} \overrightarrow{F} \cdot d\overrightarrow{r}$$
 (5)

স্পিং প্রসারণে কৃত কাজ,
$$W = \frac{1}{2}kx^2$$

মহাকৰ্ষীয় ক্ষেত্ৰে কৃত কাজ, W = GMm
$$\left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$
 (7)

গতিশক্তি,
$$\mathbf{E}_k = \frac{1}{2} m v^2$$
 (8)

গতিশক্তি ও ভরবেগের সম্পর্ক ঃ
$$E_k = \frac{P^2}{2m}$$
 (9)

কাজ শক্তি উপপাদ্য : W =
$$\frac{1}{2}mv^2 - \frac{1}{2}mv_0^2$$
 (10)

জভিকর্ষীয় স্থিতি বা বিভব শক্তি, P. E =
$$mgh$$
 (11)

স্পিং-এর বিভব শক্তি,
$$U = \frac{1}{2} kx^2$$
 (12)

কাৰ্য বা কৰ্ম দক্ষতা,
$$\eta = \frac{\overline{\alpha} + \overline{10} \overline{\alpha}}{2 2 \overline{10} \overline{10} \overline{10} \overline{10}} = \frac{\overline{E_1 - E_2}}{\overline{E_1}}$$

= $\overline{E_1} \left(1 - \frac{\overline{E_2}}{\overline{E_1}} \right) \times 100\%$ (13)

ক্ষমতা, P =
$$\frac{\overline{\Delta W}}{\overline{\gamma \chi \chi}} = \frac{W}{t}$$
 (14)

$$\mathbf{P} = \frac{\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{dr}}}{t}$$
(15)

$$\overrightarrow{F}$$
 \overrightarrow{n} (16)

$$P = \vec{F} \quad \vec{v}$$
(16)
(17)
(17)

সমাধানকৃত উদাহরণ () 60 kg ভরের জনৈক ব্যক্তি 20 মিনিটে 180 m উচ্চ একটি চূড়ায় আরোহণ করেন। কৃত কাজ ও প্রযুক্ত চিনিদ করা ন্মতা নির্ণয় কর।

প্রশ্নানুসারে অভিকর্ষীয় বলের বিরুদ্ধে কৃত কাজ,

$$W = 44^{1} \times 40^{14} \text{ isent is$$

ি একটি ঘোড়া ভূমির সাথে 30° কোণে 120 N বদ প্রয়োগে একটি বস্তৃকে টেনে 2 ms⁻¹ সমবেগে সরাতে ধাকে। 5 মিনিটে কত কাজ করে ? [cos 30° = 0.866] ì

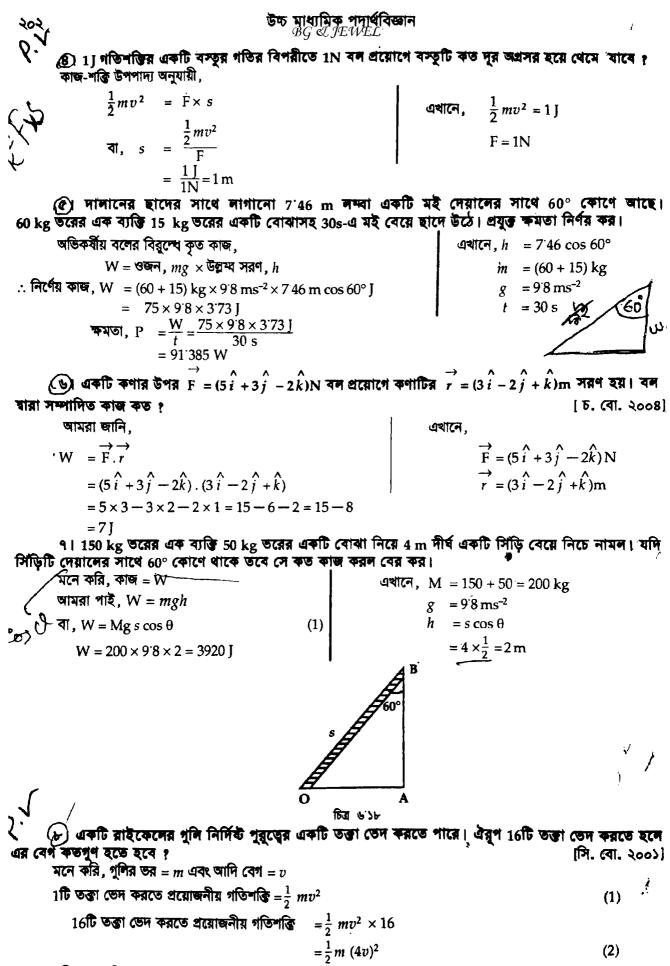
আমরা গাই, W = Fs
$$\cos \theta$$
 এখানে, F = 120 N

 W = (120N × 600 m × cos 30°) J
 $s = v × t = 2 ms^{-1} × 5 × 60 s$

 = 120 × 600 × 0.866 J
 = 600 m

 = 6.2352 × 10⁴ J |
 $\theta = 30^{\circ}$

' 🕑 একটি ইঞ্চিন প্রতি ঘন্টায় 37300 kg পানি 18 m উপরে উঠাতে পারে। ইঞ্চিনের ক্ষমতা নির্ণন্ন কর। গ্রনানুযায়ী 1 ঘণ্টায় কত কাজ 1


$$W = mgh = 37300 \times 9.8 \times 18 \text{ (f)}$$

$$W = mgh = 37300 \times 9.8 \times 18 \text{ (f)}$$

$$g = 9.8 \text{ ms}^{-2}$$

$$h = 18 \text{ m}$$

$$t = 1 \text{ Tot} = 60 \times 60 \text{ s}$$

সমীকরণ দুটিকে তুলনা করলে দেখা যায় শেষ বেগ প্রাথমিক বেগের 4 গুণ শেষোক্ত বেগ প্রাথমিক বেগের 4 গুণ হতে হবে।

🗙 🕤 একটি রাইফেলের গুলি একটি তক্তা ভেঁদ করে। যদি গুলীর বেগ ডিনগুণ করা হয় তাহলে একই পুরুত্বের [ব. বো. ২০০৪]

কয়টি ডক্তা ডেদ করবে ?

আমরা জানি, কৃতকাজ = গতিশব্তির পরিবর্তন ১ম ক্ষেত্রে, $max = \frac{1}{2} mv_1^2 - 0 = \frac{1}{2} mv_1^2$ ২য় ক্ষেত্রে, $ma.nx = \frac{1}{2} mv_2^2 - 0$

$$= \frac{1}{2}m(3v_1)^2 = \frac{9}{2}mv_1^2$$

$$= \frac{1}{2}m(3v_1)^2 = \frac{9}{2}mv_1^2$$

$$= \frac{1}{2}mv_1^2$$

n=9

এখানে,

ধরি, গুলির জর = m 1টি তক্তার পুরুত্ব = x নির্ণেয় তক্তার সংখ্যা = n nটি তক্তার পুরুত্ব = nx প্রথমে গুলির বেগ = v_1 দ্বিতীয় গুলির বেগ = v_2

তক্তার সংখ্যা 9টি।

বা, $\frac{1}{n} = \frac{1}{9}$

১০। 10 kg তরবিশিষ্ট একটি বন্দুক হুঁড়লে গুলিটি 80 cms⁻¹ বেগে নির্গত হয়। গুলির তর 40 gm হলে গুলি ও বন্দুকের গতিশক্তি নির্ণয় কর।

ধরা যাক, গুলির গতিশক্তি E, এবং বন্দুকের গতিশক্তি E, । আমরা জানি, গতিশক্তি $E = \frac{1}{2}mv^2$, ৰম্পুকের ভর , M = 10 kg গুলির ভর , *m* = 40gm = 0.04 kg গুলির বেগ , *v* = 80 cms⁻¹ = 0.80 ms⁻¹ গুলির গতিশক্তি, $E_{b_{-}} = \frac{1}{2}mv^2$ বা, $E_b = \frac{1}{2} \times 0.04 \times (0.8)^2 J$ = 0[.]0128 J ভরবেগের সংরক্ষণ নীতি হতে জানি, গুলির ভরবেগ = বন্দুকের ভরবেগ এখন, গুলির ভরবেগ = 0.04 × 0.8 kg ms⁻¹ ধরা যাক, বন্দুকের বেগ, V অতএব, বন্দুকের জ্রবেগ = 10 × V সুতরাং, $10 V = 0.04 \times 0.8$ $T = \frac{0.04 \times 0.8}{10} = 3.2 \times 10^{-3} \,\mathrm{ms}^{-1}$ বন্দুকের গতিশক্তি, $E_g = \frac{1}{2} MV^2$ $= \frac{1}{2} \times 10 \times (3.2 \times 10^{-3})^{2}$ $= \frac{1}{2} \times 10 \times 10.24 \times 10^{-6}$ $= 51 \times 10^{-6} J$ একটি নিউট্রনের তর 1:67 × 10⁻²⁷ kg এবং এটি 4 × 10⁴ ms⁻¹ বেগে গতিশীল। এর গতিশক্তি নির্ণর কর। বি. বোঁ. ২০০২; রা. বোঁ. ২০০১ আমরা জানি.

K. E. $=\frac{1}{2}mv^2$ K. E. $=\frac{1}{2} \times 1.6 \times 10^{-27} \times (4 \times 10^4)^2$ $= 1.28 \times 10^{-18}$ J ১২। একজন বাদক ও একজন লোক একত্রে দৌড়াল্ছেন। বাদকটির তর লোকটির তরের অর্ধেক এবং লোকটির গতিশক্তি বালকটির গতিশক্তির অর্ধেক। লোকটি যদি তার বেগ 1 ms⁻¹ বৃন্দ্দি করেন তবে তার গতিশক্তি বালকটির গতিশক্তির সমান হয়। এদের আদিবেগ নির্ণয় কর। [রা. বো. ২০০৩; সি. বো. ২০০৩] প্রিক্লাক্র সমীক্রবণ প্রেক্ল পাই

$$KE_1 = \frac{1}{2} m_1 v_1^2$$
 (1)

 $QRKE_2 = \frac{1}{2} m_2 v_2^2 = \frac{1}{2} \cdot 2m_1 v_2^2$
 (1)

 $= m_1 v_2^2$
 (2)

 $QRKE_2 = m_1 v_2^2$
 (1)

 $QRKE_2 = m_1 v_2^2$
 (1)

 $QRKE_2 = m_1 v_2^2$
 (1)

 $QRKE_2 = m_1 v_2^2$
 (2)

 $QRKE_2 = m_1 v_2^2$
 (2)

 <

$$\mathbf{co}, \ \frac{1}{2}m_1v_1^2 = 2\ m_1v_2^2 \tag{3}$$

(4)

ধবং
$$\frac{1}{2} m_1 v_1^2 = m_1 (v_2 + 1)^2$$

সমীৰুৱণ (3) ও (4) হতে পাই ,
$$2m_1v_2^2 = m_1 \, (v_2 + 1)^2$$

বেগ ধনাত্মক বলে, $v_2 = 1 + \sqrt{2} = 2.41 \text{ ms}^{-1}$ সমীকরণ (3) হতে পাই,

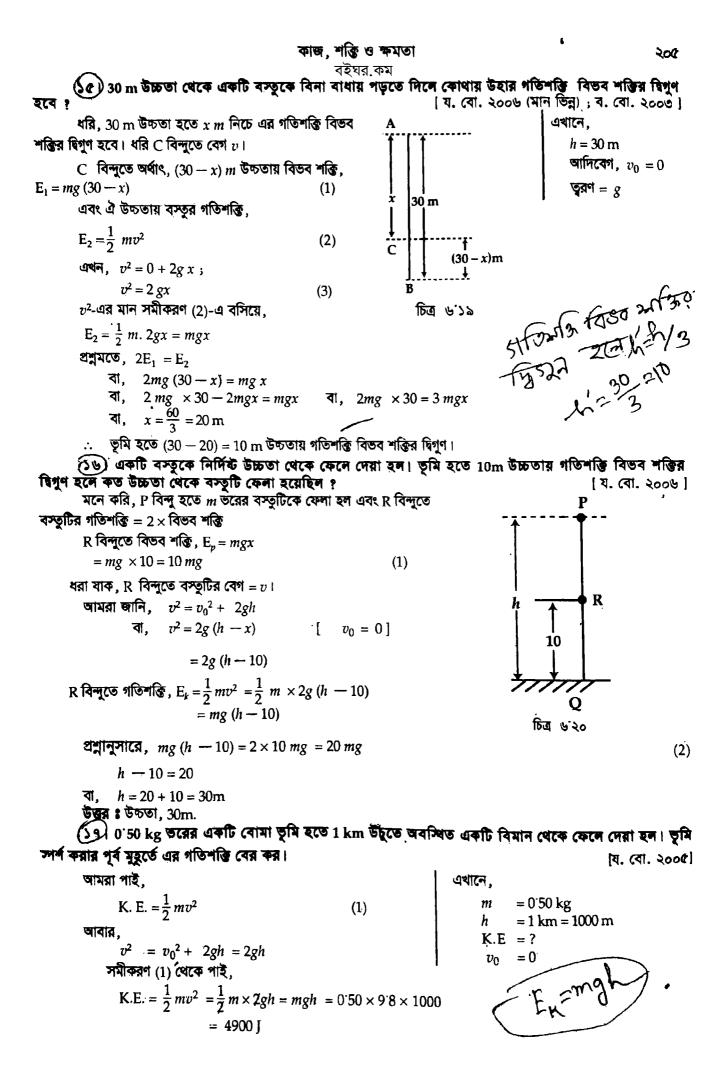
$$\frac{1}{2}m_1v_1^2 = 2m_1v_2^2$$

$$\boxed{1}, \quad v_1^2 = 4 \times (2\cdot41)^2$$

বা, $v_1 = \sqrt{23^2 2324}$

 $v_1 = 4.82 \text{ ms}^{-1}$

উদ্ধর : বাদকের গতিবেগ 4[·]82 ms⁻¹ এবং দোকের বেগ 2[·]41 ms⁻¹


🔍 ১৩। 25 m উচ্চতা হতে 4 kg ভর মুক্ততাবে অভিকর্বের টানে পড়তে থাকলে 2s পরে ভরটির গতিশক্তি ও স্বিতিশক্তি ৰত হবে ?

অভিকৰ্ষীয় বল কৰ্তৃক কৃত কাজ, $W_{=}$ ওজন, $mg \times উল্লম্ঘ সরণ, h$ প্রশ্নানুযায়ী, 2 s পরে গতিশক্তি = $\frac{1}{2}mv^{2} = \frac{1}{2}m \times 2gh$ = mgh = অভিকর্ষীয় বল কর্তৃক কৃত কাজ $= 4 \text{ kg} \times 98 \text{ ms}^{-2} \times 196 \text{ m} = 768.32 \text{ J}$ uaticn, m = 4 kg $g = -98 \text{ ms}^{-2}$ t = 2 s $h = \frac{1}{2}gt^{2} = \frac{1}{2} \times 9.8 \text{ ms}^{-2} \times (2 \text{ s})^{2}$ = 196 m

२, >>> >8/1 200 gm তরের একটি বস্তু 10 m উপর থেকে নিচে পড়ে যায়। ভূ-পৃষ্ঠকে স্পর্শ করার পূর্ব মুহর্তে এর গতিপন্তি কত ?

Image: Window with a state of the state

প্রশ্নম

BG & JEWEL

🕼 5kg ডরের একটি বস্তু 5m উঁচু থেকে একটি পেরেকের উপর পড়লে পেরেকটি মাটির ভিডরে 10⁶cm ঢুকে যার। মাটির পড় প্রতিরোধ বল নির্ণয় কর। [কু. বো. ২০০৬] এখানে, আমরা জানি, বস্তুর জর, m = 5 kg পতনশীল বস্তুর স্থিতিশক্তি = প্রতিরোধ বলের বিরুদ্দে কাজ। উচ্চতা, *h* = 5 m প্রতিরোধ বলের বিরুদ্দে কাচ্চ = F×s সরণ, s = 10 cm = 01 m প্রতিরোধ বল, F = ? (1) $= F \times 0.1$ বস্তুটির মোট পতন = h + s = 5 + 0.1 $= 5^{\circ}1 \,\mathrm{m}$ বস্তুর স্থিতিশক্তি = mg (h + s) F3 2 mg(n+x) F3 2 mg(n+x) F7 2 mg(h F7 2 mg(h) F7 2 mg(h) $= 5 \times 98 \times 51$ প্রশানসারে, $F \times 0.1 = 5 \times 9.8 \times 5.1$ $\mathbf{F} = \frac{5 \times 9.8 \times 5.1}{0.1}$ = 2499N উত্তর ঃ গড় প্রতিরোধ বল = 2499N. ১৯। 2 kg তরের একটি বস্তুকে ভূমি হতে খাড়া উর্ধ্বে নিক্ষেপ করা হল এবং বস্তুটি 8 sec পরে পুনরায় ভূমিতে ফিরে এল। নিক্ষেপের মূহুর্তে এবং নিক্ষেপণের 2 sec পরে বস্তৃটির বিভব শক্তি এবং গতিশক্তি কত ? $(g = 9^{\circ}8 \text{ ms}^{-2})$ চি. বো. ২০০২] জামরা জানি, $T = \frac{2v_0}{g}; v_0$ হল নিক্ষেপের মূহুর্তে আদি বেগ এখানে, কম্তুর জর, *m* = 2 kg বা, $2v_0 = Tg$ উৰ্ড্ডয়নকাল , T = 8 sec $rad{t}$, $v_0 = rac{Tg}{2} = rac{\beta \times 98}{2} \,\mathrm{ms}^{-1}$ অভিকর্ষজ তুরণ, g = 9⁻8 ms⁻² $= 39^{\circ}2 \text{ ms}^{-1}$ নিক্ষেপের মূহর্তে, h=0বিভব শক্তি, $E_p = mgh = 2 \times 9.8 \times 0 = 0$ এবং গতিশক্তি $E_{k} = \frac{1}{2}mv_{0}^{2}$ $=\frac{1}{2} \times 2 \times (39^{\circ}2)^2 \text{ J} = 1536^{\circ}64 \text{ J}$ $2 \sec 9$ পরে বেগ v এবং উচ্চতা h হলে আমরা পাই, $v = v_0 - gt = 392 - 9.8 \times 2 = 19.6 \text{ ms}^{-1}$ and $h = v_0 t - \frac{1}{2}gt^2 = 392 \times 2 - \frac{1}{2} \times 98 \times (2)^2$ h = 58.8 mবা. জতএব, বিভব শক্তি, E_p = mgh = 2 × 9.8 × 58.8 J = 1152.48 J এবং গতিশস্তি, $E_k = \frac{1}{2}mv^2 = \frac{1}{2} \times 2 \times (19^{\circ}6)^2 \text{ J} = 384^{\circ}16 \text{ J}$ (i) নিক্ষেপের মূহর্তে বিভব শক্তি 🕵 16), গতিশক্তি 1536'64 J উন্তর ঃ (ii) 2 sec পরে বিভব শক্তি 1152 48 J, গতিশক্তি 384 16 J হিব। 6 kg তরবিশিষ্ট একটি বস্তু স্ধির অবস্থায় ছিল। 30 N বল প্ররোগ করার 10s পুর বস্তুটির পডিশক্তি কত V620 8 হৰে ! ঢ়া, বো. ২০০৫] আমরা জানি. এখানে, K. E. $=\frac{1}{2}mv^2$ = 6 kgm (1)vo = 30 N এখানে, $v = v_0 + at$ = 10 s=0+atK. E. =? v = at(2) পুনরায়, F = ma $a = \frac{F}{m} = \frac{30^{5}}{6} = 5 \text{ ms}^{-2}$

২০৬

$$\frac{4\overline{\xi} v_{III, SNI}}{\sqrt{2} e^{-1} e$$

 χ ২৫। 2000 kg ভরের একটি গাড়ি ভূমির সাথে 30° কোণে আনত একটি রাস্তা ধরে 16 ms⁻¹ বেগে নিচে নামার সময় গাড়ির চালক ব্রেক প্রয়োগ করায় গাড়িটি 40m দূরত্ব অতিক্রম করার পর থেমে যায়। কি পরিমাণ গতি প্রতিরোধী বল গাড়ির উপর ক্রিয়া করে ?

প্রশানুযায়ী অভিকর্ষীয় বল mg-এর তল বরাবর অংশক =

mg cos 60°। এর বিপরীতে গতিপ্রতিরোধী বল ক্রিয়া করে।

বলদ্বয়ের লব্দি

 $= F - mg \cos 60^\circ$

> চিত্ৰ ৬২১ এখানে, m = 2000 kg $v_0 = 16 \text{ ms}^{-1}$ s = 40 m $g = 9.8 \text{ ms}^{-2}$

কাজ শক্তি উপপাদ্য অনুযায়ী,

$$\frac{1}{2}mv_0^2 = (F - mg\cos 60^\circ) \times s$$

$$\frac{1}{2} \times 2000 \times (16)^2 = \left(F - 2000 \times 9.8 \times \frac{1}{2}\right) \times 40$$

$$\boxed{\mathbf{A}}, F = \frac{2000 \times (16)^2}{2 \times 40} + 2000 \times 9.8 \times \frac{1}{2}$$

= 16200 N

(3430 W কমতাসম্পন একটি মটর চালিত পাম্প দ্বারা একটি কৃপ হতে গড়ে 7'20 m উচ্চতায় পানি উঠালো হয়। মটরের দক্ষতা 90% হলে প্রতি মিনিটে কড কিলেশ্রোম পানি ওঠে ?

 ধরি নির্ণেয় তর = m kg

প্রশান্যায়ী মটরের কার্যকর ক্ষমতা = $\eta \times P = \frac{90}{100} \times 3430 \text{ W}$ = 3087 Wথ্রতি মিনিটে প্রান্ত কাজ, $W = mg \times h = (m \times 9.8) \times 7.20 \text{ J}$ () এখানে, P = 3430 W $\eta = 90/100$ $\eta = 90/100$

W =
$$mg \times h = (m \times 9.8) \times 7.20$$
 J
∴ কাৰ্যকর ক্ষমতা, P = $\frac{W}{t} = \frac{m \times 9.8 \times 7.20}{60}$ W
mosinguial, $\frac{m \times 9.8 \times 7.20}{60} = 3087$
 $m = \frac{3087 \times 60}{9.8 \times 7.20} = 2625$ kg
M = 2625 kg

কাজ, শক্তি ও ক্ষমতা ২০৯ বইঘর.কম (২) 100 মিটার গভীর একটি কুয়া থেকে ইঞ্জিনের সাহায্যে প্রতি মিনিটে 1000 kg পানি উঠানো হয়। যদি ইস্কিনের ক্রমতা 20% নন্ট হয়, তাহলে এর অশক্ষমতা নির্ণয় কর। ক. বো. ২০০৫] এখানে, $P' = \frac{P \times 80}{100}$ np= এখানে. $P = \frac{P' \times 100}{80}$ $P' = \frac{mgh}{t}$ এক্ষেত্রে ইঞ্জিনটির ক্ষমতা 20% নষ্ট হওয়াতে কার্যকর ক্ষমতা = 80%। m = 100 kg $P = \frac{mgh \times 100}{mgh \times 100}$ $= 9.8 \text{ ms}^{-2}$ 8 $80 \times t$ $\frac{1000 \times 9.8 \times 100 \times 100}{2000} = 2041.6666 \text{ W}$ $= 100 \,\mathrm{m}$ 80×60 $= 1 \times 60 = 60 \text{ s}$ $= 27^{-3}682$ H.P. [:: 1 H.P = 746 W] $= 27^{-3}682$ H.P. [:: 1 H.P = 746 W] $= 27^{-3}682$ H.P. [:: 1 H.P = 746 W] =যি. বো. ২০০১] আমরা জানি, 9 এখানে, $\mathbf{F} = ma$ বস্তুর ভর, m = 10 kg (1) এবং $v = v_0 + at$ বস্তুর আদিবেগ, $v_0 = 0$ (2) $F = \frac{1}{2} F$ সমীকরণ (2) হতে পাই বস্তুর শেষবেগ, $v = 15 \, {
m m s}^{-1}$ সময়, t = 2 sec $a = \frac{v - v_0}{t} = \frac{15 - 0}{2} \,\mathrm{ms}^{-2}$ ত্বণ, a = ? $= 75 \text{ ms}^{-2}$ বল, F = ? সমীকরণ (1) হতে, $F = ma = 10 \times 7.5 N$ = 75 N ধরা যাক 4 sec পরে বস্তুর বেগ v^\prime এখন $v' = v_0 + at'$ $= 0 + 7.5 \times 4 = 30 \text{ ms}^{-1}$ সুতরাং, 4 s পরে গতিশক্তি. $E_k = \frac{1}{2} m v'^2 = \frac{1}{2} \times 10 \times (30)^2 J$ 270 kg ভরের একটি বোঝা একটি ক্রেনের সাহায্যে 0°1 ms⁻¹ ধ্র্ব বেগে উঠানো হল। ক্রেনের কত ক্ষমতা রো. বো. ২০০২] $=\frac{W}{t}=\frac{F\times s}{t}=Fv$ এখানে, P=FV জ্ব, m = 270 kg = mg vৰ্শো, v = 01 ms⁻¹ অভিকর্ষজ ত্বরণ $g = 9.8 \text{ ms}^{-2}$ $= 270 \times 9.8 \times 0.1 \text{ W}$ ক্ষমতা, P = ? = 264.6 W৩০।)কোন একটি স্থান হতে এক মিনিটে একটি ইঞ্চিন 100 kg তরের একটি বস্তুকে 20 m উপরে ভূলভে পারে। যদি ইঞ্চিনটির ক্ষমতা 30% নন্ট হয়, তবে ইঞ্চিনটির ক্ষমতা নির্ণয় কর। মনে করি, কান্স = W

মনে থাব, থাব = W আমরা পাই, W = mgh $W = 100 \times 9.8 \times 20 J$ $\psi = 100 \times 9.8 \times 20 J$ $\psi = 100 \times 9.8 \times 20 J$ $\psi = \frac{100 \times 9.8 \times 20}{60} J/s$ $= \frac{100 \times 9.8 \times 20}{60} Watt$ গ্রন্থান্সারে ইঞ্জিনটির 30% ক্ষমতা নন্ট হয়। স্তরাং ইঞ্জিনটির ক্ষমতা P হলে, কার্যকর ক্ষমতা = $\frac{(100 - 30) \times P}{100} = \frac{70}{100} P$ আমরা পাই, $\frac{70}{100} \times P = \frac{100 \times 9.8 \times 20}{60}$ বা, P = $\frac{100 \times 100 \times 9.8 \times 20}{70 \times 60}$ = 466.667 Watt

= 466'667 Watt ডি১ একটি কুয়া থেকে ইন্ধিনের সাহায্যে প্রতি মিনিটে 1000kg পানি 10m গড় উচ্চতায় উঠানো হয়। যদি ইঞ্জিনটির ক্ষমতা 40% নন্ট হয়, তাহলে এর অধক্ষমতা নির্ণয় কর। [ব. বো. ২০০৫]

- 7

আমরা জানি,
 কার্ববর কমতা,
$$P' = \frac{P \times 60}{100}$$
 autro,

 $P = \frac{P \times 100}{60}$
 $P = \frac{mgh}{60}$
 $P = \frac{mgh}{60}$

 আক্ষেত্র ইঞ্জিনটির কমতা 40% নউ হওয়াতে কার্ববরা
 $P = \frac{mgh}{60}$
 $m = 1000 \, kg$

 আক্ষেত্র ইঞ্জিনটির কমতা 40% নউ হওয়াতে কার্ববরা
 $m = 1000 \, kg$
 $g = 98 \, ms^2$
 $h = 10m$
 $t = 60 \, s$
 $h = 10m$
 π P = $\frac{mgh \times 100}{60 \times 60}$
 $m = 1000 \, kg$
 $g = 93 \, ms^2$
 $n P = 27222 \times 10^3$ watt
 $n P = 27222 \times 10^3$ watt
 M
 π , P = 27222×10^3 watt
 M
 M
 π , P = 27222×10^3 watt
 M
 M
 π , P = 27222×10^3 watt
 M
 M
 π , P = 27222×10^3 watt
 M
 M
 π , P = 27222×10^3 watt
 M
 M
 π , P = 27222×10^3 watt
 M
 M
 π are a fill with
 M
 M
 π are π
 $m = 60kg$
 π
 π are π
 $m = 60 \times 98 N$
 π
 π are π
 $m = 1764$
 $= 0.08$
 π
 $= 0.223 \, H P.$
 M
 $m = 55 \times 10^5 \, kg$
 $m = 55 \times 10^5 \, kg$

বইঘর.কম

68) একটি পাম্প যণ্টায় 25 × 10° kg পানি 50 m উঁচুতে ভূলতে পারে। পাম্পের ক্ষমতার 70% কার্যকর হলে প্রকৃত ক্রমতা নির্ণয় কর। [রা. বো. ২০০৪]

আমরা জানি.

P' =
$$P \times \frac{70}{100}$$

 Qreation of the second state of

প্রমালা

সংক্ষিণত-উত্তর প্রশু ঃ

১। কাজ, শক্তি ও ক্ষমতার সংজ্ঞা দাও।

২। ভেষ্টর ও সমাকলনের ব্যবহারে কাজের সংজ্ঞা দাও। যি. বো. ২০০৪ ৩। কাজ ও ক্ষমতার মাত্রা সমীকরণ লিখ। ৪। সংবক্ষণশীল বল কাকে বলে ? [b. বো. ২০০8; সি. বো. ২০০২; ঢা. বো. ২০০১; য. বো. ২০০১] ৫। বলের দ্বারা কাজ এবং বলের বিরুম্ব্রে কাজ বলতে কি বুঝ ? য. বো. ২০০১; ঢা. বো. ২০০০] ৬। কোন যন্ত্রের ক্ষমতা 70% বলতে কি বুঝ ? [কু. বো. ২০০২ ; ঢা. বো. ২০০২] ৭। ভের্টর ও সমাকলনের ব্যবহারে কাজের সংজ্ঞা দাও। [সি. বো. ২০০৪] ৮। কাজ, শক্তি ও ক্ষমতার এককের নাম লিখ। ৯। কান্ধের একক কি ? এর সংজ্ঞা দাও। [ঢা. বো. ২০০৫] ১০। বলের দ্বারা কাজ ও বলের বিরুদ্বে কাজের মধ্যে পার্থক্য কর। ১১। গতিশক্তির সংজ্ঞা এবং উদাহরণ দাও। ১২। স্থিতি বা বিভব শব্র্তির সংজ্ঞা এবং উদাহরণ দাও। ঢা. বো. ২০০৪] ১৩। গতিশক্তি এবং স্থিতিশক্তির রাশিমালা লিখ। ১৪। যান্ত্রিক শক্তির নিত্যতা সূত্র বিবৃত কর। ৰি. বো. ২০০০] ১৫। স্থিতিস্থাপক বিতব শক্তি এবং অভিকর্ষীয় বিভব শক্তির সংজ্ঞা দাও। ১৬। শক্তির রূপান্তর বলতে কি বুঝ ? ১৭। একটি স্পিং-এর প্রসারণে সম্পাদিত কাচ্চের পরিমাণ নির্ণয় কর। [ঢা. বো. ২০০২, ২০০১; কৃ. বো. ২০০২, ২০০০; য. বো. ২০০২] ১৮। শক্তির নিত্যতা সূত্র বিবৃত কর। [য. বো. ২০০২; ঢা. বো. ২০০১; কৃ. বো. ২০০০, ২০০১] ১৯। কর্মদক্ষতার সংজ্ঞা দাও। ২০। কাজ ও ক্ষমতার মধ্যে পার্থক্য কর। ২১। কাজ্ব-শক্তি উপপাদ্যটি বিবৃত কর। [ह. (वा. २००७; व. (वा. २००७ ; कृ. (वा. २००७, २००৫ ; রা. বো. ২০০৫] ২২। উদাহরণসহ সংজ্ঞা দাও ঃ সংরক্ষণশীল বল। (রা. বো. ২০০৬; সি. বো. ২০০২; ঢা. বো. ২০০১; য. বো. ২০০১] অসল্পকণশীল বল । [ব. বো. ২০০৬, ২০০৩; সি. বো. ২০০৪; রা. বো., কু. বো. ২০০১; ঢা. বো. ২০০৪] ২৩। সংরক্ষণশীল ও অসংরক্ষণশীল বলের মধ্যে পার্ধক্য কর। বি. বো. ২০০৪] ২৪। ক্ষমতার সংজ্ঞা দাও। ওয়াট ও কিলোওয়াটের সংজ্ঞা দাও। ২৫। শক্তি ও ক্ষমতার মধ্যে পার্ধক্য কর। ২৬। (ক) একটি লোক স্রোতের প্রতিকূলে দাঁড় বেয়ে তীর জনুযায়ী স্থির রইল। সে কি কোন কাজ করছে ? (খ) সে যদি দাঁড় টানা বন্ধ করে স্রোতের অনুকৃদে চলুতে থাকে, তবে তার উপর কোন কাজ সাধিত হল কি? ২৭। কোন বিদ্যুর্ৎ কেন্দ্রের ক্ষমতা 10 মেগাওয়াট --- অর্থ কি ? ২৮। শক্তির অপচয় কি १ ৰু. বো. ২০০৫] রচনামূলক প্রশ্ন ঃ ১। কান্ধ-শক্তি উপপাদ্যটি বিবৃত কর এবং ধ্রুব বলের জন্য তা প্রমাণ কর। ব. বো. ২০০৫ ২। কান্স, শক্তি ও ক্ষমতার সংজ্ঞা দাও এবং এদের এস. আই. এককের নাম উল্লেখ কর। ৩। বলের দারা কান্ধ এবং বলের বিরুদ্দে কান্ধ বলতে কি বুঝ ? উদাহরণ দারা বুঝিয়ে দাও। ঢ়া. বো. ২০০৩; ব. বো. ২০০২; ঢা. বো. ২০০০; য. বো. ২০০১] ৪। ধ্রুব বল কর্তৃক কাজের পরিমাণ নির্ণায় কর এবং দেখাও যে W = F, s ঢা. বো. ২০০৪] উচ্চ মাধ্যমিক পদার্থবিজ্ঞান

BG & JEWEL

9 ৫। পরিবর্তনশীল বল বলতে কি বুঝ ? পরিবর্তনশীল বল কর্তৃক কাক্ষের পরিমাপের রাশিমালা বের কর। ৬। দেখাও যে পরিবর্তনশীল বল কর্তৃক কাজের পরিমাণ W = $\frac{1}{2}kx^2$ । ৭। মহাকর্ষীয় ক্ষেত্র বলতে কি বুঝ ? প্রমাণ কর যে মহাকর্ষীয় ক্ষেত্রে কৃত কাজের পরিমাণ $W = -GMm \left(\frac{1}{r_2} - \frac{1}{r_1} \right)$ ৮। যান্ত্রিক শক্তি কাকে বলে ? এটা কত প্রকার ও কি কি ? ৯। গতিশক্তির সংজ্ঞা দাও। m ভরের কোন বস্তু v বেগে চললে তার গতি শক্তি K. E = $rac{1}{2} mv^2$ ১০। বস্তুর গতিশক্তি ও ভরবেগের মধ্যে সম্পর্কযুক্ত সমীকরণটি প্রতিপাদন কর। ঢা. বো. ২০০২] ১১। স্থিতিশক্তির সংজ্ঞা দাও। দেখাও যে অভিকর্ষীয় স্থিতিশক্তি P. E. = mgh; এখানে সংকেতগুলো প্রচলিত জর্ধ বহন করে। ১২। শক্তির নিত্যতা সূত্র বিবৃত কর। [কু. বো. ২০০৫] অভিকর্ষ বলের প্রভাবে মুক্তভাবে পড়ন্থ বস্তুর ক্ষেত্রে এই সূত্রটি প্রমাণ কর। াসি. বো. ২০০১] ১৩। বন্দ সরণ লেখচিত্র থেকে পরিবর্তনশীল বল দ্বারা কৃত কাচ্ছের সমীকরণ প্রতিষ্ঠা কর। রা. বো. ২০০৬ ; কু. বো. ২০০৪ ; সি. বো. ২০০২] ১৪। অসৎরক্ষণশীল বল কর্তৃক কৃত কাজের রাশিমালা প্রতিপাদন কর। [চ. বো. ২০০৪] ১৫। প্রমাণ কর যে, বল প্রয়োগের দ্বারা কোন বস্তুর বেগ পরিবর্তন হলে বস্তুর গতিশক্তির পরিবর্তন বলের দ্বারা কৃত কান্ধের সমান। রো. বো. ২০০৩ ; সি. বো. ২০০৩] ১৬। গতিশক্তি ও বিভব শক্তির পার্থক্য লেখ। ক্রি. বো. ২০০৩] ১৭। দেখাও যে, নির্দিষ্ট ভরের কোন বস্তুর গতিশক্তি তার বেগের বর্গের সমানুপাতিক। বি. বো. ২০০৩] ১৮। একটি স্প্রিং-এর সংকোচন বা সম্প্রসারণের ক্ষেত্রে সম্পাদিত কাক্ষের পরিমাণ নির্ণয় কর। [চ. বো. ২০০৬ ; ঢা. বো. ২০০২ ; কু. বো. ২০০০ ; কু. বো. ২০০০ ; কু. বো. ২০০২] ১৯। একটি স্মিং-এর সংকোচন বা সম্প্রসারণের জন্য সঞ্চিত বিভব শক্তির রাশি প্রকাশ কর। [ব. বো. ২০০৬ ; য. বো. ২০০২ ; ঢা. বো. ২০০১] ২০। একটি তারকে বন্দ প্রয়োগে সম্প্রসারিত করদে এর একক আয়তনে সঞ্চিত শব্তির স্বিতিস্থাপক বিভব শব্তির রাশিমালা প্রতিপাদন কর। যি. বো. ২০০০] ২১। সরল দোলকের ক্ষেত্রে যান্ত্রিক শক্তির নিত্যতার সূত্র প্রমাণ কর। [য. বো. ২০০৫] ২২। সরল ছন্দিত স্পন্দনরত কোন কর্ণার ক্ষেত্রে দেখাও যে এর সর্বাধিক বিতব শক্তির মান $rac{1}{2}kx^2$ প্রতীকগুলো প্রচলিত অর্ধে ব্যবহুত।] [সি. বো. ২০০৫] ২৩। কাজ-শক্তি উপপাদ্যটি বিবৃত কর এবং প্রমাণ কর। বি. বো. ২০০৩; কৃ. বো. ২০০২, ২০০০; ण. বো. ২০০০; রা. বো. ২০০০; য. বো. ২০০০; চ. বো. ২০০১] ২৪। উদাহরণসহ সংরক্ষণশীল ও অসংরক্ষণশীল বলের সংজ্ঞা দাও। প্রমাণ কর যে অভিকর্ষ বল সংরক্ষণশীল বল। [সি. বো. ২০০৪; কু. বো. ২০০১; রা. বো. ২০০১; কু. বো. ২০০১] ২৫। সংরক্ষণশীল বল ও অসংরক্ষণশীল বলের সংজ্ঞা দাও এবং এদের মধ্যে পার্থক্য কর। [সি. বো. ২০০৬, ২০০২] ২৬। ক্ষমতার সংজ্ঞা দাও। এর রাশিমালা এবং মাত্রা সমীকরণ বের কর। ২৭। ক্ষমতা কি ? শক্তি ও ক্ষমতার মধ্যে পার্থক্য কর। ২৮। বিতব শক্তি কাকে বলে ? অভিকর্ষীয় বিভব শক্তির রাশিমালা প্রতিপাদন কর। [চ. বো. ২০০০] গাণিতিক সমস্যাবলি : ১। 200 N-এর বল প্রয়োগ করে কোন বস্তুকে বলের অভিমুখে 300 m সরানো হল কত কাজ সম্পন্ন হবে বের কর। [5: 6 × 10⁴]] ২। একটি বরফ খন্ডকে দড়ির সাহায্যে মসৃণ অনুভূমিক তলের উপর 5m দূরত্ব টেনে আনা হল। দড়ির টান 10N এবং দড়িটি উক্ত তলের সাথে 30° কোণ করে থাকলে কৃত কাজের পরিমাণ নির্ণয় কর। [উত্তর ঃ 43[.]3 J] ত। 250 N ওজনের একজন বালক খাড়া মই বেয়ে শীর্ষে উঠতে 2000 J কাজ সম্পন্ন করে। মইটির দৈষ্য নির্ণয় কর। [\$8m] ৪। 746 W ক্ষমতার একটি পাম্প প্রতি মিনিটে কি পরিমাণ পানি 10 m উচ্চতায় উপরে উঠাতে পারবে ? 58 456 7 kg ৫। 5 W-এ 2 ঘণ্টায় কি পরিমাণ শক্তি ব্যয় হবে ? [🕼 36000]] ৬। একটি ক্রেন 3'73 kW ক্ষমতা প্রয়োগে 746 N ওজনের একটি লৌহ খন্ডকে কত গড় বেগে খাড়া উপরে তুলতে [5 ms⁻¹] পারবে ? ৭। 3.6 kg ভরের একটি বন্দুক হতে 365 J গতিশক্তি উৎপন্ন করে 0.05 kg ভরের একটি বুলেট কত বেগে নিক্ষিন্ত [ቼ: 120 ms⁻¹] হবে ? ৮। 500g ভরবিশিষ্ট কোন বস্তু একটি জাহাজের উপর হতে 10m নিচে পানিতে পড়ঙ্গ। (i) বস্তুটির প্রাথমিক স্পিতিশক্তি ; (ii) বস্তৃটির সর্বোচ্চ গতিশক্তি ; (iii) বস্তৃটি যে বেগ নিয়ে পানির তলকে স্পর্শ করে এবং (iv) পানি হতে 3 মিটার िखत ३ (i) 49 J; (ii) 49 J; (iii) 1 4 ms⁻¹; (iv) 34 3 J উপরে গতিশক্তি ও স্থিতিশক্তি নির্ণয় কর। ৯। একটি বালক 5 সেকেন্ডে 100 পাউন্ডের একটি বোঝা 9 ইঞ্চি উঁচু ধাপের 20 ধাপ উপরে ভুলন। তার অশ্ব ক্ষমতা [5: 0'54 HP] বের কর। ১০। একটি সরল দোলকের ববের ভর 02 kg ও কার্যকরী দৈর্ঘ্য 12 m। উন্নন্দ রেখা হতে 02 m দূরে টেনে ছেড়ে দিলে [℃: 0.0392 J; 0.626 ms-1] গতিপধের সর্বনিম বিন্দু অতিক্রমের সময় ববের গতিশক্তি এবং বেগ নির্ণয় কর।

বিইঘর.কম

70 kg ভরের একন্ধন লোক প্রতিটি 15 cm উচু 30টি সিঁড়ি 20 s-এ উঠতে পারেন। লোকটির ক্ষমতা কত ? । 🕼 154 35 W 🚱 একটি ক্রেন কত <u>বে</u>গে 1492 <u>N ও</u>ন্ধনের একটি লৌহ খন্ডকে খাড়া উপরে ভূলতে পারবে ? ক্রেনটির ক্ষমতা [\$ 5 ms⁻¹] 7'46 kW] তে 12 kg ভরবিশিষ্ট একটি বস্তু স্থিরাবস্থায় ছিল। 60 N বল প্রয়োগ করার 15 সেকেন্ড পর বস্তুটির গতিশব্তি Var O डिः 33[.]75 k]] \star 5 কত হবে ? 🚱। একটি রাইফেলের গুলি নির্দিষ্ট পুরুত্বের একটি তব্তা ভেদ করতে পারে। বেগ দ্বিগুণ ইলে অনুরূপ কতটি তব্তা ভেদ 1 38 40 করতে পার্রুবে ? G_{4} 5 kg ভরের একটি বস্তুকে 9.8 ms⁻¹ বেগে খাড়া উপরের দিকে নিক্ষিশ্ত হল। অর্ধ সেকেন্ড ও এক সেকেন্ড পরে উ কত হবে ? $\sqrt{2}$ 9.8 – (9.8ו5) = 4.9 $\frac{1}{2}$ / $\sqrt{2}$ 60 $\frac{1}{2}$ [উঃ 60] ও 0] [फैं: 60] ख 0] গতিশক্তি কত হবেঁ? ১৬) 300 m উচু হতে একটি বস্তু অভিকর্ষের টানে মুক্তভাবে নিচে পড়লে কোথায় তার <u>গতিশক্তি স্থিতিশক্তির অর্ধেক</u> [ঢা. বো. ২০০৬] [উঃ 100m নিচে] হবে ? Int = Sy [উত্তর : 12[·]5 m] হবে ? 🕑 🖌 10 kg ভরের একটি বস্তুর গতিশক্তি 80] হলে ভরবেগ নির্ণয় ব্দর। [58 1 41 ms⁻¹] (১৯) বেগ কত হলে 20kg ডরের একটি বস্তুর গতিশক্তি 20] হবে ? হিন্ট। একটি গাড়ি ক<u>ত উচ্চতা</u> হতে অভিকর্ষের টানে তার অর্জিত গতিশক্তি প্রতি ঘণ্টায় 1764 km বেগে চলাকালীন En=1 গতিশক্তির সমান হবে ? [🕏: 122[·]5 m] (5) D0 1 kg তরের একটি বস্ত্র তরবেগ 0 02 kg ms-1। গতিশক্তি নির্ণয় কর। [🕏: 2 × 10⁻³ J] ২২। দিখাওঁ যে, অভিকর্ষের টানে মুক্তভাবে পড়স্ত ভরের একটি বস্তুর t-তম সেকেন্ডে হারানো স্থিতিশক্তি বা অর্জিত গতিশক্তি $rac{1}{2}mg^2$ (2t-1)-এর সমান। $(\sqrt{2})$ 10 kg ভরের একটি কণার বেগ ms $^{-1}$ -এ (7 i – 6 j + 5k) হলে এর গতিশস্তি কত হবে ? [উঃ 550]] ষ্ট্রিয় 2 kg ভরের একটি বস্তু 5 m উঁচু হতে মাটিতে পড়ে। এতে অভিকর্ষ বল বস্তুর উপর কত কান্ধ করে ও বস্তুটি কত স্থিতিশক্তি হারায় ? ** [উ: 98] ଏ 98 J] 🚱 2 kg ভরের একটি বস্তু কত উচ্চতা হতে অভিকর্ষের টানে পড়ে মাটিতে আঘাত করার পূর্ব মুহূর্তে 2<u>401 j</u> গতিশক্তি লাভ করে ? স্^ [ቼঃ 122[·]5 m] (২৬) 2 kg ভরের একটি হাতুড়ি দেয়ালের সাথে অভিলম্বতাবে রক্ষিত একটি পেরেককে কত বেগে অনুভূমিকভাবে আঘাত করঁলে পেরেকটি 640 N বন প্রতিরোধ করে দেয়ালের ভিতর 0 025 m ঢুকে যাবে? [ቼ፣ 4 ms⁻¹] হিন্স 1 kg ভরের একটি হাতুড়ি অনুভূমিক কাঠের উপর উন্নস্মভাবে রক্ষিত একটি পেরেককে খাড়া নিচের দিকে 0 8 m/s বির্গে আঘাত করায় পেরেকটি কার্টের মধ্যে 0.02 m ঢুকে যায়। গড় বাঁধা বল নির্ণয় কর। [$g = 9.8 \text{ ms}^{-2}$] [উঃ 25.8 N] $F = m(3+\alpha) = 1(9.8 + \frac{1}{25}) = 15.8$ [উত্তর * 125 m] ২৮। 40 kg ভরের একটি ট্রলি 1801 গতিশক্তিসহ একটি মসৃণ অনুর্ভূমিক রাস্তায় চলাকালে এর মধ্যে 20 kg ভরের একটি বস্তু খাড়াভাবে নামিয়ে দিলে মোট গতি শক্তি কত হবে ? [ቼ፣ 120 J] 💫। 900 kg ভরের একটি লিফট 350 kg ভরের বোঝাসহ 100 s-এ নিচতলা হতে 18 তলায় 75 m উপরে উঠে। কৃত কাৰ্ছ ও প্ৰযুক্ত ক্ষমতা নিৰ্ণয় কর। [₲\$ 9'18 × 10⁵] ७ 9'18 kW] 🕝 80% দকতাসম্পন্ন একটি মটর একটি ক্রেন নিয়ন্ত্রণ করে যার দক্ষতা 50%। মুটুরটি 3'73 kW ক্ষমতা প্রয়োগ করলে ক্রেনে 746 N ওজনের একটি বস্তুর উধ্বমুখী গড়বেগ কত হবে ? P = FV =) v = V = = [🕏 8 2 ms⁻¹] ক্ত) একটি কৃপ হতে প্রতি 9.8 মিনিটে 7460 kg পানি 21 m গড় উচ্চতায় উপরে উঠানোর জন্য একটি ইঞ্জিন ব্যবহুত হল। ইঞ্জিনের দক্ষতার 70% কার্যকর হলে প্রযুক্ত ক্ষমতা নির্ণয় কর। [उँ: 3'73 kW] ক্রিস্টা 144 kg ভরের এক ব্যক্তি 65 kg ভরের একটি বোঝা নিয়ে 2 m দীর্ঘ একটি সিঁড়ি বেয়ে 2 min-এ উপরে ওঠে। যদি সির্ডিটি অনুভূমির্কের সাথে 30° কোণে আনত থাকে, তবে ঐ ব্যক্তির ক্ষমতা নির্ণয় কর। 103 1635 Watt 🔂। 150 kg ভরের এক ব্যক্তি 50 kg ভরের একটি বোঝা নিয়ে 4 m দীর্ঘ একটি সিঁড়ি বেয়ে 20 s-এ নিচে নামন। যদি সিড়িটি দেওয়ালের সাথে 60° কোণে থাকে, তবে লোকটির ক্ষমতা নির্ণয় কর। p= 2000-0050 58 196 Watt ন্তি। কোন একটি স্থান হতে এক মিনিটে একটি ইঞ্জিনে 100kg ডরের একটি বস্তুকে 20m উপরে তুলতে পারে। যদি ইঞ্জিনের ক্ষমতা 30% নন্ট হয়, তবে ইঞ্জিনটির ক্ষমতা নির্ণয় কর। [উত্তর : 466 67 Watt] 🥑 100 m গভীর একটি কৃয়া থেকে ইঞ্জিনের সাহায্যে প্রতি মিনিটে 1000kg পানি উঠানো হয়। যদি ইঞ্জিনটির ক্ষমতা 42% নন্ট হয়। তাহলে এর অশ্বক্ষমতা নির্ণয় কর। [সি. বো. ২০০৬ ; কৃ. বো. ২০০১] টেম্বর ঃ 37 75 H. P.] প্রেমন কুয়া থেকে 20m উপুরে পানি তোলার জন্য 6kW এর একটি পাম্প ব্যবহার করা হল্ছে। পাম্পের দৃষ্ণতা 82.2% হলে প্রতি মিনিটে কত লিটার পানি তোলা যাবে ? [ব. বো. ২০০৬] [উন্তর ঃ 1620 শিটার) ্র্ ্রি)। একটি পানিপূর্ণ কয়ার গভীরতা 7'2m ও ব্যাস 4m। 31'4 মিনিটে কৃয়াটিকে পানিশূন্য করতে পারে এরপ একটি বেদ্যুতিক পান্দের ক্ষমতা নির্ণয় কর। PTM 2 [Jess : 1693 44 W] A ==

মহাক GRAVITATION

৭'১ সূচনা

Introduction

গ্রহ-নক্ষত্রের প্রকৃতি, স্বরুপ, গতিবিধি ইত্যাদি সম্পর্কে প্রাচীনকাল থেকেই বিজ্ঞানীদের অপরিসীম কৌতৃহল ছিল। বিখ্যাত জ্যোতির্বিদ টাইকো ব্রে (Tycho Brahe), জোহাঙ্গ কেপলার (Johannes Kepler) গ্রহ, নক্ষত্রের গতিবিধি সম্পর্কে উল্লেখযোগ্য অবদান রাখেন। কেপলার প্রথম উপলব্ধি করেন যে গ্রহগুলো কোন এক বলের প্রভাবে সূর্যকে কেন্দ্র করে অবিরত ঘুরছে। কিন্তু কি ধরনের বল ক্রিয়াশীল তা সঠিকভাবে বোঝাতে সমর্থ হননি। 1681 খ্রিস্টাব্দে মহাবিজ্ঞানী স্যার আইজাক নিউটন (Sir Isaac Newton) প্রথম "মহাকর্ষ সূত্র' আবিক্ষার করে এ সমস্যার সমাধান করেন। কথিত আছে, নিউটন তাঁর গৃহ-সংলগ্ন বাগানে একটি আপেল গাছের নিচে বসে বই পড়ছিলেন। এমন সময় একটি আপেল তাঁর নিকটে মাটিতে পড়ে। তিনি ভাবলেন গাছের উপরে ফাঁকা, নিচে ফাঁকা, ডানে ফাঁকা এবং বামেও ফাঁকা। আপেল ফল মাটিতে গড়ল কেন ? এই 'কেন' এর উদ্ঘাটন করতে গিয<u>়ে তিনি</u> মহাকর্ষ (Gravitation) এবং অভিকর্ষ (Gravity) আবিক্ষার করেন এবং সূর্যের চারদিকে গ্রহ-উপগ্রহের আবর্তনের কারণ ব্যাখ্যা করেন। এ অধ্যায়ে আমরা মহাকর্ষ, অভিকর্ষ, নিউটনের মহাকর্ষ সূত্র, অভিকর্ষজ ত্বুরণ, মুক্তি বেগ, কেপলারের সূত্র, গ্রহের গতি ইত্যাদি আলোচনা করব

৭.২ মহাকৰ্ষ ও অভিকৰ্ষ Gravitation and gravity

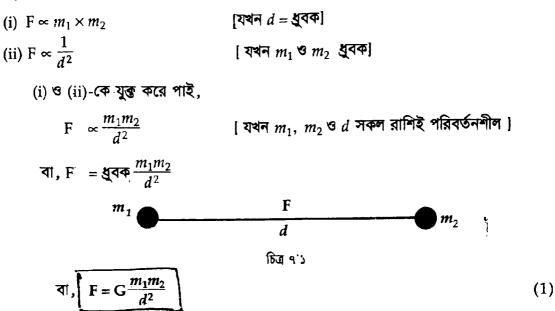
বিখ্যাত বিজ্ঞানী স্যার আইজাক নিউটন আবিক্ষার করেন যে এ মহাবিশ্বের যে কোন দুটি বস্তু বা বস্তু কণার মধ্যে একটি পারস্পরিক আকর্ষণ রয়েছে। দুটি বস্তু বা বস্তুকণার মধ্যকার এই পারস্পরিক আকর্ষণ বলকে কখনও মহাকর্ষ আবার কখনও অভিকর্ষ বলা হয়। এ দুটি বলের মধ্যে পার্থক্য রয়েছে। তাহলে প্রশ্ন জাগে মহাকর্ষ ও অভিকর্ষ কি ? এদের সংজ্ঞা নিম্নে দেয়া হল ঃ

মহাকর্ষ ঃ "নভোমন্ডলে অবস্থিত দুটি বস্তু বা বস্তুকণার মধ্যকার পারস্পরিক আকর্ষণ বলকে মহাকর্ষ বলে।"

অভিকর্ষ ঃ "পৃথিবী এবং অন্য একটি বস্তু বা বস্তৃকণার মধ্যকার আকর্ষণ বলকে অভিকর্ষ বা মাধ্যাক্ৰ্মণ বলে।"

উদাহরণ ঃ সূর্য এবং চন্দ্রের মধ্যকার পারস্পরিক আকর্ষণ বলের নাম মহাকর্ষ, অপর পক্ষে পৃথিবী ও চন্দ্রের মধ্যকার পারস্পরিক আকর্ষণ বলই অভিকর্ষ। আরও সোজা ভাষায় বলা যায় পৃথিবী এবং আম গাছের একটি আমের মধ্যকার যে আকর্ষণ বল তা অভিকর্ষ। কিন্তু একই আম গাছের দুটি আমের মধ্যকার পারস্পরিক আকর্ষণ বলের নাম মহাকর্ষ।

৭৩ নিউটনের মহাকর্ষ সূত্র


Newton's law of gravitation

1687 খ্রিস্টাব্দে বিখ্যাত বিজ্ঞানী স্যার আইচ্চ্যাক নিউটন আপেল পতন এবং গ্রহ-উপগ্রহের গতি পর্যবেক্ষণ করে মহাকর্ষের যে সূত্র আবিক্ষার করেন তা নিমোক্তভাবে সংজ্ঞায়িত করা যায় ঃ

"মহাবিশের যে কোন দুটি বস্তৃকণা পরস্ারকে আকর্ষণ করে। এই আকর্ষণ বল বস্তু দুটির ভরের গুণকলের সমানুপাতিক, তাদের দূরত্বের বর্গের ব্যস্তানুপাতিক এবং বস্তু দুটির সংযোগকারী সরলরেখা বরাবর ক্রিয়াশীল।"

ব্যাখ্যা ঃ নিউটনের মহাকর্ষ সূত্র বিশ্লেষণ করলে দেখা যাবে এই সূত্রে তিনটি অংশ রয়েছে। দুটি অংশ বলের পরিমাণ নির্দেশ করে আর একটি অংশ বলের প্রকৃতি সম্ঘন্ধীয়।

বদের পরিমাপ ঃ মনে করি দুটি বস্তুকণার ভর যথাক্রমে m_1 ও m_2 এবং তাদের মধ্যবর্তী দূরত্ব d [চিত্র ৭'১]। যদি তাদের মধ্যে আকর্ষণ বল F হয়, তবে মহাকর্ষ সূত্র অনুসারে

এখানে, G একটি সমানুপাতিক ধ্রবক। এই ধ্রবককে মহাকর্ষীয় ধ্রবক (Gravitational constant) বা বিশ্বজনীন মহাকর্ষীয় ধ্রবক (Universal gravitational constant) বলা হয়। G-কে বিশ্বজনীন ধ্রবক বলা হয় কারণ G-এর মান বস্তৃকণা দুটির মধ্যবর্তী মাধ্যমের প্রকৃতির ওপর যেমন- প্রবেশ্যতা (permeability), প্রবণতা (susceptibility), দিকদর্শিতা (directivity) এবং বস্তৃকণা দুটির ভৌত অবস্থার উপর নির্তর করে না।

বলের প্রকৃতি ঃ মহাকর্ষ বল দুটি বস্তুর মধ্যকার পারস্পরিক আকর্ষণ বল। দুটি চার্জিত বস্তু কিংবা দুটি চুম্বক পরস্পরকে আকর্ষণ করে যখন চার্জ দুটি বিপরীতধর্মী অর্থাৎ একটি ধনাজুক ও অপরটি ঋণাজুক হয় এবং বিকর্ষণ করে যখন চার্জ দুটি সমধর্মী হয়। চুম্বর্কের ক্ষেত্রে আকর্ষণ হয় যখন চুম্বকদ্বয়ের বিপরীত মেরু কাছাকাছি আসে এবং বিকর্ষণ করে যখন মেরুদ্বয় সমধর্মী হয়। কিন্তু মহাকর্ষ শুধুমাত্র আকর্ষণ বল। মহাকর্ষ বল বস্তু দুটির সংযোগ সরলরেখা বরাষর ক্রিয়া করে। এছাড়া মহাকর্ষ বল মাধ্যমের উপর নির্ভর করে না। মাধ্যম যাই হোক না এই বলের কোন পরিবর্তন হয় না।

মহাকর্ব সূত্রের ভেষ্টর রূপ ঃ

<u>ুমহারুর্ষ সূত্রকে ভেঁটর রাশির</u> দারা নিম্নলিখিতভাবে লেখা যায় ঃ

$$\overrightarrow{\mathbf{F}}_{21} = -G \frac{m_1 m_2}{r_{12}^3} \overrightarrow{r_{12}}$$

এখানে \overrightarrow{F}_{21} হচ্ছে দিতীয় বস্তুর উপর প্রথম বস্তুর সদিক বল (আকর্ষণ), \overrightarrow{r}_{12} হচ্ছে প্রথম বস্তু হতে দ্বিতীয় বস্তুর সদিক দূরত্ব।

যেহেতু প্রথম বস্তু আকর্ষণ করে দ্বিতীয় বস্তুকে নিজের দিকে টানছে অর্থাৎ \overrightarrow{F}_{21} এবং দিক \overrightarrow{r}_{12} এর বিপরীন্ত, সুতরাৎ উগরোক্ত সমীকরণে ঋণাত্মক চিহ্ন ব্যবহুত হয়েছে। কিন্তু মহাকর্ষ বলের মান সূচক। সুতরাৎ ঋণাত্মক চিহ্ন ব্যবহুত হয়নি।

৭৩ মহাকর্ষীয় ধ্রুবেকের সংজ্ঞা, একক এবং মাত্রা

Definition, unit and dimension of gravitational constant

সমীকরণ (1) হতে পাই,

$$G = \frac{F \times d^2}{m_1 m_2}$$

মনে করি দুটি বস্তৃকণার প্রত্যেকটির ভর এক একক এবং তাদের মধ্যবর্তী দূরত্বও এক একক জর্ধাৎ $m_1 = 1$ একক, $m_2 = 1$ একক এবং d = 1 একক ।

$$G = \frac{F \times 1^2}{1 \times 1} = F$$
⁽²⁾

সুতরাং, মহাকর্ষীয় ধ্রুবকের সংজ্ঞা হিসেবে বলা যায়— "একক ভরবিশিষ্ট দুটি বস্তুকণা একক দূরত্বে থেকে যে পরিমাণ বল দ্বারা পরস্পরকে আকর্ষণ করে তার সংখ্যাগত মানকে মহাকর্ষীয় ধ্রুবক বলে।"

যদি বলা হয় "G = 6'67 × 10⁻¹¹ এস. আই. একক"— এর অর্থ এই যে, দুটি বস্তুকণার প্রত্যেকটির তর 1 কিলোগ্রাম এবং তাদের মধ্যবর্তী দূরত্ব 1 মিটার হলে তারা পরস্পরকে 6'67 × 10⁻¹¹ নিউটন বল দ্বারা আকর্ষণ করবে।

একক ঃ এস. আই. পম্বতিতে F-এর একক নিউটন, d-এর একক মিটার এবং m-এর একক কিলোগ্রাম। তা হলে উপরের সমীকরণ (2)-এ বিভিন্ন রাশির একক বসালে, এম. কে. এস. ও এস. আই. পম্বতিতে G-এর একক নিউটন-মিটার²/কিলোগ্রাম² (N-m². kg⁻²)।

মাত্রা সমীকরণ ঃ

সমীকরণ (1) অনুসারে G-এর মাত্রা সমীক<u>রণ</u>

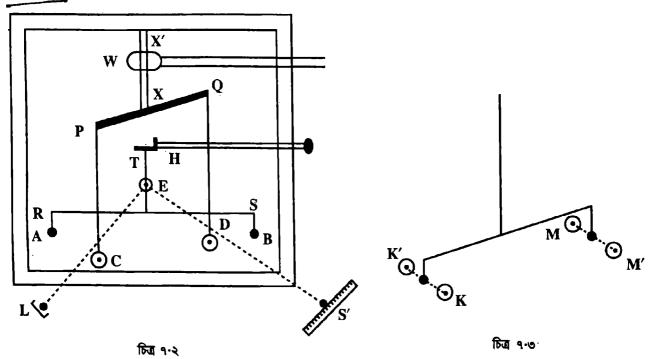
$$\begin{bmatrix} G \end{bmatrix} = \frac{[F \times d^2]}{[m_1 \times m_2]} = \frac{[MLT^{-2} \times L^2]}{[M \times M]} = \begin{bmatrix} ML^3T^{-2} \\ M^2 \end{bmatrix} = \begin{bmatrix} M^{-1}T^{-2}L^3 \end{bmatrix}$$

৭ ৪ মহাক্ষীয় ধ্রুবক কি বিশ্বজনীন ? Is gravitational constant universal ?

G-কে বিশ্বচ্দনীন বা সর্বচ্দনীন ধ্রবক বলা হয়। কারণ G-এর মান বস্তুকণা দুটির মধ্যবর্তী মাধ্যমের উপর কিংবা বস্তুকণা দুটির ভৌত অবস্থার উপর নির্ভর করে না। পদার্থবিজ্ঞানে অনেক ধ্রবক রয়েছে যাদের কোনটি মাধ্যমের প্রকৃতির উপর নির্ভর করে, বস্তুর অবস্থার উপর (যেমন তাপমাত্রা, চাপ ইত্যাদি) নির্ভর করে, বস্তুর প্রকৃতির উপর নির্ভর করে। কিন্তু মহাকর্ষীয় ধ্রবক এমন একটি ধ্রবক যার মান সর্বত্র এবং সব অবস্থায় একই থাকে, কোন পরিবর্তন হয় না। এই কারণেই এই ধ্রবককে বিশ্বচ্দনীন ধ্রবক বলে।

৭ ৫ মহাকর্ষীয় ধ্রুবক G-এর মান নির্ণয় Determination of gravitational constant, G

মহাকর্ষীয় ধ্রুবকের মান নির্ণয়ের জন্য অনেকগুলো পম্বতি আছে। তবে এখানে আমরা ক্যাভেন্ডিসের পম্বতি আলোচনা করব।


মহাকৰ্ষ

বইঘর.কম

ক্যাভেন্ডিসের পম্বতি (Cavendish's method) ঃ 1798 খ্রিস্টাব্দে বিজ্ঞানী ক্যাভেন্ডিস মহাকর্ষীয় ধ্রুবকের

মান নির্ণয়ের জন্য একটি ব্যবর্ত তুলা পন্ধতি উদ্ভাবন করেন। তাঁর নাম অনুসারে এই পন্ধতিকে ক্যাভেন্ডিসের

প**ন্ধ**তি <u>বলা</u> হয়।

যন্ত্রের বর্ণনা : এই যন্ত্রে সীসার তৈরি চারটি গোলক (A, B, C ও D) আছে। এদের মধ্যে A ও B ছোট এবং C ও D দুটি বড় গোলক [চিত্র ৭-২]। C এবং D একটি অনুভূমিক দন্ড PQ-এর দু'প্রান্ত হতে ঝুলান হয়েছে। দন্ডটি একটি উল্লন্দ অক্ষ XX'-এর সাথে যুক্ত থাকে। এই অক্ষ একটি চাকা W-এর সন্তো যুক্ত থাকে। চাকাটি বাহির হতে ঘুরানোর ব্যবস্থা থাকে। এর কিছুটা নিচে একই অক্ষে একটি ব্যবর্তন শীর্ষ (torsion head) H হতে ব্যবর্তন তারের (T) সাহায্যে একটি হান্ধা দন্ড RS ঝুলান আছে। RS-এর দু'প্রান্ত হতে দুটি ছোট সমান ভরের গোলক A ও B ঝুলান আছে। A, B এবং C, D একই অনুভূমিক তলে থাকে। T ব্যবর্তন তারের সাথে একটি দর্পণ (E) লাগানো থাকে। একটি আলোক উৎস (L) হতে দর্পণের উপর আলোক রশ্মি আপতিত করানো হয় এবং প্রতিফলিত রশ্মি একটি স্কেলের (S') উপর নিক্ষেপ করানো হয়। স্কেলের উপর প্রতিফলিত আলোক রশ্মির, সরণ পরিমাপ করে ব্যবর্তন তারের মোচড় কোণ পরিমাপ করা হয়।

কার্যপম্পতি : প্রথমে চাকা W-এর সাহায্যে PQ দঙকে ঘুরিয়ে বড় গোলক দুটিকে দুরে সরিয়ে নেয়া হয় যাতে ছোট গোলকের উপরে প্রভাব না পড়ে। এই অবস্থায় স্কেলে দর্পণ E হতে প্রতিফলিত রশ্মির অবস্থানের পাঠ নেয়া হয়। এরপর বড় গোলক দুটিকে ছোট গোলক দুটির কাছাকাছি অবস্থানে আনা হয়। প্রত্যেক বড় গোলক (C বা D) তার নিকটে অবস্থিত ছোট গোলকের (A বা B) উপর একটি আর্ক্ষেণ বল প্রয়োগ করে। সমান ও বিপরীতমুখী এই দুটি বল একটি বিক্ষেণী দ্বন্দ্বের (deflecting couple) সৃষ্টি করে যার ফলে RS দঙটি একটি ভূদ্র কোণে ঘূরতে বাধ্য হয়। সুতরাং ব্যবর্তন তারে পাক পড়ে। তারটি এর স্থিতিস্থাপকতা ধর্মের জন্য বিপরীতমুখী প্রত্যায়নী দ্বন্দ্বের (restoring couple) সৃষ্টি করে দঙটিকে পূর্বের অবুস্থানে ফিরিয়ে নিতে সচেষ্ট হয়। দুটি পরস্পর বিপরীতমুখী ঘন্দ্বের ক্রিয়ায় দঙটি একটি সাম্য অবস্থানে আসে। এই অবস্থায় স্কেলে দর্পণ হতে প্রতিষ্ঠান্দণি রশ্যির নতুন অবস্থানের পাঠ নেয়া হয়। প্রথম পাঠ ও দ্বিতীয় পাঠের পার্থক্য হতে দন্ডের কৌণিক বিক্ষেপ ও নির্ণয় পদার্থবিজ্ঞান (১ম)– ২৮BG LJEWEL

করা হয়। এরপর বড় গোলক দুটির অবস্থান [চিত্র ৭·৩] পূর্ব অবস্থান (K, m)-এর বিপরীত পার্শ্বে করা হয় [চিত্র K', m' অবস্থান]। এভাবে ঘুরিয়ে দন্ডের কৌণিক বিক্ষুেপের মান বের করা হয়। পরিশেষে এই দুটি বিক্ষেপের গড় মান নির্ণয় করা যায়।

হিসাব বা গণনা ঃ

মনে করি, প্রত্যেকটি বড় গোলকের ভর = M

প্রত্যেকটি ছোট গোলকের ভর 🛛 = m

RS দন্ডের দৈর্ঘ্য = 21

দণ্ডটির সাম্যাবস্থায় বড় ও ছোট্ গোলকের কেন্দ্রবিন্দুর মধ্যবর্তী দূরত্ব = d

A ও C গোলকের মধ্যকার আকর্ষণ বল,

$$F = G \frac{Mm}{d^2}$$
(3)

B এবং D গোলক দুটির মধ্যে অনুরূপ আকর্ষণ বল বিদ্যমান আছে। এই দুটি সমান ও বিপরীতমুখী বল একটি দ্বন্দ্বের সৃষ্টি করে।

অতএব, ব্যবর্তন শীর্ষ H সাপেক্ষে বিক্ষেপী দ্বন্দের মোমেণ্ট

$$= F \times 2l = \frac{G Mm}{d^2} \times 2l \tag{4}$$

(5)

প্রত্যায়নী দ্বন্দ্বের মোমেন্ট = τθ

এখানে $\tau = প্রতি ডিগ্রী বিক্ষেপের জন্য প্রত্যায়নী ম্বল্দের মোমেণ্ট।$

সাম্যাবস্থায়, বিক্ষেপী দ্বন্দের মোমেণ্ট = প্রত্যায়নী দ্বন্দের মোমেন্ট।

at,
$$\frac{G Mm}{d^2} \times 2l = \tau \theta$$

 $\therefore G = \frac{\tau \theta d^2}{2lMm}$
(6)

এখন 0, *d*, 21, M এবং *m* পরীক্ষা হতে জানা যায়। ৫-এর মান জানা থাকলেই G-এর মান পাওয়া যাবে। ৫-এর মান নির্ণয় করার জন্য বড় দুটি গোলককে সরিয়ে ফেলি। তারপর ছোট দুটি গোলকসহ RS দন্ডকে ব্যবর্তন তার T-এর সাপেক্ষে ব্যবর্তন দোলনে দোলাই এবং দোলনকাল নির্ণয় করি। যদি দোলনকাল T হয়, তবে,

$$T = 2\pi \sqrt{\frac{I}{\tau}}$$
[I = জড়তার মোমেন্ট]

বা, $T^2 = 4\pi^2 \frac{1}{\tau}$

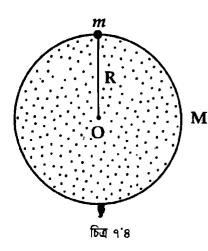
 $\tau = \frac{4\pi^2 I}{T^2}$

সমীকরণ (6) হতে পাই,

$$G = \frac{4\pi^2 I \theta d^2}{T^2 \times 2l \times Mm} = \frac{2\pi^2 I \theta d^2}{T^2 \times l \times Mm}$$
(7)

সমীকরণ (7)-এর ডান পাশের সকল রাশির মান জানা থাকায় G-এর মান বের করা যায়। বিজ্ঞানী ক্যাভেন্ডিস এ পরীক্ষা বারবার পুনরাবৃত্তি করেন এবং G-এর গড় মান বের করেন। এর লব্ধ মান হল

G = $(6.754 \pm 0.41) \times 10^{-11} \text{ N-m}^2 \text{ kg}^{-2}$


৭৬ অভিকর্ষজ ত্বরণ 'g' Acceleration due to gravity, 'g'

নিউটনের গতির সূত্র অনুসারে বস্তুর উপর বল প্রয়োগ করলে ত্বরণ সৃষ্টি হয়। অভিকর্ষও একটি বল। এই বল কোন একটি বস্তুর উপর ক্রিয়া করে ত্বরণ সৃষ্টি করবে। অতএব, বস্তুতে অভিকর্ষ বল কর্তৃক যে ত্বুরণ উৎপন্ন হয় তাকে অভিকর্ষজ ত্বরণ বলে। অথবা কোন স্থানে অভিকর্ষের টানে মুক্তভাবে পড়স্ত বস্তুর বেগ যে হারে বৃন্দি পায় তাকে এ স্থানের অভিকর্ষজ বা অভিকর্ষীয় ত্বরণ বলে। একে 'g' ঘারা প্রকাশ করা হয়। পরীক্ষার সাহায্যে জানা গেছে, বাধাহীন পথে ও একই স্থান হতে সকল বস্তু সমত্বরণে পৃথিবীর কেন্দ্রের দিকে পতিত হয়। স্থানভেদে এই ত্বরণের মান বিভিন্ন। সূতরাং অভিকর্ষজ ত্বরণ বস্তু নিরপেক্ষ, স্থান নিরপেক্ষ নয়।

<u>এর একক এম. কে, এস. ও আন্তর্জাতিক SI পশ্বতিতে মিটার/সে?। এর মাত্রা সমীকরণ – [-LT⁻²]।</u>

অভিকর্ষন্স ত্বরণের সমীকরণ (Equation of acceleration due to gravity)

মনে করি 'm' ভরবিশিষ্ট একটি বস্তুকণা পৃথিবী পৃষ্ঠে অবস্থিত এবং পৃথিবী একটি গোলাকার বস্তু [চিত্র ৭৪]। যদি পৃথিবীর ভর 'M' এবং ব্যাসার্ধ 'R' হয়, তবে নিউটনের মহার্ক্ষ সূত্র হতে আমরা পাই,

$$F = G \frac{Mm}{R^2}$$
(8)
পুনরায়, নিউটনের গতির দ্বিতীয় সূত্র হতে আমরা পাই,
বল = ভর × ত্বরণ
অতিকধীয় বল = বস্ত্র জর × অতিকর্ষজ ত্বরণ। অর্থাৎ,
 $F = mg$
(9)
সমীকরণ (8) এবং সমীকরণ (9) হতে আমরা পাই,
 $mg = G \frac{Mm}{R^2}$
(10)

<u>এটিই হল ভূ-পৃঁষ্ঠে অভিকর্ষজ তুরণের সমীকরণ। সমীকরণ অনুসারে অভিকর্ষজ তুরণ g বস্তুর ভর m-এর উপর নির্জর করে না। আবার, আমরা জানি G এবং M ধ্র রাশি। অতএব ভূ-পৃষ্ঠের কোন স্থানে 'g '-এর মান ভূ-কেন্দ্র হতে এ স্থানের দূরত্বের উপর নির্ভর করে। এটি হতে এই সিন্দ্বান্তে উপনীত হওয়া যায় যে, ছূ-পৃষ্ঠের কোন একটি স্থানে g-এর মান নির্দিষ্ট, কিন্ধু স্থানভেদে এর পরিবর্তন ঘটে। পৃথিবীর ভর $M=5.983 \times 10^{24} \text{ kg}$ এবং ব্যাসার্ধ $R = 6.36 \times 10^6 \text{ m}$ ধরে উপরের সমীকরণ অনুসারে ভূ-পৃষ্ঠের g-এর মান হয়, $g = \frac{6.657 \times 10^{-11} \text{ N-m}^2 \text{ kg}^{-2} \times 5.983 \times 10^{24} \text{ kg}}{(6.36 \times 10^6 \text{ m})^2} = 9.8465 \text{ ms}^{-2}$ </u>

৭ ৭ অভিকর্ষজ ত্বরণ 'g'-এর তারতম্য Variation of acceleration due to gravity, 'g' অভিকর্ষজ তুরণ ধ্ব নয়। তিনটি কারণে এর তারতম্য ঘটে : '৮) উচ্চতার ক্রিয়া (Altitude effect), (২) অক্বাংশ ক্রিয়া (Latitude effect) এবং (৬) সৃথিবীর ঘূর্ণন ক্রিয়া (Rotational effect of the earth)।

BG & JEWEL

নিম্নে এই বিষয়গুলো আলোচনা করা হল ঃ

(১) উচ্চতার ব্রিয়া : পৃথিবীর কেন্দ্র হতে কোন স্থানের দূরত্বের তারতম্য ভেদে অতিকর্ষজ ত্বরণ 'g'-এর মানের পরিবর্তন ঘটে। এটি আলোচনা করতে হলে তিনটি বিষয় আলোচনা করতে হয়; যথা—

(ক) কোন বস্তু পৃথিবী পৃষ্ঠে অবস্থিত ঃ কোন বস্তু যদি 'M' ভর এবং 'R' ব্যাসার্ধবিশিষ্ট পৃথিবী পৃষ্ঠে অবস্থান করে [চিত্র ৭'৫] তবে ঐ বস্তুর উপর তথা ভূ-পৃষ্ঠে,

$$from a c$$

$$g = G \frac{M}{R^2}$$

$$= \frac{G \times \frac{4}{3}\pi R^3 \times \rho}{R^2}$$

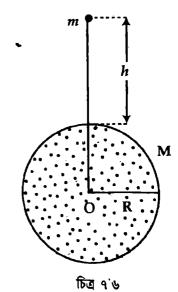
$$= \frac{4}{3}\pi GR\rho$$

$$g = \frac{4}{3}\pi GR\rho$$

(11)

(12)

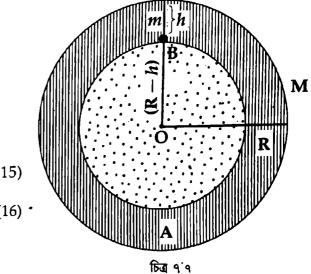
এখানে, ho = পৃথিবীর উপাদানের গড় ঘনত্ব ও $rac{4}{3}\pi R^3$ = পৃথিবীর আয়তন।


(খ) কোন বস্তু পৃথিবী পৃষ্ঠ হতে উপরে অবুস্থিত ঃ মনে করি M পৃথিবীর ভর এবং R তার ব্যাসার্ধ। যদি বস্তু পৃথিবী পৃষ্ঠ হতে h উচ্চতায় উপরে অবস্থান করে | চিত্র ৭৬] তবে ঐ বস্তুর উপর তথা ভূ-পৃষ্ঠ হতে h উচ্চতায় অভিকর্ষী<u>য় তুরণ</u>

$$S_h = G \frac{M}{(R+h)^2}$$
(13)

সমীকরণ (11) অপেক্ষা সমীকরণ (13)-এ হরের মান বেশি। ক্<mark>রন্দ্রেই</mark> ভাগফল অর্থাৎ অভিকর্ষীয় ত্বরণ-এর মান কম হবে। অতএব পৃথিবী পৃষ্ঠ অপেক্ষা উপরে অভিকর্ষীয় ত্বুরণ-এর মান কম হবে এবং দূরত্বের বর্গের ব্যস্তানুপাতে পরিবর্তিত হবে। সুতরাৎ দূরত্ব বাড়লে অভিকর্ষীয় ত্বরণ-এর মান কমবে এবং দূরত্ব কমলে অভিকর্ষীয় ত্বরণ-এর মান বাড়বে। এই কারণে পাহাড়ের উপর অভিকর্ষীয় ত্বরণ-<u>এর মান</u> পৃথিবী পৃষ্ঠে অভিকর্ষী<u>য় তুরণ-এর</u> মান অপেক্ষা কম হয়।

সমীকরণ (13)-কে সমীকরণ (10) দ্বারা ভাগ করে পাওয়া যায়,


$$\frac{g_h}{g} = \frac{R^2}{(R+h)^2} = \frac{1}{\left(1+\frac{h}{R}\right)^2} = \left(1+\frac{h}{R}\right)^{-2}$$
$$h \ll R \text{ RCM}, \frac{g_h}{g} = 1-\frac{2h}{R}$$

বা,
$$g_h = g\left(1 - \frac{2h}{R}\right)$$

জর্থাৎ, $g_h < g$

(গ) কোন বস্তু পৃথিবী পৃষ্ঠ হতে নিচে অবস্থিতঁ ঃ মনে করি পৃথিবী পৃষ্ঠ হতে h দূরত্ব নিচে B বিন্দুতে কোন বস্তু আছে এবং এ স্থানে অভিকর্ষীয় ত্বরণ g_d [চিত্র ৭·৭]। B বিন্দুতে অবস্থিত যে কোন বস্তুর উপর ভূ-কেন্দ্র O-এর দিকে পৃথিবীর আর্কষণ (R—h) ব্যাসার্ধবিশিষ্ট AB গোলকের আর্কষণের সমান। এই গোলকের বাইরের অংশ বস্তুর উপর কার্যকর কোন আর্ক্ষণ প্রয়োগ করে না।

এখন AB গোলকের আয়তন =
$$\frac{4}{3}\pi (R - h)^3$$

AB গোলকের ভর M' ধরলে,
M' = আয়তন × ঘনত্ব = $\frac{4}{3}\pi (R - h)^3 \times \rho$
 $g_d = \frac{GM'}{(R - h)^2} = G \times \frac{4}{3}\pi \frac{(R - h)^3 \rho}{(R - h)^2}$
বা, $g_d = \frac{4}{3}\pi G(R - h)\rho$) (15)
বা, $g_d = k (R - h)$ (16) -
এখানে, $k = \frac{4}{3}\pi G\rho = একটি ধ্রব রাশি |$

উপরের সমীকরণ অনুসারে h-এর মান যত বাড়বে, (R—h)-এর মান তত কমবে। অতএব, যত পৃথিবীর তেতরের দিক যাওয়া যাবে, অভিকর্ষীয় ত্বরণ-এর মান ততই কমবে অর্ধাৎ ভূ-গর্ভে অভিকর্ষীয় ত্বরণ ভূ-কেন্দ্র হতে দ্রত্বের সমানুপাতিক। এভাবে যেতে যেতে যদি ভূ-কেন্দ্রে পৌঁছা যায় তবে h-এর মান R-এর সমান হবে।

জতএব ভূ-কেন্দ্রে, $g_d = k (\mathbf{R} - \mathbf{R})$

বা, $g_d = 0$

(17)

সুতরাং পৃথিবীর অভ্যন্তরে, যেমন কোন খনির ভেতরে *৪*-এর মান ভূ-পৃষ্ঠে *৪*-এর মান অপেক্ষা কম হয়।

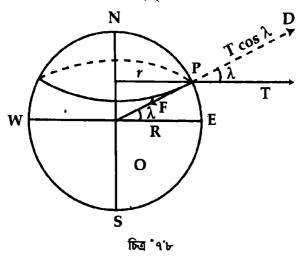
সিম্বান্ত ঃ ভু-পৃষ্ঠের উপরে গেলে 'g'-এর মান কমে, আবার পৃথিবীর অত্যন্তরে গেলে 'g'-এর মান কমে। পৃথিবীর কেন্দ্রে কোন আকর্ষণ নেই। সূতরাং পৃথিবীর কেন্দ্রে 'g'-এর মান শৃন্য এবং ভূ-পৃষ্ঠেই 'g'-এর মান সর্বাপেক্ষা বেশি।

উল্লেখ্য 😮 (i) সমীকরণ (11) হতে সরাসরি সমীকরণ (15) পাওয়া যায়।

(ii) সমীকরণ (15)-কে সমীকরণ (12) দ্বারা ভাগ করে পাওয়া যায়

$$\frac{g_d}{g} = \frac{R-h}{R} = \left(1 - \frac{h}{R}\right)$$

$$g_d = g\left(1 - \frac{h}{R}\right)$$
(18)
$$\Psi(R) = g_1 < g_2$$


(২) অক্ষাংশ ক্রিয়া—অক্ষাংশ পরিবর্তনে g-এর পরিবর্তন ঃ আমরা জানি পৃথিবী সম্পূর্ণ গোলাকার নয়। এর আকৃতি উপগোলকীয় (spheroidal)। উন্তর ও দক্ষিণ:মেরু কিছুটা চাপা এবং বিযুব-ব্যাস মেরু-ব্যাস অপেক্ষা

(14)

প্রায় 43 km বৃহন্তর। সূতরাং বিষুব রেখায় অবস্থিত কোন বস্তু মেরু জঞ্চলে অবস্থিত বস্তু অপেক্ষা পৃথিবীর কেন্দ্র হতে অধিক দূরে অবস্থিত। অতএব বিষুব রেখায় অবস্থিত কোন বস্তুর উপর অভিকর্ষীয় আকর্ষণ বল মেরুতে অবস্থিত ঐ বস্তুর উপর অভিকর্ষীয় আকর্ষণ বল অপেক্ষা কম। সুতরাং বিষুব রেখায় 'g'-এর মান কম এবং মেরু অঞ্চলে 'g'-এর মান বেশি।

অতএব, বিষুব রেখা হতে ক্রমাগত মেরু অঞ্চলের দিকে অগ্রসর হলে 'g'-এর মান বাড়তে থাকবে এবং মেরুতে এর মান সর্বাপেক্ষা বেশি হবে।

(৩) **পৃথিবীর ঘূর্ণনের ক্রিয়া—পৃথিবীর আহিক গতির জন্য** 'g'-এর মানের পরিবর্তন ঃ পৃথিবীর আহিক বা দৈনিক গতির সাথে সাথে ভূ-পৃষ্ঠের যে কোন একটি বস্তু পৃথিবীর সাথে তার অক্ষের চর্তুদিকে সমান কৌণিক

বেগে প্রদক্ষিণ করবে। এতে বস্তুটির উপর একটি কেন্দ্রমুখী বল প্রযুক্ত হবে এবং বস্তুটি তার বৃত্তাকার পথের ব্যাসার্ধ বরাবর ছিটকে বাইরের দিকে চলে যাবার চেন্টা করবে। বস্তুর ওজনের কিছু অংশ এই কেন্দ্রবিমুখী বল প্রশমিত করতে ব্যয় হবে। ফলে অভিকর্ষীয় ত্বরণ 'g' ব্রাস পাবে। আবার মেরু অঞ্চল অপেক্ষা বিষুব অঞ্চলে বস্তু অপেক্ষাকৃত বড় ব্যাসার্ধের বৃত্তাকার পথে ঘুরবে বলে কেন্দ্রবিমুখী বলও বৃদ্ধি পাবে। আজেই g-এর মান মেরু অঞ্চলে সবচেয়ে বেশি এবং বিষুব অঞ্চলে সবচেয়ে কম হবে।

ধরা যাক m ভরের একটি বস্তু ভূ-পৃষ্ঠে λ (উত্তর) অক্ষাংশে P বিন্দুতে অবস্থান করে পৃথিবীর ঘূর্ণনে তার অক্ষ NS-এর চতুর্দিকে ω সমকৌণিক বেগে r ব্যাসার্ধবিশিষ্ট বৃত্তাকার পথে ঘুরছে [চিত্র ৭·৮]। তা হলে বস্তুটির উপর তার বৃত্তাকার পথের স্পর্শুক PT বরাবর সৃষ্ট কেন্দ্রবিমুখী বল, T = $m\omega^2 r$

$$\begin{bmatrix} v = \omega r & u \operatorname{dq} r = \frac{mv^2}{r} \end{bmatrix}$$
PO বা ভূ-কেন্দ্র বরাবর বস্তৃটির উপর পৃথিবীর আকর্ষণ, $F = \frac{GmM}{R^2}$ |
OPD বরাবর বা ভূ-কেন্দ্র হতে বাইরের দিকে কেন্দ্রবিমুখী বদের অংশক
T $\cos \lambda = m\omega^2 r \cos \lambda = m \omega^2 \operatorname{R} \cos^2 \lambda$ [$\because r = \operatorname{R} \cos \lambda$]
বল দৃটির লম্বি, $F_{\lambda} = \frac{GMm}{R^2} - m \omega^2 \operatorname{R} \cos^2 \lambda$ (19)
P বিন্দুতে ভূ-কেন্দ্র অভিমুখে অভিকর্ষজ ত্বরণ g_{λ} হলে,
 $F_{\lambda} = mg_{\lambda} = \frac{GMm}{R^2} - m \omega^2 \operatorname{R} \cos^2 \lambda$ (20)
বিষুব অঞ্চলে, $\lambda = 0^\circ$. $g_{\lambda} = \frac{GM}{R^2} - \omega^2 \operatorname{R} [\because \cos \lambda = 1]$
আবার মেরু অঞ্চলে, $\lambda = 90^\circ$. $g_{\lambda} = \frac{GM}{R^2}$

কাজেই, g-এর মান মেরু অঞ্চলে সবচেয়ে বেশি এবং বিষুব অঞ্চলে সবচেয়ে কম হবে।

মূহাকৰ্ষ

বইঘর.কম

এ সমস্ত আলোচনা এবং পরীক্ষালম্ব ফলাফল হতে g-এর মান সম্পর্কে আমরা নিম্নলিখিত সিম্বাস্তে উপনীত হতে পারি ঃ

ধে পৃথিবীর পৃষ্ঠ হতে উপর দিকে উঠলে এর মান কমে।
২১ পৃথিবীর অভ্যন্তরে নামলে এর মান কমে।
২০ বিষুবীয় অঞ্চল হতে মেরু অঞ্চলে অগ্রসর হলে এর মান বাড়ে।
২৪ ঘূর্ণনন্জনিত কারণে মেরু অঞ্চলে এর মান অল্প কমে, কিন্তু বিষুবীয় অঞ্চলে বেশি কমে।
২৫ মেরুতে
$$g$$
-এর মান = 9'832 ms⁻²; বিষুব অঞ্চলে g -এর মান = 9'780 ms⁻²।
তাকায় g -এর মান = 9'7835 ms⁻²; রাজশাহীতে g -এর মান = 9'790 ms⁻²।
২৫ তি ভূ-পৃষ্ঠে g -এর মান বিভিন্ন স্থানে বিভিন্ন বলে সমুদ্র পৃষ্ঠে এবং 45° অক্ষাংশের g -এর মানকে আদর্শ মান
ধরা হয়। g -এর আদর্শ বা ব্যবহারিক মান = 9'81 ms⁻²।
২৫ জি ভূ-এর মান জেনে পৃথিবীর গড় ঘনত সম্দ্রদেশ একটি ধারণা লাভ করা যায়।

৭'৮ পৃথিবীর ভর ও ঘনত্ব Mass and density of the earth

মনে করি পৃথিবীর ভর = M, ব্যাসার্ধ = R এবং ভূ-পৃষ্ঠে অবস্থিত কোন বস্তুর ভর = m [চিত্র ৭ ৯]। উক্ত বস্তুকে পৃথিবী যে বল দ্বারা আকর্ষণ করে তার মান,

$$F = G \frac{Mm}{R^2}$$
(21)পর্যবেক্ষণ স্থানে অভিকর্ষজ ত্বেগের মান g হলে বস্তৃর ওজন, $W = F = mg$ (22)এখন সমীকরণ (21) ও (22) হতে পাই,M $mg = G \frac{Mm}{R^2}$ বা, $g = \frac{GM}{R^2}$ বা, $M = \frac{gR^2}{G^2}$ (23)

সমীকরণ (23)-এ, $g = 9.8 \text{ ms}^{-2}$, $R = 6.37 \times 10^6 \text{ m}$, $G = 6.673 \times 10^{-11} \text{ Nm}^{-2} \text{ kg}^{-2}$ বসিয়ে,

$$M = \frac{9.8 \times (6.37 \times 10^{6})^{2}}{6.673 \times 10^{-11}}$$

$$= 5.96 \times 10^{24} \text{ kg}$$
EAUTION AND INFORMATION AND ALL AND A

BG & JEWEL

৭৯ তর এবং ওজন বা তার Mass and weight

ভর : কোন একটি বস্তুতে মোট যে পরিমাণ পদার্থ আছে, তাকে তার ভর বলে। একে সাধারণত 'M' বা 'm' দারা প্রকাশ করা হয়। এটি একটি স্কেলার রাশি। বস্তুর ভর স্থান নিরপেক্ষ অর্ধাৎ যে কোন স্থানে নেয়া হোক না কেন এর মান সর্বত্র স্থির থাকবে। বস্তুর ভর তার স্থিতি, গতি, তাপমাত্রা, চুম্বকত্ব বা তড়িতাবস্থা দারা প্রভাবিত হয় না। সেজন্য ভর বস্তুর একটি ষাভাবিক ধর্ম। এক্ষেত্রে উল্লেখ করা যেতে পারে যে কোন বস্তুর বেগ যদি আলোর বেগের কাছাকাছি হয় তা হলে বস্তুর ভরের পরিবর্তন দেখা যায়। বেগের সজ্ঞা বস্তুর তর পরিবর্তনের তত্ত্ব আইনস্টাইন (Einstein)-এর আপেক্ষিক তত্ত্বে (Theory of relativity) বিশ্বদভাবে আলোচিত হয়েছে।

ওজ্ঞন : কোন একটি বস্তু যে পরিমাণ বন দ্বারা পৃথিবীর কেন্দ্রের দিকে আকৃষ্ট হয় তাকে তার ওজন বা ভার বলে। একে W দ্বারা প্রকাশ করা হয়। যেহেতু ওজন একটি বল ছাড়া আর কিছুই নয়, সুতরাং এটি একটি তেষ্টর রাশি এবং এর মান, W = ভর × অভিকর্ষজ তুরণ

বা, W = mg

(25)

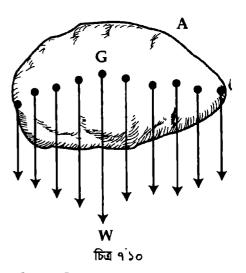
বিভিন্ন স্থানে g-এর মান বিভিন্ন বলে স্থানভেদে বস্তুর ওজন পরিবর্তিত হয়। অতএব বস্তুর ওজন স্থান নিরপেক্ষ নয়। এই প্রসংগে আরও বলা যায় যে, বস্তুর ওজন তার একটি মৌলিক বৈশিষ্ট্য নয়। বস্তুর ওজন থাকতে পারে, নাও থাকতে পারে। যেমন পৃথিবীর কেন্দ্রে বস্তুর কোন ওজন নেই।

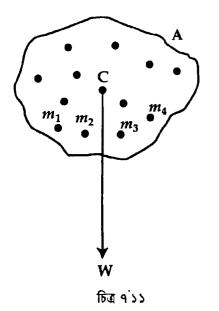
৭.১০ বস্তুর ওজনের তারতম্য Variation of weight of a body

আমরা জানি ওজন W = mg; এখানে m = বস্তুর তর এবং g = অতিকর্ষজ ত্বরণ। বস্তুর তর একটি ধ্রুব রাশি; সুতরাং কোন বস্তুর ওজন অতিকর্ষজ ত্বরণের উপর নির্তরশীল। যে স্থানে অতিকর্ষজ ত্বরণ বেশি, সে স্থানে বস্তুর ওজনও বেশি। আর অতিকর্ষজ ত্বরণ যে স্থানে কম বস্তুর ওজনও সে স্থানে কম। উদাহরণম্বরূপ বলা যায়, মেরু অঞ্চলে অতিকর্ষজ ত্বরণ বেশি। সুতরাং মেরু অঞ্চলে বস্তুর ওজন বেশি। বিষুব অঞ্চলে অতিকর্ষজ তুরণ কম। দ্রুতঞ্জবে বিষুব অঞ্চলে বস্তুর ওজনও কম। পৃথিবীর কেন্দ্রে অতিকর্ষজ ত্বরণ শূন্য। অতএব পৃথিবীর কেন্দ্রে বস্তুর কোন ওজন নেই।

৭'১১ মহাকর্ষীয় ধ্রুবক এবং অভিকর্ষজ ত্ব্ববের মধ্যে পার্থক্য Distinction between gravitational constant and acceleration due to gravity

মহাকর্ষীয় ধ্রুবক এবং অভিকর্ষজ ত্বুরণের মধ্যে নিম্নলিখিত পার্থক্য আছে ঃ

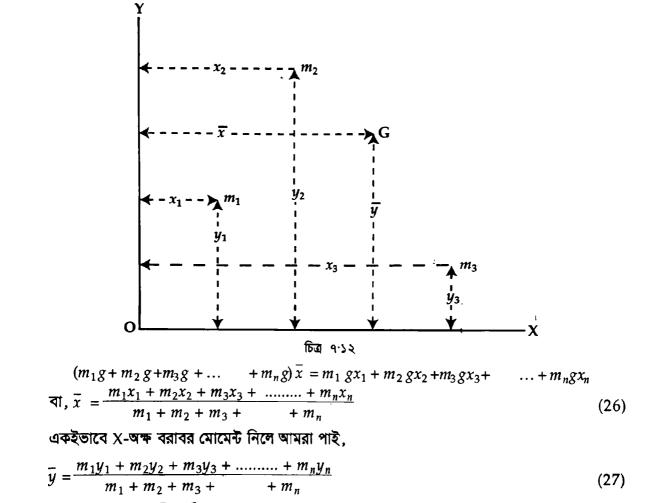

	মহাকৰ্ষীয় ধ্ৰক	অভির্কষজ্ঞ ত্বুরণ
21	একক ভরবিশিষ্ট দুটি বস্তুর মধ্যবর্তী দূরত্ব এক একক হলে তাদের পারস্পরিক আকর্ষণ বলকে মহাকর্ষীয় ধ্র্বক বলে।	১। অভিকর্ষ বলের জন্য বস্তুতে যে ত্বরণ সৃষ্টি হয় তাকে অভিকর্ষজ ত্বরণ বলে।
	<u>এর মাত্রা সমীকরণ (+3/1-1-2/3</u>]	<u>এর মাত্রা সমীকরণ [LT-2]</u>
Ur	এটি একটি বিশ্বজনীন ধ্রবক।	<u>এটি একটি পরিবর্তনশীল রাশি।</u>
81	এস. আই. পম্বতিতে এর মান 6.657 × 10 ⁻¹¹ Nm ² kg ⁻²	8। এস.আই.পন্থতিতে এর মান ভূ-পৃষ্ঠে 981 ms ⁻²
¢١	এর মান বস্তুর ভরের উপর বা ভূ-কেন্দ্র হতে বস্তুর দূরত্বের উপর নির্ভর করে না।	৫। এর মান বস্তৃর ভরের উপর নির্ভর করে না; কিন্তু ভূ-কেন্দ্র হতে বস্তৃর দূরত্বের উপর নির্ভর করে।
- 301	প্রটি একটি স্কেলার রাশি।	এটি একটি ভেষ্টর রাশি।


২২৪

৭১২ অভিকর্ষ কেন্দ্র এবং ভরকেন্দ্র Centre of gravity and centre of mass

জন্তিকর্ষ কেন্দ্র ঃ আমরা জানি, কোন একটি বস্তু যে পরিমাণ বল দ্বারা পৃথিবীর কেন্দ্রের দিকে আকৃষ্ট হয়, তাকে বস্তুর ওজন বা ভার বলে। বস্তুকে যেভাবেই রাখা হোক না কেন তার ওজন যে বিশেষ বিন্দুর মধ্য দিয়ে বস্তুর উপর সর্বদা ক্রিয়া করে এ বিন্দুকে বস্তুর অভিকর্ষ কেন্দ্র বলে। অভিকর্ষ কেন্দ্রের অপর নাম ভারকেন্দ্র।

মনে করি A একটি দৃঢ় বস্তৃ। তা কতকগুলো বস্তৃকণার সমষ্টি। প্রতিটি কণাই অভিকর্ষ বল দ্বারা পৃথিবীর কেন্দ্রের দিকে আকর্ষিত হবে। এই সব বল মিলিত হয়ে একটি লম্বি বল সৃষ্টি করবে। বস্তৃটিকে ঘুরে ফিরে যেতাবেই রাখা হোক না কেন কণাগুলোর উপর পৃথিবীর আকর্ষণ বলের পরিমাণ, অভিমুখ ও ক্রিয়াবিন্দুর এবং সেই সক্তো ঐ বলগুলোর লম্বির পরিমাণ, অভিমুখ ও ক্রিয়াবিন্দুর কোন পরিবর্তন হবে না। এই লম্বি বলই বস্ত্র ওজন। চিত্র ৭.১০-এ ওজন বা বল বস্ত্র 'G' বিন্দুর মধ্য দিয়ে ক্রিয়া করছে। এই বিন্দুই বস্তুটির অভিকর্ষ কেন্দ্র বা ভারকেন্দ্র।

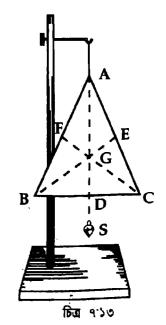


ভরকেন্দ্র ঃ আমরা জানি একটি বস্তু অনেকগুলো বস্তৃকণার সমন্টি। বস্তুর কণাগুলোর সমস্ত ভরকে একটি মাত্র বিন্দুতে কেন্দ্রীভূত মনে করলে এ বিন্দুর মধ্য দিয়েই সমস্ত কণার উপর তাদের ভরের সমানুপাতিক ক্রিয়ারত সমান্তরাল বলসমূহের লব্দি ক্রিয়া করে বলে বিবেচিত হয়। এ বিন্দুকে বস্তুর ভরকেন্দ্র বলে।

মনে করি A একটি বস্তৃ। তা অনেকগুলো বস্তৃকণার সমষ্টি। ধরি বস্তৃকণাগুলোর তর যথাক্রমে $m_1, m_2, m_3 \dots$ m_n ইত্যাদি [চিত্র ৭·১১]। সমস্ত ভরকে C বিন্দুতে সমবেত ধরা হলে এ ভরগুলোর উপর ক্রিয়ারত কণার ভরের সমানুপাতিক সমান্তরাল বলের লব্বি C বিন্দুর মধ্য দিয়েই ক্রিয়া করবে। এই বিন্দুর নামই ভরকেন্দ্র।

৭[.]১৩ গাণিতিক বিশ্লেষণের সাহায্যে কোনও তলে অবস্থিত বস্তুকণাসমূহের অভিকর্ষ কেন্দ্র নির্ণয় Determination of centre of gravity of particles in a plane by mathematical analysis

মনে করি A একটি বস্তৃ। এতে m_1 , m_2 , m_3 m_n ভরবিশিষ্ট বস্তৃকণা আছে। ধরি OX এবং OY সমকোণে অবস্থিত দুটি জক্ষ। এই জক্ষ দুটির সাপেক্ষে ধরি তাদের স্থানাংক যথাক্রমে (x_1, y_1) , (x_2, y_2) , (x_3, y_3) , (x_n, y_n) ইত্যাদি। মনে করি এদের ভারকেন্দ্র G বিন্দুতে অবস্থিত এবং এর স্থানাক (\bar{x}, \bar{y}) [চিত্র ৭·১২]। পদার্থবিজ্ঞান (১ম)—২৯ যেহেতৃ অবস্ধিতির সক্ষো ভারকেন্দ্রের রদ-বদল হয় না, সেহেতু তলটি অনুভূমিক ধরা যেতে পারে। অতএব বস্তুকণাগুলোর ভার সমমুখী সমান্তরাল বল হবে এবং তারা উল্লম্বভাবে নিচের দিকে ক্রিয়া করবে। সংজ্ঞানুসারে G বিন্দুর মধ্য দিয়ে মোট ভার বা ওজন নিচের দিকে ক্রিয়া করবে। এখন Y-অক্ষ বরাবর ভারগুলোর মোমেন্টের গাণিতিক যোগফল এ অক্ষ বরাবর লশ্বির মোমেন্টের সমান হবে।



৭'১৪ ভরকেন্দ্র নির্ণয়

Determination of centre of mass

অসম অথবা সুষম বস্তুর ভারকেন্দ্র নিম উপায়ে নির্ণয় করা যায় ঃ

মনে করি একটি অসম ত্রিভূজাকৃতি পাতলা পাত ABC-এর ভারকেন্দ্র নির্ণয় করতে হবে। প্রথমে পাতটির যে কোন এক প্রান্ত, ধরা যাক, A-এ সুতা বেঁধে পাতটিকে ঝুলিয়ে আর একটি সুতায় একটি পাথরখন্ড S বেঁধে এ একই প্রান্ত A হতে পাথরটিকে ঝুলিয়ে দেয়া হয় টিত্র ৭·১৩]। পাত ও পাথর খন্ডটির স্থিরাবস্থায় A হতে সুতা বরাবর পাতের উপর দিয়ে একটি সরলরেখা AD টানা হয়। অনুরূপভাবে পাতটিকে পর পর B ও C হতে ঝুলিয়ে পাতটির উপর দিয়ে সুতা বরাবর যথাক্রমে সরলরেখা BE ও CF টানা হয়। তাহলে, অজ্জিত AD, BE ও CF-এর ছেদবিন্দু G-ই পাতটির ভারকেন্দ্র। কারণ স্থিরাবস্থায় সুতার টানের বিপরীতে বস্তুর ওজন ক্রিয়া করে এবং

২২৬

বইঘর.কম সুতাটি বস্তুর ভারকেন্দ্র দিয়ে যাবে। এখানে পাথরখণ্ডটি যে সুতায় ঝুলে থাকে তাকে ওলন সুতা এবং অভিকত সরলরেখাগুলোকে ওলন রেখা বলা হয়।

মহাকর্ষীয় ক্ষেত্র ও প্রাবল্য **ዓ'**ንድ Gravitational field and intensity

কোন বস্তুর চারদিকে যে স্থান জুড়ে তার আকর্ষণ বল অনুভূত হয়, সে স্থানকে উক্ত বস্তুর মহাকর্ষীয় ক্ষেত্র বলে।

মহাকর্ষীয় ক্ষেত্রের কোন বিন্দুতে একক ভরের কোন বস্তু স্থাপন করলে তার উপর যে বল প্রযুক্ত হয়, তাকে এ ক্ষেত্রের দর্ন এ বিন্দুর মহাকর্ষীয় আকর্ষণ বলে। এটা সাধারণত মহাকর্ষীয় প্রাবল্য (Intensity) নামে পরিচিত।

মনে করি M ভরের একটি বস্তু আছে। এই বস্তুর ভরকেন্দ্র হতে r দূরে অবস্থিত কোন বিন্দুতে মহাকর্ষীয় প্রাবল্য নির্ণয় করতে হবে।

নিউটনের মহাকর্ষীয় সূত্র হতে আমরা জানি M ও m ভরের দুটি বস্তুর ভরকেন্দ্র পরস্পর হতে r দূরে থাকলে তাদের মধ্যে আকর্ষণ বলের পরিমাণ = G $\frac{Mm}{r^2}$

এখন যদি m=1 একক হয়, তবে

বল = $\frac{GM}{r^2}$ = M ভর কর্তৃক একক ভরের উপর M ভর অভিমুখী প্রযুক্ত বল। এটাই মহাকর্ষীয় প্রাবল্য E, অর্থাৎ মহাকর্ষীয় প্রাবল্য, $\mathbf{E} = \frac{\mathbf{GM}}{r^2}$ (28)

উক্ত সমীকরণ হতে সহজ্বেই বুঝা যায় যে, M যত বেশি হবে, প্রাবল্যও তত বাড়বে। আবার r যত বেশি হবে, প্রাবন্য তত কমবে। মহাকর্ষীয় ক্ষেত্রের বিভিন্ন বিন্দুতে প্রাবল্য বিভিন্ন হবে।

মহাকর্ষীয় ক্ষেত্রের কোন বিন্দুতে m ভরের একটি বস্তৃ রাখলে তার উপর ক্রিয়াশীল বল হবে,

 $\mathbf{F} = m\mathbf{E} = \frac{\mathbf{G}m\mathbf{M}}{r^2}$

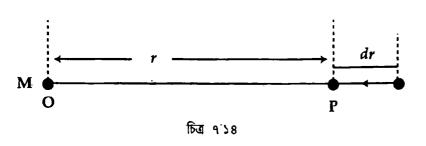
যেহেতু বল \overrightarrow{F} একটি ভেক্টর রাশি, তাই মহাকর্ষীয় প্রাবল্য, \overrightarrow{E} একটি ভেক্টর রাশি। \overrightarrow{E} -এর দিক হবে \overrightarrow{F} -এর দিক বরাবর। অন্যভাবে বলা যায়, একক ভরের বস্তু যেদিকে বল লাভ করে \overrightarrow{E} -এর দিক সেদিকে হবে।

এম. কে. এস. ও আন্তর্জাতিক পদ্ধতিতে প্রাবদ্যের একক নিউটন/কিলোগ্রাম (Nkg⁻¹)।

৭'১৬ মহাকর্ষীয় বিভব Gravitational potential

সংজ্ঞা ঃ অসীম দুর হতে একক ভরের কোন বস্তুকে মহাকর্ষীয় ক্ষেত্রের কোন বিন্দুতে আনতে যে পরিমাণ কান্দ্র সাধিত হয়, তাকে এ বিন্দুর মহাকর্ষীয় বিভব বলে। একে সাধারণত V দ্বারা প্রকাশ করা হয়।

উল্লেখ্য, দুটি বস্তুর মধ্যে আকর্ষণ বলই কান্ধ করে থাকে। বাইরের কোন বল বা শক্তির প্রয়োজন হয় না। সুতরাং মহাকর্ষীয় বিভবকে ঋণ রাশি দ্বারা প্রকাশ করা হয় অর্ধাৎ মহাকর্ষীয় ক্ষেত্রের কোন বিন্দুতে বিডব ঋণাত্মক। এটা একটি **স্কেলার রাশি।**


এম. কে. এস. বা এস. আই. পম্বতিতে এর একক জুল/কিলোগ্রাম (Jkg⁻¹)।

বিভব পার্থক্য (Potential difference) : একক ভরের কোন বস্তুকে মহাকর্ষীয় ক্রেরে এক বিশু হতে অন্য বিন্দুতে আনতে যে পরিমাণ কাজ সাধিত হয়, তাকে এ বিন্দুর মধ্যে মহাকর্ষীয় বিভব পার্থক্য বলে।

আকর্ষণ বলের অতিমুখে সরণ হলে বিভব পার্থক্য ঋণাত্মক এবং আকর্ষণ বলের বিরুদ্ধে সরণ হলে

৭'১৭ বিন্দু ভরের দরুন মহাকর্ষীয় বিভব Gravitational potential due to a point mass

জামরা জ্ঞানি, অসীম দূরত্ব হতে একক ভরের কোন বস্তুকে মহাকর্ষীয় ক্ষেত্রের কোন বিন্দুতে আনতে যে পরিমাণ কাজ সাধিত হয়, তাকে উক্ত বিন্দুর মহাকর্ষীয় বিভব বলে। এখন বিন্দু ভরের দর্ন মহাকর্ষীয় বিভবের সাধারণ সমীকরণ বের করা যাক।

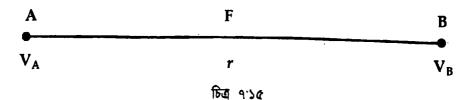
মনে করি, O বিন্দুতে M ভরের একটি বিন্দু ভর বস্তু অবস্থিত [চিত্র ৭·১৪]। O হতে r দূরে P একটি বিন্দু। P বিন্দুতে মহাকর্ষীয় বিভব বের করতে হবে।

P বিন্দুতে একক ভরের উপর O বিন্দু অভিমুখী প্রযুক্ত বল অর্থাৎ মহাকর্ষীয় প্রাবল্য = $\frac{GM}{r^2}$ । এখন একক ভরকে সামান্য দূরত্ব dr নিয়ে যেতে কাজের পরিমাণ অর্থাৎ বিভব,

 $dV = \overline{q} \overline{q} \times \overline{q} \overline{q} = \mathfrak{A} \overline{q} \overline{q} \times \overline{q} \overline{q}$

একক ভরকে অসীম দূরত্ব হতে P বিন্দুতে আনতে কাজের পরিমাণ অর্থাৎ P বিন্দুতে বিভব

$$V = \int dV = \int_{r=\infty}^{r=r} \frac{GM}{r^2} \times dr$$


$$\forall = GM \int_{r=\infty}^{r=r} \frac{1}{r^2} dr \quad \forall , V = GM \left[-\frac{1}{r} \right]_{\infty}^{r}$$

$$\forall , V = -\frac{GM}{r}$$
(29)

এখানে ঋণচিহ্ন এই অর্থ প্রকাশ করে যে, বাহ্যিক কোন বল বা শক্তি দ্বারা কাজ সম্পন্ন হয়নি, মহাকর্ষীয় বলই কাজ সম্পন্ন করেছে।

৭'১৮ প্রাবল্য ও বিভব পার্থক্যের মধ্যে সম্পর্ক Relation between intensity and potential

মহাকর্ষীয় প্রাবল্য এবং মহাকর্ষীয় বিভবের মধ্যে সম্পর্ক স্থাপন করতে গিয়ে ধরি, A ও B মহাকর্ষীয় ক্ষেত্রে অবস্থিত কাছাকাছি দুটি বিন্দু [চিত্র ৭·১৫]। মনে করি এদের মধ্যবর্তী দূরত্ব r। A বিন্দুর বিভব = V_A এবং B বিন্দুর বিভব = V_B। যেহেতু A ও B বিন্দু দুটি মহাকর্ষীয় ক্ষেত্রে কাছাকাছি অবস্থিত, সেহেতু বিন্দু দুটির মহাকর্ষীয় প্রাবল্য সমান ধরে নেয়া হয়। মনে করি এই প্রাবল্য = F

এখন, একক ভরের কোন বস্তুকে B বিন্দু হতে A বিন্দুতে আনতে কাজের পরিমাণ = প্রাবল্য \times দুরত্ব $= F \times AB = F \times r$

মহাকৰ্ষ

বইঘর কম এটাই হল A বিন্দু এবং B বিন্দুর বিভব পার্থক্য অর্থাৎ (V_A – V_B)

$$F \times AB = V_A - V_B$$

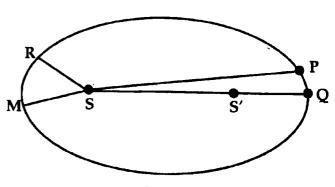
$$f = \frac{V_A - V_B}{AB} = \frac{V_A - V_B}{r}$$
(30)

অর্থাৎ, <mark>দূরত্ব সাপেক্ষে বিভবের পরিবর্তনের হারকে প্রাবল্য বলে</mark>। ক্ষেত্রের অভিমুখে সরণ AB = dr হলে এবং A বিন্দুর বিভব V ও B বিন্দুর বিভব (V + dV) হলে, V_A — V_B = — dV

$$\mathbf{F} = -\frac{d\mathbf{V}}{dr} \tag{31}$$

এটাই প্রাবন্য এবং বিভবের মধ্যে সম্পর্ক।

৭**`১৯ কেপলার**-এর সূত্র Kepler's law


অতি প্রাচীনকাল হতে গ্রহ-নক্ষত্রের গতিবিধি সম্পর্কে বিজ্ঞানীদের যথেষ্ট আগ্রহ ছিল। ষোড়ল শতাব্দীতে ডেনমার্কের জ্যোতির্বিদ টাইকোব্রে (Tycho-Brahe) মংগল গ্রহের গতিবিধি লক্ষ করেন এবং কিছু তথ্য সংগ্রহ করেন। তাঁর এ গবেষণা লব্দ তথ্য এবং অন্যান্য পর্যবেক্ষণের সাহায্যে 1618 খ্রিস্টাব্দে ডেনমার্কের অপর জ্যোতির্বিদ জন কেপলার (John Kepler) সিম্বান্তে উপনীত হন যে, গ্রহগুলো কোন এক বলের প্রভাবে সূর্যকে কেন্দ্র করে অবিরাম ঘূরছে। এই সম্পর্কে তিনি তিনটি সূত্র প্রদান করেন। তাঁর নাম অনুসারে এই তিনটি সূত্রকে কেপলার-এর গ্রহ সম্পর্কীয় গতিসূত্র (Kepler's laws of planetary motion) বলা হয়। সূত্র তিনটি নিম্নে আলোচিত হল ঃ

(১) উপবৃত্ত সূত্র (Law of ellipse) ঃ প্রতিটি গ্রহ সূর্যকে উপবৃত্তের নান্ডিডে বা ফোকাসে রেখে একটি উপবৃত্তাকার পথে প্রদক্ষিণ করছে।

(২) ক্ষেত্রফল সূত্র (Law of area) ঃ গ্রহ এবং সূর্যের সংযোগকারী ব্যাসার্ধ রেখা সমান সময়ে সমান ক্ষেত্রফল অতিক্রম করে।

(৩) সময়ের সূত্র (Law of time) **ঃ** প্রতিটি গ্রহের পর্যায়কালের বর্গ সূর্য হতে তার গড় দূরত্বের ঘনফলের সমানুপাতিক।

ব্যাখ্যা : ১ম সূত্র : এই সূত্র ঁ সূর্যের চারদিকে গ্রহের কক্ষপথের আকৃতি প্রকাশ করে। মনে করি S এবং S' একটি উপবৃত্তের দুটি নাভি। ধরি S নাভিটি সূর্যের অবস্থিতি [চিত্র ৭·১৬]। কেপলারের প্রথম সূত্র অনুসারে যে কোন গ্রহ সূর্যকে S বিন্দুতে রেখে একটি উপবৃত্তাকার পথে ঘুরছে।

২য় সূত্র ঃ এই সূত্র কক্ষীয় বেগ এবং সূর্য ও গ্রহের মধ্যবর্তী দূরত্বের মধ্যে সম্পর্ক স্থাপন করে। মনে করি কোন গ্রহ t সময়ে P অবস্থান হতে Q অবস্থানে আসে। যদি একই সময়ে ঐ গ্রহ M অবস্থান হতে R অবস্থানে আসে, তবে কেপলারের দ্বিতীয় সূত্র হতে পাই, PQS-এর ক্ষেত্রফল এবং MSR-এর ক্ষেত্রফল সমান হবে।

৩য় সূত্র ঃ এই সূত্র'গ্রহের কক্ষপথের আকার এবং অতিক্রান্ত সময়ের মধ্যে সম্পর্ক স্থাপন করে। মনে করি T গ্রহের পর্যায়কাল অর্ধাৎ সূর্যকে একবার প্রদক্ষিণ করতে যে সময় লাগে তার মান T। যদি 2a পরাক্ষের দৈর্ঘ্য হয়, তবে কেপলারের তৃতীয় সূত্র হতে আমরা পাই, T² ∝ 8a³

যেহেতৃ ৪ একটি ধ্রুব সংখ্যা, সেহেতৃ, T² ∝ a³

উক্ত সমীকরণ হতে কেপলারের তৃতীয় সূত্রটিকে সামান্য পরিবর্তন করে নিম্নরূপে লিখা যায়----প্রতিটি গ্রহের পর্যায়কালের বর্গ গ্রহের কঙ্কপথের পরাক্ষের অর্ধেকের ঘন-এর সমানুপাতিক। BG & JEWEL

৭'২০ কেপলারের সূত্র হতে নিউটনের মহাকর্ষ সূত্র প্রতিপাদন Derivation of newton's law of gravitation from Kepler's law

মহাবিজ্ঞানী নিউটন কেপলারের সূত্রগুলো ব্যাখ্যা করতে গিয়ে এই সিম্ধান্তে উপনীত হলেন যে মহাবিশ্বে যে কোন দুটি বস্তু পরস্পরকে আকর্ষণ করে। সূর্যের চতুর্দিকে গ্রহগুলোর কক্ষপথ বৃত্তাকার গণ্য করে নিম্নলিখিত উপায়ে সহজে কেপলারের সূত্রগুলো হতে নিউটনের এই সিম্ধান্তে উপনীত হওয়া যায়।

ধরা যাক m ভরের একটি গ্রহ সূর্যের চতুর্দিকে r ব্যাসার্ধের বৃত্তপথে v সমগতিতে ঘুরছে। কিন্তু গ্রহের উপর সূর্যের দিকে কেন্দ্রমুখী বল প্রয়োগ ব্যতীত গ্রহের এই বৃত্তাকার গতি সম্ভব নয়।

প্রয়োজনীয় কেন্দ্রমুখী বল, F =
$$rac{mv^2}{r}$$

সূর্যের চতুর্দিকে গ্রহটির আবর্তন কাল T হলে,

$$v = \frac{2\pi r}{T}$$
 $\left[v = \omega r \, \mathfrak{Q} \mathfrak{R} \omega = \frac{2\pi}{T} \right]$
 $F = \frac{m}{r} \left(\frac{2\pi r}{T} \right)^2 = \frac{4\pi^2 m r}{T^2}$
কিন্তু কেপলারের তৃতীয় সূত্রানুসারে, $T^2 \propto r^3$
অর্থাৎ $T^2 = kr^3$, এখানে k একটি ধ্রবন্ধ।

$$F = \frac{4\pi^2 mr}{T^2} = \frac{4\pi^2 m}{kr^2}$$
(32)

সুতরাং গ্রহের উপর সূর্যের আকর্ষণ বল, গ্রহের ভরের সমানুপাতিক এবং সূর্য হতে গ্রহের দূরত্বের বর্গের ব্যস্তানুপাতিক। কিন্তু প্রত্যেক ক্রিয়ার একটি সমান ও বিপরীত প্রতিক্রিয়া থাকে। কাজেই সমীকরণটিতে F-এর সাথে যেমন গ্রহের ভর m-এর সম্পর্ক আছে তদুপ F-এ সূর্যের তরেরও একই সম্পর্ক থাকবে। এজন্য $\left(rac{4\pi^2}{k}
ight)$ -কে GM ধরা যায় ; এখানে G একটি ধ্রুবক এবং M সূর্যের ভর।

সূর্য ও গ্রহের মধ্যকার পারস্পরিক আকর্ষণ বল, $\mathbf{F} = \frac{\mathbf{GmM}}{r^2}$ (33)

এটাই নিউটনের মহাকর্ষীয় সমীকরণ। সুতরাং কেপলারের সূত্র হতে নিউটনের মহাকর্ষীয় সূত্র প্রতিষ্ঠিত হল।

৭'২১ মহাকর্ষীয় ভর এবং জড় ভর Gravitational mass and inertial mass

পৃথিবী যে বল দ্বারা কোন বস্তুকে টানে তা বস্তুর ভরের সমানুপাতিক। এই ভর মহাকর্বীয় ভর। তুলাদভের সাহায্যে এই ভর নির্ণয় করা হয়। অন্য কথায় বলা যায়—তুলাদন্ডে মেপে আমরা যে ভর নির্ণয় করি, তাই মহাকর্বীয় ভর।

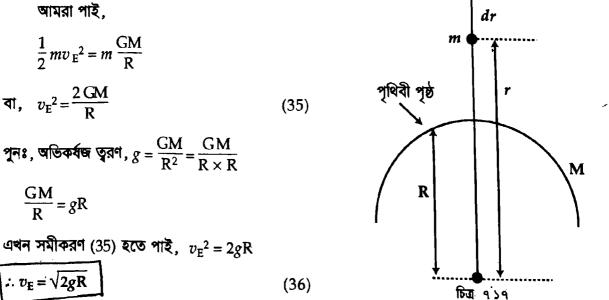
কোন বস্তৃতে ধ্রুবমানের F বল প্রয়োগ করলে যদি তার ত্বুরণ a হয়, তা হলে $\frac{F}{a} = m$ -কে তার জড়ে তর বলে। পরীক্ষায় দেখা যায় উভয় ভর একই।

৭'২২ মুক্তি বেগ Escape velocity

আমরা জ্ঞানি মহাকর্ষীয় বল কেন্দ্রগ বলে সৎরক্ষণশীল। তাই কোন একটি বস্তুকে উপরের দিকে নিক্ষেপ করলে তা আবার মাটিতে এসে পড়ে। কিন্তু কোন বস্তুকে যদি এমন বেগে উর্ধ্বে উৎক্ষেপ করা হয় যে তা পৃথিবীর

যাই কের্বিকম

মভিকর্ষীয় ক্ষেত্র অতিক্রম করে যায় তবে বস্তুটি আর কখনই পৃথিবীর পৃষ্ঠে ফিরে আসবে না। ন্যূনতম এই বেগকে মুক্তি বেগ বলে। অতএব কোন বস্তুকে ন্যূনতম যে বেগে উর্ধ্বে উৎক্ষেপ করলে তা আর পৃথিবী পৃষ্ঠে ফিরে আসে না তাকে মুক্তি বেগ বা পলায়ন বেগ বা নিক্ষমণ বেগ বলে। একে V_E দ্বারা সূচিত করা হয়।


মুক্তি বেগের সমীকরণ বের করতে গিয়ে ধরি উৎক্ষিণত বস্তুর ভর m, পৃথিবীর ভর M, পৃথিবীর ব্যাসার্ধ R, পৃথিবীর কেন্দ্র হতে বস্তুর দূরত্ব r, [চিত্র ৭·১৭] অতএব বস্তুর উপর অভিকর্ষ বল,

$$\mathbf{F} = \frac{\mathbf{GMm}}{r^2}$$

এখন বস্তৃটি যদি অভিকর্ষ বলের বিরুদ্ধে dr পরিমাণ উপরে উঠে, তবে কাজের পরিমাণ, dW = F.dr

$$=\frac{G.Mm}{r}dr$$

সুতরাং অভিকর্ষীয় বল ছাড়াতে বস্তুটিকে মোট,যে পরিমাণ কাজ করতে হবে, তার মান

এটাই হল মুক্তি বেগের সমীকরণ। উপরোক্ত সমীকরণে m না থাকায় আমরা বলতে পারি যে, মুক্তি বেগ বস্তুর ভরের উপর নির্ভর করে না। বস্তু ছোট বা বড় যাই হোক না কেন, মুক্তি বেগ একই হবে।

২৩১

উদাহরণষর্প ধরা যায়, পৃথিবীর ব্যাসাধ, R = 64 × 10⁵ *m* ও *g* = 9'80 ms⁻² অতএব এক্ষেত্রে মুক্তি বেগ, $v_{\rm E} = \sqrt{2 \times 9'80 \times 64 \times 10^5}$ = 11'20 × 10³ ms⁻¹ [= 11'20 kms⁻¹ = 7 মাইল/সে. (প্রায়)] [1 মাইল = 1'6093 km] = 25000 মাইল/ঘণ্টা (প্রায়)

চিত্র ৭১৮

সুতরাং কোন বস্তৃকে যদি প্রতি ঘন্টায় 25000 মাইল বেগে বা এর অপেক্ষা অধিক বেগে উৎক্ষেপ করা হয়, তবে তা আর ভূ-পৃষ্ঠে ফিরে আসে না।

বিশেষ দ্রস্টব্য : পৃথিবী পৃষ্ঠ হতে কোন বস্তুকে v বেগে উপর দিকে নিক্ষেপ করলে পৃথিবীর আকর্ষণ বলের দ্বারা বস্তুটির বিভিন্ন পরিণতি হতে পারে। যথা :

উচ্চ মাধ্যমিক পদার্থবিজ্ঞান

BG & JEWEL

(১) যদি v² < v²/2 হয়, অর্ধাৎ উৎক্ষেপণ বেগ 7.88 kms⁻¹ অপেক্ষা কম হয়, তবে তা উপবৃত্তাকার পথে পৃথিবী প্রদক্ষিণ করবে এবং অবশেষে পৃথিবীতে ফিরে আসবে [চিত্র ৭٠১৮-এ (ক)]।

(২) যদি $v^2 = \frac{v_E^2}{2}$ হয় অর্থাৎ উৎক্ষেপণ বেগ 7[.]88 kms⁻¹ হয়, তবে বস্তুটি বৃত্তাকার পথে পৃথিবীকে প্রদক্ষিণ করবে এবং চাঁদের মত উপগ্রহে পরিণত হবে [চিত্র ৭·১৮-এ (খ]।

(৩) যদি $v^2 > \frac{v_E^2}{2}$ কিন্তু $< v_E^2$ হয়, অর্থাৎ উৎক্ষেপণ বেগ 7.88 kms⁻¹ হতে 11.2 kms⁻¹ এর মধ্যে থাকে, তবে পৃথিবীকে একটি ফোকাসে রেখে তা উপবৃত্তাকার পথে পৃথিবী প্রদক্ষিণ করতে থাকবে [চিত্র ৭০১৮-এ (গ)]।

(8) যদি v =v_E হয়, অর্থাৎ উৎক্ষেপণ বেগ 11.2 kms⁻¹ অর্থাৎ মুক্তি বেগের সমান হয়, তবে বস্তৃটি একটি অধিবৃত্ত পথে পৃথিবী পৃষ্ঠ ছেড়ে যায় এবং তা পৃথিবীর আকর্ষণ ক্ষেত্র অতিক্রম করে বাইরে চলে যাবে [চিত্র ৭·১৮-এ (ঘ)]।

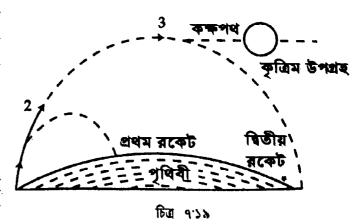
(৫) যদি $v > v_E$ হয়, অর্ধাৎ উৎক্ষেপণ বেগ মুক্তি বেগ অপেক্ষা বেশি হয়, তবে বস্তু পরাবৃত্ত পথে পৃথিবী-পৃষ্ঠ ছেড়ে যায় এবং তা আর পৃথিবীতে ফিরে আসে না [চিত্র ৭٠১৮-এ (ঙ)]।

৭'২৩ স্বাভাবিক ও কৃত্রিম উপগ্রহ Natural and artificial satellites

সূচনা ঃ আমরা জানি সূর্য ও তার চারদিকের গ্রহ, উপগ্রহ, উদ্ধা, নীহারিকা ইত্যাদি নিয়ে যে জগৎ তার নাম সৌরজগৎ। সৌরজগতের কেন্দ্রে থাকে সূর্য। আর গ্রহগুলো সূর্যকে কেন্দ্র করে তার চারদিক প্রদক্ষিণ করছে। গ্রহগুলোকে কেন্দ্র করে উপগ্রহগুলো তাদের চারদিকে ঘুরছে। যেমন পৃথিবী একটি গ্রহ। এটি সূর্যের চারদিকে ঘুরছে। চন্দ্র পৃথিবীর একটি উপগ্রহ। চন্দ্র পৃথিবীর চারদিক প্রদক্ষিণ করছে।

স্বাভাবিক উপগ্রহ ঃ যে সব বস্তু বা জ্যোতিক্ষ গ্রহের চারদিকে ঘোরে, তাদেরকে উপগ্রহ বলে। যে সব উপগ্রহ প্রাকৃতিক কারণে সৃষ্ট তাদেরকে স্বাডাবিক উপগ্রহ বলে। যেমন চন্দ্র প্রাকৃতিক কারণে সুষ্টি হয়েছে। এটি

বইঘর.কম


পৃথিবীর চারদিকে ঘুরছে। অতএব চন্দ্র বা চাঁদ পৃথিবীর একটি স্বাভাবিক উপগ্রহ। তেমনি অন্যান্য গ্রহগুলোরও স্বাভাবিক উপগ্রহ রয়েছে।

কৃত্রিম উপগ্রহ : আমরা জানি সৌরজগৎ নামে একটি জগৎ রয়েছে যার কেন্দ্রে থাকে সূর্য। সূর্য হতে ছিটকে আসা কতকগুলো জ্যোতিক্ষ সূর্যকে প্রদক্ষিণ করছে। এদের নাম গ্রহ (planet)। পৃথিবী সূর্যের একটি গ্রহ। পুনঃ, গ্রহ হতে ছিটকে আসা কতকগুলো জ্যোতিক্ষ গ্রহগুলোকে প্রদক্ষিণ করছে। এদের নাম উপগ্রহ (satellite)। চাঁদ পৃথিবীর একটি উপগ্রহ যা প্রায় ৩০ দিনে পৃথিবীকে একবার প্রদক্ষিণ করে। সৃষ্টির আদিকাল থেকেই মানুষের মনে কৌতূহল জাগছে কি করে চাঁদ পৃথিবীর চারদিকে ঘুরছে। এই প্রশ্নের জবাবে বিজ্ঞানীরা বলেছেন অভিকর্ধের দরুন চাঁদের উপর পৃথিবীর কেন্দ্রমুখী বল এর কারণ। এই কেন্দ্রমুখী বল যদি না থাকত, তাহলে চাঁদ মহাশূন্যে মিলিয়ে যেত। পৃথিবীর চারদিকে চাঁদের প্রদক্ষিণের দরুন সৃষ্ট কেন্দ্রবিমুখী বল পৃথিবী কর্তৃক প্রযুক্ত কেন্দ্রমুখী বলের সমান ও বিপরীত হওয়ায় চাঁদ সোজা না গিয়ে পৃথিবীর চারদিকে বৃত্তাকার পথে ঘুরছে। এই ত**ত্ত্বের উপর ভিন্তি করে মানুষ** মহাশূন্যে পাড়ি দেয়ার জন্যে যে উপগ্রহ তৈরি করেছে, তার নাম কৃত্রিম উপগ্রহ।

1957 সালের 4th অক্টোবর রাশিয়ার বিজ্ঞানীরা সর্বপ্রথম মহাশূন্যে একটি কৃত্রিম উপগ্রহ পাঠান। এর নাম স্পুটনিক-2। এই সময় স্পুটনিক-1। সে বছরেই আরো একটি কৃত্রিম উপগ্রহ মহাশূন্যে পাঠান হয়। এর নাম স্পুটনিক-2। এই সময় আমেরিকার বিজ্ঞানীরা পেছনে ছিলেন না। তাঁরাও 1958 সালে মহাশূন্যে একটি কৃত্রিম উপগ্রহ উৎক্ষেপণ করেন। এর নাম এক্সপ্লোরার-1। এমনিতাবে মহাশূন্যে কৃত্রিম উপগ্রহ পাঠিয়ে পৃথিবী তথা সৌরজগতের নানা রকম রহস্য উদঘাটনের কাজ চলছে। রাশিয়ার বিখ্যাত বিজ্ঞানী ইউরি গ্যাগারিন তস্টক-1 কৃত্রিম উপগ্রহের সাহায্যে সর্বপ্রথম মহাশূন্যে বিচরণ করেন।

পরীক্ষার সাহায্য দেখা গেছে যে কোন একটি বস্তৃকে পৃথিবী পৃষ্ঠ থেকে প্রায় 930 km উপরে তুলে 8.05 kms⁻¹ হতে 11.1 kms⁻¹ বেগে মহাশৃন্যে উৎক্ষেপণ করলে তা পৃথিবীর একটি কৃত্রিম উপগ্রহ হিসেবে চাঁদের মত পৃথিবীকে প্রদক্ষিণ করবে। কিন্তু কোন বস্তুকে এত উপরে তুলে এত বেশি বেগ দেয়া সম্ভব নয়। কারণ বায়ুস্তরের সাথে এর ঘর্ষণে এত অধিক তাপ উৎপন্ন হবে যে কৃত্রিম উপগ্রহটি পুড়ে ভস্মীভূত হবে। তাই বায়ুতে এত বেশি বেগ না দিয়ে বায়ুস্তর অতিক্রম করার পর কৃত্রিম উপগ্রহ এত বেশি বেগ প্রদান করা হয় এবং তা প্রদান করা হয় একটি রকেটের সাহায্যে তিনটি ধাপে। কৃত্রিম উপগ্রহটি বসানো হয় রকেটের নাকের ডগায় এবং জ্বালানি ও অন্যান্য যন্ত্রপাতি বসানো হয় রকেটের ভেতরে। ধাপগুলো নিমন্থপ ঃ

সবচেয়ে নিচু স্তুরের রকেটটি সর্বপ্রথমে কাজ শুরু করে। এটি উপগ্রহ ও অপর দুটি স্তরের রকেটসহ খানিকটা খাড়া উপরে উঠে আস্তে আস্তে বাঁক নিতে থাকে। এই ধাপ প্রয়োজনীয় বেগের $\frac{1}{6}$ অংশ যোগানের পর খসে পড়ে। এই সময় ঘিতীয় ধাপ কাজ শুরু করে এবং এই ধাপটি উপগ্রহটির বেগের প্রায় $\frac{1}{3}$ অংশ যোগানোর পর খসে পড়ে। তার পর শুরু হয় তৃতীয় ধাপের কাজ। এই ধাপটি উপগ্রহটিতে প্রয়োজনীয় বেগ প্রদান করে নিজে খসে পড়ে। উপগ্রহটি তখন পৃথিবী প্রদক্ষিণ করতে শুরু করে।

৭'২৪ বৃত্তাক্ষার পথে পৃথিবী প্রদক্ষিণ কালে কৃত্রিম উপগ্রহের কক্ষীয় বেগ, আবর্তন কাল এবং উচ্চতার রাশিমালা Expression for orbital velocity, time period and height of an artificial satellite rotating around the earth in a circular path

(ক) বেগ ঃ মনে করি m ভরের একটি কৃত্রিম উপগ্রহ পৃথিবী পৃষ্ঠ হতে h উচ্চতায় অবস্থান করে v বেগে বৃত্তাকার পথে প্রদক্ষিণ করছে। এখানে উপগ্রহটির উপর পৃথিবীর আকর্ষণ বল = উপগ্রহটির ঘূর্ণনের জন্য প্রয়োজনীয় কেন্দ্রমুখী বল। মনে করি পৃথিবীর ভর M এবং এর ব্যাসার্ধ R

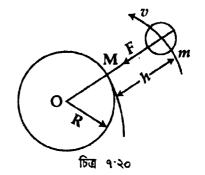
উপগ্রহটির উপর পৃথিবীর আকর্ষণ বল $F = \frac{GMm}{(R+h)^2}$ (37)

এটি পৃথিবীর কেন্দ্রাভিমুখী ক্রিয়া করছে। পুনঃ, উপগ্রহটির ঘূর্ণনের জন্য প্রয়োজনীয় কেন্দ্রমুখী বল

$$\mathbf{F}' = \frac{m \, v^2}{(\mathbf{R} + h)} \tag{38}$$

গতির সাম্যাবস্থা হতে পাই F = F'

$$\frac{mv^{2}}{(R+h)} = \frac{GMm}{(R+h)^{2}}$$


$$\overline{(R+h)}$$

$$\overline{(R+h)}$$

$$\overline{(R+h)}$$

$$\overline{(R+h)}$$

$$\overline{(39)}$$

এটিই হল h উচ্চতায় উপগ্রহটির প্রদক্ষিণ বেগ।

উল্লেখ্য কক্ষপথের ব্যাসার্ধ কম হলে বেগ কম হবে। শুধু তাই নয় সমীকরণে m না থাকায় উপগ্রহটির বেগ এর ভরের উপর নির্ভর করে না।

(খ) আবর্তনকাল বা পর্যায়কাল :

মনে করি কৃত্রিম উপগ্রহটির আবর্তন বা পর্যায়কাল = T, যদি উপগ্রহটির কৌণিক বেগ ω হয়, তবে

v = ω × বৃত্তাকার পথের ব্যাসার্ধ

$$\overline{\mathbf{A}}, v = \frac{2\pi}{T} (\mathbf{R} + h)$$

$$\overline{\mathbf{A}}, T = \frac{2\pi}{v} (\mathbf{R} + h)$$

 $\overline{\mathbf{A}} = \mathbf{A} \cdot (\mathbf{R} + \mathbf{h})$

উক্ত সমীকরণে v এর মান বসিয়ে পাই

$$T = \frac{2\pi(R+h)}{\sqrt{\frac{GM}{(R+h)}}}$$

$$\exists t, T = 2\pi \sqrt{\frac{(R+h)^3}{GM}}$$
(40)

এটিই হল কৃত্রিম উপগ্রহের আবর্তন কালের রাশিমালা।

(গ) কৃত্রিম উপগ্রহের উচ্চতা : মনে করি পৃথিবী পৃষ্ঠ হতে কৃত্রিম উপগ্রহের উচ্চতা = h সমীকরণ (40)-এর উভয় পার্শ্বকে বর্গ করে পাই

$$T^{2} = 4\pi^{2} \frac{(R+h)^{3}}{GM}$$

$$\overline{A}, (R+h)^{3} = \frac{GMT^{2}}{4\pi^{2}}$$

$$\overline{A}, R+h = \left(\frac{GMT^{2}}{4\pi^{2}}\right)^{\frac{1}{3}}$$

$$h = \left(\frac{GMT^{2}}{4\pi^{2}}\right)^{\frac{1}{3}} - R$$
(41)

এটিই হল কৃত্রিম উপগ্রহের উচ্চতার রাশিমালা এবং আবর্তনকাল ও উচ্চতার মধ্যে সম্পর্ক।

৭'২৫, ভূ-স্থির উপগ্রহ **Geostationary satellite**

আমরা জানি পৃথিবী 24 ঘণ্টায় তার অক্ষের চারদিকে একবার ঘুরে আসে। এর নাম আহিক গতি যা<mark>র ফল</mark>ে দিবা-রাত্র হয়। কোন কৃত্রিম গ্রহের আবর্ডন কাল এবং নিচ্চ অক্ষের চারদিকে ঘূর্ণায়মান পৃথিবীর আবর্তন কাল সমান হলে পৃথিবী পৃষ্ঠের একজন পর্যবেক্ষকের কাছে একে সব সময়ই স্থিতিশীল মনে হবে। পৃথিবীর যে স্থানের খাড়া উপর থেকে একে বৃন্তাকার কক্ষপথে স্থাপন করা হয় এটি পৃথিবীর ঐ স্থানের উপরই সব সময় স্থিতিশীল আছে বলে মনে হবে। এর নামই ভূ-স্ধির উপগ্রহ এবং যে কক্ষণথে কৃত্রিম উপগ্রহ স্থিতিশীল থাকে তাকে পার্কিং (parking) কক্ষপথ বলে।

সংজ্ঞা : কোন কৃত্রিম উপগ্রহের আবর্তনকাল নিজ অক্ষের চারদিকে খুর্ণায়মান পৃথিবীর আবর্তনকালের সমান হলে পৃথিবী সাপেকে এটি স্ধির থাকবে। এই ধরনের উপগ্রহকে ভূ-স্ধির উপগ্রহ বলে। ভূ-স্ধির উপগ্রহের কন্দপথকে পার্কিং কন্দপথ বলে।

মনে করি পৃথিবীর কেন্দ্রের সাথে এককেন্দ্রিক ভাবে নিরক্ষতলে (In the plane of equator) m ভরের একটি কৃত্রিম উপগ্রহ পৃথিবীর চারদিকে ঘুরছে। উপগ্রহের কক্ষপথের ব্যাসাধ r এবং কক্ষপথে উপগ্রহের গতিবেগ এর উপর কেন্দ্রমুখী বা কেন্দ্রবিমুখী বল $F = \frac{mv^2}{r}$ (42)

পুনঃ, পৃথিবীর ভর M হলে মহাকর্ষীয় বল

g

$$F' = \frac{GMm}{r^2}$$

$$F = F'$$

$$\frac{mv^2}{r} = \frac{GMm}{r^2}$$

$$\sqrt{1} \quad v^2 = \frac{GM}{r}$$

$$\frac{mv^2}{r} = \frac{GM}{r}$$

$$\sqrt{1} \quad v^2 = \frac{GM}{r}$$

$$\sqrt{1} \quad v^2 = \frac{GM}{r}$$

$$\sqrt{1} \quad \sqrt{2} = \frac{GM}{r}$$

$$\sqrt{1} \quad \sqrt{2} = \frac{GM}{r^2}$$

$$v^{2} = \frac{gR^{2}}{r}$$
বা, $v = R\sqrt{\frac{g}{r}}$
(45)

যদি কত্রিম উপগ্রহের কক্ষপথ বরাবর আবর্তন কাল T হয়, তবে

$$T = \frac{2\pi r}{v} = \frac{2\pi r}{R\sqrt{\frac{g}{r}}} = \frac{2\pi r^{3/2}}{R\sqrt{g}}$$

অর্থাৎ আবর্তন কাল

$$T = \frac{2\pi r^{3/2}}{R\sqrt{g}}$$
(46)

এখন কৃত্রিম উপগ্রহের আবর্তন কাল এবং পৃথিবীর নিচ্চ অক্ষের চারদিকের আবর্তন কাল সমান হলে পৃথিবী থেকে উপগ্রহটিকে একই স্থানে স্থির দেখা যায়। এর নাম ভূ-স্থির উপগ্রহ এবং এ কক্ষপথের নাম পার্কিং কক্ষপথ। উল্লেখ্য, পার্কিং কক্ষপথে রিলে উপগ্রহ স্থাপন করে পৃথিবীর এক স্থানের সংবাদ, খেলাধূলা, বিভিন্ন অনুষ্ঠান ইত্যাদি পৃথিবীর অন্য স্থানে ধারাবাহিকভাবে দেখানো যায়।

৭'২৬ 'কৃত্রিম উপগ্রহের ব্যবহার Uses of artificial satellite

আধুনিক বিজ্ঞানের যুগে কৃত্রিম উপগ্রহের বহুল ব্যবহার রয়েছে। ব্যবহারগুলো নিচে উল্লেখ করা হল **ঃ**

(১) পৃথিবীর আকার ও আকৃতি সম্পর্কিত ভূ-জরিপ করা যায়।

(২) এর সাহায্যে ভূ-পৃষ্ঠের এলাকা সম্পর্কে বেতার ও টেলিভিশনের মাধ্যমে তথ্য প্রদান করা যায়।

: (৩) উচ্চ বায়ুমন্ডলের চাপ, তাপমাত্রা বা গঠন নির্ণয় করা যায়।

(৪) উর্ধ্বাকাশের আয়নমন্ডল, কসমিক বিকিরণ, চার্জিত কণিকার ভ্যান আসেন বেষ্টনী, সৌর বিকিরণের প্রভাব ইত্যাদি সম্পর্কে তথ্য সগ্মহ করা যায়।

(৫) আবহাওয়া সম্পর্কীয় নিরীক্ষণ ও পূর্বাডাস পাওয়া যায়।

(৬) বহির্বিশ্বে রন্জেন রশ্মি, গামারশ্মি ইত্যাদির উৎস সংক্রান্ত ও জ্যোতির্বিজ্ঞানের অন্যান্য গবেষণা চালানো যায়।

(৭) প্রতিরক্ষামূলক পাহারা ও বিভিন্ন সামরিক ব্যবস্থায় এটি ব্যবহৃত হয়।

(৮) আন্তমহাদেশীয় যোগাযোগে এটি ব্যবহার করা হয়।

(৯) পৃথিবীর যে-কোন দেশে অনুষ্ঠিত খেলাধূলা বা যে-কোন অনুষ্ঠান ধারাবাহিকভাবে টেলিভিশনের মাধ্যমে দেখানো হয়।

(১০) কৃত্রিম উপগ্রহের সাহায্যে সমুদ্রের গন্ডীরতা নির্ণয় করা যায়।

মহাশৃন্যচারীর ওজনহীনতা :

আমরা জানি, ওজন, W = mg। অর্থাৎ, 'ভর × অতিকর্ষ ত্বরণের গুণফল হল ওজন। বস্তুর ভর নির্দিষ্ট। মানুষের ভরও নির্দিষ্ট। কিন্তু _৪-এর মান তারতম্য হলে ওচ্জন কম-বেশি হয়।

মহাশূন্যচারীরা খেয়াযানে পৃথিবী থেকে একটি নির্দিষ্ট উচ্চতায় বৃত্তাকার পথে প্রদক্ষিণ করে। এই বৃ**ন্তা**কার গতির জন্য পৃথিবীর কেন্দ্রের দিকে এ উচ্চতায় অভিকর্ষজ ত্বরণের মানের সমান মানের একটি ত্বরণ সৃষ্টি হয়। ফলে এই মহাশূন্য যানের দেওয়াল বা পাটাতনের সাপেক্ষে মহাশূন্যচারীর ত্বরণ (g-g)=0 হয়। তাই মহাশূন্যচারীর ওজন $W = m \times 0 = 0$ |

২৩৬

গ্রত্যেক গ্রহ সূর্যকে কেন্দ্র করে মোটামুটি বৃত্তাকার কক্ষপথে সূর্যের চতুর্দিকে পরিভ্রমণ করছে। গ্রহের উপর সূর্যের মহাকর্ষীয় আকর্ষণ বল হতে প্রয়োজনীয় কেন্দ্রমুখী বলের উদ্ভব হয়।

ধরা যাক m ভরের একটি গ্রহ সূর্যকে কেন্দ্র করে r ব্যাসার্ধের বৃত্তপথে v সমদ্রুতিতে পরিভ্রমণ করছে এবং সূর্যের ভর M ; তা হলে তাদের মধ্যে পারস্পরিক জাকর্ষণ = $\frac{GMm}{r^2}$

গ্রহের বৃত্তাকার গতির জন্য প্রয়োজনীয় কেন্দ্রমুখী বল = $\frac{mv^2}{r}$

$$\therefore \frac{GmM}{r^2} = \frac{mv^2}{r}$$
 तो, $M = \frac{v^2r}{G}$

গ্রহটি সূর্যের চতুর্দিকে T সময়ে একবার পরিভ্রমণ করলে, v =

$$\begin{bmatrix} v = \omega r = \frac{2\pi r}{T} \\ M = \frac{v^2 r}{G} = \frac{4\pi^2 r^3}{GT^2} \end{bmatrix}$$

5.1 A C

T এবং r জানা থাকলে সূর্যের ভর M নির্ণয় করা যায়।

সূর্যের ভর : পৃথিবী সূর্যের চারদিকে পরিদ্রমণ করছে। পৃথিবীর পর্যায়কাল T প্রায় 365 দিন = $365 \times 24 \times 60 \times 60$ সেকেন্ড এবং পৃথিবীর কেন্দ্র থেকে সূর্যের দূরত্ব = 1.5×10^{11} m।

সমীকরণ (47)-এ মানগুলো বসিয়ে আমরা পাই

সূর্যের ভর, $M = \frac{4\pi^2 r^3}{GT^2} = \frac{4 \times 9.87 \times (1.5 \times 10^{11})^3}{6.673 \times 10^{-11} \times (365 \times 24 \times 60 \times 60)^2} = 2 \times 10^{30} \text{ kg}$

স্মরণিকা

মহাকর্ষ ঃ নভোমন্ডলে অবস্থিত দুটি বস্তু বা বস্তুকণার মধ্যকার পারস্পরিক আকর্ষণ বলকে মহাকর্ষ বলে।

অভিকর্ষ বা মাধ্যাকর্ষণ ঃ পৃথিবী এবং অন্য একটি বস্তু বা বস্তুকণার মধ্যকার আকর্ষণ বলকে অভিকর্ষণ বা মাধ্যাকর্ষণ বলে।

নিউটনের মহাকর্ষ সূত্র : মহাবিশ্বের যে কোন দুটি বস্তুকণা পরস্পরকে আকর্ষণ করে। এই আকর্ষণ বল বস্তু দুটির ভরের গুণফলের সমানুপাতিক, তাদের দূরত্বের বর্গের ব্যস্তানুপাতিক এবং বস্তু দুটির সংযোগকারী সরলরেখা বরাবর ক্রিয়াশীল।

মহাকর্ষীয় ধ্রুবক, G ঃ একক ভরবিশিষ্ট দুটি বস্তুকণা একক দূরত্বে থেকে যে পরিমাণ বল দ্বারা পরস্পরকে আকর্ষণ করে তার সংখ্যাগত মানকে মহাকর্ষীয় ধ্রুক বলে। একে G দ্বারা প্রকাশ করা হয়।

অভিকর্ষজ্ঞ বা অভিকর্ষীয় ত্বুরণ ঃ কোন স্থানে অভিকর্ষের টানে মুক্তভাবে পড়ন্ত বস্তুর বেগ যে হারে বৃদ্ধি পায় তাকে ঐ স্থানের অভিকর্ষজ্ঞ বা অভিকর্ষীয় ত্বুরণ বলে। অথবা, বস্তুতে অভিকর্ষ বল কর্তৃক যে ত্বুরণ উৎপন্ন হয় তাকে অভিকর্ষজ্ঞ⁄ত্বুরণ বলে।

ভর : কোন একটি বস্তৃতে যে পরিমাণ পদার্ধ আছে, তাকে তার ভর বলে।

ওজন ঃ কোন একটি বস্তু যে পরিমাণ বল দ্বারা পৃথিবীর কেন্দ্রের দিকে আকৃষ্ট হয় তাকে তার ওজন বলে।

অভিকর্ষ কেন্দ্র বা ভারকেন্দ্র ঃ বস্তুকে যেভাবেই রাখা হোক না কেন তার ওজন যে বিশেষ বিন্দুর মধ্য দিয়ে বস্তুর ওপর সর্বদা ক্রিয়া করে এ বিন্দুকে অভিকর্ষ কেন্দ্র বা ভারকেন্দ্র বলে।

ভরকেন্দ্র ঃ বস্তুর কণাগুলোর সমস্ত ভরকে একটি মাত্র বিন্দুতে কেন্দ্রীভূত মনে কবলে ঐ বিন্দুর মধ্য দিয়ে সমস্ত কণার ওপর তাদের ভরের সমানুপাতিক ক্রিয়ারত সমান্তরাল বলসমূহের লব্দি ক্রিয়া করে বলে বিবেচিত হয়। ঐ বিন্দুকে বস্তুর ভরকেন্দ্র বলে।

মহাকর্ষীয় প্রাবন্য ঃ মহাকর্ষীয় ক্ষেত্রের কোন বিন্দুতে একক ভরের কোন বস্তৃ স্থাপন করলে তার উপর যে বল প্রযুক্ত হয় তাকে মহাকর্ষীয় প্রাবল্য বলে।

মহাকর্ষীর বিতর ঃ অসীম দূর থেকে একক ভরের কোন বস্তুকে মহাকর্ষীয় ক্ষেত্রের কোন বিন্দুতে জানতে যে পরিমাণ কাজ সাধিত হয়, তাকে ঐ বিশুর মহাকর্ষীয় বিতব বলে।

কেপলার-এর সূত্র ঃ

(১) উপবৃদ্ধ সূত্র : প্রতিটি গ্রহ সূর্যকে উপবৃত্তের নাভিতে রেখে একটি উপবৃত্তাকার পথে প্রদক্ষিণ করছে।

(২) কেত্রকল সূত্র : গ্রহ এবং সূর্যের সংযোগকারী ব্যাসাধ রেখা সমান সময়ে সমান কেত্রফল অতিজ্ঞম করে।

(৩) সমরের সূত্র : প্রতিটি গ্রহের পর্যায় কালের বর্গ সূর্য হতে তার গড় দূরত্বের ঘনফলের সমানুপাতিক।

মুক্তি বেগ : কোন বস্তুকে ন্যূনতম যে বেগে উর্ধ্বে উৎক্ষেপ করলে তা আর পৃথিবী পৃষ্ঠে ফিরে আসে না তাকে মুক্তি কো বলে।

তৃ-স্থির উপগ্রহ : কোন কৃত্রিম উপগ্রহের আবর্তনকাল নিজ অক্ষের চারদিকে ঘূর্ণায়মান পৃথিবীর আবর্তনকালের সমান হলে পৃথিবী সাপেক্ষে এটি স্থির থাকবে। এ ধরনের উপগ্রহকে ভূ-স্থির উপগ্রহ বলে।

পার্কিং কক্ষপথ ঃ ভূ-স্থির উপগ্রহের কক্ষপথকে পার্কিং কক্ষপথ বলে।

প্রয়োজনীয় সমীকরণ

মহাকৰ্ষ বলের মান, F = G
$$\frac{m_1 \times m_2}{d^2}$$
 (1),

মহাকৰ্ষীয় ধ্ৰুবন্ধ,
$$G = \frac{\Gamma \times a^2}{m_1 m_2}$$
 (2)

ভূ-গৃষ্ঠে অভিকৰ্ষজ ত্বরণ,
$$g = \frac{G M}{R^2}$$
 (3)

$$g = \frac{4}{3}\pi G R \rho \tag{4}$$

ভূ-পৃষ্ঠ হতে h উচ্চতায় অভিকর্ষজ ত্বরণ,
$$g_h = \frac{GM}{(R+h)^2}$$
 (5)

$$g_h = g\left(1 - \frac{2h}{R}\right)$$
, यथन $h < < R$ (6)

ভূ-গৃষ্ঠের অভ্যন্তরে, অভিকর্ষন্ধ ত্বরণ,
$$g_d = \frac{4}{3} \pi G (R - h)\rho$$
 (7)

$$g_d = g\left(1 - \frac{h}{R}\right) \tag{8}$$

পৃথিবীর ভর, M =
$$\frac{gR^2}{G}$$
 (9)

পৃথিবীর ঘনত্ব,
$$\rho = \frac{3g}{4\pi GR}$$
 (10)

বস্তুর ওজন, W = mg (11)

মহাকৰ্ষীয় প্ৰাবন্য, E =
$$\frac{GM}{r^2}$$
 (12)

प्रदाकर्षीय विखर,
$$V = -\frac{GM}{r}$$
 (13)

মহাকর্ষীয় গ্রাবল্য ও বিভবের সম্পর্ক s
$$E = -\frac{dV}{dr}$$
 (14)

মুক্তি বেগ,
$$v_{\rm E} = \sqrt{2g}$$
 (15)

্রেপগ্রহের কন্ষীয় বেগ,
$$v = \sqrt{\frac{GM}{R+h}}$$
 (16)

কৃত্রিম উপগ্রহের আবর্তন কাল,
$$T = 2\pi \sqrt{\frac{(R+h)5}{GM}}$$
 (17)

্র্বিম উপগ্রবের উচ্চতা,
$$h = \left(\frac{\text{GM T}^2}{4\pi^2}\right)^{1/3} - \text{R}$$
 (18)

মহাকর্ষ
বহু হার. কম
সমাধানকৃত উদাহরণ
() 0'1 kg এবং 0'2 kg ভরের দৃটি বস্তু 1 m দুরে অবস্থিত। বস্তু দৃটি একে অপরকে কত বলে আকর্ষণ
করবে ? [G = 6'66 × 10⁻¹¹ Nm² kg⁻²]
মনে করি বল = F
আমরা পাই,
$$F = G \frac{m_1 \times m_2}{d^2}$$
 (1)
মানগুলো সমীকরণ (1)-এ বসিয়ে পাই,
 $F = 6'66 \times 10^{-11}$ Nm² kg⁻² × $\frac{0'1 \text{ kg} \times 0'2 \text{ kg}}{(1 \text{ m})^2}$
= 13'32 × 10⁻¹³ N

মহাকর্ম

২ি) পৃথিবীর ব্যাসার্ধ 6'4 × 10° m এবং গৃষ্ঠে অভিরুর্বজ ত্বরণ 9'8 ms⁻²। ভূ-পৃষ্ঠ থেকে 6'4 × 10⁵m উচ্চতার [য. বো. ২০০১] অভিকর্ষর্জ তুরণের মান বের কর। আমরা জানি,

এখানে, R = 6.4×10^6 m $h = 6.4 \times 10^5$ m $g = 9.8 \text{ ms}^{-2}$ পৃথিবী পৃষ্ঠে, $g = \frac{GM}{R^2}$ এবং পৃথিবী পৃষ্ঠ থেকে h উচ্চতায়, $g' = \frac{\mathrm{GM}}{(\mathrm{R}+h)^2}$ (2)সমীকরণ (2) ও (1) থেকে পাই, $\frac{g'}{g} = \frac{\frac{GM}{(R+h)^2}}{\frac{GM}{R^2}} = \frac{R^2}{(R+h)^2}$ $\overline{\mathbf{q}}, \quad g' = \frac{\mathbf{R}^2}{(\mathbf{R}+h)^2} \ g$ $g' = \frac{(6.4 \times 10^6)^2}{(6.4 \times 10^6 + 6.4 \times 10^5)^2} \times 9.8$ = 8.099 ms⁻²) পৃথিবীকে 6.4 × 10⁶ m ব্যাসার্ধের এবং 5.5 gm/cc খনত্ত্বের গোলক মনে করে এর পৃষ্ঠে অভিকর্ষজ ত্বরণ निर्भन्न कर्न | [G = 6'67 × 10^{-11} N-m²/kg²] [ব. বো. ২০০৩]
 $r \neq R$, অভিকর্ষজ ত্রণ = g
 $\mu = \frac{3g}{4\pi GR}$ $\mu = \frac{1}{3}$
 $erifn, \rho = \frac{3g}{4\pi GR}$ $\mu = \frac{1}{3}$ $\mu = \frac{1}{3}$
 $ri, g = \frac{4\pi\rho GR}{3}$ $\eta = \frac{55 \text{ gm/cc}}{10^{-11} \times 6.4 \times 10^6}$ $R = 6.4 \times 10^6 \text{ m}$
 $r = \frac{4 \times 3.141 \times 5.5 \times 10^3 \times 6.67 \times 10^{-11} \times 6.4 \times 10^6}{3}$ $G = 6.67 \times 10^{-11} \text{ N-m}^2/\text{kg}^2$
 $r = 9.83 \text{ ms}^{-2}$ 9.84 m/S^2 $G = 6.67 \times 10^{-11} \text{ N-m}^2/\text{kg}^2$
 γ [4] बीज बाग्रगार्थ $R = 6.4 \times 10^3 \text{ km}$ ७ महाकर्यीग्र ध्रुवक $G = 6.67 \times 10^{-11} \text{ N-m}^2 \text{ kg}^{-2}$ यत्न यत्न १७ चत्व

 মনে করি, অভিকর্ষজ ত্বরণ = 🗴 আমরা জানি, $\rho = \frac{3g}{4\pi GR}$ $\overline{q}, \quad g = \frac{4\pi\rho \, GR}{3}$

নির্ণর কর

[ঢা: বো. ২০০১]

universe
$$3g \over 4\pi GR$$
universe $\rho = \frac{3g}{4\pi GR}$ $R = 6.4 \times 10^3 \text{ km} = 6.4 \times 10^6 \text{ m}$ $\rho = \frac{3 \times 9.8}{4 \times 3.14 \times 6.67 \times 10^{-11} \times 6.4 \times 10^6}$ $R = 6.4 \times 10^3 \text{ km} = 6.4 \times 10^6 \text{ m}$ $= 5.48 \times 10^3 \text{ kg m}^{-3}$ $G = 6.67 \times 10^{-11} \text{ N-m}^2 \text{ kg}^{-2}$ $g = 9.8 \text{ ms}^{-2}$

.

(৫) পৃথিবীকে 6400 km ব্যাসার্ধের একটি গোলক ধরলে ভূ-পৃষ্ঠ হতে কত উচ্চতার অতিকর্ষীর ত্বরণের মান ভূ-পৃষ্ঠের অভিকর্ষীর ত্বরণের মানের <u>1</u> তংশ হবে। । সি. বো. ২০০৬ (মান ভিন্ন)] এখানে. আমরা জানি, পথিবীর ব্যাসার্ধ, R = 6400 km $g = \frac{G M}{R^2}$ (1) $= 6400 \times 10^3 \,\mathrm{m}$ $= 6.4 \times 10^{6} \,\mathrm{m}$ h উচ্চতায় অভিকর্ষজ ত্বরণ, $g' = \frac{G M}{(R + h)^2}$ (2)ভূ-পৃষ্ঠে অভিক**র্যজ** ত্বুরণ = g h উচ্চতায় অভিকর্ষচ্চ ত্বরণ, $g' = \frac{g}{64}$ সমীকরণ (1) ও (2) হতে পাই পৃথিবীর ভর = M $\frac{g'}{g} = \frac{G M}{(R+h)^2} \times \frac{R^2}{G M} = \left(\frac{R}{R+h}\right)^2$ উচ্চতা, h = ? \overline{q} $\frac{g/64}{g} = \left(\frac{R}{R+h}\right)^2$ \overline{q} \overline{q} $\frac{1}{64} = \left(\frac{R}{R+h}\right)^2$ \overline{q} $\left(\frac{R+h}{R}\right)^2 = 64 = 8^2$ \overline{q} \overline{q} $\frac{R+h}{R} = 8$ $1 + \frac{h}{R} = 8$ $\frac{n}{R} = 8 - 1 = 7$ $h = 7R = 7 \times 6.4 \times 10^6 = 44.8 \times 10^6 m$ $= 4.48 \times 10^4 \,\mathrm{km}$ ঙি) বৃহস্পতির ভর ও ব্যাসার্ধ যথাক্রমে $1.9 imes 10^{27}~{
m kg}$ এবং $7 imes 10^7~{
m m}$ হলে এর মুক্তি বেগ নির্ণয় কর। বি. বো. ২০০৪] আমরা জানি, মুক্তি বেগ $v_{\rm E} = \sqrt{2gR}$ (1) বৃহস্পতির ভর, M = 1[.]9 × 10²⁷ kg বৃহস্পতির ব্যাসার্ধ, R = 7 × 10⁷ m জাবার, $g = \frac{GM}{R^2}$ (2)মহাকর্ষীয় ধ্রুবক, G = 6[.]67 × 10⁻¹¹ Nm² kg⁻² সমীকরণ (1) ও (2) হতে পাই, $v_{\rm E} = \sqrt{\frac{2 \times GM}{R^2}} \times R = \sqrt{\frac{2 GM}{R}}$ $v_{\rm E} = \sqrt{\frac{2 \times 6.67 \times 10^{-11} \times 1.9 \times 10^{27}}{7 \times 10^7}}$ = 6^{·02} × 10⁴ ms⁻¹ একটি বস্তুর তর 12 মিনিগ্রাম। পৃথিবীর কেন্দ্রের দিকে বস্তুটি কড বলে আকর্ষিত হবে ? অভিকর্ষীয় ত্বরণ, $z = 9^{\circ}8 \text{ ms}^{-2}$. [চ. বো ২০০৪] আমরা জানি, 🛪 = 12 মিলিয়াম = 12 × 10⁻⁶ kg F = mgV $= 12 \times 10^{-6} \times 9^{-8}$ $7 = 9.8 \text{ ms}^{-2}$ = 117⁻⁶ × 10⁻⁶ N একটি বস্তুর ওজন গৃধিবীতে 56'84 N ও চন্দ্রে 9'8 N। চন্দ্র অপেক্ষা গৃধিবীতে অভিকর্ষীয় ত্বরণ কড় গুণ 🔋 র্ষরি অভিকর্ষীয় ত্বরণ পৃথিবীতে _৪, ও চন্দ্রে _{৪៣} এবং বস্তুর ভর M। তাহলে, বস্তুটির ওজন, পৃথিবীতে, F, = Mg, ও চন্দ্রে, Fm = Mgm $\frac{Mg_e}{Mg_m} = \frac{56.84 \text{ N}}{9.8 \text{N}} = 5.8$ এখানে. $F_{a} = 56'84 \text{ N}$ কাজেই, $\frac{\delta_r}{g_m} = 5'8$ $F_{...} = 9.8 N$

বইঘর.কম ডি চন্দ্রের ডর m পৃষিবীর ভর M-এর $rac{1}{80}$ ভাগ ও চন্দ্রের ব্যাসার্ধ r পৃথিবীর ব্যাসার্ধ R-এর $rac{1}{4}$ ভাগ। চন্দ্রপৃষ্ঠে অভিকর্ষজ ত্বরণের মান নির্ণর কর।

মনে করি পৃথিবীর পৃষ্ঠে অভিকর্ষজ ত্বরণের মান = g, এবং চন্দ্র পৃষ্ঠে = g,

জামরা পাই,
$$g_e = \frac{GM}{R^2}$$

ও $g_m = \frac{Gm}{r^2}$
 $\therefore \frac{g_m}{g_e} = \frac{m}{M} \times \left(\frac{R}{r}\right)^2$
প্রশ্নানুসারে, $M = 80m$ ও $R = 4r$
 $\frac{g_m}{g_e} = \frac{1}{80} \times (4)^2 = \frac{1}{5}$
বা, $g_m = \frac{1}{5}g_e$

পৃথিবীর তর চন্দ্রের ভরের ৪1 গুণ এবং তাদের কেন্দ্রের মধ্যবর্তী দূরত্ব $R = 38.6 \times 10^4 \text{ km}$ । চন্দ্র ও পৃথিবীর সংযোগকারী রেখার কোথায় কোন বস্তৃর উপর উভয়ের টান সমান হবে ? Gm_1m_2 Gm_1m_2

আমরা পাই, F =
$$\frac{Gm_1m_2}{d^2}$$

ধরি পৃথিবী ও চন্দ্রের ভর যথাক্রমে \mathbf{M}_r ও \mathbf{M}_m এবং পৃথিবীর কেন্দ্র হতে নির্ণেয় দূরত্ব = r। তাহলে ঐ স্থানে m_0 ভরের যে-কোন বস্তুর উপর টান,

$$F = \frac{GM_e}{r^2} \times m_0 = \frac{GM_m}{(R-r)^2} \times m_0$$
and $\frac{R-r}{r} = \left(\frac{R}{r} - 1\right) = \sqrt{\frac{M_m}{M_e}} = \sqrt{\frac{1}{81}} = \frac{1}{9}$
and $\frac{R}{r} = \frac{1}{9} + 1 = \frac{10}{9}$

$$r = \frac{9}{10} \times R = \frac{9}{10} \times 38.6 \times 10^4 \text{ km}$$

$$= 34.74 \times 10^4 \text{ km}$$

 $= 34'74 \times 10^4$ km ১১। পৃথিবীকে $6'4 \times 10^6$ m ব্যাসার্ধের এবং $5'5 \times 10^3$ kg/m³ ঘনত্বের একটি গোলক বিবেচনা করে এর পৃষ্ঠে মহাকর্ষীয় বিভব নির্ণয় কর।

আমরা জানি,
$$V = -\frac{G M}{R}$$

আবার পৃথিবীর ভর, $M = \frac{4}{3} \pi R^3 \rho$ এখানে,
ব্যাসার্ধ, $R = 6.4 \times 10^6 \text{ m}$
चনত্ব, $\rho = 5.5 \times 10^3 \text{ kg/m}^3$
মহাকর্ষীয় ধ্বক, $G = 6.67 \times 10^{-11} \text{ Nm}^2 \text{kg}^{-2}$
মহাকর্ষীয় বিতব, $V = ?$
 $= -\frac{4}{3} \pi G R^2 \rho$
 $= -\frac{4}{3} \times 3.14 \times 6.67 \times 10^{-11} \times (6.4 \times 10^6)^2 \times 5.5 \times 10^3$
 $= -6.32 \times 10^7 \text{ N m kg}^{-1} = -6.32 \times 10^7 \text{ Jkg}^{-1}$

(s, v) পৃথিবীর অভিকর্ষীয় ত্বরণ $g = 9.8 \text{ ms}^{-2}$ এবং ব্যাসার্ধ $\mathbf{R} = 6400 \text{ km}$ । একটি বস্তুর মুক্তিবেগ নির্ণয় কর। य. (वा. २००२; इ. (वा. २००७; कृ. (वा. २००); व. (वा. २००)

মনে করি মুক্তিবেগ =
$$v_e$$

আমরা পাই, $v_e = \sqrt{2gR}$
নির্ণেয় বেগ, $v_e = \sqrt{2 \times 9.8 \text{ ms}^{-2} \times 64 \times 10^5 \text{ m}}$
= $11.2 \times 10^3 \text{ ms}^{-1} = 11.2 \text{ kms}^{-1}$

ľ

M

z

We ge Me

্র্বি) মঙ্গাল গ্রহের ব্যাস 6000km এবং এর পৃষ্ঠের অভিকর্ষীয় ত্বরণ 3'8 ms⁻²। মঙ্গাল গ্রহের পৃষ্ঠ হতে একটি বস্তুর মুক্তিবেগ নির্ণয় কর।

এখানে,

ব্যাস, $d = 6000 \text{ km} = 6 \times 10^6 \text{ m}$

ব্যাসার্ধ, R = $\frac{d}{2}$ = 3 × 10⁶ m

ত্বনণ, $g = 3.8 \text{ ms}^{-2}$

মুক্তিবেগ, $v_e = ?$

\$

$$v_e = \sqrt{2gR}$$

= $\sqrt{2 \times 3.8 \times 3 \times 10^6}$
= 4.77 × 10³ ms⁻¹
= 4.777 kms⁻¹

(38) পৃথিবী পৃষ্ঠ হতে 700 km উর্ধ্বে একটি কৃত্রিম উপগ্রহ পৃথিবীকে প্রদক্ষিণ করছে। উপগ্রহটির অনুভূমিক বেগ নির্ণয় কর। [পৃথিবীর ব্যাসার্ধ 6400 km এবং পৃথিবী পৃষ্ঠে $g = 9.8 \text{ ms}^{-2}$] [য. বো. ২০০৬ (মান ভিন্ন)]

মনে কার স্থিবার ভর=M, ডগগ্রহের ভর=
$$m$$
, ডগগ্রহের অনুভূমিক বেগ = 0 ও তু-সূত ২০০ ০ জিবেনে ০০০০
উপগ্রহের উপর পৃথিবীর আকর্ষণ বল = $\frac{GMm}{(R+h)^2}$

উপগ্রহের ঘূর্ণনের জন্য প্রয়োজনীয় কেন্দ্রমুখী বল = $\frac{mv^2}{(R+h)}$ । উপগ্রহের ঘূর্ণনের জন্য এই আকর্ষণ বলই প্রয়োজনীয় কেন্দ্রমুখী বল জোগায়।

$$\frac{GMm}{(R + h)^2} = \frac{mv^2}{R + h}$$
at, $v^2 = \frac{GM}{(R + h)}$

$$\frac{\sqrt{2}}{\sqrt{R^2 + h}}$$

$$\frac{1}{\sqrt{2}} = \frac{gR^2}{(R + h)}$$

$$\frac{1}{\sqrt{2}} = \frac{gR^2}{(R + h)}$$

$$\frac{1}{\sqrt{2}} = \frac{gR^2}{(R + h)}$$

$$\frac{1}{\sqrt{2}} = \sqrt{\frac{gR^2}{(R + h)}}$$

$$\frac{1}{\sqrt{2}} = \sqrt{\frac{gR^2}{(R + h)}}}$$

$$\frac{1}{\sqrt$$

ર8ર

একটি কৃত্রিম উপগ্রহ পৃথিবীর সাথে সমকেন্দ্রিকভাবে পৃথিবীর চতুর্দিক পরিভ্রমণ করছে। প্রমাণ কর যে, Sur! উপগ্রহটির মুক্তি বেগ এর গতিবেগের 1.414 গুণ। ধরা যাক, উপগ্রহটির ভর = m এবং এটি vo বেগে ro ব্যাসার্ধের বৃত্তাকার পথে পৃথিবীর চতুর্দিক পরিভ্রমণ করছে। এই অবস্থায় উপগ্রহের কেন্দ্রমুখী বল = উপগ্রহের উপর পৃথিবীর আকর্ষণ বল।

ষ্ঠ্যাৎ
$$\frac{mv_0^2}{r_0} = \frac{GMm}{r_0^2}$$
 এখানে M = পৃথিবীর ভর।
বা, $v_0^2 = \frac{GM}{r_0}$ (1)
খাবার, আমরা জানি, পৃথিবীর কেন্দ্র হতে r_0 দূরে অবস্থিত কোন বস্তুর মুক্তিবেগ

$$v_{e}^{2} = \frac{2GM}{r_{0}}$$

$$(2)$$

$$(2)$$

শমাকরণ (1) ও (2) ২৩ে পাহ,

 $v_{e}^{2} = 2v_{0}^{2}$ $v_e = \sqrt{2} v_0 = 1.414 v_0$ (প্রমাণিত)

১৭। প্রমাণ কর যে,

🕲 অভিকর্ষজ ত্বুরণ এবং মহাকর্ষীয় প্রাবন্যের সংখ্যাগত মান সমান।

🔁 একটি ভারী বস্তু হতে অসীম দূরত্বে অবস্থিত কোন বিন্দুতে মহাকর্ষীয় বিভব এবং মহাকর্ষীয় প্রাবল্য উভয়ের মান শূন্য।

(ক) মনে করি M = পৃথিবীর ভর এবং R = পৃথিবীর ব্যাসার্ধ। অতএব পৃথিবী পৃষ্ঠে অবস্থিত কোন বিন্দুতে অভিকর্ষজ ত্বরণ $g = \frac{GM}{R^2}$ (1) এখানে G = মহাকর্ষীয় ধ্রুবক।

উক্ত বিন্দুতে মহাকর্ষীয় প্রাবল্য

$$E = \frac{GM}{R^2}$$
(2)

সমীকরণ (1) এবং (2) হতে পাই,

(খ) মনে করি ভারী বস্তুটির ভর = M

বস্তু হতে r দূরে অবস্থিত কোন বিন্দুতে মহাকর্ষীয় বিভব V = $-\frac{GM}{r}$... (1) যদি বিন্দুটি অসীম দূরত্বে অবস্থিত হয়, তবে $r = \infty$

সমীকরণ (1) হতে পাই,

$$V = -\frac{GM}{\infty} = -0 = 0$$
 (भूना) (2)

পুনঃ, মহাকর্ষীয় প্রাবল্য

$$E = \frac{GM}{r^2} = \frac{GM}{(\infty)^2} = 0$$
(3)

সমীকরণ (2) এবং (3) হতে আমরা পাই,

V = E = 0 (প্রমাণিত)

(১৮)। পৃথিবী পৃষ্ঠে 'g'-এর মান 9'8 ms⁻², পৃথিবীর ব্যাসার্ধ R = 6'4 × 10⁶ m এবং G = 6'67 × 10⁻¹¹ Nm² kg⁻² হলে পৃথিবীর ভর নির্ণয় কর। [ঢা. বো. ২০০৫; কু. বো. ২০০৫; সি. বো. ২০০২; রা. বো. ২০০০ আমরা জানি. $M = \frac{R^2g}{R^2}$ দেয়া আছে

$$R = 6^{-4} \times 10^{6} \text{ m}$$

$$= \frac{(6^{-4} \times 10^{6})^{2} \times 9^{-8}}{6^{-67} \times 10^{-11}}$$

$$= 6^{-018} \times 10^{24} \text{ kg}$$

$$R = 6^{-4} \times 10^{6} \text{ m}$$

$$g = 9^{-8} \text{ ms}^{-2}$$

$$G = 6^{-67} \times 10^{-11} \text{ Nm}^{2} \text{ kg}^{-2}$$

$$M = ?$$

উদ্যাথাটক লগবঁৰিজন

$$B \subseteq Z,BHVEL

 $M \subseteq Z,BHVEL
 $M \subseteq Z,BHVEL$
 (b. ends) a start of the sta$$$

মহাকর্ষ বইঘর.কম

৬। মহাকৰ্ষীয় ধুৰক, পৃথিবীয় ব্যাসার্ধ এবং অতিকর্ষজ ভূয়গেয় মান হতে কিতাবে পৃথিবীয় গড় খনড় বের করা যায় বর্ণনা করা । বেগাও কিতাবে অভিকর্ষীয় ভূরনাৎ পৃথিবীয় তর, ব্যাসার্ধ ও মহাকর্ষীয় ধুবকের যায়া রকাশ করা যায়। হি. বেগাও কেতাবে অভিকর্ষীয় ভূরনাৎ করে গুলু পৃঠের বিভিন্ন স্থানে <i>g</i> -এর মান বিভিন্ন হওয়ার কারণ ব্যাখ্যা করা ১। বেগাও বে, অভিকর্ষীয় ভূরনাৎ এনে মান হৃ-পৃঠে বিভিন্ন স্থানে <i>g</i> -এর মান বিভিন্ন হওয়ার কারণ ব্যাখ্যা করা ১.। বেগাও বে, আভকর্ষীয় ভূরনাৎ এনে মান হৃ-পৃঠে বিশিলকা বেশি এবং হৃ-পৃষ্ঠ হে বহুই তপেরে কিবো ড্র-কেল্লের দিকে যাওয়া যাও তা চতই হাসাগত হয়। ১০। মহাকর্ষীয় বিতরের সজো সাও। একটি বিশু-ভের বস্তুর জন্য জেনা বিশু বেহে শেরা হৈতে হ'ব তেই তপেরে কিবো স্বাধা কর যে, মহাকর্ষীয় বিতরের মধ্যে সম্পর্ক প্রতিগাদন কর। ১.) মহাকর্ষীয় বিতরের সংব্যা সম্পর্ক প্রতিগাদন কর। ১.) মহাকর্ষীয় বোকা ও মহাকর্ষীয় বিতরের মধ্যে সম্পর্ক প্রতিগাদন কর। ১.) হল্গের তেরে জন্য রাশিমালা নির্ণন্ন রাশিমালা নির্ণা কর। ১.) হল্গের তেরে জন্য রাশিমালা বিশি কর। ১.৪। সূর্বের অবর্জ লনা রাশিমালা নির্ণা করা। ১.৪। সূর্বের অবর্জ জনা রাশিমালা নির্ণা কর। ১.৪। সূর্বের অবর্জ লনা রাশিমালা নির্ণা কর। ১.৪। সূর্বের ভাবের আবর্ডনাথান ৬ উচতার মধ্যে সম্পর্ক প্রতিগাদন কর। ১.৪। সূর্বের ভাবের জনা রাশিমালা বিভিগাদন কর। ১.৪। সূর্বির ভারে খনেরে যুত্র হেতে নিউটেনের মন্রে স্মার তে নির্ভাচনে মহাকর্ষ্মীয় স্তু রাতিদেনে করে নে। ১.৪। সূর্বের ভাবের আবর্ডনাথা কর। কেলনা বস্তুর মুত্রি বেগের সমী মন্র বাজিনান কর। ১.৪। সূর্বির ভার গুন্দের রাশিমালা নির্ণা কর। ১.৫। মুতির গেগ কেরে বার্ড কের বাডে কেরে যুত্র হেতে নিউটনের মহাকর্য্মী মন্ত রাতিদানন কর। ১.৪। মন্তর বার্ডতে বাগারে সূত্রসমূর বন্দা বরে নির্ভাচেরে মূর্তে বিদের নন্দের ব্যাগ্রা করা, বে নেওতঃ, ই. বে!. ২০০০; ক. বে!. ২০০০; ১.ব! মের বারি নেওে গুন্দার মান প্রার্তি হার হিদ্রজান্দার নৃত্রা বিদের বেরে কেল হা, বা! মেতে। ৫.৫ বের প্রতি স্মের বারজিরে হার ? ৫.বা হের গতি সম্লের হে বাদিশির বাদেরে ব্রুর হিদ্রজান্দের বিদের মের বিদের বেরে বেন ? ব্যায্যা কর। [. ২০০১] ৫.ব! কুরিমে বান্দেরে ব্রুরি বেরে বারের মূর্ত্র ব্রুরা বির্ডেল্বের হেলে বান্দির্বা বে! বিণ বিতির সম্যান্দের বান্দে বে বার্দেরে বের্কা বির্বা বেরে বের্কে	৫। মহাকর্ষীয় ধ্রুকের সংজ্ঞা দাও। এর মান নির্ণয়ের জন্য ক্যাভেনডিস-এর পম্বতি বর্ণনা কর। [চ. বো. ২০০৬ ; সি. বো. ২০০৪; কু. বো. ২০০৪, ২০০০; ঢা. বো. ২০০৩; রা. বো. ২০০৩; ব. বো. ২০০২]
৭। দেখাও কিতাৰে অভিকৰ্ষীয় ভুগেকে পৃথিবীয় ভয়, ব্যাসার্ধ ও মহাকর্ষীয় ধুগুকে হায়া প্রকাশ করা মা। [ব. বো. ২০০৪; ফু. বো. ২০০৪; ফ. বো. ২০০৪; ফ. বো. ২০০১; ফ. বো. ২০০১; ২. বো. ২০০১] ৮। অভিকর্ষীয় ভুগা করে বলে ? ছু-পৃঠের বিভিন্ন স্থানে কু-এর মান বিভিন্ন হওয়ার বাগা করা। ৯। দেখাও যে, অভিকর্ষীয় ভুগা কু-এর মান ছু-পৃঠে সর্বাগেশকা বেশি এবং ছু-পৃষ্ঠ হতে ঘতই ওপরে কিংবা ছু-কেন্দ্রে দিয়ে যায়ে ডা ততই ব্রাসাণত হয়। ১০ মহাকর্ষীয় বিভব সংজা দাও। একটি বিশু-ভর বস্তুর জন্য কোন বিশুতে মহাকর্ষীয় বিতরের মান বের কর। হয় মহাকর্ষীয় বিভব সহায় শিত হয়। ১০ মহাকর্ষীয় বিভবে সহায় শিত হয় বিজের বিয়া সম্পর্ক প্রতিপাদন কর। ১০ মহাকর্ষীয় বিভবে স্থাক গ্রা হেলংর রাশিমালা নির্ণায় কর। অথবা, নহাকর্ষীয় বিতরে স্রাজ বাত বিজির ভুরেণের রাশিমালা নির্ণায় কর। অথবা, নহাকর্ষীয় বিভবে হাজতা বুন্দির সাথে অভিকর্যীয় ভুরণের রাশিমালা নির্ণায় কর। ১৪। হৃণ্টয় তেরে জিততা বুন্দির সাথে অভিকর্য যুরেণের সামান কর। ১৪। হৃণ্টয়ে তরে জন্য রাশিমালা নির্ণায় কর। ১৪। হৃণ্টয় তরে গে লা ছু-পৃষ্ঠ হেওে গি ভুরে লোর সাশানা নির্ণায় কর। ১৪। হৃণ্টয় তরে গৈতার বিভকের লাগে অভিকর্য যুরেণের সাশানা নির্ণায় কর। ১৪। হৃনির ভরা ঘনবের রাশিমালা নির্ণায় কর। ১৪। হৃনির ভরে আবর্তন মার্ভকির্দ্ব ভুরেণের বাশিমান নির্ণা কর। ১৪। হৃনির ভরা আর্তনির বার্ভকরের বার্তেশ্বরে মুয্র হে বে নির্টনের মহার্বায় ব্রা হুব্র প্রতি পান কর। ১৪। হুনির ভির বে বার্ণ হে গে হেও কে হেও কেরে বয়ে বুরা হয় ব্রাগি হুব্র বিলা কর। ১৫। পৃথিবা উপ থে বেন্দু করে হে বিরু হয় হিজ্রলার বুরে হে বে নির্বাহের মহার্বায় ব্র ব্র প্র বি কর। ২০। বিরুণা রের বে নাণ হে-পৃষ্ঠ হেওে নান বেশুর বুরে হেওে নির্ভবিরে মহার্বায় ব্র ব্র ব্র বি কর। ২০। বিরে গাতি সম্পর্কি বেপানেরে সুত্র মুর্বন্দ্র বর্নানি হেবে বিরে মহাবর্ষী হের ব্রের কেরে বেনে হেওে। ২০। বির তির কারে বু-এর মান পরিরেতি হয়। লিনে বের বেলে মহার্বাণ্ট নের নান বেরে হের হে, বেন ২০০০! ২১। বির কি কারেণে বু-এর মান পরিরেতি হয়। বে হেওে, রা. বো. ২০০০; কু. বো. ২০০১; নে. বে, ০০০০] ২১। বির কিরা বেরে বু-এর মান পির্দার্ট বিহে কেলি বেরে অলকর্ব বরের মেলে বেলে দেরে করের বানে, বেরে, বেনে, বেতে। ২০। বু-বের উল্বরে রেনানে বির্ছ হে বির্টিহে হেনা বেরে ব্রে বেলে বেলে নে বেরে বেরা ব	৬। মহাকর্ষীয় ধ্রুবক, পৃথিবীর ব্যাসার্ধ এবং অভিকর্ষজ ত্বরণের মান হতে কিভাবে পৃথিবীর গড় ঘনত্ব বের করা যায় বর্ণনা
১। দেখাও যে, অভিকর্মীয় ভূবণ ৫এর মান ভূ-পৃষ্ঠে সবাপেকা বোশ এবং ভূ-পৃষ্ঠ হতে যতহ ওপরে কিবে ছ-কেল্ল্লে দিক যাওয়া যার তা ততই গ্রাসপ্রাপ্ত হয়। ১০ । হারকর্মীয় বিতরের সংজ্ঞা লাও। একটি বিশু-ডর বস্তুর জন্য কোন বিন্দুতে মহাকর্মীয় বিতরের মান বের কর। রমান কর যে, মহাকর্মীয় বিতর সর্বমা জাত্রুব। [চ. বো. ২০০৫ ; ঢা. বো. ২০০৪] ১২। ছ-পৃঠ হতে / ৫ উচ্চতার অভিকর্ষজ বুরণের রাশিমালা নির্ণিয় কর। অববা, বেণাও যে উচ্চতার অভিকর্ষজ বুরণের রাশিমালা নির্ণিয় কর। অববা, বেণাও যে উচ্চতার অভিকর্ষজ বুরণের রাশিমালা নির্ণিয় কর। ১৪। হৃ-পৃঠ হতে / গভীরতায় অভিকর্ষজ বুরণের রাশিমালা নির্ণিয় কর। ১৪। হৃ-পৃঠ হতে / গভীরতায় আভিকর্ষজ ভূরণের রাশিমালা নির্ণিয় কর। ১৪। হৃ-পৃঠ হতে / গভীরতায় আভকর্ষজ ভূরণের রাশিমালা নির্ণিয় কর। ১৪। সুবির্গ ভরের জন্য রাশিমালা নির্ণিয় কর। ১৪। সুবির্গ ভরের জন্য রাশিমালা নির্ণিয় কর। ১৪। সুবির্গ ভলরে জন্য রাশিমালা নির্ণিয় কর। ১৪। সুবির তের ত ঘনত্রের রাশিমালা বির্ণিয় কর। ১৪। সুবির লেগ লে গ্ডু-গৃঠ হতে কো। ব সন্তুর মুব্রি বেগের সমীকরণ বের কর। যি ব্যে বি গের কালে গড়-গৃঠ হতে কো নে ২০০০; রা. বো. ২০০০; ১০০৫; ট. বো. ২০০৫; বি. বি. ২০০৫] ৬৭ বেলা কের। যে, বির্ত ও রাখা কর। কেলগারের সূত্র হতে নিউচ্বর মহাকর্ম্মায় ব্র প্রতিপাদন কর। ১৯। বহনু অভিকর্ম বেল বছে করে বি বুর গ ব্রিছজার্জা বিদের মহাকর্ব্য শাক্র বালি কর। ১৯। বহনু আভি নশনকিত বেগলারে সূত্রসমূহ বর্ণনা কর। [সি. বো. ২০০৩; রু. বো. ২০০১; রা. বো. ২০০১] ২০। কি ক কারণে ৫-এর মান সৃদ্য। [চ. বো. ২০০৬, ২০০১; রা. বো. ২০০১; বো. ২০০৪] ২২। তৃ হিম উগরহে বদন্দিরত বয়ালাক যে, ব্রাজ হের্দ্ব বের কলহী বাদ্যা বেরা হের্জে বেরা কর বে। ১। দৃথি বে ভূ-কেরে ব্রাজিযে 40 kg ও 15 kg। তাদের কেন্দ্রহযের মধাবর্তী দূরত্ব 01 লা হলে, পারস্রের আকর্ষণ বল কত হবে ? [G = 666 × 10 ⁻¹¹ N-m ² kg ⁻⁷] [উ রা স্তুর 10 ⁻⁷ N] ২। বু – গি হতে ক ত উচ্চতা বেলে লেখনকা বে ভিকর্য্য জুরণের মান ভূ-পৃঠে অজিক্র্বত্ব বে বানে বানে বির্দের ব্রাণা বিরা বানার্ধ বির্দের বানা ভূ-পৃঠে বে আকর্মে বান্দে ব্রালারে বির্দের বানা বির্ণ বিরা বাসার্ধ বির্তে বেরা বান্দের বের বানার্ধ বির্তা বের বানে বের্দের বান বেরে হে বা নার্ধে বের বানানরে বেল কাতা বে গুর্বিরি বের্বা বির্দা হের বাসার্ধ বির্যার ব্যাবর্ধের বেরে বানি বরা বা বির্	৭। দেখাও কিভাবে অভিকর্ষীয় ত্বুরণকে পৃথিবীর ভর, ব্যাসার্ধ ও মহাকর্ষীয় ধ্রুবকের দ্বারা প্রকাশ করা যায়। [ব. বো. ২০০৪; কু. বো. ২০০২; ঢা. বো. ২০০২; য. বো. ২০০১]
১০। মহাকর্মীয় বিতরের সংজ্ঞা লাও। একটি বিন্দু-ডর বস্তুর জন্য কোন বিন্দুতে মহাকর্মীয় বিতরের মান বের কর। হমাণ কর বে, মহাকর্মীয় বিতর সর্বা গুল্জেব। ১২। মহাকর্মীয় বিতরে সর্বা গুল্জেব। ১২। মহাকর্মীয় বিতরে সর্বা গুল্জেব। ১২। মহাকর্মীয় বিতরে স্বাম গুল্জেবের মধ্যে সম্পর্ক প্রতিপাদন কর। ১২। মৃত্-পৃষ্ঠ হতে /৷ উচ্চতায় অভিকর্ষজ ভুরবের রাশিমালা নির্ণয় কর। ১৪। মৃত্ব হতে /৷ গউরের স্রাধে সারে পাতে কির্তিষ ভুরবের রাশিমালা নির্ণয় কর। ১৪। মৃত্র হতে /৷ গউরের স্রাধে সারে পাতে কির্তিষ ভুরবের রাশিমালা নির্ণয় কর। ১৪। মৃর্বি তরে ও মন্তুর রাশিমালা নির্ণয় কর। ১৪। মৃর্বিত তরে জন্য রাশিমালা নির্ণয় কর। ১৪। মৃর্বিত বেগ লাং গড়-গৃষ্ঠ হতে কোন বস্তুর মুর্ত্তি বেগের সমীকরণ বের কর। যে. বো. ২০০৪, চা. বো. ২০০০; রা. বো. ২০০০; চ. বো. ২০০৬; রা. বো. ২০০৬; বু. বো. ২০০৫; ফ. বো. ২০০৫; ৬০। জ্বণরা কে বালে গড়-গৃষ্ঠ হতে কোন বস্তুর মুর্ত্তি বেগের সমীকরণ বের কর। যে. বো. ২০০৪, চা. বো. ২০০০; রা. বো. ২০০৬; রা. বো. ২০০৫; চ. বো. ২০০৫; চ. বো. ২০০৫; ১৮। বেশলারে সূত্র বিরৃত ও ব্যাথাকে। কেশা বের স্ত্রে হতে নিউনের মহাকর্মীয় সূত্র প্রতিকর্ব কের ১০। গৃহ বেণ্টেকর বের বিরৃত ও ব্যাথাকে। বেশলারে মূত্র হতে নিউনের মহাকর্মীয় সূত্র হতে বি ন্ ২০০৫; ১০। বেংবর গতি সম্পর্কি কেপলরের সুন্রমূহ বর্বনা কর। ২০। গ্রহের গতি সম্পর্কি কে বৃথ্যরের স্ত্র স্নমূহ বর্বনা কর। ২০। গ্রহের গতি সম্পরিক কেপারের সুন্রমন্থ বর্ণনা কর। ১০। বহতর অতির্ক কেলগরের সুন্রমন বর্ণনা লা। চি. বো. ২০০৬; রা. বো. ২০০১; রা. বো. ২০০১; ২০ বেরে ২০০৪; সু. বো. ২০০৪; ২০ বেরে ২০০৪; মু. বো. ২০০৪; ২০ বেরে হতেরে স্ত্রা মান প্না। চি. বো. ২০০২ ২০ ফি বির ফর বর্গাজনে 40 kg ও 15 kg। তাদের কেন্দুহুর ওজন 98 ম হা। বন্দুর্য্য রাগ্রিক আর্কর্বা বন্ধ বন্ধ বর গুর্বিতি বসম্যাবিলি ঃ ১০ দু গৃষ্ঠ হতে রুত উর জলন 94 N হলে এ স্যানে বানে বিরুর জ্বন বির্বা কর । ৫ গুর্বিবি বের বাসার্দ গুর্বির ব্যালারের তের হের বানে বাতি কর্য গ্রা জরণ নির্বা বান বন্দু প্রেরির আর্লর বানে বির্তা হের গ্রাণ্র বির্বা গড় মন্র করে বানা বির্যা হের বাসার্দ বির বায়ার্দের বালে মন্দে কর। ৫ গুথিবি কি বির বাটে সূর্তিম গুরার বালে বালে মন্দে কর। বির্বা বারা বির গুর্বা বার বাল বির মের গ্রি বির্বা বার বালে বালে বা ব গুর্বির বির বার বার বালে বির্	৯। দেখাও যে, অভিকর্ষীয় ত্বুরণ _৫ -এর মান ভূ-পৃষ্ঠে সর্বাপেক্ষা বেশি এবং ভূ-পৃষ্ঠ হতে যতহ ওপরে কিংবা
র্তমাণ কর যে, মহাকর্মীয় বিতত সর্বদা খগাত্ত্ব। [চ. বো. ২০০৫ ; চা. বো. ২০০৪] ১২। হৃ-পৃষ্ঠ হতে ৮ উচতায় অভিকর্ষত তুরণের নাশিনালা নির্ণয় কর। অথবা, লেখাও যে উচতা বৃশ্বির সাবে সাথে অভিকর্ষীয় তুরণের মান কমতে থাকে। [চ. বো. ২০০৪] ১২। হৃ-পৃষ্ঠ হতে ৮ উচতায় অভিকর্ষত তুরণের নাশিনালা নির্ণয় কর। ১৫। তৃ-পৃষ্ঠ হতে ৮ গেডীরতায় অভিকর্ষত তুরণের নাশিনালা নির্ণয় কর। ১৫। তৃ-পৃষ্ঠ হতে ৮ গেডীরতায় অভিকর্ষত তুরণের নাশিনালা নির্ণয় কর। ১৫। তৃ-পৃষ্ঠ হতে ৮ গেডীরতায় অভিকর্ষত তুরণের নাশিনালা নির্ণয় কর। ১৫। তৃ-পৃষ্ঠ হতে ৮ গেডীরতায় অভিকর্ষত তুরণের নাশিনালা নির্ণয় কর। ১৫। তৃশ্বির তরে ব ঘনেতুর রাশিনালা নির্ণয় কর। ১৫। স্বির্বার তব ধনতুর রাশিনালা নির্ণয় কর। ১৫। স্ববির তর ব ধনতুরে রাশিনালা নির্ণয় কর। ১৫। স্ববির তর ব ধনতুরে রাশিনালা নির্ণয় কর। ১৫। স্ববির তর ব ধনতুরে রাশিনালা নির্ণয় কর। ১৫। কৃরির তরে ব খনতুর রাশিনালা নির্ণয় কর। ১৫। স্ববির তর ব ধনতুরে রাশ্যনাল বির্ণযালন বন্ধরা দেশের বের কর। যে বো. ২০০৫ ; চ. বো. ২০০৫] ১৮। কেপলারের সূত্র বিরৃত ও ব্যাখ্যা কর। কেপলারের সূত্র হাত নিউদের মহাকর্ষীয় সূত্র ব্রিণাদন কর। ১৯। বন্দুর অভিকর্ধ কেন্দ্র করে হে নুয়নমূহ বর্গনা কর। [সি. বো. ২০০৬; ড. বো. ২০০১] ১৮। কি কি কারণে ৫-এর মান প্রাণ ির। বো. ২০০৬, হর। বো. ২০০১; রা. বো. ২০০১] ২০। কি কারণে ৫-এর মান প্রাণ। [চে. বো. ২০০৬, হর। বো. ২০০৬, ২০০১ ; রা. বো. ২০০৪; ফি. বো. ২০০১] ২২। কৃথ্রিয় উপগ্রহে প্রশিষ্ণারত মহাকাশচারী নিজেকে ওজনহীন বলে মনে করে কেন ? বাখ্যা কর। [চ. বো. ২০০২] ধাবিতিক সমস্যাবনি : ১ ৷ দৃটি গোলকের তর যথারুমে 40 kg ও 15 kg। তাদের কেন্দ্রন্থ বেলা সি কুত্ব তা ম হলে, পারস্লেরি আর্ভ্বণ বল কত হবে ? [G = ৪০৫ ম 10 ⁻¹¹ N-m ² kg ² ç] ১ ৷ কুণ্ডি বা জন্দা প 4 N হলে ঐ স্মানে বৃণি বির্তিতে হেদা একটি বন্ডুর ডের মণার জির্বা বির্না বন্দের বানে আর্চি বিধ্যা ব্যাদারে বা কির্বয় ব্যাবার অরিকর্য বিকে করে বা আর্দের গেল কর। ১ ৷ গুণ্ডির জন প 4 N হলে ঐ স্মানের অভিকর্যয় ত্বরণ নির্ণ হেরা না পৃথিরীর ব্যাদার্ধে বে মাল ব্যা ক্যেরা প্রিবিরা ব্যাদার্ধ বে গে কর্য গ্রাফরে গেলে বনা কার্ড বির্ত হের গের মানি বির্তিয় বের জন্দ পর যা । ডি ব গুর্তির তিকর্চ তৃর্রাম ফার্বরে গের আর্চির হেরে বেরার	
১২। ডু-পৃষ্ঠ হতে /, উচ্চতায় অভিকর্ষজ ত্বরণের রাশিমালা নির্ণয় কর। অথবা, দেখাও যে উচ্চতা বৃশ্ধির সাধে সাথে অভিকর্ষি তুরণের মান কমতে থাকে। [চ. বো. ২০০২] ১৩। ডু-পৃষ্ঠ হতে /, গভীরতায় অভিকর্ষজ তুরণের রাশিমালা নির্ণয় কর। ১৫। পৃথিবীর তর ও ঘনত্বের রাশিমালা নির্ণয় কর। ১৬। কৃত্রিম উপগ্রহের আবর্কনকাল ও উচ্চতার মধ্যে সম্পর্ক প্রতিণাদন কর। ১৬। কৃত্রিম উপগ্রহের আবর্কনকাল ও উচ্চতার মধ্যে সম্পর্ক প্রতিণাদন কর। ১৬। কৃত্রিম উপগ্রহের আবর্কনকাল ও উচ্চতার মধ্যে সম্পর্ক প্রতিণাদন কর। ১৬। কৃত্রিম উপগ্রহের আবর্কনকাল ও উচ্চতার মধ্যে সম্পর্ক প্রতিণাদন কর। ১৬। কৃত্রিম উপগ্রহের আবর্কনকাল ও উচ্চতার মধ্যে সম্পর্ক প্রতিণাদন কর। ১৬। কৃত্রিম উপগ্রহের আবর্কনকাল ও উচ্চতার মধ্যে সম্পর্ক প্রতিণাদন কর। ১৬। কৃত্রিম উপগ্রহের আবর্কনকাল ও উচ্চতার মধ্যে সম্পর্ক প্রতিণাদন কর। ১৬। বহুরে গতি সম্পর্কিত কেণারের সূত্রমুহ বর্তনা করততং রা. বো. ২০০৩; রু. বো. ২০০৫; কৃ. বো. ২০০৫] ১৮। বেপলারের মূত্র বিরৃত ও ব্যাখ্যা কর। বেপলারের সূত্র হতে নিউটনের মহাকর্ষীয় সূত্র প্রতিপাদন কর। ১৯। বস্তর অভিকর্ধ ক্রেন্থ বন্দের প্রতে মৃত্র হুব হেতে নিউটনের মহাকর্ষ্বীয় সূত্র বরি ক০০; কু. বো. ২০০৫; কিবে বা. ২০০৫; কি বো. ২০০২] ২০। কি কি কারণে _৪ -এর মান পরিবর্তিত হয় ? বো. বে.০০৬, ২০০১; রা. বো. ২০০১; রে. বো. ২০০২] দেখাও যে ডু-কেন্দ্রে এ-এর মান পরিবর্তি হয় ? বো. ২০০৪; সি. বো. ২০০২] ২২। কৃত্রিম উপগ্রহে প্রদন্ধির অহাকাশচারী নিজেকে ওজনহীন বলে মনে করে কেন ? ব্যাখ্যা কর। [চ. বো. ২০০২] ২২। কৃত্রিম উপগ্রহে প্রদন্ধির অহাকাশচারী নিজেকে ওজনহীন বলে মনে করে কেন ? ব্যাখ্যা কর। [চ. বো. ২০০২] ২৫ ? বৃত্রিম উপগ্রহে প্রদন্ধির অহাকাশচারী নিজেকে ওজনহীন বলে মনে করে কেন ? ব্যাখ্যা কর। [চ. বো. ২০০২] ২০ জি বহে বিদ্ধারি ব্রামান্দে বে বে কে বিহা লির্দের কে ভিক্রের্থ বেদে মনে বরে কেন ? বে বায়া করে বা কৃত্র উপির বে বন্ধ কত হ কেন বে না হে বে বির্ণ বিধ্ব বির্ব কে বের বের বে বা না বুর হে বে বে বা হে ? বে বির্ত বির্ধ বাদি বির্ব বে বার বির্বের বের বাল বালি বির্বের বা বা বির্বের বালা বির্বে বালে বের বালা প্রতিহের লো বার বির্দের বার বালে বির্কে বের বা বা বির্বের লো মান নির্দের বা বা বির্দের বাদা প্র বির্রের বা লা দির্দির বাত বির বাজের হের হের বা বা বির্দির বা বা বা বির্বের বা বা বির্দির বা বা	প্রমাণ কর যে, মহাকর্ষীয় বিভব সর্বদা ঋণাত্মক। 🧴 🦷 🤅 চি. বো. ২০০৫ ; ঢা. বো. ২০০৪]
ভথবা, দেখাও যে উচ্চা বৃষ্ণির সাথে সাথে অভিকর্ষীয় ভূরণের মান কমতে থাকে। [চ. বৌ. ২০০২] ১৩। ভূ-পৃষ্ঠ হতে /গ গতীরতায় অভিকর্ষজ ভূরণের রাশিমাণা নির্ণয় কর। ১৪। সৃর্যের ভরের জন্য রাশিমাণা নির্ণয় কর। ১৫। গৃথিবীর ডাঙ খনত্বের নিশিমাণা নির্ণয় কর। ১৬। কৃত্রিম উপগ্রহের আবর্তনকাল ৩ উচ্চতার মধ্যে সম্পর্ক প্রতিপাদন কর। ১৭। মুক্তি বেগ কাকে বলে গ ভূ-পৃষ্ঠ হতে জেন বস্ত্রর মুক্তি বেগের সমীকরণ বের কর। [য. বো. ২০০৪; চা. বো. ২০০৬; রা. বো. ২০০৬; রা. বো. ২০০৬; কু. বো. ২০০৫; কু. বো. ২০০৫] অথবা, মুক্তি বেগ কি থ বা, গ ভূ-গৃষ্ঠ হতে জেন বস্ত্রর মুক্তি বেগের সমীকরণ বের কর। [য. বো. ২০০৪; চা. বো. ২০০৬; রা. বো. ২০০৬; রা. বো. ২০০৫; র. বো. ২০০৫; চ. বো. ২০০৫; বেধা, মুক্তি বেগ কি থ বা, গ ভূ-গৃষ্ঠ হতে জেন বস্ত্রর মুক্তি বেগের সমীকরণ বের কর। [য. বেগ, ২০০৬; বা. বো. ২০০৫; রা. বো. ২০০৫; রা. বো. ২০০৫; বেবা, ২০০৫; বেগের স্এবিবৃত ও ব্যাখ্যা কর। কেপলারের সূত্র হতে নিউটনের মহাকর্ষীম সৃদ্র প্রতিপাদন কর। ১৯। বস্তুর অভিকর্ষ কেন্দ্র ব্বাত কি বুঝ ? বিভুজাকৃটি পাতের অভিকর্ষ কেন্দ্র নির্ণয়ের গম্বতি বর্ণনা কর। ২০। রি কি কারণে ৫-এর মান পরিবর্তিত হয় ? বেরা, ২০০১; রা. বো. ২০০৬; রা. বো. ২০০৬; রা. বো. ২০০৬; রা. বো. ২০০৪; দেখাও যে ভূ-কেন্দ্রে ৪-এর মান পুন্য। [টা. বো. ২০০৬, ২০০; রা. বো. ২০০৬, ২০০৪; কৃ. বো. ২০০২] ২২। কৃত্রিম উপগ্রহে প্রদিশিরত মহাকাশচারী নিজেকে ওজনহীন বলে মনে করে কেন? ব্যাখ্যা কর। [চ. বো. ২০০২] ২। কৃত্রিম উপগ্রহে প্রদিশির মহাকাশচারী নিজেকে ওজনহীন বলে মনে করে কেন? ব্যাখ্যা কর। [চ. বো. ২০০২] ২। বু ৫৪ কণ্ড বেরে নামন পির পৃর্ট হিছে। তাদের কেন্দ্রণরের মধ্যবর্তী দূরত্ব ০া ম হলে, পারস্বরিক আর্ক্ষণ বল বত হবে ? [G = 666 × 10 ⁻¹¹ N-m ² . kg ⁻ g?] ২। g = 98 ms ⁻² স্থানে এক পতাংশ নির্থারে জিকর্বর্ধা জুরণ নির্ণয় কর। [উন্তর র রাজ গুলেশ মা ব স্টিং নিরি ডের ব্যাদার্ধে গোলম মনে কর। (ভিঃ ৪ হ 76 × 10 ⁻ m) ৪। মঞ্চান্গরে ব্যাদার্ধে গোলক মনে কর। (ভির ঃ 38 ms ⁻²] ৫। পৃথিবী কে ভড হত উচ্চাচার গেনে নেশানকার অভিকর্ষজ ভুরণের মান ভূর্ণ বের রাগার্দ বি দের মান গুর্দ্বা বা না বি হয় গের মান 98 ms ⁻² ৫। পৃথিবী বির্ট হতে হের ও বাসার্ধে ওের অভিকর্ষীয় ভূরণ বের মান নির্ণয় করে । পৃথিবীর ব্যাসার্ধ 6 4 × 10 ⁶ m, বের গৃষ্টি জিকির্বজ ভুরেরে বা বান নির্গয	
১৬। ভূ-পৃষ্ঠ হতে h গভীরতায় অভিকর্ষজ ভ্রবেশ্ব রাশিমালা নির্ণয় কর। ১৪। সূর্বের ভনের জন্য রাশিমালা নির্ণয় কর। ১৫। পৃথিবীর তর ও খনত্বের রাশিমালা নির্ণয় কর। ১৬। কৃত্রিম উপগ্রহের আবর্তনলাল ও উচ্ডার মধ্যে সম্দর্ক প্রতিপাদন কর। ২৭। মুক্তি বেগ কাকে বলে ? ভূ-পৃষ্ঠ হতে কোন বস্তুর মুক্তি বেগের সমীকরণ বের কর। [য. বো. ২০০৪; ঢা. বো. ২০০৩; রা. বো. ২০০৬; র. বো. ২০০৬; চ. বো. ২০০৩; কু. বো. ২০০৫; চ. বো. ২০০৬; রা. বো. ২০০৬; রা. বো. ২০০৬; রা. বো. ২০০৬; রা. বো. ২০০৫; চ. বো. ২০০৬; বে. বে. ২০০৫; চ. বো. ২০০৫; চ. বো. ২০০৫; চ. বো. ২০০৪] অথবা, মুক্তি বেগ কি ? এর রাশিমালা প্রতিপাদন কর। [ম. বো. ২০০৪; রা. বো. ২০০৫; কে বো. ২০০৬; রা. বো. ২০০৬; রা. বো. ২০০৬; রা. বো. ২০০৫; চ. বো. ২০০৪] ১৮। কেপলারের সূত্র বিতৃত ও বাখ্যা কর। কেল্রারের সূত্র হতে নিউটনের মহাকর্ষীয় সুগ্র প্রতিপাদন কর। ২০। গ্রহের গতি সম্পর্কিত বেশলারের সূত্রসমূহ বর্ণনা কর। [সি. বো. ২০০৬; রু. বো. ২০০১; রা. বো. ২০০৪] ২০। গ্রহের গতি সম্পর্কিত বেশলারের সূত্রসমূহ বর্ণনা কর। [সি. বো. ২০০৬; কু. বো. ২০০১; রা. বো. ২০০৪] ২০। গ্রহের গতি সম্পর্কিত বেশলারের সূত্রসমূহ বর্ণনা কর। [সি. বো. ২০০৬; কু. বো. ২০০১; রা. বো. ২০০৪] ২০। কুরিম উপগ্রহে প্রবিজি বায় শার্সের্বার্ড তের উল্লেই বেলে মনে করে কেন ? ব্যাখ্যা কর। [চ. বো. ২০০৪] ২০। কৃত্রিম উপগ্রহে প্রবিজমে মহাকাশচারী নিজেকে ওজনহীন বলে মনে করে কেন ? ব্যাখ্যা কর। [চ. বো. ২০০২] ২০। কৃত্রিম উপগ্রহে ব্যদিষ্ণি পৃথিবীর ব্যামার্ধে প্রতির হের গুজ বেল মানে বর ক শতাবে বাণিতিক সমস্যাবনি : ১। দুটি গোলকের তর যথারুমে মণ্ড ম্রানের আভিকর্ষয় ভুরাণ নির্ণয় করা। [উন্নয় 576 × 10° m] ৪। ফালগগরের ব্যাসার্ধ পৃথিবির ব্যাসার্ধের গের বের বারে ব্যা ব্রণ গ্রি ব্রাজ বরের মানারে ব্রু শন্তের যোন্দে ব্রা বাদের বে লাফ বরে তের হের গুল এবং জর ০'11 গুণ। ভূ-পৃষ্টে অভিকর্ষজ ভূরণের মানা পৃষ্টি বাসার্ধ জনে ব্রে বিরু বের বাল বির্ণ বির গেল মনে ক গাজমের বা পৃথিবী পৃষ্ঠ হতে হেও ফা জিতরে মাভিকর্যী ভূরবের মান নির্ণয় করে। [উন্বর হাসার্ধ 64 × 10°m, ৪। মন্ডলকর্গজ ভের বাসার্দের গোল হে বন জর হে বালার্দের বের ভার্ডকর্বা হেরের মানা দির্ণয় করে বালা বিরে	
১৪। সূর্বের ভরের জন্য রাশিমালা নির্পয় কর। ১৫। গৃথিবীর তার ও ঘনত্ত্বর রাশিমালা নির্পয় কর। ১৬। কৃত্রিম উপগ্রহের আবর্তনকাল ও উচতার মধ্যে সম্পর্ক প্রতিপাদন কর। ১৬। কৃত্রিম উপগ্রহের আবর্তনকাল ও উচতার মধ্যে সম্পর্ক প্রতিপোদন কর। [য. বা. ২০০৪; ঢা. বো. ২০০৩; রা. বো. ২০০৬; রা. বো. ২০০৬; র. বো. ২০০৩; কৃ. বো. ২০০৫; চ. বো. ২০০৫; অথবা, মুস্তি বেগ লিং ? এর রাশিমালা প্রতিপাদন কর। ১৯। বস্তুর অতিকর্ষ কেন্দ্র বৃত্ত ও ব্যাখ্যা কর। কেপারের সূত্র হতে নিউনের মহাকর্মীয় সূত্র প্রতিপাদন কর। ১৯। বস্তুর অতিকর্ষ কেন্দ্র বন্দে ও কুরু। গ্রিভূজাকৃতি গাতের অভিকর্ষ কেলু নির্ণয়ের গল্মে বিধান কর। ১৯। বস্তুর অতিকর্ষ কেন্দ্র বন্দে কে বুরু। গ্রিভূজাকৃতি গাতের অভিকর্ষ কেলু নির্ণয়ের গল্মে বিধান কর। ২৯। বস্তুর অতিকর্ষ কেন্দ্র বনে কে বুরু। গ্রিভূজাকৃতি গাতের অভিকর্ষ কেলু নির্ণয়ের গল্মে বিধান কর। ২৯। গ্রহর গতি সম্পর্কিত কেপনারের সূত্র মৃদ্র বর্ণনা কর। [সি. বো. ২০০৩; রু. বো. ২০০১; রা. বো. ২০০২] (বা. ২০০২; রা. বো. ২০০২; রা. বো. ২০০২; রা. বো. ২০০২; রা. বো. ২০০২; (বা. বা. ২০০২; রা. বো. ২০০২] (বা. বা. ২০০২] (বা. বা. ২০০২] (বা. বা. ২০০৪; ফি. বো. ২০০২] (বা. বা. ২০০২] (বা. বা. ২০০২] (বা. বা. ২০০২] (বা. বা. ২০০২] (বা. বা. ২০০২] (বা. বা. ২০০২] গাণিতিক সমস্যাবনি : ১০ দুর্টের উপগ্রহে প্রশিক্ষমে 40 kg ও 15 kg। তাদের কেন্দ্রদ্বয়ের মধ্যবর্তী দূরত্ 01 m হলে, পারস্রারি আকর্ষণ বল কত হবে ? [G = 666 × 10 ⁻¹¹ N-m ² . kg ⁻² g] [উ: 3996 × 10 ⁻⁷ N] ২০ g = 98 ms ⁻² স্থানে একটি সিং নিউতে ফোন একটি বস্তুর ওজন 98 N হল। বস্তুটির ডর কত ? কোন স্থানে বা পিহি নির্জিডে বস্তুটির ওজন 94 N হলে ঐ স্যান্যে অতিকর্ষীয় তুরণ নির্ণয় কর। [উ: 1 kg : 94 ms ⁻²] ৩। ডূ-পৃষ্ঠ হতে কত উচতায় গেনে সেখানকার অভিকর্ষজ তুরণের মান ডূ-পৃষ্ঠের অভিকর্ষজ ত্বেগে মান লের জিল্ব বা পৃথিবী পৃষ্ঠ হতে হে আট জানে সেখানকায় অভিকর্ষজ তুরণের মান ভূ-পৃষ্ঠের অভিকর্ষজ তুরণের মান পর্বান্ধ কে শাজ্য ৪। ফালগর গের্ট অভিকর্বজ তুরণ্যানর্ধের গেলে বেণ্ড করে জেন্দের মান ভূ-পৃষ্ঠের অভিকর্ষজ তুরণের মান পর ক্ষা - (জির র ঃ 576 × 10 ⁶ m] ৪। ফালগর বেরে বাসার্দ পৃথিবীর গড় ঘনডু হে প্রতি বির্গ হের ও বাসার্দের বান পরি বার বাসের বে ব গজলু- (জির র হাস্য বাসার্দ বির বাটের হেলের অভিকর্যীয় তুরের হের ও	
১৫। পৃথিবীর ভর ও ঘনত্বের রাশিমালা নির্পন্ন কর। ১৬। কৃত্রিম উপগ্রহের আর্বর্জনকা ও উচতার মধ্যে সম্পর্ক প্রতিপাদন কর। ১৭। মুক্তি বেগ লাকে বলে ? ভূ-পৃষ্ঠ হতে কোন বস্তুর মুক্তি বেগের সমীকরণ বের কর। যি. বো. ২০০৪; চ. বো. ২০০৬; রা. বো. ২০০৬; রা. বো. ২০০৬; র. বো. ২০০৫; চ. বো. ২০০৫] ৬৭। মুক্তি বেগ বি ? এর রাশিমালা প্রতিপাদন কর। [দি. বো. ২০০৬; রা. বো. ২০০৫; চ. বো. ২০০৫] ১৮। কেপলারের সূত্র বিবৃত ও ব্যাখ্যা কর। কেপলারের সূত্র হতে নিউটনের মহাকর্যীয় সূত্র প্রতিপাদন কর। ১৯। বস্তুর অভিকর্ষ কেন্দ্র বেতে কি বৃথ ? ত্রিভূজাকৃতি গাতের অভিকর্ষ কেন্দ্র নির্ণায়ে গম্বতি বর্ণনা কর। ১৯। বস্তুর অভিকর্ষ কেন্দ্র বেতে কি বৃথ ? ত্রিভূজাকৃতি গাতের অভিকর্ষ কেন্দ্র নার্পিমাল কর। ১৯। বস্তুর অভিকর্ষ কেন্দ্র বেতে কি বৃথ ? ত্রিভূজাকৃতি গাতের অভিকর্ষ কেন্দ্র নির্ণায়ে গম্বতি বর্ণনা কর। ১৯। বস্তুর অভিকর্ষ কেন্দ্র বেরে সূত্রসমূহ বর্ণনা কর। [দি. বো. ২০০৬; রু. বো. ২০০১; রা. বো. ২০০১] ২০। গ্রিক কার্গতে দু-এর মান পরিবর্ডিত হয় ? [ব. বো. ২০০৬, ২০০৪; কৃ. বো. ২০০১] ২০। কৃতির সম্পর্কি বেগলা বে, ব্যা নাল পূন্য] [ঢা. বো. ২০০৬, ২০০১; রা. বো. ২০০৬, ২০০৪; কৃ. বো. ২০০১] ২২। কৃত্রিম উপগ্রহে প্রদিশরত মহাকাশচারী নিজেকে ওজনহীন বলে মনে করে কেন? ব্যাখ্যা কর। [চ. বো. ২০০২] শ্বণিতিক সমন্যাবনি ঃ ১০। দুটি গোলকের জর যথারুমে 40 kg ও 15 kg। তাদের কেন্দ্রন্থরে মধ্যবর্তী দূরত্ব 01 m হলে, পারস্রিক আর্ক্ষণ বল কত হবে ? [G = ১র্গে ২০০৫, সেনা একটি সিহা নিন্তিতে কোন একটি বস্তুর ওজন 9'8 N হল। বস্তুটির ভল্ল কড ? কোন স্বানে, ব স্রিং নির্ক্তিত বস্তুটির ওজন 9.4 N হলে ঐ স্বানের অভিকর্ষীয় ত্বরণ নির্ণয় কর। [উর 39.96 × 10 ⁻⁷ N] ২। g = 98 ms ⁻² স্বানে একটি সিহা নির্ভিতে কোন একটি বস্তুর ওজন 9'8 N হল। বস্তুটির ভার কড ? কেনা সন্থালে ব পৃথিবীকৈ 64 × 10 ⁶ m ব্যাসার্ধের গোলমে বেন্দ্রকার অভিকর্ষীয় ত্বরণ নির্ণয় কর। ৫। পৃথিবী পৃষ্ঠ হতে ০০ ৫ উচতার গেলে পোখনকার অভিকর্ষীয় ত্বরণের মান লু প্র্যের আন্রের জ্বরেণ্ন মানের প্র প্রতান্ধ ন্র গ্রা প্রিরি ব্যাসার্ধের তেরে প্রতিকর্য্বি ত্বরণের মান ৪ ms ⁻² বে ? পৃথিবীকে বির বাসার্ধ গুবিরির ব্যাসার্ধের তেরে অভিকর্ষীয় ত্বরণের মান নির্ণ্ম কর। [উন্ডর ন্ট প্রাংণের মান 98 ms ⁻² বে গুরি নির্ণার ব্যাসার্ধ হে ত্র-পৃষ্ঠ হত 900 km উর্ধ্বে থেকে পৃ	
১৬। কৃত্রিম উপগ্রহের আবর্ডনকাল ও উচতার মধ্যে সম্পর্ব প্রতিশাদন কর। ১৭। মুক্তি বেগ কাকে বলে ? ডু-গৃষ্ঠ হতে কোন বস্তুর মুক্তি বেগের সমীকরণ বের কর। [য. বো. ২০০৪; ঢা. বো. ২০০৩; রা. বো. ২০০৬; রা. বো. ২০০৬; র. বো. ২০০৬; কু. বো. ২০০৬; কু. বো. ২০০৬] অথবা, মুক্তি বেগ কি ? এর রাশিমালা প্রতিশাদন কর। [স. বো. ২০০৬; রা. বো. ২০০৬; রা. বো. ২০০৬; রা. বো. ২০০৬; কু. বো. ২০০৬; কু. বো. ২০০৬] ৬৮। বেপপারের সূত্র বিবৃত ও ব্যাগা কর। কেপলারের সূত্র হতে নিউটনেম মহাকর্ষীয় মূদ্র প্রতিপাদন কর। ১৯। বস্তুর অভিকর্ষ কেন্দ্র বিবৃত ও ব্যাগা কর। কেপলারের সূত্র হতে নিউটনেম মহাকর্ষীয় মূদ্র প্রতিপাদন কর। ১৯। বস্তুর অভিকর্ষ কেন্দ্র ব্যাগা কর। কেপলারের সূত্র হতে নিউটনেম মহাকর্ষীয় মূদ্র প্রতিপাদন কর। ১৯। বস্তুর অভিকর্ষ কেন্দ্র ব্যাগা কর। কেপলারের সূত্র হতে নিউটনেম মহাকর্ষীয় মূদ্র প্রতিপাদন কর। ২০। গ্রহের গতি সম্পর্কিত কেপলারের সূত্রসমূহ বর্গনা কর। াসি. বো. ২০০৩; কু. বো. ২০০১; রা. বো. ২০০৪; দেখাও যে ছু-কেন্দ্রে _৪ -এর মান শৃন্য। [জা. বো. ২০০৬, ২০০১; রা. বো. ২০০৪; কু. বো. ২০০৪; দেখাও যে ছু-কেন্দ্রে _৪ -এর মান শৃন্য। [জা. বো. ২০০৬, ২০০১; রা. বো. ২০০৪; কু. বো. ২০০৪; ৫. বো. ২০০৪; কি. বো. ২০০৪; কি. বো. ২০০৪; কি বো. ২০০৪; কি. বো. ২০০৪; বাংগাও যে ছু-কেন্দ্রে _৪ -এর মান শৃন্য। [জা বেরা. ২০০৬, ২০০১; রা. বো. ২০০৪; কি. বো. ২০০৪; ৫. বো. ২০০৪; কি. বো. ২০০৪; কি. বো. ২০০৪; ৫. বা হেবিঃ, সি বো. ২০০৪; ৫. বা কি ফারলে ব্র ব্যার্জমে ধর্য মান স্ন্য। [জারের কেন্দ্র ব্যাখ্যা কর। [চ. বো. ২০০৪] ২. বিরিম উপগ্রহে প্রদার্জমে মে ৫০ kg ও 15 kg। তোদের কেন্দ্র ঘার্ষা করে বেল গ্ ব্যাখ্যা কর। [চ. বো. ২০০৪] ২. বিরিং উপযহে প্রবির আরুমে 40 kg ও 15 kg। তোদের কেন্দ্র ঘণ্ডন বেরে কেন ? ব্যাখ্যা কর। [ডিঃ 3996 × 10 ⁻⁷ N] ২. বির হা প্রতির ভচ্ন পর ৭ মেরে বের্ বির্জ বের্দা বির্বার ক্রমার্বার্ঘ কুরা নির্দের মান বেরে কে শতান্থানে বা <i>g</i> বির্ট বে কি মালশানে বে লেশন কর। [উঃ বিন্গ বের বাল পর্যা কি হেলে বেলে বির্ফেরে জেন্দ ব্রের জেন গানা জুন। ছু-গৃষ্ঠের অভিকর্যজ জুরবের মানে বন্ধ বন্ধ শতান্ধ বা পৃথিবী পে ঠ হতে 200 km ভিতরে অভিকর্ষীয় জুরণের মান নির্ণয় কর। পৃথিবীর ব্যাসার্ধ 64 × 10°m, G = 667 × 10 ⁻¹¹ Mn² kg ⁻² এবং গৃথিবীর ব্যাঙ্গ ঘন্ত ব্যার্থা জে বা বান্দ্র জি বা ব্যাগার্ধ ব	
১৭। মুক্তি বেগ কাকে বলে ? ছ-পৃষ্ঠ হতে কোন বস্তুর মুক্তি বেগের সমীকরণ বের কর। [য. বো. ২০০৪; ঢা. বো. ২০০৬; রা. বো. ২০০৬; চ. বো. ২০০৬; কৃ. বো. ২০০৫; অথবা, মুক্তি বেগ কি ? এর রাশিমালা প্রতিণাদন কর। [দি. বো. ২০০৬; চ. বো. ২০০৫; চ. বো. ২০০৫] ১৮। বেপলারের সূত্র বিবৃত ও ব্যাখ্যা কর। কেপলারের সূত্র হতে নিউটেনের মহাকর্ষীয় সূত্র প্রতিপাদন কর। ১৯। বস্তুর অভিকর্ধ কেল্র বলতে কি বুঝ ? ত্রিহুজাকৃতি পাতের অভিকর্ষ কেল্র নির্ণায় স্বাক্ত বিতাদ কর। ২০। গ্রহের গতি সম্পর্কিত কেপলারের সূত্রসমূহ বর্ণনা কর। [দি. বো. ২০০৬; রু. বো. ২০০১; রা. বো. ২০০০] ২০। গ্রহের গতি সম্পর্কিত কেপলারের সূত্রসমূহ বর্ণনা কর। [দি. বো. ২০০৬; কু. বো. ২০০১; রা. বো. ২০০০] ২০। গ্রহের গতি সম্পর্কিত কেপলারের সূত্রসমূহ বর্ণনা কর। [দি. বো. ২০০৬; কু. বো. ২০০১; রা. বো. ২০০৪] ২০। গ্রহের গতি সম্পর্কিত কেপলারের সূত্রসমূহ বর্ণনা কর। [দি. বো. ২০০৬; কু. বো. ২০০১; রা. বো. ২০০৪] ২০। কি ক কারণে ৫-এর মান পরিবর্তিত হয় ? বে বা: ২০০৪; ফি. বো. ২০০৪; ফু. বো. ২০০৪; কু. বো. ২০০৪; কু. বো. ২০০৪; ৮. বো. ২০০৪; ফি. বে। ২০০৪; ফি. বো. ২০০৪; ফি. বে। ২০০৪; কি. বে। ২০০৪; ফি. বো. ২০০৪; ৫. বে ২০০৪; ফি. বে। ২০০৪; ফি. বে। ২০০৪; ২২। কৃত্রিম উপগ্রহে প্রদাদিগত মহাকাশচারী নিজেকে ওজনহীন বলে মনে করে কেন? ব্যাখ্যা কর। [চ. বো. ২০০২] ২২। বৃত্রিম উপগ্রহে প্রদাদিগত মহাকাশচারী নিজেকে ওজনহীন বলে মনে করে কেন? ব্যাখ্যা কর। [চ. বো. ২০০২] ২২। বৃত্রি গেল বের এক গর্যার্ক বেরে প্রিত্তে কোন একটি বস্তুর ওজন 9.8 মহন। বস্তুটির জর কত ? কেনন স্বাবে ব স্থি নিস্তিত কন্দ্র প্রথ নির বাচার্কে প্রের ম্বানর অর্জ কর্ডের মানে এক শতাংশ বে ? পৃবিবীকে 64×10°m ব্যাসার্ধের গের বার বে বে জাতিকর্যীয় ভুরণের মান ভূ-পৃষ্ঠের অভিকর্ষজ ভুরবের মানে এক শতাংশ বে ? পৃবিবীকে 64×10°m ব্যাসার্ধের গোলন বেরে বে তা হের গের বানা লির্ণয় কর। [উন্তের ঃ ব্যাসার্ধ 64×10°m, G = 667×10 ⁻¹¹ Nm² kg² এবং পৃথিরীর ব্যাসার্ধের ০ে তাহে গুণ এবং তর ০াণ গুণ। ডু-পৃষ্ঠে অভিকর্ষজ ভুরনের মান প্র মাত্র বে পৃষ্ঠি অভিকর্বজ ব্যাসার্ধ উডার হ ব্যাসার্ধ তারের প্র ব্যালর গড় ব্যাসার্ধের বার ব্র বির্তু বের ব্যাল নির্ণয় করে ও ব্যাসার্ধে বে পৃথ্রির লডর ও ব্যাসার্ধ জরার ব্যার গড় বা লা বেরে বে পৃথিরীর জন্তর ও ব্যাসার্ধের বের পৃথিরির ব্যাসার্ধ বের পৃথিরির ব্যা বি	
[য. বো. ২০০৪; ঢা. বো. ২০০৬; রা. বো. ২০০৬; চ. বো. ২০০৬; কৃ. বো. ২০০২] অথবা, মুক্তি বেগ বি ? এর রাশিমালা প্রতিপাদন কর। [সি. বো. ২০০৬; র. বো. ২০০৫; চ. বো. ২০০৫] ১৮। বেপলারের সূত্র বিকৃত ও বাখ্যা কর। বেপলারের সূত্র হতে নিউটনের মহাকর্ষীয় সূত্র প্রতিপাদন কর। ১৯। বস্তৃর অভিকর্ষ কেন্দ্র বলতে কি বুঝ ? ত্রিভূজাকৃতি পাতের অভিকর্ষ কেন্দ্র নির্বায় স্বত প্রতিপাদন কর। ২০। বহের গতি সম্পর্কিত কেপলারের সূত্রসমূহ বর্ণনা কর। [সি. বো. ২০০৬; র. বো. ২০০২); রা. বো. ২০০২] ২১। বি কি কারণে <i>g</i> -এর মান পরিবর্তিত হয় ? [ব. বো. ২০০১; রা. বো. ২০০২]; রা. বো. ২০০২] ২০। বি কি কারণে <i>g</i> -এর মান পরিবর্তিত হয় ? [ব. বো. ২০০৬]; কি বো. ২০০২] (দখাও যে ভূ-কেন্দ্রে <i>g</i> -এর মান পরিবর্তিত হয় ? দেখাও যে ভূ-কেন্দ্রে <i>g</i> -এর মান শুন্য। [ঢা. বো. ২০০৬, ২০০১; রা. বো. ২০০৬, ২০০৪; কৃ. বো. ২০০২] ২২। কৃত্রিম উপগ্রহে প্রশিক্ষণরত মহাকাশচারী নিজেকে ওজনহীন বলে মনে করে কেন? ব্যাখ্যা কর। [চ. বো. ২০০২] ২২। কৃত্রিম উপগ্রহে প্রশিক্ষণে 40 kg ও 15 kg। তাদের কেন্দ্রদ্বয়ের মধ্যবর্তী দূরত্ব 01 m হলে, পারস্পরিক আকর্ষণ বল কত হবে ? [G = ৫০৫ ২০ ⁻¹¹ N-m ² kg ⁻² g] [উঃ 3996 × 10 ⁻⁷ N] ২। <i>g</i> = 98 ms ⁻² আনে একটি স্বিণ্ নিস্কিতে কোন একটি বস্তুর ওজন 98 N হল। বস্তুটির ভর কত ? কোন আবর্ষে ব স্থি নিস্কিত বস্তুটির ওজন 94 N হলে ঐ আনের অভিকর্ষীয় তুরণ নির্ণয় কর। [উঃ 1 kg ; 94 ms ⁻²] ৩। ভূ-পৃষ্ঠ হতে কত উচতায় গেলে পেখানকার অভিকর্ষজ তুরণের মান ভূ-পৃষ্ঠের অভিকর্ষজ ভূরণের মানের এক শতাংশ হবে ? পৃবিবীকে 64 × 10 ⁶ m ব্যাসার্ধের গ্রাসার্ধর ০532 গুণ এবং ভর ০11 গুণ। ভূ-পৃষ্ঠে অভিকর্ষজ ভূরবের মান 98 ms ⁻² মেণ্র পৃষ্ঠি অভিকর্ষজ ভূরণের মান নির্ণয় কর। [উন্তের হের ০11 গুণ। ভূ-পৃষ্ঠে প্রভিক্ষিজ তুরণের মান বি 4 × 10 ⁶ m] ৪। স্থলটি গ্রে বে পৃথিবীর ব্যাসার্ধের গের বে জিকব্রীয় ত্বরণের মান বিণ্ শ্বির ব্যাসার্ধ 64 × 10 ⁶ m] ৫। পৃথিবী পৃষ্ঠ হতে 200 km ভিতরে অভিকর্ষীয় ত্বরণ ব্রা বা লির্ণয় কর। [উন্তের ঃ 95 ms ⁻²] ৫। পৃথিবী পৃষ্ঠ হতে বত থা মার্ড ভিরে হ অভিকর্যীয় ত্বর ও ব্যাসার্ধের হিণুণ। ভূ-পৃষ্ঠে <i>g</i> = 98 ms ⁻² হলে গার্ব ধরের পৃষ্ঠে দুনির্ণা কর। [জিবের ব্যাসার্ধ হের পৃথিবীর গ্রাজ ব ব্যাসার্ধের থেক প্রথিবির ব্যাসার্ধ ৫৫বে স্বে বি দেজে দের (জ বর্ণন হে প্র বিণ্ বির ব্যাসার্ধ R = 6400 km	
১৮। কেপলারের সূত্র বিবৃত ও ব্যাখ্যা কর। কেপলারের সূত্র হতে নিউটনের মহাকর্ষীয় সূত্র প্রতিকর্দ কের। ১৯। বস্তুর অতিকর্ষ কেন্দ্র বন্দতে কি বৃঝ ? ব্রিড্ছাকৃতি গাতের অতিকর্ষ কেন্দ্র নির্ণয়ের গল্থতি বর্গনা কর। ২০। গ্রহের গতি সম্পর্কিত কেপলারের সূত্রসমূহ বর্ণনা কর। [সি. বো. ২০০৩; কু. বো. ২০০১; রা. বো. ২০০০] ২১। কি কি কারণে g-এর মান পরিবর্তিত হয় ? [ব. বো. ২০০৬; কু. বো. ২০০১; রা. বো. ২০০৪; দেখাও যে ড্র-কেন্দ্রে g-এর মান পরিবর্তিত হয় ? [ব. বো. ২০০৬; কু. বো. ২০০৪; কু. বো. ২০০৪] ২২। কৃ কি কারণে g-এর মান পরিবর্তিত হয় ? [ব. বো. ২০০৬; কু. বো. ২০০৪; কু. বো. ২০০৪; দেখাও যে ড্র-কেন্দ্রে g-এর মান শূন্য। [ঢা. বো. ২০০৬, ২০০১; রা. বো. ২০০৪; কে বো. ২০০৪] ২২। কৃ ব্রিম উপগ্রহে প্রদক্ষিণরত মহাকাশচারী নিজেকে ওজনহীন বলে মনে করে কেন? ব্যাখ্যা কর। [চ. বো. ২০০২] 11ণিটিক সমস্যাবলি : ১। দৃটি গোলকের ডর যথাক্রমে 40 kg ও 15 kg। তাদের কেন্দ্রদ্বেয়ের মধ্যবর্তী দূরত্ব 0.1 m হলে, পারস্পরিক আকর্ষণ বল কত হবে ? [G = 666 × 10 ⁻¹¹ N-m ² . kg ⁻² g] [উ: 3996 × 10 ⁻⁷ N] ২। g = 98 ms ⁻² স্থানে একটি স্প্রি নিস্তিতে কোন একটি বস্তুর ওজন 98 N হল। বস্তৃটির ডর কত ? কোন স্থানে এ স্থিং নিস্তিতে বস্তৃটির ওজন 94 N হলে এ স্থানের অতিকর্ষয় ত্বরণ নির্ণয় কর। [উ: যে kg ; 94 ms ⁻²] ০। ভূ-পৃষ্ঠ হতে কত উচতায় গেলে সেখানকার অতিকর্ষয় ত্বরণ নির্ণয় কর। [উ: যে kg ; 94 ms ⁻²] ৫। পৃথিবীকে 64 × 10 ^{em} ব্যাসার্ধের তালক মনে কর। [উন্তর ঃ ওজন 98 N হল। ব্রে ছিল্ব গ্রে মানের এক শতাংশ হবে ? পৃথিবীকে 64 × 10 ^{em} ব্যাদার্ধের গোলক মনে কর। ৪। মন্ডালগ্রহের ব্যাসার্ধ পৃথিবীর ব্যাসার্ধের ০532 গুণ এবং তর 0.11 গুণ। ডু-পৃষ্ঠে অতিকর্ষজ ত্বরণের মান পঞ্জ ms ⁻² মন্ডালের পৃষ্ঠে অতিকর্ষজ তুরণের মান নির্ণয় করে আর্জকর্বিয় ত্বরণের মান নির্ণয় কর। [উন্তর ঃ ওল হ?] ৫। পৃথিবী পৃষ্ঠ হতে 200 km ভিতরে অভিকর্ষযি তুরণের মান নির্ণয় কর। পৃথিবীর ব্যাসার্ধ 64 × 10 ^{em} , G = 667 × 10 ⁻¹¹ Nm ² kg ⁻² এবং পৃথিবীর গ্যাসার্ধে তের অভিকর্ষীয় তুরণের মান নির্ণয় কর। গুণ্ডিরি র ব্যাসার্ধ 64 × 10 ^{em} , G = 667 × 10 ⁻¹¹ Nm ² kg ⁻² এবং পৃথিবীর গ্রাসার্ধ হ ব্র ও গ্র ও ব্যাসার্ধের হিল্ণ হ লু গ্র ৪ ব্যা হের পৃষ্ঠে দু নির্ণয় কর। [পৃথিবীর ব্যাসার্ধ হ ভ-পৃষ্ঠ হতে 900 km উর্ধের থেকে পৃথিবী প্র দের	
১৯। বস্তুর অভিকর্ষ কেন্দ্র বলতে কি বুঝ ? গ্রিভ্জাকৃতি পাতের অভিকর্ষ কেন্দ্র নির্ণয়ের পল্যতি বর্ণনা কর। ২০। গ্রহের গতি সম্পর্কিত কেপলারের সূত্রসমূহ বর্ণনা কর। [সি. বো. ২০০৩; কু. বো. ২০০১; রা. বো. ২০০২] ২১। কি কি কারণে g-এর মান পরিবর্তিত হয় ? [ব. বো. ২০০৬; ২০০১; রা. বো. ২০০১; রে. বে০. ২০০৪; দেখাও যে ভূ-কেন্দ্রে g-এর মান শূন্য। [ঢা. বো. ২০০৬, ২০০১; রা. বো. ২০০৬, ২০০৪; ফ. বো. ২০০৪; ১২। কৃত্রিম উপগ্রহে প্রদক্ষিণরত মহাকাশচারী নিজেকে ওজনহীন বলে মনে করে কেন? ব্যাখ্যা কর। [চ. বো. ২০০২] ২২। কৃত্রিম উপগ্রহে প্রদক্ষিণরত মহাকাশচারী নিজেকে ওজনহীন বলে মনে করে কেন? ব্যাখ্যা কর। [চ. বো. ২০০২] গাণিতিক সমস্যাবলি : ১। দৃটি গোলকের ভর যথাক্রমে 40 kg ও 15 kg। তাদের কেন্দ্রদ্বয়ের মধ্যবর্তী দূরত্ব 0.1 m হলে, পারস্পরিক আকর্ষণ বল কত হবে ? [G = 6.66 × 10 ⁻¹¹ N-m ² . kg ² g] [উঃ 39.96 × 10 ⁻⁷ N] ২। g = 9.8 ms ⁻² স্থানে একটি স্থিং নিস্তিতে কোন একটি বস্তুর ওজন 9.8 N হল। বস্তুটির ভর কত ? কোন স্থানে ব স্থিং নিস্তিতে বস্তুটির ওজন 9.4 N হলে ব স্থানের অভিকর্ষীয় ত্বরণ নির্ণয় কর। [উংর 1 kg ; 94 ms ⁻²] ৬। ভূ-পৃষ্ঠ হতে কত উচতায় গেলে সেখানকার অভিকর্ষদ্ধ তুরণের মান ভূ-পৃষ্ঠের অভিকর্ষদ্ধ ত্বরণের মানের এক শতাংশ হবে ? পৃথিবীকে 64 × 10 ⁶ m ব্যাসার্ধের গেলে বন বর। [উন্তের ২ ; স্পর্থির ব্যাসার্ধ 64 × 10 ⁶ m] ৪। মজলগহের ব্যাসার্ধ পৃথিবীর ব্যাসার্ধের ০:532 পুণ এবং ভর 0:11 গুণ। ভূ-পৃষ্ঠে অভিকর্ষদ্ধ ত্ববেরে মান 9.8 ms ⁻² মঙালের পৃষ্ঠে অভিকর্ষদ্ধ তুরণের মান নির্ণয় কর। [উন্তের ঃ 57.6 × 10 ⁶ m] ৫। পৃথিবী পৃষ্ঠ হতে 200 km ভিতরে অভিকর্ষীয় ত্বরণের মান নির্ণয় কর। গৃথিবীর ব্যাসার্ধ 64 × 10 ⁶ m, G = 667 × 10 ⁻¹¹ Nm ² kg ⁻² এবং পৃথিবীর ব্যাসার্ধের ০:532 গুণ এবং ভর 0:11 গুণ। ভূ-পৃষ্ঠে অভিকর্ষদ্ধ তুরণের মান 9.8 ms ⁻² মঙালের পৃষ্ঠে অভিকর্যদ্ধ তুরণের মান নির্ণয় কর। [উন্তের ঃ ৪ স্রণের মান 9.8 ms ⁻² আর্টা রহেরে ভর ও ব্যাসার্ধ উত্যের ঘার ব্য প্রেরের তা হব গুণ এবং ভর ০'11 গুণ। ভূ-পৃষ্ঠে অভিকর্ষদ্ধ তুরেরের মান পে কে, G = 667 × 10 ⁻¹¹ Nm ² kg ⁻² এবং পৃথিবীর ব্যাসার্ধ র ও ব্যাসার্ধের দিগুণ। ভূ-পৃষ্ঠে g = 9.8 ms ⁻² হলে এ গ্রহের বার্বচনকাল নির্ণয় কর ও ব্যাসার্ধ ছিত্রহ হত 900 km উর্ধ্ধে থেকে পৃথিবী প্রদান্ধি করছে। উপগ্রহটির নূন্যন্দর দুরিও আবর্ট রহল সর্বন।	অথবা, মুক্তি বেগ কি ? এর রাশিমালা প্রতিপাদন কর। [সি. বো. ২০০৬ ; রা. বো. ২০০৫ ; চ. বো. ২০০৫]
২০। গ্রহের গতি সম্পর্কিত কেপদারের সূত্রসমূহ বর্ণনা কর। [সি. বো. ২০০৩; কু. বো. ২০০১; রা. বো. ২০০১] ২১। কি কি কারণে g-এর মান শ্রন্য। [ঢা. বো. ২০০৬, ২০০১; রা. বো. ২০০১; র. বো. ২০০৪; দেখাও যে ভূ-কেন্দ্রে g-এর মান শ্র্ন্য। [ঢা. বো. ২০০৬, ২০০১; রা. বো. ২০০৪; কৃ. বো. ২০০৪; ১২। কৃত্রিম উপগ্রহে প্রদক্ষিণরত মহাকাশচারী নিজেকে ওজনহীন বলে মনে করে কেন? ব্যাখ্যা কর। [চ. বো. ২০০২] ২২। কৃত্রিম উপগ্রহে প্রদক্ষিণরত মহাকাশচারী নিজেকে ওজনহীন বলে মনে করে কেন? ব্যাখ্যা কর। [চ. বো. ২০০২] গাণিতিক সমস্যাবনি ঃ ১। দুটি গোলকের ডর যথারুমে 40 kg ও 15 kg। তাদের কেন্দ্রদ্বরের মধ্যবর্তী দূরত্ব 01 m হলে, পারস্পরিক আকর্ষণ বল কত হবে ? [G = 6.66 × 10 ⁻¹¹ N-m ² . kg ⁻² g] [উঃ 39.96 × 10 ⁻⁷ N] ২। g = 9.8 ms ⁻² স্থানে একটি স্থিং নিস্তিতে কোন একটি বস্তুর ওজন 9.8 N হল। বস্তুটির ডর কত ? কোন স্থানে এ স্থিং নিস্তিতে কস্তুটির ওজন 9.4 N হলে এ স্থানের অভিকর্ষিয় ত্বরণ নির্ণয় কর। [উঃ 1 kg ; 94 ms ⁻²] ৩। ভূ-পৃষ্ঠ হতে কত উচতায় গেনে সেখানকার অভিকর্ষদ্ধ ত্বরণের মান ভূ-পৃষ্ঠের অভিকর্ষদ্ধ ত্বরণের মানের এক শতাংশ হবে ? পৃথিবীকে 64 × 10 ⁶ m ব্যাসার্ধের গেলব কর। [উন্তর ঃ 57.6 × 10 ⁶ m] ৪। মঞ্জলগ্রহের ব্যাসার্ধ পৃথিবীর ব্যাসার্ধের ০:532 গুণ এবং ভর 0:11 গুণ। ভূ-পৃষ্ঠে অভিকর্ষদ্ধ ত্ববের মান 9.8 ms ⁻² মঞ্চালের পৃষ্ঠে অভিকর্ষদ্ধ ত্বনের মান নির্ণয় কর। [উন্তর ঃ 57.6 × 10 ⁶ m] ৫। পৃথিবী পৃষ্ঠ হতে 200 km ভিতরে অভিকর্ষীয় ত্বরণের মান নির্ণয় কর। গৃথিবীর ব্যাসার্ধ 6.4 × 10 ⁶ m, G = 667×10 ⁻¹¹ Nm ² kg ⁻² এবং পৃথিবীর গড় ঘনতু 5.5 × 10 ³ kgm ⁻³ । [উন্তর ঃ 9.98 ms ⁻² হলে এ গ্রহের পৃষ্ঠে বিরিয় কর ও ব্যাসার্ধ উভয়ই হড়-পৃষ্ঠ হতে 9.00 km উধ্ধে থেকে পৃথিবী প্রদন্ধি করছে। উপগ্রহটির ন্যুনতম দুতি ও আবর্ট একটি গ্রহেন তর ও ব্যাসার্ধ R = 6400 km এবং <i>g</i> = 9.8 ms ⁻² [উঃ 7.4 km s ⁻¹ ও 1 ঘন্টা 4.3 মিনিট 15 সেকেছ] ৮! পৃথিবী পৃষ্ঠ হতে সর্বদা 620 km উধ্ধে থেকে একটি কৃত্রিম উপগ্রহ পৃথিবীর চারদিক কড অনুভূমিক বেণা প্রদন্ধি বিয় 768 kms ⁻¹]	১৮। কেপলারের সূত্র বিবৃত ও ব্যাখ্যা কর। কেপলারের সূত্র হতে নিউটনের মহাকর্ষীয় সূত্র প্রতিপাদন কর।
২১। কি কি কারণে g-এর মান পরিবর্তিত হয় ? [ব. বো. ২০০২] দেখাও যে ভূ-কেন্দ্রে g-এর মান শূন্য। [ঢা. বো. ২০০৬, ২০০১; রা. বো. ২০০৬, ২০০৪; কৃ. বো. ২০০৪; ২২। কৃত্রিম উপগ্রহে প্রদক্ষিণরত মহাকাশচারী নিজেকে ওজনহীন বলে মনে করে কেন? ব্যাখ্যা কর। [চ. বো. ২০০২] ২২। কৃত্রিম উপগ্রহে প্রদক্ষিণরত মহাকাশচারী নিজেকে ওজনহীন বলে মনে করে কেন? ব্যাখ্যা কর। [চ. বো. ২০০২] গাণিতিক সমস্যাবলি : ১। দুটি গোলকের ভর যথারুমে 40 kg ও 15 kg। তাদের কেন্দ্রদ্বেরে মধ্যবর্তী দূরত্ব 0.1 m হলে, পারস্পরিক আকর্ষণ বল কত হবে ? [G = 6/66 × 10 ⁻¹¹ N-m ² kg ⁻² g] [উঃ 3996 × 10 ⁻⁷ N] ২। g = 98 ms ⁻² স্থানে একটি স্পিং নিস্তিতে কোন একটি বস্তুর ওজন 98 N হল। বস্তৃটির ভর কত ? কোন স্থানে এ স্থিং নিস্তিতে বস্তৃটির ওজন 94 N হলে এ স্থানের অভিকর্ষীয় ত্বরণ নির্ণয় কর। [উঃ 1 kg; 94 ms ⁻²] ৩। ভূ-পৃষ্ঠ হতে কত উচতায় গেলে সেখানকার অভিকর্ষর ত্বরণ নির্ণয় কর। [উঃ 1 kg; 94 ms ⁻²] ৩। ভূ-পৃষ্ঠ হতে কত উচতায় গেলে সেখানকার অভিকর্ষজ ত্বরণের মান ভূ-পৃষ্ঠের অভিকর্ষজ তুরণের মানের এক শতাংশ হবে ? পৃথিবীকে 64 × 10 ⁶ m ব্যাসার্ধের গোলক মনে কর। [উন্তের ঃ 576 × 10 ⁶ m] ৪। মঙ্লাগগ্রহের ব্যাসার্ধ পৃথিবীর ব্যাসার্ধের ০:532 গুণ এবং ভর 0:11 গুণ। ভূ-পৃষ্ঠ অভিকর্ষজ তুরণের মান 98 ms ⁻² মঙ্গালের পৃষ্ঠে অভিকর্ষজ তুরণের মান নির্ণয় কর। [উন্তের ঃ 38 ms ⁻²] ৫। পৃথিবী পৃষ্ঠ হতে 200 km ভিতরে অভিকর্ষীয় ত্বরণের মান নির্ণয় কর। [উন্তর ঃ 576 × 10 ⁶ m] ৪। মঙ্গালগ্রহের ত্বাসার্ধ পৃথিবীর গড় ঘনতু 55 × 10 ³ kgm ⁻³ । [উন্তের ঃ 92 ms ⁻² ডি একটি গ্রহের জর ও ব্যাসার্ধ উজয়ই যথারুমে পৃথিবীর জর ও ব্যাসার্ধের হিণুণ। ভূ-পৃষ্ঠে g = 98 ms ⁻² হলে এ গ্রহের পৃষ্ঠে বুনির্ণয় কর। [পৃথিবীর ব্যাসার্ধ R = 6400 km এবং g = 98 ms ⁻² ? [উঃ 74 km s ⁻¹ ও 1 ঘণ্টা 43 মিনিট 15 সেকেড] ৮) পৃথিবী পৃষ্ঠ হতে স্বর্ণান 620 km উর্ধের থেকে একটি কৃত্রিয় ভগরহ পৃথিবীর চারদিক ক অ জন্ডমিক বেণে প্রদন্ধি করে ?[ডু-পৃষ্ঠি বু ৮৪ জন্ড ² ও পৃথিবীর ব্যাসার্ধ R = 6380 km] [উঃ 7548 kms ⁻¹]	
দেখাও যে ভূ-কেন্দ্রে g-এর মান শৃন্য। [ঢা. বো. ২০০৬, ২০০১ ; রা. বো. ২০০৬, ২০০৪ ; কৃ. বো. ২০০৪ ; ১২। কৃর্রিম উপগ্রহে প্রদাঞ্চণরত মহাকাশচারী নিজেকে ওজনহীন বলে মনে করে কেন ? ব্যাখ্যা কর। [চ. বো. ২০০৪] গাণিতিক সমস্যাবনি ঃ ১। দুটি গোলকের ভর যথাক্রমে 40 kg ও 15 kg। তাদের কেন্দ্রদ্বরের মধ্যবর্তী দূরত্ব 01 m হলে, পারস্রেক আকর্ষণ বল কত হবে ? [G = 6'66 × 10 ⁻¹¹ N-m ² kg ⁻² g] [উঃ 39'96 × 10 ⁻⁷ N] ২। g = 9'8 ms ⁻² স্থানে একটি স্থিং নিস্তিতে কোন একটি বস্তুর ওজন 9'8 N হল। বস্তুটির ভর কত ? কোন স্থানে এ স্থিং নিস্তিতে বস্তুটির ওজন 9'4 N হলে এ স্থানের অভিকর্ষীয় ত্বরণ নির্ণয় কর। [উঃ 19'96 x 10 ⁻⁷ N] ৬। ভূ-পৃষ্ঠ হতে কত উচতায় গেলে সেখানকার অভিকর্ষীয় ত্বরণ নির্ণয় কর। [উঃ র'9'6 x 10 ⁻⁷ N] ৪। মঞ্চালগ্রহের ব্যাসার্ধ প্রথিরি ব্যাসার্ধের 0'532 গুণ এবং ভর 0'11 গুণ। ভূ-পৃষ্ঠে অভিকর্ষজ ত্বরেরে মানের এক শতাংশ হবে ? পৃথিবীকে 6'4 × 10 ⁶ m ব্যাসার্ধের 0'532 গুণ এবং ভর 0'11 গুণ। ভূ-পৃষ্ঠে অভিকর্ষজ ত্বরণের মান 9'8 ms ⁻² ৬। গু-পৃষ্ঠ হতে ৫০০ উচতায় গেলে সেখানকার অভিকর্ষীয় ত্বরণের মান ভূ-পৃষ্ঠে অভিকর্ষজ ত্বরণের মান পৃণ্ড ms ⁻²] ৫। পৃথিবী পৃষ্ঠ হতে 200 km ভিতরে অভিকর্ষীয় ত্বরণের মান নির্ণয় কর। [উন্তর ঃ 3'8 ms ⁻²] ৩০ একটি গ্রহের ভা ও ব্যাসার্ধে জেবরে অভিকর্ষীয় ত্বরণের মান নির্ণয় কর। [উন্তর ঃ 9'52 ms ⁻²] ৫। পৃথিবী পৃষ্ঠ হতে 200 km ভিতরে অভিকর্ষীয় ত্বরণের মান নির্ণয় কর। গুথিবীর ব্যাসার্ধ 6'4 × 10 ⁶ m, G = 6'67 × 10 ⁻¹¹ Nm ² kg ⁻² এবং পৃথিবীর গড় ঘনতু 5'5 × 10 ³ kgm ⁻³ । [উন্তর ঃ 9'52 ms ⁻²] ৩০ একটি গ্রহের ভর ও ব্যাসার্ধ উভয়ই যথাক্রমে পৃথিবীর ভর ও ব্যাসার্ধের ছিগুণ। ছ-পৃষ্ঠে g = 9'8 ms ⁻² হলে ঐ গ্রহের পৃষ্ঠে বু নির্ণয় কর। [পৃথিবীর ব্যাসার্ধ দের প্রথির তর ও ত্যাসার্ধের হেকে পৃথিবী প্র করে হা লান্দম মূলি ' বেকে জু বি'র ন্যান্দম দুল্ড হ'হ শে গ্রহেরে ম্বাতনকাল নির্ণয় কর। [পৃথিবীর ব্যাসার্ধ R = 6400 km এবং ' g = 9'8 ms ⁻²] ১০ পৃথিবী বু ঠ হতে সর্বদা 620 km উর্ধের থেকে একটি কৃর্রিম উপগ্রহ পৃথিবীর ব্যাসার্ধ R = 6400 km এবং ' g = 9'8 ms ⁻² জি বা হা ঘন্ট বর্বা প্রদিদ্দা দের ' [জ্ বর্ণা প্রদিদ্দা 5' 5'4 kms ⁻¹ ৩ 1 ঘন্ট 13 মিন্দিট 15 সেকেজ] ১০ পৃথিবী পৃষ্ঠ হতে সর্বদা 620 km উর্ধের থে কে বেকাটি কুর্রিম উলগ্রহ	
চ. বো. ২০০৪; সি. বো. ২০০১] ২২। কৃত্রিম উপগ্রহে প্রদক্ষিণরত মহাকাশচারী নিজেকে ওজনহীন বলে মনে করে কেন? ব্যাখ্যা কর। [চ. বো. ২০০২] গাণিতিক সমস্যাবনি : ১। দুটি গোলকের ভর যথাক্রমে 40 kg ও 15 kg। তাদের কেন্দ্রদ্বয়ের মধ্যবর্তী দূরত্ব 0.1 m হলে, পারস্সরিক আকর্ষণ বল কত হবে ? [G = 6.66 × 10 ⁻¹¹ N-m ² . kg ⁻² g] [উঃ 39.96 × 10 ⁻⁷ N] ২। g = 9.8 ms ⁻² স্থানে একটি স্প্রিং নিস্তিতে কোন একটি বস্তৃর ওজন 9.8 N হল। বস্তুটির ভর কত ? কোন স্থানে এ স্প্রিং নিস্তিতে বস্তুটির ওজন 9.4 N হলে এ স্থানের অভিকর্ষীয় ত্বরণ নির্ণয় কর। [উঃ 1 kg ; 94 ms ⁻²] ৩। ড়-পৃষ্ঠ হতে কত উচ্চতায় গেলে সেখানকার অভিকর্ষজ ত্বরণের মান ডু-পৃষ্ঠের অভিকর্ষজ ত্বরণের মানের এক শতাংশ হবে ? পৃথিবীকে 64 × 10 ⁶ m ব্যাসার্ধের 0.532 গুণ এবং ভর 0.11 গুণ। ড়-পৃষ্ঠে অভিকর্ষজ ত্বরণের মান 9.8 ms ⁻² মঙ্গালের পৃষ্ঠে অভিকর্ষজ ত্বরণের মান নির্ণয় কর। [উন্তর ঃ 3.8 ms ⁻²] ৫। পৃথিবী পৃষ্ঠ হতে 200 km ভিতরে অভিকর্ষীয় ত্বরণের মান নির্ণয় কর। [উন্তর ঃ 3.8 ms ⁻²] ৫। পৃথিবী পৃষ্ঠ হতে 200 km ভিতরে অভিকর্ষীয় ত্বরণের মান নির্ণয় কর। [উন্তর ঃ 9.52 ms ⁻²] • এলটি গ্রহের অর ও ব্যাসার্ধ উণ্ডর হ বণ্ড হেন্ স্বাজমে পৃথিবীর বড়েশ বি হা পৃথিবীর ব্যাসার্ধ 64 × 10 ⁶ m , G = 667 × 10 ⁻¹¹ Nm ² kg ⁻² এবং পৃথিবীর গড় ঘনত্ব 55 × 10 ³ kgm ⁻³ । [উন্তর ঃ 9.52 ms ⁻²] ৭। পৃথিবী পৃষ্ঠ হতে 200 km ভিতরে অভিকর্ষীয় ত্বরণের মান নির্ণয় কর। গৃথিবীর ব্যাসার্ধ 64 × 10 ⁶ m , G = 667 × 10 ⁻¹¹ Nm ² kg ⁻² এবং পৃথিবীর গড় ঘনত্ব 55 × 10 ³ kgm ⁻³ । [উন্তর ² 9.9 ms ⁻² হলে এ গ্রহের পৃষ্ঠে ব্র নির্ণয় কর। [উণ্ডর হত পৃথিবীর ব্যাসার্ধ হত পৃথিবী র ডর ও ব্যাসার্ধের দ্বিগুণ। ড়-পৃষ্ঠে ব্র = 9.8 ms ⁻² হলে এ গ্রহের পাবর্তনকাল নির্ণয় কর। [পৃথিবীর ব্যাসার্ধ R = 6400 km এবং <i>g</i> = 9.8 ms ⁻²] ৮। পৃথিবী পৃষ্ঠ হতে সর্বদা 620 km উর্ধে থেকে একটি কৃত্রিম উপগ্রহ পৃথিবী র চারদিক ক অ জন্ড্রিমিক বেণ প্রদাঙ্গিণ বাবর্তনকাল নির্ণয় কর। [পৃথিবীর ব্যাসার্ধ R = 6380 km]	
২২। কৃত্রিম উপগ্রহে প্রদক্ষিণরত মহাকাশচারী নিজেকে ওজনহীন বলে মনে করে কেন ? ব্যাখ্যা কর। [চ. বো. ২০০২] গাণিতিক সমস্যাবলি ঃ ১। দুটি গোলকের ভর যথাকমে 40 kg ও 15 kg। তাদের কেন্দ্রদ্বরের মধ্যবর্তী দূরত্ব 0.1 m হলে, পারস্পরিক আকর্ষণ বল কত হবে ? [G = 6.66 × 10 ⁻¹¹ N-m ² . kg ⁻² g] [উঃ 39.96 × 10 ⁻⁷ N] ২। g = 9.8 ms ⁻² স্থানে একটি স্প্রিং নিস্তিতে কোন একটি বস্তুর ওজন 9.8 N হল। বস্তুটির ভর কত ? কোন স্থানে এ স্প্রিং নিস্তিতে বস্তুটির ওজন 9.4 N হলে এ স্থানের অভিকর্ষীয় ত্বরণ নির্ণয় কর। [উঃ 1 kg ; 94 ms ⁻²] ৬। ডু-গৃষ্ঠ হতে কত উচতায় গেলে সেখানকার অভিকর্ষজ ত্বরণের মান ডু-গৃষ্ঠের অভিকর্ষজ ত্বরণের মানের এক শতাংশ হবে ? পৃথিবীকে 64 × 10 ⁶ m ব্যাসার্ধের গোলক মনে কর। [উন্তর ঃ 57.6 × 10 ⁶ m] ৪। মজ্ঞান্গ্রহের ব্যাসার্ধ পৃথিবীর ব্যাসার্ধের 0.532 গুণ এবং ভর 0.11 গুণ। ডু-গৃষ্ঠে অভিকর্ষজ ত্বরণের মানে এক শতাংশ বি পৃথিবী পৃষ্ঠ হতে 200 km ভিতরে অভিকর্ষিয় ত্বরণের মান নির্ণয় কর। [উন্তর ঃ 3.8 ms ⁻²] ৫। পৃথিবী পৃষ্ঠ হতে 200 km ভিতরে অভিকর্ষীয় ত্বরণের মান নির্ণয় কর। [উন্তর ঃ 3.8 ms ⁻²] ৫। পৃথিবী পৃষ্ঠ হতে 200 km ভিতরে অভিকর্ষীয় ত্বরণের মান নির্ণয় কর। গুতিবার ব্যাসার্ধ 6.4 × 10 ⁶ m , G = 667 × 10 ⁻¹¹ Nm ² kg ⁻² এবং পৃথিবীর গড় ঘনতু 5.5 × 10 ³ kgm ⁻³ । [উন্তর ঃ 9.52 ms ⁻²] ৭। পৃথিবী পৃষ্ঠ হতে 200 km ভিতরে মতিকর্বীয় ত্বরণের মান নির্ণয় কর। পৃথিবীর ব্যাসার্ধ 6.4 × 10 ⁶ m , G = 667 × 10 ⁻¹¹ Nm ² kg ⁻² এবং পৃথিবীর গড় ঘনতু 5.5 × 10 ³ kgm ⁻³ । [উন্তর ঃ 9.52 ms ⁻²] ৭। পৃথিবী গ্র্ট হবের তর ও ব্যাসার্ধ উণগ্রহ ডু-গৃষ্ঠ হতে 900 km উর্ধের থেকে পৃথিবী প্রদন্ধিণ করেছে। উপগ্রহটির ন্যূনতম দুডি ও আবর্তনকাল নির্ণয় কর। [গুঃ 7.4 km s ⁻¹ ও 1 ঘন্টা 43 মিনিট 15 সেকেড] ৮। পৃথিবী গুষ্ঠ হতে স্বর্দা 620 km উর্ধের থেকে একটি কৃত্রিম উগরহ পৃথিবীর চারাদিক ক জ জন্ড্রির ক্যেল ঘ্রন্টা বনে গ্রাসার্ধ দেশে প্রাণ্ট প্র ছাবর্তনকাল নির্ণয় কর। [গুং 7548 kms ⁻¹]	
গাণিতিক সমস্যাবলি : ১ । দুটি গোলকের ডর যথাকমে 40 kg ও 15 kg । তাদের কেন্দ্রদ্বয়ের মধ্যবর্তী দূরত্ব 0.1 m হলে, পারস্বরিক আকর্ষণ বল কত হবে ? [G = 6'66 × 10 ⁻¹¹ N-m ² kg ⁻² g] [উ: 39'96 × 10 ⁻⁷ N] ২ ৷ g = 9'8 ms ⁻² স্থানে একটি সি্থুং নিব্ভিতে কোন একটি বস্তুর ওজন 9'8 N হল । বস্তুটির ডর কত ? কোন স্থানে ঐ স্থিং নিব্ভিতে বস্তুটির ওজন 9'4 N হলে ঐ স্থানের অভিকর্ষীয় তুরণ নির্ণয় কর । [উ: 1 kg ; 9'4 ms ⁻²] ৩ ৷ ছ-পৃষ্ঠ হতে কত উচ্চতায় গেলে সেখানকার অভিকর্ষজ তুরণের মান ভূ-পৃষ্ঠের অভিকর্ষজ তুরণের মানের এক শতাংশ হবে ? পৃথিবীকে 6'4 × 10'm ব্যাসার্ধের গোলক মনে কর ৷ [উন্তর * 57'6 × 10' m] ৪ ৷ মঞ্চালগ্রহের ব্যাসার্ধ পৃথিবীর ব্যাসার্ধের 0'532 গুণ এবং ভর 0'11 গুণ ৷ ভূ-পৃষ্ঠে অভিকর্ষজ তুরণের মান 9'8 ms ⁻² মন্ডালের পৃষ্ঠে অভিকর্ষজ তুরণের মান নির্ণয় কর ৷ [উন্তর * 57'6 × 10' m] ৫ ৷ পৃথিবী পৃষ্ঠ হতে 200 km ভিতরে অভিকর্ষীয় ত্বরণের মান নির্ণয় কর ৷ [উন্তর * 3'8 ms ⁻²] ৫ ৷ পৃথিবী পৃষ্ঠ হতে 200 km ভিতরে অভিকর্ষীয় ত্বরণের মান নির্ণয় কর ৷ [উন্তর * 3'8 ms ⁻²] ৫ ৷ পৃথিবী পৃষ্ঠ হতে 200 km ভিতরে অভিকর্ষীয় ত্বরণের মান নির্ণয় কর ৷ [উন্তর * 9'52 ms ⁻²] 9 আকটি গ্রহের ভর ও ব্যাসার্ধ উভয়ই যথাক্রমে পৃথিবীর ভর ও ব্যাসার্ধের দ্বিগুণ ৷ ভূ-পৃষ্ঠে g = 9'8 ms ⁻² হলে ঐ গ্রহের গৃঠে g নির্ণয় কর ৷ [উ: 4'9 ms ⁻²] 9 আকটি গরহের ভর ও ব্যাসার্ধ উলগ্রহ তূ-পৃষ্ঠ হতে 900 km উর্ধের থেকে পৃথিবী প্রদন্ধিশ করছে ৷ উপগ্রহটির ন্যূনতম দুন্ডি ও আবর্তনকাল নির্ণয় কর ৷ [পৃথিবীর ব্যাসার্ধ R = 6400 km এবং g = 9'8 ms ⁻²] ৮ ৷ পৃথিবী পৃষ্ঠ হতে সর্বদা 620 km উর্ধের থেকে একটি কৃত্রিম উপগ্রহ পৃথিবীর চারদিক কত অনুভূমিক বেগে প্রদন্ধিশ করে গু ভি g = 9'8 ms ⁻² ও পৃথিবীর ব্যাসার্ধ R = 6380 km] (উ: 7'5'4 km s ⁻¹ ও 1 ঘণ্টা 43 মিনিট 15 স্বেক্ছ !	চ. বো. ২০০৪; সি. বো. ২০০১]
১। দুটি গোলকের ভর যথাকমে 40 kg ও 15 kg। তাদের কেন্দ্রদ্বয়ের মধ্যবর্তী দূরত্ব 0.1 m হলে, পারস্পরিক আকর্ষণ বল কত হবে ? [G = 6.66 × 10 ⁻¹¹ N-m ² . kg ⁻² g] [উঃ 3996 × 10 ⁻⁷ N] ২। g = 98 ms ⁻² স্থানে একটি স্প্রিং নিস্তিতে কোন একটি বস্তুর ওজন 9.8 N হল। বস্তুটির ভর কত ? কোন স্থানে এ স্থিং নিস্তিতে বস্তুটির ওজন 9.4 N হলে এ স্থানের অভিকর্ষীয় ত্বুরণ নির্ণয় কর। [উঃ 1 kg; 94 ms ⁻²] ৩। ছৃ-পৃষ্ঠ হতে কত উচ্চতায় গেলে সেখানকার অভিকর্ষজ ত্বুরণের মান ছৃ-পৃষ্ঠের অভিকর্ষজ ত্বুরণের মানের এক শতাংশ হবে ? পৃথিবীকে 6.4 × 10 ⁶ m ব্যাসার্ধের গোলক মনে কর। [উন্তর ঃ 5.776 × 10 ⁶ m] ৪। মঙ্গলগ্রহের ব্যাসার্ধ পৃথিবীর ব্যাসার্ধের 0.532 গুণ এবং ভর 0.11 গুণ। ছৃ-পৃষ্ঠে অভিকর্ষজ ত্বুরণের মান 9.8 ms ⁻² মঙ্গালের পৃষ্ঠে অভিকর্ষজ ত্বুরণের মান নির্ণয় কর। [উন্তর ঃ 5.776 × 10 ⁶ m] ৫। পৃথিবী পৃষ্ঠ হতে 200 km ভিতরে অভিকর্ষীয় ত্বুরণের মান নির্ণয় কর। গুণ্ডিবির ব্যাসার্ধ 6.4 × 10 ⁶ m , G = 6.67 × 10 ⁻¹¹ Nm ² kg ⁻² এবং পৃথিবীর গড় ঘনতু 5.5 × 10 ³ kgm ⁻³ । [উন্তর ঃ 9.52 ms ⁻²] ৭। পৃথিবী পৃষ্ঠ হতে 200 km ভিতরে অভিকর্ষীয় ত্বুরণের মান নির্ণয় কর। গুণ্ডিবির ব্যাসার্ধ 6.4 × 10 ⁶ m , G = 6.67 × 10 ⁻¹¹ Nm ² kg ⁻² এবং পৃথিবীর গড় ঘনতু 5.5 × 10 ³ kgm ⁻³ । [উন্তর ঃ 9.52 ms ⁻²] ৭। পৃথিবী পৃষ্ঠ হতে এ ব্যাসার্ধ উভয়ই যথাক্রমে পৃথিবীর ভর ও ব্যাসার্ধের ছিগুণ। ছৃ-পৃষ্ঠে g = 9.8 ms ⁻² হলে এ গ্রহের গুরে ৫ নির্ণায় কর। [উঃ 4.9 ms ⁻²] ৭। পৃথিবীর একটি কৃত্রিম উপগ্রহ ছৃ-পৃষ্ঠ হতে 900 km উর্ধের থেকে পৃথিবী প্রদন্ধিল করেছে। উপগ্রহটির ন্যুনতম দুন্ডি ও আবর্তনকাল নির্ণয় কর। [পৃথিবীর ব্যাসার্ধ R = 6400 km এবং g = 9.8 ms ⁻²] ৮। পৃথিবী পৃষ্ঠ হতে সর্বদা 620 km উর্ধের থেকে একটি কৃত্রিম উপগ্রহ পৃথিবীর চারদিক কত অনুভূমিক বেণে প্রদন্ধিল বিং 7.4 km s ⁻¹ ও 1 ঘণ্টা 43 মিনিট 15 সেক্ষে] ৮। পৃথিবী পৃষ্ঠ হতে সর্বদা 620 km উর্ধের থেকে একটি কৃত্রিম উপগ্রহ পৃথিবীর চারদিক কত অনুভূমিক বেণে প্রদন্ধিশ বিং 7.548 kms ⁻¹]	
কত হবে ? [G = 6'66 × 10 ⁻¹¹ N-m ² . kg ⁻² g] [উঃ 39'96 × 10 ⁻⁷ N] ২। g = 9'8 ms ⁻² স্থানে একটি স্প্রিং নিব্ভিতে কোন একটি বস্তুর ওজন 9'8 N হল। বস্তুটির ডর কত ? কোন স্থানে এ স্থিং নিব্ভিতে বস্তুটির ওজন 9'4 N হলে এ স্থানের অভিকর্ষীয় ত্বরণ নির্ণয় কর। [উঃ 1 kg : 9'4 ms ⁻²] ৩। ভূ-পৃষ্ঠ হতে কত উচ্চতায় গেলে সেখানকার অভিকর্ষজ ত্বরণের মান ভূ-পৃষ্ঠের অভিকর্ষজ ত্বরণের মানের এক শতাংশ হবে ? পৃথিবীকে 6'4 × 10 ⁶ m ব্যাসার্ধের গোলক মনে কর। [উন্তর * 57'6 × 10 ⁶ m] ৪। মঙ্গালগ্রহের ব্যাসার্ধ পৃথিবীর ব্যাসার্ধের 0'532 গুণ এবং তর 0'11 গুণ। ভূ-পৃষ্ঠে অভিকর্ষজ ত্বরণের মান 9'8 ms ⁻² মঙ্গালের পৃষ্ঠে অভিকর্ষজ ত্বরণের মান নির্ণয় কর। [উন্তর * 3'8 ms ⁻²] ৫। পৃথিবী পৃষ্ঠ হতে 200 km ভিতরে অভিকর্ষীয় ত্বরণের মান নির্ণয় কর। [উন্তর * 3'8 ms ⁻²] ৫। পৃথিবী পৃষ্ঠ হতে 200 km ভিতরে অভিকর্ষীয় ত্বরণের মান নির্ণয় কর। [উন্তর * 3'8 ms ⁻²] ৫। পৃথিবী পৃষ্ঠ হতে 200 km ভিতরে অভিকর্ষীয় ত্বরণের মান নির্ণয় কর। [উন্তর * 3'8 ms ⁻²] ৫। পৃথিবী গৃষ্ঠ হতে 200 km ভিতরে অভিকর্ষীয় ত্বরণের মান নির্ণয় কর। [উন্তর * 9'52 ms ⁻²] ৭০ একটি গ্রহের ভর ও ব্যাসার্ধ উণ্ডয়ই ফ্রণ্ড ঘনতু 5'5 × 10 ³ kgm ⁻³ । [উন্তর * 9'52 ms ⁻²] ৭০ পৃথিবীর একটি কৃত্রিম উণগ্রহ ভূ-পৃষ্ঠ হতে 900 km উর্ধের্ষ থেকে পৃথিবী প্রদক্ষিণ করে। [উণ্ডরেন্য ন্যেন্স দুতি ও আবর্তনকাল নির্ণয় কর। ৭০ পৃথিবীর একটি কৃত্রিম উণগ্রহ ডূ-পৃষ্ঠ হতে 900 km এবং g = 9'8 ms ⁻² [উ: 7'4 km s ⁻¹ ও 1 ঘন্টা 43 মিনিট 15 সেক্ডে] ৮০ পৃথিবী পৃষ্ঠ হতে সর্বদা 620 km উর্ধের্ষ থেকে একটি কৃত্রিম উপগ্রহ পৃথিবীর চারদিক কত অনুভূমিক বেণে প্রদেশিন বন্ধে ? ডি পৃথিবীর পৃষ্ঠ হতে সর্বদা 620 km উর্ধের্ণ থেকে একটি কৃত্রিম উপগ্রহ পৃথিবীর চারদিক কে অনুভূমিক বেণে প্রদাদিণ বন্ধে ? ডি পৃথিবী গৃষ্ঠ হতে সর্বদা 620 km উর্ধের্ম থেকে একটি কৃত্রিম উপগ্রহ পৃথিবীর চারদিক কত অনুভূমিক বেণে প্রদেশ্বিন্ধ দের ? ডি স্তের পৃথিবীর স্যাসাধ R = 6400 km এবং g = 9'8 ms ⁻²]	
২। g = 9'8 ms ⁻² স্থানে একটি স্প্রিং নিস্তিতে কোন একটি বস্তুর ওজন 9'8 N হল। বস্তুটির ভর কত ? কোন স্থানে এ স্থিং নিস্তিতে বস্তুটির ওজন 9'4 N হলে এ স্থানের অভিকর্ষীয় তুরণ নির্ণয় কর। [উঃ 1 kg ; 9'4 ms ⁻²] ৬। ছ-পৃষ্ঠ হতে কত উচ্চতায় গেলে সেখানকার অভিকর্ষজ তুরণের মান ছ-পৃষ্ঠের অভিকর্ষজ তুরণের মানের এক শতাংশ হবে ? পৃথিবীকে 6'4 × 10'm ব্যাসার্ধের গোলক মনে কর। [উন্তর ঃ 57'6 × 10'm] ৪। মন্ডালগ্রহের ব্যাসার্ধ পৃথিবীর ব্যাসার্ধের 0'532 গুণ এবং ভর 0'11 গুণ। ছ-পৃষ্ঠে অভিকর্ষজ তুরণের মান 9'8 ms ⁻² মন্ডালের পৃষ্ঠে অভিকর্ষজ তুরণের মান নির্ণয় কর। [উন্তর ঃ 3'8 ms ⁻²] ৫। পৃথিবী পৃষ্ঠ হতে 200 km ভিতরে অভিকর্ষীয় তুরণের মান নির্ণয় কর। [উন্তর ঃ 3'8 ms ⁻²] ৫। পৃথিবী পৃষ্ঠ হতে 200 km ভিতরে অভিকর্ষীয় তুরণের মান নির্ণয় কর। [উন্তর ঃ 3'8 ms ⁻²] ৫। পৃথিবী পৃষ্ঠ হতে 200 km ভিতরে অভিকর্ষীয় তুরণের মান নির্ণয় কর। [উন্তর ঃ 3'8 ms ⁻²] ৫। পৃথিবী গৃষ্ঠ হতে 200 km ভিতরে অভিকর্ষীয় তুরণের মান নির্ণয় কর। [উন্তর ঃ 9'52 ms ⁻²] ৭। পৃথিবী গৃষ্ঠ হতে 200 km ভিতরে অভিকর্ষীয় তুরণের মান নির্ণয় কর। [উন্তর ঃ 9'52 ms ⁻²] ৭। পৃথিবী র একটি কত্রিম উপগ্রহ ড্-পৃষ্ঠ হতে 900 km উর্ধের থেকে পৃথিবী প্রদক্ষিণ করছে। উপগ্রহটির ন্যনতম দুতি ও আবর্তনকাল নির্ণয় কর। [পৃথিবীর ব্যাসার্ধ R = 6400 km এবং g = 9'8 ms ⁻²] ৮। পৃথিবী পৃষ্ঠ হতে সর্বদা 620 km উর্ধের থেকে একটি কৃত্রিম উপগ্রহ পৃথিবীর চারদিক কত অনুভূমিক বেগে প্রদক্ষিণ করে ? [ছু-পৃষ্ঠে g = 9'8 ms ⁻² ও পৃথিবীর ব্যাসার্ধ R = 6380 km]	
$\chi g = 98 \text{ ms}^{-2}$ স্থানে একটি স্পিং নিস্তিতে কোন একটি বস্তুর ওজন 98 N হল। বস্তুটির ভর কত ? কোন স্থানে এ স্পিং নিস্তিতে বস্তুটির ওজন 94 N হলে এ স্থানের অভিকর্ষীয় ত্বরণ নির্ণয় কর।[উঃ 1 kg ; 94 ms^2] [উঃ 1 kg ; 94 ms^2] o। ডৃ-পৃষ্ঠ হতে কত উচ্চতায় গেলে সেখানকার অভিকর্ষজ ত্বরণের মান তৃ-পৃষ্ঠের অভিকর্ষজ ত্বরণের মানের এক শতাংশ হবে ? পৃথিবীকে 64 × 10 ⁶ m ব্যাসার্ধের গোলক মনে কর।[উঃ 76 × 10 ⁶ m] [উন্তর ঃ 576 × 10 ⁶ m] 8। মন্তালগহরের ব্যাসার্ধ পৃথিবীর ব্যাসার্ধের 0.532 গুণ এবং তর 0.11 গুণ। ডৃ-পৃষ্ঠে অভিকর্ষজ ত্বরণের মান 98 ms^2 মন্তালের পৃষ্ঠে অভিকর্ষজ ত্বরণের মান নির্ণয় কর।[উন্তর ঃ 576 × 10 ⁶ m] [উন্তর ঃ 576 × 10 ⁶ m] 8। মন্তালগহরের ব্যাসার্ধ পৃথিবীর ব্যাসার্ধের 0.532 গুণ এবং তর 0.11 গুণ। ডৃ-পৃষ্ঠে অভিকর্ষজ ত্বরণের মান 98 ms^2 মন্তালের পৃষ্ঠে অভিকর্ষজ ত্বরণের মান নির্ণয় কর। (উন্তর ঃ 3.8 ms^2] ৫। পৃথিবী পৃষ্ঠ হতে 200 km ভিতরে অভিকর্ষীয় ত্বরণের মান নির্ণয় কর। (উন্তর ঃ 3.8 ms^2] (৬) একটি গ্রহের ভর ও ব্যাসার্ধ উত্তরই যথাক্রমে পৃথিবীর ভর ও ব্যাসার্ধের ছিগুণ। ডৃ-পৃষ্ঠে g = 98 ms^-2 হলে ঐ গ্রহের পৃষ্ঠের বোর মান নির্ণয় কর। (ভিন্তর : 9.52 ms^2][উঃ 7.4 km s^-1 ও 1 ঘর্ণটা 43 মিনিট 15 সেকেড] ৮। পৃথিবী পৃষ্ঠ হতে স্বর্দা 620 km উর্ধের থেকে একটি কৃত্রিম উপগ্রহ পৃথিবীর চারদিক কত অনুভূমিক বেগে প্রদক্ষিণ করে ? [ডু?পৃষ্ঠে ৪ = 98 ms^-2 ও পৃথিবীর ব্যাসার্ধ R = 6380 km][উঃ 7.548 kms^-1]	
ঐ স্পিং নিব্তিতে বস্তৃটির ওজন 9.4 N হলে ঐ স্থানের অভিকর্ষীয় ত্বরণ নির্ণায় কর। [উঃ 1 kg; 9.4 ms ⁻²] ৩। ভূ-পৃষ্ঠ হতে কত উচ্চতায় গেলে সেখানকার অভিকর্ষজ ত্বরণের মান ভূ-পৃষ্ঠের অভিকর্ষজ ত্বরণের মানের এক শতাংশ হবে ? পৃথিবীকে 6.4 × 10 ^{cm} ব্যাসার্ধের গোলক মনে কর। [উন্তর ঃ 57.6 × 10 ^c m] ৪। মঙ্গালগ্রহের ব্যাসার্ধ পৃথিবীর ব্যাসার্ধের 0.532 গুণ এবং তর 0.11 গুণ। ভূ-পৃষ্ঠে অভিকর্ষজ ত্বরণের মান 9.8 ms ⁻² মঙ্গলের পৃষ্ঠে অভিকর্ষজ ত্বরণের মান নির্ণায় কর। [উন্তর ঃ 3.8 ms ⁻²] ৫। পৃথিবী পৃষ্ঠ হতে 200 km ভিতরে অভিকর্ষীয় ত্বরণের মান নির্ণায় কর। [উন্তর ঃ 3.8 ms ⁻²] ৫। পৃথিবী পৃষ্ঠ হতে 200 km ভিতরে অভিকর্ষীয় ত্বরণের মান নির্ণায় কর। গৃথিবীর ব্যাসার্ধ 6.4 × 10 ^{cm} , G = 6.67 × 10 ⁻¹¹ Nm ² kg ⁻² এবং পৃথিবীর গড় ঘনত্ব 5.5 × 10 ³ kgm ⁻³ । [উন্তর [:] 8.952 ms ⁻²] ৩ একটি গ্রহের ভর ও ব্যাসার্ধ উভয়ই যথাক্রমে পৃথিবীর ভর ও ব্যাসার্ধের দ্বিগুণ। ভূ-পৃষ্ঠে g = 9.8 ms ⁻² হলে ঐ গ্রহের পৃষ্ঠে g নির্ণায় কর। [উঃ 4.9 ms ⁻²] ৬। পৃথিবীর একটি কৃত্রিম উপগ্রহ ভূ-পৃষ্ঠ হতে 900 km উর্ধ্বে থেকে পৃথিবী প্রদক্ষিণ করছে। উপগ্রহটির ন্যূনতম দুভি ও আবর্তনকাল নির্ণায় কর। [পৃথিবীর ব্যাসার্ধ R = 6400 km এবং g = 9.8 ms ⁻²] ৮। পৃথিবী পৃষ্ঠ হতে সর্বদা 620 km উর্ধ্বে থেকে একটি কৃত্রিম উপগ্রহ পৃথিবীর চারদিক কত অনুভূমিক বেগে প্রদক্ষিণ করে ? [জু-পৃষ্ঠে g = 9.8 ms ⁻² ও পৃথিবীর ব্যাসার্ধ R = 6380 km]	২। g = 9.8 ms ⁻² স্থানে একটি স্প্রিং নিক্তিতে কোন একটি বস্তুর ওজন 9.8 N হল। বস্তুটির ডর কত ? কোন স্থানে
৩। ভূ-পৃষ্ঠ হতে কত উচ্চতায় গেলে সেখানকার অভিকর্ষজ তুরণের মান ভূ-পৃষ্ঠের অভিকর্ষজ তুরণের মানের এক শতাংশ হবে ? পৃথিবীকে 64×10°m ব্যাসার্ধের গোলক মনে কর। [উন্তর ঃ 576×10° m] ৪। মঞ্চালগ্রহের ব্যাসার্ধ পৃথিবীর ব্যাসার্ধের 0:532 গুণ এবং তর 0:11 গুণ। ভূ-পৃষ্ঠে অভিকর্ষজ তুরণের মান 9'8 ms ⁻² মন্ধ্রালের পৃষ্ঠে অভিকর্ষজ তুরণের মান নির্ণয় কর। [উন্তর ঃ 3'8 ms ⁻²] ৫। পৃথিবী পৃষ্ঠ হতে 200 km ভিতরে অভিকর্ষীয় ত্বুরণের মান নির্ণয় কর। গৃথিবীর ব্যাসার্ধ 6'4×10°m, G = 6'67×10 ⁻¹¹ Nm ² kg ⁻² এবং পৃথিবীর গড় ঘনত্ব 5'5×10 ³ kgm ⁻³ । [উন্তর ঃ 9'52 ms ⁻²] ডি একটি গ্রহের তর ও ব্যাসার্ধ উভয়ই যথাক্রমে পৃথিবীর তর ও ব্যাসার্ধের দ্বিগুণ। ভূ-পৃষ্ঠে g = 9'8 ms ⁻² হলে ঐ গ্রহের পৃষ্ঠে <i>g</i> নির্ণয় কর। ৭। পৃথিবী একটি কৃত্রিম উপগ্রহ ভূ-পৃষ্ঠ হতে 900 km উর্ধ্বে থেকে পৃথিবী প্রদক্ষিণ করছে। উপগ্রহটির ন্যূনতম দুন্তি ও আবর্তনকাল নির্ণয় কর। [পৃথিবীর ব্যাসার্ধ R = 6400 km এবং <i>g</i> = 9'8 ms ⁻²] ৮। পৃথিবী পৃষ্ঠ হতে স্বর্দদা 620 km উর্ধের থেকে একটি কৃত্রিম উপগ্রহ পৃথিবীর চারদিক কত অনুভূমিক বেগে প্রদক্ষিণ করে ? [ডু-পৃষ্ঠে <i>g</i> = 9'8 ms ⁻² ও পৃথিবীর ব্যাসার্ধ R = 6380 km]	ঐ স্প্রিং নিক্তিতে বস্তৃটির ওজন 94 N হলে ঐ স্থানের অভিকর্ষীয় ত্বরণ নির্ণয় কর।
হবে ? পৃথিবাকে 6.4×10^6 m ব্যাসার্ধের গোলক মনে কর। 8। মঙ্গালগ্রহের ব্যাসার্ধ পৃথিবীর ব্যাসার্ধের 0.532 গুণ এবং তর 0.11 গুণ। তৃ-পৃষ্ঠে অভিকর্ষজ ত্বরণের মান 9.8 ms ⁻² মঙ্গালের পৃষ্ঠে অভিকর্ষজ ত্বরণের মান নির্ণয় কর। ৫। পৃথিবী পৃষ্ঠ হতে 200 km ভিতরে অভিকর্ষীয় ত্বরণের মান নির্ণয় কর। পৃথিবীর ব্যাসার্ধ 6.4×10^6 m, G = 6.67×10^{-11} Nm ² kg ⁻² এবং পৃথিবীর গড় ঘনত্ব 5.5×10^3 kgm ⁻³ । (উন্তর : 9.52 ms ⁻²] (উন্তর : 9.52 ms ⁻²] ($\sqrt{29}$) একটি গ্রহের তর ও ব্যাসার্ধ উভয়ই যথাক্রমে পৃথিবীর তর ও ব্যাসার্ধের দ্বিগুণ। তৃ-পৃষ্ঠে $g = 9.8$ ms ⁻² হলে এ গ্রহের ($\sqrt{26}$ g নির্ণয় কর। ($\sqrt{26}$ g নির্গয় করে ও ব্যাসার্ধ R = 6400 km এবং $g = 9.8$ ms ⁻²] ($\sqrt{27}$ km s ⁻¹ ও 1 ঘণ্টা 43 মিনিট 15 সেকেড) ($\sqrt{2}$ r পৃথিবী পৃষ্ঠ হতে সর্বদা 620 km উর্ধের থেকে একটি কৃত্রিম উপগ্রহ পৃথিবীর চারদিক কত অনুভূমিক বেগে প্রদক্ষিণ করে ? [$\sqrt{2}$ পৃথিবী পৃষ্ঠ হতে সর্বদা 620 km উর্ধের থেকে একটি কৃত্রিম উপগ্রহ পৃথিবীর চারদিক কত অনুভূমিক বেগে প্রদক্ষিণ করে ? [$\sqrt{2}$ পৃথে $g = 9.8$ ms ⁻² ও পৃথিবীর ব্যাসার্ধ R = 6380 km]	৩। ভূ-পৃষ্ঠ হতে কত উচ্চতায় গেলে সেখানকার অভিকর্ষজ ত্ব্রণের মান ভূ-পৃষ্ঠের অভিকর্ষজ তুরণের মানের এক শতাংশ
মঙ্গলের পৃষ্ঠে আভকষজ ত্বরণের মান নির্ণয় কর। ৫। পৃথিবী পৃষ্ঠ হতে 200 km ভিতরে অভিকর্ষীয় ত্বরণের মান নির্ণয় কর। পৃথিবীর ব্যাসার্ধ 6.4×10^{6} m, $G = 6.67 \times 10^{-11}$ Nm ² kg ⁻² এবং পৃথিবীর গড় ঘনত্ব 5.5×10^{3} kgm ⁻³ । [উন্তর : 9.52 ms ⁻²] (উন্তর : 9.52 ms ⁻²] (উন্তর : 9.52 ms ⁻²] (উর্ব : 7.54 km s ⁻¹ ও 1 ঘন্টা 43 মিনিট 15 সেকেড) (উর্ব : 7.548 kms ⁻¹]	হবে ? পৃথিবীকে 6'4 × 10°m ব্যাসাধের গোলক মনে কর। [উত্তর ঃ 57'6 × 10° m]
৫। পৃথিবী পৃষ্ঠ হতে 200 km ভিতরে অভিকর্ষীয় ত্বরণের মান নির্ণয় কর। পৃথিবীর ব্যাসার্ধ 6.4 × 10 ⁶ m, G = 6.67 × 10 ⁻¹¹ Nm ² kg ⁻² এবং পৃথিবীর গড় ঘনত্ব 5.5 × 10 ³ kgm ⁻³ । [উন্তর ': 9.52 ms ⁻²] (উন্তর ': 9.52 ms ⁻²] (উং 4.9 ms ⁻²] (উং 7.4 km s ⁻¹ ও 1 ঘন্টা 4.3 মিনিট 15 সেকেও] (উং 7.4 km s ⁻¹ ও 1 ঘন্টা 4.3 মিনিট 15 সেকেও] (উং 7.548 kms ⁻¹]	
$G = 6.67 \times 10^{-11} \text{ Nm}^2 \text{ kg}^{-2}$ এবং পৃথিবার গড় ঘনত্ব 5'5 × 10 ³ kgm ⁻³ । [উন্তর': 9'52 ms ⁻²] \longrightarrow ④ একটি গ্রহের ভর ও ব্যাসার্ধ উভয়ই যথাক্রমে পৃথিবীর ভর ও ব্যাসার্ধের দ্বিগুণ। ভূ-পৃষ্ঠে $g = 9.8 \text{ ms}^{-2}$ হলে ঐ গ্রহের γ (छ g নির্ণয় কর । 9। পৃথিবীর একটি কৃত্রিম উপগ্রহ ভূ-পৃষ্ঠ হতে 900 km উর্ধ্বে থেকে পৃথিবী প্রদক্ষিণ করছে। উপগ্রহটির ন্যূনতম দুন্তি ও আবর্তনকাল নির্ণয় কর । [পৃথিবীর ব্যাসার্ধ R = 6400 km এবং $g = 9.8 \text{ ms}^{-2}$] $F = 9.8 \text{ ms}^{-1}$ ও 1 ঘণ্টা 43 মিনিট 15 সেকেন্ড] $F = 9.4 \text{ ms}^{-1}$ ও 1 ঘণ্টা 43 মিনিট 15 সেকেন্ড] $F = 9.4 \text{ ms}^{-1}$ ও 1 ঘণ্টা 43 মিনিট 15 সেকেন্ড] $F = 9.4 \text{ ms}^{-2}$ ও পৃথিবীর ব্যাসার্ধ R = 6380 km] F = 6.400 km জের গ্রেম উপগ্রহ পৃথিবীর চারদিক কত অনুভূমিক বেগে প্রদক্ষিণ $F = 7.4 \text{ km}^{-1}$ ও 1 ঘণ্টা 43 মিনিট 15 সেকেন্ড]	
তি একটি গ্রহের ভর ও ব্যাসার্ধ উভয়ই যথাক্রমে পৃথিবীর ভর ও ব্যাসার্ধের দ্বিগুণ। ভূ-পৃষ্ঠে g = 9.8 ms ⁻² হলে ঐ গ্রহের পৃষ্ঠ g নির্ণয় কর। ৭। পৃথিবীর একটি কৃত্রিম উপগ্রহ ভূ-পৃষ্ঠ হতে 900 km উর্ধ্বে থেকে পৃথিবী প্রদক্ষিণ করছে। উপগ্রহটির ন্যূনতম দুতি ও আবর্তনকাল নির্ণয় কর। [পৃথিবীর ব্যাসার্ধ R = 6400 km এবং g = 9.8 ms ⁻²] [উঃ 7.4 km s ⁻¹ ও 1 ঘণ্টা 43 মিনিট 15 সেকেড] ৮। পৃথিবী পৃষ্ঠ হতে সর্বদা 620 km উর্ধ্বে থেকে একটি কৃত্রিম উপগ্রহ পৃথিবীর চারদিক কত অনুভূমিক বেগে প্রদক্ষিণ করে ? [ডু-পৃষ্ঠ g = 9.8 ms ⁻² ও পৃথিবীর ব্যাসার্ধ R = 6380 km]	$G = 6.67 \times 10^{-11}$ Nm ² km ⁻² এবং প্রচিরি গড় সনত 5.5 × 10 ³ kmm ³
্টিঃ 49 ms ⁻²] ৭। পৃথিবীর একটি কৃত্রিম উপগ্রহ ভূ-পৃষ্ঠ হতে 900 km উর্ধ্বে থেকে পৃথিবী প্রদক্ষিণ করছে। উপগ্রহটির ন্যূনতম দুন্তি ও আবর্তনকাল নির্ণয় কর। [পৃথিবীর ব্যাসার্ধ R = 6400 km এবং g = 98 ms ⁻²] [উঃ 7.4 km s ⁻¹ ও 1 ঘণ্টা 43 মিনিট 15 সেকেন্ড] ৮। পৃথিবী পৃষ্ঠ হতে সর্বদা 620 km উর্ধ্বে থেকে একটি কৃত্রিম উপগ্রহ পৃথিবীর চারদিক কত অনুভূমিক বেগে প্রদক্ষিণ করে ৫ ডি 98 ms ⁻² ও পৃথিবীর ব্যাসার্ধ R = 6380 km]	\sim
৭। পৃথিবীর একটি কৃত্রিম উপগ্রহ ভূ-পৃষ্ঠ হতে 900 km উর্ধ্বে থেকে পৃথিবী প্রদক্ষিণ করছে। উপগ্রহটির ন্যূনতম দুর্ভি ও আবর্তনকাল নির্ণয় কর। [পৃথিবীর ব্যাসার্ধ R = 6400 km এবং g = 98 ms ⁻²] [উঃ 7.4 km s ⁻¹ ও 1 ঘণ্টা 43 মিনিট 15 সেকেও] ৮। পৃথিবী পৃষ্ঠ হতে সর্বদা 620 km উর্ধ্বে থেকে একটি কৃত্রিম উপগ্রহ পৃথিবীর চারদিক কত অনুভূমিক বেগে প্রদক্ষিণ করে ? [ডু-পৃষ্ঠ g = 98 ms ⁻² ও পৃথিবীর ব্যাসার্ধ R = 6380 km]	পতে ৫ নিগয় কর।
টিঃ 7'4 km s ⁻¹ ও 1 ঘণ্টা 43 মিনিট 15 সেকেওঁ] ৮। পৃথিবী পৃষ্ঠ হতে সর্বদা 620 km উর্ধ্বে থেকে একটি কৃত্রিম উপগ্রহ পৃথিবীর চারদিক কত অনুভূমিক বেগে প্রদক্ষিণ করে १ ডি.পৃষ্ঠে g = 9'8 ms ⁻² ও পৃথিবীর ব্যাসার্ধ R = 6380 km l [উঃ 7'548 kms ⁻¹]	
টিঃ 7'4 km s ⁻¹ ও 1 ঘণ্টা 43 মিনিট 15 সেকেওঁ] ৮। পৃথিবী পৃষ্ঠ হতে সর্বদা 620 km উর্ধ্বে থেকে একটি কৃত্রিম উপগ্রহ পৃথিবীর চারদিক কত অনুভূমিক বেগে প্রদক্ষিণ করে १ ডি.পৃষ্ঠে g = 9'8 ms ⁻² ও পৃথিবীর ব্যাসার্ধ R = 6380 km l [উঃ 7'548 kms ⁻¹]	আবর্তনকাল নির্ণয় কর। [পৃথিবীর ব্যাসাধ $R = 6400$ km এবং $g = 9.8$ ms ⁻²]
৮। পৃথিবী পৃষ্ঠ হতে সর্বদা 620 km উর্ধ্বে থেকে একটি কৃত্রিম উপগ্রহ পৃথিবীর চারদিক কত অনুভূমিক বেগে প্রদক্ষিণ করে १ ছি-পৃষ্ঠে g = 9'8 ms ⁻² ও পৃথিবীর ব্যাসার্ধ R = 6380 km l	[উঃ 7.4 km s ⁻¹ ও 1 ঘণ্টা 43 মিনিট 15 সেকেন্ড]
খের ? [৩- ৩ ৫ g = 98 ms ⁻² ও পৃথিবীর ব্যাসাধ R = 6380 km] [উঃ 7:548 kms ⁻¹]	৮। পৃথিবী পৃষ্ঠ হতে সর্বদা 620 km উর্দ্ধে থেকে একটি কৃত্রিম উপগ্রহ পৃথিবীর চারদিক কত অনুভূমিক বেগে প্রদক্ষিণ
	শনে ? [৩-१८0 g = 98 ms ⁻² ও পৃথিবার ব্যাসাধ R = 6380 km] [উঃ 7.548 kms ⁻¹]
ি সি পৃথিবী সূর্যের চারদিকে 1.5×10^{11} m দূর থেকে এক বছরে একবার ঘরে আসছে। সূর্যের ভর 1.99×10^{30} kg হলে,	V ৯)গাঁথবা স্থাঁর চারদিকে $1.5 \times 10^{11} { m m}$ দুর পেকে এক বছরে একবার মরে আসচে। সার্যের ভর $1.99 \times 10^{30} { m kg}$ হলে
কক্ষপঞ্চেপ্রাথবার দ্রাত কত ? (উষ্মব ঃ ২০ kms ⁻¹]	
	कक्ष भाषितीत मुछि कछ ? [उछत \$ 30 kms-1]

। পৃথিবীর ভর = 81 × চন্দ্রের ভর ও পৃথিবীর ব্যাসাধ = 4 × চন্দ্রের ব্যাসার্ধ) [উঃ 128 N] ১১। চন্দ্রপৃষ্ঠে অভিকর্ষজ ত্বরণের মান ভূ–পৃষ্ঠে অভিকর্ষজ মানের $rac{1}{5}$ । পৃথিবীর ভর চাঁদের ভরের প্রায় 81 গুণ হলে পৃথিবীর ব্যাস চাঁদের ব্যাসের কত গুণ ? [উত্তর ঃ 4.02] স্থিনির জন্য বিষুব অঞ্চলে অভিকর্ষীয় ত্বুরণ কত কম হবে ? [ধর $R = 6.4 imes 10^3
m \, km$] $[\underline{\mathbb{G}}_{20}^{\circ}0.034 \text{ ms}^{-2}]$ 🛩 ত্রি দেখাও যে, পৃথিবীর সমান ও দ্বিগুণ ব্যাসার্ধবিশিষ্ট একটি কাল্পনিক গ্রহ হতে মুক্তি বেগ পৃথিবী হতে মুক্তি বেগের 1.41 adl ১৪। 2 kg ভরের একটি বস্তু সুতায় ঝুলানো আছে। সুতার টান 27[.]6N হলে বস্তুটির ত্বরণ কত? [Ს\$\$ 4 ms^{−2}] ১৫। 2 kg ভরের একটি বস্তৃকে সুতায় ঝুলায়ে 2.2 ms⁻² সমত্বরণে (i) উপরে উঠালে, (ii) নিচে নামালে সুতার টান [উঃ 24 N ଓ 15 2 N] কত হবে ? পৃথিবীর নিজ অক্ষের উপর আবর্তনকাল 24 hrs ; মহাকর্ষীয় ধ্রুবক 6 7 × 10⁻¹¹ Nm² kg⁻², পৃথিবীর ভর 6 × 10²⁴ kg এবং পৃথিবীর ব্যাসার্ধ 64×10° m হলে একটি ভূ-স্থির উপগ্রহের উচ্চতা এবং বেগ নির্ণয় কর। [᠖° 3.6 × 10⁴ km; 3.1 kms⁻¹] ১৭। ভূ-পৃষ্ঠের একজন লোকের ওজন 600N তিনি চাঁদে গিয়ে কতটুকু ওজন হারাবেন ? পৃথিবীর ভর ও ব্যাসার্ধ যথাক্রমে চাঁদের ভর ও ব্যাসার্ধের ৪1 এবং 4 গুণ। [উত্তর ঃ 481.5 N] ২০০০ ক্রি)। ভূ-পৃষ্ঠ হতে অল্প উচ্চতায় এবং ভূ-পৃষ্ঠের সমান্তরালে একটি নভোষান কি দ্রুতিতে চললে একজন যাত্রী ওজনহীনতা জনুভব করবে ? (পৃথিবীর ব্যাসার্ধ 6'4 × 10° m এবং g = 9'8 ms⁻²) [উত্তর ঃ 7[·]9 kms⁻¹] 🔊 মজ্ঞালগ্রহের ভর $6.6 imes 10^{23}\,\mathrm{kg}$ এবং ব্যাসার্ধ $3.4 imes 10^6\mathrm{m}$ হলে মজ্ঞালগ্রহে মুক্তি বেগ কত ? [উত্তর 🕯 $5.1~\mathrm{kms^{-1}}$] 🕗 ভূ-পৃষ্ঠ হতে কত গভীরে অভিকর্ষীয় ত্বরণের মান ভূ-পৃষ্ঠের মানের এক পঞ্চমাংশ হবে ? (পৃথিবীর ব্যাসার্ধ $R = 6^{3} 4 \times 10^{3} \text{ km}$ [উত্তর **ঃ** 5[·]12 × 10³ km) 🖅 পৃথিবী পৃষ্ঠ হতে কত উচ্চতায় অভিকর্ষজ ত্বরণের মান পৃথিবীর ত্বরণের মান শতকরা চল্লিশ ভাগ হবে ? (পৃথিবীর [সি. বো. ২০০৬] [উত্তর ঃ 1'9×106 m] ব্যাসাধ, R = 6.38 × 10⁶ m) | 🔨 🔇 পৃথিবীর মহাকর্ষীয় ক্ষেত্র হতে একটি বস্তু নিচ্চ্রয়নের জুন্যু এর প্রক্ষেপণের ন্যূনতম বেগ নির্ণয় কর। VE= J2gR [য. বো. ২০০৪] [উত্তর ঃ 11⁻2 kms⁻¹] ২৩। সূর্যের চারদিকে শুরু ও পৃথিবীর কক্ষপথের ব্যাসার্ধের অনুপাত 54:75। পৃথিবীতে 365 দিনে এক বছর হল শুব্রুতে কুতু দিনে এক বছর হবে / [উত্তর ঃ 223 দিন] 🕂 🔨 (২৪)। পৃথিবীর কৌণিক বেগ বর্তমানের কত গুণ হলে ভূ-পৃষ্ঠের একটি বস্তু মহাশূন্যের দিকে উধাও হবার উপক্রম করবে? [উঃ 17 গুণ] ২৫। সূর্যের চারদিকে ঘূর্ণায়মান পৃথিবী ও মজল গ্রহের কক্ষপথের গড় ব্যাসার্ধের অনুপাত 3:4। পৃথিবীতে 365 দিনে 1 বছর হলে মজ্ঞালগ্রহ কত দিনে 1 বছর হবে ? [উঃ 561[.]9 দিন] 🚱। পৃথিবী পৃষ্ঠ হতে কত উচ্চতায় অভিকর্ষীয় ত্বরণের মান পৃথিবী পৃষ্ঠের ত্বরণের মানের শতকরা একাশি ভাগ হবে 🤉 [পৃথিবীর ব্যাসার্ধ = 6'38 × 10⁶m]⁻ [উত্তর ঃ 7 1 × 10⁵ m] ২৭। সূর্যের চারদিকে পৃথিবীর কক্ষপথের ব্যাসার্ধ 1.5×10^{11} m এবং আবর্তনকাল 3.156×10^7 sec । সূর্যের ভর নির্ণয G = 6.7×10^{-11} Nm² kg⁻²] $\Phi = 6.7 \times 10^{-11} \,\mathrm{Nm^2 \, kg^{-2}}$ T [উত্তর 8 2 × 10³⁰ kg] হিচ)। মঞ্চাল গ্রহের ব্যাসার্ধ পৃথিবীর ব্যাসার্ধের 0.532 গুণ এবং ভর 0.11 গুণ। ভূ-পৃষ্ঠের অভিকর্ষজ ত্বরণের মান 98 ms-2 । মজ্ঞাল গ্রহের পৃষ্ঠে অভিকর্ষজ ত্বরণের মান বের কর। [উত্তর : 3'8 ms⁻²] 6.3। পৃথিবী পৃষ্ঠ হতে 200 km ভিতরে অভিকর্ষজ ত্বরণের মান নির্ণয় কর। (পৃথিবীর ব্যাসার্ধ 6.4×10^3 km, $G = 6.7 \times 10^{-11}$ Nm² kg⁻² এবং পৃথিবীর গড় ঘনত্ব 5.5×10^3 kgm⁻³। 3/2 = 1 - % [উত্তর : 9.565 ms⁻²] [উত্তর : 9[.]565 ms⁻²] ৩০। ভূ-পৃষ্ঠে কোন লোকের ওজন 588 N হলে তিনি চাঁদে গিয়ে কতটুকু ওজন হারাবেন ? পৃথিবীর ভর ও ব্যাসার্ধ যথাক্রমে চাঁদের ভর ও ব্যাসার্ধের ৪1 এবং 4 গুণ। [উত্তর ঃ 472 N] ৩১। পৃথিবী পৃষ্ঠে একজন লোকের ওজন 81 কিলোগ্রাম-ওজন হলে চন্দ্র পৃষ্ঠে তার ওজন কত হবে 🤉 (পৃথিবীর ড়র চন্দ্রের ভরের ৪1 গুণ এবং পৃথিবীর ব্যাসার্ধ চন্দ্রের ব্যাসার্ধের 4 গুণ) [উত্তর : 16 কিলোগ্রাম]

উচ্চ মাধ্ৰদুমিক প্ৰদাৰ্থবিজ্ঞান

১০। একজন লোকের ওজন ভূ-পৃষ্ঠে 648 N হলে চন্দ্রপৃষ্ঠে তার ওজন কত হবে ?

૨8৬

সরল ছন্দিত স্পন্দন SIMPLE HARMONIC OSCILLATION

৮·১ সূচনা 🄷 Introduction

আমরা জানি, সময়ের পরিপ্রেক্ষিতে এবং পারিপার্শ্বিকের সাপেক্ষে যখন কোন বস্তু স্বীয় অবস্থানের পরিবর্তন করে, তখন তার অবস্থাকে গতি বলে। যেমন চলন্ত গাড়ি, চলন্ত মানুষ প্রভৃতি আশেপাশের গাছপালা ও ঘর বাড়ির সাপেক্ষে গতিশীল বস্তু। পূর্বের অধ্যায়গুলোতে বস্তুর চলনগতি, বৃত্তাকার গতি আলোচনা করা হয়েছে। এখন আমাদের অতি পরিচিত নতুন এক ধরনের গতি আলোচনা করা হবে। এ গতি পর্যাবৃত্ত গতি নামে পরিচিত। (স্প্রিং হতে ঝুলন্ত কোন বস্তুকে নীচের দিকে সামান্য টেনে ছেড়ে দিলে এটি পর্যায়ক্রমে উপরে-নিচে উঠানামা করতে থাকে। স্প্রিং-এর এ গতি পর্যাবৃত্ত গতি।) স্প্রিং-এর গতি, সুরশলাকার স্পন্দন, গ্রহ–উপগ্রহের গতি ইত্যাদি পর্যাবৃত্ত গতি। পর্যাবৃত্ত গতিরই বিশেষ রূপ হল দোলন, কম্পন বা স্পন্দন। দোলন, কম্পন বা স্পন্দন সমার্থবোধক শন্দ।

পদার্থবিজ্ঞানের বিভিন্ন শাখায় সরল দোল গতি (Simple harmonic motion) বা সংক্ষেপে (S. H. M) নামক এক বিশেষ ধরনের দোল গতির গুরুত্বপূর্ণ ব্যবহার রয়েছে। এ অধ্যায়ে আমরা পর্যাবৃত্ত গতি তথা সরল ছন্দিত গতির বিভিন্ন রূপ আলোচনা করব।

৮২ পর্যাবৃত্ত গতি ও স্পন্দন

Periodic motion and oscillation

কোন বস্তুর গতি যদি এমন হয় যে একটি নির্দিষ্ট সময় পর পর বস্তুটির গতির পুনরাবৃত্তি ঘটে তবে এ গতিকে পর্যাবৃত্ত গতি বলে।

ঘূড়ির কাঁটার গতি, পৃথিবীর সূর্য প্রদক্ষিণ, গ্রহ-উপগ্রহের গতি—এগুলো পর্যাবৃত্ত গতির উদাহরণ।

পর্যাবৃত্ত গতিসম্পন কোন বস্তুর গতি যদি এমন হয় যে, পর্যায়কালের অর্ধেক সময় কোন নির্দিষ্ট দিকে এবং বাকি অর্ধেক সময় বিপরীত দিকে চলে তবে বস্তুর ঐ গতিকে স্পন্দন বলে। যেমন দেওয়াল ঘড়ির দোলকের গতি, কম্পনশীল সূর শলাকা, স্প্রিং-এর গতি ইত্যাদি।— স্ফ্রেন্দ্রন ১৯০০

৮৩ সরল ছন্দিত স্পন্দন

Simple harmonic oscillation

সরল ছন্দিত স্পন্দন-এর নিম্নোক্তভাবে সংজ্ঞা দেয়া যেতে পারে----

কোন পর্যায় গতিসম্পন্ন বস্তুর উপর কার্যকর ত্ব্বরণ যদি তার গতিপথের একটি নির্দিষ্ট বিন্দু অতিমুখে এমনভাবে ক্রিয়া করে যে তার মান ঐ বিন্দু হতে বস্তুর সরণের মানের সমানুপাতিক হয়, তবে বস্তুর উক্ত গতিকে সরল ছন্দিত স্পন্দন বলে।

যেমন খুব কম বিস্তারের সরল দোলকের গতি, সুরশালাকার বাহুর কম্পন, স্প্রিং-এর উল্লস্ম কম্পন সবই সরল ছন্দিত স্পন্দন বা সরল দোলন গতি। ২৪৮

সরল ছন্দিত স্পন্দনের বিকল্প সংজ্ঞা ঃ যদি কোন বস্তুকণা সমান কৌণিক বেগে বৃত্তাকার পথে ঘুরতে থাকে এবং সেই অবস্থায় বৃত্তের পরিধির উপর কণাটির বিভিনু অবস্থান বিন্দু হতে বৃত্তের যে কোন ব্যাসের উপর লম্ব টানা হয়, তবে লম্বপাদ (Foot of the perpendicular) বিন্দুগুলোর গতি হবে সরল ছন্দিত স্পন্দন বা গতি।

সরল ছন্দিত স্পন্দনের ক্ষেত্রে বস্তুর ত্বুরণ 'a' এবং সরণ x হলে এদের মধ্যে সম্পর্ক হল,

 $a \propto -x$ a = -k'x

এখানে k' সমানুপাতিক ধ্রবক। এর মান ধনাত্মক। ত্বুরণের দিক সরণের বিপরীত দিকে হওয়ায় ঋণাত্মক চিহ্ন ব্যবহার করা হয়েছে।

সরল ছন্দিত স্পন্দনের বৈশিষ্ট্য (Characteristics of simple harmonic oscillation)

৬০ এর গতি পর্যায় গতি।
 ৬০ একটি নির্দিষ্ট সময় অন্তর অন্তর এই গতি বিপরীতমুখী হয়।
 ৬০ একটি একটি সরলরেখায় ঘটে।
 ৬০ একটি সরলরেখায় ঘটে।
 ৬০ ওরণ বস্তর সরণের সমানপাতিক।
 ৬০ ওরণ বস্তর কণাটির মধ্য অবস্থান অভিমুখ্রী।

কয়েকটি সংজ্ঞা

(ক) পূর্ণ দোলন (Complete oscillation) : কোন একটি কম্পমান বস্তু একটি বিন্দু হতে যাত্রা শুরু করে পুনরায় একই দিকে ঐ বিন্দুতে ফিরে আসলে যে কম্পন সম্পন্ন হয়, তাকে পূর্ণ দোলন বা কম্পন বলে।

্র্স) পর্যায়কাল বা দোলনকাল (Time period) ঃ একটি পূর্ণ দোলন সম্পন্ন করতে কোন একটি কম্পমান বস্তুর যে সময় লাগে তাকে তার দোলনকাল বলে। একে 'T' দ্বারা ব্যক্ত করা হয়। Nটি কম্পনে ব্যয়িত সময় $t \ z$ লে, $T = \frac{t}{N}$ ।

(গ) কম্পার্চ্জ (Frequency) : কোন একটি কম্পমান বস্তু এক সেকেন্ডে য<u>তবার পূর্ণ দোলন দেয় তাকে</u> তার কম্পার্চ্জ বলে। একে 'n' দ্বারা সূচিত করা হয়। Nটি কম্পনে ব্যয়িত সময় t হলে, $n = \frac{N}{t}$ $T = \frac{1}{n}$ । কম্পার্জ্জের একক হার্জ (Hertz)। হার্জকে সংক্ষেপে Hz দ্বারা প্রকাশ করা হয়।

্বের্স বিস্তার (Amplitude) ঃ কোন একটি কম্পমান বস্তু এর মধ্য অবস্থান হতে ডানে-বামে যে সর্বাধিক দূরত্ব অতিক্রম করে তাকে এর বিস্তার বলে।

বিস্তার দুই প্রকার ঃ (i) রৈখিক বিস্তার— একে 'A' দারা প্রকাশ করা হয়।

(ii) কৌণিক বিস্তার— একে 'নি' দ্বারা প্রকাশ করা হয়।

(ঙ) দশা (Phase) ঃ কোন একটি কম্পমান বস্তুর যে কোন মুহূর্তের দোলনের অবস্থা অর্থাৎ বস্তুটির অবস্থান, বেগ, ত্বরণ এবং গতির অভিমুখ যা দ্বারা বুঝা যায় তাকে দশা বলে।

(চ) ইপক বা আদি দশা (Epoch) ঃ যাত্রা শুরু করার মুহূর্তে অর্থাৎ t = 0 সময়ে সরল দোলন গতিসম্পন্ন কোন বস্তুর যে দশা থাকে তাকে এর ইপক বলে। সময়ের সংগে সংগে দশার পরিবর্তন ঘটে ; কিন্তু ইপক বা আদি দশা একই থাকে।

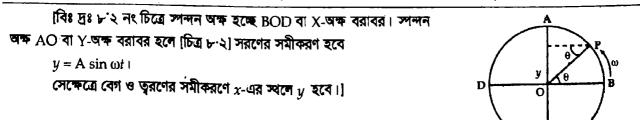
৮৪ সরল ছন্দিত স্পন্দনসম্পন বস্তুকণার সরণ, বেগ এবং ত্ব্বেণের রাশিমালা Expression for displacement, velocity and acceleration executing

Simple Harmonic Motion (S. H. M.)

(১) সরণ : মনে করি একটি বস্তুকণা O বিন্দুকে কেন্দ্র করে A ব্যাসার্ধের ABCD বৃত্তপথে তীর চিহ্নিত দিকে 🛛 কৌণিক বেগে ঘুরছে এবং t সময়ে A বিন্দু হতে P বিন্দুতে আসছে। P বিন্দু হতে বৃত্তের ব্যাস DB-এর উপর PN লম্দ্র টানি। এখানে লম্দ্র পাদ বিন্দুর সরণ B D x = ONC চিত্র হতে ∠AOP = ∠OPN = 0, এখানে 0 = কৌণিক সরণ। আমরা পাই $\frac{ON}{OP} = \sin \theta$ C চিত্র ৮·১ বা. $ON = OP \times \sin \theta$ $x = A \sin \theta$, এখানে x = মূলবিন্দু থেকে সরণ এবং OP = A = নির্দেশক বৃত্তের ব্যাসার্ধ। $x = A \sin \omega t$ (এখানে $\theta = \omega t$) (1) পাদবিন্দুর দোলনকাল T হলে, $\omega=rac{2\pi}{T}=2\pi n$, এখানে পাদবিন্দুর কম্পাজ্ঞ্ক, $n=rac{1}{T}$ \therefore $x = A \sin 2\pi nt$ (2) সমীকরণ (1) এবং (2) হল সরল ছন্দিত স্পন্দন সম্পনু একটি কণার সরণের রাশিমালা। (২) বেগ (Velocity) : আমরা জানি সময় সাপেক্ষে সরণের পরিবর্তনের হারকে বেগ বলেন একে সাধারণত v দারা প্রকাশ করা হয়। বেগ, $v = \frac{d}{dt} (x) = \frac{d}{dt} (A \sin \omega t) = A \omega \cos \omega t$ বেগ ও সরণের সম্পর্ক : এখন, $x = A \sin \omega t$

$$\sin \omega t = \frac{x}{A} \, \operatorname{age} \cos \omega t = \sqrt{1 - \sin^2 \omega t}$$

$$\operatorname{cqn}, v = A\omega \sqrt{1 - \sin^2 \omega t} = A\omega \sqrt{1 - x^2 / A^2}$$


$$\operatorname{at}, \quad v = \omega \sqrt{A^2 - x^2}$$

$$\operatorname{at}, \quad v = \omega \sqrt{A^2 - x^2}$$

$$\operatorname{at}, \quad v = A, \quad v = 0 \quad \operatorname{age} \quad (\forall) \quad \forall \forall A x = 0, \quad \forall \forall A v = A\omega$$

$$(3)$$

N বিন্দুর গতিপথের মধ্য অবস্থানে তার বেগ সর্বাধিক এবং সরণ বৃদ্ধির সাথে সাথে বেগ কমতে থাকে এবং চরম অবস্থানে B বা D বিন্দুতে এর বেগ শূন্য হবে অর্থাৎ বিস্তারের প্রান্তে বেগ শূন্য হবে।

(৩) ভ্বরণ (Acceleration) ঃ আমরা জ্ঞানি সময় সাপেক্ষে বেগের পরিবর্তনের হারকে ত্বরণ বলে। একে a দ্বারা ব্যক্ত করা হয়।

সমীকরণ (2)-কে সময়ের সাপেক্ষে ব্যবকলন করে তুরণ পাওয়া যায়।

छूतन,
$$a = \frac{d}{dt} (v) = \frac{d}{dt} (A\omega \cos \omega t) = -A\omega^2 \sin \omega t$$

बा, $a = -\omega^2 x$ (4) [:: $x = A \sin \omega t$]

সমীকরণ (4) ত্বরণ ও সরণের মধ্যে সম্পর্ক নির্দেশ করে।

ঋণ চিহ্ন বুঝায় যে, ত্বরণ ও সরণ পরস্পর বিপরীতমুখী।

(ক) যখন x = 0, তখন a = 0 এবং (খ) যখন x = A, তখন $a = -\omega^2 A$

N বিন্দুর গতিপথের চরম অবস্থানে ত্বুরণ সর্বাধিক এবং মধ্য অবস্থানে ত্বুরণ শূন্য হবে।

৮৫ সরল ছন্দিত স্পন্দনের ব্যবকলনীয় সমীকরণ ও সমাধান Differential equation of simple harmonic oscillation

মলে করি *m* ভরবিশিষ্ট একটি বস্তুকণা সরল দোলন গতিতে আছে। t সময়ে এর সরণ x হলে বেগ, $v = \frac{dx}{dt}$ এবং ত্বরণ, $a = \frac{d^2x}{dt^2}$

কণাটির উপর ক্রিয়াশীল বলের মান,

$$F = \varpi_{\overline{A}} \times \overline{\varphi}_{\overline{A}} q = ma = m \frac{d^{2}x}{dt^{2}}$$

$$(a) Calce constraints a string of the st$$

সমীকরণ (7) হল সরল ছন্দিত স্পন্দনরত কণার ব্যবকলনীয় সমীকরণ। এই সমীকরণটি সমাধান করলে সময়ের সাথে সরণ, বেগ ইত্যাদি জানা যায়।

সমীকরণ (7)-কে সমাধান করার জন্য এর উভয় পার্শ্বকৈ $\frac{2dx}{dt}$ দ্বারা গুণ করি। $2\frac{dx}{dt} \cdot \frac{d^2x}{dt^2} + \omega^2 x \ 2\frac{dx}{dt} = 0$ উপরোক্ত সমীকরণকে সমাকলন করে পাই, $\left(\frac{dx}{dt}\right)^2 + \omega^2 x^2 = c$ (8) এখানে, c = সমাকলন ধ্রুবক। এর মান বের করতে হবে।

যখন
$$x = A$$
, তখন $\frac{dx}{dt} = 0$
এই শর্ত সমীকরণ (8)-এ প্রয়োগ করে পাই,
 $c = \omega^2 A^2$
এখন সমীকরণ (8)-এ *c*-এর মান বসিয়ে পাই,
 $\left(\frac{dx}{dt}\right)^2 + \omega^2 x^2 = \omega^2 A^2$

বা,
$$\left(\frac{dx}{dt}\right)^2 = \omega^2(A^2 - x^2)$$

বা,
$$\frac{dx}{dt} = \omega \sqrt{(A^2 - x^2)}$$

$$\overline{\mathbf{A}}, \quad \frac{dx}{\sqrt{(\mathbf{A}^2 - x^2)}} = \omega dt$$

একে সমাকলন করে পাই,

$$\frac{\sin^{-1}\frac{x}{A} = \omega t + \delta, \, \text{এখানে} \, \delta = \pi \text{ মাকলন ধ্বক}}{\text{বা,} \underbrace{x = A \sin(\omega t + \delta)}{(0.5 \text{ হল সরল ছলিত স্বন্দনের ব্যবকলনীয় সমীকরণের সাধারণ সমাধান !}}$$
(9)
এটিই হল সরল ছলিত স্বন্দনের ব্যবকলনীয় সমীকরণের সাধারণ সমাধান !
यখন $t = 0$, তখন $x = A \sin \delta$
কান্ডেই ' δ ' হলে বস্তৃকণাটির ইপক্ বা আদি দশা !
 $\delta = 0$ হলে, সমীকরণ (9) হতে পাই,
 $x = A \sin(\omega t + 0) = A \sin \omega t$
এক্ষেত্রে, $t = 0$ হলে $x = 0$! অর্ধাৎ তখন বস্তৃ কণাটির গতি শুরু হয় মধ্য অবস্থান বা সাম্যাবস্থান হতে !
আবার, $\delta = 90^{\circ}$ হলে, সমীকরণ (9)-কে লেখা যায়
 $x = A \sin(\omega t + 90^{\circ}) = A \cos \omega t$ (10)
এক্ষেত্র $t = 0$ হলে $x = A$! অর্ধাৎ সেক্ষেত্র বস্তর্কণাটির গতি শুরু হয় চরম অবস্থান বা থেক প্লাক্ষ হতে

এক্ষেত্রে, t=0 হলে x=A। জর্ধাৎ, সেক্ষেত্রে বস্তৃকণাটির গতি শূরু হয় চরম অবস্থান বা এক প্রান্ত হতে। অন্য দশার জন্য আদি সরণ ভিন্নতর হবে।

সরল ছন্দিত সম্দনের ব্যবকলনীর সমীকরণের সমাধান হতে এর সংজ্ঞা প্রতিপাদন ঃ

সরল ছন্দিত স্পন্দনের ব্যবকলনীয় সমীকরণের সমাধান হল,

$$x = A \sin (\omega t + \delta)$$

$$(\overline{q} \eta, v = \frac{dx}{dt} = \frac{d}{dt} \{A \sin (\omega t + \delta)\} = \omega A \cos (\omega t + \delta)$$

$$(\overline{q} \eta, v = \frac{dx}{dt} = \frac{d}{dt} \{\omega A \cos (\omega t + \delta)\} = -\omega^2 A \sin (\omega t + \delta)$$

$$= -\omega^2 x$$

$$\therefore a = -\omega^2 x = \frac{-K}{m} x \qquad \left[\because \omega^2 = \frac{K}{m} \right]$$

$$\overline{q}, \quad ma = -Kx$$

$$\overline{q}, \quad F = -Kx$$

$$\overline{q}, \quad F = -Kx$$

অর্ধাৎ প্রত্যারনী বল কণার সরণের সমানুণাতিক ও বিপরীতমুখী, এটিই সরল ছন্দিত সান্দদের সংজ্ঞা

^{BG & JEWEL} ৮ও সরল ছন্দিত স্পন্দন সম্পর্কিত কয়েকটি রাশি

Some terms relating Simple Harmonic Motion

(ক) পর্যায়কাল ঃ সরল ছন্দিত স্পন্দন সম্পন্ন কোন কণার একটি পূর্ণ স্পন্দন সম্পন্ন করতে যে সময় ব্যয় হয় তাকে তার পর্যায়কাল বলে। একে T দ্বারা প্রকাশ করা হয়।

(11)

সরল ছন্দিত স্পন্দন গতির ব্যবকলনীয় সমীকরণের সমাধান হচ্ছে,

$$x = A \sin(\omega t + \delta)$$

সমীকরণ (11)-এ সময় t-এর মান $\frac{2\pi}{\omega}$ বৃন্ধি করা হলে আমরা পাই,

$$x = \Lambda \sin \left[\omega \left(t + \frac{2t}{\omega} \right) \right] + \delta$$
$$= \Lambda \sin \left(\omega t + 2\pi + \delta \right)$$
$$= \Lambda \sin \left(\omega t + \delta \right)$$

= A sin ($\omega t + \delta$) সুতরাং, দেখা যাচ্ছে যে, $\frac{2\pi}{\omega}$ সময় অন্তর কণার সরণ একই হচ্ছে। কাজেই, $\frac{2\pi}{\omega}$ হচ্ছে সরল ছন্দিত স্পন্দনের পর্যায়কাল।

$$T = \frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{\frac{K}{m}}} \qquad \left[\because \frac{K}{m} = \omega^2 \right]$$

$$T = 2\pi \sqrt{\frac{m}{K}} \qquad (12)$$

সমীকরণ (12) হল সরল ছন্দিত স্পন্দনের পর্যায়কালের সমীকরণ। এটি ভর, পর্যায়কাল ও বল ধ্রুবকের মধ্যে সম্পর্কজনিত সমীকরণও বটে।

আবার, সমীকরণ (5) অনুযায়ী পাই,

$$\frac{m}{K} = \sqrt{\frac{-x}{d^2 x / dt^2}}$$

$$T = 2\pi \frac{m}{K} = 2\pi \sqrt{\frac{-x}{d^2 x / dt^2}}$$

$$= 2\pi \sqrt{\frac{-\pi \sin \theta}{\sqrt{\frac{\pi}{\sqrt{3}} \sin \theta}}}$$
(13)

সমীকরণ (13) পর্যায়কাল, সরণ ও ত্ত্বেণের মধ্যে সম্পর্ক নির্দেশ করে।

্**(খ) কম্পাজ্ঞ ঃ** কোন কম্পামান বস্তৃ বা স্পন্দক একক সময়ে যতগুলো পূর্ণ দোলন দেয় তাকে কম্পাজ্ঞ বলে। একে ƒ দ্বারা সূচিত করা হয়।

$$f = \frac{1}{T} = \frac{\omega}{2\pi} \cdot \frac{1}{2\pi} \sqrt{\frac{K}{m}}$$
(14)

[সমীকরণ (12) ব্যবহার করে]

এটিই হল সরদ ছন্দিত স্পন্দনের কম্পাজ্জের সমীকরণ।

বইঘর.কম

$$\omega = \frac{2\pi}{T} = 2\pi f$$

$$= 2 \times \frac{1}{2\pi} \sqrt{\frac{K}{m}} \quad [সমীকরণ (13) ব্যবহার করে]$$

$$\omega = \sqrt{\frac{K}{m}}$$

$$\omega - \underline{u}$$

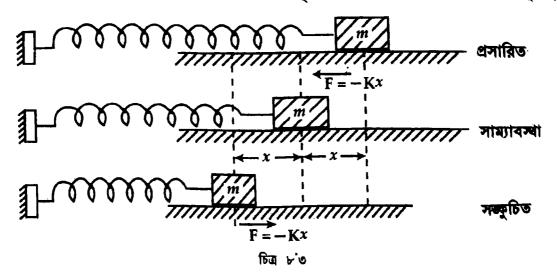
(ঘ) দশা ঃ সরল ছন্দিত স্পন্দনরত কোন বস্তু বা কণার দশা বলতে যে কোন মুহূর্তের দোলনের অবস্থা বুঝায় ; অর্ধাৎ বস্তু বা কণাটির সরণ, বেগ, ত্বরণ এবং গতির অভিমুখ ইত্যাদি বুঝায়। সমীকরণ (11)-এ (ωt + δ) রাশিটি গতির দশা নির্দেশ করছে। ধ্রুবক δ গতির আদি অবস্থা বুঝায়। যেমন—

δ=0° হলে

$$x = A \sin (\omega t + \delta) = A \sin (\omega t + 0^{\circ})$$

= A sin \u03c6tt

কণা বা বস্তৃটির গতি সাম্যাবস্থান হতে শুরু হয়েছে বুঝায়।


আবার,
$$\delta = \frac{\pi}{2}$$
 হলে,
 $x = A \sin(\omega t + \delta) = A \sin(\omega t + \pi/2)$
 $= A \cos wt$

এক্ষেত্রে কণাটির গতি শুরু হয় সরণের সর্বোচ্চ অবস্থান থেকে। ১-এর বিভিন্ন মানের জন্য ভিন্ন ভিন্ন আদি সরণ নির্দেশ করে।

৮ ৭ সরল ছন্দিত গতিসম্পনু বস্তুকণার স্বিতিশস্তি, গতিশস্তি এবং গড় স্বিতি ও গতিশস্তি

Potential energy, kinetic energy and averege potential and kinetic energy of a particle executing S. H. M.

ধরি একটি অনুভূমিক আদর্শ স্পিং-এর এক প্রান্ত দেয়ালের সাথে আটকানো এবং অপর প্রান্ত m ভরবিশিষ্ট একটি বস্তু যুক্ত আছে। বস্তৃটি অনুভূমিক ও ঘর্ষণবিহীন তলের উপর দিয়ে অবাধে চলতে সক্ষম। এখন বস্তৃটিকে অনুভূমিক বরাবর সরিয়ে স্প্রিণ্টকৈ সামান্য বিকৃত করলে স্থিতিস্থাপক ধর্মের দর্ন প্রযুক্ত বলের বিপরীতে স্প্রিং-এ প্রত্যায়নী বলের উদ্ভব হয়। স্প্রিং-এর x পরিমাণ দৈর্ঘ্য বৃদ্ধির জন্য প্রত্যায়নী বল F হলে হুকের সূত্রানুযায়ী,

এখানে, K = স্থিং ধ্রুবক বা বল ধ্রুবক।

ফলে স্প্রিথটিকে সামান্য বিকৃত করে ছেড়ে দিলে তা সরল ছন্দিত গতিতে দুলতে থাকবে। x সরণে তাৎক্ষণিক ত্বরণ $\frac{d^2x}{dt^2}$ হলে,

$$\mathbf{F} = m\frac{d^2x}{dt^2} = -\mathbf{K}x \tag{17}$$

$$\frac{d^2x}{dt^2} = -\frac{K}{m}x\tag{18}$$

$$\sqrt[4]{a}, \omega = \sqrt{\frac{K}{m}} \sqrt[4]{a}, \quad K = m\omega^{2}$$

$$\frac{d^{2}x}{dt^{2}} = -\omega^{2}x$$
(19)

$$\overline{\mathbf{A}}, \quad \frac{d^2x}{dt^2} + \omega^2 x = 0 \tag{20}$$

এটি সরল ছন্দিত গতির সমীকরণ (7)-এর অনুরূপ। অতএব, স্পন্দিত স্প্রিং-এর গতি সরল ছন্দিত গতি। এর সাধারণ সমাধান,

$$x = A \sin (\omega t + \delta)$$
 (21)
বস্তুটির তাৎক্ষণিক বেগ,

$$v = \frac{dx}{dt} = A\omega \cos (\omega t + \delta) = A\omega \sqrt{1 - \sin^2 (\omega t + \delta)}$$
(22)

$$= A\omega \sqrt{1 - \left(\frac{x}{A}\right)^2}$$

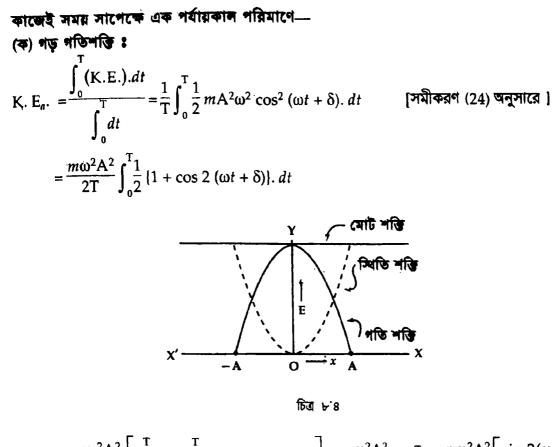
$$\overline{P}(x) = \omega \sqrt{A^2 - x^2}$$
(23)

গতিশক্তি, K. E. =
$$\frac{1}{2}mv^2 = \frac{1}{2}m\left(\frac{dx}{dt}\right)^2$$

= $\frac{1}{2}mA^2\omega^2\cos^2(\omega t + \delta)$ (24)

$$= \frac{1}{2}m\omega^2 (A^2 - x^2)$$
(25)

পুনরায়, x সরণের জন্য প্রত্যায়নী বলের বিরুম্বে যে পরিমাণ কান্ধ সম্পন্ন হবে তাই বস্তৃতে স্থিতিশক্তিরূপে সঞ্চিত থাকবে।


অতি অল dx সরণের জন্য বলের বিরুদ্দে কৃত কাজ = -- Fdx

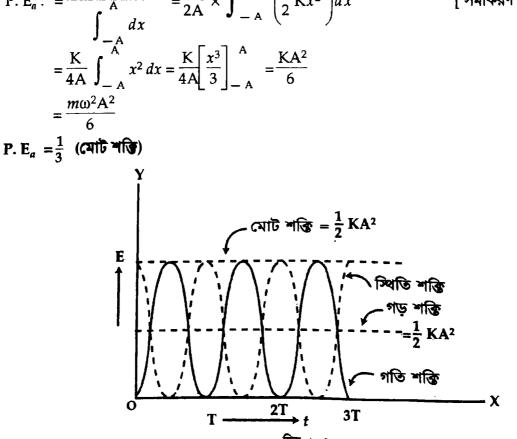
x সরণের জন্য বলের বিরুম্থে মোট কৃত কাজ,

$$W = -\int_{0}^{x} F.dx = \int_{0}^{x} Kx.dx = \frac{K}{2}x^{2} = \operatorname{drog} \pi$$
 অর্জিত স্থিতিশক্তি
স্থিতিশক্তি, P. E. = $\frac{1}{2}Kx^{2} = \frac{1}{2}m\omega^{2}x^{2}$ (26)

$$= \frac{1}{2} KA^{2} \sin^{2}(\omega t + \delta) = \frac{1}{2} m \omega^{2} A^{2} \sin^{2}(\omega t + \delta)$$
(27)

CATE MR = K. E. + P. E.
$$=\frac{1}{2}mA^2\omega^2\cos^2(\omega t + \delta) + \frac{1}{2}m\omega^2A^2\sin^2(\omega t + \delta)$$

 $=\frac{1}{2}m\omega^2A^2 = \frac{1}{2}KA^2$ (28)



$$= \frac{m\omega^2 A^2}{4T} \left[\int_0^T dt + \int_0^T \cos 2(\omega t + \delta) dt \right] = \frac{m\omega^2 A^2}{4T} \left[t \right]_0^T + \frac{m\omega^2 A^2}{4T} \left[\frac{\sin 2(\omega t + \delta)}{2\omega} \right]_0^T$$
$$= \frac{m\omega^2 A^2}{4} + \frac{m\omega^2 A^2}{8\omega T} \left[\sin 2(\omega T + \delta) - \sin 2\delta \right] = \frac{m\omega^2 A^2}{4}$$
(29)

 $[\sin 2(\omega T + \delta) = \sin 2\delta]$

K.
$$E_{a^{*}} = \frac{KA^{2}}{4}$$
 (30)
(a) ny fava al Palority :
P.E_a. = $\frac{\int_{0}^{T} (P.E.).dt}{\int_{0}^{T} dt} = \frac{KA^{2}}{2T} \int_{0}^{T} \sin^{2}(\omega t + \delta). dt$ [Allerate (27) and (27) a

চিত্র ৮.৫ সমীকরণ (34) ও (35) বা (33) ও (36) জনুসারে অবস্থান সাপেক্ষে একচক্র পরিমাণে

$$P. E_{a} = \frac{\int_{-A}^{A} (P.E.) dx}{\int_{-A}^{A} dx} = \frac{1}{2A} \times \int_{-A}^{A} \left(\frac{1}{2}Kx^{2}\right) dx \qquad [সমীকরণ (26) অনুসারে]$$
$$= \frac{K}{A} \int_{-A}^{A} dx = \frac{K [x^{3}]}{A} = \frac{KA^{2}}{A} \qquad (35)$$

$$\int_{-A}^{A} dx = \frac{K}{A} \int_{-A}^{A} x^2 dx = \frac{K}{AA} \left[\frac{x^3}{2} \right]^{A} = \frac{KA^2}{6}$$
(35)

$$\int_{-A} dx = \frac{K}{4A} \int_{-A}^{A} x^2 dx = \frac{K}{4A} \left[\frac{x^3}{3} \right]_{-A}^{A} = \frac{KA^2}{6}$$
(35)

$$\int_{-A}^{A} dx = \frac{K}{4A} \int_{-A}^{A} x^2 dx = \frac{K}{4A} \left[\frac{x^3}{3} \right]_{-A}^{A} = \frac{KA^2}{6}$$
(35)

$$\int_{-A}^{H} dx = \frac{K}{4A} \int_{-A}^{A} x^{2} dx = \frac{K}{4A} \left[\frac{x^{3}}{3} \right]_{-A}^{A} = \frac{KA^{2}}{6}$$
(35)

(36)

 $=\frac{KA^2}{3}$ (34) K. $E_{a} = \frac{2}{3}$ (মোট শক্তি) (ম্ব) গড় বিভব বা স্বিতিশক্তি :

২৫৬

সময় সাপেক্ষে এক পর্যায়কাল পরিমাণে----

গড় বিভব শক্তি – গড় গতিশক্তি = $\frac{KA^2}{4} = \frac{m\omega^2A^2}{4}$

আবার, অবস্থান সাপেক্ষে এক চক্র পরিমাণে---

(গ) গড় গতিশক্তি ঃ

৮ ৮ যান্ত্রিক শক্তির নিত্যতা সূত্র Principle of conservation of mechanical energy

এই সূত্র অনুসারে শক্তি অবিনশ্বর। এর সৃষ্টি নেই, বিনাশ নেই। এটি একরৃপ হতে অন্যরুপে রুপান্তরিত হতে পারে। তবে শক্তির মোট পরিমাণ স্বির থাকে। অতএব যে কোন মুহূর্তে বস্তৃকণাটির মোট শক্তি,

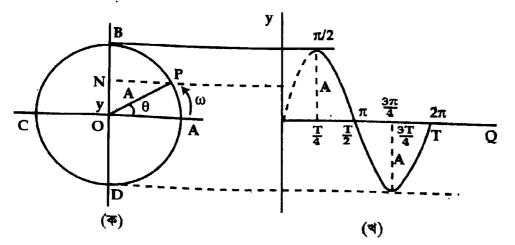
E = Real State + normal for the form of the form o

সিম্ধান্ত : বস্তৃক্ণাটির মোট শক্তি তার সরণের উপর নির্তর করে না এবং গতিপথের সর্বত্র তার মান স্ধির থাকে। এটা শক্তির নিত্যতা সূত্র প্রমাণ করে।

৮·৯ সরল ছন্দিত স্পন্দন ও বৃত্তাকার গতির সম্পর্ক

মনে করি একটি বস্তৃকণা A বিন্দু হতে যাত্রা শুরু করে ABCD বৃত্তাকার পথে ঘড়ির কাঁটার বিপরীত দিকে সমকৌণিক বেগ ৩০-এ ঘুরছে [চিত্র ৮ ৬ (ক)]। ধরি O বৃত্তের কেন্দ্র এবং A বৃত্তের ব্যাসার্ধ। মনে করি t সময় পর বস্তৃকণাটি P অবস্থানে আসল। এখন P বিন্দু হতে বৃত্তের BOD ব্যাসের উপর PN লম্ম অঞ্চকন করি। N হবে লম্মটির পাদ বিন্দু।

মনে করি ON = y। চিত্রে OPN ত্রিভুচ্চ থেকে পাওয়া যায়,


 $y = OP \sin \theta$

= $A \sin \theta$

যেহেতু কণাটি সমকৌণিক বেগে ঘুরছে, সুতরাং ∠POA = θ = ωt (38)

θ-কে কণাটির দশা কোণ (phase angle) বা সংক্ষেপে দশা বলে।

এখন $y = A \sin \theta = A \sin \omega t$

(39)

P কণাটি যখন বৃন্তাকার পথে ঘূরতে থাকে তখন ব্যাস BOD-এর উপর কণার পাদবিন্দু N ব্যাস BOD বরাবর স্পন্দিত হতে থাকে।

সুতরাং কণাটির বেগ,

$$v = \frac{dy}{dt} = A \omega \cos \omega t$$

এবং ত্বরণ, $a = \frac{dv}{dt} = \frac{d^2y}{dt^2} = -A\omega^2 \sin \omega t$
 $= -\omega^2 y$
(40)

জর্ধাৎ কণাটির ত্বরণ এর সরণের সমানুপাতিক। সুতরাং N বিন্দুর গতি সরল ছন্দিত গতি। O হচ্ছে এই ছন্দিত গতির মধ্যবিন্দু বা সাম্যাবস্থান, B ও D ছন্দিত গতির প্রান্তীয় অবস্থান এবং P উৎপাদনকারী বিন্দু (generating point)। বৃত্তটির নাম নির্দেশক বৃত্ত (reference circle) এবং কণাটির নাম নির্দেশক কণা (reference particle) [চিত্র ৮০৬ (ক)]। লক্ষ করলে দেখা যাবে যে কণাটি বৃত্তাকার পথে যখন ABCDA পথে একবার ঘুরে আসে সেই সময় পাদবিন্দুটি OBODO ব্যাস বরাবর যাত্রা বিন্দু বা আদি বিন্দু থেকে শুরু করে একবার পথ অতিক্রম শেষ করে আদি বিন্দুতে ফিরে আসে। কণাটির বৃত্তাকার পথে একবার ঘূরতে যে সময় লাগে তাই দোলন বা পর্যায়কাল T। এ একই পাদবিন্দুও একবার পথ পরিক্রমা শেষ করে। সুতরাং

$$T = \frac{2\pi}{\omega}$$
 [:: $\theta = \omega t$ এবং যখন $\theta = 2\pi, t = T$ সুতরাং $2\pi = \omega T$]

সমীকরণ (39)-এ θ বা ωt -এর কয়েকটি মান বসিয়ে কণাটির সরণ y-এর সংশ্লিষ্ট মান সারণি ৮·১-এ দেখান হল। কণাটির পর্যায়কাল T। এখন কণাটির বৃস্তাকার পথে B, C, D ও A বিন্দুতে পৌঁছার সময় T-তে প্রকাশ করলে যথাক্রমে $\frac{T}{4}$, $\frac{T}{2}$, $\frac{3T}{4}$ ও T পাওয়া যাবে।

θ-এর মান	কণার সরণ y-এর মান	সময় <i>t</i>
0	0	0
$\frac{\pi}{2} = 90^{\circ}$	А	$\frac{T}{4}$
$\pi = .180^{\circ}$	0	$\frac{2T}{4} = \frac{T}{2}$
$\frac{3\pi}{4} = 170^{\circ}$	A	<u>3T</u> 4
$2\pi=360^{\circ}$	0	T

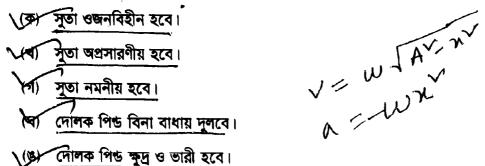
সারণি ৮'১

P কণাটি যখন সমকৌণিক বেগে ঘুরতে থাকে তখন পাদবিন্দু N-এর পরিবর্তন, যা কণাটির সরণ নির্দেশ করে ৮-৬ (খ) চিত্রের অনুরূপ হয়।

৮১০ সরল দোলক

Simple pendulum

একটি ক্ষুদ্র ভারী বস্তৃকে একটি ওজনবিহীন অপ্রসারণীয় এবং নমনীর সুতার সাহায্যে একটি দৃঢ় অবলম্বন হতে ঝুলিয়ে দিলে বস্তুটি যদি বিনা বাধায় অল্প বিস্তারে এদিক-ওদিক দোলে তবে সুভাসহ ঐ বস্তুটিকে সরল দোলক বলে। বস্তুটিকে দোলট বা দোলক পিণ্ড (bob) বলে।

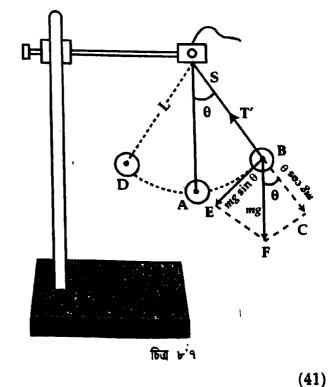

এটি একটি আদর্শ সরল দোলকের সংজ্ঞা। কিন্তু বাস্তব ক্ষেত্রে একটি আদর্শ সরল দোলক প্রস্তৃত করা সম্ভবপর নয়। কারণ <mark>সূতা ওজনবিহীন</mark> হতে পারে না**, সূতা অপ্রসারণীয়** হতে পারে না এবং বস্তৃটি <mark>বিনা বাধায়</mark> এদিক-ওদিক দুলতে পারে না। অতএব পরীক্ষাগারে আমরা যে সরল দোলক প্রস্তৃত করি তা একটি আপাত সরল

২৫৮

বইঘর.কম

দোলক হবে। এই কারণে একটি পাকবিহীন সরু সুভার একপ্রান্তে একটি ক্ষুদ্রাকৃতি ধাতব গোলক বুলিরে সুভাসহ গোলকটিকে একটি সরল দোলক গণ্য করা হয় [চিত্র ৮'৭]। এই ক্ষেত্রে সুতার ওন্ধন ধাতব গোলকের তুলনায় খুব কম হয় এবং গোলকের সমস্ত তর তার ভারকেন্দ্রে কেন্দ্রীভূত থাকে ধরা যায়।

উপরোক্ত সংজ্ঞা হতে সরল দোলকের পাঁচটি বৈশিষ্ট্য পাওয়া যায়—


এ ছাড়া সরল দোলকের গতি সরল দোলগতি ও দুলবার কালে সরল দোলক চারটি সূত্র মেনে চলে [অনুচ্ছেদ ৮·১৪ দ্রফীব্য]।

দোলন বা পর্যায় কাল (Period of oscillation) : একটি পূর্ণ দোলনের জন্য একটি সরল দোলকের যে সময়ের প্রয়োজন হয় তাকে তার দোলন কাল বলে। একে T দ্বারা প্রকাশ করা হয়। একটি সরল দোলক t সে.-এ Nটি পূর্ণ দোলন দিলে, T = $\frac{t}{N}$ ।

৮·১১ সরল দোলকের গতি সরল ছন্দিত গতি Motion of a simple pendulum is S. H. M.

প্রমাণ (Proof) ঃ একটি সরল দোলক লই [চিত্র ৮·৭]। S তার ঝুলন বিন্দু এবং A গোলাকার দোলকটি পিন্ডের ভারকেন্দ্র। SA তার সাম্যাবস্থান। মনে করি SA = L। যদি পিন্ডের ভর 'm' এবং অভিকর্ষজ ত্বুরণ 'g' হয় তবে

তার ওজন mg খাড়াভাবে SA বরাবর নিচের দিকে ক্রিয়া করবে। কিন্তু সুতার টান ক্রিয়া করবে তার বিপরীত দিকে। ধরি দোলকটি দুলতে দেওয়ায় তা কোন এক মুহূর্তে সাম্যাবস্থান হতে θ কোণে সরে SB অবস্থানে আসল। এই স্থানান্তরিত অবস্থানে SA-এর সমান্তরালে তারকেন্দ্র B দিয়ে BF বর্মাবর ক্রিয়াশীল পিডের ওজন mg দুটি অংশে বিভাজিত হবে। একটি SB বরাবর BC-এর দিকে ; এর মান = mg cos θ । অপরটি BC-এর সমকোণে BE-এর দিকে ; এর মান = mg sin θ । কিন্তু mg cos θ বিপরীত দিকে ক্রিয়ারত সুতার টান T' ঘারা নিক্ষিয় হবে, অর্ধাৎ T' = mg cos θ । স্তরাং mg sin θ বলই শুধু পিডটিকে তার সাম্যাবস্থায় আনার চেন্টা করবে।

কিন্তু θ -এর মান যদি অঙ্গ হয় (4°-এর বেশি না হলে), তবে $\sin \theta = \theta$ লেখা যায় এবং দোলক পিন্ড মোটামুটি সরলরেখায় চলে গণ্য করা যায়। (42)কার্যকর বল = mgt (43) কিন্তু বল = ma সমীকরণ (42) ও সমীকরণ (43) হতে আমরা পাই, ma = — mgheta [··ঝণ চিহ্ন ত্বুরণ ও সরণ পরস্পর বিপরীত নির্দেশ করে।] বা, $a = -g\theta$ বা, $a = -g \times \frac{519}{740}, AB}{740} = -g \times \frac{73}{740}, AB}{740}$ (44)বা, $a = -\frac{g}{T} \times \pi \pi \eta$, AB উপরোক্ত সমীকরণে 🗴 এবং L ধ্রুব সংখ্যা। a = — ধ্রুব সংখ্যা × সরণ, AB (45)বা, a ∝ — সরণ, AB সমীকরণ (45) হতে দেখা যায় যে, তুরণ সরণের সমানুপাতিক এবং দোলক পিন্ড A মোটামুটি সরলরেখায় চলে; শুধু তাই নয়, চিত্র হতে আরও বুঝা যায় ত্বরণের বিপরীত দিকে সরণ ঘটছে। এর্প গতিসম্পন্ন কোন একটি বস্তুর দোলন কাল T হলে, প্রমাণ করা যায় যে, ত্বরণ $a = -\left(\frac{2\pi}{T}\right)^2 \times$ সরণ, AB (46) $\mathbf{F} = m\mathbf{a} = -k\mathbf{x}, \ \overline{\mathbf{A}} = -\frac{\mathbf{K}}{m}\mathbf{x} = -\omega^2\mathbf{x} = -\left(\frac{2\pi}{T}\right)^2\mathbf{x}$ সুতরাং সমীকরণ (46) ও সমীকরণ (44) হতে লেখা যায়, $\left(\frac{2\pi}{T}\right)^2 = \frac{g}{L}$ \therefore T = $2\pi \sqrt{\frac{L}{\sigma}}$ (47) এটিই সরল দোলকের দোলন কালের সমীকরণ। অতএব সমীকরণ (47) হতে প্রমাণিত হয় যে, অৱ বিস্তারে সরল দোলকের গতি সরল ছন্দিত গতি। [>] চিত্ৰ ৮'৮-এ ∠AOB = θ θ কোণকে রেডিয়ানে প্রকাশ করলে আমরা পাই, R

 $\theta = \frac{\text{prd, AB}}{\text{analytic, OA}}$ $\exists n, \sin \theta = \frac{AD}{OA}$

চিত্ৰ ৮'৮

ħ

যেহেতু চাপ AB এবং লম্ব AD সমান নয়, সুতরাং sin θ-কে রেডিয়ান ধরা যায় না। কিন্তু θ খুব ছোট হলে, AB এবং AD প্রায় সমান হয়। এই অবস্থায় D বিন্দু B বিন্দুর খুব নিকটস্থ হয়। সেক্ষেত্রে, sin θ 🏻 θ ধরা যায়।

সারণী ৮'২-এ sin 0 এবং 0-এর মানের তুলনামূলক হিসাব দেখানো হল।

সারণি ৮'২

0 (ডিগ্রীডে)	0 (রেডিয়ানে)	sin 0	গার্থক্য (%)
0	0	0	0
2	0'0349	0.0349	0
4	0.0698	0.0698	0
5	0'0873	0.0822	0.11
10	0.1745	0.1736	0.22

২৬০

৮·১২ সরল দোলকের সূত্রাবলি Laws of simple pendulum

কোন একটি সরল দোলক দুলবার সময় তার দোলনকাল চারটি সূত্র মেনে চলে। এসেরকে সরল দোলকের সূত্র বলা হয়। বিখ্যাত বিজ্ঞানী গ্যালিলিও এই সূত্রগুলো আবিক্ষার করেন। সূত্রগুলো নিমে প্রদন্ত হল :

(১) ১ম সূত্র—সম-কাল সূত্র (Law of Isochronism) ঃ 'সম' অর্থ সমান এবং 'কাল' অর্থ সময়। কোন এক স্থানে নির্দিষ্ট দৈর্ঘ্যবিশিষ্ট কোন একটি সরল দোলকের বিস্তার 4 ডিগ্রির মধ্যে থাকলে তার প্রতিটি দোলনের জন্য সমান সময় লাগবে। কাজেই কার্যকর দৈর্ঘ্য L ও অভিকর্ষজ ত্বুরণ 🗴 স্থির থাকলে এবং $0 \leq 4^\circ$ হলে, দোলনকাল, T = ধ্র্ব। 1582 খ্রিস্টাব্দে গ্যালিলিও এই সূত্রটি আবিক্ষার করেন।

\(২) ২য় সূত্র—দৈর্ঘ্যের সূত্র ? বিস্তার 4°-এর মধ্যে থাকলে কোন নির্দিষ্ট স্থানে সরল দোলকের দোলন কাল তার কার্যকর দৈর্ঘ্যের বর্গমূলের সমানুপাতিক। যদি T দোলন কাল এবং L কার্যকর দৈর্ঘ্য হয়, তবে সূত্রানুযায়ী একই স্থানে $T \propto \sqrt{L}$ অর্থাৎ কার্যকর দৈর্ঘ্য চার গৃণ বাড়লে দোলন কাল দুই গুণ বাড়বে বা কার্যকর দৈর্ঘ্য চার গুণ কমলে দোলন কাল দুই গুণ কমবে ইত্যাদি।

 L_1 ও L_2 কার্যকর দৈর্ঘ্যের জন্য দোলনকাল যথাক্রমে T_1 ও T_2 হলে, $T_1^2/L_1 = T_2^2/L_2$ ।

১(৬) তয় সূত্র--জ্বেণের সূত্র : বিস্তার 4°-এর মধ্যে থাকলে নির্দিষ্ট দৈর্ঘ্যবিশিষ্ট কোন একটি সরল দোলকের দোলন কাল এ স্থানের অভিকর্ষীয় বা অভিকর্ষজ্ঞ ত্বরণের বর্গমূলের ব্যস্তানুপাতিক। দোলনকাল T এবং অভিকর্ষজ ত্বুরণ g হলে সূত্রানুসারে একই কার্যকর দৈর্ঘ্য $igl\{ T = rac{1}{r} igr\}$

অর্থাৎ g বাড়লে T কমবে এবং g কমলে T বাড়বে।

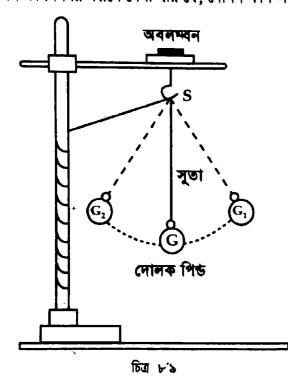
 g_1 ও g_2 অভিকর্ষজ ত্বরণবিশিষ্ট স্থানে দোলন কাল যথাক্রমে T_1 ও T_2 হলে $T_1^2 \times g_1 = T_2^2 \times g_2$ ৷ (৪) ৪র্থ সূত্র—ভরের সূত্র : বিস্তার <u>4°-এর মধ্যে এবং কার্যকর দৈর্ঘ্য</u> স্থির থাকলে কোন স্থানে সরল দোলকের দোলন কাল দোলক পিন্ডের ভর, আকৃতি বা উপাদানের উপর নির্ভর করে না। অর্থাৎ দোলকপিন্ড বড় কি ছোট হোক, তামা কিংবা সীসার হোক, ফাঁপা বা নিরেট হোক কার্যকর দৈর্ঘ্য স্থির থাকলে, একই স্থানে দোলকের দোলন কালের কোন পরিবর্তন ঘটে না।

সরল দোলকের সূত্র হতে দোলনকালের সমীকরণ প্রতিপাদন (Deduction of the equation of time period from the laws of simple pendulum)

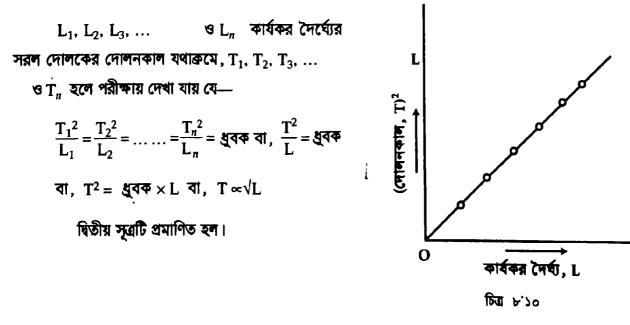
সরল দোলকের দ্বিভীয় ও তৃতীয় সূত্র হতে আমরা পাই,

$$T \propto \sqrt{L}$$
 , যখন g ধ্রবক ও $\theta \le 4^\circ$ এবং $T \propto \frac{1}{\sqrt{g}}$, যখন L ধ্রবক ও $\theta \le 4^\circ$ ।
সূত্র দুটি একত্র করে আমরা পাই $T \propto \sqrt{\frac{L}{g}}$, যখন L এবং g উতয়েই পরিবর্তনশীল ও $\theta \le 4^\circ$
বা, $T = k \sqrt{\frac{L}{g}}$

এখানে k একটি ধ্রবক।


কোন স্থানে g-এর মান জানা থাকলে এবং পরীক্ষার সাহায্যে L এবং T নির্ণয় করে উপরের সমীক্রণে বসালে k-এর মান 2π-এর সমান হতে দেখা যাবে।

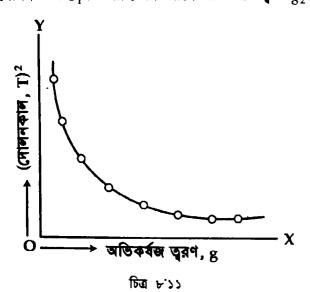
উপরের সমীকরণে k-এর মান বসিয়ে আমরা পাই,


$$T = 2\pi \sqrt{\frac{L}{g}}$$

এটিই সরদ দোলকের দোলনকালের সমীকরণ। উক্ত সমীকরণের সাহায্যে অভিকর্ষজ তরণ *g*-এর মান নির্ণয

৮-১৩ সরল দোলকের সূত্রগুলোর সত্যতা নির্ণয় Determination of laws of simple pendulum

১ম সূত্র ঃ একটি সরল দোলক তৈরি করে তাকে দুলতে দেয়া হল যেন বিস্তার 4 ডিগ্রীর বেলি না হয় [চিত্র ৮'৯]। এখন একটি স্টপ-ওয়াচ নিয়ে 20 বা 25টি পূর্ণ দোলনের সময় বের করি। মোট সময়কে দোলন সংখ্যা দ্বারা ডাগ করে দোলন কাল T নির্ণয় করি। দোলকের বিস্তার 4 ডিগ্রীর মধ্যে রেখে বিভিন্ন বিস্তারে অনুরুপভাবে দোলন কাল নির্ণয় করলে দেখা যায় যে, দোলন কাল সর্বদা সমান হচ্ছে। অতএব প্রথম সূত্রটি প্রমাণিত হল।


২য় সূত্র : গোলাকার দোলক পিগুবিশিষ্ট একটি সরল দোলক লই। স্লাইড ক্যালিপার্সের সাহায্যে দোলক পিগুের ব্যাসার্ধ r বের করে তার সাথে সূতার দৈর্ঘ্য l যোগ করে দোলকের কার্যকর দৈর্ঘ্য, L = l + r নির্ণায় করি। এখন সরল দোলকটিকে 4° অপেক্ষা কম বিস্তারে দুল্তে দিয়ে একটি স্টপ-ওয়াচের সাহায্যে অনেকগুলো পূর্ণ দোলনের সময় বের করি। মোট সময়কে দোলন সংখ্যা দ্বারা ভাগ করে দোলন কাল বের করি এবং তার বর্গ লই। বিভিন্ন কার্যকর দৈর্ঘ্যের জন্য অনুরূপভাবে দোলন কাল নির্ণয় করে প্রত্যের্ক কার্যকর দৈর্ঘ্যের জন্য দোলন কালের বর্গ লই।

অথবা,

কার্যকর দৈর্ঘ্য, L-কে X-অক্ষে এবং দোলন কালের বর্গ, T²-কে Y অক্ষে স্থাপন করে একটি লেখচিত্র সেরলরেখা হবে। এ হতেও প্রমাণিত হয় যে, $\frac{T^2}{L} = র্ব্রক অর্ধাৎ T \sim \sqrt{L}$.

তয় সূত্র ঃ পৃথিবীর বিভিন্ন স্থানে গোলাকার দোলক পিন্ডবিশিষ্ট একটি নির্দিষ্ট দৈর্ঘ্যের সরল দোলককে দুলতে দিয়ে পূর্বের নিয়মে তার দোলন কাল নির্ণয় করি। মনে করি কোন স্থানে অভিকর্ষীয় ত্বরণ ₈₁ এবং প্রাগ্ত দোলন কাল T_1 । অপর কোন স্থানে অভিকর্ষীয় ত্বরণ χ_2 এবং প্রাপ্ত দোলন কাল T_2 । গণনায় দেখা যায়,

8ৰ্ধ সূত্ৰ : বিভিন্ন উপাদান, আকৃতি এবং ভরের কয়েকটি দোলক পিন্ড নিয়ে সরল দোলক তৈরি করি [চিত্র ৮'১২] এবং 4° অপেক্ষা কম বিস্তারে দুলতে দিয়ে প্রত্যেক দোলকের ক্ষেত্রে পূর্বের ন্যায় দোলন কাল বের করি। পরীক্ষায় প্রতি ক্ষেত্রেই দোলন কাল সমান হতে দেখা যায়। অতএব চতুর্থ সূত্র প্রমাণিত হল।

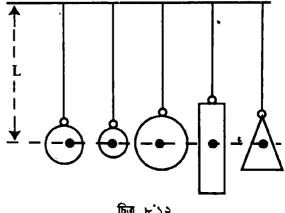
দোলকের ব্যবহার אי א Uses of pendulum

দোলকের কয়েকটি ব্যবহার নিম্নে আলোচিত হল। <u>১</u>(৯) অভিকর্ষন্ধ তুরণ <u>৫-এর মান নি</u>র্ণয়। 🗤 পাহাড়ের উচ্চতা নির্ণয়। <u>্রে) সময় নির্ণায়।</u>

(১) সরল দোলকের সাহায্যে g-এর মান নির্ণয় 8

মূলতত্ত্ব (Theory) 🕯 সরল দোলকের সাহায্যে কোন স্থানের অভিকর্ষজ্র ত্বরণ নির্ণয় করা যায়। এর জন্য ব্যবহুত সমীকরণটি হল,

$$T = 2\pi \sqrt{\frac{L}{g}}$$

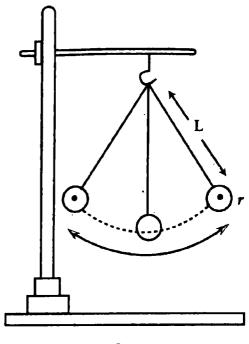

এখানে, T = দোলন কাল, L = কার্যকর দৈর্ঘ্য এবং g = অভিকর্ষজ ত্বুরণ।

উপরের সমীকরণের উভয় পার্শ্বকে বর্গ করে পাই, $T^2 = 4\pi^2 \frac{L}{g}$

$$\boxed{\exists i, g = 4\pi^2 \frac{L}{T^2}}$$

 $T_1^2 \times g_1 = T_2^2 \times g_2$ অর্থাৎ $T^2 \times g_2 = 3$ ্রবক । বা, $T^2 = 4 4 4 4 4 \pi \times \frac{1}{g}$ বা, $T \propto \frac{1}{\sqrt{g}}$ তৃতীয় সূত্র প্রমাণিত হল। কান্জেই দ্বিতীয় সূত্রের সত্যতা প্রমাণিত হল। অথবা,

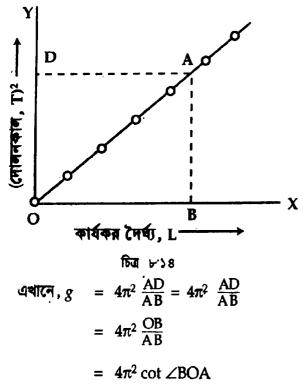
একটি ছক কাগজের X-অক্ষে অভিকর্ষীয় ত্বরণ 🗴 এবং Y-অক্ষে দোলন কালের বর্গ T² নির্দেশ করে g বনাম T² লেখচিত্র অচ্চন করলে লেখচিত্রটি একটি অধিবৃত্ত (Parabola) হয় [চিত্র ৮'১১]। এ দ্বারাও তৃতীয় সূত্রটি প্রমাণিত হয়।



চিত্র ৮১২

(49)

 π একটি ধ্রুব রাশি ও একটি নির্দিষ্ট স্থানে g ধ্রুব। কাচ্চেই ঐ স্থানে L/T^2 -এর একটি নির্দিষ্ট মান পাওয়া যাবে এবং গড় L/T^2 -এর মান সমীকরণে বসিয়ে g-এর মান নির্ণয় করা যাবে।


পরীক্ষা : প্রথমে মিটার স্কেলের সাহায্যে একটি সরল দোলকের [চিত্র ৮ ১৩] সুতার দৈর্ঘ্য । এবং স্লাইড ক্যালিপার্সের সাহায্যে দোলকের গোলাকার পিন্ডের ব্যাস হতে ব্যাসার্ধ r জেনে দোলকের কার্যকর দৈর্ঘ্য, L = l + r নির্ণয় করা হয়। এর পর পর্যবেক্ষণ স্থানে দোলকটিকে 4° অপেক্ষা কম কৌণিক বিস্তারে দুলতে দিয়ে একটি স্টপ-ন্তর্মাচের সাহায্যে তার 20টি পূর্ণ দোলনের সময় কাল t নির্ণয় করে 20 দারা ভাগ করে দোলন কাল, T = $\frac{t}{20}$ বের করা হয় এবং দোলনকালের বর্গ T² নির্ণয় করা হয়। সুতরাং দৈর্ঘ্য । পরিবর্তন করে অনুরূপভাবে বিভিন্ন কার্যকর দৈর্ঘ্যে দোলকের দোলনকাল নির্ণয় করা হয় এবং প্রত্যেক ক্ষেত্রে

৩১'ন চন্দ্র

হিসাব ঃ প্রাশ্ত ফলাফল হতে প্রত্যেক ক্ষেত্রে $rac{L}{T^2}$ নির্ণয় করে গড় $rac{L}{T^2}$ -এর মান উপরের সমীকরণে বসিয়ে g-এর মান নির্ণয় করা যায়, কেননা $4\pi^2$ একটি ধ্রুব রাশি যার মান জানা আছে।

বিকল্প পন্ধতি : একটি ছক কাগজের অনুভূমিক অক্ষে কার্যকর দৈর্ঘ্য L এবং উল্লম্ব অক্ষে দোলন কালের বর্গ, T^2 নির্দেশ করে L— T^2 লেখচিত্র অজ্ঞন করা হয়। অজ্ঞনে L— T^2 লেখচিত্রটি মূল বিন্দু O-গামী একটি সরলরেখা

হবে [চিত্র ৮ ১৪]। এই সরলরেখার যে কোন বিন্দু A হতে X -অক্ষের উপর AB এবং Y-অক্ষের উপর AD লম্ব টেনে অজ্জন অনুসারে AB ও AD-এর অর্ধাৎ T² ও L-এর মান বের করা হয়। এখন L ও T²-এর মান উপরের সমীকরণে বসিয়ে *g*-এর মান নির্ণিয় করা যায়। বইঘর.কম

(४) বিস্তার 4°-এর মধ্যে হওয়া উচিত।

🗙 পির্দ্ধের ব্যাস বেশ কয়েকবার নির্ধারণ করে তাদের গড় নেয়া উচিত।

- 🔨 প্র মান নির্ভুল হওয়া উচিত এবং এর জন্য অধিক সংখ্যক পূর্ণ দোলনে ব্যয়িত সময় নির্ণয় করা উচিত।
- 🔨 পেন্ডটির উল্লস্ম তলে পাক খেতে না দিয়ে মুক্তভাবে দুলবার ব্যবস্থা করা উচিত।

(২) পাহাড়ের উচ্চতা নির্ণয়

(ক) সরল দোলকের সাহায্যে : সরল দোলকের সাহায্যে কোন পাহাড়ের উচ্চতা অর্থাৎ ভূ-পৃষ্ঠ হতে পাহাড়ের চূড়া বিন্দুর মধ্যবর্তী দূরত্ব নির্ণয় করা যায় [চিত্র ৮ ১৫]। প্রথমে পাহাড়ের পাদদেশে অর্ধাৎ ভূ-পৃষ্ঠে সরল দোলকের সাহায্যে অভিকর্ষচ্চ ত্বরণের মান উপরের নিয়মে নির্ণয় করা হয়। মনে করি এই মান = g

এর পর পাহাড়ের চূড়ায় অভিকর্ষজ ত্বরণের মান অনুরূপভাবে নির্ণয় করা যায়। <u>ए-१छ</u> , ए-१छ

চড

ধরি এই মান = g₁

হিসাৰ ও গণনা : তা হলে নিউটনের মহাকর্ষজ সূত্রানুসারে পাহাড়ের পাদদেশে,

$$g = \frac{GM}{R^2}$$
 (50)

এবং পাহাড়ের চূড়ায়,

$$g_1 = \frac{GM}{(R+h)^2}$$
(51)

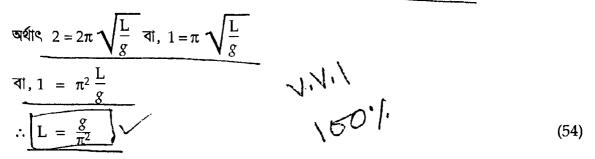
এখানে, M = পৃথিবীর ভর, G = মহাকর্ষীয় ধ্রুবক, R = পৃথিবীর ব্যাসার্ধ এবং h = পাহাড়ের উচ্চতা। সমীকরণ (50) কে সমীকরণ (51) দ্বারা ভাগ করে আমরা পাই,

$$\frac{g}{g_1} = \frac{(R+h)^2}{R^2} = \left(1 + \frac{h}{R}\right)^2$$
(52)
$$h = \left(\sqrt{\frac{g_1}{g}} - 1\right) R$$
(53)

সুতরাং \mathbb{R}, g এবং g_1 -এর মান জেনে h-এর মান নির্ণয় করা যায়।

🔪 (৩) সময় নির্ণয়

দোলক ঘড়িতে দোলকের সাহায্যে সময় মাপা হয়। এ সব দোলক সাধারণত ধাতুর দ্বারা নির্মিত। শীতকালে শৈত্যে তাদের দৈর্ঘ্য কমে যায় এবং গ্রীষ্মকালে তাপে দৈর্ঘ্য বেড়ে যায়। সুতরাং শীতকালে ঘড়ির দোলন কাল কমে যায় এবং ঘড়ি দ্রত চলে। গ্রীষ্মকালে ঘড়ির দোলন কাল বেড়ে যায় এবং ঘড়ি ধীরে চলে। সাধারণ দোলক ঘড়ির পিন্ডের নিচের একটি স্কুকে প্রয়োজনমত ঘুরিয়ে পিডকে উঠা-নামা করিয়ে দোলন কাল নিয়ন্ত্রণ করা হয়।


উচ্চ মাধ্যমিক পদার্থবিজ্ঞান BG & JEWEL

মাটির নিচে বা উঁচু পাহাড়ের উপর g-এর মান কম। কাজেই উঁচু পাহাড়ে বা মাটির নিচে দোলকের দোলন কাল বেশি হয়। এর অর্থ ঘড়ি ধীরে চলে। বিষুব অঞ্চলে g-এর মান কম এবং মেরু অঞ্চলে g-এর মান বেশি। অতএব একটি দোলক ঘড়িকে বিষুব অঞ্চল হতে মেরু অঞ্চলে নিলে ঘড়িটি দ্রত চলে।

৮১৫ সেকেণ্ড দোলক Second pendulum

যে সরল দোলকের দোলন কাল 2 সেকেন্ড তাকে সেকেন্ড দোলক বলে। অর্থাৎ সেকেন্ড দোলকের

T = 2 সে.। কোন একটি সেকেন্ড দোলকের কার্যকর দৈর্ঘ্য L হলে, $T = 2 = 2\pi \sqrt{\frac{L}{g}} = \frac{1}{n}$

সুতরাং, দেখা যায়, সেকেন্ড দোলক অভিকর্ষজ ত্বরণের উপর নির্ভর করে। সেকেন্ড দোলকের দৈর্ঘ্য অভিকর্ষজ ত্বরণের সমানুপাতিক।

৮·১৬ স্প্রিংজনিত স্পন্দন Oscillation due to spring

অনুভূমিক দিকে স্পন্দন ঃ

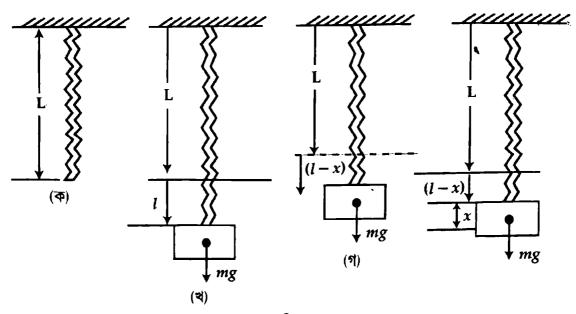
অনুভূমিক স্প্রিং-এর সরল ছন্দিত গতির সমীকরণ অনুচ্ছেদ ৮.৮-এ প্রতিপাদন করা হয়েছে। সমীকরণ নিম্নরূপ ঃ

$$\frac{d^2x}{dt^2} + \omega^2 x = 0$$

এটি একটি সরল ছন্দিত গতির সমীকরণ

এই ছন্দিত গতির পর্যায়কাল,

$$T = \frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{\frac{K}{m}}} = 2\pi \sqrt{\frac{m}{K}} \left[\cdots \omega^2 = \frac{K}{m} \right]$$
(55)


উন্নম্ব দিকে স্পন্দন ঃ

মনে করি ৮ ১৬ (ক) চিত্রে ভারমুক্ত অবস্থায় একটি ঝুলন্ত স্প্রিং। ধরি এই অবস্থায় এর দৈর্ঘ্য L এবং স্প্রিং ধুবকের মান K।

এখন (খ) চিত্রে স্প্রিং-এর নিম্ন প্রান্তে *m* ভর যুক্ত করায় স্প্রিং-এর দৈর্ঘ্য । পরিমাণ প্রসারিত হয়ে সাম্য অবস্থায় ঝুলতে থাকল। এমতাবস্থায় স্প্রিং দারা প্রযুক্ত উর্ধ্বমুখী বল F বস্তুর ওজনের সমান হবে। কিন্তু, F = Kl

$$Kl = mg$$

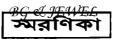
বইঘর.কম মনে করি (গ) চিত্রে বস্তু সাম্য অবস্থানের উপরে x দূরত্বে রয়েছে। এখন স্প্রিং-এর প্রসারণ (l — x)। স্প্রিং-এর দ্বারা প্রযুক্ত ঊর্ধ্বমুখী বলের মান = K(l — x)

চত্র ৮'১৬

এবং বস্তৃর উপর প্রযুক্ত বলের লম্বি F = K(l — x) — mg = —Kx (56) সুতরাং দেখা যাচ্ছে যে এই অবস্থায় প্রযুক্ত লম্বি বল সাম্যাবস্থান হতে এর সরণের সমানুপাতিক। সুতরাং স্প্রিং

দ্বারা ঝুলানো বস্তৃকে উল্লম্ব দিকে গতিশীল করলে সেদিকে সরল ছন্দিত গতি,হয়।

এখন সমীকরণ (56)-এ F = ma বসিয়ে পাওয়া যায় [নিউটনের গতির দিতীয় সূত্রানুসারে] ma = -Kxবা, ma + Kx = 0বা, $a + \frac{K}{m}x = 0$ বা, $\frac{d^2x}{dt^2} + \frac{K}{m}x = 0$ [$a = \frac{d^2x}{dt^2}$] $\frac{d^2x}{dt^2} + \omega^2 x = 0$ [$\because \omega^2 = K/m$]


এটি সমীকরণ (7)-এর অনুরূপ বিধায় সরল ছন্দিত গতির সমীকরণ। অতএব, উল্লস্মভাবে স্পন্দিত স্প্রিং-এর গতি সরল ছন্দিত গতি। এই গতির পর্যায়কাল,

$$T = \frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{K/m}}$$

$$\text{Al}, T = 2\pi\sqrt{m/K}$$

$$= 2\pi\sqrt{\frac{l}{g}} \qquad [Kl = mg]$$

(57)

পর্যাবৃত্ত গতি ঃ কোন বস্তুর গতি যদি এমন হয় যে একটি নির্দিষ্ট সময় পরপর বস্তুটির গতির পুনরাবৃত্তি ঘটে তবে ঐ গতিকে পর্যাবৃত্ত গতি বলে।

্রি স্পন্দন ঃ পর্যাবৃত্ত গতিসম্পন্ন কোন বস্তুর গতি যদি এমন হয় যে, পর্যায়কালের অর্ধেক সময় কোন নির্দিষ্ট দিকে এবং বাকি অর্ধেক সময় বিপরীত দিকে চলে তবে বস্তুর ঐ গতিকে স্পন্দন বলে।

সরল ছন্দিত স্পন্দন ঃ কোন পর্যায় গতিসম্পন্ন বস্তুর উপর কার্যকর ত্বরণ যদি তার গতিপথের একটি নির্দিষ্ট বিন্দু অভিমুখে এমনভাবে ক্রিয়া করে যে তার মান এ বিন্দু হতে বস্তুর্ সরণের মানের সমানুপাতিক হয়, তবে বস্তুর উক্ত গতিকে সরল ছন্দিত স্পন্দন বলে।

সরল দোলক ঃ একটি ছোট ভারী বস্তু পিঙকে একটি ওজনবিহীন, অপ্রসারণীয় এবং নমনীয় সুতার সাহায্যে একটি দৃঢ় অবলম্মনে ঝুলিয়ে দেওয়ায় তা যদি বিনা বাধায় এদিক-ওদিক দোলে, তবে সুতা সমেত পিঙটিকে সরল দোলক বলে।

পূর্ণ দোলন (Complete oscillation) ঃ কোন একটি সরল দোলকের দোলক পিঙ তার গতিপথের যে কোন বিন্দু হতে যাত্রা শুরু করে দুই প্রান্ত অবধি যেয়ে পুনরায় সেই বিন্দুতে ফিরে এলে একটি পূর্ণ দোলন হয়।

দোলন বা পর্যায় কাল (Time period) ঃ কোন একটি সরল দোলকের দোলক পিন্ডের একটি পূর্ণ দোলন দিতে যে পরিমাণ সময় লাগে তাকে দোলন কাল বলে।

কম্পাঙ্ক (Frequency) ঃ কোন একটি সরল দোলকের দোলক পিন্ড এক সেকেন্ডে যতবার পূর্ণ দোলন দেয়, তাকে কম্পাঙ্ক বা কম্পনি বলে।

বিস্তার (Amplitude)ঃ দুলবার সময় কোন একটি সরল দোলকের দোলক পিণ্ড সাম্যাবস্থা হতে সর্বাপেক্ষা যতটা বেশি দূরে যায় তাকে তার বিস্তার বলে।

দশা ঃ কোন একটি কম্পমান বস্তুর যে কোন মূহুর্তের দোলনের অবস্থা অর্থাৎ বস্তুটির অবস্থান, বেগ, ত্বরণ এবং গতির অভিমুখ যা দ্বারা বুঝা যায় তাকে দশা বলে।

সেকেন্ড দোলক (Second's pendulum) ঃ যে সরল দোলকের দোলনকাল 2 সেকেন্ড, তাকে সেকেন্ড দোলক বলে।

প্রয়োজনীয় সমীকরণ

यद्याजनाय जनायग्र	
সেরণ, $x = a \sin \omega t$	(1)
্র্বারণ, $x = a \sin(\omega t + \delta)$	(2)
$\int (\sqrt{4}) v = A \omega \cos \omega t$ = $\omega \sqrt{A^2 - x^2}$	(3)
$ = \omega \sqrt{A^2 - x^2} $	(4)
র্বেগ (সর্বোচ্চ), $v_{max} = \omega A$	(5)
$\sqrt{2}$ রণ, $a = -\omega^2 x$	(6)
্রিরণ (সব্যেচ্চ), = – $\omega^2 A$	(7)
প্রত্যায়নী বল, $F = -Kx$	
	(8)
্রিনিক বেগ , $\omega = \sqrt{\frac{K}{m}}$	(9)
দোলনকাল, T = $2\pi \sqrt{\frac{-\pi 3 n}{2 \pi 3 n}}$	(10)
ү ত্বরণ	(10)
স্থিং-এর দোলনকাল, T = $2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{l}{g}}$	(11)
$\mathbf{F} = \frac{1}{2} m \omega^2 x^2$	•
$\sqrt{2}$	(12)
গতিশক্তি, K. E. = $\frac{1}{2}m\omega^2(A^2-x^2)$	
	(13)
Grue The $=\frac{1}{2}m\omega^2 A^2$	(- · ·)
	(14)
্রস্বিল দোলকের দোলন কাল, $T=2\pi\sqrt{rac{L}{q}}$	
	(15)
কার্যকর দৈর্ঘ্য, $L = \frac{T^2 \times g}{4\pi^2}$	(16)
4//	
কম্পাভক ও দোলন কালের মধ্যে সম্পর্ক, $n{ m T}=1$	(17)

আমরা জানি, অগ্রগামী তরজ্ঞোর সমীকরণ

$$y = A \sin \frac{2\pi}{\lambda} (vt + x)$$
 (2)

.

সমীকরণ (1) ও (2) তুলনা করে পাই,

$$\frac{2\pi}{\lambda} x = \frac{\pi x}{15} \qquad \lambda = 30 \,\mathrm{cm}$$

কৌণিক কম্পাজ্ঞ্ক,

$$\omega = \frac{2\pi}{\lambda} = \frac{2\pi}{30} = \frac{\pi}{15} = 0.209 \text{ rads}^{-1}$$
(At $\frac{2\pi}{\lambda} vt = \pi \frac{2t}{0.3}$

At $v = \frac{\lambda}{0.3} = \frac{30}{0.3} = 300 \text{ cms}^{-1}$

At $n = \frac{v}{\lambda} = \frac{300}{30} = 10 \text{ Hz}$

(1) $\pi = \frac{1}{n} = \frac{1}{10} = 0.1 \text{ sec}$

উত্তর : 0'209 rads⁻¹; 0'1s; 300 cms⁻¹

্র্ব। একটি বস্তৃকণা তার দোলন সীমার শেষ প্রান্ত হতে দোলন শুরু করে 0'1 m বিস্তার ও 1 Hz কম্পাক্তযুক্ত সরল ছন্দিত গতি সম্পন্ন করে। 4'5 s পর ৰুণাটির সরণ কত হবে १

মনে করি সরণ = x
আমরা পাই, x = A sin
$$\omega t$$

= A sin $\left(\frac{2\pi}{T} \times t\right)$ (1)
 \Box (1)
 \Box (1)
 \Box (1)

দোলন সীমার শেষ প্রান্ত হতে মধ্য অবস্থানে যেতে $rac{1}{4}\mathrm{s}=0.25~\mathrm{s}$ সময় লাগে হেতু 4.25 s-এ কণাটির 4টি পূর্ণ কম্প দিয়ে মধ্য অবস্থানে আসবে। কাচ্ছেই মধ্য অবস্থানে অতিক্রম করার 0.25 s পরের সরণই হবে নির্ণেয় 4.5 s পর কণাটির সরণ।

সমীকরণ (1) হতে পাই,
$$x = 0.1 \text{ m} \times \sin \frac{2\pi}{1} \times 0.25$$

= $0.1 \text{ m} \times \sin \left(\frac{\pi}{2}\right)$
= 0.1 m

৩। একটি বস্তৃকণা সরল ছন্দিত গডির পর্যায়কাল 0'001 s এবং বিস্তার 0'005 m। কণাটির গরিষ্ঠ বেগ এব গতিপথের মধ্য অবস্থান হতে 0'002 m দুরের ত্বরণ নির্ণয় কর।

মনে কার ত্রণ = a
আমরা পাই,
$$|a| = \omega^2 |x| = \left(\frac{2\pi}{T}\right)^2 |x|$$
 (1)
সমীকরণ (1) হতে পাই,
 $\pi^2 = 9.87$

$$|a| = \frac{4 \times 9.87}{(0.001 \text{ s})^2} \times 0.002 \text{ m} = 7.9 \times 10^4 \text{ ms}^{-2.45}$$

পুনরায় ধরি, গরিষ্ঠ বেগ = vmax

$$v_{max} = \omega A = \frac{2\pi}{T} \times A$$

धर्शात, $A = 0.005 \text{ m}$
 $v_{max} = \frac{2 \times 3.14}{T} \times 0.005 \text{ m} = 31.4 \text{ m}$

 $v_{max} = \frac{2 \times 3.14}{0.001 \, \text{s}} \times 0.005 \, \text{m} = 31.4 \, \text{ms}^{-1}$ 8। একটি হান্ধা স্প্রিং-এর এক প্রান্তে 0.1 kg ভরের একটি ক্ষুদ্র বস্তু যুক্ত করে একটি দৃঢ় বস্তৃতে অপর প্রান্তটিকে বেধে তাকে ঝুলানো হল। এতে স্প্রিং-এর দৈর্ঘ্য 0.02 m বৃদ্ধি পেল। যদি ক্ষুদ্র বস্তৃটিকে নিচের দিকে একটু টেনে ছেড়ে দেওয়া হয় তবে তার উল্লম্ব কম্পনের পর্যায়কাল কত হবে ? স্প্রিং-এর স্প্রিং ধ্রুবক নির্ণয় কর।

মনে করি বর্ষায়কান = T
আমরা পাই, T =
$$2\pi \sqrt{\frac{387}{564}}$$
 (মন বিবেচনার) (1)
সমীকরণ (1) হতে পাই, T = $2 \times 314 \times \sqrt{\frac{002 \text{ m}}{98 \text{ ms}^{-2}}} = 0.284 \text{ s}$
আবার, $\frac{764}{564} = \frac{m}{K}$
এখানে, $m = 0.1 \text{ kg}$
 $K = \frac{563}{784} \times m = \frac{98 \text{ ms}^{-2} \times 01 \text{ kg}}{002 \text{ m}} = 49 \text{ Nm}^{-1}$
 $K = \frac{563}{784} \times m = \frac{98 \text{ ms}^{-2} \times 01 \text{ kg}}{002 \text{ m}} = 49 \text{ Nm}^{-1}$
 $K = \frac{563}{784} \times m = \frac{98 \text{ ms}^{-2} \times 01 \text{ kg}}{002 \text{ m}} = 49 \text{ Nm}^{-1}$
 $K = \frac{563}{784} \times m = \frac{98 \text{ ms}^{-2} \times 01 \text{ kg}}{002 \text{ m}} = 49 \text{ Nm}^{-1}$
 $K = \frac{563}{784} \times m = \frac{98 \text{ ms}^{-2} \times 01 \text{ kg}}{002 \text{ m}} = 49 \text{ Nm}^{-1}$
 $K = \frac{563}{784} \times m = \frac{98 \text{ ms}^{-2} \times 01 \text{ kg}}{002 \text{ m}} = 49 \text{ Nm}^{-1}$
 $K = \frac{563}{784} \times m = \frac{98 \text{ ms}^{-2} \times 01 \text{ kg}}{002 \text{ m}} = 49 \text{ Nm}^{-1}$
 $R = 2\pi \sqrt{\frac{9}{2}}$
 $T = 2\pi \sqrt{\frac{10}{2}}$
 $T = 2\pi$

সরল ছন্দিত স্পন্দন ૨૧১ বইঘর.কম পা। 0.05 kg ভরের বস্তু 20 cm বিস্তার এবং 2 s পর্যায়কালের সরল ছন্দিত গতি প্রান্ত হলে বস্তুটির সর্বোচ্চ দ্রুডি নির্ণয় কর। য. বো. ২০০৪] আমরা জানি, সর্বোচ্চ দ্রুতি, এখান, A = 20 cm = 0²0 m $v_{max} = \omega A$ T = 2s $\omega = \frac{2\pi}{T} = \frac{2\pi}{2} = \pi = 3.14 \text{ rad s}^{-1}$ $v_{\rm max} = 0.20 \times 3.14 = 0.628 \text{ ms}^{-1}$. 1 একটি জায়গায় অভিকর্ষীয় ত্বরণ 9[.]81 ms⁻²। ঐ স্থানে এফটি সরল দোলক প্রতি সেকেন্ডে একটি অর্ধদোলন সম্পন রুরে। দোলকটির সুতার দর্ষ্য 0'99 m হলে, দোলক পিন্ডের ব্যাস নির্ণয় কর। মনে করি দোলকটির কার্যকর দৈর্ঘ্য = L এখানে, T= 2টি অর্ধ দোলনে ব্যয়িত সময় = 2 × 1টি অর্ধদোলনে ব্যয়িত সময় $= 2 \times 1s$ আমরা পাই, T = $2\pi \sqrt{\frac{L}{\sigma}}$ $= 9.81 \text{ ms}^{-2}$ g $L = \frac{T^2 \times g}{4\pi^2}$ = 9.87(1)সমীকরণ (1) অন্যায়ী, L = $\frac{(2 \times 1s)^2 \times 9.81 \text{ ms}^{-2}}{4 \times 9.87} = 0.994 \text{ m}$ কাজেই দোলক পিন্ডের ব্যাসার্ধ r হলে, L = l + r অনুযায়ী, r = L — l = (0.994 — 0.990) m = 0.004 m নির্ণেয় ব্যাস = 2r = 2 × 0.004 m .= 0'008 m কোন একটি সেকেন্ড দোলকের দৈর্ঘ্য 25.6% বাড়ালে এর দোলনকাল কত হবে বের কর। আঁমরা জানি. [চ. বো. ২০০৩] $T_1 = 2\pi \sqrt{\frac{L_1}{\sigma}}$ (1) (1) $25^{\circ}6^{\circ}\sqrt{3}$ [Perico anitarial (Priv) = L₁ $25^{\circ}6^{\circ}\sqrt{3}$ [Perico anitarial (Priv) $L_2 = L_1 \text{ and } \frac{25^{\circ}6}{100} + L_1$ $= 0.256 \text{ L}_1 + L_1 = 1.256 \text{ L}_1$ $L_2 = (1+7)$ $T_1 = 2 \text{ s}$ $T_2 = ?$ এবং $\dot{T}_2 = 2\pi \sqrt{\frac{L_2}{\sigma}}$ সমীকরণ (2)-কে (1) দ্বারা ভাগ করে পাই, $\frac{T_2}{T_1} = \sqrt{\frac{L_2}{L_1}}$ of, $T_2 = T_1 \sqrt{\frac{1.256 L_1}{L_1}}$ 12= (1+ বা, T₂ = 2 × √1 256 ∴ T₂ = 2'24 s কিন স্থানে দুটি সরলদোলকের দোলনকালের অনুপাত 4 : 5 হলে এদের কার্যকর দৈর্ঘ্যের অনুপাত বের কর। বি. বো. ২০০৫]

আমরা জানি, $\frac{T_1}{T_2} = \sqrt{\frac{L_1}{L_2}}$ এখানে, বা, $\frac{L_1}{L_2} = \frac{T_1^2}{T_2^2} = \frac{4^2}{5^2} = \frac{16}{25}$ $\therefore \quad \angle L_1 : L_2 = 16 : 25$

... / L₁: L₂ = 16: 25
 ...

$$\begin{aligned} & \text{ So s } \text{High Reg sympletic and } \\ & \text{d}, \quad \left(1 + \frac{T}{2}\right)^2 = 4 \, \pi^2 \frac{L_1}{8} \quad \text{d}, \quad \left(\frac{3T}{2}\right)^2 = 4 \pi^2 \frac{L_1}{8} \\ & \text{d}, \quad \left(1 + \frac{T}{2}\right)^2 = 4 \, \pi^2 \frac{L_1}{8} \quad \text{d}, \quad \left(\frac{3T}{2}\right)^2 = 4 \pi^2 \frac{L_1}{8} \\ & \text{d}, \quad T^2 = 4 \pi^2 \frac{L_1}{8} \quad \text{d}, \quad \left(\frac{3T}{8}\right)^2 = 4 \pi^2 \frac{L_1}{8} \\ & \text{d}, \quad T^2 = 4 \pi^2 \frac{L_1}{8} \quad \text{d}, \quad L_1 = \frac{2}{9} L = 225L \\ & \text{Tridi split} = 225L - L \\ & = 125L \\ & \text{erifes Zridi } 25 \, \text{erifes Trian sches the trian scheme the trian scheme tri$$

১৫। দেখাও যে, সরল ছন্দিত গতিসম্পন্ন কোন বস্তুকণার স্পন্দনের পর্যায়কাল, $T = 2\pi \sqrt{\frac{7\pi^2}{5}}$ আমরা জানি, সরল ছন্দিত কোন বস্তুকণার স্পন্দনের পর্যায়কাল

$$T = 2\pi \sqrt{m/K}$$

$$= 2\pi \sqrt{\frac{m}{\omega^2 m}} \qquad [\sqrt{K/m} = \omega, \ \overline{q}, \ K = \omega^2 m]$$

$$= 2\pi \sqrt{\frac{1}{\omega^2}} = 2\pi \sqrt{\frac{x}{\omega^2 x}}$$

$$= 2\pi \sqrt{\frac{7\pi \pi^2}{\sqrt{3\pi^2}}} \quad [\ \overline{q} \overline{q} \overline{q} \overline{q}] \quad [\ \overline{q} \overline{q} \overline{q} \overline{q}]$$

 ২০০৬। সরল ছন্দিত গতি সম্পনুকারী কোন কণার সর্বোচ্চ বেগ 0.02ms⁻¹। কণাটির বিস্তার 0.004m হলে কণাটির পর্যায়কাল কত १

আমরা জানি,
 এখানে,

 সর্বোচ্চ বেগ,
$$v_{max} = \omega A$$
 $v_{max} = 0.2 \text{ ms}^{-1}$

 বা, $\omega = \frac{v_{max}}{A} = \frac{0.02}{0.004}$
 $A = 0.004 \text{ m}$
 $= 5 \text{ sec}^{-1}$
 $T = ?$

 আবার, পর্যায়কাল, $T = \frac{2\pi}{\omega}$
 $= \frac{2 \times 3.14}{5}$
 $= 1.256 \text{ s}$
 ω

জামরা জানি, $T = 2\pi \sqrt{l/g}$ বা, $T^2 = 4\pi^2 l/g$ $g = \frac{4\pi^2 l}{T^2} = \frac{4 \times (3^{-1}42)^2}{(2)^2}$ $= 9'87 \text{ ms}^{-2}$ uaticn,antive field of the second state of the second s

এ

(১৮) একটি সরল দোলক A-এর দৈর্ঘ্য অপর একটি সরল দোলক B-এর দৈর্ঘ্যের 2 গুণ। দোলক B-এর দোলন কাল 2 sec হলে দোলক A-এর দোলন কাল কত १

আমরা জানি,

$$T_{A} = 2\pi \sqrt{\frac{L_{A}}{g}}$$

and
$$T_{B} = 2\pi \sqrt{\frac{L_{B}}{g}}$$

and
$$\frac{T_{A}}{T_{B}} = \sqrt{\frac{L_{A}}{L_{B}}} = \sqrt{\frac{2 L_{B}}{L_{B}}} = \sqrt{2}$$

$$T_{A} = \sqrt{2} \times T_{B} = \sqrt{2} \times 2$$

17

with,

$$T_B = 2 \sec$$

 $L_A = 2L_B$
 $T_A = ?$

= 2.838 sec २ २२३३ sec २ २४३१ একটি সেকেন্ড দোলকের দৈর্ঘ্য চারগুণ করা হলে এর দোলনকাল কত হবে ? [রা. বো. ২০০৪] মনে করি, দৈর্ঘ্য বৃদ্ধির পর দোলনকাল = T₂ এখানে, আদি দোলনকাল, T₁ = 2 sec

290

উচ্চ মাধ্যমিক পদার্থবিজ্ঞান

$$\begin{split} & \overset{\mathcal{B}}{\mathcal{G}} \in \mathcal{G}(\mathcal{F}L^{4})^{\mathcal{H}}\mathcal{F}L & \overset{\mathcal{B}}{\mathcal{G}} \\ & \mathsf{T}_{1} = 2\pi \sqrt{\frac{L}{S}} & \mathsf{T}_{2} = 2\pi \sqrt{\frac{L}{S}} \\ & \mathsf{T}_{1} = \pi_{1} \sqrt{\frac{L}{L}} & \mathsf{T}_{2} = 2\pi \sqrt{\frac{L}{S}} \\ & \mathsf{T}_{1} = \sqrt{\frac{L}{L}} & \mathsf{T}_{2} = 2\pi \sqrt{\frac{L}{S}} \\ & \mathsf{T}_{1} = \mathsf{T}_{1} \sqrt{\frac{L}{L}} & \mathsf{T}_{2} = 2 \times \sqrt{\frac{4L}{L}} = 2 \times \sqrt{4} = 2 \times 2 = 4 \sec \\ & \mathsf{T}_{1} \wedge \mathsf{ch} & \mathsf{l} = \mathsf{ch} \cap \mathsf{cress} \mathsf{crineress} \mathsf{ratess} \mathsf{artesl} \mathsf{f}(\mathsf{s} = \mathsf{s}(\mathsf{s} - \mathsf{s}(\mathsf{m})) & \mathsf{cf}(\mathsf{s}, \mathsf{col}) \mathsf{s}, \mathsf{cf}(\mathsf{s}, \mathsf{cool}) \mathsf{s}, \mathsf{cf}(\mathsf{s}, \mathsf{cool}) \mathsf{s}, \mathsf{cf}(\mathsf{s}, \mathsf{cool}) & \mathsf{cf}(\mathsf{s}, \mathsf{sool}) & \mathsf{cf}(\mathsf{s}, \mathsf{sool}) & \mathsf{cf}(\mathsf{s}, \mathsf{sool}) & \mathsf{cf}(\mathsf{s}, \mathsf{sool}) & \mathsf{sool} & \mathsf{soo$$

૨૧8

ক্ষুদ্ধক্ষলা

সংক্ষিশত-উত্তর প্রশু ঃ	
১। পর্যয়বৃত্ত গতি (কু. বো. ২০০৬) ও সরল ছন্দিত গতির সংজ্ঞা দাও।	[য. বো. ২০০৩; চ. বো. ২০০৩]
১। সমল চনিদে গতির বৈশিষ্য দেশের কর।	[চ. বো. ২০০৫; রা. বো. ২০০৩]
জন সমল ছন্দিত গতিসম্পন কোন কণার সরণের রাশিমালা প্রতিপাদন কর।	
্ব। সমল চানদের গার্কসম্পন কোন কণাব (বগু ও ওরণের রাশ্মাণা এতেশপেশ ধর।	
৫। সবল চন্দিত গতির সংজ্ঞা দেওে। বি. বে. ২০০৬ । এর পাঁট ওপাঁহরণ পাঁও।	101. (AI. 2000; P. (AI. 2000]
্রে। সংজ্ঞা দাও १ (ক) সরল দোলক রি. বো. ২০০৪।, (খ) দোণন কাণ, (গ) কম্পা	हक, (ध) विम्ठात खेवर (७) मना।
৭। সরল দোলকের সংজ্ঞা দাও। সরল দোলকের গতি কি ধরনের গতি ?	
৮। সরল দোলকের বৈশিষ্ট্য কি কি ?	
৯। সরল দোলকের সূত্রগুলোর নাম লিখ।	রো. বো. ২০০৩; ঢা. বো. ২০০০]
১০। $L - T^2$ লেখচিত্রটির আকৃতি কিরূপ হবে ? এর তাৎপর্য কি ?	
১১। সরল দোলকের ব্যবহার উল্লেখ কর। ১১। সেকের্ড দোলক কাকে বলে ২	৫; চ. বো. ২০০৪; ব. বো. ২০০৪]
১২। সেকেন্ড দোলক কাকে বলে ? [রা. বো. ২০০ ১৩। সরল দোলকের সাহায্যে কিভাবে পাহাড়ের উচ্চতা নির্ণয় করা যায় ?	
38। मत्रन् मानल्कत मानूनकान भृथिवीत करत्न कुछ ?	
১৫। একটি দোলক ঘড়ি গ্রীষ্মকালে ধীরে এবং শীতকালে দুত চলে কেন্?	
১৬। সব সরল ছন্দিত গতি পর্যাবৃত্ত গতি কিন্তু সব পর্যাবৃত্ত গতি সরল ছন্দিত গতি ন	য়—উব্তিটি ব্যাখ্যা কর।
১৭। সরল ছন্দিত গতিযুক্ত পথের কোন্ কোন্ বিন্দুতে গতিবেগ এবং ত্বরণ সর্বাধিক? আবার	র কোন্ কোন্ বিন্দুতে সর্বনিম্ন ?
১৮। সরল দোলকের কার্যকর দৈঘ্য বাড়ালে দৌলনকাল বাড়ে না কমে ?	
১৯। সরল দোলকের কৌণিক সরণ 4°-এর বেশি হলে অসুবিধা কি ?	
রচনামূলক প্রশু ঃ	
ী ১। সরল ছন্দিত স্পন্দন গতির সংজ্ঞা দাও। [ঢা. বো. ২০০৩; রা. বো. ২০০৩] এ	র বৈশিষ্ট্যসমূহ ডল্লেখ কর।
	[কু. বো. ২০০৩; রা. বো. ২০০২]
২। সরল ছন্দিত স্পন্দন গতির সংজ্ঞা দাও। এরুপ গতির দুটি উদাহরণ দাও। ৩। সরল ছন্দিত গতি সম্পন্নকারী কোন একটি কণার বিস্তার, কম্পাংক, দশা এবং	[णे. বো. ২০০০; কু. বো. ২০০০] আছার মহলে দাও।
৩। সরণ ছালত গাঁত সম্পন্নকারা কোন একট কণার বিবহার, কম্পাকে, পণা এবং ৪। সরল ছন্দিত গতিসম্পন্ন বস্তুর কণার সুরণ, বেগ এবং ত্বরণের সমীকরণ বের ব	
৪। সরণ হানেও গাওঁসম্পন্ন বস্তুর ক্যার সমান, বেগ এবং তুরবের সমাকরণ বের ৫। সরল ছন্দিত গতিসম্পন্ন বস্তুকণার স্থিতি শক্তির সমীকরণ বের কর।	
৬। সরল ছন্দিত গতিসম্পন্ন বস্তুকণার গতি শক্তির সমীকরণ বের কর।	
৭। শক্তির নিত্যতা সূত্র বিবৃত কর এবং সরল দোলন গতিসম্পন্ন কণার ক্ষেত্রে প্রমা	গ করে।
৮। সরল ছন্দিত গতির ব্যবকলনীয় সমীকরণ নির্ণয় কর এবং তার সাধারণ সমাধান	া কন। কি বো ১০০৬ ব
সি. বো. ২০০৬, ২০০৪, ২০০১; চ. বো. ২০০৪, ২০০১; ব. বো. ২০০৫	
য, বো. ২০০৩, ২০০৬, ২০০৬, ২০০৬, ২০০৬, ২০০৬, ২০০৬, ২০০৬, ২০০৬, ২০০৬, ২০০৬, ২০০৬, ২০০৬, ২০০৬, ২০০৬, ২০০৬, ২০০৬, ২০০৬	 2, 2000; जा. (ता. 2000; 2000) 2, 2000; जा. (ता. 2000; 2000)
ঁ৯। দেখাও যে $x = A \sin(\omega t + \delta)$ সুরল দোলন গতির ব্যবকলনীয় সমীকরণের সা	ধারণ সমাধান। কি. বো. ২০০১]
১০। প্রমাণ কর যে, ভারযুক্ত একটি স্পিং-এর উল্লস্মতলে দোলন সরল ছন্দিত গতি	পর্যায়ের। এ গতির পর্যায়কাল নির্ণয়
কর।	
১১। দেখাও যে, সরল ছন্দিত গতিসম্পন্ন কোন কণার মোট শক্তি তার দোলনের বি	স্তারের বৃগের সমানুপাতিক।
১২। লেখচিত্রের সাহায্যে সরল ছন্দিত গতিসম্পন্ন বস্তৃকণার গতিপথের বিভিন্ন বি	ন্দুতে স্থিতিশস্তি ও গতিশস্তির ভিন্নতা
ব্যাখ্যা কর। দেখাও যে গাতপথের সবত্র স্থাতশাক্ত ও গাতশান্তর সমার্থ সবদা ব্রুব থাকে।	[কু. বা. ২০০৪]
১৩। সরল ছন্দিত গতির পর্যায়কালের সাথে বল ধ্রুবক ও ভরের সম্পর্ক প্রতিপাদন	কর।
১৪। সরল দোলক কাকে বলে <u>?</u> সরল দোলকের সূত্রগুলো বিবৃত কর।	
১৫। সরল দোলকের সূত্রগুলো কিভাবে প্রমাণ করা যায় আলোচনা কর।	_ ·
১৬। সরল দোলকের দৈর্ঘ্যের ও ত্বরণের সূত্র প্রমাণ করার পন্ধতি বর্ণনা কর।	বি. বো. ২০০১]
১৭। প্রমাণ কর যে, অন্ধ বিস্তারে একটি সরল দোলকের গতি সরল ছন্দিত গতি ব	গ স্পন্দন। [ঢা. বো. ২০০৬;
রা. বো. ২০০৬, ২০০৪; কু. বো. ২০০৩; ব. বো. ২০০৬, ২০০৩, '	03; 0. (1. 2005, 2002, 2000;
	য. বো. ২০০৬, ২০০১]
১৮। সরল দোলকের ক্ষেত্রে প্রমাণ কর যে, T = $2\pi \sqrt{\frac{L}{g}}$	[চ. বো. ২০০২]
১৯। অভিকর্ষজ ত্বরণ কাকে বলে <u>?</u> পরীক্ষাগারে এর মান কিভাবে নির্ণয় করা যায় ১৯৬ সেকের দেশের জালার সময় ব্যক্ত বিদ্যু সময়	। ? [রা. বো. ২০০১]
২০। সেকেন্ড দোলক অবশ্যই সরল দোলক কিন্তু সরল দোলক সেকেন্ড দোলক হ কর।	২৩৬৬ শারে শাও ২৩৬ শারে—ব্যাব্যা [কু. বো. ২০০৫]
২১। সরল দোলকের সাহায্যে কিভাবে কোন স্থানের অভিকর্ষজ ত্বরণের মান নির্ণ	য় করে বর্ণনা কর।
	oo); व. (वा. २००); इ. (वा. २००)]
২২। স্প্রিংজনিত স্পন্দনের ক্ষেত্রে প্রমাণ কর যে, $\mathrm{T}=2\pi\sqrt{rac{l}{g}}$, এক্ষেত্রে $l=$ প্র	সারণ ৷ [য. বো. ২০০৪]
গাণিতিক সমস্যাবলি :	
১। একটি বস্তুকৃণা 0.03 m দীর্ঘ একটি সরলরেখায় সরল ছন্দিত স্পন্দন সম্পন্ন ব	জ্বদে। মধ্য অৱস্থান অতিক্রমকালে বেগ
0.09 m s ⁻¹ হলে এর পর্যায়কাল নির্ণয় কর। T	[B: 1:05 s]
(x) একটি সরল ছন্দিত গতিসম্পন্ন কণার 0.02 m সরণে ত্বরণ $5 \times 10^{-3} {\rm ms}^{-2}$ হলে এর	পর্যায়কাল নির্ণয় কর ৷ 🛛 🚺 🕄 12:56 s]
A y and a start of the	

296 $T = 2^{1/\sqrt{2}} \sqrt{2}$ BO INITIAT OFFICIATION $T = T$
(6) সরল ছন্দিত গতি রচনাকারী একটি কণার বিস্তার 0.025 m ও পর্যায়কাল 1.05 s; হলে মধ্য অবস্থান দিয়ে যাওয়ার কালে কালনে বেগ কড় ছবে ৪ ১/
(8) সরল ছন্দিত গতিসম্পন্ন কোন একটি বস্তৃকণার সর্বোচ্চ বেগ 0.1 ms ⁻¹ । এই গতির বিস্তার 0.03 m হলে পর্যায়কাল নির্ণয় কর।
(c) কোন স্থানে একটি সরণ দোলকের ক্ষেত্রে $\frac{L}{T^2}$ এর মান পরীক্ষায় 0.25 ms ⁻² পাওয়া গেন। ঐ স্থানে g -এর মান নির্ণয় কর। [উঃ 9.87 ms ⁻²]
ি একটি অগ্রগামী তরক্তোর সমীকরণ $y = 0.5 \sin \pi \left(100t - \frac{x}{3.4} \right)$, এখানে সব কয়টি রাশি S. I. এককে প্রদন্ত।
তরজাটির বিস্তার, কম্পাঙ্ক, পর্যায়কাল ও বেগ নির্ণয় কর। দি সি দি দি বিস্তার ৫০০৬] বিস্তার ৫০০৮ ; কম্পাঙ্ক 50 Hz ; পর্যায়কাল ৫০০১. বেগ 340 ms ⁻¹] বিস্তার ৫০০৮ ; কম্পাঙ্ক 50 Hz ; পর্যায়কাল ৫০০১. বেগ 340 ms ⁻¹] বিস্তার ৫০০৮ ; কম্পাঙ্ক 50 Hz ; পর্যায়কাল ৫০০১. বেগ 340 ms ⁻¹] (৬° 2/234 m]
একটি সরল দোলকের দোলন কাল $2 s$ । কোন স্থানে অভিকর্ষজ তারণের মান 9.8 ms^{-2} হলে কায়কর দেখ্য নিণয় কর। $L = 0.992 = -\frac{4 2.8}{10}$ [উঃ 0.992 m]
জ্ঞধবা, একটি সরল দোলকের কম্পাজ্ঞ প্রতি মিনিটে 30 বার। দোলকটির দৈর্ঘ্য নির্ণয় কর। একটি সরল দোলক 1 s-এ একবার টিক শব্দ করে। যদি অভিকর্ষজ্ঞ ত্বরণ 9'8 Nkg ⁻¹ হয়, তবে তার কার্যকর দৈর্ঘ্য বের কর
ঠি। একটি সরল দোলক অর্ধসেকেন্ডে একবার টিক শব্দ করে। অভিকর্ষীয় ত্বরণের মান 9'8 Nkg ⁻¹ হলে কার্যকর দৈর্ঘ্য নির্ণয় কর।
নিগম কর্মা (5.0246 m) $(5.0246 $
্রিই) একটি সরল দোলক 1 min-এ 30 বার দোলন দেয় অভিকর্ষীয় ত্বরণ 9'8 ms ⁻² হলে দোলকটির দৈর্ঘ্য নির্ণয় কর্ন। ডিং 0'992 m]
(১৩)। একটি সরল দোলকের দৈর্ঘ্য 1 m। কোন স্থানে g এর মান 9'8 Nkg ⁻¹ হলে এ স্থানে দোলকটির দোলনকাল [উঃ 2 s] নির্ণয় কর্না
(১৪)। একটি সরল দোলকের সূতার দৈর্ঘ্য 0.99 m এবং দোলন কাল 2 s। অভিকর্ষীয় ত্বরণ 9.8 Nkg ⁻¹ হলে দোলক পিন্ডের ব্যাসার্ধ নির্ণয় কর। (১৫) যে স্থানে $g = 9.8 \text{ ms}^{-2}$, সে স্থানে একটি সরল দোলকের কম্পাজ্ঞ প্রতি মিনিটে 30 হয়, তবে দোলকটির সূতার
্রেপখা নিশব্ধ করা (ববের ব্যান = 0.006 m) ১ (৬) A ও B দুটি সরল দোলক। এদের মধ্যে A-এর দৈর্ঘ্য B-এর দৈর্ঘ্যের দ্বিগুণ। B-এর দোলনকাল 3s হলে A-এর
তি একটি সরল দোলকের সুতার দৈর্ঘ্য 98 cm এবং এর দোলনকাল 2s হলে দোলক পিঙের ব্যাসার্ধ নির্ণয় কর।
(g = 9'8 ms ⁻²) (৬৮) কোন স্প্রিং এর এক প্রান্তে m ভরের একটি বস্তৃ ঝুলালে এটি 10cm প্রসারিত হয়। বস্তৃটিকে একটু টেনে ছেড়ে দিলে এর প্র্যায়কাল কৃত হবে ? [উন্তর ঃ 0'63s]
্রি) যদি অভিকর্ষীয় তুরণ 9'8 ms ⁻² হয়, তবে 150 cm দৈর্ঘ্য বিশিষ্ট একটি সরল দোলকের দোলনকাল ও কম্পাজ্ঞ বের কর।
(২০) একটি সরল দোলকের দোলনকাল ভূ–পৃষ্ঠে 2 সেকেন্ড। চন্দ্রপৃষ্ঠে নিয়ে গেলে এর ববের ওন্ধন ৪০% হ্রাস পায়। চন্দ্রপর্কে এর দোলনকাল নির্ণয় কর।
্রিয়া হিচালে জনের একটি বস্তু সরণ ছলিত গতিতে গতিশীল। মধ্যাবস্থান হতে বস্তৃটির যখন 0.15m সরণ হয় তখন এর উপর ক্রিয়ারত প্রত্যায়নী বলের মান 0.4N। গতির দোলন কাল কত ? [উন্তর : 1.923s]
সেকেড হলু। পরিবর্তিত অবস্থায় দোলকটি সেকেড দোলকের দৈর্ঘ্য এমনডাবে বৃদ্ধি পেল যে দোলনকাল পরিবর্তিত হয়ে 204 সেকেড হলু। পরিবর্তিত অবস্থায় দোলকটি ঘৃণ্টায় কত সেকেড ধীরে চলবে ? [উন্তর ঃ 71 s]
তে। একটি সেকেন্ড দোলকের দৈর্ঘ্য শৈত্যের ফলে হ্রাস পেল। এর ফলে দোলনকাল এমন হল যে, দোলকটি দিনে 10 sec ফার্স্ট যায়। পরিবর্তিত দোলন কাল কত ? [কু. বো. ২০০৬] (উন্তর ঃ 1'9977s)
তি দুটি সরল দোলকের কার্যকর দৈর্ঘ্যের অনুপাত 25 : 16 তাদের দোলনকালের অনুপাত নির্ণয় কর। [উঃ 5 : 4] হিটা দুটি সরল দোলকের কার্যকর দৈর্ঘ্যের অনুপাত 25 : 16। বড় দৈর্ঘ্যের দোলকাটের দোলনকাল 2 s হলে, ছোটটির
দোলনকাল নির্ণয় কর। $T_1/T_2 = [U/A_2 = 514 = 7_2 = 8/5 [03: 163] [03: 163] [03: 163] [03: 163] [04: 16] [05$
5
হিন্ধ) একাট সেকেন্ড দোলকের দৈখ্য 225% বাড়ান হলে তার দোলনকাল কত হবে নির্ণয় কর। 🗮 🛱 🕄
ব্রিঠ। A স্থানে সেকেন্ড দোলকের দৈর্ঘ্য 100 সেমি এবং B স্থানে 80 সেমি.। দোলকটিকে B স্থান হতে A স্থানে নিয়ে আসলে তার ওদ্ধন কত বৃদ্ধি পাবে ? (৩)। একটি সেকেন্ড দোলকের দৈর্ঘ্য দ্বিগুণ করা হলে তার দোলনকাল কত হবে ? (৩)। একটি সেকেন্ড দোলকের দৈর্ঘ্য দ্বিগুণ করা হলে তার দোলনকাল কত হবে ?
ত্র)। একটি সের্কেন্ড দোলকের দৈর্ঘ্য দ্বিগুণ করা হলে তার দোলনকাল কত হবে ? তিওঁ। সরল দোলন গতিসম্পন্ন একটি কণার গতির সমীকরণ $x = 20 \sin\left(31 - \frac{\pi}{6} ight)$, এখানে সহকেতগুলো প্রচলিত অর্ধ
বহন করে। কণাটির (ক) বিস্তার, (খ) কম্পাজ্ঞক, (গ) পর্যায়কাল ও (ঘ) সর্বোচ্চ বেগ নির্ণয় কর।
[(죡) 20 m, (박) 4·93 Hz. (키) 0·2 s 의학 (빅) 620 ms ⁻¹]

৯'১ সূচনা

Introduction

কঠিন, তরল ও বায়বীয় এই তিনটি শ্রেণীতে পদার্থ সাধারণত বিভক্ত। পদার্থ ক্ষুদ্র ক্ষুদ্র অণু দিয়ে গঠিত। অণুর মধ্যে ক্রিয়াশীল আন্তঃআণবিক বলের বিভিন্নতার কারণে পদার্থ উপরোক্ত শ্রেণীতে বিভক্ত। কঠিন পদার্থে আন্তঃআণবিক বল অনেক বেশি। কঠিন পদার্থকে বাহ্যিক বল প্রয়োগে বিকৃত করা কন্টকর। বল প্রয়োগে আন্তঃআণবিক স্থানের পরিবর্তনে বস্তুর আকার, আকৃতির পরিবর্তন ঘটে যা তরল বা বায়বীয় পদার্থে ঘটে না। সকল কঠিন পদার্থের স্থিতিস্থাপকতা নামে একটি সাধারণ ধর্ম রয়েছে। এই অধ্যায়ে আন্তঃআণবিক বল এবং এই বলের সাহায্যে স্থিতিস্থাপকতার ব্যাখ্যা, হুকের সূত্র, স্থিতিস্থাপকতার বিভিন্ন গুণাজ্ঞ ব্যাখ্যা, স্থিতিস্থাপক গুণাজ্ঞ নির্ণয়, স্থিতিস্থাপক স্থিতিশস্তি ইত্যাদি আলোচনা করব।

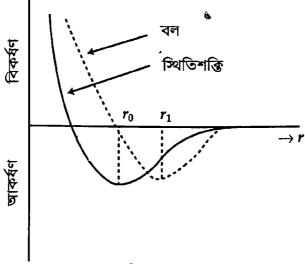
৯ ২ পদার্থের গঠন

Constitution of matter

স্থিতিস্থাপকতা আলোচনা করার আগে পদার্থের গঠন এবং কেন পদার্থে এই ধর্মের সৃষ্টি হয় তা জানা অত্যাবশ্যক।

আমরা জানি সব পদার্থই কতকগুলো অতি ক্ষুদ্র ক্ষুদ্র কণা দিয়ে গঠিত যা পদার্থের সব গুণ বজায় রাখে। এসব ক্ষুদ্র কণাকে অণু (molecule) বলে। অণুগুলো ক্ষুদ্র ক্ষুদ্র স্থিতিস্থাপক গোলক বিশেষ এবং এদেরকে পদার্থের ভিন্তি প্রস্তর (Building block) বলা হয়। পদার্থ গঠনের সময় অণুগুলো পরস্পরের পাশাপাশি থাকে এবং তাদের মধ্যে অতি ক্ষুদ্র পরিমাণের ফাঁকা স্থান রয়েছে। এই ফাঁকা স্থানকে আন্তঃআণবিক স্থান (Intermoleculur space) বলা হয়। <u>আন্তঃআণবিক দূরত্বের পরিমাণ প্রায় 10⁻⁹ m থেকে 10⁻¹⁰ m</u> অণুগুলো এই পরিমাণ দূরত্বে থেকে পরস্পরকে একটি বলে আকর্ষণ করে। এই বলের নাম আন্তঃআণবিক বল (Intermolecular force)। এই আন্তঃআণবিক বল যা কঠিন পদার্থের অণুগুলোকে পরস্পরের সজো আবন্ধ রাখে তা মূলত তাড়িত (Electrical) বল। অণুগুলো যে সমস্ত আহিত (charged) মৌলিক কণার সমন্বয়ে সৃষ্ট তাদের মিথস্ট্রিয়ার ফলে এই তাড়িত বলের উদ্ভব হয়।

বল প্রয়োগ করে কোন একটি পদার্থকে প্রসারিত করতে চাইলে, আন্তঃআণবিক স্থানের পরিসর বেড়ে যায় এবং নিউটনের তৃতীয় গতিসূত্র অনুসারে কিংবা জড়তার দরুন অণুগুলো তাদের পূর্বাবস্থায় ফিরে আসার চেন্টা করে। অনুরূপভাবে বল প্রয়োগে কোন বস্তুকে সংকুচিত করতে চাইলে আন্তঃআণবিক স্থানের পরিসর কমে যায় এবং পদার্থ সংকুচিত হয়। জড়তা কিংবা নিউটনের তৃতীয় গতিসূত্র অনুসারে অণুগুলো তাদের আদি স্থানে ফিরে যাবার চেন্টা করে। এর ফলেই পদার্থে স্থিতিস্থাপকতা ধর্মের সৃষ্টি হয়।


<u>জ্রান্তঃজ্ঞাণবিক স্থানের উপর ভিন্তি করে পদার্থকে দুই ভাগে ভাগ করা হয়েঁছে, যথা ঃ (১) কঠিন (solid)</u> এবং (২) প্রবাহী (fluid)। প্রবাহীকে আবার দুই ভাগে ভাগ করা হয়েছে, যথা— অসংকোচনীয় প্রবাহী, যেমন তর্দ (liquid) এবং সংকোচনীয় প্রবাহী, যেমন গ্যাস (Gas)।

উপরস্থ অত্যধিক তাপমাত্রায় বায়বীয় পদার্থ আয়নিত হয়। এক্ষেত্রে সমান সংখ্যক ধন ও ঋণ আয়ন সৃষ্টি হয়। পদার্ধের এই অবস্থাকে **প্লাজমা অবস্থা** (plasma state) বলা হয়।

৯৩ আস্তঃআণবিক বলের প্রকৃতি Nature of intermolecular forces

দুটি অণুর মধ্যে দূরত্বের পরিবর্তনের সঙ্গো আন্তঃআণবিক বল এবং স্থিতিশক্তির পরিবর্তন কিরৃপ হয় তা নিম্নে আলোচনা করা হল।

ধরা যাক, দুটি অণুর মধ্যে আন্তঃআণবিক বল F এবং আন্তঃআণবিক দূরত্ব r। F এবং r-এর মধ্যে গভীর সম্পর্ক রয়েছে। ৯'১নং চিত্রে আন্তঃআণবিক বর্ল এবং দূরত্বের ও স্থিতিশক্তি বনাম দূরত্বের রেখচিত্র দেখান হয়েছে।

চিত্র ৯'১

যখন অণুগুলোর আন্তঃআণবিক দূরত্ব অনেক বেশি হয় (যেমন গ্যাস অণুগুলোর ক্ষেত্রে) তখন এদের মধ্যে ধনাত্মক প্রকৃতির খুব সামান্য পরিমাণ বল ক্রিয়াশীল থাকে। অণুগুলো যত কাছাকাছি আসে অর্থাৎ এদের মাঝে দূরত্ব কমতে থাকে আকর্ষণ বলের মানও বাড়তে বাড়তে সর্বোচ্চ মানে পৌছায়। এর পর দূরত্ব আরও কমলে আকর্ষণ বলের মান কমতে থাকে, অর্থাৎ তখন আন্তঃআণবিক বিকর্ষণ বলও ক্রিয়াশীল হয়। r-এর মান কমে যখন r₀ মানে পৌছায় তখন বলের মান শূন্য হয়। এই অবস্থায় আন্তঃআণবিক আকর্ষণ এবং বিকর্ষণ বল সমান হয়। স্থিতিশক্তির রেখচিত্র লক্ষ্য করলে দেখা যাবে আন্তঃআণবিক দূরত্ব কমার সঙ্গো সঙ্গো স্প্রিতিশক্তিও কমতে থাকে এবং $r = r_0$ হয় তখন স্থিতিশক্তি সর্বনিম্ন হয়। প্রকৃতির স্বাভাবিক নিয়ম হল যে কোন ব্যবস্থা (system) তখনই সাম্য বা সুস্থির হবে যখন এর স্থিতিশক্তি সর্বনিম্ন হবে। সুতরাৎ $r = r_0$ অবস্থানকে সাম্যাবস্থান বলে এবং r_0 দূরত্বকে সাম্যাবস্থা বা সুস্থিতি দূরত্ব বলা হয়। বিভিন্ন বস্তুর অণুগুলোর মাঝে r_0 -এর মান ভিন্নতর হয়।

আন্তঃআণবিক বলের আলোকে স্পিতিস্পাপকতার ব্যাখ্যা (Explanation of elasticity in the light of intermolecular forces)

কোন কেলাসিত জড় পদার্থের উপর বল প্রয়োগ করা হলে সে বল বস্তুর অণুগুলোকে সাম্য দূরত্ব r₀ থেকে খানিকটা সরিয়ে দেয়। কিন্তু অণুগুলো সর্বদাই সাম্য বা মাভাবিক দূরত্বে ফিরে যেতে চায়। ফলে সরণের বিপরীত দিকে একটি প্রত্যায়নক বল (restoring force) সৃষ্টি হয়। প্রযুক্ত বল বস্তুটিকে টেনে প্রসারিত করতে চাইলে অণুসমূহের পারস্পরিক দূরত্ব বেড়ে যায় এবং প্রত্যায়নক বল হয় আকর্ষিক (attractive); অপরপক্ষে প্রযুক্ত বল বস্তুটিকে সজ্ফুচিত করতে চাইলে প্রত্যায়নক বল হবে বিকর্ষিক (repulsive)। বস্তুর সাম্যাবস্থানের জন্য প্রযুক্ত বল এবং প্রত্যায়নক বল পরক্ষার বিরোধী এবং পরিমাণে সমান হতে হবে। এই প্রত্যায়নক বলকে স্বিতিস্থাপক্ষ বল (elastic force) বলা হয়। সমপরিমাণ সরণের জন্য বিভিন্ন বস্তুর স্থিতিস্থাপক বল সমান হয় না। সে কারণে বিজিন্ন বস্তুর স্থিতিস্থাপকতাও ভিন্ন ভিন্ন হয়।

বইঘর.কম

বস্তুকে সজ্ঞোচন বা প্রসারণের জন্য প্রযুক্ত বলের মান যদি খুব বেশি না হয় তবে এই বলের জন্য সরণ রৈখিক (linear) হয়। ৯'১ চিত্রে r₀ অবস্থানের সামান্য উপরে বা নিচের কিছু অংশকে আমরা রৈখিক ধরতে পারি। এই অবস্থায় স্থিতিস্থাপক বল সরণের সমানুপাতিক। প্রযুক্ত বল তুলে নিলে বস্তুটি স্থিতিস্থাপক বলের কারণে সাম্যাবস্থানে ফিরে যাবে।

চিত্র ৯'১ হতে দেখা যায় যে আন্তঃআণবিক দূরত্ব r₁ এর বেশি হলে বলের মান কমতে থাকে অর্থাৎ আকর্ষণ বল লোপ পেতে থাকে। এই অবস্থায় প্রযুক্ত বল তুলে নিলে বস্তৃটি আর পূর্বের সাম্যাবস্থানে ফিরে যায় না। বস্তৃর মাঝে তৃখন স্থায়ী বিকৃতি ঘটেছে বলা হয়। অর্থাৎ বস্তৃটির স্থিতিস্থাপকতা ধর্ম লোপ পেয়েছে। সুতরাং দেখা যাচ্ছে যে প্রযুক্ত বলের একটা সর্বোচ্চ সীমা আছে। সে সীমা পর্যন্ত বল প্রয়োগ করলে বস্তৃটি স্থিতিস্থাপক থাকে অর্থাৎ প্রযুক্ত বল সরিয়ে নিলে বস্তৃটি পূর্বের অবস্থায় ফিরে যায় ; কিন্তু সীমা অতিক্রম করলে বস্তৃটি আর স্থিতিস্থাপক থাকে না। এই সীমাকেই বলা হয় স্থিতিস্থাপক সীমা (elastic limit)।

৯[.]৪ স্থিতিস্থাপকতা Elasticity

আমরা জানি কোন একটি বস্তুর উপর বল প্রয়োগ করলে তার কায়িক পরিবর্তন ঘটে অর্থাৎ বস্তু বিকৃত হয় এবং প্রযুক্ত বল অপসারণ করলে বস্তু পূর্বের অবস্থায় ফিরে আসে। এক খন্ড রাবার বা স্প্রিংকে দুই পাশ হতে চানলে তার দৈর্ঘ্য বৃদ্ধি পায় এবং টান ছেড়ে দিলে তা পূর্বের অবস্থায় চলে যায়। ফুটবলের রাডারকে বায়ুপূর্ণ করে বাইরে থেকে চাপ প্রয়োগ করলে তা আয়তনে হ্রাস পায়। আর চাপ সরিয়ে নিলে তা পূর্বের অবস্থায় ফিরে যায়। তা হলে দেখা যায় যে, বল প্রযুক্ত হওয়ার ফলে নিউটনের তৃতীয় গতি সূত্র অনুসারে বস্তুর মধ্যে একটি প্রতিক্রিয়া বলের সৃষ্টি হয়। প্রযুক্ত বল অপসারিত হলে এই প্রতিক্রিয়া বল বিকৃত বস্তৃকে তার পূর্বের অবস্থায় ফিরে আসতে সাহায্য করে। আর এই বিকৃতির মান বলের পরিমাণ, বলের প্রয়োগ বিন্দু এবং বস্তুর ধর্মের উপর নির্ভর করে। বস্তুর এই ধর্মকে স্থিতিস্থাপকতা বলে।

সংজ্ঞা ঃ বস্তুর উপর প্রযুক্ত বলের ক্রিয়ায় তার আকার বা আয়তন বা উডয়েরই পরিবর্তনের প্রচেষ্টাকে পদার্থের যে ধর্ম বাধা দেয় এবং প্রযুক্ত বল অপসারিত হলে পূর্বের আকার বা আয়তন ফিরে পায় তাকে স্থিতিস্থাপকতা বলে।

৯'৫ স্থিতিস্থাপকতা সম্পর্কে কয়েকটি রাশি Some terms relating to elasticity

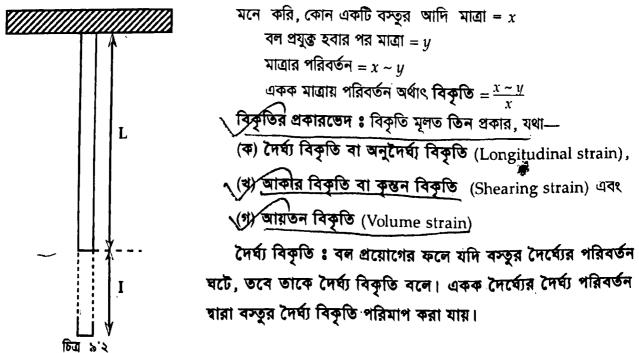
স্থিতিস্থাপকতার সাথে কয়েকটি রাশি বিশেষভাবে সংশ্লিষ্ট। নিম্নে তাদের আলোচনা করা হল ঃ

(ক) পূর্ণ স্থিডিস্থাপক বস্তু (Perfectly elastic body) ঃ কোন বস্তুর উপর বল প্রয়োগ করার পর ঐ বল অপসারণ করলে যদি বস্তুটি পূর্ণভাবে পূর্বাবস্থা ফিরে পায় তবে ঐ বস্তুকে পূর্ণ স্থিতিস্থাপক বস্তু বলে। বাস্তবে কোন বস্ট্রই পূর্ণ স্থিতিস্থাপক নয়।

(খ) নমনীয় বস্তু (Plastic body) ঃ আমরা জানি, বল প্রয়োগে বস্তুর বিকার (deformation) ঘটে, অর্থাৎ বস্তু বিকৃত হয়।

বিকৃতিকারী বল অপসারণের পর যদি বস্তুর অবস্থার পুনঃ প্রান্ডি না ঘটে তবে তাকে নমনীয় বস্তু (Plastic body) বলে এবং বস্তুর এই ধর্মকে নমনীয়তা বলে। এই বস্তুকে অস্থিতিস্থাপক বস্তুও বলা হয়।

(গ) পূর্ণ দৃঢ় বস্তু (Perfectly rigid body) **ঃ** কোন বস্তুর উপর যে কোন পরিমাণ বল প্রয়োগ করে যদি তার বিকৃতি বা কায়িক পরিবর্তন ঘটানো না যায়, তবে এ বস্তুকে পূর্ণ দৃঢ় বস্তু বলে। কিন্তু প্রকৃতিতে কোন বস্তুই পূর্ণ দৃঢ় নয়। কারণ বল প্রযুক্ত হলে তার কিছু না কিছু বিকৃতি ঘটবেই। তবে কোন কোন ব্যবহারিক কাজের জন্য কাচ, ইস্পাত প্রভৃতি বস্তুকে সাধারণত পূর্ণ দৃঢ় বস্তু হিসেবে গ্রহণ করা হয়। (ঘ) স্বিতিস্থাপক সীমা (Elastic limit) ঃ আমরা জানি বল প্রয়োগে প্রত্যেক বস্তৃরই অল্পবিস্তর বিকৃতি ঘটে। বল অপসারণ করলে স্থিতিস্থাপকতার দর্ন বস্তৃ পূর্বের অবস্থায় ফিরে আসে, প্রযুক্ত বলের পরিমাণ বেশি হলে বিকৃতিও বেশি হয়। তবে প্রত্যেক বস্তৃই বলের একটি নির্দিফ্ট সীমা পর্যন্ত পূর্ণ স্থিতিস্থাপক থাকে। অতএব, প্রযুক্ত বাহ্যিক বলের যে সর্বোচ্চ বা উর্ধ্বসীমা পর্যন্ত কোন বস্তৃ পূর্ণ স্থিতিস্থাপক থাকে। বস্তৃর স্থিতিস্থাপক সীমা বলে। বিভিন্ন বস্তৃর স্থিতিস্থাপক সীমা বিভিন্ন। ইস্পাত ও হীরার স্থিতিস্থাপক সীমা খুব বেশি আবার দস্তার স্থিতিস্থাপক সীমা খুব কম।


(ঙ) অসহ তার এবং অসহ পীড়ন (Breaking weight and breaking stress) ? স্থিতিস্থাপুক সীমা পর্যন্ত কোন একটি বস্তু পূর্ণ স্থিতিস্থাপক থাকে। প্রযুক্ত বল এ সীমা অতিক্রম করলে বস্তু পূর্ণ স্থিতিস্থাপক থাকবে না। বল অপসারিত হলে কিছু বিকৃতি থেকে যাবে। যদি প্রযুক্ত বলের মান ক্রমশ বৃদ্ধি করা যায় তবে বস্তুটির এমন এক অবস্থা আসবে যখন তার সহ্য করতে না পেরে তেজো বা ছিঁড়ে যাবে। অতএব ন্যূনতম যে নির্দিষ্ট তারের ক্রিয়ায় কোন বস্তু তেজো বা ছিঁড়ে যায় তাকে অসহ তার বা অসহ ওজন বলে। একে ভঞ্জক-তারও বলা হয়।

আ<u>র কোন একটি বস্তুর একক ক্ষেত্রফলের উপর প্রযুক্ত অসহ</u> ডারকে অসহ পীড়ন বলে।

F	অসহ পীড়ন =		অসহ ভার
) অসহ	শাভূণ =	ক্ষেত্ৰফল	

(চ) স্বিতিস্থাপক ক্লান্তি (Elastic fatigue) ঃ পরীক্ষার সাহায্যে দেখা গেছে যে, কোন বস্তু বা তারের উপর ক্রমাগত পীড়নের হ্রাস-বৃন্ধি করলে পীড়নের সাথে সাথে বিকৃতি হয় না; বিকৃতি ধীর গতিতে সংঘটিত হয় এবং বস্তুর স্থিতিস্থাপক ধর্মের অবনতি ঘটে। এই অবস্থায় বস্তু যেন খানিকটা ক্লান্তিতে তোগে। এমতাবস্থায় অসহ ভার অপেক্ষা কম ভারে তারটি ছিঁড়ে যেতে পারে। বিখ্যাত বিজ্ঞানী কেলভিন (Kelvin) পদার্থের এই ধর্মকে স্থিতিস্থাপক ক্লান্তি আখ্যা দিয়েছেন।

(ছ) বিকৃতি (Strain) ঃ আমরা জানি, কোন একটি বস্তুর উপর বল প্রয়োগ করলে বস্তুর দৈহিক বা কায়িক পরিবর্তন ঘটে। এই পরিবর্তনকে বিজ্ঞানের ভাষায় বিকৃতি বলে। এই বিকৃতি দৈর্ঘ্যে হতে পারে, আকারে হতে পারে বা আয়তনেও হতে পারে। কোন একটি বস্তুর একক মাত্রায় যে পরিবর্তন ঘটে তা দ্বারা বিকৃতি পরিমাপ করা যায়।

২৮০

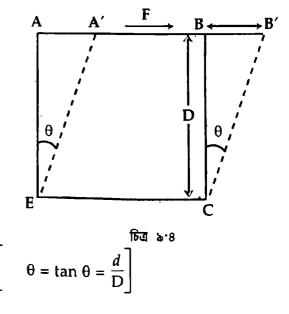
বইঘর.কম

মনে করি কোন একটি বস্তুর আদি দৈর্ঘ্য = L; বল প্রয়োগে এর দৈর্ঘ্যের পরিবর্তন = / [চিত্র ৯·২]

দৈৰ্ঘ্য বিকৃতি = l/L

কৃস্তন বা মোচড় বিকৃতি (Shearing strain) ঃ যদি প্রযুক্ত বাহ্যিক বলের ফ্রিয়ায় বস্তুর আয়তন অপরিবর্তিত থেকে কেবলমাত্র এর আকৃতির পরিবর্তন হয় বা বস্তুটি মোচড় খায় তবে এ ধরনের বিকৃতিকে কৃস্তন বা মোচড় বিকৃতি বলা হয়। ফলে বস্তুর অভ্যস্তরে যে পীড়ন সৃষ্টি হয় তাকে কৃস্তন পীড়ন (shearing stress) বলে। এ ধরনের বিকৃতিকে ব্যবর্তন বিকৃতিও বলে।

উদাহরণ : একটি মোটা বইকে টেবিলের উপরে চেপে ধরে উপরের মলাটের স্পর্শক বরাবর হাত দিয়ে অনুভূমিকভাবে ঠেললে দেখা যাবে যে বইটির আকৃতি পরিবর্তিত হয়েছে [চিত্র ৯.৩]। প্রযুক্ত বলের ক্রিয়ায় বইটির প্রত্যেক পাতা ঠিক নিচের পাতার সাপেক্ষে অল্প পরিমাণে সরে যায়।


এটাই কৃন্তন বিকৃতি। চিত্রে বইটির পার্শ্বতলে একটি জায়তক্ষেত্র জাঁকলে এই বিকৃতির ফলে তা একটি সামান্তরিকে পরিণত হবে [চিত্রের ভিতরের জংশে দেখান হয়েছে]।

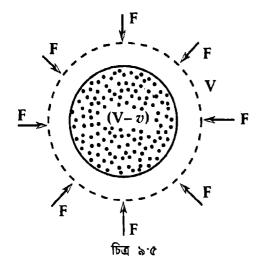
আকার পরিবর্তনে সৃষ্ট কৌণিক বিকৃতি দ্বারা কৃস্তন বা মোচড় বিকৃতি পরিমাপ করা যায়।

ব্যাখ্যা : মনে করি ABCE একটি বর্গক্ষেত্র [চিত্র ৯·৪]। এর CE বাহু স্থির রেখে AB বাহুর উপর F পরিমাণ স্পর্শনী বল প্রয়োগ করায় A বিন্দু A' এবং B বিন্দু B'-এ স্থানান্তরিত হল এবং বস্তু A'B'CE আকার ধারণ করল। কিন্তু A'B'CE একটি রম্বস। তা হলে দেখা যায় যে, বল প্রযুক্ত হওয়ায় বস্তুর আকারের পরিবর্তন ঘটেছে। এর নাম কৃন্তন বিকৃতি।

এই কৃন্তন বিকৃতি বস্তুর কৌণিক বিচ্যুতি দ্বারা পরিমাপ করা হয়। মনে করি কৌণিক বিচ্যুতি = 0 এবং । খুবই ছোট।

> কৃন্তন বিকৃতি = $\theta = \frac{d}{D}$ এখানে, AA' = BB' = d এবং BC = AE = D কান্ডেই, কৃস্তন বিকৃতি = আপেন্দিক সরণ ন্যবধান দূরত্ব

(2)


আয়তন বিকৃতি : বল প্রয়োগের ফলে যদি বস্তুর আয়তনের পরিবর্তন ঘটে তবে তাকে আয়তন বিকৃতি বলে এবং একক আয়তনের আয়তন পরিবর্তন হারা আয়তন বিকৃতি পরিমাপ করা হয়। দোর্থবিজ্ঞান (১ম)–৩৬

(1)

মনে করি কোন একটি বস্তুর আদি আয়তন = V [চিত্র ৯·৫] এবং বল প্রয়োগের ফলে আয়তনের পরিবর্তন = v

আয়তন বিকৃতি =
$$\frac{আয়তনের পরিবর্তন}{আদি আয়তন} = \frac{v}{V}$$
 (3)

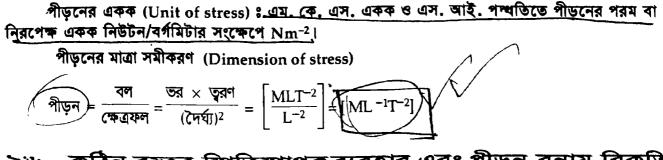
বিকৃতির একক এবং মাত্রা সমীকরণ (Unit and dimension of strain) : বিকৃতি একই জাতীয় দুটি রাশির অনুপাত। সুতরাং এর একক এবং মাত্রা সমীকরণ নেই।

(জ) পীড়ন (Stress) 3 বাহ্যিক বল প্রয়োগে কোন একটি বস্তুকে বিকৃত করলে নিউটনের তৃতীয় গতিসূত্র অনুসারে স্থিতিস্থাপকতার দরুন বস্তুর মধ্যে একটি প্রতিক্রিয়ামূলক বলের সৃষ্টি হয়। এই ক্রিয়ামূলক ও প্রতিক্রিয়ামূলক বলের মান সমান ও বিপরীতমুখী। অতএব, কোন একটি বস্তুর একক ক্ষেত্রফলের উপর ক্রিয়ামূলক বা প্রতিক্রিয়ামূলক বলের মানকে পীড়ন বলে। আরও সহজতাবে বলা যায় যে, কোন একটি বস্তুর একক ক্ষেত্রফলের উপর প্রযুক্ত বলকে পীড়ন বলে।

পীড়ন =
$$\frac{\overline{\mathbf{A}}}{\overline{\mathbf{C}}} = \frac{\overline{\mathbf{F}}}{\overline{\mathbf{A}}}$$
 (4)

প্রীন্ডনের প্রকারতেদ (Kinds of stress) : পৌড়ন তিন ধ্রকার, যথা ঃ

(৬) আয়তন পীড়ন (Longitudinal stress); (২) আকার বা কৃস্তন পীড়ন (Shearing stress) এবং (৩) আয়তন পীড়ন (Volume stress)।

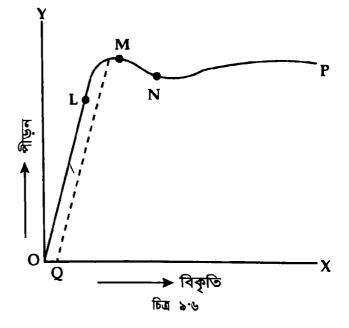

দৈর্ঘ্য পীড়ন : দৈর্ঘ্য বিকৃতি ঘটাবার জন্য প্রতি একক ক্ষেত্রফলের উপর দৈর্ঘ্য বরাবর প্রযুক্ত বলকে দৈর্ঘ্য পীড়ন বলে। মনে করি কোন একটি তারের প্রস্বচ্ছেদের ক্ষেত্রফল A। যদি তার দৈর্ঘ্য বরাবর F পরিমাণ বল প্রয়োগ করা হয়, তবে দৈর্ঘ্য পীড়ন = ক্র্মি ক্ষেত্রফল = $\frac{F}{A}$

কুন্তুন বা মোচড় পীড়ন : আকার বিকৃতি ঘটাবার জন্য যে পীড়ন প্রয়োগ করতে হয় তাকে কৃন্তুন বা মোচড় পীড়ন বলে। যদি কোন একটি বস্তুর A ক্ষেত্রফলের উপর F পরিমাণ স্পর্শক বল প্রয়োগ করে আকার বিকৃতি ঘটানো হয় তবে,

আয়তন পীড়ন ঃ আয়তন বিকৃতি ঘটাবার জন্য যে পীড়ন প্রয়োগ করতে হয় তাকে আয়তন পীড়ন বলে। মনে করি কোন একটি বস্তুর চারদিক হতে F পরিমাণ বল অভিলম্মভাবে প্রয়োগ করে আয়তন বিকৃতি ঘটানো হয়েছে। যদি তার তলের ক্ষেত্রফল A হয়, তবে

স্থিতিস্থাপকতা

বইঘর.কম



৯৬ কঠিন বস্তুর স্থিতিস্থাপকব্যবহার এবং পীড়ন বনাম বিকৃতি লেখচিত্র

Elastic behaviour of a solid and stress-strain graph

কোন একটি তারের এক প্রান্ত কোথাও বেঁধে অপর প্রান্ত ক্রমবর্ধমান কয়েকটি ভার পর পর ঝুলাই এবং প্রত্যেক ভারের জন্য দৈর্ঘ্য বৃদ্ধির পরিমাণ বের করি। তারের প্রস্থচ্ছেদের ক্ষেত্রফল এবং আদি দৈর্ঘ্য হতে ভিন্ন ভিন্ন পীড়নের জন্য ভিন্ন ভিন্ন বিকৃতি বের করি এবং **পীড়ন ও বিকৃতির** একটি লেখচিত্র অঙ্জন করি। পীড়নের সাথে বিকৃতি কিভাবে পরিবর্তিত হয় তা লেখচিত্র হতে পরিক্ষার বুঝতে পারা যায়। এই লেখচিত্রে পীড়নকে Y-অক্ষে এবং বিকৃতিকে X-অক্ষে স্থাপন করি [চিত্রে ৯·৬]।

০ বিন্দুতে পীড়ন শূন্য, সুতরাং বিকৃতিও শূন্য। ০ বিন্দু হতে L বিন্দু পর্যন্ত লেখটি একটি সরলরেখা হওয়ায় ঐ বিন্দু পর্যন্ত পীড়ন ও বিকৃতি পরস্পরের সমানুপাতিক অর্ধাৎ পীড়ন যত বাড়বে বিকৃতিও ততই বাড়বে। পীড়নের LQ মান পর্যন্ত তারটি পূর্ণ স্থিতিস্থাপক বস্তৃর ন্যায় আচরণ করবে অর্ধাৎ পীড়ন তুলে নিলে তারটি পুনরায় পূর্বাবস্থায় ফিরে আসবে। অতএব এই পীড়নের জন্য প্রযুক্ত বলই তারটির স্থিতিস্থাপক সীমা। পীড়ন LQ অপেক্ষা একটু বাড়ালে তারটি আর পূর্ণ স্থিতিস্থাপক থাকবে না।

এখন পীড়ন আরও বাড়াতে থাকলে পীড়ন বৃন্দির হার অপেক্ষা বিকৃতি বৃন্দির হার বেশি হবে অর্ধাৎ বিকৃতি দুত তালে সংঘটিত হবে। এমতাবস্থায় পীড়ন তুলে নিলেও তারটি আর পূর্বাবস্থায় ফিরে আসবে না এবং তারে একটি স্থায়ী বিকৃতি দেখা দিবে [চিত্রে OQ বস্তুর স্থায়ী বিকৃতি নির্দেশ করছে]। এই অবস্থা M বিন্দু পর্যন্ত চলতে থাকবে। এই M বিন্দুকে নতি বিন্দু (yield point) বলে। এর পর পীড়ন আর না বাড়ালেও তারের দৈর্ঘ্য বৃন্দি চলতে থাকবে এবং এই ঘটনা N বিন্দু পর্যন্ত চলবে। N বিন্দুর পর পীড়ন আরও বাড়াতে থাকলে তারের বিভিন্ন স্থান সরু হতে থাকবে এবং পরিশেষে কোন এক স্থান হতে ছিড়ে যাবে। যে বিন্দুতে তারটি ছিড়ে যাবে তাকে সহন সীমা (breaking point) বলে। লেখচিত্র P হচ্ছে সেই সহন সীমা। P বিন্দুতে পীড়নের মানকে অসহ পীড়ন (breaking stress) বলে।

সুতরাং, অসহ পীড়নের সংজ্ঞা পেখা যায় ঃ প্রতি একক প্রস্বচ্ছেদের ক্ষেত্রফলে ন্যূনতম যে বলের ক্রিয়ায় তারটি ছিঁড়ে যায়, তাকে এ তারের অসহ পীড়ন বলে। অসহ পীড়নকে তারের প্রস্বচ্ছেদের ক্ষেত্রফল দিয়ে গুণ করে অসহ ভার (breaking weight) বা অসহ বল পাওয়া যায়। উল্লেখ্য পীড়ন স্থিতিস্থাপক সীমা অপেক্ষা কম হলেও তা যদি বস্তুর উপর দীর্ঘক্ষণ যাবত ক্রিয়াশীল থাকে তবে সেক্ষেত্রে বস্তুর বিকৃতি স্থায়ী হবে।

৯ ৭ হুকের সূত্র

Hooke's law

বিখ্যাত বিজ্ঞানী রবার্ট হুক পীড়ন ও বিকৃতির মধ্যে একটি নিবিড় সম্পর্ক লক্ষ করেন। এই সম্পর্ককে তিনি 1678 খ্রিস্টাব্দে একটি সূত্রের আকারে প্রকাশ করেন। এর নাম হুকের সূত্র। সূত্রটি নিম্নে বিবৃত হল ঃ

"স্থিতিস্থাপক সীমার মধ্যে বস্তুর উপর প্রযুক্ত পীড়ন তার বিকৃতির সমানুপাতিক।" গাণিতিকভাবে লেখা যায়, পীডন ∞ বিকৃতি।

বা, <u>শীড়ন = ধ</u>ুবক × বিকৃতি

বা, পাড়ন বা, বিকৃতি = ধ্বক (constant)

এই ধ্রবককে স্থিতিস্থাপক গুণাজ্ঞ বা স্থিতিস্থাপক মানাজ্ঞ (Co-efficient of elasticity) বলে। একে স্থিতিস্থািপক ধ্বকও (Elastic constant) বলা হয়।

স্থিতিস্থাপক গুণাজ্ঞের প্রকারভেদ ል.ዮ Kinds of elastic constants

বিভিন্ন প্রকার পীড়নের জন্য বিভিন্ন প্রকার বিকৃতি পাওয়া যায়। বিভিন্ন প্রকার বিকৃতির জন্য বিভিন্ন প্রকার স্থিতিস্থাপক গুণ্ণাজ্ঞ আছে। <u>স্থিতিস্থাপক গুণাজ্ঞ মূলত তিন প্রকার</u>; যথা—

LIST ইয়ং-এর স্থিতিস্থাপক গুণাজ্ঞ্ব (Young's modulus of elasticity)

(২) কোঠিন্যের বা দৃঢ়তার স্থিতিস্থাপক গুণাজ্ঞ (Rigidity modulus of elasticity)

(w) আয়তনের স্থিতিস্থাপক গুণাজ্ঞ্ব (Volume or Bulk modulus of elasticity)

ইয়ং-এর স্থিতিস্থাপক গুণাজ্ঞ : স্থিতিস্থাপক সীমার মধ্যে দৈর্ঘ্য পীড়ন ও দৈর্ঘ্য বিকৃতির অনুপাত একটি ধ্ব রাশি। এই ধ্ব রাশিকে ইয়ং-এর গুণাজ্ঞ বলে। একে 'Y' দ্বারা সূচিত করা হয়। একে দৈর্ঘ্যের স্থিতিস্থাপক গুণাজ্ঞণও বলা হয়।

Y = দৈর্ঘ্য পীড়ন দৈর্ঘ্য বিকৃতি (5)

যদি দৈর্ঘ্য বিকৃতি = 1 হয় তবে, Y = দৈর্ঘ্য পীড়ন।

কাজেই, স্থিতিস্থাপক সীমার মধ্যে একক দৈর্ঘ্য বিকৃতির জন্য প্রয়োজনীয় দৈর্ঘ্য পীড়নকে ইয়ং-এর স্থিতিস্থাপক গুণাজ্ঞ বলে।

তাৎপর্য : "লোহার ইয়ং-এর গুণাজ্ঞ 2 × 1011 Nm⁻²"--- বলতে বুঝায় যে, এক বর্গমিটার প্রস্থচ্ছেদ-এর ক্ষেত্রফলবিশিষ্ট একটি লোহার তারে একক দৈর্ঘ্য বিকৃতির জন্য দৈর্ঘ্য বরাবর 2 × 10¹¹ নিউটন বল প্রয়োগের প্রয়োজন হবে।

দৃঢ়তার স্থিতিস্থাপক গুণাজ্ঞ : স্থিতিস্থাপক সীমার মধ্যে আকার গীড়ন ও আকার বিকৃতির অনুপাত একটি ধ্রব রাশি। এই ধ্রব রাশিকে দৃঢ়তার স্থিতিস্থাপক গুণাজ্ঞ বলে। একে কাঠিন্যের বা আকারের স্থিতিস্থাপক গুণাজ্ঞ বলে।

একে 'n' দ্বারা সূচিত করা হয়। n = আকার পীড়ন আকার বিকৃতি = মোচড় বা কৃস্তন পীড়ন মোচড় বা কৃস্তন বিকৃতি একে আকারের স্থিতিস্থাপক গুণাজ্ঞকও বলে।

1

(6)

"**بالا**ت

বইঘর.কম

যদি আকার বিকৃতি = 1 হয়, তবে

🔹 n = আকার পীড়ন।

কাজেই, স্বিডিস্থাপক সীমার মধ্যে একক আকার বিকৃতি উৎপন্ন করতে প্রয়োজনীয় আকার পীড়নকে দৃঢ়তার স্বিডিস্থাপক গুণাজ্ঞ বলে।

তাৎপর্য : "পিতলের দৃঢ়তার স্বিতিস্থাপক গুণাংক 9 × 10¹⁰ Nm⁻²"— বলতে বুঝায় যে, এক ঘনমিটার আয়তনের পিতলের একটি ঘনকের এক বর্গ মিটার ক্ষেত্রফলবিশিষ্ট এক তল দৃঢ়ভাবে আটকিয়ে আয়তনের কোন পরিবর্তন না ঘটিয়ে একক আকার বিকৃতির জন্য বিপরীত তলের উপর স্পর্শকভাবে 9 × 10¹⁰ নিউটন বল প্রয়োগের প্রয়োজন হবে।

আয়তনের স্থিতিস্থাপক গুণাজ্ঞ : স্থিতিস্থাপক সীমার মধ্যে আয়তন পীড়ন ও আয়তন বিকৃতির অনুপাত একটি ধ্রুব রাশি। এই ধ্রুব রাশিকে আয়তনের স্থিতিস্থাপক গুণাজ্ঞ বলে। একে 'K' দারা সূচিত করা হয়।

$$K = {{mixon } {\Re \phi n} \over {mixon } {\Lambda \phi 0}}$$

যদি আয়তন বিকৃতি = 1 হয়, তবে K = আয়তন পীড়ন।

কাজেই, স্ধিতিস্ধাপক সীমার মধ্যে একক আয়তন বিকৃতি উৎপনু করতে প্রয়োজনীয় আয়তন পীড়নকে আয়তনের স্ধিতিস্ধাপক গুণাজ্ঞ বলে।

ব্যাখ্যা ঃ মনে করি কোন একটি বস্তুর আদি আয়তন = V। এর প্রতি একক ক্ষেত্রফলে চতুর্দিক হতে লম্মভাবে p পরিমাণ বল প্রয়োগ করি। যদি বস্তুর আয়তন হ্রাসের পরিমাণ =v হয়, তবে আয়তন বিকৃতি =v/Vএবং আয়তন পীড়ন =p

$$K = \frac{\text{জায়তন পীড়ন}}{\text{জায়তন বিকৃতি}} = \frac{p}{v/V} = \frac{pV}{v}$$
(a)

চাপ যত বেশি হোক না কেন কঠিন ও তরল বস্তুর ক্ষেত্রে আয়তন বিকৃতি খুব কম হয়। কিন্তু গ্যাসের ক্ষেত্রে কম চাপ প্রয়োগ করলেও যথেষ্ট পরিমাণ আয়তন বিকৃতি ঘটে।

সমীকরণ 7 (a) অনুযায়ী আয়তনের স্থিতিস্থাপক গুণাজ্ঞের ব্যবকলনীয় সমীকরণ হবে,

K = —
$$rac{{
m V}dp}{d{
m V}}$$
 , p বৃন্ধিতে V হ্রাস পায় হেতু ঋণ চিহ্ন ব্যবহুত হয়েছে।

তাৎপর্য ঃ পানির আয়তন গুণাঙ্ক 2 × 10⁹ Nm⁻² বলতে বুঝায় যে পানির একক আয়তন বিকৃতি উৎপন্ন করতে এর প্রতি 1m² ক্ষেত্রফলের উপর 2 × 10⁹ N বল প্রয়োগ করতে হয়।

সংনম্যতা (Compressibility) : সংনম্যতা হল আয়তন গুণাজ্ঞের বিপরীত রাশি। সুতরাং বলা যায়, স্থিতিস্থাপক সীমার মধ্যে আয়তন বিকৃতি ও আয়তন পীড়নের অনুপাতই সংনম্যতা।

সংনম্যতা =
$$\frac{$$
 আয়তন বিকৃতি $}{$ আয়তন পীড়ন = $\frac{1}{\beta}$

আয়তন গণাজ্ঞকে অনেক সময় অসংনম্যতা (Incompressibility) নামেও অভিহিত করা হয়

ন্দ্রিজ্যাপক গুণাক্ষের একক (Units of elastic constant)

স্থি<u>ডিস্থাপক গণাজ্ঞের সংজ্ঞায় দুটি রাশি আছে। এ</u>কটি পীড়ন, অপরটি বিকৃতি। বিকৃতির কোন একক নেই। অতএব পীড়নের এককই স্থিতিস্থাপক গুণাজ্ঞের একক। আমরা জানি,

পীড়ন = বল ক্ষেত্রফল্

সুতরাং বল ও ক্ষেত্রফলের একক হতে স্থিতিস্থাপক গুণাডেকর একক পাওয়া যাবে।

(7)

BG & JEWEL

এম. কে. এস. ও এস. আই. পম্বতিতে স্বিতিস্বাপক গুণাব্রুর একক হল নিউটন/বর্গমিটার সংক্ষেপে Nm⁻²।

ব্যাখ্যা : যদি বলা হয় ইস্পাতের ইয়ং-এর স্থিতিস্থাপক গুণাজ্ঞ $Y = 2 \times 10^8 \text{ Nm}^{-2}$, তবে উক্ত উক্তি দ্বারা বুঝা যায় 1 m² বা এক বর্গমিটার প্রস্বচ্ছেদবিশিষ্ট একটি ইস্পাতের তারে একক দৈর্ঘ্য বিকৃতির জন্যে তার বরাবর 2×10^8 (নিউটন) বল প্রয়োগের প্রয়োজন হবে।

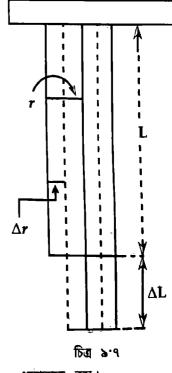
স্থিতিস্থাপক গুণাজ্ঞ্বের মাত্রা সমীকরণ (Dimension of elastic constants)

বিকৃতির কোন মাত্রা সমীকরণ নেই। অতএব পীড়নের মাত্রা সমীকরণই স্থিতিস্থাপক গুণাজ্জের মাত্রা সমীকরণ।

ষ্ঠিতিম্থাপক গুণাজ্জের মাত্রা সমীকরণ = $\frac{[\sigma m]}{[c m] \sigma r m} = \frac{[MLT^{-2}]}{[L^2]} = [ML^{-1}T^{-2}]$

৯'৯ পয়সন-এর অনুপাত Poisson's ratio

উপরোক্ত তিনটি স্থিতিস্থাপক ধ্রবক ছাড়া আরও একটি বিশেষ ধরনের স্থিতিস্থাপক ধ্রবক আছে। একে আবিচ্ফার করেন বিজ্ঞানী পয়সন। তাঁর নামানুসারে এই ধ্রবকের নাম দেওয়া হয়েছে **পয়সন-এর অনুপাত**।


কোন একটি তারের এক প্রান্ত দৃঢ় অবলম্মনের সাথে আটকিয়ে অন্য প্রান্তে বল প্রয়োগ করে টানলে দৈর্ঘ্য বিকৃতির সক্ষো সক্ষো পার্শ্ব বিকৃতি ঘটে অর্থাৎ তারের ব্যাস বা ব্যাসার্ধ কমে যায়। পয়সন-এর পরীক্ষা এবং প্রাশ্ত ফলাফল অনুসারে স্থিতিস্থাপক সীমার মধ্যে বস্তুর পার্শ্ব বিকৃতি ও দৈর্ঘ্য বিকৃতির অনুপাত একটি ধ্রুব রাশি।

অর্থাৎ, পার্শ বিকৃতি = ধ্বক। এই ধ্বককে 'ত' দ্বারা সূচিত করা হয়। এর নাম পয়সন-এর অনুপাত। দৈর্ঘ্য বিকৃতি = ধ্বক। এই ধ্বককে 'ত' দ্বারা সূচিত করা হয়। এর নাম পয়সন-এর অনুপাত।

ব্যাখ্যা : মনে করি, একটি তারের আদি দৈর্ঘ্য 'L' এবং ব্যাসার্ধ-'r' [চিত্র ৯-৭]। তারটির এক প্রান্ত দৃঢ় অবলম্মনের সাথে আটকিয়ে নিম প্রান্তে বল প্রয়োগ করে টানলে দৈর্ঘ্য বৃদ্ধি পাবে এবং পার্শ্ব হ্রাস পাবে। মনে করি দৈর্ঘ্য বৃদ্ধি পেয়ে L' হল এবং ব্যাসার্ধ হ্রাস পেয়ে r' হল।

অতএব, দৈর্ঘ্য বৃদ্ধি = L' -- L = ΔL এবং ব্যাসার্ধ হ্রাস = $r - r' = \Delta r$ সুতরাং, পার্শ্ব বিকৃতি = $\frac{\Delta r}{r}$ এবং দৈর্ঘ্য বিকৃতি = $\frac{\Delta L}{L}$ পয়সন-এর অনুপাত, $\sigma = \frac{পার্শ্ব বিকৃতি}{দৈর্ঘ্য বিকৃতি$

$$=\frac{\Delta r/r}{\Delta L/L}=\frac{L}{r}\frac{\Delta r}{\Delta L}$$

 ΔL ধনাত্মক হলে Δr ঋণাত্মক হয়। আবার ΔL ঋণাত্মক হলে Δr ধনাত্মক হয়। $\sigma = -\frac{L}{r} \frac{\Delta r}{\Delta L}$ (8) <u>পয়সন-এর অনুপার্ত</u> কেবলমাত্র কঠিন পদার্থেরই বৈশিষ্ট্য। <u>ত-এর মান ঃ কোন পদার্থের পয়সন-এর অনুপাত — 1</u> হতে $\frac{1}{2}$ এর মধ্যবর্তী, অর্ধাৎ —1 < $\sigma < \frac{1}{2}$ ।

স্থিতিস্থাপকতা

বইঘর.কম

মাত্রা ও একক : পয়সনের অনুপাত দুটি বিকৃতির অনুপাত, তাই এর কোন মাত্রা ও একক নেই।

তাৎপর্য ঃ তামার পয়সনের অনুপাত 0.33 বলতে বুঝায় যে স্থিতিস্থাপক সীমার মধ্যে দৈর্ঘ্য বরাবর বল প্রয়োগ করলে পার্শ্ব বিকৃতি ও দৈর্ঘ্য বিকৃতির অনুপাত 0.33 হয়।

৯'১০ বিকৃতির দরুন কৃত কাজ বা সঞ্চিত বা বিভব শক্তি Work done in deforming a body or potential energy

বল প্রয়োগ করে যখন কোন বস্তুকে বিকৃত করা হয়, তখন বস্তুর উপর যে কাজ সম্পন্ন করা হয়, তা স্থিতিশক্তিরূপে বস্তুতে সঞ্চিত থাকে। বস্তুর বিভিন্ন বিকৃতি সৃষ্টি করতে যে কাজ সাধিত হয়ে থাকে নিম্নে তা আলোচিত হল।

(ক) দৈর্ঘ্য বিকৃতি ঃ মনে করি L দৈর্ঘ্য এবং A প্রস্থচ্ছেদবিশিষ্ট একটি তারে দৈর্ঘ্য বরাবর F বল প্রয়োগ করায় দৈর্ঘ্য বৃদ্ধি হল =1 ; ধরি এই দৈর্ঘ্য বৃদ্ধি । অসংখ্য ক্ষুদ্র ক্ষুদ্র দৈর্ঘ্য বৃদ্ধি dl-এর সমন্টির সমান।

dl দৈর্ঘ্য বৃদ্ধিতে কাজের পরিমাণ, $dW = d\mathbf{n} \times \mathcal{H}$ রণ = $\mathbf{F} \times dl$

স্তরাং
$$l$$

$$\int dW = \int_{0}^{l} F.dl$$
(9)

কিন্তু আমরা জানি, $Y = \frac{দৈর্ঘ্য গীড়ন}{দৈর্ঘ্য বিকৃতি} = \frac{F/A}{l/L}$

বা, $F = \frac{Y.lA}{L}$

উপরোক্ত সমীকরণে F-এর মান বসিয়ে পাই,

$$W = \int_{0}^{l} \frac{Y l A}{L} dl = \frac{Y . A}{L} \int_{0}^{l} l . dl = \frac{Y A l^{2}}{2 L}$$

$$W = \frac{Y A l^{2}}{2 L}$$
(10)

এই কাচ্চই তারের মধ্যে স্থিতিস্থাপক বিভব শক্তি হিসেবে সঞ্চিত থাকে।

পুনঃ, আয়তন, V = ক্ষেত্ৰফল × দৈৰ্ঘ্য = AL দৈৰ্ঘ্য-পীড়ন = $\frac{F}{A} = \frac{YIA}{LA} = \frac{YI}{L}$ এবং দৈৰ্ঘ্য বিকৃতি = $\frac{l}{L}$ একক আয়তনে কৃত কাজ = একক আয়তনে সঞ্চিত শক্তি = $\frac{W}{V} = \frac{1}{2} \frac{YAI^2}{L \times LA}$ [V = LA] = $\frac{1}{2} \times \frac{Y.I.l}{L.L} = \frac{1}{2} \left(\frac{YI}{L} \right) \times \left(\frac{l}{L} \right) = \frac{1}{2} \times \left(\frac{F}{A} \right) \times \left(\frac{l}{L} \right)$ (11) <u>একক আয়তনে কৃত কাজ বা বিভব শক্তি = $\frac{1}{2} \times$ দৈৰ্ঘ্য-পীড়ন × দৈৰ্ঘ্য বিকৃতি</u> উচ্চ মাধ্যমিক পদার্থবিজ্ঞান BG & JEWEL

অনুরূপভাবে প্রমাণ করা যায় যে, (খ) কৃস্তন বিকৃতির ক্ষেত্রে একক আয়তনে কৃত কাজ

 $=\frac{1}{2} \times \phi$ স্তল পীড়ন $\times \phi$ স্তন বিকৃতি, এবং

(গ) আয়তন বিকৃতির ক্ষেত্রে একক আয়তনে কৃত কাজ

 $=rac{1}{2} imes$ আয়তন পীড়ন imes আয়তন বিকৃতি।

সাধারণভাবে বলা যায়, যে কোন বিকৃতির ক্ষেত্রে প্রতি একক আয়তনে কৃত কাজ

 $=\frac{1}{2}$ (পীড়ন \times বিকৃতি)

৯ ১১ স্পিডিস্থাপক গুণাজ্ঞ্ব নির্ণয় Determination of elastic constants

ভূমিকা ঃ আমরা জানি সর্বমোট চারটি স্থিতিস্থাপক গুণার্জ্ঞ রয়েছে, যথা Y, K, n এবং o। এখানে আমরা শুধুমাত্র ইয়ং-এর স্থিতিস্থাপক গুণাজ্ঞ নির্ণয়ের বিষয়টি আলোচনা করব। ইয়ং-এর স্থিতিস্থাপক গুণাজ্ঞ নির্ণয়ের অনেক পম্বতি রয়েছে। এই অধ্যায়ে ইয়ং-এর স্থিতিস্থাপক গুণাজ্ঞ নির্ণয়ের জন্যে দুটি পম্বতি আলোচনা করা হবে। পম্বতি দুটি হল ঃ

(১) ভার্নিয়ার পন্ধতি এবং

(২) সার্লির পম্বতি

(১) ভার্নিয়ার পম্ধতিতে ইয়ং-এর স্বিতিস্থাপক গুণাজ্ঞ নির্ণয় (Determination of Young's modulus by Vernier method)

তত্ত্ব ঃ স্থিতিস্থাপক সীমার মধ্যে দৈর্ঘ্য পীড়ন এবং দৈর্ঘ্য বিকৃতির অনুপাত একটি ধ্রুব সংখ্যা। এর নাম ইয়ং-এর স্থিতিস্থাপক গুণাজ্ঞন। একে Y দ্বারা সূচিত করা হয়।

$$Y = \frac{\Gamma t = \sqrt{\frac{F \times L}{2}}}{\Gamma t = \sqrt{\frac{F \times L}{2}}} = \frac{F \times L}{\frac{F \times L}{2}}$$
$$= \frac{mgL}{\pi r^2 l}$$

m,g,L,r এবং l এস. আই. এককে পরিমাপ করা হলে,

 $Y = \frac{mgL}{\pi r^2 l} \quad \text{নিউটন/বর্গমিটার (Nm^{-2})} \quad (12)$

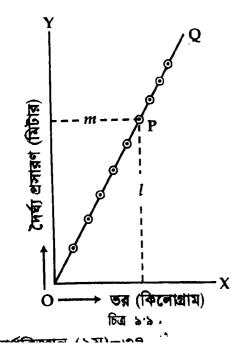
এখানে m = প্রযুক্ত ভর, g =অভিকর্ষীয় ত্বরণ, L = পরীক্ষাধীন তারের আদি দৈর্ঘ্য, l = দৈর্ঘ্য বৃদ্ধি এবং r = তারের ব্যাসার্ধ।

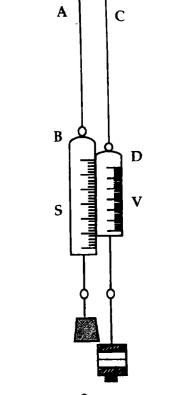
এখন, m, g, L, l এবং r-এর মান জেনে Y-এর মান বের করা হয়।

ভার্নিয়ার পম্ধতি (যন্ত্রের বর্ণনা) : এই পম্ধতিতে পরীক্ষাধীন পদার্থের সমদৈর্ঘ্যবিশিষ্ট দুটি তার নিই। মনে করি এর AB ও CD তার দুটিকে একই দৃঢ় অবলম্বন E হতে ঝুলাই [চিত্র ৯·৮]। এদের মধ্যে CD হল পরীক্ষাধীন তার, AB হল সাহায্যকারী তার। সাহায্যকারী তারের সাথে মিলিমিটারে দাগান্ডিকত একটি সরল স্কেল S যুক্ত আছে। তার যাতে খাঁজ ও মোচড়হীন অবস্থায় সম্পূর্ণ সোজা থাকে তার জন্য এর নিম্ন প্রান্তে একটি নির্দিষ্ট ভরের বস্তু ঝুলানো হল।

পরীক্ষাধীন তারের নিম প্রান্তে একটি হুক এবং এই হুকের সাথে একটি ধারক (hanger) থাকে। এই ধারকে পীড়ন সৃষ্টিকারী প্রয়োজনীয় তর স্থাপন করা হয়। এই তারের সাথে একটি ডার্নিয়ার স্কেল V লাগানো থাকে, এই স্কেলটি সাধারণ স্কেল S-এর পাশ দিয়ে উঠা-নামা করে। কাৰ্যপম্বতি ঃ r

নির্ণয় ঃ প্রথম স্কু গজের সাহায্যে পরীক্ষাধীন তারের ব্যাস বিভিন্ন জায়গায় সতর্কভাবে বের করি এবং গড় ব্যাস নির্ণয় করি। একে 2 দ্বারা ভাগ করে তারের ব্যাসার্ধ r গ্রহণ করি এবং তারের প্রস্থচ্ছেদের ক্ষেত্রফল নির্ণয় করি।


এখন পরীক্ষাধীন তারের অসহ ভার (Breaking weight) বের করতে হয়। ভৌত বিষয়াদি সংক্রান্ত বিবিধ ধ্রুবকের মান যে পুস্তকে পাওয়া যায় (Physical constant table) তা হতে তারের অসহ পীড়ন দেখে নিয়ে তাকে তারের প্রস্থচ্ছেদের ক্ষেত্রফল দিয়ে গুণ করে অসহ ভার নির্ণয় করা হয়। পীড়ন মাত্রা এর অর্ধেকের বেশি না হলে তারটি স্থিতিস্থাপক সীমার মধ্যে থাকবে। এজন্য পরীক্ষাধীন তারে অসহ ভারের অর্ধেকের বেশি ভার কখনও অর্পণ করা হয় না। পীড়নকারী সর্বোচ্চ ভরের মান এভাবেই নির্ণীত হয়।


পরীক্ষাধীন তারের ধারকের উপর পূর্বের বর্ণিত সর্বোচ্চ ভর চাপিয়ে কিছুক্ষণ পর ভরের কিছুটা রেখে বাকি ভর অপসারণ করা হয়, যাতে তার সোজা থাকে এবং এতে কোন খাঁজ থাকে না। এই ভরকে প্রারন্ডিক ভর (Dead load) বলে। এই ভারের জন্য ভার্নিয়ারের শূন্য বরাবর প্রধান স্কেল ও ভার্নিয়ারের পাঠ গ্রহণ করা হয়।

L নির্ণয় : এর পর একটি স্কেলের সাহায্যে পরীক্ষাধীন তারটিকে যে বিন্দু হতে ঝুলানো হয়েছে, সেই বিন্দু হতে ভার্নিয়ারের শূন্য দাগ পর্যন্ত দৈর্ঘ্য মেপে তার আদি দৈর্ঘ্য L বের করি।

। নির্ণয় : এখন পরীক্ষাধীন তারে অর্ধ কিলোগ্রাম পরিমাণের ভার পর পর চাপাই এবং প্রতিবার প্রধান স্কেল এবং ভার্নিয়ার স্কেলের মান নিয়ে তারের প্রসারণ বের করি। এখানে লক্ষ রাখতে হবে যে, মোট ভার যেন অসহ ভার-এর অর্ধেকের বেশি না হয়।

Image: March 1 and March 2 and M

 \oslash

৮ চেব্ৰ

যাবে—একটি ভার বৃদ্ধির জন্য, অপরটি ভার হ্রাসের জন্য। এদের গড় মান বের করে বিভিন্ন ভারের আনুষজ্গিক দৈর্ঘ্য প্রসারণ পাওয়া যায়।

এখন ভরকে X-অক্ষে এবং আনুষজ্ঞিাক দৈর্ঘ্য প্রসারণকে Y-অক্ষে স্থাপন করে একটি লেখ (Graph) অজ্ঞকন করি [চিত্র ৯·৯]। লেখটি একটি সরলরেখা হবে এবং অক্ষ দুটির মূল বিন্দু দিয়ে যাবে। এটা হতে প্রমাণিত হয় যে, পীড়ন ও বিকৃতি পরস্পরের সমানুপাতিক। এটা হুকের সূত্রের পরীক্ষামূলক প্রমাণ দেয়। লেখ হতে সুবিধাজনক ভার m-এর জন্য আনুষজ্ঞািক দৈর্ঘ্য পরিবর্তন *l*-এর মান বের করি।

হিসাব ও গণনা । ধরি পরীক্ষালন্ধ ফলাফল অনুসারে তারের আদি দৈর্ঘ্য L মিটার, ব্যাসার্ধ r মিটার ও m কিলোগ্রাম ভরের জন্য দৈর্ঘ্য বৃশ্ধি। মিটার। তাহলে,

0

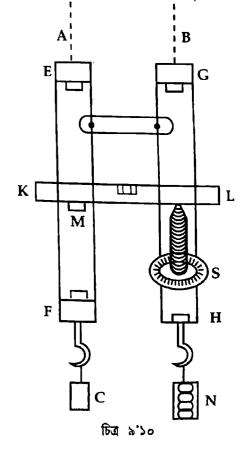
ইয়ং-এর স্থিতিস্থাপক গুণাজ্ঞ্ক, Y = $\frac{mgL}{\pi r^{2l}}$ নিউটন/বর্গমিটার। সতর্কতা ঃ (১) পরীক্ষণীয় তারটিকে স্থিতিস্থাপক সীমার মধ্যে রেখে বিকৃতি নিরূপণ করা উচিত। (২) ব্যাস নিরূপণ সর্বাপেক্ষা বেশি ত্রুটিমুক্ত হওয়া উচিত ও প্রত্যেক বারে পরস্পর লম্বিক পাঠ নেওয়া উচিত। (৩) তার দুটিকে দৃঢ় অবলম্বন হতে ঝুলানো উচিত ও তার দুটি একই পদার্থের হওয়া উচিত।

৯⁻১২ ইস্পাত রবার অপেক্ষা অধিক স্থিতিস্থাপক Steel is more elastic than rubber

আমরা জানি, স্থিতিস্থাপক গুণাজ্ঞ = পাড়ন বিকৃতি।

উপরের সমীকরণ হতে বলা যায়—যে সব[ি]বস্তুর ক্ষেত্রের পীড়ন এবং বিকৃতির অনুপাত বেশি অর্থাৎ স্থিতিস্থাপক গুণাজ্ঞের মান বেশি সে সব বস্তু বেশি স্থিতিস্থাপক। আর যেসব বস্তুর ক্ষেত্রে পীড়ন এবং বিকৃতির অনুপাত কম, অর্থাৎ স্থিতিস্থাপক গুণাজ্ঞের মান কম সেসব বস্তু কম স্থিতিস্থাপক।

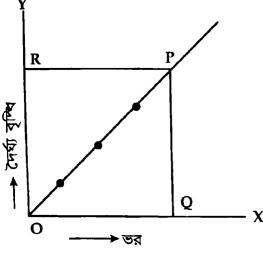
ইস্পাতের ক্ষেত্রে অধিক পীড়ন দেয়া সত্ত্বেও বিকৃতির মান যৎসামান্য হয়। সুতরাং পীড়ন এবং বিকৃতির অনুপাত অনেক বেশি। কিন্তু রবারের ক্ষেত্রে অল্প পীড়ন দিলেই বিকৃতির মান অনেক বেশি হয়। সুতরাং রবারের ক্ষেত্রে পীড়ন এবং বিকৃতির অনুপাত অনেক কম। অতএব, সিম্ধান্ত এই যে, ইস্পাত রবার অপেক্ষা অধিক স্থিতিস্থাপক।


৯.১৩ সার্লির পম্ধতিতে ইয়ং-এর স্থিতিস্থাপক গুণাজ্ঞ নির্ণয় Determination of Young's modulus by Searle's method

বিজ্ঞানী সি. জি. এস. <u>সার্লি এই</u> পম্বতি উদ্ভাবন করেন বলে এই পম্বতিকে সার্লির পম্বতি বলা হয়।

যন্ত্রের বর্ণনা : এই যন্ত্র A এবং B পরীক্ষাধীন পদার্থের সমদৈর্ঘ্য এবং সমব্যাসের দুটি তার থাকে l চিত্র ৯১০। A সাহায্যকারী তার এবং B পরীক্ষাধীন তার। এগুলোকে একই দৃঢ় অবলম্মন হতে পাশাপাশি ঝুলিয়ে তাদের নিম প্রান্তে যথাক্রমে EF এবং GH দুটি ধাতব কাঠামো যুক্ত করা হয়। কাঠামো দুটির নিম প্রান্তে দুটি ধাতব

হুকের সাথে দুটি ওজন ধারক সংযুক্ত থাকে। A-কে সোজা ও খাঁজমুক্ত করার জন্য এর ওজন ধারকের উপর প্রয়োজনীয় ওজন স্থাপন করা হয়। B-এর ওজন ধারকের উপর প্রয়োজনীয় ওজন স্থাপন করে এটাকেও প্রসারিত করা হয়। GH কাঠামোতে একটি মাইক্রোমিটার স্কু S যুক্ত থাকে। KL একটি স্পিরিট লেভেল। এর এক প্রান্ত মাইক্রোমিটার স্কুর উপরে এবং অপর প্রান্ত EF কাঠামোর সাথে দৃঢ়ভাবে সংযুক্ত একটি ধাতব দণ্ড M-এর উপরে স্থাপিত থাকে। মাইক্রোমিটার স্কু এবং স্পিরিট লেভেলের সাহায্যে পরীক্ষাধীন তারের দৈর্ঘ্যের হ্রাস-বৃদ্ধি পরিমাপ করা হয়।


কার্যপন্ধতি : মিটার স্কেল ও স্কু-গজের সাহায্যে পরীক্ষাধীন তারের আদি দৈর্ঘ্য এবং ব্যাস নির্ণয় করি। ব্যাসকে দুই দ্বারা ভাগ করে ব্যাসার্ধ বের করি। অতঃপর প্রস্থচ্ছেদ ও তারের উপাদানের অসহ পীড়নের মান হতে অসহ ওজন বের করি। পরীক্ষাকালে তারে সর্বোচ্চ অসহ ওজনের অর্ধেক ওজন ব্যবহার করা হয়। পরীক্ষাধীন ও সাহায্যকারী তারের নিম্ন প্রান্তের ওজন ধারকের উপর কিছু ভর চাপিয়ে তারদ্বয়কে টান টান রাখি। অতঃপর মাইক্রোমিটার স্কু যুরিয়ে স্পিরিট লেভেলের বায়ু বুদ্বুদ্ মধ্যস্থলে আনি ও স্কেলের পাঠ নিই। অতঃপর অর্ধ কিলোগ্রাম ভর চাপালে স্পিরিট লেভেলের বায়ু

স্থিতিস্থাপকতা

বইঘর.কম

বুদ্বুদ্ এক প্রান্তে সরে যায়। মাইক্রোমিটার ফ্রু ঘুরিয়ে লেভেলটিকে পূর্বাবস্থায় ফিরিয়ে আনি এবং প্রথম ও দ্বিতীয় পাঠের পার্থক্য হতে দৈর্ঘ্য বৃদ্ধি নির্ণয় করি। এভাবে পরপর কয়েক বার অর্ধ কিলোগ্রাম ভর প্রয়োগ করে মাইক্রোমিটার ফ্রুর সাহায্যে প্রত্যেক ওজনের জন্য দৈর্ঘ্য বৃদ্ধির পরিমাপ করি। অতঃপর এক একটি করে ভর নামিয়ে প্রত্যেক বার পাঠ নিই। এভাবে ভর বৃদ্ধি ও ভর হ্রাসের জন্য দুটি করে পাঠ পাওয়া যাবে। পাঠদ্বয়ের গড় নির্ণয় করি। অতঃপর X-অক্ষ বরাবর বিভিন্ন ভর এবং Y-অক্ষ বরাবর আনুষজ্যিক দৈর্ঘ্য বৃদ্ধির মান বসিয়ে একটি লেখচিত্র অজ্ঞন করলে এটা মূল বিন্দুগামী একটি সরলরেখা হবে [চিত্র ৯·১১]। সরলরেখার উপর সুবিধামত P

একটি বিন্দু নিই। P বিন্দু হতে X-অক্ষের উপর PQ একটি লম্দ্র টানি। তা হলে OQ ভরের মান m এবং PQ দৈর্ঘ্য বৃষ্ণ্বির মান। নির্দেশ করবে। হিসাব ও গণনা ঃ মনে করি পরীক্ষাধীন তারের আদি দৈর্ঘ্য = Lমি. দৈৰ্ঘ্য বৃদ্ধি ব্যাসাধ

অভিকর্ষজ ত্বরণ = g মি./সে.² তর = m কিলোগ্রাম mgL সেয় (সেম)

চিত্র` ৯·১১

Y = $\frac{mgL}{\pi r^2 l}$ নিউটন/বর্গমিটার (Nm⁻²)

সতৰ্কতা ঃ

১। তার দুটি একই পদার্থের ও সমান দৈর্ঘ্যের ২ওয়া উচিত। সুষম ব্যাসের তার নেয়া উচিত।

২। তার দুটিতে কোন ভাঁজ্র যাতে না থাকে তাই কিছু ওজন চাপিয়ে তার দুটিকে টান টান রাখতে হয়।

৩। Y-এর মান নির্ণয়ে ব্যাসার্ধ r-এর বর্গ ব্যবহুত হয়, তাই r এর ত্রুটি পরিহার করার জন্য একই অবস্থানে সোজা ও আড়াআড়িভাবে পাঠ নিতে হয়।

৪। পরীক্ষণীয় তারে ওজন অসহ ওজনের অর্ধেকের কম নিতে হয়।

৫। পাঠ নেয়ার সময় স্কুগজ সব সময় একই দিকে ঘুরাতে হয়। এতে স্কুগজের পিছট ত্রুটি দূর হয়।

৯:১৪ স্থিতিস্থাপকতা কোন্ কোন্ শর্তের উপর নির্ভর করে Factors affecting elasticity

পদার্ধের স্থিতিস্থাপকতা বিভিন্ন শর্তের উপর নির্ভর করে, যার একটি সংক্ষিশ্ত বিবরণ নিম্নে বর্ণনা করা হল ঃ ১। আঘাত (Hammering) : কোন একটি পদার্ধকে আঘাতের ফলে ভাজ্ঞাতে চাইলে তার স্থিতিস্থাপকতা বৃদ্ধি পায়।

২। খাদ (Impurity) : কোন পদার্থে খাদের উপস্থিতি এর স্থিতিস্থাপকতাকে বিশেষভাবে প্রভাবিত করে। কখনও কখনও খাদের উপস্থিতি পদার্থের বিভিন্ন কণার মধ্যকার আকর্ষণ ধর্ম বৃদ্ধি করে। ফলে খাদের উপস্থিতি পদার্থের স্থিতিস্থাপকতা বৃদ্ধি করে।

৩। তাপমাত্রা (Temperature) । স্থিতিস্থাপকতার উপর তাপমাত্রার প্রভাব সমধিক উল্লেখযোগ্য। তাপমাত্রা বৃদ্ধি পেলে কঠিন পদার্থের স্থিতিস্থাপকতা হ্রাস পায় অর্থাৎ তাপমাত্রা বৃদ্ধি পেলে পদার্থ স্থিতিস্থাপকতা হতে ক্রমাগত অস্থিতিস্থাপক হতে থাকে। কিন্তু ইস্পাত, ইনভার এবং কোয়ার্টজ-এর ক্ষেত্রে ব্যতিক্রম পরিলক্ষিত হয়।

পুনঃ, তাপমাত্রা বৃষ্ধি পেলে তরল পদার্থের আয়তনের স্থিতিস্থাপক গুণাজ্ঞ হ্রাস পায়। তবে পানির ক্ষেত্রে এর ব্যতিক্রম পরিলক্ষিত হয়। 50°C তাপমাত্রায় পানির আয়তনের স্থিতিস্থাপক গুণাজ্ঞ সর্বাধিক। BG & JEWEL

স্থিতিস্থাপক গুণাজ্ঞ তালিকা

বস্তু	ইয়ং গুণাজ্ঞ Y (Nm ⁻²)	দৃঢ়তা গুণাজ্ঞ n (Nm ⁻²)	৲হ্লায়তন গুণাড়ক K`(Nm ⁻²)	পয়সনের অনুপাত σ
অ্যালুমিনিয়াম	7×10^{10}	2.5×10^{10}	<u>7[.]5 ×10¹⁰</u>	0'34
🔨 তামা	$12^{\cdot}3 \times 10^{10}$	$4^{\cdot}2 \times 10^{10}$	$13^{-}1 \times 10^{10}$	0.33
🗸 লোহা (তার)	20×10^{10}	$5^{\cdot}1 \times 10^{10}$	9.6×10^{10}	- 0'26
• ইস্পাত	22×10^{10}	8 [.] 9 × 10 ¹⁰	16×10^{10}	0'28
রূপা	$7^{\circ}8 \times 10^{10}$	$2^{\cdot}8 \times 10^{10}$	$10^{.9} \times 10^{10}$	0'37
পানি			0.2×10^{10}	
পারদ	·	—	2.6×10^{10}	
বাতাস (সাধারণ চাপে)			1.015 × 10 ⁵	

স্মরণিকা

স্থিতিস্থাপকতা ঃ যে ধর্মের ফলে বাইরে থেকে প্রযুক্ত বল অপসারিত হলে বিকৃত বস্তু তার পূর্বের অবস্থায় ফিরে আসে, তাকে স্থিতিস্থাপকতা বলে।

বিকৃতি : বল প্রয়োগে কোন একটি বস্তুর প্রতি একক মাত্রায় যে পরিবর্তন সাধিত হয় তাকে বিকৃতি বলে।

পীড়ন : কোন একটি বস্তুর একক ক্ষেত্রফলের উপর লম্বভাবে ক্রিয়ারত (ক্রিয়ামূলক বা প্রতিক্রিয়ামূলক) বিকৃতি সৃষ্টিকারী বলের মানকে পীড়ন বলে।

স্বিতিস্থাপক সীমা ঃ বাহ্যিক বলের যে নির্দিষ্ট সীমা পর্যন্ত বস্তু স্থিতিস্থাপক বস্তুর ন্যায় আচরণ করে এবং এ প্রযুক্ত বল অপসারণ করলে বস্তু পূর্বাবস্থায় ফিরে যায়, তাকে স্থিতিস্থাপক সীমা বলে।

হুকের সূত্র ঃ স্থিতিস্থাপক সীমার মধ্যে বস্তৃর উপর প্রযুক্ত পীড়ন তার বিকৃতির সমানুপাতিক।

অসহ পীড়ন : প্রতি একক প্রস্থচ্ছেদের ক্ষেত্রফলে ন্যূনতম যে বলের ক্রিয়ায় তারটি ছিড়ে যায়, তাকে ঐ তারের অসহ পীড়ন বলে।

অসহ ভার বা অসহ ওজন ঃ ন্যূনতম যে নির্দিষ্ট ভারের ক্রিয়ায় কোন বস্তু ভেজো বা ছিঁড়ে যায় তাকে অসহ তার বা অসহ ওজন বলে।

কৃন্তন বা মোচড় বিকৃতি ঃ যদি প্রযুক্ত বাহ্যিক বলের ক্রিয়ায় বস্তুর আয়তন অপরিবর্তিত থেকে কেবলমাত্র এর আকৃতির পরিবর্তন হয় বা বস্তুটি মোচড় খায় তবে ঐ ধরনের বিকৃতিকে কৃন্তন বা মোচড় বিকৃতি বলে।

সংনম্যতা ঃ স্থিতিস্থাপক সীমার মধ্যে আয়তন বিকৃতি ও আয়তন পীড়নের অনুপাতকে সংনম্যতা বলে। সংনম্যতা হল আয়তন গুণাজ্ঞের বিপরীত রাশি।

ইয়ং-এর স্বিতিস্থাপক গুণাজ্ঞ : স্থিতিস্থাপক সীমার মধ্যে দৈর্ঘ্য পীড়ন ও দৈর্ঘ্য বিকৃতির অনুপাতকে ইয়ং-এর স্থিতিস্থাপক গুণাজ্ঞ বলে।

দৃঢ়তার ক্লিভিস্থাপক গুণাজ্ঞক ঃ স্থিতিস্থাপক সীমার মধ্যে আকার বা কৃন্তন পীড়ন এবং আকার বিকৃতির অনুপাতকে দৃঢ়তার স্থিতিস্থাপক গুণাজ্ঞক বলে।

আয়তনের স্থিতিস্থাপক গুণাঙ্ক : স্থিতিস্থাপক সীমার মধ্যে আয়তন পীড়ন এবং আয়তন বিকৃতির অনুপাতকে আয়তনের স্থিতিস্থাপক গুণাঙ্ক বলে।

পয়সন-এর অনুপাত ঃ পীড়ন দৈর্ঘ্য বরাবর হলে, পার্শ্ব বিকৃতি এবং দৈর্ঘ্য বিকৃতির অনুপাতকে পয়সন-এর অনুপাত বলে।

মনে করি ইয়ং-এর স্থিতিস্থাপক গুণাজ্ঞ = Y
আমরা পাই, Y =
$$\frac{$$
দৈর্ঘ্য পীড়ন
ন দের্ঘ্য বিকৃতি = $\frac{20 \times 10^6 \text{ Nm}^{-2}}{2 \times 10^{-4}}$
= $10 \times 10^{10} \text{ Nm}^{-2} = 1 \times 10^{11} \text{ Nm}^{-2}$
= $10 \times 10^{10} \text{ Pa} = 1 \times 10^{11} \text{ Pa}$

(ক) দৈর্ঘ্য বিকৃতির ক্ষেত্রে =
$$rac{1}{2}$$
 × দৈর্ঘ্য পীড়ন × দৈর্ঘ্য বিকৃতি
(খ) কৃন্তন বিকৃতির ক্ষেত্রে = $rac{1}{2}$ × কৃন্তন পীড়ন × কৃন্তন বিকৃতি
(গ) আয়তন বিকৃতির ক্ষেত্রে = $rac{1}{2}$ × আয়তন পীড়ন × আয়তন বিকৃতি।

একক আয়তনে স্থিতিশক্তি বা কাজ,
$$E = \frac{W}{V}$$
 (13)

মোট কৃত কাজ,
$$W = \frac{1}{2} \times F \times l$$
 (12)

সংনম্যতা =
$$\frac{1}{K}$$
 (11)

পয়সন এর অনুপাত,
$$\sigma = \frac{91\frac{4}{3}}{\Gamma t \sqrt{3}} \frac{1}{4} \frac{1}{4}$$

আয়তন গুণাজ্ঞক,
$$K = \frac{$$
 আয়তন পীড়ন $= \frac{F}{A} \times \frac{V}{v}$ (9)

$$= \frac{1}{l/L} = \frac{1}{Al} = \frac{1}{\pi r^2 l}$$
(7)
 \overline{g} $\overline{g$

ইয়ং এর গুণাজ্ঞক,
$$Y = \frac{F(\pi u) - M(u) - H(u)}{F(A) - F(A) - F(A)}$$

হুকের সূত্র =
$$\frac{\widehat{\eta}{\psi}}{\widehat{\eta}{\phi}}$$
 = ধ্বক (6)

কৃত্তন বিকৃতি =
$$\frac{v}{V}$$
 (4)
আয়তন বিকৃতি = $\frac{v}{V}$ (5)

দৈর্ঘ্য বিকৃতি =
$$\frac{l}{L}$$
 (3)
কৃন্তন বিকৃতি, $\theta = \frac{d}{D}$

স্থিতিস্থাপক গুণাজ্য =
$$\frac{\eta \psi \eta}{\eta \psi \psi}$$
 (1)
পাঁড়ন = $\frac{F}{A}$ (2)
দৈর্ঘ্য বিকৃতি = $\frac{l}{L}$ (3)

(1)

২। 4m দীর্ঘ একটি তামার তারের এক প্রান্তে 20kg ভর চাপানো হলে তারটির দৈর্ঘ্য 6mm বৃষ্ণি পায়। তারের ব্যাসার্ধ 0'58 mm হলে তারের ইয়ং এর গুণাজ্ঞ নির্ণয় কর।

$$Y = \frac{mg \ L}{\pi r^2 l}$$

$$Y = \frac{20 \times 98 \times 4}{3'14 \times (5'8 \times 10^{-4})^2 \times 6 \times 10^{-3}}$$

$$= \frac{20 \times 98 \times 4 \times 10^{11}}{3'14 \times 5'8 \times 5'8 \times 6}$$

$$= 1'24 \times 10^{11} \ \text{Nm}^{-2}$$

$$(atrice)$$

$$(atri$$

 χ ৩। $2 \times 10^{-4} \text{ m}^2$ প্রস্বচ্ছেদের ক্ষেত্রফলবিশিষ্ট একটি ইস্পাঁতের তারে কত বল প্রয়োগ করলে এর দৈর্ঘ্য দ্বিগুণ হবে ? [Y = 2×10^{11} Pa] [5. বো. ২০০৪]

 মনে করি, প্রযুক্ত বল = F
 এখানে,

 আমরা জানি,
 $Y = 2 \times 10^{11}$ Pa

 $Y = \frac{F}{A} \times \frac{L}{l}$ $A = 2 \times 10^{-4} m^2$

 বা, F = YAI/L আদি দৈর্ঘ্য L হলে,

 $= 2 \times 10^{11}$ Pa $\times 2 \times 10^{-4} m^2 \times \frac{L}{L}$ দৈর্ঘ্য বৃশ্বি, l = 2L - L = L

 $= 4 \times 10^7$ N [1 Pa = 1 Nm⁻²]
 $Pa = 1 Nm^{-2}$

8। 2 m দৈর্ঘ্যের ও 6×10^{-4} m ব্যাসের একটি ইস্পাতের তারের এক প্রান্ত ছাদে বেঁধে অপর প্রান্তে 10 kg ভর ঝুলালে তারটির দৈর্ঘ্য কডটুকু বৃম্ধি পাবে ? $[Y = 2.2 \times 10^{11} \text{ Nm}^{-2}]$ [রা. বো. ২০০৪]

আমরা জানি,
$$Y = \frac{F}{A} \times \frac{L}{l}$$
এখানে,
তারের দৈর্ঘ্য, $L = 2 m$
তারের ব্যাস, $d = 6 \times 10^{-4} m$
তারের ব্যাসার্ধ, $r = \frac{d}{2} = 3 \times 10^{-4} m$
তারের ব্যাসার্ধ, $r = \frac{d}{2} = 3 \times 10^{-4} m$
তারের ব্যাসার্ধ, $r = \frac{d}{2} = 3 \times 10^{-4} m$
তারের ইয়ং–এর গুণাঙ্ক, $Y = 2.2 \times 10^{11} Nm^{-2}$
বুণানো তর $m = 10 \text{ kg}$
 $g = 9.8$
 $F = mg = 10 \times 9.8$
 $l = ?$

২ ৫। একটি তারের উপাদানের ইয়ং-এর গুণাজ্ঞ 2 × 10¹¹ N/m²। তারটির দৈর্ঘ্য 15% বৃদ্ধি করতে প্রযুক্ত পীড়ন নির্ণয় কর।

 আমরা জানি,
 এখানে,

 $Y = \frac{\tilde{c}rrtin}{\tilde{c}rrtin} \frac{\tilde{d}rgos}{\tilde{c}rgos} = \frac{F/A}{l/L}$ এখানে,

 $\tilde{c}rrtin \tilde{d}rgos = \frac{F/A}{l/L}$ $Y = 2 \times 10^{11} \text{ Nm}^{-2}$
 $\tilde{c}rrtin \tilde{d}rgos = Y \times l/L$ $\frac{l}{L} = 15\% = \frac{15}{100}$
 $F/A = 2 \times 10^{11} \times \frac{15}{100}$ $\tilde{d}rsin = F/\tilde{A} = ?$
 $= 3 \times 10^{10} \text{ Nm}^{-2}$

২৯৪

স্থিতিস্থাপকতা ২৯৫ বইঘর.কম ৬। 2 m দীর্ঘ এবং 0'02 mm² প্রস্বচ্ছেদের একটি তারের এক প্রাস্তে 10 kg ওজন দিলে তারটির দৈর্ঘ্য আদি দৈর্ঘ্যের 0'005% বৃম্ধি পায়। ডারটির বিকৃতি কত १ [চ. বো. ২০০২] তারটির দৈর্ঘ্য বৃশ্বি, $l = 0.005 \% L = \frac{0.005}{100} \times L = 5 \times 10^{-5} L$ দৈখ্য বিকৃতি, $\frac{l}{L} = \frac{5 \times 10^{-5} L}{L} = 5 \times 10^{-5}$ ৭। 10 m লম্বা এবং 1 mm ব্যাসবিশিষ্ট একটি তারকে 100 N বল ম্বারা টানা হল। তারটির দৈর্ঘ্য কতটুকু বৃদ্ধি পাবে বের কর ৷ $[Y = 2 imes 10^{11} \ \mathrm{Nm^{-2}}]$ াসি. বো. ২০০২া এখানে. আমরা জানি. তারের দৈর্ঘ্য, L = 10 m $Y = \frac{F/A}{I/I} = \frac{FL}{AI}$ তারের ব্যাসার্ধ, $r = \frac{d}{2} = \frac{1}{2} \text{ mm} = 0.5 \times 10^{-3} \text{ m}$ বা, $l = \frac{FL}{AY} = \frac{FL}{\pi r^{2} Y}$ থযুক্ত বল, F = 100 N তারটির দৈর্ঘ্য বৃদ্ধি, I = ? $l = \frac{100 \times 10}{3.14 \times (0.5 \times 10^{-3})^2 \times 2 \times 10^{11}}$ $Y = 2 \times 10^{11} \text{ Nm}^{-2}$ $= 6.4 \times 10^{-3} \text{ m}$ $\mathcal{Q} \stackrel{\mathcal{N}}{\longrightarrow}$ ৮। $1 \, \mathrm{mm}^2$ প্রস্বচ্ছেদবিশিষ্ট একটি ইস্পাত তারের দৈর্ঘ্য 5% বৃদ্ধি করলে কত বল প্রয়োগ করতে হবে ? রো. বো. ২০০৩; ব. বো. ২০০২; ঢা. বো. ২০০০] [ইস্পাতের Y = 2×10^{11} Nm⁻²] ধরি, আমরা জানি. আদি দৈৰ্ঘ্য = L $Y = \frac{F}{\Lambda} \times \frac{L}{L}$ দৈর্ঘ্য বৃদ্ধি, $l = \frac{5 \text{ L}}{100} = 0.05 \text{ L}$ বা, $F = \frac{YAl}{I}$ ক্ষেত্ৰফল, A = 1 mm² $= 1 \times 10^{-6} \text{ m}^2$ $=\frac{2 \times 10^{11} \times 1 \times 10^{-6} \times \ 0.05 \ L}{L}$ $Y = 2 \times 10^{11} \text{ N m}^{-2}$ বল, F = ? $= 1 \times 10^4 \text{ N}$ ১। 2m লম্বা ও 1 mm ব্যাস বিশিষ্ট একটি তারের দৈর্ঘ্য বৃম্ধি 0'05 cm হলে তারটির ব্যাস কতটুকু হ্রাস পাবে? (পয়সনের অনুপাত, σ = 0°25)। আমরা জানি, এখানে. $\sigma = \frac{91\frac{4}{3}}{CF4J} \frac{7}{6} \frac{7}{6} \frac{7}{1} \frac{7}$ তারের দৈর্ঘ্য , L = 2 m বাস, D = 1mm = 1 × 10⁻³ m দৈর্ঘ্য বৃদিধ, l = 0'05 cm = 5 × 10⁻⁴ m পয়সনের অনুপাত, $\sigma = 0.25$ $d = \frac{\sigma D l}{I}$ তারের ব্যাস হ্রাস, d = ? $=\frac{0.25 \times 1 \times 10^{-3} \times 5 \times 10^{-4}}{2}$ $= 6^{-}25 \times 10^{-8} \text{ m}$ ১০। একটি তারের দৈর্ঘ্য 3m; প্রস্বচ্ছেদের ক্ষেত্রফল $2mm^2$ এবং অসহ পীড়ন $2.45 imes 10^8$ Nm^{-2} । তারটির অসহ ওজন ও অসহ ভর নির্ণয় কর। এখানে, আমরা জানি, ্য 👾 প্রদিন 🗕 অসহ পীড়ন 🗙 প্রস্থচ্ছেদের ক্ষেত্রফল দৈৰ্ঘ, L=3m $= 2.45 \times 10^8 \times 2 \times 10^{-6}$ প্রস্থচ্ছেদের ক্ষেত্রফল, A = 2mm² $= 4.90 \times 10^{2} \text{ N}$ $= 2 \times 10^{-6} \, \text{m}^2$ প্রসহ তর = অভিকর্ষীয় তুরণ অসহ পীড়ন = 2[·]45 × 10⁸ Nm⁻² অসহ ওজন = ? $=\frac{4.90\times10^2}{0.8}=50$ kg অসহ ভর = ?

উচ্চ মাধ্যমিক পদার্থবিজ্ঞান BG এ JEWEL ২৯৬ χ^{\sim} ১১। 0.1 m বাহুবিশিষ্ট অ্যালুমিনিয়ামের তৈরি একটি ঘনকের কোন তলে 89.67 imes 10 5 N আকার পীড়ন স্টিকারী স্পূর্শক বল প্রয়োগ করলে বিপরীত স্থির তলের সাপেক্ষে তলটির 3'05 × 10⁻³ m সরণ ঘটে। আকার পীড়ন, আঁকার বিকৃতি ও দৃঢ়তার স্থিতিস্থাপক গুণাজ্ঞ নির্ণয় কর। প্রশ্নানুসারে, আকার পীড়ন = $\frac{F}{A} = \frac{89.67 \times 10^5 \text{ N}}{0.1 \text{ m} \times 0.1 \text{ m}} = 89.67 \times 10^7 \text{ Nm}^{-2}$ জাকার বিকৃতি = $\frac{x}{y} = \frac{3.05 \times 10^{-3} \text{ m}}{0.1 \text{ m}} = 3.05 \times 10^{-2}$ এবং দৃঢ়তার স্থিতিস্থাপক গুণাজ্ঞ, η 😑 <mark>আকার পীড়ন</mark> আকার বিকৃতি $= \frac{89.67 \times 10^7 \,\mathrm{Nm^{-2}}}{3.05 \times 10^{-2}} = 2.94 \times 10^{10} \,\mathrm{Nm^{-2}}$ ১২। স্থির তাপমাত্রায় 20 বায়্মন্ডলীয় চাপের পরিবর্তনে একটি বস্তুর আয়তনের পরিবর্তন 0.01% হল। এর আয়তনের স্থিতিস্থাপক গুণাজ্ঞ নির্ণয় কর। [1 বায়ুমণ্ডলীয় চাপ = $1.013 imes 10^5$ $m Nm^{-2}$]। ধরি নির্ণেয় গুণাজ্ক = K (1) এখানে, F/A = 20 বায়ুমণ্ডলীয় চাপ = $20 \times 1.013 \times 10^5 \text{ Nm}^{-2}$ $\frac{v}{V} = 0.01\% = \frac{1}{10000}$ আমরা পাই, $K = \frac{F}{A} \times \frac{V}{v}$ (1) সমীকরণ (1)-এ মানগুলো বসিয়ে পাওয়া যায়, ١ $K' = \frac{20 \times 1.013 \times 10^5 \,\mathrm{Nm^{-2}}}{-1}$ 10000 $= 2.026 \times 10^{10} \,\mathrm{Nm^{-2}}$ ১৩। কত চাপে 500 ঘন সেন্টিমিটার পারদের 1 ঘন সেন্টিমিটার সংকোচন হবে ? (পারদের আয়তন গুণাজ্ঞ = $2.6 \times 10^{10} \text{ Nm}^{-2}$ আমরা জানি, $K = \frac{pV}{v}$ আয়তন গুণাজ্ঞক, K = 2^{.6} × 10¹⁰ Nm⁻² আদি আয়তন, V = 500 cm³ = 500 × 10⁻⁶ m³ আয়তন পরিবর্তন, v = 1 cm³ = 1 × 10⁻⁶ im³ বা, $p = \frac{Kv}{V}$ $p = \frac{2.6 \times 10^{10} \times 1 \times 10^{-6}}{500 \times 10^{-6}} = \frac{2600}{500} \times 10^7$ আয়তন পরিবর্তন, $v = 1 \text{ cm}^3 = 1 \times 10^{-6} \text{ m}^3$ $= 5.2 \times 10^7 \text{ Nm}^{-2}$ আয়তন পীড়ন = প্রযুক্ত চাপ, p = ?১৪। একটি তারে 0.01m দৈর্ঘ্য বিকৃতিতে পার্শ্ব বিকৃতি 0.0024 m হলে তারের উপাদানের পয়সনের অনুপাত নির্ণয় কর। আমরা পাই, এখানে, দৈর্ঘ্য বিকৃতি = 0.01 m পয়সনের অনুপাত, σ = পার্শ্ব বিকৃতি দৈর্ঘ্য বিকৃতি পাৰ্শ্ব বিকৃতি = 0[.]0024 m তারটির উপাদানের পয়সনের অনুপাত, $\sigma = \frac{0.0024 \text{ m}}{0.01 \text{ m}} = 0.24$ ১৫। 1m দীর্ঘ কোন তারের ব্যাস 5mm তারের দৈর্ঘ্য বরাবর একটি বল প্রয়োগ করায় এর ব্যাস 0.01mm হ্রাস পায় এবং দৈর্ঘ্য 2 cm বৃষ্ণি পায়। পয়সনের অনুপাত নির্ণয় কর। [**চ.** বো. ২০০৫] আমরা জানি. এখানে, পয়সনের অনুপাত, σ = <u>পার্শ্ব বিকৃতি</u> দৈর্ঘ্য বিকৃতি L = 1m = 100 cml = 2 cm $=\frac{d/D}{l/L}$ D = 5 mm = 0.5 cmd = 0.01 mm = 0.001 cm $=\frac{d \times L}{D \times l}$ $\sigma = ?$ <u>0'001 cm × 100 cm</u> $0.5 \,\mathrm{cm} \times 2 \,\mathrm{cm}$ = 0.1 $\sigma = 0.1$ ነው

$$\begin{array}{c} \mbox{Fit Bib Ninh and Stresses} \\ \mbox{Fit Bib and States and Stress$$

BG & JEWEL ৮ ৷ স্বিতিস্থাপকৃতা কি <u>৷</u> বি. বো. ২০০৩ ৯। স্থিতিস্থাপক সীমার সংজ্ঞা দাও। রো. বো. ২০০২ ; ঢা. বো. ২০০১] ১০। হুকের সূত্র বর্ণনা কর। ক্রি. বো ২০০১] ১১। পীড়ন কাকে বলে ? [b. বো. ২০০১] ১২। আণবিক দূরত্বের পরিবর্তনে আন্তঃআণবিক বলের কিরুপ পরিবর্তন ঘটে ? যি. বো. ২০০৪] ১৩। ইস্পাতের ইয়ং-এর গুণাজ্ঞের মান 2×10¹¹ Nm⁻² বলতে কি বুঝ? [য. বো. ২০০২; ঢা. বো. ২০০০] ১৪। স্থিডিস্থাপকতা কোন কোন শর্তের উপর নির্ভর করে ? ১৫। পয়সনের অনুপাত 0.3 বলতে কি বুঝ ? ১৬। স্থিতিস্থাপকতার উপর তাপমাত্রার প্রভাব কি ? ১৭। স্থিতিস্থাপক বিভব শক্তি কি 🤉 [সি. বো. ২০০৬] রচনামূলক প্রশ্ন ঃ ১। স্থিতিস্থাপকতার সংজ্ঞা দাও। স্থিতিস্থাপকতা সম্পর্কে হুকের সূত্র বিবৃত কর ও ব্যাখ্যা করু এবং তা থেকে স্থিতিস্থাপকতা গুণাচ্চের সংজ্ঞা দাও। [সি. বো. ২০০৫] ২। পদার্থ কাকে বলে ? পদার্থের কয়টি অবস্থা ও কি কি ? ৩। আন্তঃআণবিক বল কাকে বলে ? [কু. বো. ২০০৬] এর প্রকৃতি আলোচনা কর। ৪। আন্তঃআণবিক বলের আলোকে স্বিতিস্থাপকতার ব্যাখ্যা দাও। ৫। পদার্থের গঠন বর্ণনা কর। পূর্ণ স্থিতিস্থাপক বস্তু বলতে কি বুঝ ? ৬। হুকের সূত্র কি ? স্থিতিস্থাপক গুণাজ্ঞ কাকে বলে ? ৭। হুকের স্থিতিস্থাপকতার সূত্র বিবৃত কর এবং ব্যাখ্যা কর। রো. বো. ২০০১] ৮। ইকের সূত্র বর্ণনা কর। স্থিতিস্থাপকতার বিভিন্ন গুণাজ্ঞের সংজ্ঞা দাও। ৯। হুকের সূত্র প্রমাণের একটি পরীক্ষা বর্ণনা কর। ১০। ব্যাখ্যা কর ঃ বিকৃত্রি পীড়ন, স্থিতিস্থাপক সীমা, দৃঢ্তার স্থিতিস্থাপক গুণাজ্ঞ ও পয়সন-এর অনুপাত। ১১। বিভিন্ন প্রকার বিষ্ঠৃতি ও পীর্ডনের নাম কর এবং সংশিষ্ট স্থিতিস্থাপুক গুণাল্লের নাম লিখ। ১২। বিভিন্ন প্রকার বিকৃতি, পীড়ন ও স্থিতিস্থাপক গুণাজ্ঞের রাশিমালা নির্ণয় কর। ১৩। পীড়ন বনাম বিকৃতি লেখচিত্র হতে স্থিতিস্থাপক সীমা, স্থায়ী বিকৃতি, অসহ-পীড়ন ব্যাখ্যা কর। ১৪। ইয়ং গুণাজ্ঞক, কাঠিন্য গুণাজ্ঞক এবং আয়তন গুণাজ্ঞ্চের একক ও মাত্রা সমীকরণ বের কর। ১৫। পয়সন-এর অনুপাতের সংজ্ঞা দাও। দেখাও যে, পয়সন-এর অনুপাতের কোন একক ও মাত্রা নেই। ১৬। পয়সনের অনুপাত, $\sigma=-rac{L_{
m a}}{r}rac{\Delta r}{\Delta L}$ । এ সম্পর্কটি প্রতিপাদন কর এবং এর একক ও মাত্রা সমীকরণ নির্ণয় কর্র। $^{\prime}$ বি. বো. ২০০৬; ঢা. বো. ২০০৫ ; চ. বো. ২০০২ ; রা. বো. ২০০১ ; য. বো. ২০০৫] ১৭। একটি তারকে বল প্রয়োগে সম্প্রসারিত করলে এর একক আয়তনে সঞ্চিত্ত শক্তির বা স্থিতিস্থাপক বিভব শক্তির রাশিমালা প্রতিপাদন কর। [য. বো. ২০০০] ১৮। একটি ইস্পাতের তারের ইয়ং-এর গুণাচ্চ্ব নির্ণয়ের পদ্ধতি বর্ণনা কর। চি. বো. ২০০৬, ২০০৩; কু. বো. ২০০৬, ২০০১,২০০৩; ঢা. বো. ২০০৪; সি. বো. ২০০৩,২০০১; য. বো.২০০১; রা. বো. ২০০৫,২০০৩] ১৯। ইয়ং-এর গুণাজ্ঞ নির্ণয়ের পরীক্ষার তার সম্প্রসারণ লেখচিত্রের প্রকৃতি কিরৃপ হবে ? বি. বো. ২০০৪] ২০। কোন তারের উপাদানের ইয়ং-এর গুণাজ্ঞ নির্ণয় পম্বতি বর্ণনা কর। [ঢা. বো. ২০০৬ ; য. বো. ২০০৩ ; ব. বো. ২০০১] ২১। দেখাও যে, কোন বস্তু একক আয়তনের স্থিতিস্থাপক বিভব শক্তি পীড়ন ও বিকৃতির গুণফলের অর্ধেক। সি. বো. ২০০৬; রা. বো. ২০০৬ ; কু. বো. ২০০৫ ; ব. বো. ২০০৩ ; ঢা. বো. ২০০১] গাণিতিক সমস্যাবলি : ১। কোন বস্তুর দৈর্ঘ্য বিকৃতি 15 × 10⁵ এবং দৈর্ঘ্য পীড়ন 30 × 10⁸⁴Nm⁻²। বস্তুটির ইয়ং-এর স্থিতিস্থাপক গুণাজ্ঞ নির্ণয় কর। [58 2×10¹¹ Nm⁻²] ২। একটি তারের অসহ পীড়ন $4.9 imes10^8$ $m Nm^{-2}$ এবং প্রস্থচ্ছেদ ক্ষেত্রফল $1 imes10^{-6}$ $m m^2$ হলে এর অসহ ওজন কত $\,$? **ចេះ** 490N1 ৩। পিতলের একটি তারে 4:51 × 106 Nm⁻² দৈর্ঘ্য পীড়নে দৈর্ঘ্য বিকৃতি 5 × 10⁻⁵ হল্। পিতলের ইয়ং-এর স্থিতিস্থাপক গুণাজ্ঞ নির্ণয় কর। 58 9'02 × 10¹⁰ Nm⁻²] 8। $3 \times 10^7 \,\mathrm{Nm^{-2}}$ আয়তন পীড়নে একটি পদার্ধের আয়তন বিকৃতি 1.5×10^{-4} হলে, পদার্ধটির আয়তনের স্থিতিস্থাপক গুণাজ্জু নির্ণয় কর। [উঃ $2 \times 10^{11} \,\mathrm{Nm^{-2}}$] [♥\$ 2 × 10¹¹ Nm⁻²] ৫। এক মিটার দীর্ঘ একটি তারের ব্যাস 0.01 m। এর দৈর্ঘ্য বরাবুর একটি বল প্রয়োগ করায় ব্যাস 1×10⁻⁵ m হাস পায় ও দৈর্ঘ্য $1 \times 10^{-4} \,\mathrm{m}$ বৃদ্ধি পায়। তারের উপাদানের পয়সনের অনুপাত নির্ণয় কর। [🕏 8 0 1] 🕼 একটি ইস্পাতের তারের প্রস্থাচ্ছেদ ক্ষেত্রফন $1 \times 10^{-6} \, {
m m}^2$ ও অসহ বিকৃতি 4.9×10^{-3} । তারটিতে দৈর্ঘ্য বরাবর সর্বোচ্চ কত বন্ধ প্রয়োগ করা যাবে ? [ইস্পাতের ইয়ং-এর স্বিতিস্থাপক গুণাজ্ঞ = $2 \times 10^{11} \, \mathrm{Nm^{-2}}$] 58 980 NI ৭। 1 m দীর্ঘ এবং 1 × 10⁻⁶ m² প্রস্থচ্ছেদ ক্ষেত্রফলবিশিষ্ট একটি ইস্পাতের তারকে দৈর্ঘ্য বরাবর 196N বলে টানা হল। তারের দৈর্ঘ্য বৃষ্দি নির্ণয় কর। [$Y = 2 \times 10^{11} \, Nm^{-2}$] [উঃ 9[·]8×10^{−5}m] ৮। 2 m লম্মা ও 21 × 10⁻⁷ m² প্রস্থাছেদ ক্ষেত্রফলবিশিষ্ট একটি ইস্পাতের তার একটি ছাদ হতে ঝুলিয়ে অপর প্রান্তে 2.5 kg ভর যুক্ত করলে তারের দৈর্ঘ্য 1.5 × 10⁻³ m বৃষ্ণি পায়। তারের উপাদানের ইয়ং-এর স্থিতিস্থাপক গুণাজ্ঞ নির্ণয় কর। [\$ 1'555 × 10¹¹ Nm⁻²]

উচ্চ মাধ্যমিক পদার্ধবিজ্ঞান

২৯৮

স্থিতিস্থাপকতা বইঘর.কম

🗲 ৯। 5 m দীর্ঘ ও $1 imes 10^{-6} { m m}^2$ প্রস্থাক্ষেদের ক্ষেত্রফলবিশিষ্ট একটি অনুভূমিক ইস্পাতের তারের ুদু প্রান্তকে পরস্পর
বিপরীত দিকে 20 কিলোগ্রাম-ওজনের সমান বলে টানলে তারের উভয় প্রান্তের দিকে দৈখ্য 25×10⁻⁴m বৃদ্ধি পায়। ইস্পাতের
ইয়ং-এর স্থিতিস্থাপক গুণাজ্ঞ নির্ণয় কর। [উঃ 1.96 × 10 ¹¹ Nm ⁻²]
Λ ি দটি সমান দৈৰ্ঘোৱ তাৱ A ও B-এর ব্যাস যথাক্রমে $1 imes 10^{-3}{ m m}$ ও $4 imes 10^{-3}{ m m}$ । উভয়কে সমান বল দ্বারা
টানলে A-এর দৈর্ঘ্য বৃদ্ধি B-এর দৈর্ঘ্য বৃদ্ধির 4 গুণ হয়। A ও B-এর উপাদানের ইয়ং-এর স্থিতিস্থাপক গুণাঙ্জ্বের তুলনা কর।
[\\$24 \$1]
$33 + 1$ লিটার আয়তনের গ্রিসারিন 98×10^4 Nm $^{-2}$ চাপে 0.245×10^{-6} m 3 সংকৃচিত হয়। গ্রিসারিনের আয়তনের
মিধতিস্থাপক গুণাজ্ঞ নির্ণয় কর ৷ (1 lit = 10^{-3} m^3) [উঃ $4 \times 10^9 \text{ Nm}^{-2}$]
১২। এক বায়ুমন্ডলীয় চাপে কোন বস্তুর আয়তন $3.5 imes 10^{-3} { m m}^3$ । এই চাপ বৃদ্ধি করে 25 বায়ুমন্ডলীয় চাপের সমান
করা হলে আয়তন 8.5 × 10 ⁻⁸ m ³ হ্রাস পায়। বস্তুর উপাদানের আয়তনের স্থিতিস্থাপক গুণাচ্চ্ব নির্ণায় কর। [1 বায়ুমঙলীয়
$[\mathbf{\overline{S}}: 1.0428 \times 10^{11} \mathbf{Pa}] $ $[\mathbf{\overline{S}}: 1.0428 \times 10^{11} \mathbf{Pa}]$
১৩। 4 m দীর্ঘ ও 2 mm প্রস্থচ্ছেদের ক্ষেত্রফলবিশিষ্ট একটি তারকে টেনে 2 mm প্রসারিত করা হল। যদি তারের উপাদানের ইয়ং-এর গুণাব্ধ 7×10 ¹¹ Nm ⁻² হয়, তবে তারটি প্রসারিত করতে কাব্ধের পরিমাণ নির্ণয় কর। [উঃ 07]
১৪। 3 m দীর্ঘ ও 0.3 mm ব্যাসার্ধবিশিষ্ট একটি তারকে 90 N বল দ্বারা টানা হলে, তারটি কতটুকু বৃদ্ধি পাবে ? [Y = 2 × 10 ¹¹ Nm ⁻²]
১৫। অ্যালুমিনিয়ামের ইয়ং-এর গুণাঙ্ক 7 × 10 ¹¹ Nm ⁻² হলে 5 m দীর্ঘ ও 0'6 mm ব্যাসযুক্ত একটি তারের দৈর্ঘ্য 1'5 cm বৃষ্ণি করতে কত বলের প্রয়োজন হবে ? [উঃ 593'5 N]
্রি একটি তারের উপাদানের গুণাঙ্ক 1.6 × 10 ¹¹ Nm ⁻² এবং তারটির ব্যাসার্ধ 1 mm। তারটির দৈর্ঘ্য 0.05% বৃদ্ধি করতে কত বলের প্রয়োজন হবে ? [টঃ 2.512 × 10 ³]]
ক্ষু ও ২০ খনের এয়োজন ২০০ ? গৃ১৭। 1 m দীর্ঘ ও 2.5×10-4 ব্যাসার্ধের একটি ইস্পাতের তারে 40 N বল প্রয়োগ করলে এটি বৃদ্ধি পেয়ে 1:01 m হয়।
তারের ইয়ং–এর গণান্দক নির্ণয় কর। [উঃ 2:04 × 10 ¹⁰ Nm ⁻²]
/১৮। একটি 3 m দীর্ঘ ও 1 mm² প্রস্বচ্ছেদবিশিষ্ট কোন তারকে 2 kg ওজন দ্বারা সম্প্রসারিত করা হল। তারের
সম্প্রসারণ নির্ণয় কর । [Y = 2 × 10 ¹¹ Nm ⁻²] [উঃ 2.94 × 10 ⁻⁴ m]
(৪৯) একটি তারের দৈর্ঘ্য বরাবর বল প্রয়োগ করায় যদি দৈর্ঘ্যে 6% বৃদ্ধি পায়, তাহলে ব্যাস 4% হ্রাস পাওয়া কি
সম্ভব? 🍆 👘 🚺 বিষ্ণুর 🕯 এক্ষেত্রে 🛛 = 0.67 , কিন্তু 🖉 এর মান 0.5 এর বেশি হতে পারে না। তাই এটি সম্ভব নয়।]
২০। $1 imes 10^{-4} \mathrm{m}^2$ প্রস্থচ্ছেদের ক্ষেত্রফল বিশিষ্ট একটি ইস্পাতের তারে কত বল প্রয়োগ করলে দৈর্ঘ্য দ্বিগুণ হবে $?$
[Y = 2 × 10 ¹¹ Pa] [রা. বো. ২০০১ [উত্তর : 2 × 10 ⁷ N]
২১। 6m দীর্ঘ এবং 1mm ² প্রস্থাক্ষেদের ক্ষেত্রফল বিশিষ্ট একটি খাড়া তারের প্রান্তে 20 kg-এর একটি ডর বুলিয়ে দেয়া
হল। তারের উপাদানের ইয়ং-এর গুণাঙ্ক 2:35 × 10 ¹¹ Nm ⁻² হলে তারটি কতটুকু বৃন্ধি পাবে ?
[য.বো. ২০০১] (উত্তর ঃ 5×10 ⁻³ m]
২২। 10 cm বাহুবিশিষ্ট একটি ধাতব ঘনকের উপর ৪ [.] ৪2 × 10 ⁵ N কৃন্তুন বল প্রয়োগ করায় ঘনকটির উপরের তল নীচের তল সাপেক্ষে 0 [.] 3 mm সরে গেল। কৃন্তন পীড়ন, কৃন্তুন বিকৃতি ও ধাতুর দৃটতা গুণাচ্চ্ব নির্ণয় কর।
[उखर : 8 82 × 10 ⁷ Nm ⁻² ; 3 × 10 ⁻³ ; 2'94 × 10 ¹⁰ Nm ⁻²]
২৩। 1.5m দীর্ঘ ও 1mm ব্যাসবিশিষ্ট একটি ধাতব তারের এক প্রান্ত আবন্দ্র রেখে অপর প্রান্তে ভার চাপালে 2mm দৈর্ঘ্য
প্রসারণ এবং 3.2 × 10 ⁻⁴ mm ব্যাস সংকোচন হয়। তারের উপাদানের পয়সন-এর অনুপাত নির্ণয় কর। [উন্তর ঃ 0.24] ২৪। একটি পিতলের তারের ব্যাস 1mm। তারটির আদি দৈর্ঘ্যের শতকরা 0.1 তাগ দৈর্ঘ্য বৃদ্ধি করতে কত বল প্রয়োগ
করতে হবে ? (পিতলের Y = 9×10 ¹⁰ Nm ⁻²) ২৫। 3m দীর্ঘ এবং 0.5mm ব্যাসার্ধবিশিষ্ট একটি ঝুলন্ত তারের নিচের প্রান্তে 4 kg ওজন চাপানো হল। তারটির কত
্দৈর্ঘ্য বৃন্ধি হবে ? প্রসারিত তারটিতে সঞ্চিত বিভব শক্তির মান বের কর। (ইস্পাতের ইয়ং-এর গুণাঙ্ক = 2 × 10 ¹¹ Nm ⁻²)
[उखत 8 0.749 mm; 1.47×10 ⁻²]
$1000 \text{ s} \text{ ()} / 49 \text{ mm} \cdot 10^{-2} \text{ ()}$
$1 \rightarrow 1 \rightarrow$
্রু ২৬/। একটি ইস্পাত তারের দৈঘ্য 2m এবং প্রস্বচ্ছেদের ক্ষেত্রফল 1mm²। তারটির প্রান্তে 20N বল প্রয়োগ করলে এর
্র্ ২৬/। একটি ইস্পাত তারের দৈঘ্য 2m এবং প্রস্থচ্ছেদের ক্ষেত্রফল 1mm²। তারটির প্রান্তে 20N বল প্রয়োগ করলে এর বন্দ্রি নির্ণয় কর। (Y = 2 × 10 ¹¹ Nm²)
্ ২৬/ একটি ইস্পাত তারের দৈঘ্য 2m এবং প্রস্বচ্ছেদের ক্ষেত্রফল 1mm ² । তারটির প্রান্তে 20N বল প্রয়োগ করলে এর বৃশ্বি নির্ণয় কর। (Y = 2 × 10 ¹¹ Nm ⁻²) ২৭। 1 5m দীর্ঘ একটি তারের একপ্রান্ত দৃঢ়ভাবে আটকিয়ে অপর প্রান্তে ভার চাপালে 2mm দৈর্ঘ্য প্রসারণ হয়। তারের
্র্ ২৬/। একটি ইস্পাত তারের দৈঘ্য 2m এবং প্রস্থচ্ছেদের ক্ষেত্রফল 1mm²। তারটির প্রান্তে 20N বল প্রয়োগ করলে এর বন্দ্রি নির্ণয় কর। (Y = 2 × 10 ¹¹ Nm²)
১ ২৬/ একটি ইস্পাত তারের দৈঘ্য 2m এবং প্রস্বচ্ছেদের ক্ষেত্রফল 1mm ² । তারটির প্রান্ডে 20N বল প্রয়োগ করলে এর বৃশ্বি নির্ণয় কর। (Y = 2 × 10 ¹¹ Nm ⁻²) ২৭। 1.5m দীর্ঘ একটি তারের একপ্রান্ত দৃঢ়ভাবে আটকিয়ে অপর প্রান্তে ভার চাপালে 2mm দৈর্ঘ্য প্রসারণ হয়। তারের ব্যাস 1mm এবং তারের উপাদানের পয়সন–এর অনুপাত 0.24 হলে প্রসারিত অবস্থায় তারটির ব্যাসের পরিবর্তন নির্ণয় কর।
১ ২৬/ একটি ইস্পাত তারের দৈঘ্য 2m এবং প্রস্বচ্ছেদের ক্ষেত্রফল 1mm ² । তারটির প্রান্ডে 20N বল প্রয়োগ করলে এর বৃশ্বি নির্ণয় কর। (Y = 2 × 10 ¹¹ Nm ⁻²) ২৭। 1.5m দীর্ঘ একটি তারের একপ্রান্ত দৃঢ়ভাবে আটকিয়ে অপর প্রান্তে ভার চাপালে 2mm দৈর্ঘ্য প্রসারণ হয়। তারের ব্যাস 1mm এবং তারের উপাদানের পয়সন–এর অনুপাত 0.24 হলে প্রসারিত অবস্থায় তারটির ব্যাসের পরিবর্তন নির্ণয় কর।
২৬/ একটি ইস্পাত তারের দৈর্ঘ্য 2m এবং প্রস্বচ্ছেদের ক্ষেত্রফল 1mm ² । তারটির প্রান্ডে 20N বল প্রয়োগ করলে এর বৃশ্বি নির্ণয় কর। (Y = 2 × 10 ¹¹ Nm ⁻²) ২৭। 1.5m দীর্ঘ একটি তারের একপ্রান্ড দৃঢ়ভাবে আটকিয়ে অপর প্রান্ডে ভার চাপালে 2mm দৈর্ঘ্য প্রসারণ হয়। তারের ব্যাস 1mm এবং তারের উপাদানের পয়সন–এর অনুপাত 0.24 হলে প্রসারিত অবস্থায় তারটির ব্যাসের পরিবর্তন নির্ণয় কর। [উন্ডর ঃ 3 × 10 ⁻⁴ mm] ২৮। 1m লম্মা ও 1mm ব্যাসের একটি তারের দৈর্ঘ্য বৃশ্বি 0.025 cm হলে তারটির ব্যাস কতটুকু হ্রাস পাবে ?
২৬৫ একটি ইস্পাত তারের দৈর্ঘ্য 2m এবং প্রস্বচ্ছেদের ক্ষেত্রফল 1mm ² । তারটির প্রান্ডে 20N বল প্রয়োগ করলে এর বৃশ্বি নির্ণয় কর। (Y = 2 × 10 ¹¹ Nm ⁻²) ২৭। 1 5m দীর্ঘ একটি তারের একপ্রান্ত দৃঢ়ভাবে আটকিয়ে অপর প্রান্ডে ভার চাপালে 2mm দৈর্ঘ্য প্রসারণ হয়। তারের ব্যাস 1mm এবং তারের উপাদানের পয়সন–এর অনুপাত 0'24 হলে প্রসারিত অবস্থায় তারটির ব্যাসের পরিবর্তন নির্ণয় কর। ডিন্ডর ঃ 3 × 10 ⁻⁴ mm ২৮। 1m লম্মা ও 1mm ব্যাসের একটি তারের দৈর্ঘ্য বৃশ্বি 0'025 cm হলে তারটির ব্যাস কতটুকু হ্রাস পাবে ?
২৬৫ একটি ইস্পাত তারের দৈর্ঘ্য 2m এবং প্রস্বচ্ছেদের ক্ষেত্রফল 1mm ² । তারটির প্রান্ডে 20N বল প্রয়োগ করলে এর বৃশ্বি নির্ণয় কর। (Y = 2 × 10 ¹¹ Nm ⁻²) ২৭। 1 5m দীর্ঘ একটি তারের একপ্রান্ত দৃঢ়ভাবে আটকিয়ে অপর প্রান্ডে ভার চাপালে 2mm দৈর্ঘ্য প্রসারণ হয়। তারের ব্যাস 1mm এবং তারের উপাদানের পয়সন–এর অনুপাত 0'24 হলে প্রসারিত অবস্থায় তারটির ব্যাসের পরিবর্তন নির্ণয় কর। ডিন্ডর ঃ 3 × 10 ⁻⁴ mm ২৮। 1m লম্মা ও 1mm ব্যাসের একটি তারের দৈর্ঘ্য বৃশ্বি 0'025 cm হলে তারটির ব্যাস কতটুকু হ্রাস পাবে ?
২৬/ একটি ইস্পাত তারের দৈর্ঘ্য 2m এবং প্রস্বচ্ছেদের ক্ষেত্রফল 1mm ² । তারটির প্রান্ডে 20N বল প্রয়োগ করলে এর বৃশ্বি নির্ণয় কর। (Y = 2 × 10 ¹¹ Nm ⁻²) [ফু. বো. ২০০০] ডিন্তর $s \ 2 \times 10^{-4}$ m ২৭। 1.5m দীর্ঘ একটি তারের একপ্রান্ড দৃঢ়ভাবে আটকিয়ে অপর প্রান্ডে ভার চাপালে 2mm দৈর্ঘ্য প্রসারণ হয়। তারের ব্যাস 1mm এবং তারের উপাদানের পয়সন–এর অনুপাত 0.24 হলে প্রসারিত অবস্থায় তারটির ব্যাসের পরিবর্তন নির্ণয় কর। [উন্তর $s \ 3 \times 10^{-4}$ mm] ২৮। 1m লম্মা ও 1mm ব্যাসের একটি তারের দৈর্ঘ্য বৃশ্বি 0.025 cm হলে তারটির ব্যাস কডটুকু হাস পাবে ? [রা. বো. ২০০৬] [উন্তর $s \ 2 \times 10^{-5}$ cm] ২৯। 1 m দৈর্ঘ্য এবং 0.004 m ব্যাসবিশিষ্ট একটি ঝুলন্ড তারের নিম্নপ্রান্ত হতে 5 kg ভরের একটি বস্তু ঝুলিরে দেওয়া হল। যদি তারটির দৈর্ঘ্য 0.002 m বন্দি পায়, তবে এর ইয়ং–এর গণাঞ্চক বের কব।
২৬/ একটি ইস্পাত তারের দৈঘ্য 2m এবং প্রস্থল্ছেদের ক্ষেত্রফল 1mm ² । তারটির প্রান্থে 20N বল প্রয়োগ করলে এর বৃশ্বি নির্ণয় কর। (Y = 2 × 10 ¹¹ Nm ⁻²) [কু. বো. ২০০০] ডিন্তর ঃ 2 × 10 ⁻⁴ m ২৭। 1 '5m দীর্ঘ একটি তারের একপ্রান্ত দৃঢ়ভাবে আটকিয়ে অপর প্রান্থে ভার চাপালে 2mm দৈর্ঘ্য প্রসারণ হয়। তারের ব্যাস 1mm এবং তারের উপাদানের পয়সন–এর অনুপাত 0'24 হলে প্রসারিত অবস্থায় তারটির ব্যাসের পরিবর্তন নির্ণয় কর। [উন্তর ঃ 3 × 10 ⁻⁴ mm] ২৮। 1m লম্বা ও 1mm ব্যাসের একটি তারের দৈর্ঘ্য বৃশ্বি 0'025 cm হলে তারটির ব্যাস কতটুকু হ্রাস পাবে ? [রা. বো. ২০০৬] [উন্তর ঃ 2 × 10 ⁻⁵ cm] ২৯। 1 m দৈর্ঘ্য এবং 0'004 m ব্যাসবিশিন্ট একটি ঝুলন্ড তারের নিমপ্রান্ত হতে 5 kg ভরের একটি বস্ডু ঝুলিরে দেওয়া হল। যদি তারটির দৈর্ঘ্য 0'002 m বৃশ্বি পায়, তবে এর ইয়ং-এর গুণাচ্চ্ব বের কর। ৩০। 1 × 10 ⁻⁶ m ² প্রস্ববেছদ ক্ষেত্রফল বিশিন্ট এবং 2 m দৈর্ঘ্যের একটি সুযন্ম ডারকে 2 × 10 ⁵ N বল ঘারা 1 × 10 ⁻³ m প্রসারিত ক্রডে কাজের পরিমাণ নির্ণয় কর। তারের উপাদানের ইয়ং এর উপাদানের ইয়ং একটি সুযন্ম ডারকে 2 × 10 ⁵ N বল ঘারা 1 ×
২৬/ একটি ইস্পাত তারের দৈঘ্য 2m এবং প্রস্থল্ছেদের ক্ষেত্রফল 1mm ² । তারটির প্রান্থে 20N বল প্রয়োগ করলে এর বৃশ্বি নির্ণয় কর। (Y = 2 × 10 ¹¹ Nm ⁻²) [কু. বো. ২০০০] ডিন্তর ঃ 2 × 10 ⁻⁴ m ২৭। 1 '5m দীর্ঘ একটি তারের একপ্রান্ত দৃঢ়ভাবে আটকিয়ে অপর প্রান্থে ভার চাপালে 2mm দৈর্ঘ্য প্রসারণ হয়। তারের ব্যাস 1mm এবং তারের উপাদানের পয়সন–এর অনুপাত 0'24 হলে প্রসারিত অবস্থায় তারটির ব্যাসের পরিবর্তন নির্ণয় কর। [উন্তর ঃ 3 × 10 ⁻⁴ mm] ২৮। 1m লম্বা ও 1mm ব্যাসের একটি তারের দৈর্ঘ্য বৃশ্বি 0'025 cm হলে তারটির ব্যাস কতটুকু হ্রাস পাবে ? [রা. বো. ২০০৬] [উন্তর ঃ 2 × 10 ⁻⁵ cm] ২৯। 1 m দৈর্ঘ্য এবং 0'004 m ব্যাসবিশিন্ট একটি ঝুলন্ড তারের নিমপ্রান্ত হতে 5 kg ভরের একটি বস্ডু ঝুলিরে দেওয়া হল। যদি তারটির দৈর্ঘ্য 0'002 m বৃশ্বি পায়, তবে এর ইয়ং-এর গুণাচ্চ্ব বের কর। ৩০। 1 × 10 ⁻⁶ m ² প্রস্ববেছদ ক্ষেত্রফল বিশিন্ট এবং 2 m দৈর্ঘ্যের একটি সুযন্ম ডারকে 2 × 10 ⁵ N বল ঘারা 1 × 10 ⁻³ m প্রসারিত ক্রডে কাজের পরিমাণ নির্ণয় কর। তারের উপাদানের ইয়ং এর উপাদানের ইয়ং একটি সুযন্ম ডারকে 2 × 10 ⁵ N বল ঘারা 1 ×
২৬/ একটি ইস্পাত তারের দৈঘ্য 2m এবং প্রস্বচ্ছেদের ক্ষেত্রফল 1mm ² । তারটির প্রান্ডে 20N বল প্রয়োগ করলে এর বৃশ্বি নির্ণয় কর। (Y = 2 × 10 ¹¹ Nm ⁻²) [ফু. বো. ২০০০] ডিন্তর ঃ 2 × 10 ⁻⁴ m ২৭। 1 '5m দীর্ঘ একটি তারের একপ্রান্ড দৃঢ়ভাবে আটকিয়ে অপর প্রান্ডে ভার চাপালে 2mm দৈর্ঘ্য প্রসারণ হয়। তারের ব্যাস 1mm এবং তারের উপাদানের পয়সন–এর অনুপাত 0'24 হলে প্রসারিত অবস্থায় তারটির ব্যাসের পরিবর্তন নির্ণয় কর। [উন্তর ঃ 3 × 10 ⁻⁴ mm] ২৮। 1m লম্মা ও 1mm ব্যাসের একটি তারের দৈর্ঘ্য বৃশ্বি 0'025 cm হলে তারটির ব্যাস কডটুকু হ্রাস পাবে ? [রা. বো. ২০০৬] [উন্তর ঃ 2 × 10 ⁻⁵ cm] ২৯। 1 m দৈর্ঘ্য এবং 0'004 m ব্যাসবিশিষ্ট একটি ঝুলন্ড তারের নিম্নপ্রান্ত হতে 5 kg ভরের একটি বস্তু ঝুলিরে দেওয়া হল। যদি তারটির দের্ঘ্য 0'002 m বৃশ্বি পায়, তবে এর ইয়ং–এর গুণাচ্চ্চ বের কর। ৩০। 1 × 10 ⁻⁶ m ² প্রস্বচ্ছেদ ক্ষেত্রফল বিশিষ্ট এবং 2 m দৈর্ঘ্যের একটি সহয়, চারকে ০ × 105 N বল ছারা 1 ×

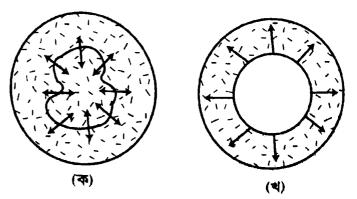
৾২৯৯

১০·১ সূচনা Introduction

<u>পদার্থকে আমরা সাধারণত তিনভাগে ভাগ করে থাকি। যথা–কঠিন, তরল ও গ্যাস্। তরল এবং গ্যাসকে</u> মিলিতভাবে প্রবাহী (Fluid) বলে। এদেরকে কোন পাত্রে আবন্দ্ব না রাখলে চিরকাল ধরে প্রবাহিত হতে থাকবে। এই ধর্মের জন্যে এদেরকে প্রবাহী বলা হয়। প্রবাহীকে আবার দুই ভাগে ভাগ করা হয়েছে—একটি অসক্ষোচনীয় প্রবাহী (Incompressible fluid) এবং অপরটি সক্ষোচনীয় প্রবাহী (Compressible fluid)। তরল পদার্থের উপর চাপ দিলে এর আয়তনের কোন পরিবর্তন ঘটে না। কাজেই তরল অসজ্ফোচনীয় প্রবাহী। আর গ্যাসের উপর চাপ প্রয়োগ করলে এর আয়তনের পরিবর্তন ঘটে। অতএব গ্যাস সজ্ঞোচনীয় প্রবাহী।

প্রবাহীর কয়েকটি বৈশিষ্ট্যমূলক বিশেষ ধর্ম রয়েছে। তবে সব ধর্মই তরল এবং গ্যাসের মধ্যে বিদ্যমান থাকে না। যেমন **পৃষ্ঠটান** তরলের একটি বিশেষ ধর্ম ; কিন্তু এ ধর্ম গ্যাসের মধ্যে নেই। আবার **সান্দ্রতা** অপর একটি ধর্ম যা তরল এবং গ্যাস উভয় প্রবাহীতেই বিদ্যমান। এ অধ্যায়ে প্রবাহীর পৃষ্ঠটান এবং সান্দ্রতা আলোচনা করব।

১০ ২ পৃষ্ঠ টান

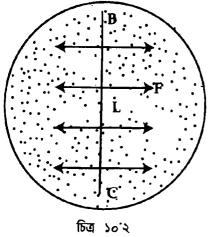

Surface tension

তরল মাত্রই একটি ধর্ম আছে—তরল পৃষ্ঠ সর্বদাই সজ্জুচিত হয়ে সর্বনিম্ন ক্ষেত্রফলে আসতে চায়। তরলের মধ্যে যে বলের প্রভাবে এই বিশেষ ধর্ম প্রকাশ পায় সেই বলকেই পৃষ্ঠটান বলে।

আমরা সকলেই লক্ষ্য করেছি যে মশা, মাকড়সা ইত্যাদি কীটপতজ্ঞা পানির উপরে হেঁটে চলতে পারে। একটু পর্যবেক্ষণ করলেই দেখা যাবে যে, যেখানে এদের পা পড়ে তরলের সেই স্থানটুকু একটু নীচু বা অবনমিত (depressed) হয়—কিছুটা যেন রবারের পর্দাকে চাপ দিলে যেরূপ হয়। এ ছাড়া কোন সিরিজের সূচের মাধা দিয়ে খুব আস্তে আস্তে তরল ওষুধ বা পানি নির্গত করলে দেখা যায় যে তরল বা পানি নিরবচ্ছিন্নভাবে বের না হয়ে ফোঁটায় ফোঁটায় বের হচ্ছে এবং ফোঁটাগুলো সম্পূর্ণ গোলাকার। আমরা জানি একই আয়তনের সর্বনিম ক্ষেত্রফল হল গোলাকার আকৃতির। তরলের মুক্ত পৃষ্ঠে নিন্চয়ই কোন বল ক্রিয়াশীল রয়েছে যা ফোঁটাগুলো গোলাকার রাখছে। কাজেই তরলের মুক্ত পৃষ্ঠে স্থিতিস্থাপক পর্দার টানের ন্যায় একটা টান ক্রিয়া করে। উব্তু টান তরল পৃষ্ঠের স্পর্ণক অভিমুখী। তরল পৃষ্ঠ যেখানে এসে শেষ হয় সেখানেই পৃষ্ঠের সীমারেখায় পৃষ্ঠটান ক্রিয়া করে।

নিচে বর্ণিত একটি পরীক্ষার সাহায্যে সহজেই পৃষ্ঠটান ক্রিয়া প্রদর্শন করা যায়।

ধাতব তারের একটি গোল আংটা সাবান পানিতে ডুবিয়ে তুলে আনলে আংটার ভেতরে সাবান পানির একটি পাতলা সর (Thin film) আটকে থাকে। এবার একটি সুতা দিয়ে ছোট ফাঁসে (loop) তৈরি করে সাবান পানিতে ভিজিয়ে আংটার সরের উপর বসালে দেখা যাবে ফাঁসটি এলোমেলোভাবে অবস্থান করছে [চিত্র ১০°১(ক)]।



চিত্র ১০'১

এবার একটি সুঁচ বা আলপিন দিয়ে ফাঁসের ভিতরের অংশ ছিদ্র করে দিলে দেখা যাবে ফাঁসটি এলোমেলো অবস্থা ত্যাগ করে বৃত্তাকার হয়েছে [চিত্র ১০·১(খ)]।

উপরের ঘটনা দুটো ব্যাখ্যায় বলা যায়, যখন ফাঁসের ভেতরে সর ছিল তখন ফাঁসের প্রতিটি বিন্দুতে পৃষ্ঠের স্পর্শক বরাবর সমান ও বিপরীতমুখী বল ক্রিয়া করে। ফলে প্রতিটি বিন্দুতে বলদ্বয় পরস্পরকে প্রশমিত করে। তাই ফাঁসটি এলোমেলো থাকে। পরবর্তীতে ফাঁসটি ছিদ্র করায় ফাঁসের ভেতরের দিকের বল না থাকায় প্রতিটি বিন্দুতে শৃধু সরের বাইরের দিকে বল ক্রিয়া করে, ফলে বাইরের দিকে টান অনুভূত হয় এবং বাইরের দিকের সর সংকুচিত হয়ে টান টান হয়ে যায়। উপরের পরীক্ষা থেকে স্পন্ট যে তরল পদার্থের মুক্ত পৃষ্ঠে এক ধরনের টান ক্রিয়াশীল। এই টানই পৃষ্ঠ টান। অতএব পৃষ্ঠটানের নিয়োক্ত সংজ্ঞা দেওয় যায়।

সংজ্ঞা ঃ কোন তরলের পৃষ্ঠে একটি সরলরেখা কল্পনা করলে উক্ত রেখার প্রতি একক দৈর্ঘ্যে ঐ রেখার দু'পার্শ্বে তরলের পৃষ্ঠ তলে এক অংশ অন্য অংশের উপরে যে স্পর্শক বল (tangential force) প্রয়োগ করে তাকেই পৃষ্ঠ টান বলে।

ব্যাখ্যা : মনে করি কোন একটি তরল তলের মুক্ত পৃষ্ঠের উপর অভিহত একটি রেখার (BC) দৈর্ঘ্য L [চিত্র ১০·২]। ঐ সরলরেখার উভয় পার্শ্বের তরলপৃষ্ঠ সংকুচিত হতে চাইবে এবং পরস্পর হতে দুরে সরে যাওয়ার প্রবণতা পরিলক্ষিত হবে। কাজেই BC রেখার উপর প্রতি একক দৈর্ঘ্যে একটা টান পড়বে। মনে করি ঐ রেখার অভিলম্বভাবে ও পৃষ্ঠের স্পর্শকরূপে রেখার উভয় পার্শ্বে বিদ্যমান বল F।

পৃষ্ঠটান =
$$\frac{\overline{der}}{\overline{Crsij}}$$

বা, $T = \frac{F}{L}$
(1)

পৃষ্ঠ টানের আরো একটি সংজ্ঞা দেয়া যেতে পারে ঃ

কোন একটি তরল তলের ক্ষেত্রফল এক একক বৃষ্ণি করতে যে পরিমাণ কান্স সম্পন্ন করতে হয় তাকে এ তরলের পৃষ্ঠ টান বলে এবং $T = \frac{W}{A}$

এখানে তরল তলের ক্ষেত্রফল A, একক বৃদ্ধিতে কাচ্চের পরিমাণ = W.

পৃষ্ঠ টানের একক (Unit of surface tension)

পৃষ্ঠ টান একটি প্রাকৃতিক রাশি। অতএব এর একক আছে।

<u>এম. কে. এস. ও এস. আই. বা আন্তর্জাতিক পন্থতিতে পৃষ্ঠ টানের নিরপেক্ষ একক নিউটন/মিটার</u> (Nm⁻¹)।

পৃষ্ঠ টানের মাত্রা সমীকরণ (Dimension of surface tension)

$$\frac{\gamma b}{D} \overline{D} \overline{P} = \frac{\overline{\alpha}}{C \overline{n} \overline{u}}$$

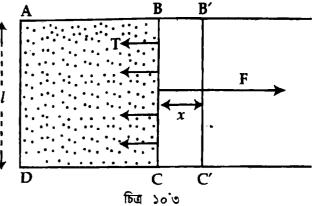
$$\frac{u \overline{n}}{u \overline{n}} \overline{n} \overline{n} \overline{n} \overline{n}$$

$$\frac{u \overline{n}}{(2 \overline{n})} = \frac{\overline{n} \overline{n}}{(2 \overline{n})} = \frac{[MLT^{-2}]}{[L]} = [MT^{-2}]$$
(2)

পৃষ্ঠ টানের বৈশিষ্ট্য (Characteristics of surface tension)

তরলের পৃষ্ঠ টানের নিম্নলিখিত দুটি উল্লেখযোগ্য বৈশিষ্ট্য রয়েছে, যথা ঃ

(क) পৃষ্ঠ টান তরল তলকে সংকুচিত করার চেন্টা করে।


প্রা ভিরল তলের ক্ষেত্রফল বাড়াবার চেন্টা করলে পৃষ্ঠ টান তা প্রতিরোধ করার চেন্টা করে।

BG & JEWEL

১০৩ পৃষ্ঠ শক্তি বা তল শক্তি Surface energy

আমরা জানি কোন একটি তরল তলে একটি টান বা বল সর্বদা ক্রিয়া করে এবং এই বল তরল তলের ক্ষেত্রফল হাস করতে চেফ্টা করে। সুতরাং এ অবস্থায় তরল তলের ক্ষেত্রফল বৃদ্ধি করতে হলে এ বলের বিরুদ্ধে কিছু কাজ করতে হবে। এ কাজ স্থিতিশক্তি হিসেবে তরল তলে সঞ্চিত থাকবে। তরল পৃষ্ঠের এই স্থিতিশক্তিকে আপাতভাবে পৃষ্ঠ শক্তি বা তল শক্তি বলে। তবে সঠিকভাবে বলা যায়— কোন একটি তরল তলের ক্ষেত্রফল এক একক বৃদ্ধি করতে যে পরিমাণ কাজ সাধিত হয়, তাকে এ তলের পৃষ্ঠ শক্তি বলে। একে সাধারণত E হারা প্রকাশ করা হয়।

এখন তরলের পৃষ্ঠ টান এবং পৃষ্ঠ শক্তির মধ্যে সম্পর্ক স্থাপন করতে মনে করি ABCD একটি হান্ধা আয়তকার ফ্রেম যার AB, AD এবং DC বাহু স্থির [চিত্র ১০ ৩]। কেবল BC বাহু AB এবং DC বরাবর বাধাহীনভাবে চলাচল করতে পারে। তরলের একটি পর্দা এই ফ্রেমের উপর স্থাপন করি। পৃষ্ঠ টানের দরুন এই পর্দা BC বাহু ছাড়া অন্য সকল বাহু আটকানো থাকায় তারা স্থির থাকবে, কিন্তু BC বাহুটি ভিতরের দিকে যেতে চাইবে।

(3)

(4)

যদি তরলের পৃষ্ঠ টান T হয় এবং BC বাহুর দৈর্ঘ্য ৷ হয়, তবে পৃষ্ঠ টানের দরুন BC বাহুর উপর ভিতরমুখী বন্দ

 $F = 2l \times T$

যেহেতু পর্দার দুটি তল আছে, একটি উপরের দিকে এবং অপরটি নিচের দিকে, সেহেতু BC বাহুর দৈর্ঘ্য = 21। BC-কে স্থির রাখতে হলে তার উপর পৃষ্ঠ টানের বিপরীতমুখী সম পরিমাণের একটি বল প্রয়োগ করতে হবে।

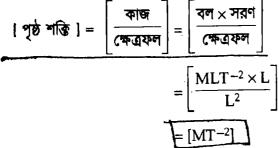
এবার BC বাহুকে ধীরে ধীরে x দূরত্ব বাইরের দিকে সরিয়ে B'C' অবস্থানে আনতে ঐ বলের বিরুদ্বে কিছু কাজ করতে হবে। এর ফলে ABCD পর্দাটির মোট ক্ষেত্রফল বৃদ্বি = 2l × x, যেহেতু পর্দার দুটি তল আছে। এই পদ্ধতিতে কৃত কাজের পরিমাণ—

> $W = 4 \pi \times \pi \pi n = F \times x = 2lTx.$ একক ক্ষেত্রফল বৃষ্ণিতে কাজের পরিমাণ

$$= \frac{\overline{\alpha}}{(2 \pi \sqrt{2})^2} = \frac{W}{2lx} = \frac{2lTx}{2lx} = T$$

কিন্তু একক ক্ষেত্রফল বৃদ্ধিতে কাজের পরিমাণ = একক ক্ষেত্রফলে সঞ্চিত্ত স্থিতি শক্তি। পুনঃ একক ক্ষেত্রফলে সঞ্চিত স্থিতি শক্তি =পৃষ্ঠ শক্তি। অতএব আমরা এই সিদ্ধান্ত করতে পারি যে, কোন ভরলের পৃষ্ঠ শক্তি সংখ্যাগতভাবে তরলের পৃষ্ঠ টানের সমান।

যদি পৃষ্ঠ শক্তিকে E এবং পৃষ্ঠ টানকে T দ্বারা প্রকাশ করা হয়, তবে


গৃষ্ঠ শক্তির একক (Unit of surface energy)

পৃষ্ঠ শক্তির এম. কে. এস. বা এস. আই. একক হল জুল/মিটার² (J/m²)। কিন্তু J/m² হলে Nmm⁻² বা Nm⁻¹। কাচ্চেই কোন তরলের পৃষ্ঠ শক্তির একক এবং পৃষ্ঠ টানের একক অভিন।

প্রকৃত পক্ষে, কোন তরলের পৃষ্ঠ শক্তি আর পৃষ্ঠ টান একই।

বইঘর.কম

পৃষ্ঠ শক্তির মাত্রা সমীকরণ (Dimension of surface energy)

উল্লেখ্য, সাধারণ তাপমাত্রায় পানির পৃষ্ঠ শক্তি বা তল শক্তি, E = 72 × 10⁻³ জুল/মিটার² (Jm⁻²)

১০·৪ পৃষ্ঠ টান সংক্রান্ত কয়েকটি প্রয়োজনীয় রাশি Some terms relating surface tension

পৃষ্ঠ টানের তত্ত্ব ব্যাখ্যা করার পূর্বে কয়েকটি রাশি জানা দরকার। রাশিগুলো হল—

(क) <u>मर्श्नेडि वा मर्ख्रि वन (Cohesive force</u>),

(স) আসঞ্জন বল (Adhesive force) এবং

(গ) আণবিক পাল্লা (Molecular range)

সুহ্বান্তি বা সংযুক্তি বল : আমরা জানি কোন একটি পদার্থ কতকগুলো অণুর সমষ্টি। এ<u>কই পদার্থের বিভিন্ন</u> অণুর মধ্যে পারস্পরিক আকর্ষণ বলকে সংসক্তি বা সংযুক্তি বল বলে। যেমন লোহার বিভিন্ন অণুর মধ্যে যে পারস্পরিক আকর্ষণ বল আছে, তার নাম সংসক্তি বল। এই বল দূরত্বের বর্গের ব্যস্তানুপাতিক সূত্র মেনে চলে।

আসঞ্জন বল : একটি পদার্থকে অন্য একটি পদার্থের সংস্পর্শে রেখে দিলে পদার্থ দুটির অণুগুলোর মধ্যে একটি পারস্পরিক আকর্ষণ বল ক্রিয়া করে। বিভিন্ন পদার্থের অণুগুলোর মধ্যে এই পারস্পরিক আকর্ষণ বলকে আসঞ্জন বল বলে। একটি পাত্রে পানি রাখলে পাত্রের অণু ও পানির অণুর মধ্যে যে আকর্ষণ বল ক্রিয়াঁ করে তাই আসঞ্জন বল।

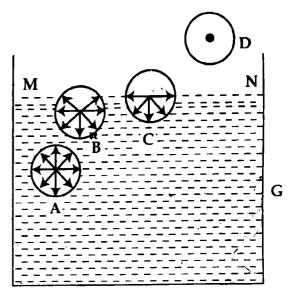
আগবিক পারা : আমরা জানি সংসন্তি বল অণু দুটির মধ্যবর্তী দূরত্বের বর্গের ব্যস্তানুপাতিক। দূরত্ব বৃদ্ধি পেতে থাকলে বল দ্রুত হ্রাস পেতে থাকে। দুটি অণুর মধ্যে ক্রিয়ারত সংসন্তি বল সর্বাধিক যতটুকু দূরত্র পর্যন্ত অনুভূত হয়, তাকে আন্তঃআগবিক পারা বলে। এই দূরত্বের মান প্রায় 10⁻⁹ m। কোন একটি অণুকে কেন্দ্র করে আগবিক পারার সমান ব্যাসার্ধ নিয়ে একটি গোলক করনা করলে তাকে এ অণুর প্রভাব গোলক (sphere of attraction) বলে। এ অণুটি কেবল প্রভাব গোলকের ভিতরের অণুগুলোর দ্বারা প্রভাবিত হবে। প্রভাব গোলকের বাইরের কোন অণু এই অণুটির উপর কোন সংসন্তি বল প্রয়োগ করে না ধরে নেয়া হয়।

১০.৫ ল্যাপ্লাসের পৃষ্ঠ টানের আণবিক তত্ত্ব Laplace's molecular theory of surface tension

তরলের পৃষ্ঠ টানকে ব্যাখ্যা করার জন্য বিভিন্ন সময়ে বিভিন্ন বিজ্ঞানী বিভিন্ন তত্ত্ব প্রদান করেন। সর্বাপেক্ষা নির্ভরযোগ্য তত্ত্ব প্রদান করেন বিজ্ঞানী ল্যাপ্লাস। ল্যাপ্লাস-এর নামানুসারে এই তত্ত্বকে **ল্যাপ্লাসের আণবিক তত্ত্ব** বলে। ল্যাপ্লাস আণবিক তত্ত্বের সাহায্যে পৃষ্ঠ টানের ব্যাখ্যা করেন বলে তত্ত্বের এরূপ নামকরণ হয়েছে।

মনে করি, A, B, C এবং D তরলের চারটি অণু [চিত্র ১০ ৪]। এদের মধ্যে A তরলের গভীর অভ্যন্তরে, B তরল তলের একটু নিচে, C ঠিক তরল তলে এবং D তরলের বাইরে অবস্থিত। তাদের চারদিকে প্রভাব গোলক অঞ্চন করি।

'A' অণুটির প্রভাব গোলক তরলের অভ্যস্তরে সম্পূর্ণভাবে নিমচ্চ্চিত থাকায় তা অন্যান্য অণু দ্বারা চারদিকে সমভাবে আকৃষ্ট হবে এবং তার উপর লখ্যি সংসক্তি বলের মান শূন্য হবে। ফল্যে তা যে অবস্থায় আছে সেই অবস্থায় থাকবে।

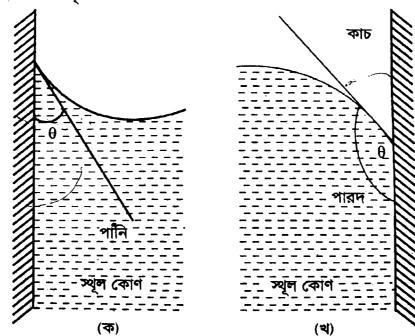

উচ্চ মাধ্যমিক পদার্থবিজ্ঞান

BG & JEWEL

'B' অণুর প্রভাব গোলকের কিছু অংশ তরলের বাইরে থাকায় এ গোলকের নিচের অংশের অণুর সংখ্যা উপরের অংশের অণুর সংখ্যা অপেক্ষা অধিক হওয়ায় 'B' অণুর উপর একটি নিম্নমুখী লম্বি সংসক্তি বল ক্রিয়া করবে।

পুনঃ 'C' অণু ঠিক তরল পৃষ্ঠের উপরে থাকায় এর প্রভাব গোলকের অর্ধেক ভাগ তরলের ভিতরে এবং অর্ধেক ভাগ তরলের বাইরে থাকবে। অতএব এটি কেবল গোলকের নিচের অংশের অণু দারা আকৃষ্ট হবে এবং এটি

সম্পূর্ণভাবে একটি নিম্নমুখী সর্বাধিক লম্বি সংসক্তি বল অনুভব করবে। তরল তলে অবস্থিত সকল অণুর ক্ষেত্রে এই ঘটনা পরিলক্ষিত হবে। তরল তলের ঠিক উপরের D অণুর প্রভাব গোলক সম্পূর্ণ রূপে তরলের উপরে থাকায় তার উপর তরলের টান "শূন্য"। ফলে অণুটি গ্যাস অণুর ন্যায় মুক্তভাবে বিচরণ করবে। অতএব MN তরল তল একটি নিম্নমুখী বল বা টান অনুভব করে এবং সজ্ঞ্চিত হতে প্রয়াস পায়। অর্থাৎ MN তলের ক্ষেত্রফল কমাতে চায়, যার ফলে স্থিতিশক্তি কমে। সকল বস্তৃই সুস্থির বা সাম্যাবস্থায় থাকার জন্য সর্বনিম্ন স্থিতিশক্তিতে আসতে চায়। যেমন একটি রাবারের টান দেয়া পর্দা নিজ পৃষ্ঠের ক্ষেত্রফল হ্রাস করতে চায়। এই সজ্ঞোচনের প্রবণতা হতেই তরলের পৃষ্ঠ টানের উৎপত্তি হয়। এই টান তরল তলের স্পর্শক বরাবর ক্রিয়া করে।



চিত্র ১০ ৪

এটিই হল ল্যাপ্লাস কর্তৃক তরলের পৃষ্ঠ টানের সরল আণবিক ব্যাখ্যা।

১০৬ স্পার্শ কোণ Angle of contact

তরল পদার্থ যখন কোন কঠিন পদার্থের সংস্পর্শে আসে, তখন তাদের মধ্যে একটি কোণ উৎপন্ন হয়। একেই আপাতভাবে স্পর্শ কোণ বলে। প্রকৃতভাবে স্পর্শ কোণ কি তা-ই এখন ব্যাখ্যা করব।

চত হত হ

কোন একটি কঠিন বস্তু খাড়াভাবে পানিতে বা অন্য কোন তরলে আর্থশিকভাবে ডুবালে তাদের সংযোগ স্থানে তরল তল কিছুটা বেঁকে যায়। তরলের রিভিন্ন অণুর মধ্যে সংসন্তি বল ছাড়াও কঠিন ও তরলের অণুর আসঞ্জন বল

বইঘর.কম

আছে। সংসক্তি বল তরল তলকে অনুভূমিকভাবে রাখার চেম্টা করে। পক্ষান্তরে আসঞ্জন বল তরল তলকে উপরে উঠাতে চেম্টা করে। এই দুটি বলের সম্মিলিত ক্রিয়ায় তরল তল কঠিন পদার্ধের গা বেয়ে উপরে উঠে কিংবা নিচে নেমে আসে এবং কঠিন পদার্থের দেয়ালের সাথে একটি কোণ উৎপন্ন করে। এই কোণকৈ স্পর্শ কোণ বলে। একে সাধারণত 'θ' বা 'α' দারা ব্যক্ত করা হয়।

সংজ্ঞা : কঠিন ও তরলের স্পর্শ বিন্দু হতে বরু তরল তলে অচ্চিত স্পর্শক কঠিন বস্তুর সাথে তরলের মধ্যে যে কোণ উৎপন্ন করে, তাকে উক্ত কঠিন ও তরলের মধ্যকার স্পর্শ কোণ বলে।

স্পর্শ কোণ দুই প্রকার, যথা—

১। সৃহ্ম স্পর্শ কোণ (Acute angle of contact) এবং

২। স্थ्न স্পর্শ কোণ (Obtuse angle of contact)।

<u>স্পর্শ কোণ 90° অপেক্ষা কম হলে সুক্ষ স্পর্শ কোণ হবে। যে সব তরলের ঘনত্ত্ব কঠিনের ঘনত্ত্ব অপেক্ষা</u> কম সে সব তরল সাধারণত কঠিনকে ভিজায়। এসব ক্ষেত্রে স্পর্শ কোণ সুক্ষ কোণ হবে [চিত্র ১০৫ (ক)]। যেমন পানির ঘনত্ত্ব কাচের ঘনত্ত্ব অপেক্ষা কম। পানি কাচকে ভিজায়। এক্ষেত্রে স্পর্শ কোণ সুক্ষ কোণ হবে। সাধারণ পানি এবং কাচের ভিতরকার স্পর্শ কোণ প্রায় ৪°। বিশুন্ধ পানি ও পরিক্ষার কাচের ভিতরকার স্পর্শ কোণ প্রায় শূন্য এবং রূপা ও পানির ভিতরকার স্পর্শ কোণ প্রায় 90°।

<u>আর স্পর্শ</u> কোণ 90° অপেক্ষা বড় হলে স্থৃল স্পর্শ কোণ হয়। যে সব তরলের ঘনত্ত্ব কঠিনের ঘনত্ত্ব অপেক্ষা বেশি, সেসব তরল সাধারণত কঠিনকে ভিজায় না। এক্ষেত্রে স্পর্শ কোণ স্থৃলকোণ হবে [চিত্র ১০৫ (খ)]। যেমন পারদের ঘনত্ব কাচের ঘনত্ব অপেক্ষা বেশি। পারদ কাচকে ভিজায় না। এক্ষেত্রে স্পর্শ কোণ স্থ্ল কোণ হবে। পারদ এবং কাচের ভিতরকার স্পর্শ কোণ প্রায় 140°।

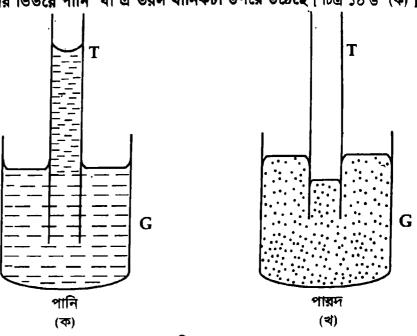
স্পর্শ কোণ যে যে বিষয়ের উপর নির্ভর করে (Factors affecting angle of contact)

নিম্নলিখিত বিষয়গুলোর উপর স্পর্শ কোণ নির্ভর করে---

্ ক্লে কিঠিন ও তরলের প্রকৃতি।

শি তরলের উপরিস্থিত মাধ্যম। যেমন পারদের উপর বায়ু থাকলে কাচ ও পারদের স্পর্শ কোণ যা হবে, পারদের উপর পানি থাকলে কাচ ও পারদের স্পর্শ কোণ ভিন্নতর হবে।

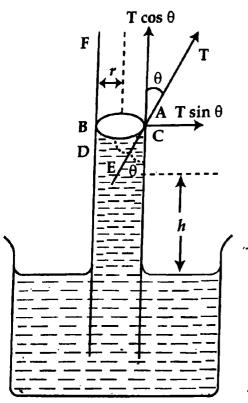
(শ) কঠিন ও তরলের বিশুম্বতা। যদি তরল বিশুম্ব না হয় এবং কঠিন পরিক্ষার না হয় তবে স্পর্শ কোণ পরিবর্তিত হয়। বিশুম্ব পানি ও পরিক্ষার কাচের ভিতরকার স্পর্শ কোণ প্রায় শূন্য। কিন্তু কাচ সামান্য তৈলাক্ত হলে স্পর্শ কোণ বৃদ্বি পায়; এমন কি 90°-এর বেশি হতেও দেখা যায়।


১০[.]৭ কৈশিকতা বা কৈশিকত্ব Capillarity

'Capillus' একটি ল্যাটিন শব্দ। এর বাংলা অর্থ 'কেশ'। কেশের মত সরু ছিদ্রবিশিষ্ট নলকে কৈশিক নল

দুই মুখ খোলা কাচের একটি সরু নলকে খাড়াভাবে পানিতে বা কাচ ভিজ্ঞায় এমন একটি তরঁলে আংশিক ডুবালে দেখা যাবে যে, নলের ভিতরে পানি বা ঐ তরল খানিকটা উপরে উঠেছে [চিত্র ১০'৬ (ক)]

অর্থাৎ নলের ভিতরের পানির তল এবং বাইরের পানির তল একই অনুতৃমিক তলে নেই। শুধু তাই নয়, নলের ভিতরের পানির তল অবতল আকার ধারণ করেছে।

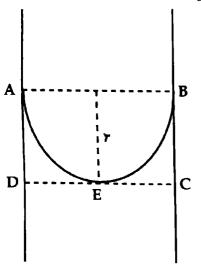

আকার ধারণ করেছে। আবার কৈশিক নলটিকে পারদ বা কাচ ডিজায় না এমন একটি তরলে ডুবালে দেখা যাবে নলের ডিতরে পারদ বা ঐ তরল খানিকটা নিচেরব দিকে নেমে গেছে [চিত্র ১০.৬ (খ)]। অধিকন্থু নলের ভিতরের পাঁরদ তল উত্তল আকার ধারণ করেছে। কৈশিক

নলের মধ্যে তরলের উত্থান বা পতনকে (rise or fall) কৈশিকত্ব বলে। আরও সহজ্ঞ ভাষায় বলা যায় যে, কৈশিকতা বলতে কৈশিক নলে তরলের উঠা বা নামা সংক্রান্ত ব্যাপার বুঝায়। তরলের পৃষ্ঠ টানের জন্যু এটি ঘটে।

১০.৮ কৈশিকতা তত্ত্ব Theory of capillarity

দুই মুখ খোলা এবং আগা-গোড়া সমান প্রস্থচ্ছেদবিশিষ্ট কাচের একটি কৈশিক নল নিই। নলটিকে খাড়াভাবে পানিতে আর্থশিক ডুবালে দেখা যাবে পানি নলের মধ্যে খানিকটা উপরে উঠেছে এবং নলের মধ্যে পানির তল বেঁকে অবতল আকার ধারণ করেছে।

মনে করি পানির অবতল পৃষ্ঠে সর্বনিম তল পর্যন্ত নলের মধ্যে পানির উচ্চতা = h] চিত্র ১০ ৭]। ধরি নলের ব্যাসার্ধ = r, পানি ও কাচের মধ্যকার স্পর্শকোণ = 0 এবং পানির পৃষ্ঠটান = T। এই পৃষ্ঠ টান পানি ও কাচের স্পর্শ বিন্দু A-তে অভিহৃত স্পর্শক বরাবর অন্তর্মুখী ক্রিয়া করে। নিউটনের তৃতীয় গতিসূত্র অনুযায়ী কাচ তরলের উপর একটি সমান ও বিপরীতমুখী প্রতিক্রিয়া বল T (চিত্রে এটি নির্দেশ করা হয়েছে) প্রয়োগ করবে। বল বিভাজন পল্থতি দ্বারা উক্ত বলকে পারস্পরিক অভিলম্ব দিকে দুটি উপাগণে ভাগ করা যেতে পারে। একটি খাড়া উর্ধ্বমুখী উপাংশ T cos 0 এবং অপরটি এর অভিলম্ব দিকে বহির্মুখী উপাংশ T sin 0। কাচের সাথে তরলের সমগ্র স্পর্শ রেখা


চিত্র ১০'৭

AB বিবেচনা করলে দেখা যায় যে, এদের মধ্যে বহির্মুখী অনুভূমিক উপাংশগুলো পরস্পরকে নিষ্ক্রিয় বা নাকচ করে দেয়, ফলে শুধু খাড়া ঊর্ধ্বমুখী উপাংশ কার্যকর হয়। সুতরাৎ তরলের সাথে স্পর্শ রেখা বরাবর মোট ঊর্ধ্বমুখী কার্যকর বল

 $= T \cos \theta \times \tau$ (प्रध) $= T \cos \theta \times 2\pi r = 2\pi r T \cos \theta$

এই ঊর্ধ্বমুখী বল নলের মধ্যে পানিস্তম্ভের ওজনকে ধারণ করে। যদি নলের মধ্যে পানিস্তম্ভের ভর *m* হয় এবং এ স্থানের অভিকর্ষজ ত্বরণ g হয়, তবে নলের মধ্যে পানির ওজন, W = mg

আমরা পাই, $2\pi r T \cos \theta = mg$

চিত্র. ১০'৮

(5) এখন বাইরের পানির তল হতে নলের ভিতরের পানির তলের নিম প্রান্ত DEC পর্যন্ত h উচ্চতাবিশিষ্ট পানি স্তম্ভের আয়তন V এবং পানির তলের বক্র অংশে পানির আয়তন v হলে নলের মধ্যে পানির মোট আয়তন = (V + v)। পানির ঘনত্ব ρ হলে ভর m = (V + v) ρ.

$$2\pi r \operatorname{T} \cos \theta = (V + v) \rho g$$
 (6)
কিন্তু $V = \pi r^2 h$, এবং

v = ABCD চোঙের আয়তন—AEB অর্ধগোলকের আয়তন [চিত্র ১০ ৮]।

$$v = \pi r^2 \cdot r - \frac{1}{2} \times \frac{4}{3} \pi r^3 = \pi r^3 - \frac{2}{3} \pi r^3 = \frac{1}{3} \pi r^3$$

সমীকরণ (6) হতে পাই,
2 $\pi r T \cos \theta = \left(\pi r^2 h + \frac{1}{3} \pi r^3\right) \rho g$

$$\overline{A} = \pi r^{2} \rho g \left(h + \frac{1}{3} r \right)$$

$$\overline{A} = r \rho g \left(h + \frac{1}{3} r \right)$$

$$T = \frac{r \rho g \left(h + \frac{1}{3} r \right)}{2 \cos \theta}$$

$$T = \frac{r \rho g \left(h + \frac{1}{3} r \right)}{2 \cos \theta}$$

$$T = \frac{r \rho g \left(h + \frac{1}{3} r \right)}{2 \cos \theta}$$

$$T = \frac{r \rho g \left(h + \frac{1}{3} r \right)}{2 \cos \theta}$$

$$T = \frac{r \rho g \left(h + \frac{1}{3} r \right)}{2 \cos \theta}$$

$$T = \frac{r \rho g \left(h + \frac{1}{3} r \right)}{2 \cos \theta}$$

$$T = \frac{r \rho g \left(h + \frac{1}{3} r \right)}{2 \cos \theta}$$

$$T = \frac{r \rho g \left(h + \frac{1}{3} r \right)}{2 \cos \theta}$$

$$T = \frac{r \rho g \left(h + \frac{1}{3} r \right)}{2 \cos \theta}$$

$$T = \frac{r \rho g \left(h + \frac{1}{3} r \right)}{2 \cos \theta}$$

$$T = \frac{r \rho g \left(h + \frac{1}{3} r \right)}{2 \cos \theta}$$

$$T = \frac{r \rho g \left(h + \frac{1}{3} r \right)}{2 \cos \theta}$$

$$T = \frac{r \rho g \left(h + \frac{1}{3} r \right)}{2 \cos \theta}$$

$$T = \frac{r \rho g \left(h + \frac{1}{3} r \right)}{2 \cos \theta}$$

$$T = \frac{r \rho g \left(h + \frac{1}{3} r \right)}{2 \cos \theta}$$

যদি *r-*এর মান খুবই ছোট হয়, তবে <u>1</u>/3*r-*কে সহজেই উপেক্ষা করা যেতে পারে।

$$T = \frac{hr\rho g}{2\cos\theta}$$
(8)

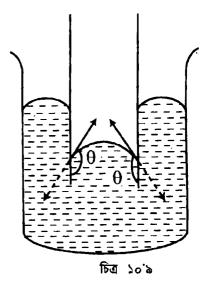
কাচ এবং পানির ক্ষেত্রে, $\theta = 0^\circ$; কাজেই সমীকরণ (7) অনুসারে,

$$T = \frac{rg\rho}{2} \left(h + \frac{1}{3}r \right)$$
(9)

অবশ্য পানির ক্ষেত্রে r-এর মান ক্ষুদ্র হলে,

$$T = \frac{hr\rho g}{2}$$
(10)

প্রয়োজনবোধে (7), (8), (9) এবং (10) সমীকরণের যে কোন একটির সাহায্যে পানি কিংবা অন্য কোন তরলের পৃষ্ঠ টান নির্ণয় করা যায়।


কৈশিক নলে তরলের ওঠানামার কারণ

পরীক্ষায় দেখা যায় যে কৈশিক নল পানিতে ডুবালে খানিকটা উপরে ওঠে যায়। আবার কৈশিক নলটিকে পারদে ডুবালে নলের ভেতরে পারদ খানিকটা নিচে নেমে যায়। এর কারণ নিম্নরূপ ঃ

চিত্র ১০·৭ হতে কাচ ও পানির ক্ষেত্রে প্রতিক্রিয়া বল T-এর খাড়া ঊর্ধ্বমুখী উপাংশ = T $\cos \theta$ । স্পর্শ কোণ θ সুক্ষকোণ (0 < 0 < 90°) হওয়ায় T cos θ-এর মান ধনাত্মক। এই ঊর্ধ্বমুখী বলের ক্রিয়ায় পানি কৈশিক নলের ভেতর দিয়ে উপরে ওঠে।

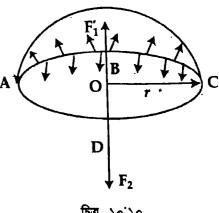
চিত্র ১০ ৯-এ কৈশিক নল পারদে ডুবানো দেখান হয়েছে। এক্ষেত্রে স্পর্শকোণ স্থৃলকোণ (90° < 0< 180°)। পৃষ্ঠটান ও প্রতিক্রিয়া বলের অভিমুখ থেকে দেখা যায়, যে প্রতিক্রিয়া বলের খাড়া ঊর্ধ্বমুখী কোন উপাংশ নেই। খাড়া নিম্নমুখী উপাংশ রয়েছে। এই নিম্নমুখী বলের ক্রিয়ায় কাচনলে পারদ নিচের দিকে খানিকটা নেমে যায়। পারদ নিচে নামার কারণ নিম্নোক্তভাবেও ব্যাখ্যা করা যায়। যেহেতু ө স্থৃলকোণ, সুতরাৎ cos 🖯 ঋণাত্মক। এখন পৃষ্ঠ টানের

সমীকরণ (8) হতে দেখা যায় যে, cos e ঋণাত্মক হলে সমীকরণের ডানপক্ষ ঋণাত্মক হয়; কিন্তু বামপক্ষের পৃষ্ঠ টান T ধনাত্মক। তাই cos 0 ঋণাত্মক হলে h ঋণাত্মক হয়। এর অর্থ হল পারদ কাচনলের মধ্যে নিচে নেমে যায়।

১০·৯ সাবান বুদ্বুদের অভ্যস্তরস্থ অতিরিক্ত চাপ Excess pressure inside a soap bubble

সাবান পানির পাতলা ফিল্ম দ্বারা পরিবেষ্টিত বায়ুকে সাবান বুদ্বুদ্ বলা হয়। এই ধরনের বুদ্বুদের বাইরের দিকে এবং ভেতরের দিকে দুটি পৃষ্ঠ থাকে। এই পৃষ্ঠদ্বয়ের মধ্যবর্তী স্থানে তরলের খুবই পাতলা সরের চলাচল লক্ষ করা যায়। বুদ্বুদের ভেতরের দিকের চাপ বাইরের চাপের তুলনায় অধিক হয়, না হলে বুদ্বুদ্ চুপসে যেত। অভ্যন্তরীণ চাপ বেশি হওয়ায় বুদ্বুদের আয়তন বৃদ্ধি পেতে চেফ্টা করে ; কিন্তু পৃষ্ঠ টানের কারণে এই আয়তন বৃদ্ধি বাধাপ্রান্ত হয়। যখন এই দুটি বিপরীতমুখী বল সমান হয় তখন বুদ্বুদের সাম্যাবস্থা সৃষ্টি হয়।

চিত্র ১০·১০-এ একটি গোলাকার বুদ্বুদকে ব্যাস বরাবর একটি কাল্পনিক তল দারা বিভক্ত দেখান হয়েছে। ধরা যাক, বুদ্বুদের ব্যাসার্ধ এর সাবান পানির পৃষ্ঠ টান T এবং সরের অভ্যন্তরে বাইরের তুলনায় অতিরিক্ত p।


এখন ABCD তলের উপর উর্ধ্বমুখী ক্রিয়াশীল বল,

$$\overrightarrow{OF}_1$$
 = চাপের পার্থক্য $imes$ প্রস্থচ্ছেদের ক্ষেত্রফল

 $= p \times \pi r^2$

আবার, পৃষ্ঠ টানের দরুন ABCD-এর পরিধি বরাবর পৃষ্ঠ টানজনিত নিম্নমুখী বল[ি]ক্রিয়া করে। এই বল O বিন্দু বরাবর নিম্নমুখী। বুদ্বুদের দুটি তল থাকায় পৃষ্ঠ টানজনিত বল,

$$\overrightarrow{OF}_2 = 2 \times T \times (2\pi r)$$

সাম্যাবস্থায়, $\overrightarrow{OF}_1 = \overrightarrow{OF}_2$ হবে,

চিত্র ১০'১০

বইঘর.কম

atts,
$$\pi r^2 p = 4\pi rT$$

বা,
$$p = \frac{41}{r}$$

স্থির তাপমাত্রায় T-এর মান নির্দিষ্ট 📭

সুতরাং, সমীকরণ (11) অনুসারে বলা যায়,

নির্দিষ্ট তাপমাত্রায় বুদ্বুদের অভ্যস্তরস্থ অভিরিক্ত চাপ এর ব্যাসার্ধের ব্যস্তানুপাতিক।

বুদ্বুদের বাইরে বায়ুমন্ডলীয় চাপ যদি $\,{
m P}$ হয় তবে বুদ্বুদের অভ্যন্তরস্থ মোট চাপ হবে $\,{
m P}+p$

অতএব, মোট চাপ = $P + p = P + \frac{4T}{r}$

[বিঃ দ্রঃ তরল ফোঁটা বা তরলবেষ্টিত বায়ু বুদ্বুদের ক্ষেত্রে একটিমাত্র তল থাকে । ফলে অতিরিক্ত চাপ $P=rac{2T}{r}$ হয়]

১০.১০ তরলের পৃষ্ঠ টান নির্ণয়

Determination of surface tension of liquid

তরলের পৃষ্ঠ টান নির্ণয়ের জন্য অনেকগুলো পদ্ধতি রয়েছে। এদের মধ্যে উল্লেখযোগ্য হল ঃ

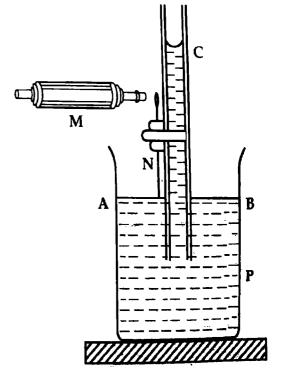
ৰ বিৰুম্পিক নল পশ্বতি (Capillary tube method)

अ जागातत १म्पणि (Jaeger's method)

্র্ব কুই জ্বের পশ্বতি (Quincke's method)

পুদু বুদু পৃষ্ণি (Bubble method)

যেহেতু এই অধ্যায়ে আমরা কৈশিকতা নিয়ে আলোচনা করছি, সুতরাং কৈশিক নলের সাহায্যে পানির পৃষ্ঠ টান নির্ণয়ের পদ্ধতি আলোচনা করব।


কৈশিক নল পন্দতিতে পানির পৃষ্ঠ টান নির্ণয় (Determination of surface tension of water by capillary tube method)

তত্ত্ব (Theory) ঃ ধরি 'r'-ব্যাসার্ধবিশিষ্ট কাচের তৈরি একটি নলকে খাড়াভাবে পানিতে আর্থশিক নিমচ্জিত করায় কৈশিকতার দর্ন নলের মধ্যে পানি স্তন্ড্র্যের উচ্চতা h হল। পানির ঘনত্ত্ব ρ এবং পরীক্ষাধীন স্থানে অভিকর্ষজ্ঞ ত্ব্রেণের মান g হলে, তার পৃষ্ঠ টান,

$$T = \frac{\rho rg}{2} \left(h + \frac{1}{3} r \right)$$

পরীক্ষা এবং কার্যপম্পতি : কাচের তৈরি একটি কৈশিক নল C লই। একে প্রথমে নাইট্রিক এসিড ও কস্টিক সোডা দ্রবণে ধুয়ে পরিক্ষার করি। পরে নলকৃপের পানিতে ভালভাবে ধুই এবং শুকিয়ে নিই। এবার একটি কাচ পাত্র P-এ খানিকটা পানি লই এবং নলটিকে পানির মধ্যে আংশিক ডুবিয়ে একটি দন্ডের সাহায্যে খাড়াভাবে আটকিয়ে রাখি [চিত্র ১০:১১]।

কৈশিক ক্রিয়ার দর্নন নলের ভিতর পানি উপরে উঠবে। পাত্রটিকে একটু উঁচু করে ধরি এবং পরে নামিয়ে পূর্বের অবস্থানে আনি। এতে নলের অভ্যন্তরীণ দেয়াল পানিতে ভালভাবে ভিদ্ধবে। এখন একটি চলমান অণুবীক্ষণ যন্ত্র M-এর সাহায্যে নলের ভিতর পানিস্তম্ভের উচ্চতা বের করি। কিন্তু পাত্রের মধ্যে পানির তল ফোকাস করা অসুবিধাজনক হওয়ায় নির্দিষ্ট দৈর্ঘ্যের একটি সূচক N-কে এ নলের গায়ে খাড়া করে এমনভাবে স্থাপন করি যাতে সূচকের নিম্ন প্রান্ত পাত্রস্থিত পানির তল স্পর্শ করে। পানিস্তম্ভের স্থির অবস্থানে

চিত্র ১০'১১

(11)

(12) •

BG & JEWEL

পানিস্তম্ভের শীর্ষদেশে নলের গায়ে একটি কালির দাগ দিই। এখন অণুবীক্ষণ যন্ত্রের সাহায্যে ঐ স্থির অবস্থান এবং সূচকের শীর্ষ বিন্দুর পাঠ লই। এই দুই পাঠের পার্থক্যের সাথে সূচকের দৈর্ঘ্য যোগ করে নলের মধ্যে পানি স্তম্ভের উচ্চতা বের করি। এবার কালির দাগ দেয়া জায়গাটি খুব সাবধানে কাটি এবং অণুবীক্ষণ যন্ত্রের যাহায্যে নলের কর্তিত অংশের ব্যাস বের করি। ব্যাসকে দুই দ্বারা ভাগ করে ব্যাসার্ধ নির্ণয় করি। পরিশেষে কক্ষ তাপমাত্রায় পানির ঘনতু জেনে নিই।

হিসাব ও গণনা ঃ

ধরি,

সূচকের দৈর্ঘ্য	=	<i>l</i> m
অণুবীক্ষণ যন্ত্রের দুই পাঠের পার্থক্য	=	xm
নলের ব্যাসার্ধ	=	<i>r</i> m
কক্ষ তাপমাত্রায় পানির ঘনত্ব	=	ρkg m-3
অভিকর্ষজ ত্বুরণ	=	g ms-2
পানিস্তন্ড্রে উচ্চতা	h =	$(l + x) m_{.}$
নির্শেয় পৃষ্ঠ টান,		
- · · · · · · · · · · · · · · · · · · ·		

$$\mathbf{T} = \frac{\rho r g}{2} \left(h + \frac{1}{3} r \right) = \frac{\rho r g}{2} \left(h + \frac{1}{3} r \right) \,\mathrm{N}\,\mathrm{m}^{-1}$$

১০·১১ তরলের পৃষ্ঠ টানের উপর প্রভাবকারী বিষয় Factors affecting surface tension of a liquid

তরলের পৃষ্ঠ টান মোটামুটিভাবে নিম্নলিখিত বিষয়গুলো দ্বারা প্রভাবিত হয়।

 (i) দৃষিতকরণ (Contamination) ঃ তরল যদি চর্বি, তেল প্রভৃতি দ্বারা দূষিত হয়, তবে তরলের পৃষ্ঠ টান হ্রাস পায়।

(ii) দ্রবীভূত বস্তৃর উপস্থিতি (Presence of dissolved substances) ঃ তরলে কোন বস্তৃ দ্রবীভূত থাকলে তরলের পৃষ্ঠ টান পরিবর্তিত হয়। তরলে অজৈব পদার্থ দ্রবীভূত থাকলে পৃষ্ঠ টান বৃন্দি পায়, কিন্তু জৈব পদার্থ দ্রবীভূত থাকলে পৃষ্ঠ টান হ্রাস পায়।

(iii) তাপমাত্রা (Temperature) : তরলের পৃষ্ঠ টান প্রভৃতভাবে তাপমাত্রার উপর নির্ভরশীল। সাধারণভাবে তাপমাত্রা বৃম্ধি পেলে তরলের পৃষ্ঠ টান হ্রাস পায় এবং তাপমাত্রা হ্রাস পেলে তরলের পৃষ্ঠ টান বৃম্ধি পায়। শুধু গলিত তামা ও ক্যাডমিয়ামের ক্ষেত্রে ব্যতিক্রম পরিলক্ষিত হয়। তাপমাত্রা পরিবর্তনের পাল্লা কম হলে পৃষ্ঠ টান এবং তাপম<u>াত্রার মধ্যকার সম্পর্ক নি</u>ম্নলিখিত সমীকরণে ব্যক্ত করা যায়।

$$T_t = T_0 (1 - \alpha t)$$

(13)

এখানে Τ_t = t°C তাপমাত্রায় তরলের পৃষ্ঠ টান, Τ₀ = 0°C তাপমাত্রায় তরলের পৃষ্ঠ টান এবং α = তরলের পৃষ্ঠ টানের তাপমাত্রা গুণাচ্জ

উল্লেখ্য, যে তাপমাত্রায় কোন একটি তরলের পৃষ্ঠ টান শূন্য হয়, তাকে সক্ষট তাপমাত্রা (Critical temperature) বলে।

(iv) তরলের উপর অবস্থিত মাধ্যম (Medium above the liquid) \$ তরলের উপর অবস্থিত মাধ্যমের প্রকৃতির উপর তরলের পৃষ্ঠ টান নির্ভর করে। পানির সাথে জলীয় বান্দোর সংস্পর্শ থাকলে পানির পৃষ্ঠ টান প্রায় 70 × 10⁻³ Nm⁻¹ হয়, আর পানির সাথে বায়ুর সংস্পর্শ থাকলে, পানির পৃষ্ঠ টান প্রায় 72 × 10⁻³ Nm⁻¹ হয়। (v) তরলের মুক্ত তলের সাথে অন্য কোন বস্তুর উপস্থিতি (Presence of other bodies in contact with the free surface of the liquid) ঃ তরলের মুক্ত তলের সাথে অন্য কোন বস্তুর সংযুক্তি হলে পৃষ্ঠ টান হ্রাস পায়।

(vi) **ডড়িডাহিতকরণ** (Electrification) ঃ তরল তড়িভাহিত হলে পৃষ্ঠ টান হ্রাস পায়। কেননা তড়িতাহিত হবার ফলে তরল পৃষ্ঠে বহির্মুখী চাপ ক্রিয়া করে। এর ফলে তরল পৃষ্ঠের ক্ষেত্রফল বৃদ্ধি পায় যা পৃষ্ঠ টান জনিত সজ্জোচন প্রবণতার বিপরীতে ক্রিয়া করে। কাজেই পৃষ্ঠ টান হ্রাস পায়।

১০·১২ পৃষ্ঠটান সম্পর্কিত কয়েকটি ঘটনা Some phenomena regarding surface tension

দৈনন্দিন জীবনের কতকগুলো বাস্তব ঘটনা তরলের পৃষ্ঠ টানের সাহায্যে ব্যাখ্যা করা যায়।

(ক) সূঁচ পানিতে ভাসা (Floating of needle on water) গ পানির উপরিতলে একটি পাতলা কাগজ্ব রেখে তার উপর গ্রীজ মাখানো একটি সূঁচ স্থাপন করলে দেখা যাবে কাগজ পানিতে ডুবে গেছে, কিন্তু সূঁচ পানিতে ভাসছে, তবে পানির তল নিচের দিকে কিছু বেঁকে গেছে। মনে হয় তরল তলের যেন একটি স্থিতিস্থাপক চামড়া আছে। তরলের T-এর দরুন সূঁচের উপর মোট উর্ধ্বমুখী বল F সূচের ওজন W-এর সমান অর্ধাৎ, F = W

(খ) তেল ঢেলে সমুদ্রের পানিকে শাস্ত করা (Calming of sea water by oil) ঃ অনেক সময় সমুদ্রের উত্তাল তরচ্চাকে শাস্ত করার জন্য সমুদ্রের পানিতে তেল ঢেলে দেয়া হয়। বাতাস দুত প্রবাহিত হওয়ায় তেল সামনের দিকে অগ্রসর হতে থাকে আর পরিক্ষার পানি পিছনের দিকে থেকে যায়। সামনের দিকে পানি দূযিত হওয়ায় পৃষ্ঠ টান হ্রাস পায়, পক্ষান্তরে পিছনের দিকের বিশুদ্ধ পানির পৃষ্ঠ টান অধিক হেতু ঢেউ অধিক উচুতে উঠতে পারে না।

(গ) <u>কর্পূরের পানিতে নাচা (Dancing of camphor on water</u>) । এক টুকরা কর্পূরকে পানির উপরে রাখলে একে ইতঃস্তত বিক্ষিণ্তভাবে নড়াচড়া করতে দেখা যায়। কারণষর্প বলা যেতে পারে কর্পূরের টুকরা সর্বত্র সমানভাবে দ্রবীভূত হয় না, কোথাও বেশি আবার কোথাও কম। কর্পূর পানিকে দূষিত করে। যে স্থানে কর্পূর বেশি পরিমাণে দ্রবীভূত হয়, সেই স্থানের পানি বেশি দূষিত হয় ; ফলে পৃষ্ঠ টান অধিক কমে। আর যে স্থানে কর্পূর কম পরিমাণে দ্রবীভূত হয়, সে স্থানে পানি অপক্ষাকৃত কম দূষিত। ফলে পৃষ্ঠ টান কম হ্রাস পায়। পৃষ্ঠ টানের এই তারতম্য ভেদে কর্পূরের উপর অসম বল ক্রিয়া করায় তা লন্ধি বলের দিকে নড়াচড়া করতে থাকে।

(খ) পানির উপর তেল ছড়িয়ে পড়া (Spreading of oil on water surface) : পানির উপর অল্প পরিমাণ তেল ঢাললে তা পানির উপরিতলে ছড়িয়ে পড়ে। কারণম্বরূপ বলা যায় বিশুন্দ্ব পানির পৃষ্ঠ টান তেলের পৃষ্ঠ টান অপেক্ষা বেশি। ফলে তেলের উপরে একটি টান পড়ে। ফলে তেল পানির উপর ছড়িয়ে পড়ে।

(৩) ক্রলমের নিবে কালি প্রবাহ (Flow of ink through the nib of a pen) : আমরা জানি প্রত্যেক কলমের নিবে একটি গর্ত থাকে এবং এই গর্ত হতে নিবের মুখ পর্যন্ত একটি চেরা দাগ আছে। চেরা দাগের মাঝখানটা কৈশিক নলের মত আচরণ করে। নিবের মধ্যে কালি জমা হলে সেই কালি এ চেরা দাগ বেয়ে নিচের মুখ ও ডগা পর্যন্ত প্রবাহিত হয়।

(চ) ছাতার কাপড় (Cloth of umbrella) : ছাতা বা তাঁবুর কাপড় বিশেষ প্রক্রিয়ায় প্রস্তৃত। এতে ছিদ্র আছে। এই ছিদ্রগুলো খুবই ছোট। এদের মধ্যে দিয়ে বায়ু চলাচল করতে পারে কিন্তু পানি ঢুক্রতে পারে না। পানির পৃষ্ঠ টানই এর কারণ। পৃষ্ঠ টানের দরুন পানি গোলাকার বিন্দুতে পরিণত হয় এবং কাপড়ের উপর দিয়ে গড়িয়ে চলে। উল্লেখ্য বৃষ্টিতে ভিজ্ঞা ছাতার ভিতরের পৃষ্ঠ স্পর্শ করলে এ স্থানের পৃষ্ঠ টান হ্রাস পাবে এবং পানি ছাতার ভিতরে ঢুকবে। BG & JEWEL

১০·১৩ প্রবাহী ও প্রবাহীর প্রবাহ

Fluid and fluid motion

তরল এবং গ্যাসকে মিলিতভাবে প্রবাহী বলে। প্রবাহীর প্রবাহ মূলত দুভাগে বিভক্ত, যথা----

(ক) শান্ত প্রবাহ বা অব্যাহত প্রবাহ বা ধারারেখ বা সমরেখ প্রবাহ (Stream line motion) এবং

(খ) অশাস্ত প্ৰবাহ বা ব্যাহত প্ৰবাহ বা বিক্ষিশ্ত প্ৰবাহ (Turbulent motion) ।

প্রবাহীর বিভিন্ন অণুগুলো যদি তার গতিপথের সাথে সমান্তরালভাবে চলে, তবে সেই প্রবাহকে শান্ত প্রবাহ বলে [চিত্র ১০⁻১২ ক]।

প্রবাহীর বিভিন্ন অণুগুলো যদি তার গতিপথের সাথে সমান্তরালভাবে না চলে, তবে সেই প্রবাহকে অশান্ত প্রবাহ বলে [চিত্র ১০'১২ খ]। অশান্ত প্রবাহের ক্ষেত্রে প্রবাহীর গতিপথে ঘূর্ণী (eddies) এবং আবর্তের (vortices) সৃষ্টি হয়।

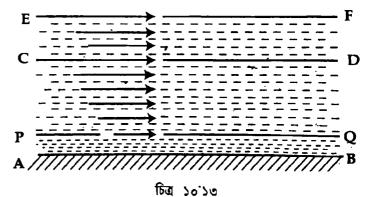
(직)

প্রবাহীর বেগ একটি নির্দিষ্ট সীমা অতিক্রম না করলে তার শান্ত বা ধারারেখ প্রবাহ বজায় থাকে। গতিবেগ এ নির্দিষ্ট সীমা অতিক্রম করলে প্রবাহ আর ধারারেখ থাকবে না। গতিবেগের এই নির্দিষ্ট সীমাকে সজ্কট বেগ বলে।

প্রবাহীর সেই সর্বাধিক বেগ যা অতিক্রম করলে ধারারেখ প্রবাহ বিক্ষিন্ত প্রবাহে পরিণত হয়, তাকে সঙ্কট বেগ বা প্রান্তিক বেগ বা সন্ধি বেগ (critical velocity) বলে।

একে সাধারণত 'vc' দারা সূচিত করা হয়।

চিত্র ১০:১২


১০·১৪ সান্দ্রতা

Viscosity

সান্দ্রতা পদার্ধের একটি বিশেষ ধর্ম। কেবল তরল ও বায়বীয় পদার্ধেরই এই ধর্ম আছে। অতএব এটি তরল ও বায়বীয় পদার্ধের সাধারণ ধর্ম। তবে এটি কি রকমের ধর্ম তাই আলোচ্য বিষয়।

কোন একটি স্বির অনুভূমিক তলের উপর দিয়ে কোন একটি প্রবাহী ধারারেখ প্রবাহে চলতে থাকলে প্রবাহীর

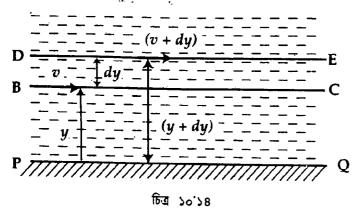
যে সতর স্থির তল হতে অধিক দূরে অবস্থিত এর বেগ বেশি, যে স্তর স্থির তলের সাথে সংলগ্ন এর বেগ শূন্য। মনে করি A B একটি স্থির তল। এর উপর দিয়ে একটি প্রবাহী ধারারেখ প্রবাহে চলছে। PQ, CD এবং EF প্রবাহীর তিনটি স্তর [চিত্র ১০·১৩]। PQ স্থির তল সংলগ্ন, CD একটু দূরে এবং EF অধিক দূরে অবস্থিত। তাদের মধ্যে EF স্তরের বেগ বেশি, CD স্তরের বেগ এটি

অপেক্ষা কম এবং PQ স্তরের বেগ শূন্য। এর কারণ উপরের স্তর নিচের স্তরগুলোকে তাদের সাথে সমবেগে টেনে নিয়ে যাবার চেফ্টা করে। অর্ধাৎ গতিশীল প্রবাহীর পাশাপাশি দুটি স্তরের মধ্যে এক ধরনের অভ্যন্তরীণ বল সৃষ্টি হয়। এই বল পাশাপাশি দুটি স্তরের মধ্যে বেশি বেগসম্পন্ন স্তরের বেগ কমিয়ে এবং কম বেগসম্পন্ন স্তরের বেগ বাড়িয়ে স্তর দুটির মধ্যে আপেক্ষিক বেগ কমাতে চেফ্টা করে। স্তর দুটির পৃষ্ঠদেশের সমান্তরালে ক্রিয়াশীল এই বলকে সান্দ্রতা বল (Viscous force) বলা হয় এবং প্রবাহীর এই ধর্মকে সান্দ্রতা (Viscosity) বলে।

সংজ্ঞা : যে ধর্মের দর্ন প্রবাহী তার অভ্যস্তরস্থ বিভিন্ন স্তরের আপেক্ষিক বেগ রোধ করার চেষ্টা করে তাকে এ প্রবাহীর সান্দ্রতা বলে।

অথবা, <u>যে ধর্মের ফলে তরল তার বিভিন্ন স্তরের আপেক্ষিক গতির বিরোধিতা করে তাকে তরলে</u>র <u>সান্দ্রতা বলে।</u>

<u>বিভিন্ন প্রবাহীর সান্দ্রতা বিভিন্ন। যেমন দুধ, তেল এবং আলকাতরার সান্দ্রতা এক নয়। এদের মধ্যে</u> আলকাতরার সান্দ্রতা সর্বা<u>পেক্</u>দা বেশি, তারপর তেল এবং সর্বাপেক্ষা কম দুধের।


প্রবাহী পদার্থ

বইঘর.কম

সান্দ্রতাকে কখনও কখনও প্রবাহীর আঠাত্বতা বলা হয়। আবার কেউ কেউ সান্দ্রতাকে প্রবাহীর অস্তরীণ ঘর্ষণ বলে। কারণ সান্দ্রতা বলের ষরূপ অনেকটা ঘর্ষণের ন্যায়। ঘর্ষণ দুটি কঠিন বস্তৃর আপেক্ষিক গতিকে বাধা দেয় আর সান্দ্রতা প্রবাহীর বিভিন্ন স্তরের আপেক্ষিক গতিকে বাধা দেয়। স্থির প্রবাহীর ক্ষেত্রে এটি ক্রিয়া করে না। ঘর্ষণ স্পর্শ-তলের ক্ষেত্রফলের উপর নির্ভর করে না, তবে সান্দ্রতা প্রবাহীর তলদ্বয়ের ক্ষেত্রফলের উপর নির্ভর করে। অধিকন্তু সান্দ্রতা প্রবাহীর স্তরের বেগ এবং স্থির তল হতে তার দূরত্বের উপর নির্ভর করে।

১০·১৫ সান্দ্রতা গুণাজ্ঞ বা সান্দ্রতাজ্ঞ বা সান্দ্রতা সহগ Co-efficient of viscosity

মনে করি, PQ একটি স্থির তল। এর উপর দিয়ে একটি প্রবাহী ধারারেখ প্রবাহে চলছে। এই প্রবাহীর দুটি

স্তর বিবেচনা করি। একটি BC এবং অপরটি DE। মনে করি স্থির তল হতে BC স্তর y এবং DE স্তর (y + dy) দূরে অবস্থিত। ধরি BC স্তরের বেগ v এবং DE স্তরের বেগ (v + dv)[চিন্র ১০·১৪]।

দুই স্তরের বেগের পার্ধক্য

v = v + dv - v = dv এবং দুরত্বের পার্থক্য = y + dy - y = dy। তা হলে দেখা যাচ্ছে যে, dy দূরত্ব পার্থক্যের জন্য বেগের পার্থক্য dv।

দূরত্ব সাপেক্ষে বেগের পরিবর্তনের হার $= \frac{dv}{dy}$ । একে বেগ অবরুম বা গতিবেগের নতিমাত্রা (velocity gradient) বলে। বিজ্ঞানী নিউটনের অভিমত অনুসারে ধারারেখ প্রবাহের ক্ষেত্রে,

(i) সাম্রতা বল ক্ষেত্রফলের সমানুগান্তিক।
(ii) সাম্রতা বল বেগ অবরুমের সমানুগান্তিক।
অর্থাৎ
$$F \propto \frac{dv}{dy}$$

আমরা পাই,
 $F \propto A \times \frac{dv}{dy}$
বা, $F = \underline{\xi}$ বক $\times A \frac{dv}{dy}$
বা, $F = \eta \cdot A \cdot \frac{dv}{dy}$
(14)
এখানে η (eta) একটি সমানুগান্তিক ধবক। একে সাস্রতা গুঁণাঙ্ক বলে। এখন, ভাষায় এর সংজ্ঞা দিতে,
ধরি, $A = 1$ (একক) এবং বেগ অবরুম, $\frac{dv}{dy} = 1$
·সমীকরণ (14) হতে পাই, $F = \eta$

সংজ্ঞা : একক বেগ অবক্রমে কোন একটি প্রবাহীর একক ক্ষেত্রফলের উপর যে পরিমাণ সান্দ্রভা বল ক্রিয়া করে, তাকে এ প্রবাহীর সান্দ্রতা গুণাজ্ঞ বলে। এই বল প্রবাহীর স্তরের স্পর্শক বরাবর ক্রিয়া করে।

অথবা, তরলে গতিবেগের একক নতিমাত্রা বন্ধায় রাখতে প্রতি একক ক্ষেত্রফলে যে স্পর্শিনী বল প্রয়োজন তাকে এ তরলের সান্দ্রতা গুণাচ্চ বা সান্দ্রতাচ্চ বা সান্দ্রতা সহগ বলে। স্নান্দ্রতা গুণাজ্ফের মাত্রা সমীকরণ Dimension of co-efficient of viscosity)

F = η.A.
$$\frac{dv}{dy}$$

বা, η = $\frac{F}{A} \frac{dy}{dv}$

মাত্রা সমীকরণ

$$[\eta] = \left[\frac{\operatorname{der} \times \operatorname{yzg}}{\operatorname{creater} \times \operatorname{cgn}}\right] = \left[\frac{\operatorname{MLT}^{-2} \times L}{L^2 \times L/T}\right] = \left[\frac{\operatorname{MLT}^{-2} \times L \times T}{L^3}\right] + \left[\operatorname{ML}^{-1} T^{-1}\right]$$

সান্দ্রতা গুণাঙ্কের একক (Unit of co-efficient of viscosity)

<u>এম. কে. এস. এবং এস. জাই. (S.I.) পদ্ধতিতে সান্দ্রতা গুণাব্র্চের একক নিউটন-সে./মিটার² (Nsm⁻²)।</u> <u>জনেক ক্ষেত্রে সান্দ্রতার একক হিসেবে পয়েজ (Poise)</u> ব্যবহার করা হয়। 10 poise = 1 নিউটন-সে./ মিটার²।

সান্দ্রতা গুণাজ্ঞ <u>1 Nsm⁻²</u> বলতে বুঝা যায় যে, <u>1 m²</u> ক্ষেত্রফলবিশিষ্ট দুটি প্রবাহী স্তর পরস্পর হতে <u>1 m</u> দুরে অবস্থিত হলে তাদের মধ্যে <u>1 ms⁻¹ আপেক্ষিক বেগ বজায় রাখতে 1 N</u> বল প্রযুক্ত হয়।

সান্দ্রতাজ্ঞককে অনেক সময় গতীয় সান্দ্রতাজ্ঞ (dynamic viscosity) বলা হয়।

গৃতীয় সান্দ্রতাজ্ঞকে তরলের ঘনত্ব ρ দিয়ে ভাগ করলে **কাইনেমেটিক সান্দ্রতার** (kinematic viscosity) সংজ্ঞা পাওয়া যায়। অর্ধাৎ, কাইনেমেটিক সান্দ্রতা = $\frac{\eta}{\rho}$ । এস. আই (S. I.) একক হবে মিটার²/সে. (m² s⁻¹)। 15°C তাপমাত্রায় নিম্নলিখিত কয়েকটি নিউটনীয় তরলের সান্দ্রতা গুণাজ্ঞের মান দেয়া হল—

তরন	সান্দ্রতা গুণাজ্ঞ্ব (Nsm ⁻²)
পানি	1°1×10-3
ইথার	0.2×10^{-3}
গ্নিসারিন	1.5×10^{-3}
বেন্জিন	0.7×10^{-3}
পারদ	1.5×10^{-3}

ক্ষণস্থায়ী স্থিতিস্থাপকতা (Fugitive Elasticity) (কৃন্তন গুণাজ্ঞ এবং সান্দ্রতাজ্ঞের সাদৃশ্য) : আমরা জানি,

সান্দ্রতা গুঁণাজ্ঞক, $\eta = \frac{F/A}{dv/dy} = \frac{F/A}{contract of a magnature of the second state of the seco$

উক্ত দুটি রাশিমালার মধ্যে একটি সাদৃশ্য পরিলক্ষিত হয়। এই সাদৃশ্য লক্ষ করে বিজ্ঞানী **ম্যাক্সওয়েন্দ** (Maxwell) বলেন কঠিন বস্তুর ন্যায় প্রবাহীও কিছুটা দৃঢ়তার অধিকারী। কিন্তু কৃন্তন পীড়নের অভাবে প্রবাহীর এই দৃঢ়তা পর পর ভেন্ডো যায়। খুব অন্ন সময়ের জন্য এই দৃঢ়তা দেখা যায় ; এর পরই অদৃশ্য হয়।

প্রবাহীর এই ক্ষণস্বায়ী দৃঢ়তাকে ক্ষণক্ষায়ী স্বিতিস্বাপকডা বলে।

প্ৰবাহী পদাৰ্থ

বইঘর.কম

১০·১৬ ঘর্ষণের সাথে সান্দ্রতার সাঁদৃশ্য Similarity of viscosity with friction

জামরা জানি একটি বস্তু যখন অন্য একটি বস্তুর উপর দিয়ে গতিশীল হয় বা গতিশীল হতে চেম্টা করে তখন বস্তু দুটির মিলন তলে বস্তুর গতির বিপরীত দিকে একটি বাধাদানকারী বল ক্রিয়া করে। এই বলের নাম ঘর্ষণ বা ঘর্ষণ বল। তেমনি কোন একটি প্রবাহী তার বিভিন্ন স্তরের আপেক্ষিক গতির বিরোধিতা করে যে বল প্রয়োগ করে তাকে ঐ প্রবাহীর সান্দ্রতা বলে। ঘর্ষণের ক্ষেত্রে একটি গুণাজ্ঞ রয়েছে তার নাম ঘর্ষণ গুণাজ্ঞ যা ঘর্ষণ এবং অভিলম্ব প্রতিক্রিয়ার অনুপাত অর্ধাৎ,

 $\mu=rac{F}{R}$, এখানে F= ঘর্ষণ বল এবং R= অভিলম্দ প্রতিক্রিয়া। তেমনি সান্দ্রতার ক্ষেত্রে একটি গুণাজ্ঞ রয়েছে।

তার নাম সান্দ্রতা গুণাচ্চ বা প্রবাহীর একক ক্ষেত্রের উপর সান্দ্রতা বল এবং বেগ অবব্রুমের অনুপাত অর্থাৎ,

 $\eta = \frac{F/A}{dv/dy}$

১০·১৭ পতনশীল বস্তুর উপর`তরল বা গ্যাসের সান্দ্রতার প্রভাব স্টোক্স-এর সূত্র এবং সমীকরণ

Effect of viscosity of liquid or gas on falling bodies : Stokes' law and Stokes' equation

সূচনা : আমরা জানি পড়স্ত বস্তু অভিকর্ষ বলের প্রভাবে নিচের দিকে পড়ে। সূতরাং যখন কোন বস্তু তরল বা গ্যাসের মধ্য দিয়ে নিচে পড়তে থাকে, তখন তরল বা গ্যাসের যে স্তরগুলো বস্তুর সংস্পর্শে আসে, তাদেরকেও তা নিজের সাথে টেনে নিয়ে চলে। ফলে তরল বা গ্যাসের বিভিন্ন স্তরের মধ্যে আপেক্ষিক বেগ সৃষ্টি হয়। কিন্তু তরল বা গ্যাসের সান্দ্রতা এ আপেক্ষিক গতিকে মন্দীভূত করার চেষ্টা করে। পড়স্ত বস্তুর আকার যদি ছোট হয় তাহলে পড়ার ষল্প সময়ের মধ্যে অভিকর্ষ বল এবং সান্দ্রতাজনিত বিপরীতমুখী বলের মান সমান হবে। তখন আর বস্তুর কোন ত্বরণ থাকবে না। কিন্তু গতি জড়তার দরুন বস্তু স্থির বেগে পড়তে থাকবে। এই বেগকে প্রান্তিক বেগ (Terminal velocity) বলে।

স্টোক্স এর সূত্র (Stokes' Law) ঃ বিজ্ঞানী স্টোক্স প্রমাণ করেন যে, r ব্যাসার্ধের ক্ষুদ্রাকার গোলক n সান্দ্রতা গুণাজ্ঞের কোন তরল বা গ্যাসের মধ্য দিয়ে v প্রান্তিক বেগে পড়তে থাকলে বস্তুর উপর সান্দ্রতাজনিত উর্ধ্বমুখী বল ক্রিয়া করে। ধরি এই বল F। এই বল

$$F \propto সাম্রতা গুণাজ্ঞ, \eta$$

 $F \propto বস্ত্র ব্যাসার্ধ r,$
এবং $F \propto প্রান্তিক বেগ, v$
 $F \propto \eta r v$
বা, $F = K \eta r v$
এখানে K একটি সমানুপাতিক ধ্রবক। তরল গতিবিজ্ঞানের সাহায্যে স্টোক্স প্রমাণ করেন যে $K = 6\pi$
 \therefore সমীকরণ (15) হতে পাই
 $F = 6\pi \eta r v$
(16)
এই সমীকরণটি স্টোক্স-এর সূত্র নামে খ্যাত।
স্টোক্সের প্রান্তিক বেগের সমীকরণ হ মনে করি গোজকটির টপোচালের সন্যচ ০০০৫৫ মাদ্যমের মন্ত ৫

স্টোক্সের প্রান্তিক বেগের সমীকরণ : মনে করি, গোলকটির উপাদানের ঘনত্ব ρ এবং মাধ্যমের ঘনত্ব σ তাহলে গোলকের উপর অভিকর্ষ বল

F = বস্তুর ওজন = ভর × অতিকর্ষজ ত্বরণ

= আয়তন × ঘনত্ব × অভিকর্ষচ্চ ত্বুরণ

 $= V \times \rho \times g = \frac{4}{3} \pi r^3 \rho g$; (এখানে V = গোলকের আয়তন)

BG & JEWEL

আর্কিমিডিস-এর সূত্রানুসারে গোলক কর্তৃক হারানো ওজন

= মাধ্যম কর্তৃক প্রযুক্ত ঊর্ধ্বমুখী বল =
$$rac{4}{3}\pi r^3\sigma_g$$

গোলকের উপর কার্যকরী নিম্নমুখী বল অর্থাৎ কার্যকরী ওজন,

$$F = \frac{4}{3}\pi r^{3}\rho g - \frac{4}{3}\pi r^{2}\sigma g = \frac{4}{3}\pi r^{3}(\rho - \sigma)g$$
(17)

যখন সান্দ্রতাজনিত ঊর্ধ্বমুখী বল এবং গোলকের কার্যকরী ওজন সমান হবে তখনই বস্তু প্রান্তিক বেগে পড়তে থাকবে।

জামরা পাই,
$$6\pi\eta rv = \frac{4}{3}\pi r^3 (\rho - \sigma)g$$

বা, $v = \frac{2r^2}{9} \frac{(\rho - \sigma) \times g}{\eta}$ (18)

একেই স্টোক্সের প্রাস্তিক বেগের সমীকরণ বলা হয়।

১০·১৮ মাত্রিক পম্ধতিতে স্টোক্স-এর সূত্র প্রতিপাদন Derivation of Stokes' law by dimensional analysis

ধরি r ব্যাসার্ধের একটি ক্ষুদ্র গোলাকার বস্তু η সান্দ্রতা গুণাজ্ঞবিশিষ্ট একটি সান্দ্র মাধ্যমের মধ্যে ছেড়ে .দেয়ায় বস্তুটি কোন এক মুহূর্তে v প্রান্তিক বেগ লাভ করলে সান্দ্রতার জন্য পশ্চাৎমুঁখী বল বা ঘর্ষণ বল F হবে

$$\mathbf{F} = \mathbf{K} \boldsymbol{\eta}^{\mathbf{x}} \, r^{\mathbf{y}} \, v^{\mathbf{z}} \tag{19}$$

এখানে K = একটি মাত্রিক ধ্ব। x, y ও z-এর মান বের করতে হবে।

সমীকরণ (19)- ও F, ŋ, r ও v-এর মাত্রিক মান বসিয়ে পাওয়া যায়

$$[MLT^{-2}] = K [ML^{-1}T^{-1}]^{x}, [L]^{y} [LT^{-1}]^{z}$$

উভয় পক্ষের [M], [L] ও [T]-এর ঘাত সমান হবে হেতু তুলনা করে লেখা যায়,

x = 1, y + z - x = 1 $\Im x + z = 2$

সমীকরণ তিনটি সমাধান করে পাওয়া যায়, x = 1, y = 1 ও z = 1.

সমীকরণ (19)-এ x, y ও z-এর মান বসিয়ে লেখা যায়, $F = K \eta r p$

স্টোকস গাণিতিকভাবে প্রমাণ করেন যে, Κ = 6π

১০ ১৯ স্টোক্স-এর পম্ধতিতে তরলের সান্দ্রতা গুণাজ্ঞ নির্ণয় Determination of co-efficient of viscosity of a liquid by Stokes' স method

গ্রিসারিন, সরিষার ডেল, রেড়ির তেল প্রভৃতি সান্দ্র তরলের সান্দ্রতা গুণাঙ্ক নির্ণয়ের জন্য স্টোকস পম্বতি শ্রেয়। পদ্বতিটির তত্ত্ব ও কার্যপন্ধতি নিয়ে বর্ণিত হল।

তত্ত্ব (Theory) : 'r' ব্যাসার্ধ এবং p ঘনত্বের একটিক্ষুদ্র গোলক ŋ সান্দ্রতাজ্ঞ ও ত ঘনত্বের একটি মাধ্যমের মধ্য দিয়ে v প্রান্তিক বেগে পড়তে থাকলে স্টোক্স-এর সমীকরণ হতে আমরা পাই,

$$v = \frac{2}{9} \frac{r^2 (\rho - \sigma)g}{\eta}$$

বা,
$$\eta = \frac{2}{9} \frac{r^2(\rho - \sigma)g}{v}$$

A >

B >

С

উক্ত সমীকরণ হতে r, p, o, g এবং v-এর মান জেনে η-এর মান বের করা যায়।

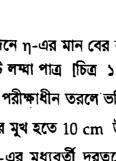
পরীক্ষা ঃ এই পরীক্ষায় G কাচের তৈরি একটি লম্মা পাত্র [চিত্র ১০'১৫]। এর দৈর্ঘ্য স্রায় 70 cm এবং ব্যাস 10 cm। পাত্রটিকে পরীক্ষাধীন তরলে ভর্তি করি। এখন পাত্রের উপর মুখ হতে 10~cm নিচে এবং নিচের মুখ হতে 10~cm উপরে পাত্রের গায়ে যথারুমে A ও C Τ দুটি দাগ দেই এবং AC-এর মধ্যবর্তী দূরত্বকে B দাগ কেটে সমান দুভাগে ভাগ করি যাতে AB = BC হয়। 2 cm-এর কম ব্যাসার্ধবিশিষ্ট একটি ইস্পাতের গোলক নিয়ে পরীক্ষাধীন তরলে ভিজাই এবং পাত্রের অক্ষ বরাবর তরলের মধ্যে ছেড়ে দেই। একটি স্টপ্ ঘড়ির সাহায্যে AB এবং BC দূরত্ব অতিক্রম করতে গোলকটির প্রয়োজনীয় সময় বের করি। পরীক্ষার সাহায্যে দেখা গেছে যে, গোলকটি উভয় দূরত্ব G সমান সময়ে অতিক্রম করবে। অর্ধাৎ গোলকটি প্রান্তিক বা সীমাস্ত বেগ প্রাশ্ত হয়েছে। যদি AC = 1 হয় এবং ঐ দূরত্ব অতিক্রম করতে t সময় লাগে তবে প্রান্তিক বেগ,

 $v = \frac{1}{4}$ (22) এখন v-এর মান সমীকরণ (21)-এ স্থাপন করে পাই, $\eta = \frac{2}{9} \frac{r^2(\rho - \sigma) \times g}{l/t}$ $\overline{\eta}, \ \eta = \frac{2}{9} \frac{r^2 gt(\rho - \sigma)}{l}$ (23)

এখন r,g,t,l,
ho এবং σ -এর মান জেনে η -এর মান পাওয়া যায়।

১০ ২০ সান্দ্রতার উপর তাপমাত্রার প্রভাব Effect of temperature on co-efficient of viscosity

(১) তরল পদার্খ ঃ

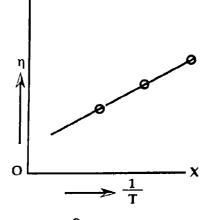

চিত্র ১০'১৫

সান্দ্রতার উপর তাপমাত্রার প্রভাব রয়েছে। তরল পদার্থের ক্ষেত্রে পরীক্ষালন্দ ফলাফলে দেখা যায় যে তা**পঁমাত্রা** বাড়ালে সান্দ্রতা হ্রাস পায়। উদাহরণম্বরূপ বলা যায় 80°C তাপমাত্রায় পানির সান্দ্রতা গুণাজ্ঞ 0°C তাপমাত্রার পানির সান্দ্রতার গুণাচ্চের এক-তৃতীয়াংশ মাত্র।

আণবিক তন্ত্বের সাহায্যে ব্যাখ্যা ঃ আমরা জানি যে তরলে বিভিন্ন বেগে প্রবহমান পাশাপাশি দুটি স্তরের মধ্যে এক ধরনের বিপরীতমুখী বা পশ্চাঘর্তী (dragging) স্পর্শক (tangential) বল ক্রিয়া করে। এ বলকে মান্দ্র বল বলা হয়। দুটি স্তরের অণুর মধ্যে আন্তঃআণবিক বলের কারণে এই সান্দ্র বলের সৃষ্টি হয়। সান্দ্র বল আন্তঃআণবিক দূরত্বের উপর নির্ভরশীল। তরলের তাপমাত্রা বৃদ্ধি পেলে আন্তঃআণবিক দূরত্ব বাড়ে, ফলে জান্তঃআণবিক বলের মান কমে [চিত্র ৯'১ দ্রুষ্টব্য]। এর ফলে সান্দ্র বল কমে। সান্দ্র বল কম হলে সমীকরণ (14) অনুসারে সান্দ্রতার গুণাজ্ঞও কম হবে। তাপমাত্রার এবং সান্দ্রতার গুণাজ্ঞ্জের মধ্যে নিম্নরূপ সম্পর্ক রয়েছে ঃ

$$\log \eta = A + \frac{B}{T}$$
(24)

এখানে A ও B ধ্রক এবং T কেলভিন তাপমাত্রা। এখন $\log \eta$ বনাম $\frac{1}{T}$ -এর লেখচিত্র অঞ্চন করলে একটি সরলরেখা হবে [চিত্র ১০'১৬]।



(21)

উচ্চ মাধ্যমিক পদার্থবিজ্ঞান

BG & JEWEL (২) গ্যাস ঃ তাপমাত্রা বৃষ্ণিতে তরলের সান্দ্রতার উপর যে প্রভাব পরিলক্ষিত হয়, গ্যাসের ক্ষেত্রে তার বিপরীত প্রভাব দেখা যায়। গ্যাসের তাপমাত্রা বৃদ্ধি পেলে সান্দ্রতা বৃদ্ধি পায়। পরীক্ষার সাহায্যে দেখা গেছে যে গ্যাসের সান্দ্রতা গুণাজ্ঞ তার পরম তাপমাত্রার বর্গমূলের সমানুপাতিক। অর্থাৎ $\eta \propto \sqrt{T}$

গতিতত্ত্বের সাহায্যে ব্যাখ্যা : গ্যাসের গতিতত্ত্ব (Kinetic theory of gases) থেকে এর ব্যাখ্যা দেওয়া যায়। আমরা জানি যে, গ্যাসের অণুগুলো সবদিকেই এলোমেলোভাবে চলাচল করতে পারে এবং এদের মধ্যে সংঘর্র ঘটে। গ্যাস্ত অণুগুলোর মধ্যে দূরত্ব তরলের তুলনায় অনেক বেশি হওয়ায় আন্তঃআণবিক বল নেই বললেই চলে। তাপমাত্রা বৃদ্ধি পেলে অণুসমূহের গড় বেগ বৃদ্ধি পায়, ফলে সংঘর্ষও বাড়ে। সংঘর্ষ বাড়ার কারণে বিভিন্ন স্তরের প্রবাহে বাধার পরিমাণ বৃদ্ধি পায়। অর্থাৎ সান্দ্রতা বৃদ্ধি পায়। গড়বেগ ও তাপমাত্রার<u>্মধ্যে সম্পর্ক</u> নিমন্থপ ঃ

$$\sqrt{T}$$
 (25)

C.∝ চিত্র ১০ ১৬ <u>গ্যাসের গতিতন্ত্র অনুসারে গ্যাসের সান্দ্রতা গ্যাস অণুগুলোর গড় বেগের সমানুপাতিক।</u> অর্থাৎ

η∝ *c* সমীকরণ (25) ও সমীকরণ (26) থেকে আমরা পাই, $\frac{\eta \propto c \propto \sqrt{T}}{\eta \propto \sqrt{T}}$ সুতরাং , বা, η = K√T

(27)

(26)

এখানে T, কেলভিন তাপমাত্রা এবং K ধ্রুবক।

সান্দ্রতার উপর চাপের প্রভাব 20.52

Effect of pressure on viscosity

তরলের সান্দ্রতার উপর চাপের প্রভাব দেখা যায়। চাপ বৃদ্ধি পেলে সান্দ্রতা বাড়ে।

ব্যাখ্যা ঃ চাপ বৃদ্ধি পেলে আন্তঃআণবিক দূরত্ব কমে ফলে আন্তঃআণবিক বল বৃদ্ধি পায়। এর ফলে তরলের পাশাপাশি দুটি স্তরের আপেক্ষিক বেগ কমে যায়। অর্ধাৎ সান্দ্রতা বেড়ে যায়।

ক্রিন্থ গ্যাসের সান্দ্রতার উপর চাপের কোন প্রভাব নেই।

১০·২২ সান্দ্রতার প্রয়োজনীয়তা

Necessity of viscosity

ক্র্র্র্র্র্যার্চনার, নাজ, জাহাজের উপর পানির এবং গতিশীল মোটর গাড়ি ও বিমানের উপর বায়ুর সান্দ্রতান্ধনিত বাধা লক্ষ <u>করেই এ সমস্ত যন্দ্রের নক্সা তৈরি হ</u>য়।

২০০০ ফাউনটেন পেন <u>কালির সান্দ্রতা ধর্মের উপর ভিন্তি করেই প্রস্তৃত করা হ</u>য়।

২০০১ <u>শিরা-উপশিরা দিয়ে রক্তের চলাচ</u>ল এই ধর্মের উপর হয়ে থা<u>কে</u>।

স্মরণিকা

পৃষ্ঠ টান : তরলের পৃষ্ঠে একটি সরলরেখা কলনা করলে উক্তুরেখার প্রতি একক দৈর্ঘ্যে এ রেখার দুই পার্শ্বে তরলের পৃষ্ঠতলে এক অংশ অন্য অংশের উপরে যে স্পর্শক বল প্রয়োগ করে তাকেই পৃষ্ঠটান বলে।

পৃষ্ঠ শক্তি ঃ কোন একটি তরল তলের ক্ষেত্রফল এক একক বৃদ্ধি করতে যে পরিমাণ কান্ধ সাধিত হয় তাকে ঐ তরলের পৃষ্ঠ শক্তি বলে।

সংসক্তি বল ঃ একই পদার্থের বিভিন্ন অণুর মধ্যে পারস্পরিক আকর্ষণ বলকে সংসক্তি বা সংযুক্তি বল বলে।

আসঞ্জন বল ঃ রিভিন্ন পদার্থের অণুগুলোর মধ্যে পারস্পরিক আকর্ষণ বলকে আসঞ্জন বল বলে।

আগবিরু গাল্পা : দুই অণুর ভিতর সংসক্তি বদ সর্বাপেক্ষা বেশি যতদূর পর্যন্ত অনুভূত হয়, তাকে আগবিক পাল্পা বদে।

বইঘর.কম

স্পর্শ ক্লোণ ঃ কঠিন ও তরলের স্পর্শ বিন্দু হতে বক্র তরল তলে অভিকত স্পর্শক কঠিন বস্তুর সাথে তরলের মধ্যে যে কোণ উৎপন্ন করে তাকে স্পর্শ কোণ বলে।

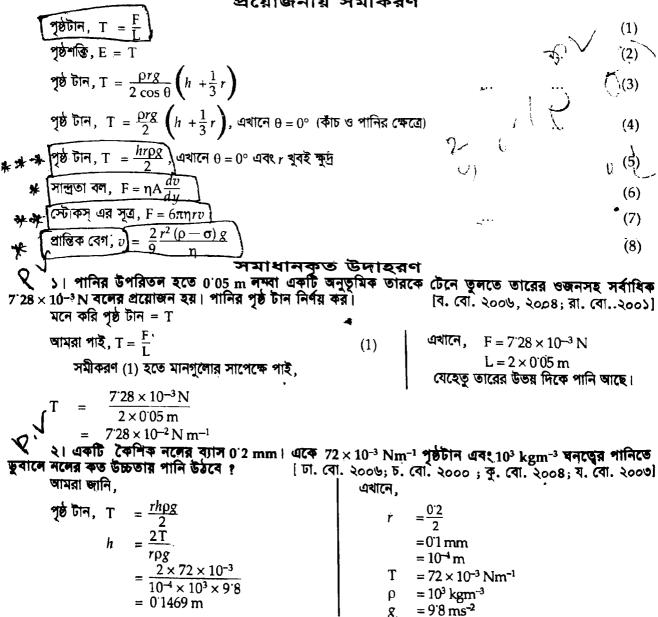
কৈশিকতা : কৈশিক নলের মধ্যে তরলের উত্থান বা পতনকে কৈশিকৃতা বলে।

পৃষ্ঠ টানের উপর তাপমাত্রার প্রভাব ঃ তাপমাত্রা বৃষ্ণিতে তরলের পৃষ্ঠ টান হ্রাস গায়। শুধু গলিত তামা ও ক্যাডমিয়ামের ক্ষেব্রে ব্যতিক্রম পরিলক্ষিত হয়।

শান্ত প্রবাহ ঃ প্রবাহীর বিভিন্ন অণুগুলো যদি তার গতিপথের সাথে সমান্তরালভাবে চলে তবে সে প্রবাহকে শান্ত বা ধারারেখ প্রবাহ বলে।

অশান্ত প্রবাহ : প্রবাহীর বিভিন্ন অণুগুলো যদি তার গতিপথের সাথে সমান্তরালভাবে না চলে, তবে সে প্রবাহকে অশান্ত প্ৰবাহ বলে।

সঙ্কট বেগঃ প্রবাহীর যে সর্বাধিক বেগ যা অতিক্রম করলে শান্ত প্রবাহ অশান্ত প্রবাহে পরিণত হয়,তাকে সংকট বেগ বলে। সাস্ত্রতা : যে ধর্মের দরুন প্রবাহী তার অভ্যন্তরস্থ বিভিন্ন স্তরের আপেক্ষিক বেগ রোধ করার চেষ্টা করে তাকে ঐ প্রবাহীর সান্দ্রতা বলে।


সান্দ্রতাক্ষ : একক বেগ অবক্রমে কোন প্রবাহীর একক ক্ষেত্রফলের উপর যে পরিমাণ সান্দ্রতা বল ক্রিয়া করে তাকে ঐ প্রবাহীর সান্দ্রতাব্ধ বা সান্দ্রতা গুণাব্ধ বলে।

প্রান্তিক বেগ ঃ তরলের মধ্য দিয়ে পড়ন্তু বস্তুর ক্ষেত্রে অভিকর্ষ বল ও সান্দ্রতাজনিত বলের মান সমান হলে পড়ন্তু বস্তু স্থির বেগে পড়তে থাকে। এই বেগকে প্রান্তিক বেগ বলে।

সান্দ্রতার উপর তাপমাত্রার প্রভাব : তাপমাত্রা বৃদ্ধি পেলে তরলের সান্দ্রতা হ্রাস পায়। পক্ষান্তরে তাপমাত্রা বৃদ্ধি পেলে গ্যাসের সান্দ্রতা বৃদ্ধি পায়। গ্যাসের সান্দ্রতা গুণাজ্ঞ তার পরম তাপমাত্রার বর্গমূলের সমানুপাতিক অর্ধাৎ $\eta \propto \sqrt{T}$

সাস্ত্রতার উপর চাপের প্রতাব ঃ চাপ বৃদ্ধি পেলে তরলের সান্দ্রতা বৃদ্ধি পায়। তবে গ্যাসের সান্দ্রতার উপর চাপের কোন প্রভাব নেই।

প্রয়োজনীয় সমীকরণ

 $BG \not\in JEWEL$ o) uards (arrow of the arrow of the arrow

$$W = 2.035 \times 10^{-6}$$
 I

৫। 2×10^{-4} m ব্যাসার্ধের একটি কাঁচের নলে কোন তর্নের স্পর্শ কোণ 135° এবং তরলের পৃষ্ঠ টান 0'547 N m⁻¹ হলে নলে তরলের অবনমন নির্ণয় কর। [তরলের খনত্ব =13'6 × 10³ kg m⁻³ ও অভিকর্ষজ ত্ব্যণ= 9'81 ms⁻²। মনে করি তরলের অবনমন = h

আমরা পাই,
$$T = \frac{r\rho g}{2\cos\theta} \left(h + \frac{1}{3}r \right)$$
 (1)
সমীকরণ (1) জনুসারে,
 $h + \frac{1}{3}r = \frac{2T\cos\theta}{r\rho g}$
বা, $h + \frac{1}{3} \times 2 \times 10^{-4} \text{ m}$
 $= \frac{2 \times 0.547 \text{ Nm}^{-1} \times -0.7071}{2 \times 10^{-4} \text{ m} \times 13.6 \times 10^{3} \text{ kg m}^{-3} \times 9.8 \text{ ms}^{-2}}$
বা, $h + 0.666 \times 10^{-4} = 0.029$
বা, $h = 0.029 - 0.666 \times 10^{-4} \approx 0.029 \text{ m}$
জবনমন, $h \approx 0.029 \text{ m}$

 $\begin{array}{rcl} \mbox{qrtr} & T &=& 0.547 \ {\rm Nm}^{-1} \\ \rho &=& 13.6 \times 10^3 \ {\rm kg \ m}^{-3} \\ g &=& 9.81 \ {\rm ms}^{-2} \\ r &=& 2 \times 10^{-4} \ {\rm m} \\ \theta &=& 135^\circ \\ \cos 135^\circ &=& \cos \left(90^\circ + 45^\circ\right)^\circ \\ &=& -\cos 45^\circ = -0.7071 \end{array}$

৬। পারদের পৃষ্ঠটান 4'7 × 10⁻¹ Nm⁻¹ এবং মনন্দ্র 13'6 × 10³ kgm⁻³। 0'8 × 10⁻³ m ব্যাসার্ধের একটি কৈশিক কাঁচনল পারদে ভূবালে নলের মধ্যে পারদের 6'75 × 10⁻³ m অবনমন হয়। কাঁচের সাথে পারদের স্বর্শ কোণ নির্পন্ন কর। আমরা জানি. নলের ব্যাসার্ধ ক্ষদ্র হলে, এখানে,

		· · · · · · · · · · · · · · · · · · ·
Т	$=\frac{hr\rho g}{2\cos\theta}.$	পারদের পৃষ্ঠটান, T = 4.7×10^{-1} Nm ⁻¹ কৈশিক নলের ব্যাসার্ধ, $r = 0.8 \times 10^{-3}$ m
বা,	$\cos \theta = \frac{hr \rho g}{2T}$	পারদের ঘনত্ব, $\rho = 13.6 \times 10^3$ kgm ⁻³ অবনমন, $h =6.75 \times 10^{-3}$ m
	$-6.75 \times 10^{-3} \times 0.8 \times 10^{-3} \times 13.6 \times 10^{3} \times 9.8$	
	= 2 × 4 7 × 10 ⁻¹	[h সাম্যাবস্থার নিচের দিকে তাই ঋণ চিহ্ন]
	$= \frac{-6.75 \times 0.8 \times 13.6 \times 9.8 \times 10^{-2}}{10^{-2}}$	জডিকর্বজ ড্বেরণ, $g = 9.8 \text{ ms}^{-2}$ স্পর্শ কোণ, $\theta = ?$
	- 2×47	
	= -0.766	
θ	$=\cos^{-1}(-0.766)$	
	= 140°	

৭। 2 mm ব্যানের একটি পানির গোলককে 10 লক্ষ ছোট ছোট পানির বিন্দুতে স্থে করা হল। ব্যয়িত শক্তির পরিমাণ নির্ণয় কর। [পাদির পৃষ্ঠ টান = 72×10^{-3} Nm⁻¹] যি. বো. ২০০৩; চ. বো. ২০০৩] বড় ফোঁটার আয়তন, এখানে. $R = \frac{2}{2} = 1 \text{ mm} = 10^{-3} \text{ m}$ $V_1 = \frac{4}{3} \pi R^3$ $T = 72 \times 10^{-3} \text{ Nm}^{-1}$ ছোট কোঁটার ব্যাসার্ধ r হলে, আয়তন V $_2 = rac{4}{3} \pi r^3$ 10^6 টি ছোট ফোঁটার মোট আয়তন = $rac{4}{3}\pi r^3 imes 10^6$ $\frac{4}{3}\pi R^3 = \frac{4}{3}\pi r^3 \times 10^6$ **বা**, $(10^{-3})^3 = r^3 \times 10^6$ $\mathbf{\overline{q}}, \quad r^3 = \frac{10^{-9}}{10^6}$ $\overline{\mathbf{A}}$, $r^3 = 10^{-15}$ r = 10⁻⁵ m ক্ষেত্রফল বৃদ্ধি = সকল ছোট ফোঁটার ক্ষেত্রফল — বড় ফোঁটার ক্ষেত্রফল $\Delta A = 10^6 \times 4 \pi r^2 - 4 \pi R^2$ $= 4\pi (10^6 \times r^2 - R^2)$ $= 4\pi \left\{ 10^6 \times (10^{-5})^2 - (10^{-3})^2 \right\}$ $= 4\pi \times 9.9 \times 10^{-5}$ $= 1.24 \times 10^{-3} \text{ m}^2$ প্রয়োজনীয় শক্তি, $W = \Delta A \times T$ $= 1.24 \times 10^{-3} \times 72 \times 10^{-3}$ $= 8.928 \times 10^{-5}$ J ৮। 30 mm ব্যাসের একটি গোলাকার সাবান বুদবুদের অভ্যস্তরীণ অতিরিক্ত চাপ নির্ণয় কর। সাবান পানির প্রচান = 25 × 10⁻³ Nm⁻¹ | ł আমরা জানি, এখানে, $P = \frac{4T}{r}$ বুদবুদের ব্যাস = 30 mm = 3 × 10⁻² m বুদবুদের ব্যাসার্ধ, $r = 1.5 \times 10^{-2} \,\mathrm{m}$ $P = \frac{4 \times 25 \times 10^{-3}}{1.5 \times 10^{-2}}$ সাবান পানির পৃষ্ঠটান, $T = 25 \times 10^{-3} \text{ Nm}^{-1}$ = 6'67 Nm⁻² অভ্যন্তরীণ অতিরিক্ত চাপ, P = ? ১। 2 mm ব্যাসের কোন পানি বিন্দুর ডিতরের ও বাইরের চাপের পার্থক্য কত হবে ? (পানির পৃষ্ঠটান = 72× 10-3 Nm-1) আমরা জানি, এখানে, $P = \frac{4T}{r}$ $P = \frac{4 \times 72 \times 10^{-3}}{1 \times 10^{-3}}$ $= \frac{288 \text{ Nm}^{-2}}{1 \times 10^{-3}}$ পানি বিন্দুর ব্যাস = 2 mm = 2 × 10⁻³ m পানি বিন্দুর ব্যাসার্ধ, $r = 1 \times 10^{-3} \, \mathrm{m}$ পৃষ্ঠটান, T = 72×10^{-3} Nm⁻¹ চাপের পার্থক্য, P = ? ১০। একটি সাবানের বুদবুদকে 1 cm ব্যাস হতে ধীরে ধীরে আকৃতি বৃন্ধি করে 10 cm ব্যাসে পরিণত করা হল। কৃতকার্যের পরিমাণ নির্ণয় কর। (সাবান পানির পৃষ্ঠটান = 25×10^{-3} Nm^{-1}) ধরা যাক, ক্ষেত্রফলের পরিবর্তন **Δ**Α। এখানে. আদি ব্যাস, 1 cm = 0'01m আমরা জানি, আদি ব্যাসার্থ, $r_1 = 0.005 \text{ m}$ সম্পাদিত কাজ, W = $\Delta AT = 4\pi (r_2^2 - r_1^2)$ কিন্তু বুদবুদের ২টি পৃষ্ঠ ধাকে, তাই ৰ্ধিত ব্যাস = 10 cm = 0.1 m $\Delta A = 2 \times 4\pi (r_2^2 - r_1^2)$ ৰ্ধিত ব্যাসাৰ্ধ, r₂ = 0.05 m $= 2 \times 4 \times 3.14 \{(0.05)^2 - (0.005)^2\}$ সাবান পানির পৃষ্ঠটান, $T = 25 \times 10^{-3} \text{ Nm}^{-1}$ = 621.72 × 10-4 সম্পাদিত কাজ, W = ? W = $\Delta AT = 621.7 \times 10^{-4} \times 25 \times 10^{-3}$ $= 1.55 \times 10^{-3}$ J

৫২১

১১। 1 × 10⁻³ m² ক্ষেত্রফলবিশিষ্ট একটি গ্লেট 1'55 Nsm⁻² সান্দ্রতাব্ধের রেড়ীর তেলের 2 × 10⁻³ m পুরু একটি স্তরের উপর স্বাপিত। গ্লেটটিকে 0'05 ms⁻¹বেগে চালনা করতে অনুভূমিক বরাবর প্রয়োজনীয় বলের মান নির্ণন্ন কর।

মনে করি সান্দ্রতা বল = F				
জামরা পাই, F = $\eta A \frac{dv}{d\mu}$	(1)	এখানে,	Α	$= 10 \times 10^{-3} \mathrm{m}^2$
সমীকরণ (1) হতে পাই,			η	$= 1.55 \text{Nsm}^{-2}$
$F = \frac{1.55 \text{Nsm}^{-2} \times 10 \times 10^{-3} \text{m}^2 \times 0.05 \text{ms}^{-1}}{10^{-3} \text{m}^2 \times 0.05 \text{ms}^{-1}}$			dv	$= 0.05 \mathrm{ms}^{-1}$
$\Gamma = \frac{1}{2 \times 10^{-3}}$			dy	$= 2 \times 10^{-3} \mathrm{m}$
= 0`3875 N প্রযোজনীয় অনুজয়িক বল - 0:2975 N				

প্রয়োজনীয় অনুভূমিক বল = 0.3875 N

১২। 1×10⁻³ m² ক্ষেত্রফলের একটি র্চ্যান্টা প্লেট অপর একটি বড় প্লেট হতে 0`1 cm পুরু গ্লিসারিন স্তর দ্বারা পৃথক করা আছে। এ প্লেটকে 1×10⁻² ms⁻¹ বেগে চালনা ক্ষরতে 1`5×10⁻⁵N বলের প্রয়োজন হলে গ্লিসারিনের সান্দ্রতাক্ষ নির্ণয় কর।

আমরা জানি, $F = \eta A \frac{dv}{dy}$	এখানে,
বা, $\eta = \frac{Fdy}{Adv}$	$A = 1 \times 10^{-3} m^2$
$A_{i}, \eta = \frac{1}{Adv}$	$F = 1.5 \times 10^{-5} N$
$\eta = \frac{1.5 \times 10^{-5} \times 1 \times 10^{-3}}{1 \times 10^{-3} \times 1 \times 10^{-2}}$	$dv = 1 \times 10^{-2} \mathrm{ms}^{-1}$
$1 \times 10^{-3} \times 1 \times 10^{-2}$	$dy = 0.1 \text{ cm} = 1 \times 10^{-3} \text{ m}$
$= 1.5 \times 10^{-3} \text{ Ns m}^{-2}$	

১৩। $3 \times 10^{-3} \,\mathrm{m}$ ব্যাসার্ধের একটি গোলক কোন তরলের ভেতর দিয়ে $3 \times 10^{-2} \,\mathrm{ms^{-1}}$ প্রান্ত বেগ নিয়ে পড়ছে। তরলের সান্দ্রতাক্ষ $1.5 \times 10^{-3} \,\mathrm{Nsm^{-2}}$ হলে সান্দ্র বল নির্ণয় কর।

মনে করি সান্দ্রতা বল = F	এখানে, r	=	3×10^{-3} m
আমরা জানি, F = $6\pi\eta rv$	•		$3 \times 10^{-2} \text{ ms}^{-1}$
$= 6 \times 3^{-1}4 \times 1^{-5} \times 10^{-3} \times 3 \times 10^{-3} \times 3 \times 10^{-2}$			$1.5 \times 10^{-3} \mathrm{N sm^{-2}}$
$= 2.54 \times 10^{-6} \mathrm{N}$	F	=	?

🔧 ১৪। 2 × 10⁻⁴ m ব্যাসার্ধের একটি লোহার বল তার্পিন তেলের ভেঁতর দিয়ে 4 × 10⁻² ms⁻¹ প্রাস্ত বেগ নিয়ে গড়ছে। যদি লোহা ও তার্পিন তেলের ঘনত্ব যথাক্রমে 7'8 × 10³ এবং 0'87 × 10³ kgm⁻³ হয় তবে তার্পিন তেলের সান্দ্রতাক্ষ বের কর।

মনে করি তার্পিন তেলের সান্দ্রতাক্ষ = η	এখানে, ব্যাসার্ধ r = 2×10 ⁻⁴ m),
আমরা জানি, $\eta = \frac{2r^2(\rho - \sigma)g}{9\pi}$	এখানে, ব্যাসার্ধ $r = 2 \times 10^{-4} \text{ m}$ প্রান্ত বেগ, $v = 4 \times 10^{-2} \text{ ms}^{-1}$
	লোহার ঘনত্ব, $ ho = 7.8 imes 10^3 \text{kg}^{-3}$
$\frac{2 \times (2 \times 10^{-4})^2}{(7.8 \times 10^3 - 0.87 \times 10^{3}) \times 9.8}$	তার্পিন তেলের ঘনত্ব,
9 × 4 × 10 ⁻²	
$= \frac{2 \times 4 \times 10^{-8} \times 6.93 \times 10^{3} \times 9.8}{10^{3} \times 9.8}$	$\sigma = 0.87 \times 10^3 \text{kgm}^{-3}$
$= \frac{9 \times 4 \times 10^{-2}}{9 \times 4 \times 10^{-2}}$	$g = \sqrt{938} \text{ ms}^{-2}$
$=\frac{8 \times 6.93 \times 9.8 \times 10^{-3}}{5}$	$g = 1.938 \text{ ms}^{-2}$ F = 1.7 Å J Y
36	E-JIL 0/
$= 1.5 \times 10^{-2} \text{kgm}^{-1} \text{s}^{-1}$	
$= 1.5 \times 10^{-2} \text{ Nsm}^{-2}$	
১৫। 9.5 × 10² kgm-3 ঘনত্ও ও 1 × 10-6 m ব্যাসাধবিশিষ্ট একটি	েল বিন্দু বায়ুর মধ্য দিয়ে পড়ছে। বায়ুর
ঘনত্ম 1'3 kgm-3 এবং সান্দ্রতাক্ষ 1'81 × 10-5 Ns m-2 হলে তেল বিন্দুর	প্রান্তিক বেগ নির্ণয় কর। $[g = 9.8 \text{ ms}^{-2}]$

 $v = \frac{2 \times (1 \times 10^{-6} \text{ m})^2 \times (95 \times 10^2 - 13) \text{ kg m}^{-3} \times 98 \text{ ms}^{-2}}{9 \times 181 \times 10^{-5} \text{ Ns m}^{-2}} = 1.14 \times 10^{-4} \text{ ms}^{-1}$

প্রবাহী পদার্থ বইঘর.কম

প্রশালা

সংক্ষিশ্ত-উত্তর প্রশ্ন ঃ ারা. বো. ২০০৪,২০০২; য. বো., চ. বো. ২০০০; সি. বো. ২০০৪; ব. বো. ২০০২] ১। তরলের পৃষ্ঠ টান কি ? [কু. বো. ২০০৪ ; সি. বো. ২০০৩] ২। স্পর্শ কোণ কাকে বলে ? ৩। তরলের পৃষ্ঠ টানের উপর তাপমাত্রার প্রভাব কি ? [য. বো. ২০০৪; চ. বো. ২০০৩] ৪। সংজ্ঞা লিখ ঃ [চ. বো. ২০০৪; সি. বো. ২০০১; য. বো. ২০০২] স্পর্শ কোণ **চি.** বো. ২০০৩] পৃষ্ঠ টান বি. বো. ২০০৫, ২০০৩] সাস্ত্রতা ্বি. বো. ২০০৩] সান্দ্রতা সহগ যি. বো. ২০০২] কৈশিকতা রো. বো. ২০০৬, ২০০০ ; কু. বো. ২০০৩ ; য. বো. ২০০৩ ; চ. বো. ২০০০] ৫। সান্দ্রতা সহগ বলতে কি বুঝ ? ক. বো. ২০০৩] ৬। সান্দ্রতার একক ও মাত্রা সমীকরণ দেখাও। য. বো. ২০০৩] ৭। তরলের পৃষ্ঠ টান বলতে কি বুঝ ? াসি. বো. ২০০৩] ৮। আসঞ্জন বল কাকে বলে ? [সি. বো. ২০০২ ; রা. বো. ২০০১ ; কৃ. বো. ২০০১] 🔈। তরলের সান্দ্রতা বলতে কি বুঝ 🤉 ১০। তরলের কৈশিকতা কি ? [সি. বো. ২০০৬ ; ঢা. বো. ২০০১] ১১। সান্দ্রতা কি ? [য. বো. ২০০১; ঢা. বো. ২০০০; চ. বো. ২০০০] ঢা. বো. ২০০০] ১২। সান্দতার উপর চাপের প্রভাব দেখাও। ১৩। গ্যাসের সান্দ্রতার উপর তাপমাত্রার প্রতাব দেখাও। [কু. বো. ২০০২] ১৪। সান্দ্রতার গুণাচ্চ্বের সংজ্ঞা দাও। [ঢা. বো. ২০০৬, ২০০৩ ; কৃ. বো. ২০০৬ ; য. বো. ২০০৬ ; সি. বো. ২০০৬] ১৫। পারদ ও কাঁচের মধ্যকার স্পর্শ কোণ 140°-এর অর্থ কি ? ১৬। পানির পৃষ্ঠ টান 0.072 Nm⁻¹ বলতে কি বুঝায় ? ১৭। পৃষ্ঠ টান ও পৃষ্ঠ শক্তির মধ্যে পার্থক্য লিখ। ১৮। সূচ পানিতে ভাসে কেন 🤉 ১৯। ছাতার কাপড়ে ছোট ছোট ছিদ্র থাকে কেন ? রচনামূলক প্রশ্ন ঃ [য. বো. ২০০৫ ; রা. বো. ২০০০ ; চ. বো. ২০০০ ; সি. বো. ২০০৪ ; ১। পৃষ্ঠ টানের আণবিক তত্ত্ব ব্যাখ্যা কর। ব. বো. ২০০২ ; কু. বো. ২০০২] ২। মাত্রা সমীকরণের সাহায্যে স্টোক্সের সৃত্র প্রতিপাদন কর। কি. বো. ২০০৪ ; ঢা. বো. ২০০৩] বি. বো. ২০০৬ ; সি. বো. ২০০৬ ; কু. বো. ২০০৩ ; ৩। পৃষ্ঠ টান ও পৃষ্ঠ শক্তির মধ্যে সম্পর্ক স্থাপন কর। রা. বো. ২০০৪, ২০০২] ৪। কৈশিক নলের সাহায্যে পানির পৃষ্ঠ টান নির্ণয়ের পরীক্ষা পম্ধতি বর্ণনা কর। যি. বো.২০০৪ ; ব. বো. ২০০৪ ; ঢা. বো. ২০০২ ; চ. বো. ২০০১,২০০৪ ; কু. বো. ২০০০ ; সি. বো. ২০০২) ৫। কৈশিক নলে তরল উত্থানের গাণিতিক রাশি নির্ণয় কর। [কু. বো. ২০০৫] ৬। তরল পদার্থের পৃষ্ঠ টান নির্ণয়ের তত্ত্ব প্রতিপাদন কর। রাি. বো. ২০০৩ ; ব. বো. ২০০২] ৭। অন্ত বেগ নির্ণয়ের রাশিমালা বের কর। াকু. বো. ২০০৩) ৮। কৈশিক নল পম্বতিতে তরল পদার্ধের পৃষ্ঠ টান নির্ণয়ের সাধারণ সূত্র প্রতিপাদন কর। [ব. বো. ২০০৬ ; সি. বো. ২০০৬ ; য. বো. ২০০২] ৯। স্টোক্সের সূত্রটি বর্ণনা কর। এই সূত্র হতে প্রমাণ কর r ব্যাসার্ধের এবং ত ঘনত্বের একটি গোলক n সান্দ্রতাচ্চের এবং ρ ঘনত্বের একটি প্রবাহীর মধ্য দিয়ে v প্রান্তবেগে পড়তে থাকলে, $\eta = \frac{2r^2(\sigma - \rho)g}{q}$ **চি.** বো. ২০০২] ১০। স্টোক্সের সূত্রটি প্রতিপাদন কর। [রা. বো. ২০০৫] ১১। স্টোর্ক্স-এর সূত্র বর্ণনা কর। মাত্রা সমীকরণের সাহায্যে এ সূত্রটি প্রতিপাদন কর। [কু. বো. ২০০৬; চ. বো. ২০০৫] ১২। সান্দ্র তরলের মধ্য দিয়ে পড়ন্তু বস্তুর প্রান্তিক বেগের স্টোক্সের সমীকরণ বের কর। ঢ়া. বো. ২০০১]

১৩। দেখাও যে, তরল বুদ্বুদের অভ্যন্তরস্থ অতিরিক্ত চাপ এর ব্যাসার্ধের ব্যস্তানুপাতিক। কু. বো. ২০০২] ১৪। দেখাও যে, কোন তরলের পৃষ্ঠ শক্তি সংখ্যাগতভাবে তরলের পৃষ্ঠ টানের সমান। ১৫। স্পর্শ কোণ কোন কোন বিষয়ের উপর নির্ভর করে ? গাণিডিক সমস্যাবলি ঃ ১। পানির উপরিতল হতে 7^{.5} × 10⁻² m লম্মা একটি ফ্রেমকে টেনে তুলতে ফ্রেমের ওজনসহ সর্বোচ্চ যে বলের প্রয়োজন হবে তা নির্ণয় কর। [পানির পৃষ্ঠ টান = 72^{.5} × 10⁻³ Nm⁻¹] [উੰ₿ 10'875 × 10⁻³ N] ২। $1 \times 10^{-4} \text{ m}$ ব্যাসবিশিষ্ট কাচ নলের পানির আরোহণ নির্ণয় কর। [পানির পৃষ্ঠ টান = 0.07 Nm^{-1}] [ቼះ 0[·]2857 m] ৩। 2 × 10⁻³ m ব্যাসের একটি পানি বিন্দুকে ভেঞ্চো সমান আকারের 109 টি ক্ষুদ্র ক্ষুদ্র পানি বিন্দুতে পরিণত করতে কি পরিমাণ শক্তি প্রয়োজন হবে ? [পানির পৃষ্ঠ টান = 73×10^{-3} Nm^{-1}] | [͡डऀ: 9[·]1 × 10⁻⁴]] 8। 2 × 10⁻⁷m ব্যাসার্ধের দুটি পানি বিন্দুকে একত্রিত করে একটি পানি বিন্দুতে পরিণত করলে তাপমাত্রা কত বৃদ্ধি পাবে ? [পানির পৃষ্ঠ টান = 0.074 Nm^{-1}] [당: 0[.]054 K] ৫ । 200 mm ব্যাসার্ধের একটি ধাতব গোলক একটি তরলের মধ্য দিয়ে 2'1 × 10⁻² ms⁻¹ প্রান্ত বেগে পড়েছে। তরলের সান্দ্রতাঙ্ক 0⁻⁰003 kgm⁻¹ s⁻¹ একক। তরলের সান্দ্র বল নির্ণয় কর। [সি. বো. ২০০২] [উঃ 23[·]74 × 10⁻⁵ N] ৬। 10⁻² kg ভরের একটি আয়তাকার পাতের দৈর্ঘ্য 0⁻¹ m, প্রস্থ 2 × 10⁻² m ও পুরুত্ব 1⁻⁵ × 10⁻³ m। একে উল্লম্ব তলে জধাংশ পানিতে এমনভাবে নিমচ্জিত করা হল যাতে বড় বাহুটি অনুভূমিকভাবে অবস্থান করে। এর আপাত ওজন কত হবে? [পানির পৃষ্ঠ টান = 0.07 Nm-1] [উঃ 6 63 × 10⁻² N] ৭। বায়ুতে সৃষ্ট একটি সাবান বুদবুদের ব্যাসার্ধ $1 imes 10^{-2}~{
m m}$ হতে $4 imes 10^{-2}~{
m m}$ -এ পরিণত করতে ব্যয়িত শক্তির পরিমাণ নির্ণয় কর। [সাবান পানির পৃষ্ঠ টান = 0.05 Nm⁻¹] [᠖° 0 188 × 10−² J] ৮। 6 × 10⁻⁴ m ব্যসযুক্ত একটি কৈশিক নলে তার্পিন তেলের আরোহণ নির্ণয় কর। তোর্পিন তেলের পৃষ্ঠ টান = 0.027 Nm⁻¹, স্পর্শ কোণ 17° এবং তার্পিন তেলের ঘনত্ব = 8.7 × 10² kg m⁻³] [ចិះ 0[.]0201 m] ৯। 4 cm ব্যাসের একটি গোলাকার সাবান বুদবুদের অভ্যন্তরীণ অতিরিক্ত চাপ নির্ণয় কর। (সাবান পানির পৃষ্ঠটান 25× [উত্তর ঃ 5 Nm⁻²] 10^{-3} Nm⁻¹) ১০। একটি সাবান বুদবুদের ব্যাসার্ধ 2 cm হতে বৃষ্ণি করে 4 cm করতে কৃতকাজ কত হবে ? (সাবান পানির পৃষ্ঠটান $25 \times 10^{-3} \text{ Nm}^{-1}$ [উত্তর ঃ 75 × 10⁻³ J] ১১। 4mm ব্যাসের কোন পানি বিন্দুর ভিতরের ও বাইরের চাপের পার্থক্য কত হবে ? (পানির পৃষ্ঠটান = 72 × 10⁻³ উত্তর ঃ 144 Nm⁻²] Nm^{-1}) ১২। 1[·]5mm গভীরতার স্থির তরন পৃষ্ঠের উপর 2 × 10⁻² m² ক্ষেত্রেফলের একটি ধাতব গ্লেট রক্ষিত আছে। ঐ ধাতব প্রেটকে তরলের উপর 4.5 cms⁻¹ বেগে সরাতে অনুভূমিকভাবে কত বল প্রয়োগ করতে হবে ? তরলের সান্দ্রতাজ্ঞ 2Nsm⁻²। [উন্তর 🕯 1⁻2 N] ১৩। 5 × 10⁻³ m² ক্ষেত্রফলের একটি চ্যাণ্টা প্লেট অপর একটি বড় প্লেট হতে 0.2cm পুরু গ্লিসারিনের স্তর দ্বারা পৃথক করা আছে। এ প্লেটকে 0.02ms⁻¹ বেগে চালনা করতে কত বলের প্রয়োজন হবে ? (গ্রিসারিনের সান্দ্রতাক্ষ 1.5×10⁻³ Nsm⁻²) [উত্তর 8-7⁻⁵ × 10⁻⁵ N] 38। পারদের পৃষ্ঠটান $4.7 imes 10^{-1}$ $m Nm^{-1}$ এবং ঘনত্ত্ব $13.6 imes 10^3$ kgm $^{-3}$, কাঁচের সাথে পারদের স্পর্শ কোণ 140° । 1.8 × 10⁻³ m ব্যাসের একটি কৈশিক কাঁচনল পারদে ডুবালে নলের মধ্যের পারদের অবনমন নির্ণয় কর। [উন্থর ঃ — 6 × 10⁻³ m] ১৫। 10⁻⁻²m² প্রস্বচ্ছেদের ক্ষেত্রফলবিশিষ্ট একটি পাত 2 × 10⁻³ m পুরু একটি তরলের উপর স্বাপিত। ঐ গ্রেটকে 0.03 ms⁻¹ বেগে চালনা করতে 0.235 N অনুভূমিক বলের প্রয়োজন হলে তরলের সান্দ্রতাক্ত নির্ণায় কর। [উঃ 1.57 kg s⁻¹m⁻¹] ১৬। $1 imes 10^{-2}\,\mathrm{m}$ ব্যাসবিশিষ্ট একটি গ্যাসের বুদবুদ $1.5 imes 10^3\,\mathrm{kg}\,\mathrm{m}^{-3}$ ঘনত্ববিশিষ্ট কোন তরলের মধ্য দিয়ে 4.5 imes10⁻³ ms⁻¹ স্থির বেগে উপরে উঠছে। তরলের সান্দ্রতাজ্ঞ নির্ণয় কর। গ্যাসের ঘনত্ব উপেক্ষা কর। [ቼះ 18⁻¹5 kg m⁻¹s⁻¹] ১৭। একটি গোলাকার তেলের ফোঁটার ঘনত্ব 800 kg m⁻³ ও বাসার্ধ 1 × 10⁻⁴ m। তেলের ফোঁটাটি 1 72 × 10⁻⁵ kg m⁻¹s⁻¹ সান্দ্রতা গুণাজ্ঞবিশিষ্ট বায়ুর ভিতর দিয়ে পড়তে থাকলে চূড়ান্ত গতিবেগ কত হবে ? বায়ুর ঘনত্ম 1.3 kg m⁻³] [ቼঃ 1'01127 ms⁻¹] ১৮। সয়াবিন তেলের সান্দ্রতা গুণাজ্ঞ 5'2 × 10⁻² Nsm⁻²। সয়াবিন তেলের মধ্য দিয়ে 0'2 mm ব্যাসের একটি ধাতব

[©: 0'98 × 10⁻⁵N]

গোলক 1 ms⁻¹ প্রান্তিক বেগে পড়ছে। সয়াবিনের সান্দ্রভাজনিত বল নির্ণন্ন কর।,

৩২৪

১১.১ সূচনা Introduct

Introduction

দৈনন্দিন অভিজ্ঞতা থেকে আমরা জানি যে, তাপ প্রয়োগ করলে সাধারণত পদার্থের প্রসারণ ঘটে এবং তাপ অপসারণে বা শীতলীকরণে পদার্থের সংকোচন ঘটে। চাপ, আয়তন এবং উষ্ণতা দ্বারা কোন পদার্থের অবস্থা নির্দিষ্ট করা যায়। কঠিন এবং তরল পদার্থের ক্ষেত্রে চাপের প্রভাব খুবই নগণ্য। কিন্তু গ্যাসের ক্ষেত্রে চাপের প্রভাব খুবই প্রবল। তাই গ্যাসের প্রসারণ আলোচনায় চাপের উল্লেখ করা হয়। তাপমাত্রা স্থির রেখে কোন গ্যাসের চাপ পরিবর্তন করলে এর আয়তনের পরিবর্তন ঘটে। আবার চাপ স্থির রেখে কোন গ্যাসের তাপমাত্রা পরিবর্তন আয়তনের পরিবর্তন ঘটে। এ কারণে গ্যাসের দু'ধরনের প্রসারণ গুণাজ্ঞ রয়েছে।

এ অধ্যায়ে তাপ কি,তাপের আধুনিক মতবাদ, তাপ প্রয়োগে গ্যাসের প্রসারণ জনিত বিভিন্ন সূত্র, প্রসারাজ্ঞক, গ্যাসের গতিতত্ত্ব, গতিতত্ত্বের প্রয়োগ, সম্পৃক্ত ও অসম্পৃক্ত বাম্পীয় চাপ, আর্দ্রতামিতি, আর্দ্র ও শুক্ষ বায়ুর বিভিন্ন ঘটনা আলোচনা করা হবে।

১১ ২ তাপ

Heat

আমরা দৈনন্দিন জীবনে বিভিন্ন প্রকার শক্তির সঙ্গে পরিচিত। যেমন যান্ত্রিক শক্তি, তড়িৎ শক্তি, রাসায়নিক শক্তি ইত্যাদি। বিভিন্ন প্রকার শক্তির ন্যায় তাপও এক প্রকার শক্তি। শক্তির নিত্যতা সূত্র তাপের বেলায়ও প্রযোজ্য। যেমন অন্য রকম শক্তি থেকে সমতুল্য তাপ পাওয়া যায়, আবার তাপকেও অন্য প্রকার শক্তিতে রূপান্তরিত করা যায়।

তাপ হল এক প্রকার শক্তি যা কোন বস্তৃতে প্রয়োগ বা গমন করলে বস্তৃটির তাপমাত্রা বৃদ্ধি পায় এবং বর্জন করলে তাপমাত্রা হ্রাস পায়। অবশ্য মনে রাখতে হবে যে বস্তৃর অবস্থার পরিবর্তনের সময় তাপ দিলেও তাপমাত্রা বৃদ্ধি পায় না। দুটি ভিন্ন তাপমাত্রার বস্তৃর মধ্যে পরিবাহক দ্বারা সংযোগ দিলে দেখা যায় তাপ উচ্চ তাপমাত্রার বস্তৃ হতে নিম্ন তাপমাত্রার বস্তৃতে গমন করছে। এটাই তাপের ষাভাবিক ধর্ম। উপরের আলোচনা থেকে আমরা তাদের নিম্নরুপ সংজ্ঞা দিতে পারি।

সংজ্ঞা : তাপ এক প্রকার শক্তি যা উচ্চ তাপমাত্রার বস্তু হতে নিম্ন তাপমাত্রার বস্তৃতে তাপমাত্রার পার্থক্যের কারণে পরিবহণ, পরিচলন এবং বিকিরণ পন্ধতিতে গমন করে।

১১৩ তাপের বিভিন্ন মতবাদ Different theories of heat

গোড়া হতে উনবিংশ শতাদী পর্যন্ত বিজ্ঞানের ইতিহাস আলোচনা করলে দেখা যায় যে, তাপের প্রকৃতি ব্যাখ্যা করার জন্য দুটি প্রতিদ্বন্দী মতবাদ প্রচলিত আছে, যথা—

১। ক্যানরিক মতবাদ (Caloric theory) এবং

২। যান্ত্রিক বা গতি মতবাদ বা আধুনিক মতবাদ (Mechanical or Dynamical or Modern theory)।

ক্র্যালরিক মতবাদের বিভিন্ন ত্রুটি থাকায় এই মত্তবাদ প্রত্যাখ্যাত হয়েছে। এখানে তাপের আধুনিক মত্তবাদ জালোচিত হল।

যান্ত্রিক বা গৃতি মৃতবাদ বা আধুনিক মৃতবাদ ঃ

1849 খ্রিস্টান্দে বিজ্ঞানী ড. জুল (Joule) তাপের এই মতবাদ প্রতিষ্ঠা করেন। তিনি পরীক্ষার সাহায্যে প্রমাণ করেন যে, তাপ এক প্রকার শক্তি এবং তাপ ও যান্ত্রিক শক্তির মধ্যে একটি ঘনিষ্ঠ সম্পর্ক আছে। তাপের গতি BG & JEWEL

মতবাদ অনুসারে প্রত্যেক বস্তুর কণাগুলো কম-বেশি গতিশীল। অতএব কণাগুলো গতিশক্তির অধিকারী। কণাসমূহের এই গতিশক্তি তাপ শক্তিতে পরিণত হয় অর্থাৎ তাপ গতিরই রূপান্তর মাত্র। উদাহরণস্বরূপ বলা যায়, দুটি বস্তুকে একত্রে ঘষলে এদের অণুগুলো সজোরে কম্পিত হয়। কম্পমান অণুগুলোর গতিশক্তি তাপ শক্তিতে পরিণত হয়। অতএব উৎপন্ন তাপের মূল উৎস কাজ বা যান্ত্রিক শক্তি। সুতরাং সিন্ধান্ত করা যায় যে, তাপ প্রবাহী নয়, এটি বস্তুর গতিশীল কণাসমূহ কর্তৃক প্রাণ্ত এক প্রকার শক্তি। যেহেতু তাপের উৎসই হল কাজ, অতএব কাজ, W ও তাপ, H পরস্পরের সমানুপাতিক অর্থাৎ W ~ H ।

১১ ৪ গ্যাসীয় সূত্র

Gas laws

গ্যাসের আয়তন, তাপমাত্রা এবং চাপ এই তিনটিকে গ্যাসের চল রাশি (Variable) বলে। তাদের যে কোন দুটির মধ্যে সম্পর্ক স্থাপন করতে হলে, অপর একটিকে অপরিবর্তিত রাখতে হবে। এ অনুযায়ী হিসাব করলে আমরা তিনটি সম্পর্ক পাই। তিনটি সূত্র দ্বারা এই তিনটি সম্পর্ক নিয়ন্ত্রিত হয়। এই তিনটি সূত্রকে গ্যাসীয় সূত্র (Gas Laws) বলা হয়। গ্যাসীয় সূত্র আলোচনার পূর্বে গ্যাস কি জানা দরকার। গ্যাসের নিম্নলিখিত যে কোন একটি সংজ্ঞা দেয়া যেতে পারে ঃ

সংজ্ঞা (i) সাধারণ তাপমাত্রা ও চাপে যে সব পদার্থ বায়বীয় অবস্থায় থাকে, তাদেরকে গ্যাস বলে। যেমন হাইড্রোজেন, অক্সিজেন, নাইট্রোজেন ইত্যাদি গ্যাস।

(ii) বর্তমান প্রচলিত মত অনুসারে সংকট তাপমাত্রার উপরে কোন পদার্ধের বায়বীয় অবস্ধার নাম গ্যাস।

নিম্নে গ্যাসের তিনটি সূত্র বর্ণনা করা হল —

১। বয়েল-এর সূত্র : 1662 খ্রিস্টাব্দে রবার্ট বয়েল নির্দিষ্ট তাপমাত্রায় কোন গ্যাসের চাপ ও আয়তনের মধ্যে সম্পর্ক নির্দেশ করে একটি সূত্র আবিক্ষার করেন। এর নাম বয়েল-এর সূত্র। সূত্রটি নিম্নে বিবৃত হল ঃ

'তাপমাত্রা স্থির থাকলে, কোন নির্দিন্ট ভরের গ্যাসের আয়তন তার চাপের ব্যস্তানুপাতিক।' মনে করি স্থির তাপমাত্রায় কোন নির্দিন্ট ভরের গ্যাসের চাপ এবং আয়তন যথাক্রমে P এবং V। অতএব আমরা পাই, V ~ $\frac{1}{P}$

বা,
$$V =$$
ধ্বক $\times \frac{1}{P}$

এই সমীকরণকে সমোষ্ণ সমীকরণ (Isothermal equation) বলে।

যদি স্থির তাপমাত্রায় কোন নির্দিষ্ট ভরের গ্যাসের P_1, P_2, P_3 , ও P_n চাপে আয়তন যথাক্রমে V_1 , V_2, V_3 , ও V_n হয়, তবে আমরা পাই, $P_1V_1 = P_2V_2 = P_3V_3 = \dots = P_nV_n = ধ্রুবক।$

(1)

২। চার্লস-এর সূত্র : 1787 খ্রিস্টাব্দে ফরাসি বিজ্ঞানী চার্লস এই সূত্র আবিক্ষার করেন। তাঁর নামানুসারে এই সূত্রকে চার্লস-এর সূত্র বলে। এটি নির্দিষ্ট চাপে তাপমাত্রা এবং আয়তনের সম্পর্ক নির্দেশ করে। এই সূত্র অনুসারে স্দির চাপে কোন নির্দিষ্ট তরের গ্যাসের আয়তন 0°C হতে প্রতি ডিগ্রী সেলসিয়াস তাপমাত্রা গরিবর্তনের জন্য 0°C-এর আয়তনের নির্দিষ্ট ভগ্নাংশ $\frac{1}{273}$ বা 0'00366 অংশ পরিবর্তিত হয়।

মনে করি 0°C তাপমাত্রায় কোন নির্দিষ্ট ভরের গ্যাসের আয়তন = V_0

চার্পস-এর সূত্রানুযায়ী স্থির চাপে,

1°C	তাপমাত্রায় '	শ্র	গ্যাসের	আয়তন	æ	\mathbf{V}_{0}	+	$\frac{V_0}{273}$
θ°C	17	n	n	n	¢	V ₀	+	$\frac{V_0 \times \theta}{273}$

মনে করি স্থির চাপে এ গ্যাসের θ° C তাপমাত্রায় আয়তন = V

আমরা পাই,
$$V = V_0 + \frac{V_0 \theta}{273} = V_0 \left(1 + \frac{\theta}{273}\right)$$
 (2)

পরম স্কেলে চার্লস-এর সূত্র ঃ

সমীকরণ (2) অনুসারে,

$$V = V_0 \left(\frac{273 + \theta}{273}\right) = \frac{V_0 T}{273}$$

এখানে T হচ্ছে পরম স্কেলে তাপমাত্রা $| T = \theta + 273$
ধরা যাক, $\frac{V_0}{273} = K =$ ধ্রবক
জতএব, $V = KT$
বা, $V \propto T$ (2a)

অর্থাৎ, নির্দিষ্ট চাপে একটি নির্দিষ্ট ভরের কোন গ্যাসের আয়তন তার পরম তাপমাত্রার সমানুপাতিক। এটিই পরম স্কেলে চার্লসের সূত্র।

ব্যাখ্যা ঃ মনে করি নির্দিষ্ট চাপ ও ভরের কোন গ্যাসের প্রাথমিক আয়তন V1 ও প্রাথমিক তাপমাত্রা T1। এর চূড়ান্ত আয়তন V2 ও চূড়ান্ত তাপমাত্রা T2 হলে চার্লসের সূত্রানুসারে,

$$V_{1} = KT_{1} \, \text{eff} \, V_{2} = KT_{2}$$

$$\frac{V_{1}}{T_{1}} = \frac{V_{2}}{T_{2}}$$

$$\text{I}, \quad \frac{V_{1}}{V_{2}} = \frac{T_{1}}{T_{2}}$$
(3)

৩। চাপীয় সূত্র : 1842 খ্রিস্টাব্দে বিখ্যাত বিজ্ঞানী রেনো (Regnault) এই সূত্র আবিক্ষার করেন। এজন্য এই সূত্রকে রেনোর চাপীয় সূত্র বলা হয়। এটি স্থির আয়তনে চাপ এবং তাপমাত্রার মধ্যে সম্পর্ক নির্দেশ করে। এই সূত্র অনুসারে, স্থির আয়তনে কোন নির্দিষ্ট ভরের গ্যাসের চাপ 0°C হতে প্রতি ডিগ্রী সেলসিয়াস তাপমাত্রা পরিবর্তনের জন্য তার 0°C-এর চাপের একটি নির্দিষ্ট ভগ্নাংশ <u>1</u>273 বা, 0'00366 অংশ পরিবর্তিত হয়।

মনে করি 0° C তাপমাত্রায় নির্দিষ্ট ভরের গ্যাসের চাপ $= P_0$ রেনোর চাপীয় সূত্রানুযায়ী স্থির আয়তনে,

1°C তাপমাত্রায় ঐ গ্যাসের চাপ =
$$P_0 + \frac{P_0}{273}$$

 θ °C " " " " = $P_0 + \frac{P_0 \times \theta}{273}$

মনে করি স্থির আয়তনে t_1° তাপমাত্রায় ঐ গ্যাসের চাপ = P_1

আমরা পাই, P = P₀ +
$$\frac{P_0 \times \theta}{273}$$
 = P₀ $\left(1 + \frac{\theta}{273}\right)$ = P₀ $\left(\frac{273 + \theta}{273}\right)$... (4)
পরম স্কেলে চাপের সূত্র :

সমীকরণ (4) অনুসারে,

$$P = P_0 \left(\frac{273 + \theta}{273}\right) = \frac{P_0 T}{273}$$

এখানে T হচ্ছে পরম স্কেলে তাপমাত্রা। T = θ + 273
ধরা যাক, $\frac{P_0}{273} = K =$ ধ্রবক
জতএব, P = KT
বা, P ~ T

(4a)

অর্থাৎ, নির্দিষ্ট আয়তনে একটি নির্দিষ্ট ভরের কোন গ্যাসের চাপ তার পরম তাপমাত্রার সমানুপাতিক। এটিই পরম স্কেলে চাপের সূত্র।

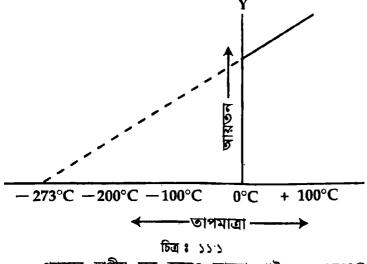
ব্যাখ্যা : মনে করি, একটি গ্যাসের প্রাথমিক চাপ P_1 , প্রাথমিক তাপমাত্রা T_1 , চূড়াস্ত চাপ P_2 ও চূড়াস্ত তাপমাত্রা T_2 ।

চাপীয় সূত্রানুসারে,

$$P_{1} = KT_{1} \, \mathfrak{QR} \, P_{2} = KT_{2}$$

$$\frac{P_{1}}{T_{1}} = \frac{P_{2}}{T_{2}}$$

$$\mathfrak{A}_{1}, \quad \frac{P_{1}}{P_{2}} = \frac{T_{1}}{T_{2}}$$
(5)


১১ ৫ পরম শুন্য তাপমাত্রা বা পরম শীতলতা Absolute zero temperature

চার্লসের সূত্র হতে আমরা দেখতে পাই যে, স্থির চাপে যদি 0°C তাপমাত্রায় কোন নির্দিষ্ট ভরের একটি গ্যাসের আয়তন V₀ হয় এবং 0°C তাপমাত্রায় তার আয়তন V হয়, তবে

$$V = V_0 \left(1 + \frac{\theta}{273} \right)$$

- 273°C তাপমাত্রায় উক্ত গ্যাসের আয়তন, $V_{-273} = V_0 \left(1 - \frac{273}{273} \right) = 0$

অর্থাৎ স্থির চাপে গ্যাসকে ঠান্ডা করে তার তাপমাত্রা — 273°C করলে আয়তন শৃন্য হবে। তাপমাত্রা আরও কমালে গ্যাসের আয়তন ঋণাত্মক হবে। কিন্তু ঋণাত্মক আয়তন অর্থহীন। অতএব সর্বনিম্ন তাপমাত্রা —273°C ! প্রকৃতপক্ষে এই তাপমাত্রা —273°16°C । কোন কিছুরই তাপমাত্রা এর অপেক্ষা কম হতে পারে না। শুধু পৃথিবীতে নয়, সৌরজগৎ তথা মহাবিশ্বে এর কম তাপমাত্রা কোথাও থাকতে পারে না। এজন্য —273°C তাপমাত্রাকে সর্বনিম্ন তাপমাত্রা বা পরম বা চরম শৃন্য তাপমাত্রা বা চরম শীতলতা (Absolute zero temperature) বলা হয়। কাজেই, স্থির চাপে এরুটি নির্দিন্ট ভরের কোন গ্যাসের তাপমাত্রা রুমশ ক্রমাতে থাকলে, চার্লসের সূত্রানুযায়ী যে তাপমাত্রায় পৌঁছে তার আয়তন শূন্য হয় ও গ্যাসের গতিশক্তি সম্পূর্ণরূপে লোপ পায় তাকে পরম

শূন্য তাপমাত্রা বলে।

যদি স্থির চাপে কোন গ্যাসের বিভিন্ন তাপমাত্রার আয়তন জেনে একটি লেখচিত্র অজ্ঞন করা যায়, তা হলে লেখচিত্রটি একটি সরলরেখা হবে [চিত্র ১১ ১]। ঐ সরলরেখাকে বর্ধিত করলে তা তাপমাত্রা অক্ষকে — 273°C-এ ছেদ করবে অর্ধাৎ — 273°C তাপমাত্রায় কোন গ্যাসেরই কোন আয়তন থাকে না।

গ্যাসের চাপীয় সূত্র হতেও আমরা পাই যে, -273° C তাপমাত্রায় যে কোন গ্যাসের চাপ শূন্য হবে। কারণ $P_{-273} = P_0 \left(1 - \frac{273}{273}\right) = 0$

পরম শূন্য তাপমাত্রা একটি গাণিতিক হিসাব মাত্র। মূলত এই তাপমাত্রা কোন গ্যাস ধার্মোমিটারে পাওয়া যায়নি।। কারণ প্রত্যেক গ্যাস এই তাপমাত্রায় পৌছার পূর্বে তরল বা কঠিনে পরিণত হয়। যেমন বায়ু —184°C এবং হাইড্রোজেন —269°C তাপমাত্রায় তরল হয়।

৩২৮

১১৬ তাপমাত্রার পরম স্কেন্স Absolute scale of temperature

পরম শূন্য তাপমাত্রাকে শূন্য ধরে তাপমাত্রার একটি স্কেন তৈরি হয়েছে, এর নাম তাপমাত্রার পরম বা চরম স্কেন। এই স্কেলে প্রতি ডিগ্রী তাপমাত্রার ব্যবধান সেলসিয়াস বা ফারেনহাইট যে কোন একটিতে হতে পারে।

পরম শূন্য তাপমাত্রাকে শূন্য ধরে তাপমাত্রার যে স্কেলে প্রতি ডিগ্রী তাপমাত্রার ব্যবধান এক ডিগ্রী সেন্টিগ্রেডের সমান করা হয়, তার নাম পরম সেলসিয়াস স্কেল। লর্ড কেলতিনের নামানুসারে এই স্কেলের তাপমাত্রাকে K (কেলভিন) দ্বার সূচিত করা হয়।

 $(- 273K ; 1^{\circ}C = (273 + 1)K ; 100^{\circ}C = (273 + 100)K$

 $\theta^{\circ}C = (273 + \theta)K$

 $(273 + \theta)$ K (क TK দ্বারা নির্দেশ করে পাওয়া যায়, T = $(273 + \theta)$

কেলভিনের স্কেল অনুযায়ী বরফের গলনাজ্ঞ 273K এবং পানির স্ফুটনাজ্ঞ 373K। আরও সোজাভাবে বলা যায়,

পরম সেলসিয়াস স্কেলের পাঠ = সেলসিয়াস পাঠ + 273

১১ ৭ স্থির চাপে গ্যাসের আয়তন প্রসারাজ্ঞ

Co-efficient of volume expansion of a gas at constant pressure

সংজ্ঞা ঃ স্ধির চাপে 0°C তাপমাত্রার নির্দিষ্ট ভরের গ্যাসের তাপমাত্রা 0°C থেকে প্রতি ডিগ্রী সেলসিয়াস বৃষ্ণির ফলে ঐ গ্যাসের প্রতি একক আয়তনে যে প্রসারণ ঘটে তাকে স্ধির চাপে গ্যাসের আয়তন প্রসারাক্ষ বা আয়তন প্রসারণ সহগ (ү,) বলে।

ব্যাখ্যা : ধরা যাক, 0°C তাপমাত্রায় কোন গ্যাসের আয়তন V_0 এবং θ° C তাপমাত্রায় ঐ গ্যাসের আয়তন V। অতএব সংজ্ঞানুসারে গ্যাসের আয়তন প্রসারাজ্ঞ (γ_p) ,

$$\gamma_{p} = \frac{V - V_{0}}{V_{0} (\theta - 0)} = \frac{V - V_{0}}{V_{0} \theta}$$
(6)

বায়ুর জন্য γ_p -এর মান 0.00366°C⁻¹ বলতে বুঝায় যে চাপ স্থির রেখে 0°C তাপমাত্রার 1 m³ বায়ুর তাপমাত্রা 1°C বাড়ালে এর আয়তন 0.00366 m³ বাড়ে।

১১৮ স্থির আয়তনে গ্যাসের চাপ প্রসারাজ্ঞ

Co-efficient of pressure expansion of a gas at constant volume

সংজ্ঞা ঃ স্ধির আরতনে 0°C তাপমাত্রার নির্দিষ্ট ভরের গ্যাসের তাপমাত্রা 0°C থেকে প্রতি ডিপ্রী সেলসিয়াস বৃন্ধির ফলে এ গ্যাসের প্রতি একক চাপের যে বৃন্ধি ঘটে তাকে স্ধির আরতনে গ্যাসের চাপ প্রসারাক্ষ বা গ্যাসের চাপ প্রসারণ সহগ (ү,) বলে,

র্যাখ্যা ঃ ধরা যাক 0°C তাপমাত্রায় কোন গ্যাসের চাপ P₀ এবং θ°C তাপমাত্রায় ঐ গ্যাসের চাপ P। জ্ঞতএব সংজ্ঞানুসারে গ্যাসের চাপ প্রসারাজ্ঞ _{Yv},

$$\gamma_v = \frac{\mathbf{P} - \mathbf{P}_0}{\mathbf{P}_0 (\theta - 0)} = \frac{\mathbf{P} - \mathbf{P}_0}{\mathbf{P}_0 \theta}$$
(7)

স্থির আয়তনে বায়ুর চাপ প্রসারাক্ষ 0.003666 °C⁻¹ বলতে বুঝায় যে আয়তন স্থির রেখে 0°C তাপমাত্রায় একক চাপের (1 Pa) বায়ুর তাপমাত্রা 1°C বাড়ালে এর চাপ 0.003666 Pa বাড়ে।

১১ ৯ গ্যাস সুত্রের সমন্বয় এবং আদর্শ গ্যাস সমীকরণ প্রতিপাদন Combination of the laws of gases and deduction of ideal gas equation

সূচনা ঃ আদর্শ গ্যাসের চাপ, আয়তন এবং পরম তাপমাত্রার মধ্যে একটি সম্পর্ক আছে যা একটি সমীকরণের সাহায্যে প্রকাশ করা হয়। এই সমীকরণটির নাম আদর্শ গ্যাস সমীকরণ (Ideal Gas Equation)। সমীকরণটি নিম্নে প্রতিপাদন করা হল।

মনে করি কোন নির্দিষ্ট পরিমাণ গ্যাসের চাপ, আয়তন এবং পরম তাপমাত্রা যথাব্রুমে P, V এবং T। তাপমাত্রা স্থির থাকলে বয়েল-এর সূত্রানুসারে আমরা পাই,

$$V \propto \frac{1}{P}$$
 (A)

আবার চাপ স্থির থাকলে চার্লস-এর সূত্রানুসারে আমরা পাই,

V∝T

সুতরাং সমীকরণ (A) এবং সমীকরণ (B) হতে P এবং T উত্তয়েই এক সঙ্গো পরিবর্তিত হলে যুগাতেদের উপপাদ্য হতে আমরা পাই,

$$V \propto \frac{T}{P}$$

$$\exists I, \quad V = \underline{\xi} \underline{q} \overline{\varphi} \times \frac{T}{P}$$

$$\exists I, \quad V = K. \frac{T}{P}$$

$$\exists I, \quad PV = KT$$

$$\exists I, \quad \frac{PV}{T} = K (\underline{\xi} \underline{q} \overline{\varphi})$$
(8)

এখন, T_1 , T_2 , T_n তাপমাত্রায় ঐ একই ভর গ্যাসের আয়তন এবং চাপ যথাব্রুমে V_1 , P_1 , V_2 , P_2 এবং V_n , T_n হলে সমীকরণ (8) অনুসারে আমরা পাই,

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} = \dots = \frac{P_n V_n}{T_n} = K (\mathfrak{A} \mathfrak{P} \mathfrak{P})$$
(9)

অর্থাৎ সমীকরণ (৪) হতে পাই,

PV = KT

(10)

(11)

(12)

(B)

উক্ত সমীকরণে K-কে গ্যাস ধ্র্বক এবং PV ও T-কে গ্যাসের অবস্থার উপাদান বলে। K-এর মান গ্যাসের পরিমাণের উপর নির্ভর করে। একই চাপ এবং তাপমাত্রায় এক মোল (1 mole) অর্ধাৎ এক গ্রাম অণু ভরের সকল গ্যাসের আয়তন সমান এবং এর মান 22.4 × 10⁻³ m³। ফলে K-এর মান এক মোল ভরের সকল গ্যাসের ক্বেত্রে সমান হয়। এই কারণে এক গ্রাম অণু গ্যাসের জন্য তার অবস্থার সমীকরণে K-এর পরিবর্তে R লেখা হয়। R এর মান সকল গ্যাসের ক্বেত্রে সমান, গ্যাসের প্রকৃতির উপর নির্ভর করে না। এজন্য R-এর নাম সর্বজনীন গ্যাস ধ্র্বক (Universal gas constant) বা মোলার গ্যাস ধ্র্বক (Molar gas constant)। অতএব এক গ্রাম অণু গ্যাসের ক্বেত্র আমরা পাই,

PV = RT

এখানে R একটি ধ্রবক। এখন P, V এবং T এর মধ্যে দুটি রাশি জানা থাকলে ভৃতীয়টির মান বের করে গ্যাসের অবস্থা সম্পূর্ণ জানা যায়।

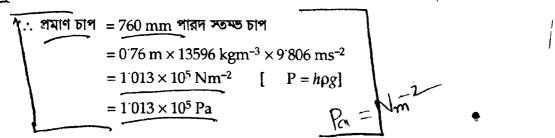
এক মোল গ্যাসের পরিবর্তে n মোল গ্যাসের কথা বিবেচনা করা হলে R-এর পরিবর্তে nR লিখতে হবে।

আমরা পাই

PV = nRT

এটিই হল আদর্শ গ্যাসের সাধারণ সমীকরণ। একে বয়েল এবং চার্লস্ এর স্ত্রের সমন্বয় সমীকরণও বলা হয়।

$$n =$$
 মোল সংখ্যা = $\frac{$ গ্রামে গ্যাসের ভর $\frac{1}{2}$ গ্রামে তার আণবিক ভর


$$\mathbf{PV} = \frac{m}{M} \times \mathbf{RT}$$
(13)

যে সকল গ্যাস সমাকরণ (12) মেনে চলে তাদেরকে আদশ গ্যাস বলে। সুতরাং, আদশ গ্যাসের নিম্নোক্ত সংজ্ঞা দেয়া যেতে পারে।

সংজ্ঞা : যে সকল গ্যাস সকল তাপমাত্রা এবং চাপে বয়েল ও চার্লস-এর সূত্র মেনে চলে তাদেরকে আদর্শ গ্যাস বলে। তবে বাস্তবে নিম্নচাপ ও উচ্চ তাপমাত্রা ছাড়া কোন প্রকৃত গ্যাসই আদর্শ গ্যাস সমীকরণ মেনে চলে না। তবে কিছু গ্যাস যেমন হাইড্রোজেন, অক্সিজেন ইত্যাদি বিশেষ অবস্থায় আদর্শ গ্যাসের ন্যায় আচরণ করে।

প্রমাণ বা স্বাতাবিক তাপমাত্রা ঃ প্রমাণ বা স্বাভাবিক চাপে (760 mm পারদ স্তম্ভ চাপ) যে তাপমাত্রায় বরফ গলে পানিতে <u>পরিণত হয় বা পানি জমে বরফে পরিণত হয় সেই</u> তাপমাত্রাকে প্রমাণ বা স্বাভাবিক তাপমাত্রা বলে। সেলসিয়াস স্কেলে এটি <u>0°C এবং</u> পরম বা এস. আই. এককে 273[°]16 K।

প্রমাণ বা খাডাবিক চাপ : সমুদ্র পৃষ্ঠে 45° অক্ষাংশে 0°C বা 273'16 K তাপমাত্রায় উল্লম্বভাবে অবস্থিত 760 mm উচ্চতাবিশিষ্ট শুক্ষ ও বিশুন্দ পারদ স্তম্ভ যে চাপ দেয় তাকে প্রমাণ বা স্বাডাবি<u>ক চাপ</u> বলে।

R-এর অর্থ, একক এবং মান 77.77 Meaning, unit and value of R

যে কোন গ্যাসের ভর এক গ্রাম মোল হলে, সকল গ্যাসের ক্ষেত্রে K-এর মান সমান হয় এবং ধুবক K-কে R দ্বারা প্রকাশ করা হয়। সে জন্য R-কে সর্বজনীন গ্যাস ধ্রবক বলা হয়।

(ক) R-এর অর্থ : n মোল গ্যাসের কেত্রে আমরা পাই,

$$PV = nRT$$

$$R = \frac{PV}{T} = \frac{PV}{P} = \frac{PV}{P}$$

$$\frac{PV}{nT} = \frac{1}{(x) \pi \sqrt{1 + 1} \sqrt{2}}$$
(14)

উক্ত সমীকরণ হতে R-এর নিম্বলিখিত সংজ্ঞা দেয়া যায়—

সংজ্ঞা : এক মোল আদর্শ প্যাসের তাপমাত্রা এক ডিগ্রী বাড়ালে তা যে পরিমাণ কাজ সম্পন্ন করে তাকে সর্বস্থনীন গ্যাস ধ্রুবক বলে। এটিই হল R-এর অর্থ বা তাৎপর্য।

(খ) R-এর একক ঃ আমরা জানি,

এস. আই. পন্ধতিতে কাজ বা শক্তির একক = **জুল**, n-এর একক মোলসংখ্যা এবং তাপমাত্রার একক = **কেলাউন** (K)।

উচ্চ মাধ্যমিক পদার্থবিজ্ঞান BG & JEWEL

এস. আই. পম্বতিতে R-এর একক হল জুল কেলতিন⁻¹ মোল⁻¹ (JK⁻¹ mole⁻¹)। এককের বিভিন্ন পম্বতিতে R-এর একক বিভিন্ন হবে।

(গ) R- এর মান ঃ এস. আই. পম্বতিতে স্বাভাবিক তাপমাত্রা এবং চাপে (N. T. P)

P = 1 বায়ুমন্ডলীয় চাপ = 1.013×10^5 নিউটন/বর্গমিটার (Nm⁻²),

1 মোল গ্যাসের আয়তন V = 22.4×10^{-3} ঘনমিটার (m³) এবং তাপমাত্রা T = 273.16K

$$R = \frac{PV}{nT} = \frac{1.013 \times 10^5 \times 22.4 \times 10^{-3}}{1 \times 273.16} = 18.314 \text{ JK}^{-1} \text{ mole}^{-1} (\ensuremath{\mathfrak{P}}\ensuremath{\mathfrak{P}}\ensuremath{\mathfrak{P}}\ensuremath{\mathfrak{P}}\ensuremath{\mathfrak{I}}\ensuremath{\mathfrak{P}}\ensurema$$

১১ ১২ গ্যাসের ঘনত্বের সমীকরণ Equation of density of a gas

ধরা যাক ${f T}_1{f K}$ পরম তাপমাত্রায় m ভরের কোন গ্যাসের আয়তন ${f V}_1$, চাপ ${f P}_1$ ও ঘনত্ব ${f
ho}_1$ এবং ${f T}_2{f K}$ পরম তাপমাত্রায় তার আয়তন V_2 , চাপ P_2 ও ঘনত্ ρ_2 । গ্যাসটি তার অবস্থার সমীকরণ মেনে চললে,

$$\frac{P_{1}V_{1}}{T_{1}} = \frac{P_{2}V_{2}}{T_{2}}$$

$$\boxed{P_{1}V_{1}}_{T_{1}} = \frac{P_{2}}{T_{2}} \cdot \frac{m}{\rho_{2}} \qquad \rho_{1} = \frac{m}{V_{1}} \cdot \left(\frac{1}{\rho_{1}T_{1}} - \frac{P_{2}}{\rho_{2}T_{2}} - \frac{1}{\rho_{2}} \right) = \frac{1}{\rho_{1}T_{1}} \cdot \left(\frac{P_{1}}{\rho_{2}} - \frac{P_{2}}{\Gamma_{2}} - \frac{1}{\rho_{2}} \right) = \frac{1}{\rho_{1}} \cdot \left(\frac{1}{\rho_{1}} - \frac{P_{2}}{\rho_{2}} - \frac{1}{\rho_{2}} - \frac{1}{\rho_{2}} \right) = \frac{1}{\rho_{1}} \cdot \left(\frac{1}{\rho_{1}} - \frac{1}{\rho_{2}} - \frac{1}{\rho_{2}} - \frac{1}{\rho_{1}} \right)$$

$$(15)$$

$$(15)$$

$$(16)$$

সুতরাং স্বির চাপে একটি নির্দিষ্ট ভরের কোন গ্যাসের ঘনত্ব তার পরম তাপমাত্রার ব্যস্তানুপাতিক।

(খ)
$$T_1 = T_2$$
 হলে, $\frac{P_1}{\rho_1} = \frac{P_2}{\rho_2}$
 $P_1 = \frac{\rho_1}{\rho_2}$
 $P_2 = \frac{\rho_1}{\rho_2}$
কাজেই, স্থির তাপমাত্রায় একটি নির্দিষ্ট ভরের কোন গ্যাসের চাপ তার খনত্ত্বে সমানুপাতিক।
(17)

১১ ১৩ গ্যাসের গতিতত্ত্ব Kinetic theory of gases

সকল গ্যাসই মোটামুটি বয়েল, চার্লস এবং চাপের সূত্র মেনে চলে। এজন্য সকল গ্যাসের একটি সাধারণ গঠন আছে বলে ধরে নেয়া যায়। সকল গ্যাসই তথা সকল বস্তুই অসংখ্য অণুর সমস্টি। এ অণুগুলো অবিরাম গতিশীল অবস্থায় থাকে। তাপমাত্রা বৃদ্ধি পেলে তাদের গতিশক্তি বৃদ্ধি পায়। কঠিন পদার্ধের অণুগুলো খুবই ঘন সনিবিষ্ট থাকায় সংসক্তি বল অধিক। এর ফলে কঠিন পদার্থের নির্দিষ্ট আকার ও আয়তন থাকে। তরল পদার্থের অণুগুলোর পারস্পরিক সংসক্তি বল অপেক্ষাকৃতি কম। ফলে এদের নির্দিষ্ট আকার থাকে না, কিন্তু আয়তন থাকে। গ্যাসের অণুগুলোর মধ্যে সংসক্তি বল একেবারে নেই বললেই চলে। ফলে গ্যাসের অণুগুলো স্বাধীনভাবে চলাচল করতে পারে। তাই গ্যাসীয় পদার্থের নির্দিশ্ট কোন জাকার বা জায়তন নেই।

বইঘুর.কম

ডেন্ডী, স্থুল, রামফোর্ড প্রমুখ বিজ্ঞানী বিভিন্ন পরীক্ষা দারা প্রমাণ করেছেন যে, তাপ এক প্রকার শক্তি এবং পদার্থ কণার গতির ফলেই তাপ সৃষ্টি হয়। তা হলে দেখা যাচ্ছে, তাপ হল গতির একটি বিশেষ রূণ। অতএব গ্যাসের গতিশীলতার জন্য তাপ উৎপন্ন হয়। এটি হল গ্যাসের গতিতন্ত্ব। গ্যাসের গতিতন্ত্ব হতে গ্যাসের গতির প্রকৃতি এবং উদ্ধৃত তাপের মধ্যে সম্পর্ক জানা যায়।

1730 খ্রিস্টান্দে বিজ্ঞানী বার্ণোলি (Bernoulli) সর্বপ্রথম গ্যাসের গতিতত্ত্বের সাহায্যে গ্যাসের সূত্রাবলি ব্যাখ্যা করেন। এ কারণে বিজ্ঞানী বির্ণোলিকে গ্যাসের গতিতত্ত্বের জনক বলা হয়। কিন্তু 1860 খ্রিস্টান্দে ক্লসিয়াস, ম্যাক্সওয়েল, বোল্জম্যান, জিন, ভ্যান-ডার ওয়াল্স প্রমুখ বিজ্ঞানী গ্যাসের গতিতত্ত্বের প্রভূত উন্নতি সাধন করেন এবং এই তত্ত্বের সাহায্যে গ্যাসের নানার্প আচরণের সম্ভোষজনক ব্যাখ্যা প্রদান করেন।

১১ ১৩ ১ গ্যাসের গতিতত্ত্বের মৌলিক স্বীকার্যসমূহ

Fundamental Postulates of Kinetic theory of gases

গ্যাসের গতিতন্ত্ব সুপ্রতিষ্ঠিত করার জন্য কতগুলো পূর্বশর্ত গ্রহণ করা হয়েছিল। এগুলোকে মৌলিক স্বীকার্য বলা হয়। ক্লসিয়াস সর্বপ্রথম এই স্বীকার্যগুলো লিপিবন্ধ করেন। স্বীকার্যসমূহ নিম্নে উল্লেখ করা হল ঃ

১। সকল গ্যাসই ক্ষুদ্র ক্ষুদ্র অণু দ্বারা গঠিত। একটি গ্যাসের সকল অণু সমান ভরের এবং সদৃশ, কিন্তু বিভিন্ন গ্যাসের অণুগুলো ভিন্ন ভিন্ন। অণুগুলো নিউটনের গতিসূত্র মেনে চলে। উদাহরণম্বরূপ বলা যায়, হাইড্রোজেন গ্যাসের সকল অণু সদৃশ, অক্সিজেন গ্যাসের সকল অণু সদৃশ। কিন্তু হাইড্রোজেন গ্যাসের অণু এবং অক্সিজেন গ্যাসের অণু সদৃশ নয়।

৩। অণুগুলো সতত সঞ্চরণশীল, এদের মধ্যে কোন আকর্ষণ বা-বিকর্ষণ বল নেই। অণুগুলোর গতিবেগ সব দিকে প্রসারিত এবং ঐ বেগ শূন্য হতে অসীম পর্যন্ত বিস্তৃত হতে পারে।

৪। জণুগুলো পরস্পরের সাঁথে ও আধারের দেওয়ালের সাথে ধার্কা খাচ্ছে। দুটি ধার্কার মধ্যবর্তী সময়ে জণুগুলো সমবেগে সরলরেখা বরাবর চলে। পরপর দুটি ধার্কার মধ্যবর্তী দূরত্বকে মুক্ত পথ (free path) বলে।

প এ<u>কটি ধাৰুা সংঘটিত হতে যে সময় লাগে তা মুক্ত পথ অতিক্রম করার সময়ের তুলনায় অতি নগণ্য, তাই</u> ধাৰুাগুলো তাৎক্ষণিক। যেহেতু অণুগুলো সম্দূর্ণ স্থিতিস্থাপক গোলক, তাই ধাৰুার পূর্বে ও পরে এদের ভরবেগ ও গুতিশক্তি সংব্রক্ষিত থাকে।

্র্দে গ্যাসের অণুগুলো আধ্যরের সমগ্র আয়তনে মুক্তভাবে বিচরণক্ষম। গ্যাসের অণুগুলো অনবরত ধার্কা খেলেও স্থিতাবস্থায় (steady state) এক ঘন আয়তনে অণুর সংখ্যা অপ্ররিবর্তিত থাকে। অর্থাৎ আদর্শ গ্যাসের আণবিক ঘনতু সর্বদা স্থির থাকে।

এখানে উল্লেখ থাকে যে, গ্যাসের মৌলিক ষীকার্যগুলো যেসব গ্যাস সর্বতোভাবে মেনে চলে তাদেরকে জাদর্শ গ্যাস বলে। কিন্তু বাস্তব গ্যাস (Real gas) সকল ষীকার্য মেনে চলে না।

১১ ১৪ গড় বেগ, গড় বর্গবেগ এবং গড় বর্গবেগের বর্গমূল

Mean velocity, mean square velocity and root mean square velocity

কোন একটি বস্তু অসম বেগে গমন করলে মোট অতিক্রান্ত দূরত্ব এবং মোট সময়ের ভাগকলকে গড় বেগ বলে। আবার, দুই বা ডতোধিক বেগের গড় মানকে গড় বেগ বলে।

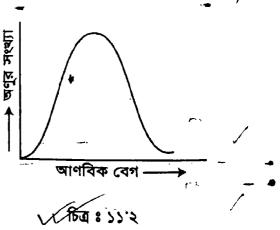
কিন্তু **দুই** বা **ভতোধিক বেগের বর্গের গড় মানকে গড় বর্গবেগ বলে**। মনে করি গ্যাসের *n* সংখ্যক অণুর বেগ যথাক্রমে $c_1, c_2, \ldots, c_3, \ldots \ldots c_n$ । অতএব তাদের

$$n_{\psi}(q_{n}), \quad c_{a} = \frac{c_{1} + c_{2} + c_{3} + \dots + c_{n}}{n}$$
(18)

গড় বর্গবেগ
$$c_a^2 = \frac{c_1^2 + c_2^2 + \dots + c_n^2}{n}$$
 (19)

পুনঃ দুই বা ততোধিক বেগের বর্গের গড় মানের বর্গমূলকে গড় বর্গবেগের বর্গমূল বা মূল গড় বর্গবেগ বলে। অতএব গড় বর্গবেগের বর্গমূল বা মূল গড় বর্গবেগ

$$c = \sqrt{c_n^2} = \sqrt{\frac{c_1^2 + c_2^2 + \dots + c_n^2}{n}}$$
 (20)


সাধারণত মূল গড় বর্গবেগ গড় বেগ অপেক্ষা বেশি মানের হয়। নিচের উদাহরণ থেকে বিষয়টি স্পষ্ট হবে। ধরা যাক চারটি অণুর বেগ যথাক্রমে 3, 4, 5 এবং 6 একক।

সুতরাং, এদের গড় বেগ,
$$\overline{c} = \frac{3+4+5+6}{4} = 4.5$$

এবং মূল গড় বর্গবেগ $\sqrt{\overline{c^2}} = \sqrt{\frac{3^2+4^2+5^2+6^2}{4}} = 4.64$

১১'১৫ আণবিক বেগের বন্টন Distribution of Molecular Velocities

যে কোন পরিমাণ গ্যাসে অসংখ্য অণু থাকে। অবিরাম সংঘর্ষের ফলে অণুগুলোর গতিবেগের তারতম্য হয় এবং অণুগুলো বিভিন্ন বেগে বিভিন্ন দিকে গতিশীল। সংঘর্ষের কারণে প্রতিনিয়ত প্রতিটি অণুর শক্তি ও বেগের পরিবর্তন ঘটে। ফলে অণুগুলোর শক্তি ও বেগের অবিরাম পুনর্বন্টন ঘটে। গ্যাসের গতিতত্ত্বে হিসেবের সুবিধার্ধে একটি স্থির তাপমাত্রায় অণুগুলো মূল গড় বর্গ বেগে ছুইছে ধরা হয়।

ম্যাক্সওয়েল 1860 সালে তাত্ত্বিক যুক্তির সাহায্যে গাণিতিক নিয়মে প্রমাণ করেন যে স্থিতাবস্থায় (steady state) একটি গ্যাসের শূন্য হতে অসীম বেগের কতগুলো অণু থাকবে তার সংখ্যা নির্ধারণ সম্তব। অণুগুলোর সংখ্যা ও এদের বেগের লেখচিত্র অচ্চকন করলে চিত্র ১১ ২-এর অনুরূপ হবে। লেখচিত্র পর্যালোচনা করলে দেখা যায় যে স্থির অণুর (c = 0) সংখ্যা যে কোন মুহূর্তে অত্যন্ত কম। আবার অধিক গজিলম্পন অণুর সংখ্যাও খুবই কম।

জত্যন্ত কম বেগ হতে শুরু করে বেগ ক্রমশ বাড়তে থাকলে এ বেগে গতিশীল কণার সংখ্যাও বাড়তে থাকে। নির্দিষ্ট তাপমাত্রায় একটি নির্দিষ্ট বেগের জণুর সংখ্যা সর্বাধিক হয় এবং এরপর জণুর সংখ্যা বেগ বৃষ্দির সাথে কমতে থাকে। বৃহন্তম জংশের এই গতিবেগকে এ তাপমাত্রায় সর্বাধিক সম্ভাব্য বেগ (most probable velocity) c_m বলা হয়। c_m-এর মান তাপমাত্রা বৃষ্দির সাথে বৃষ্দি পায়।

সুতরাং, অণুর তিন ধরনের বেগের সংগে আমরা পরিচিত। এগুলো হচ্ছে গড় বেগ (Cav), মূল গড় বর্গবেগ (Crms) এবং সর্বাধিক সম্ভাব্য বেগ (Cm), এদের অনুপাত নিমন্নপ ঃ

 $c_{rms}: c_{av}: c_m = 1^{\circ}22: 1^{\circ}12: 1^{\circ}0$

উদাহরণ **ঃ** ধরা যাক একটি নির্দিষ্ট তাপমাত্রায় 16টি অণুর বেগ বণ্টন ms⁻¹-এ যথাক্রমে 0, 1, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 7, 8। এদের গড়বেগ

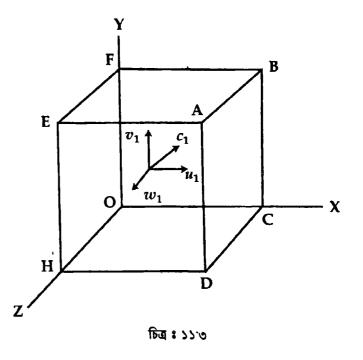
$$c_{av} = \frac{0+1+2+3+3+4+4+4+4+5+5+5+6+6+7+8}{16}$$

 $= 4.19 \text{ ms}^{-1}$

মূল গড় বগ বেগ

$$c_{\text{rms}} = c = \sqrt{\overline{c^2}} = \sqrt{\frac{0+1^2+2^2+3^2+4^2+4^2+4^2+4^2+5^2+5^2+5^2+6^2+6^2+7^2+8^2}{16}}$$
= 4.64 ms⁻¹

জণুগুলোর মধ্যে 4 ms^{-1} বেগের জণুর সংখ্যা সর্বাধিক। সুতরাৎ সর্বাধিক সম্ভাব্য বেগ $C_m = 4 \text{ms}^{-1}$ সূতরাৎ, দেখা যাচ্ছে $c_{rms} > c_{av} > c_m$ \downarrow


১১·১৬ গতিতত্ত্ব অনুসারে গ্যাসের চাপের সমীকরণ Expression for pressure exerted by a gas on the basis of kinetic theory of gases

ছয় তলবিশিষ্ট আদর্শ স্থিতিস্থাপক পদার্থের একটি ঘনাকৃতি ফাঁপা পাত্র নিই। মনে করি এটি ABCDEFOH [চিত্র ১১৩]। পাত্রটির প্রত্যেকটি বাহুর দৈর্ঘ্য । অতএব এর আয়তন V = l³।

ধরি পাত্রটি M ভরের একটি আদর্শ গ্যাস দারা পূর্ণ এবং গ্যাসের ঘনত্ত্ব ρ । মনে করি গ্যাসের অণুর সংখ্যা n এবং প্রত্যেকটি অণুর ভর m। উক্ত অণুগুলোর মধ্য হতে একটি অণু বিবেচনা করি যার বেগ c_1 [চিত্র ১১ ৩]। এই বেগকে OX, OY এবং OZ অক্ষ বরাবর যথাক্রমে u_1, v_1 এবং w_1 উপাংশে বিভাজন করি। অতএব আমরা লিখতে পারি,

 $c_1^2 = u_1^2 + v_1^2 + w_1^2$

মনে করি অণুটি OX বরাবর u_1 বেগে গিয়ে ABCD তলকে আঘাত করল। অণুর ভর m হলে OX অক্ষ বরাবর তার ভরবেগ = mu_1 । দেয়ালটির সাথে অণুর স্থিতিস্থাপক সংঘর্ষ ঘটে। ফলে অণুটি একই বেগে পশ্চাৎদিকে প্রতিক্ষিন্ত (rebound) বা ফেরত আসে। অতএব সংঘর্ষের পর এর ভরবেগ = — mu_1

অণুটির বেগের u_1 উপাৎশের দর্ন ভরবেগের পরিবর্তন $= mu_1 - (-mu_1)$ $= mu_1 + mu_1 = 2mu_1$

আবার ABCD তলে একবার ধার্কা খাবার পর EFOH তলে আর একবার ধার্কা খাবে। OX অক্ষ বরাবর অণুটির বেগ u_1 হওয়ায় ABCD তল হতে EFOH তলে আসতে এর সময় লাগে $\frac{1}{u_1}$ অর্ধাৎ $\frac{1}{u_1}$ সময় পর অণুটির বেগের u_1 উপাংশের দরুন তরবেগের পরিবর্তন = $2mu_1$

জণুটির বেগের u_1 উপাৎশের জন্য তরবেগের পরিবর্তনের হার = $\frac{\overline{\sqrt{2}mu_1}}{\overline{\sqrt{2}mu_1}}$ = $\frac{2mu_1}{l/u_1} = \frac{2mu_1^2}{l}$

অনুরূপভাগে গ্যাস অণুটির বেগের v_1 উপাংশের জন্য ভরবেগের পরিবর্তনের হার = $\frac{2mv_1^2}{l}$ এবং বেগের w_1 উপাংশের জন্য ভরবেগের পরিবর্তনের হার = $\frac{2mw_1^2}{l}$ BG & JEWEL

ঐ অণুর মোট ভরবেগের পরিবর্তনের হার
=
$$\frac{2mu_1^2}{l} + \frac{2mv_1^2}{l} + \frac{2mw_1^2}{l}$$

= $\frac{2m}{l}(u_1^2 + v_1^2 + w_1^2) = \frac{2mc_1^2}{l}$

দ্বিতীয় অণুর বেগ c2 হলে একইভাবে দেখান যায় যে, তার মোট ভরবেগের পরিবর্তনের হার

$$=\frac{2mc_2^2}{l}$$

n-তম অণুর বেগ C_n হলে, এর মোট ভরবেগের পরিবর্তনের হার $= \frac{2mc_n^2}{l}$ পাত্রস্থিত n সংখ্যক অণুর মোট ভরবেগের পরিবর্তনের হার

$$= \frac{2m}{l} (c_1^2 + c_2^2 + \dots + c_n^2)$$

$$= \frac{2mn}{l} \left(\frac{c_1^2 + c_2^2 + \dots + c_n^2}{n} \right)$$

$$= \frac{2mn}{l} c^2$$
[এখানে $c =$ গড় বর্গবেগের বর্গমূল = $\sqrt{\frac{c_1^2 + c_2^2 + \dots + c_n^2}{n}}$] (21)

কিন্তু নিউটনের দ্বিতীয় সূত্রানুযায়ী এই ভরবেগের পরিবর্তনের হার অণুগুলোর উপর বিভিন্ন দেয়াল কর্তৃক প্রযুক্ত রলের সমান। ঘনকটির দেয়ালের উপর ধাক্বাচ্চনিত চাপ P হলে ঘনকের ছয়টি দেয়ালের উপর মোট বল

$$= \mathbf{C} = \mathbf{C} = \mathbf{C} + \mathbf{D}$$
(22)

সমীকরণ (21) এবং সমীকরণ (22) হতে পাই,

$$6l^{2} \times P = \frac{2mnc^{2}}{l}$$

$$\overline{\mathbf{A}}_{l} = \frac{2mnc^{2}}{6l^{2} \times l} = \frac{mnc^{2}}{3l^{3}} - \frac{1}{3}\frac{mnc^{2}}{l^{3}}$$
(23)

$$\overline{al}, P = \frac{1}{3} \frac{mnc^2}{V}$$
 (24) [$l^3 = V$]

utility mn = M = All b es

মত এব
$$\left[P = \frac{1}{3} \frac{1}{V} \frac{1}{c^2} \right]$$

ম্বাবার $\frac{M}{V} = \rho = ঘনত্ব$

 $\frac{2}{3}E$

$$\therefore P = \frac{1}{3}\rho \overline{c^2}$$
 (25)

একক আয়তনে অণুগুলোর গড় গতিশক্তি,

$$\mathbf{E} = \frac{1}{2} \ \boldsymbol{\rho} \ \overline{c^2}$$

সমীকরণ (25)-কে লেখা যায়,

 $\rho \, \overline{c^2} = \frac{2}{3} \times \frac{1}{2} \, \rho \overline{c^2} =$

বইঘর কম অর্থাৎ, গ্যাসের চাপ এর একক আয়তনের অণুগুলোর গতিশক্তির দুই-তৃতীয়াংশ।

অতএব সমীকরণ (24) হতে সমীকরণ (26) পর্যন্ত প্রতিটি সমীকরণই গ্যাসের চাপের সমীকরণ বা রাশিমালা প্রকাশ করে।

১১:১৭ গ্যাসের গতিতত্ত্বের প্রয়োগ

Application of kinetic theory of gases

পদার্থবিজ্ঞানে গ্যাসের গতিতত্ত্বের বহুল প্রয়োগ পরিলক্ষিত হয়। প্রয়োগসমূহ নিম্নে আলোচনা করা হল-...

১। বয়েল-এর সূত্র (Boyle's law) ঃ গ্যাসের গতিতত্ত্বের সাহায্যে বয়েল-এর সূত্র প্রতিপাদন করা যায়। বয়েল-এর সূত্র অনুযায়ী <mark>সুষম তাপমাত্রায় একটি নির্দিষ্ট ভরের গ্যাসের আয়তন এর চাপের ব্যস্তানুপাতিক।</mark>

মনে করি T পরম তাপমাত্রায় একটি নির্দিষ্ট ভরের গ্যাসের আয়তন V এবং চাপ P

বয়েল-এর সূত্র হতে পাই,

P
$$\propto \frac{1}{V}$$
, যখন T স্থির থাকে
বা, P = ধ্রুব সংখ্যা $\times \frac{1}{V}$
বা, PV = ধ্রুব সংখ্যা
পুনরায় গতিতত্ত্ব অনুসারে গ্যাসের চাপ,
P = $\frac{1}{3} \frac{mnc^2}{V}$
বা, PV = $\frac{1}{3} mnc^2 = \frac{1}{2} M.c^2 = \frac{2}{3} \times \frac{1}{2} Mc^2 = \frac{2}{3} E$
(27)

এখানে, E = গ্যাস অণুসমূহের মোট গতিশক্তি

জণুসমূহের গতিশীলতার দরুন কোন বস্তু তাপ প্রান্ত হয় অর্থাৎ তাপ গতিরই একটি ভিন্ন রূপ। তাপমাত্রা স্থির থাকলে নির্দিষ্ট ভরের গ্যাসের তাপের পরিমাণ স্থির থাকে। ফলে মোট গতিশক্তিও স্থির থাকে। অতএব স্থির তাপমাত্রায় মোট গতিশক্তি K. E. = $\frac{1}{2}mnc^2$ = ধ্রুব সংখ্যা।

পুনঃ, তাপমাত্রা স্থির থাকলে PV = ধ্রুব সংখ্যা। এটিই হল বয়েল-এর সূত্র। গ্যাসের গতিতত্ত্ব হতে এটি প্রমাণিত হল।

২। আদর্শ গ্যাসের সমীকরণ (Perfect gas equation) **ঃ** গ্যাসের গতিতত্ত্ব হতে আদর্শ গ্যাস সমীকরণ প্রতিপাদন করা যায়।

গ্যাসের গতিতত্ত্ব অনুযায়ী, কোন গ্যাসের তাপশক্তি তার অণুগুলোর গতিশক্তির ফলশুতি। পরম শৃন্য তাপমাত্রায় কোন গ্যাসের অণুগুলোর তাপশক্তি শূন্য হয়। ফলে গ্যাসের অণুগুলোর গতিশক্তি এবং গড় বর্গবেগের বর্গমূল-এর মানও শূন্য হয়। কোন গ্যাসে তাপ প্রয়োগ করলে, এটি গ্যাসের অণুসমূহের গতিশক্তি হিসেবে প্রকাশ পায়।

K.E.
$$=\frac{1}{2}mnc^2 = \frac{1}{2}Mc^2$$
 (28)

এখানে, m= প্রতিটি অণুর ভর, n = অণুর সংখ্যা, c = গড় বর্গবেগের বর্গমূল এবং M = mn = গ্যাসের ভর। আমরা পূর্বেই দেখেছি যে, কোন গ্যাসের ক্ষেত্রে অণুর গড় গতিশক্তি পরম তাপমাত্রার সমানুপাতিক। আমরা পাই,

$$\frac{1}{2}$$
 mnc² ∝ T; বা, $\frac{1}{2}$ Mc² ∝ T; বা, $\frac{1}{2}$ Mc² = KT
এখানে K = সমানুপাতিক ধ্রুবক।

প**দার্থবিজ্ঞান** (১ম)–৪৩

কিন্তু গ্যাসের চাপের রাশিমালা হতে আমরা পাই,

$$P = \frac{1}{3} \frac{mnc^2}{V} = \frac{1}{3} \frac{Mc^2}{V}$$

বা, $PV = \frac{1}{3} Mc^2 = \frac{2}{3} \times \frac{1}{2} Mc^2 = \frac{2}{3} KT$
বা, $PV = RT$ (29)
এখানে, $R = \frac{2}{3} K = একটি ধ্ব সংখ্যা।$

PV = RT সমীকরণকে আদর্শ গ্যাসের সমীকরণ বলে।

এখানে উল্লেখ থাকে যে, V = এক গ্রাম অণু গ্যাসের আয়তন। যদি n গ্রাম অণু গ্যাস বিবেচনা করা হয়, তবে আদর্শ গ্যাস সমীকরণ হয় PV = nRT। **গ্যাসের গতিতত্ত্ব হতে এটি প্রমাণিত হল।**

বাস্তব গ্যাস আদর্শ গ্যাসের অবস্থার সমীকরণ PV = RT সর্বদা মেনে চলে না। শুধুমাত্র উচ্চ তাপমাত্রা এবং নিম্ন চাপে বাস্তব গ্যাস আদর্শ গ্যাস সমীকরণ অনুসরণ করে।

ষাভাবিক তাপমাত্রা ও চাপে বাস্তব গ্যাস আদর্শ গ্যাস সমীকরণ অনুসরণ না করার মূল কারণ নিমন্ত্রণ ঃ

গতিতন্ত্ব থেকে আদর্শ গ্যাস সমীকরণ প্রতিপাদন করার সময় গ্যাস অণুগুলিকে শুধুমাত্র ভর বিন্দু (mass point) ধরা হয়। অর্থাৎ অণুগুলোর আয়তন বিবেচনা করা হয়নি। এছাড়া গ্যাস অণুগুলোর মধ্যকার আকর্ষণ বল বিবেচনা করা হয়নি। বিখ্যাত ওলন্দাজ পদার্থবিদ ভ্যানডার ওয়ালস (Van der Waals) গ্যাস অণুগুলোর সীমিত আকার এবং এদের মধ্যকার মধ্যে আন্তঃআণবিক বল বিবেচনা করে আদর্শ গ্যাস সমীকরণটি নিম্নরূপ সংশোধন করেন ঃ

$$\left(P + \frac{a}{V^2}\right)(V - b) = RT$$
(30)

এখানে a ও b রাশিদ্বয় যে কোন নির্দিষ্ট গ্যাসের জন্য ধ্রুব, তবে সব গ্যাসের জন্য একই মানের নয়। ৩। চার্লস-এর সূত্র (Charles's law) ঃ P = চাপ, V = আয়তন, R = গ্যাস ধ্রুবক এবং T = গ্যাসের পরম তাপমাত্রা হলে আদর্শ গ্যাসের সমীকরণ হতে পাই,

PV = RT. এখন চাপ স্থির থাকলে,

$$\frac{V}{T} = \frac{R}{P} =$$
ध्र সংখ্যা বা, V = ध्र সংখ্যা × T
V ∝ T

<u>অর্ধাৎ চাপ স্থির থাকলে নির্দিন্ট পরিমাণ গ্যাসের আয়তন এর পরম তাপমাত্রার সমানুপাতিক। এটিই</u> চার্লস-এর সূত্র। অতএব গ্যাসের গতিতত্ত্ব হতে চার্পস-এর সূত্র প্রমাণিত হল।

8। চাপের সূত্র (Law of pressure) : আদর্শ গ্যাসের সমীকরণ হতে আমরা পাই, PV = RTআমরা আরও জানি, $PV = \frac{1}{3} Nmc^2$, এখানে N = এক গ্রাম-অণু গ্যাসের অণুর সংখ্যা যাকে অ্যাভোগ্যাড্রো সংখ্যা বলে। N = 6.0222 × 10²⁶ অণু/কিলোমোল। m = একটি অণুর জর = $\frac{M}{N}$ । $\frac{1}{3} Nmc^2 = RT$ বা, $mc^2 = 3 \frac{R}{N} T = 3KT$, এখানে K = বোল্জম্যান ধ্রবক = 1.381 × 10⁻²³ J K⁻¹।

100

ডাপ ও গ্যাস

বইঘর.কম

বর্ণনা অনুযায়ী 2 kg হাইড্রোজেনে, 32 kg অক্সিজেনে, 28 kg নাইট্রোজেন, 12 kg কার্বনে প্রত্যেক ক্ষেত্রে 6[.]0222 ×10²⁶ অণু থাকবে।

$$PV = \frac{1}{3} Nmc^2 সমীকরণ হতে পাই$$

$$PV = \frac{1}{3} N \times 3KT = NKT$$
(31)

উপরের সমীকরণে N ও K ধ্রুব সংখ্যা। অতএব স্থির আয়তনে, P ∞ T.

আয়তন স্ধির ধাকলে নির্দিষ্ট পরিমাণ গ্যাসের চাপ পরম তাপমাত্রার সমানুপাতিক। এটিই হল

চাপের সূত্র। অতএব গতিতত্ত্ব হতে চাপের সূত্র প্রমাণিত হল।

৫। অ্যাতোগ্যাড্রোর সূত্র (Avogadro's law) ঃ 'একই ডাপমাত্রা ও চাপে সম আয়তনের সৰুল গ্যাসে সমান সংখ্যক অণু থাকে।' এটিই অ্যাতোগ্যাড্রোর সূত্র।

একই পরম তাপমাত্রা T, আয়তন V ও চাপ P-এ দুটি গ্যাস বিবেচনা করি। প্রথম গ্যাসের অণুর সংখ্যা n_1 এবং প্রতিটি অণুর তর m_1 । যদি এর গড় বর্গবেগের বর্গমূল c_1 হয়, তবে এর গতিশক্তি,

 $E_1 = \frac{1}{2} m_1 c_1^2$

ধরি দ্বিতীয় গ্যাসের অণুর সংখ্যা n_2 এবং প্রতিটি অণুর ভর $m_2 \mid c_2$ এর গড় বর্গবেগের বর্গমূল হলে গতিশক্তি,

$$\mathbf{E}_2 = \frac{1}{2} \, m_2 c_2^2$$

কিন্তু গ্যাস দুটি একই তাপমাত্রায় থাকায় এদের গতিশক্তি সমান।

আমরা পাই,

	$\mathbf{E}_1 = \mathbf{E}_2$		
বা,	$\frac{1}{2}m_1c_1^2 = \frac{1}{2}m_2c_2^2$	1	(32)

গ্যাসের গতিতত্ত্ব হতে প্রথম গ্যাসের জন্য পাই,

$$PV = \frac{1}{3}m_1n_1c_1^2$$

এবং

দ্বিতীয় গ্যাসের জন্য পাই,

$$PV = \frac{1}{3}m_2n_2c_2^2$$

$$\frac{1}{3}m_1n_1c_1^2 = \frac{1}{3}m_2n_2c_2^2$$
(33)

উপরের দুটি সমীকরণ হতে পাই,
$$\frac{\frac{1}{3}m_1n_1c_1^2}{\frac{1}{2}m_1c_1^2} = \frac{\frac{1}{3}m_2n_2c_2^2}{\frac{1}{2}m_2c_2^2}$$

বা,
$$n_1 = n_2$$

(34)

অতএব প্রমাণিত হল যে, একই তাপমাত্রায় এবং চাপে সমান আয়তনের সকল গ্যাসে সমান সংখ্যক অণু থাকে। এটিই হল অ্যাতোগ্যাদ্রোর সূত্র।

>> >৮ এক গ্রাম অণু গ্যাসের গতিশক্তি

Kinetic energy per gram-molecule of a gas

আণবিক ওন্ধন গ্রামে, প্রকাশিত হলে একে গ্রাম-অণু বলে। এখন আমরা এক গ্রাম-অণু গ্যাসের গতিশস্তির সমীকরণ বের করব।

আমরা জানি,

$$PV = \frac{1}{3}Mc^2$$
(35)

BG & JEWEL

এখনে M = এক গ্রাম-জণু গ্যাসের ভর।
আদর্শ গ্যাসের বেলায় আমরা জানি,

$$PV = RT$$
 (36)
এখানে V = এক গ্রাম-জণু গ্যাসের আয়তন এবং R = সর্বজনীন গ্যাস ধ্রবক।
সমীকরণ (29) হতে পাই,
 $\frac{1}{3}Mc^2 = RT$ (37)
 $\therefore c = \sqrt{\frac{3RT}{M}}$ (38)

এখানে c হচ্ছে গড় বর্গবেগের বর্গমূল।

যেহেতু R ও M ধ্রুবক, অতএব গ্যাস অণুর গড় বর্গবেগ গ্যাসের পরম তাপমাত্রার সমানুপাতিক। আবার, সমীকরণ (37)-এর উভয় পার্শ্বকে $rac{3}{2}$ দ্বারা গুণ করলে পাই,

$$\frac{1}{2} Mc^2 = \frac{3}{2} RT = K. E.$$
 (39)
T-পরম তাপমাত্রায় এক গ্রাম-অণু গ্যাসের রৈষিক গতিশক্তি $\frac{3}{2} RT$ -এর সমান।

১১'১৯ গতিতত্ত্ব হতে তাপমাত্রার ব্যাখ্যা

Interpretation of temperature from kinetic theory of gases

আমরা জানি,

$$c = \sqrt{\frac{3RT}{M}}$$
 এখানে, $\frac{3R}{M} =$ ধ্ব সংখ্যা।
 $\therefore c \propto \sqrt{T}$ (40)
 $\frac{aq}{c^2 \propto T}$ (41)
সমীকরণ (40) এবং (41) হতে বলা যায়— গুড় বর্গবেগের বর্গমূল পরম তাপমাত্রার বর্গমূলের

সমানুপাতিক এবং গড় বর্গবেগ পরম তাপমাত্রার সমানুপাতিক।

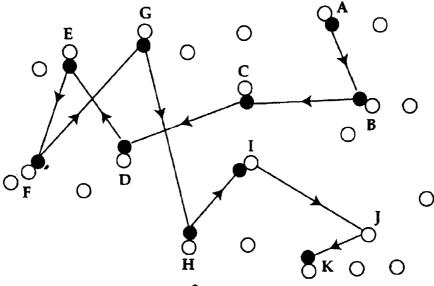
যখন T = 0, তখন $c^2 = 0$ এবং c = 0

সুতরাং <u>পরম তাপমাত্রা হল এমন এক তাপমাত্রা যে তাপমাত্রায় গ্যাস অণুগু</u>লোর রৈষিক বেগ শূন্য হবে অর্ধাৎ অণুগুলো স্থির <u>হয়ে যাবে</u>।

এখন সমীকরণ (39) হতে পাই,

$$\frac{1}{2}Mc^2 = \frac{3}{2}RT$$
উভয় পার্শ্বকে N দ্বারা ভাগ করে পাই, $\frac{1}{2}\frac{M}{N}c^2 = \frac{3}{2}\frac{R}{N}T$
(42)

এখানে <u>N হল জ্যাতোগ্যাড্রো সংখ্যা (Avogadro's number)।</u> জ্যাতোগ্যাড্রো সংখ্যা বলতে এক গ্রাম-অণু গ্যাসে অণুর সংখ্যাকে বুঝায়।

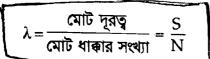

কিন্তু
$$\frac{M}{N} = m$$
 এবং $\frac{R}{N} = K$
এখানে K হচ্ছে বোল্জম্যান ধ্রবক (Boltzmann's constant) | এর মান = 1.38 × 10⁻²³ J K⁻¹
: সমীকরণ (42) হর্তে জামরা পাই,
 $\frac{1}{2}mc^2 = \frac{3}{2} KT$ (43)
অধাৎ একটি জণুর গতিশক্তি = $\frac{3}{2} \times$ বোল্জম্যান ধ্রবক × পরম তাপমাত্রা ।

বইঘর.কম

সুতরাং কোন নির্দিষ্ট ভরের গ্যাসের ক্ষেত্রে একটি অণুর গতিশক্তি পরম তাপমাত্রার সমানুপাতিক অর্ধাৎ গ্যাসের সুষম তাপমাত্রার মূল কারণ এর অণুগুলোর মধ্যে গতিশক্তির সুষম বণ্টন। গড় গতিশক্তি বৃদ্ধি পেলে তাপমাত্রা বৃদ্ধি পাবে। আবার গড় গতিশক্তি হ্রাস পেলে তাপমাত্রা হ্রাস পাবে। অতএব পরম শূন্য তাপমাত্রায় অণুর গতিশক্তি শূন্য হবে। এটিই হল গতিতন্ত্ব অনুযায়ী তাপমাত্রার ব্যাখ্যা।

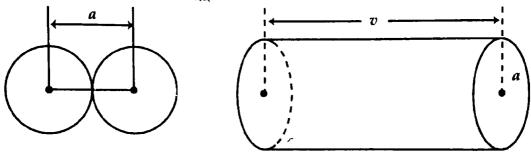
১১.২০ গড় মুক্ত পথ Mean free path

গ্যাসের গতিতন্ত্ব হতে আমরা জ্ঞানি যে, গ্যাসের অণুগুলো অবিরত বিক্ষিপ্ত গতিতে চারদিকে ছুটাছুটি করছে এবং পরস্পরের সাথে ও আধারে দেয়ালের সাথে ধাক্বা খাচ্ছে। অণুগুলোর পরস্পরের মধ্যে কোন আকর্ষণ বল নেই।


তাই তাদের বেগ অপরিবর্তিত থাকে। পর পর দুটি ধার্কার ভিতর অণুগুলো সরদরেখায় যডটুকু পথ গমন করে তাকে মুক্ত পথ (free path) বলে। চিত্রে A একটি অণু। এটি অপর একটি অণু B-কে ধার্কা দিয়ে BC পথে চলে গেল এবং C স্থানে গিয়ে অপর একটি অণুর সাথে ধারকা খেল। অণুটি যদি D স্থানে গিয়ে অপর একটি অণুর সাথে, E স্থানে গিয়ে আর একটি অণুর সাথে ধারকা খায় ইত্যাদি [চিত্র ১১ ৪] তাহলে BC, CD, DE হল এক একটি মুক্ত পথ। এই মুক্ত পথের দৈর্ঘ্য সকল সময় সমান হয় না। সেজন্য গড় মুক্ত পথ নেয়া হয়। পর পর ধারাগুলোর ভিতর একটি অণু যে গড় দূরত্ব অতিক্রম করে তাকে গড় মুক্ত পথ বলে।

ধরি, A হতে B-এর দূরত্ব =
$$S_1$$

B হতে C-এর দূরত্ব = S_2
C হতে D-এর দূরত্ব = S_3 ,
যদি মোট S দূরত্ব অতিক্রান্তে N সংখ্যক ধারা সংঘটিত হয়, তবে এ গ্যাস অণুর গড় মুব্তু পথ,
 $\lambda = \frac{S_1 + S_2 + S_3 + \dots + S_n}{N} = \frac{S}{N}$
(44)
 $= \frac{\text{মোট অতিক্রান্ত পথ}}{\text{ধার্জার সংখ্যা}}$


বিজ্ঞানী **ক্লসিয়াস** (Clausius) গড় মুক্ত পথের গাণিতিক র্নাাশিমালা বের করেন। উক্ত রাশিমালা নির্ণয় করতে গিয়ে তিনি এই স্বীকার্য গ্রহণ করেন যে, একটি মাত্র অণু ছুটছে এবং বাকি অণুসমূহ স্থিরাবস্থায় জাছে।

১১'২১ অণুর ব্যাস এবং গড় মুক্ত পথের মধ্যে সম্পর্ক Relation between the diameter of a molecule and mean free path

গ্যাসের গতিতন্ত্ব হতে আমরা জানি যে, গ্যাসের অণুগুলো সর্বদা পরস্পরের সাথে এবং আধারের দেয়ালের সাথে ধারুা খায়। অণুগুলোর পরস্পরের মধ্যে আকর্ষণ বল না থাকায়, তাদের বেগের কোন পরিবর্তন ঘটে না। সংঘর্ষের ফলে অণুগুলো সমবেগে সরলরেখায় গমন করে। পর পর ধার্ক্বাগুলোর ভিতর অণু যে গড় দূরত্ব অতিক্রম করে, তাকে গড় মুক্ত পথ বলে। যদি কোন গ্যাস অণু N সংখ্যক ধার্ক্বার পর S দূরত্ব অতিক্রম করে, তবে তার গড় মুক্ত পথ

গ্যাস অণুর সংখ্যা এবং অণুগুলোর ব্যাসের সাপেক্ষে গড় মুক্ত পথের রাশিমালা বের করা যায়। বিজ্ঞানী ক্লসিয়াস গড় মুক্ত পথের গাণিতিক রাশিমালা প্রতিপাদন করেন। এই রাশিমালা প্রতিপাদন করতে গিয়ে তিনি একটি মাত্র অণুর গতি বিবেচনা করেন এবং অন্য অণুগুলোকে স্থির মনে করেন।

চিত্র ১১৫

মনে করি প্রতি একক আয়তনে *n* সংখ্যক অণু আছে এবং প্রতিটি অণুর ব্যাস *a*। আরও মনে করি একটি অণু *v* বেগে ছুটছে। আলোচ্য অণুটির কেন্দ্রবিন্দুকে কেন্দ্র করে '*a*' ব্যাসার্ধবিশিষ্ট একটি বৃত্ত অংকন করি। এই বৃত্তের উপর *v* দৈর্ঘ্যবিশিষ্ট একটি চোঙ বিবেচনা করি [চিত্র ১১'৫]। চোঙটির আয়তন = $\pi a^2 v$ । এই চোঙের মধ্যে যে সব অণুর কেন্দ্র থাকবে আলোচ্য অণুটি এক সেকেন্ডে তাদের সাথে ধাক্কা খাবে।

প্রতি একক আয়তনে অণুর সংখ্যা n হলে চোঙটির মধ্যে অণুর সংখ্যা = $\pi a^2 v n$ । আলোচ্য অণুটি যদি প্রতি সেকেন্ডে N সংখ্যক অণুর সাথে ধারুা খায়, তবে আমরা বলতে পারি অণুর ধারুার সংখ্যা = N

 $N = \pi a^2 v n$ । অণুর বেগ v ২ওয়ায়, অণু কর্তৃক 1 সেকেন্ডের অতিক্রান্ত দূরত্ব

$$S = v \times 1 = v$$
গড় মুক্ত পথ, $\lambda = \frac{S}{N} = \frac{v}{\pi a^2 v n}$
(45)

বিজ্ঞানী কসিয়াস এই রাশিমালাটি প্রতিষ্ঠা করেন। উক্ত রাশিমালা হতে জানা যায় যে, গড় মক্ত পথ এক

বিজ্ঞানী রুসিয়াস এই রাশিমালাটি প্রতিষ্ঠা করেন। উক্ত রাশিমালা হতে জানা যায় যে, গড় মুক্ত পথ একক আয়তনে অণুর সংখ্যার এবং আণবিক ব্যাসের বর্গের ব্যস্তানুপাতিক।

সমীকরণ (45)-এর ডানপক্ষের হর ও লবকে m দ্বারা গুণ করে পাই,

$$\lambda = \frac{m}{\pi a^2 m n} = \frac{m}{\pi a^2 \rho} [:: mn = একক আয়তনের গ্যাস অণুগুলোর ভর = গ্যাসের ঘনত্ব = \rho]$$

$$m, \pi ও a ধ্ব,$$

$$\lambda \propto \frac{1}{\rho}$$

অর্ধাৎ, গড় মুক্ত পথ গ্যাসের ঘনতের ব্যস্তানুপাতিক।

বইঘর.কম

<u>পুনঃ গ্যাসের ঘনত 'ρ' গ্যাসের চাপের সমানুপাতিক এবং তাপমাত্রার ব্যস্তানুপাতিক। যেহেতু λ ∝ 1,</u> অতএব গড় মুক্ত পথ গ্যাসের চাপের ব্যস্তানুপাতিক এবং তাপমাত্রার সমানুপাতিক। বিজ্ঞানী রুসিয়াস গড় মুক্ত পথের রাশিমালা প্রতিষ্ঠা করতে স্বীকার্য গ্রহণ করেন যে একটি মাত্র অণু গতিশীল

এবং অন্য অণুগুলো স্থির। কিন্তু প্রকৃতপক্ষে সকল অণুই গতিশীল। পরে ম্যাক্সওয়েল তার বেগ বন্টন সূত্রের অবলম্বনে গড় মুক্ত পথের নিম্নোক্ত রাশিমালা নির্ণয় করেন,

$$\lambda = \frac{1}{\sqrt{2} \pi a^2 n}$$
(46)

গড় মুক্ত পর্ধ নির্ণিয়ের ক্ষেত্রে সাধারণত সমীকরণ (46) ব্যবহার করা হয়।

গড় মুক্ত পথের নির্তরশীলতা (Dependence of mean free path)

গড় মুক্ত পথের সমীকরণ,
$$\lambda = \frac{1}{\pi a^2 n}$$
 হতে দেখা যাচ্ছে–
(i) $\lambda \propto \frac{1}{n}$ অর্থাৎ গড় মুক্ত পথ একক আয়তনে অণুর সংখ্যার ব্যস্তানুপাতিক।

(ii) $\lambda \propto \frac{1}{a^2}$ বিধাৎ গড় মুক্ত পথ অণুর ব্যাসের বর্গের ব্যস্তানুপাতিক। আবার, গ্যাসের ঘনতু ρ একক আয়তনে অণুর সংখ্যা *n*-এর সমানুপাতিক। কিন্তু গ্যাসের ঘনতু গ্যাসের চাপের সমানুপাতিক এবং তাপমাত্রার ব্যস্তানুপাতিক। যেহেতু মুক্ত গড় পথ, $\lambda \propto \frac{1}{n}$, অতএব মুক্ত গড় পথ গ্যাসের চাপের চাপের ব্যস্তানুপাতিক এবং

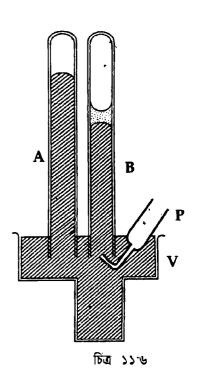
তাপমাত্রার সমানুপাতিক।

১১ ২২ সম্পৃক্ত ও অসম্পৃক্ত বাষ্পীয় চাপ Saturated and unsaturated vapour pressure

কোন তরলকে একটি আবন্ধ পাত্রে রেখে দিলে তরল পদার্থের মুক্ত তল থেকে অনবরত তরলের অণু বান্সীভূত হয়ে তরল তলের উপরে পাত্রের মধ্যে ইতস্তত ছুটাছুটি করতে থাকে। এই ছুটাছুটি করার সময় অণুগুলো পরস্পরের সক্তো এবং পাত্রের গায়ে ধারা খায়। এতে পাত্রের দেওয়ালের উপরে একটি চাপের সৃষ্টি হয়। এই চাপকেই বান্স চাপ বলে। বান্সীভূত অণুগুলো ইতস্তত ছুটাছুটির সময় তরল পৃষ্ঠেও আঘাত হানে এবং তরলের মধ্যে আটকে যায়। তরলের মুক্ত তল হতে নির্গত বান্সীভূত অণুর সংখ্যা যত বাড়ে তরলে ফিরে আসা অণুর সংখ্যাও বাড়তে থাকে। ব্রুমে এমন একটা অবস্থার সৃষ্টি হয় যখন বান্দো রূপান্তরিত অণুর সংখ্যা এবং তরলে ফিরে আসা অণুর সংখ্যা সমান হয়। অর্থাৎ এ আবন্ধ স্থানে যতটুকু বান্দা কণা থাকা সম্ভব তা পূর্ণ হয়েছে এবং অতিরিক্ত বান্দা কণা এ স্থানে থাকতে পারে না। এ অবস্থায় এ স্থান বান্দা দ্বারা সম্পৃক্ত হয়েছে বলা হয়। তাপমাত্রার কমবেশি হলে এ স্থানের বান্দাকণার ধারণ ক্ষমতাও কমবেশি হবে। তবে নির্দিষ্ট তাপমাত্রায় একটি আবন্ধ স্থানের বান্দাধারণ ক্ষমতা নির্দিষ্ট থাকে; অতিরিক্ত বান্দা ধারণ করতে পারে না। এ অবস্থায় বান্দা যে চাপ দেয় তাকে সম্পৃক্ত বান্দা চাপ বলে। নিম্নে বান্দা চাগ সম্পর্কিত কয়েকটি সংজ্ঞা দেয়া হল।

সম্পৃত্ত বাহ্ণ : কোন নির্দিষ্ট তাপমাত্রায় কোন আবন্ধ স্থান যখন সর্বাধিক পরিমাণ বাহ্ণ ধারণ করে তখন ঐ বাহ্ণকে সম্পৃত্ত বাহ্ণ বলে।

্রসম্পৃত্ত বান্দা চাপ : কোন নির্দিষ্ট তাপমাত্রায় কোন আবন্ধ স্থানের বান্দা যে সর্বাধিক চাপ প্রয়োগ ক্রে তাকে সম্পৃত্ত বান্দা চাপ বলে। সংক্ষেপে বলা যায় সম্পৃত্ত বান্দা যে চাপ প্রয়োগ করে তাকে সম্পৃত্ত বান্দা চাপ বলে।


তাৎপর্য : "কোন স্থানের সম্পৃত্ত বাব্দ চাপ 1'336 mm পারদ" এই উক্তি ছারা বুঝি সংশ্লিষ্ঠ স্থানে বাব্দে সূর্বাধিক 1'336 mm পারদ চাপ প্রয়োগ করবে।

জসম্পৃত্ত বান্দা : একটি নির্দিন্ট তাপমাত্রায় কোন স্থানে বান্দের পরিমাণ যদি এমন হয় বৈ ডা জারও অন্তিরিত্ত বান্দা ধারণ করতে পারে, তবে এ বান্দকে অসম্পৃত্ত বান্দা বলে।

্বেসম্পৃত্ত বান্দা চাপ : কোন নির্দিষ্ট তাপমাত্রায় কোন আবন্ধ স্থানের বান্দা যদি স্বাধিক বান্দা চাশ অপেক্ষা কম চাপ প্রয়োগ করে, তবে তাকে অসম্পৃত্ত বান্দা চাপ বলে। সংক্ষেপে বলা যায়-অসম্পৃত্ত বান্দা বে চাপ প্রয়োগ করে তাকে অসম্পৃত্ত বান্দা চাপ বলে। তাৎপর্য ঃ "কোন স্থানের অসম্পৃত্ত বান্দা চাপ 1'033 mm পারদ" এই উত্তি দ্বারা বুঝি সংশ্লিষ্ট স্থানের বান্দা 1'033 mm পারদ চাপ অপেক্ষা অধিক চাপ প্রয়োগ করার ক্ষমতা রাখে।

নিয়ের পরীক্ষা থেকে সম্পৃক্ত ও অসম্পৃক্ত বাষ্প চাপের স্পষ্ট ধারণা পাওয়া যেতে পারে।

পরীক্ষা 🕯 1 m লম্বা এবং 3 mm ব্যাসবিশিষ্ট দুটি ব্যারোমিটার নল (A, B) পারদপূর্ণ করে একটি পারদ পাত্রে খাড়াভাবে উপুড় করে রাখা হল [চিত্র ১১-৬]। এ অবস্থায় উভয় নলের পারদ স্তম্ভের উচ্চতা সমান হবে, কেননা উভয় নলই পরীক্ষাগারে বায়ুমণ্ডলের চাপ নির্দেশ করবে। পারদ স্তম্ভের উপরের ফাঁকা স্থানকে টরিসেলীর শূন্য স্থান বলে। এখন একটি বাঁকা পিপেটের সাহায্যে B নলে ফোঁটা ফোঁটা করে পানি প্রবেশ করানো হল। পারদের চেয়ে হান্ধা বলে পানি পারদ স্তম্ভের উপরে টরেসেলীর শূন্যস্থানে উঠে আসবে। এ স্থানে চাপ খুব কম হওয়ায় পানি বাচ্পে পরিণত হবে; ফলে বাম্পচাপে পারদস্তম্ভ নিচে নেমে যাবে। এ থেকে বোঝা যায় যে বাম্প পারদ স্তন্ড্রের উপরে কিছুটা চাপ প্রয়োগ করেছে। এভাবে পিপেটের সাহায্যে ফোঁটা ফোঁটা করে পানি B নলে প্রবেশ করতে থাকলে দেখা যাবে যে পারদ স্তম্ভ ধীরে ধীরে নিচে নামছে। কিন্তু একসময় দেখা যাবে যে পানি আর বাম্পীভূত না হয়ে পারদের উপরে জমা হচ্ছে এবং পারদস্তম্ভ একটি নির্দিষ্ট অবস্থানে স্থির থাকছে। এ অবস্থায় বোঝা যায় যে টরেসেলীর শূন্যস্থান বাহ্শ দ্বারা সম্পৃক্ত হয়েছে। এতে প্রমাণিত হয় যে, একটি নির্দিষ্ট তাপমাত্রায় একটি জাবন্ধ স্থানের বাষ্ণ ধারণা ক্ষমতা সীমিত। এ অবস্থায় বাম্প তরলের সংস্পর্শে সাম্য অবস্থায় থাকতে পারে এবং বাষ্প চাপ সর্বোচ্চ হয়। এই চাপই হল সম্পৃক্ত বাষ্প চাপ। এই

পরীক্ষায় নল দুটির পারদ স্তম্ভের পার্থক্য থেকে সম্পৃক্ত বাম্প চাপ নির্ণয় করা যায়। সম্পৃক্ত অবস্থায় আসার পূর্ব পর্যস্ত নলের মধ্যে যে বাম্প থাকে, তাকে অসম্পৃক্ত বাম্প এবং সংশ্লিফ্ট চাপকে অসম্পৃক্ত বাম্প চাপ বলা হয়। অসম্পৃক্ত বাম্প কখুনুঙ্গ তিরলের সংস্পর্শে সাম্য অবস্থায় থাকতে পারে না।

🔨 🖌 দিম্পুক্ত চাপের উপরে তাপমাত্রা, আয়তন এবং তরলের প্রকৃতির প্রভাব :

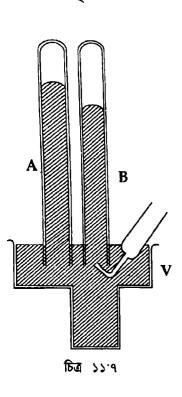
(ক) তাপমাত্রার প্রভাব : বান্ধা দারা সম্পৃক্ত হওয়ার পর যদি টরেসেলীর শৃন্যস্থানের তাপমাত্রা বৃন্ধি করা হয়, তবে দেখা যাবে পারদস্তম্ভ আরও নিচে নেমে গেছে। এর অর্ধ হল, পানি আরও বান্সীভূত হল্ছে অর্ধীৎ টরেসেলীর শৃন্যস্থানের বান্ধা ধারণ ক্ষমতা বেড়ে গেছে। এ থেকে সিন্ধান্ত নেয়া যায়, তাপমাত্রা বৃন্ধি পেলে সম্পৃক্ত বান্দা চাপ বৃন্ধি পায়।

(খ) আয়তনের প্রতাব ঃ পরীক্ষালন্দ ফলাফলে দেখা যায় যে সম্পৃত্ত বান্দা চাপ বান্দোর আয়তনের উপর নির্তন্র করে না।

(গ) তরলের প্রকৃতির প্রতাব : বিভিন্ন তরলের জন্য সম্পৃক্ত বাম্প চাপ ভিন্ন ভিন্ন হয়। উপরের পরীক্ষায় ভিন্ন ভিন্ন তরল নিলে দেখা যাবে যে সম্পৃক্ত অবস্থায় এক একটি তরলের জন্য বায়ুস্তন্ডের উচ্চতা এক এক রকম হবে। এ থেকে বুঝা যায়, সম্পৃক্ত বাম্পচাপ তরলের প্রকৃতির উপর নির্তর করে।

১১ ২৩ সম্পৃক্ত ও অসম্পৃক্ত বাম্পের বিশেষত্ব

Characteristics of saturated and unsaturated vapour


সম্ব বাশ বয়েল-এর সূত্র মানে না এটা নিমলিখিতভাবে প্রমাণ করা যায় ঃ

প্রথমে একই প্রকার দুটি ব্যারোমিটারের নল A ও B | চিত্র ১১ ৬ | শুক্ষ ও বিশৃন্ধ পারদে পূর্ণ করে পারদপূর্ণ কাচের পাত্র V-এ উপুড় করে পাশাপাশি দন্ডায়মান অবস্থায় রাখা হয়। অতঃপর একটি পিপেট P-এর সাহায্যে B নলে কিছু পানি ঢুকানো হয় যাতে পারদের উপরিস্থিত স্থান সম্পৃক্ত বান্দা দ্বারা পূর্ণ থাকে এবং পারদের উপর কিছু পানি জমা থাকে। এ অবস্থায় দুই নলের পারদ স্তন্ড্বের উচ্চতার পার্থক্যই ঘরের তাপমাত্রায় সম্পৃক্ত বান্দা চাপ

বইঘর.কম

নির্দেশ করবে। এখন B নলটিকে ক্রমশ পাত্রের পারদের ভিতর ঠেলে দেয়া হয়। এতে দেখা যাবে যে, সম্পৃক্ত বাম্পের আয়তন কমে যাচ্ছে এবং একটু একটু করে জলীয় বাম্প পানিতে পরিণত হয়ে পারদের উপর জমা হচ্ছে, কিন্তু পারদ স্তম্ভের উচ্চতা একই আছে। এবার B নলের পারদের উপরিতলের উপর যতক্ষণ কিছু না কিছু পানি থাকে ততক্ষণ নলটিকে আস্তে আস্তে উপরে উঠানো হয়। এতে দেখা যাবে যে, নলের পানি একটু একটু করে বাম্পে পরিণত হচ্ছে, কিন্তু পারদ স্তম্ভের উচ্চতা একই আছে। ব্বর্ব আছে। সুতরাং প্রমাণিত হল যে, একটি নির্দিষ্ট তাপমাত্রার (ঘরের তাপমাত্রা) সম্পৃক্ত বাম্পের আয়তনের পরিবর্তনে চাপের কোন পরিবর্তন হয় না। অর্ধাৎ সম্পৃক্ত বাম্প বয়েল-এর সূত্র মানে না।

২। অসম্পৃত্ত বালা বয়েল-এর সূত্র মানে ঃ এটা নিম্নলিখিত পরীক্ষা দ্বারা প্রমাণ করা যায়।

প্রথমে একই প্রকার দুটি পারদপূর্ণ ব্যারোমিটারের নল A ও B [চিত্র ১১ ৭] নিয়ে একটি পারদ পূর্ণ লম্মা পাত্র V-এর মধ্যে উপুড় করে পাশাপাশি দন্ডায়মান অবস্থায় রাখা হয়। অতঃপর একটি পিপেট-এর সাহায্যে নলে কয়েক ফোঁটা পানি ঢুকানো হয় যাতে পারদের উপর সামান্য পানিও না থাকে এবং সম্পূর্ণ পানি বাম্পীভূত হয়ে যায়। এতে নলের পারদ খানিকটা নিচে নেমে যাবে এবং পারদের উপরিস্থিত স্থান অসম্পৃক্ত জলীয় বাম্পে পূর্ণ হবে। এবার নলটিকে খানিকটা উপরে তুলে পারদের উপরিস্থিত স্থান যাতে জলীয় বাব্দে অসম্পৃক্ত থাকে তা নিশ্চিত করা হয়। এখন B-নলটিকে আস্তে আস্তে V পাত্রের পারদের ভিতর ঢুকিয়ে বান্দোর আয়তন কমানো হয় এবং B নলের বিভিন্ন অবস্থানে দুই নলের পারদ স্তম্ভের উচ্চতা বিয়োগ করে অসম্পৃক্ত বাম্পের চাপ ও নলের উপরিস্থিত স্থানের আয়তন (নলের প্রস্থচ্ছেদ 🗙 উপরিস্থিত স্থানের দৈর্ঘ্য) হতে অসম্পৃক্ত বাম্পের আয়তন লক্ষ করা হয়। এর পর B নলটিকে আস্তে আস্তে উপরে উঠিয়ে জলীয় বাস্পের আয়তন বাড়ানো হয় এবং নলের বিভিন্ন অবস্থানে জলীয় বাস্পের চাপ ও আয়তন একইভাবে জেনে নেয়া হয়। পরীক্ষায় দেখা যায় যে, জলীয় বাস্পের আয়তন কমার সাথে সাথে পারদ স্তম্ভদ্বয়ের উচ্চতার পার্থক্য বাড়ছে অর্থাও জলীয় বাস্পের

চাপ বাড়ছে এবং জলীয় বাম্পের আয়তন বাড়ার সাথে সাথে পারদ সতম্ভদ্বয়ের উচ্চতার পার্থক্য ক্ষমছে অর্থাৎ জলীয় বান্দোর চাপ কমছে। প্রত্যেক ক্ষেত্রেই আয়তন ও চাপের গুণফল প্রীয় একই হচ্ছে। সুতরাং প্রমাণিত হল যে, অসম্পৃক্ত বান্দা বয়েল-এর সূত্র মেনে চলে।

4	_ *	
১১ ২৪ সম্পৃক্ত ও অ	সমগতে বাবেপর সা	STT ON OF
		A) 11449
	tween seturated and u	a contract of the second s
	ween saturated and u	usaturated vapour

	্র সম্পৃত্ত বান্দা		 অসম্পৃত্ত বাশা
21	কোন নির্দিন্ট তাপমাত্রায় কোন আবন্ধ স্থানে যখন	21	একটি নির্দিষ্ট তাপমাত্রায় কোন স্থানে বাম্পের
	সর্বাধিক পরিমাণ বাম্প ধারণ করে তখন ঐ বাম্পকে		পরিমাণ যদি এমন হয় যে তা আরও অতিরিক্ত
	সম্পৃক্ত বাম্প বলে। সম্পৃক্ত বাম্প সর্বাধিক চাপ		বান্দা ধারণ করতে পারে, তবে ঐ বান্দাকে
	প্রয়োগ করে।		অসম্পৃক্ত বাম্প বলে। এই চাপ সম্পৃক্ত চাপের
		_	চেয়ে কম হয়।
\odot	এটি একটি আবন্ধ স্বানে তৈরি করা যায়।	$ \mathbf{\overline{P}} $	এটি আবন্ধ বা খোলা যে কোন স্থানে তৈরি হতে
			<u>পারে ৷</u>

08¢

উচ্চ মাধ্যমিক পদার্থবিজ্ঞান BG & JEWEL

সম্পৃক্ত বান্ধ	অসম্পৃক্ত বাষ্ণ
৩। যদি কোন আবন্ধ স্থানে তরল পদার্থের সংস্পর্শে	৩। কোন আবন্ধ স্থানে যদি কিছু বাষ্প থাকে কিন্তু
কিছু বাম্প থাকে তবে বুঝতে হবে যে, ঐ বাম্প	কোন তরল পদার্থ না থাকে তবে ঐ বাব্দ
সম্পৃক্ত বাষ্ণ।	অসম্পৃক্ত বা সদ্য সম্পৃক্ত হতে পারে । এই
X	স্থানের আয়তন সামান্য কমালে যদি কিছু বান্দা
	তরলে পরিণত হয় তবে ঐ বাম্প সদ্য সম্পৃক্ত—
6	অন্যথায় অসম্পৃক্ত।
৪।) সম্পৃক্ত বাম্প বয়েল এবং চার্লস-এর সূত্র মানে না।	৪। অসম্পৃক্ত বাষ্ণ বয়েল এবং চার্লস-এর সূত্র মেনে
	চলে।
৫। সম্পৃক্ত বাস্পের সংস্পর্শে যথেষ্ট তরল পদার্থ না	৫। একটি নির্দিষ্ট পরিমাণ অসম্পৃক্ত বাম্পের তাপমাত্রা
থাকলৈ স্থির তাপমাত্রায় ঐ বাম্পের আয়তন বৃদ্ধি	স্থির রেখে তার আয়তন ক্রমাগত কমাতে থাকলে
করলে, তরল পদার্থ বাষ্পীভূত হবার পর ঐ স্থান	এক সময় ঐ স্থান বাম্পে সম্পৃক্ত হবে।
বান্দো অসম্পৃক্ত হবে।	
(৬) তাপমাত্রা বৃদ্ধি করে একটি নির্দিষ্ট পরিমাণ সম্পৃক্ত	৬। তাপমাত্রা কমিয়ে একটি নির্দিষ্ট পরিমাণ অসম্পৃক্ত
বাম্পকে অসম্পৃক্ত বাম্পে পরিণত করা যায়।	বা ম্ পকে সম্পৃক্ত বান্ <u>ষ</u> ে পরিণত করা যায়।

১১'২৫ গ্যাস ও বাব্দের মধ্যে পার্থক্য Distinction between gases and vapours

সাধারণভাবে, পদার্ধের গ্যাসীয় অবস্থা বুঝাতে আমরা 'বাষ্ণ' এবং 'গ্যাস' উভয় শব্দই ব্যবহার করে থাকি। কিন্তু এদের মধ্যে একটি বিশেষ পার্ধক্য রয়েছে। পরীক্ষালব্দ ফলাফলে দেখা গেছে যে প্রত্যেক গ্যাসীয় পদার্থকে একটি নির্দিষ্ট তাপমাত্রার নিচে রেখে উপযুক্ত চাপ প্রয়োগ করলে তরলে পরিণত হয়। কিন্তু গ্যাসীয় পদার্ধটি ঐ নির্দিষ্ট তাপমাত্রার উপরে থাকলে যত চাপই প্রয়োগ করা হোক না কেন গ্যাসটি তরলে পরিণত হয় না। এই নির্দিষ্ট তাপমাত্রাকে গ্যাসটির ক্লান্তি তাপমাত্রা (critical temperature) বলে। বিভিন্ন গ্যাসীয় পদার্থের জন্য ক্রান্তি তাপমাত্রা তিন্ন ভিন্ন। যেমন জ্বলীয় বাব্দের ক্রান্তি তাপমাত্রা <u>361°C</u> অক্সিজেনের – 119°C, হাইড্রোন্ডেনের – 240°C ইত্যাদি। উপরের আলোচনা হতে আমরা গ্যাস ও বান্দোর নিম্নোক্ত সংজ্ঞা দিতে পারি।

বান্দা : কোন গ্যাসীয় পদার্থের তাপমাত্রা এর ক্রান্তি তাপমাত্রা অপেক্ষা কম হলে তাকে বান্দা বলে। এ অবস্থায় গ্যাসীয় পদার্থকে চাপ প্রয়োগ করে তরলে পরিণত করা যায়।

গ্যাস : কোন পদার্থ এর ক্রান্তি তাপমাত্রা অপেক্ষা অধিক তাপমাত্রায় থাকলে তাকে গ্যাস বলে। গ্যাসকে শুধুমাত্র চাপ প্রয়োগে তরলে পরিণত করা যায় না।

সাধারণ তাপমাত্রায় যে সকল গ্যাসকে কেবল চাপ প্রয়োগে তরলে পরিণত করা যায় না, সেগুলোকে স্থায়ী গ্যাস (permanent gas) বলে। যেমন অক্সিজেন, হাইড্রোজেন, হিলিয়াম ইত্যাদি।

১১'২৬ অর্দ্রেতামিতি Hygrometry

বায়ুমন্ডলে সর্বদা কিছু না কিছু জ্লীয় বান্দা বিদ্যমান থাকে। বান্দায়ন প্রক্রিয়ায় খাল-বিল, পুকুর, নদী, সমুদ্র প্রভৃতি হতে প্রতিনিয়ত প্রচুর পরিমাণ পানি বান্দা হয়ে বায়ুমন্ডলে মিশে যাচ্ছে। মেঘ, বৃষ্টি, কুয়াশা, শিশির প্রভৃতি নৈসর্গিক ঘটনা হতে প্রমাণিত হয় যে, বায়ুতে প্রচুর পরিমাণ জ্লীয় বান্দা আছে।

বিভিন্ন স্থানে বায়ুমণ্ডলের জলীয় বান্দোর পরিমাণ বিভিন্ন। আবার কোন কোন দিন বায়ুতে জলীয় বান্দা বেশি থাকে এবং কোন কোন দিন বায়ুতে জলীয় বান্দা কম থাকে। কোন কোন স্থানে পানির উৎসের অবস্থিতি, অক্ষাংশ, সমুদ্র পৃষ্ঠ হতে তার উনুতি প্রভৃতির উপর বায়ুমণ্ডলের জলীয় বান্দোর পরিমাণ নির্তর করে।

বইঘর কম কোন স্থানের আবহাওয়ায় উপর বায়ুমণ্ডলের জলীয় বান্দোর গুরুত্ব অপরিসীম। কোন কোন দ্রব্যের সুষ্ঠু উৎপাদন ও গুদামজাতকরণে বায়ুমন্ডলের জলীয় বাব্দের পরিমাণ ও তাপমাত্রা একটি নির্দিষ্ট সীমার মধ্যে **থাকা প্রয়োজন।** এই কারণে বায়ুমণ্ডলের জলীয় বাম্পের পরিমাণ নির্ণয়ের গুরুত্বও অনেক।

পদার্থবিজ্ঞানের যে শাখায় কোন নির্দিষ্ট আয়তনের বায়ুতে জলীয় বালোর পরিমাণ নির্ণয় সম্বন্দে আলোচনা করা হয় তাকে আর্দ্রতামিতি <u>বা হাইগ্রোমিতি বলে। এক কথায় বলা যায়-পদার্থবিজ্ঞানের যে শাখায়</u> জলীয় বান্পের পরিমাপ করা হয়, তার নাম আর্দ্রতামিতি।

১১'২৭ শিশিরাজ্ঞ্ব **Dew point**

একটি নির্দিষ্ট তাপমাত্রায় কোন নির্দিষ্ট আয়তনের বায়ু একটি নির্দিষ্ট পরিমাণ জলীয় বাষ্ণ ধারণ করতে পারে। বায়ুর জলীয় বান্ধ ধারণের ক্ষমতা তাপমাত্রা বৃদ্ধি পেলে বেড়ে যায় এবং তাপমাত্রা হ্রাস পেলে কমে যায়। বায়ু যে পরিমাণ জলীয় বাষ্ণ ধরে রাখতে পারে সাধারণ বায়ুতে তার চেয়ে কম জলীয় বাষ্ণ থাকে বলে সাধারণ বায়ু জলীয় বাম্পে অসম্পৃক্ত থাকে এবং অসম্পৃক্ত বায়ুর জলীয় বাম্পের চাপ অপেক্ষা সম্পৃক্ত বায়ুর জলীয় বাম্পের চাপ বেশি হয়। কিন্তু বায়ুর তাপমাত্রা যদি ক্রমশ কমতে থাকে তবে তার জলীয় বাম্প ধারণের ক্ষমতা কমে যায় এবং একটি নির্দিষ্ট তাঁপমাত্রায় বায়ুর মধ্যে যে পরিমাণ জলীয় বাষ্ণ থাকে তা দ্বারা উক্ত বায়ু সম্পৃক্ত অবস্থা ধারণ করে। এ অবস্থায় তাপমাত্রা আর একটু কমলে কিছু জলীয় বাম্প ঘনীভূত হয়ে ক্ষুদ্র ক্ষুদ্র পানি বিন্দুতে পরিণত হয়। এই নির্দিষ্ট তাপমাত্রাকে শিশিরাজ্ঞ বলে।

শিশিরাঞ্চের সংজ্ঞাঃ যে তাপমাত্রায় একটি নির্দিষ্ট আয়তনের বায়ু তার ডিতরের জলীয় বাব্দ দারা সম্পৃক্ত হয় তাকে এ বায়ুর শিশিরাজ্ঞ বলে। অথবা, যে তাপমাত্রায় শিশির জমতে বা অদৃশ্য হতে শুরু করে তাকে শিশিরাক্ষ বলে।

"কোন স্থানের বায়ুর শিশিরাক্ষ 15°C"—এটি দ্বারা বুঝা যায় যে, 15°C তাপমাত্রায় ঐ স্থানের বায়ু তার মধ্যস্থ জলীয় বাম্প দ্বারা সম্পৃক্ত হবে। অথবা 15°C তাপমাত্রায় ঐ স্থানে শিশির গঠিত বা অদৃশ্য হতে শুরু করবে।

বায়ুর তাপমাত্রায় কোন একটি নির্দিষ্ট আয়তনের বায়ুতে যে পরিমাণ জলীয় বাম্প উপস্থিত থাকে শিশিরাজ্ঞে ঐ একই পরিমাণ জ্ঞলীয় বাম্প সম্পৃক্ত অবস্থা ধারণ করে। ডালটন-এর সূত্র অনুসারে এই সম্পৃক্ত বাম্পের চাপ বায়ুর উপর নির্ভর করে না। সুতরাং <mark>বায়ুর তাপমাত্রায় একটি নির্দিষ্ট আয়তনের অসম্পৃক্ত জনীয় বান্দের চাপ</mark> শিশিরাক্ষে সম্পৃক্ত জলীয় বান্দের চাপের সমান হবে।

১১ ২৮ বায়ুর আর্দ্রতা

Humidity of air

বায়ু কতখানি শুক্ষ বা ডিজা তা নির্দেশ করতে 'আর্দ্রতা' শব্দটি ব্যবহুত হয়। অনেক সময় শীতকালের বায়ু শুক্ষ ও গ্রীষ্মকালের বায়ু আর্দ্র বলা হয়। এটি দ্বারা শীতকালের তুলনায় গ্রীষ্মকালের বায়ুতে অধিক পরিমাণ চ্চলীয় বান্স থাকে এটিই বুঝানো হয়। বায়ুর আর্দ্রতা দুভাবে প্রকাশ করা হয়। যথা—

(১) পরম আর্দ্রতা (Absolute humidity) ঃ কোন সময় কোন স্থানের একক আয়তনের বায়ুতে বে পরিমাণ জলীয় বান্দা পাকে তাকে ঐ বায়ুর পরম আর্দ্রতা বলে। সাধারণত এক ঘন মিটার আয়তনের বায়ুতে যে পরিমাণ জলীয় বান্শ থাকে তা বায়ুর পরম আর্দ্রতা নির্দেশ করে।

"বায়ুর পরম আর্দ্রতা/10⁻² kg. m⁻³ '}—এটি দ্বারা বুঝা যায় যে, এক ঘন মিটার আয়তনের বায়ুতে 10⁻² kg চ্চলীয় বাম্প বিদ্যমান আছে।

(২) আপেক্ষিক আর্দ্রতা (Relative humidity) : কোন নির্দিষ্ট তাপমাত্রায় একটি নির্দিষ্ট আয়তনের ৰায়ুতে যে পরিমাণ জলীয় বাহ্প থাকে ঐ তাপমাত্রায় ঐ আয়তনের বায়ুকে সম্পৃক্ত করতে যে পরিমাণ জলীয় বান্দের প্রয়োজন হয় তাদের অনুপাতকে আপেক্ষিক আর্দ্রতা বলে। এই অনুপাত দারা বায়ু কতখানি ভিজা বা শুক্ষ তা নির্দেশ করা হয়। একে সাধারণত R দ্বারা ব্যক্ত করা হয়।

আপেক্ষিক আর্দ্রতা,

R = বায়ুর তাপমাত্রায় নির্দিষ্ট আয়তনের বায়ুতে উপস্থিত জলীয় বান্দোর ভর ঐ তাপমাত্রায় উক্ত আয়তনের ঐ বায়ুকে সম্পৃক্ত করতে প্রয়োজনীয় জলীয় বান্দোর ভর তাপমাত্রা t°C এবং আয়তন V হলে,

আপেক্ষিক আর্দ্রতা, R = $\frac{t^{\circ}C$ তাপমাত্রায় V আয়তনের বায়ুতে উপস্থিত জলীয় বান্দোর ভর $t^{\circ}C$ তাপমাত্রায় V আয়তনের বায়ুকে সম্পৃক্ত করতে প্রয়োজনীয় জলীয় বান্দোর ভর

কিন্তু স্ধির তাপমাত্রায় একটি নির্দিষ্ট আয়তনের বায়ুতে উপস্থিত জলীয় বাম্পের ভর তার বাম্পচাপের সমানুপাতিক।

আপেক্ষিক আর্দ্রতা, $R = \frac{t^{\circ}C$ তাপমাত্রায় V আয়তনের বায়ুতে উপস্থিত জলীয় বাব্দের চাপ $t^{\circ}C$ -এ V আয়তনের বায়ুকে সম্পৃক্ত করতে প্রয়োজনীয় জলীয় বাব্দের চাপ

আবার যে কোন তাপমাত্রায় একটি নির্দিষ্ট আয়তনের বায়ুতে উপস্থিত জলীয় বাম্পের চাপ 😄 শিশিরাজ্ঞে উক্ত বায়ুর সম্পৃক্ত জলীয় বাচ্পের চাপ।

আপেক্ষিক আর্দ্রতা, R = নিশিরাজ্ঞে সম্পৃক্ত জলীয় বাম্পের চাপ বায়ুর তাপমাত্রায় সম্পৃক্ত জলীয় বাম্পের চাপ

সাধারণত আপেক্ষিক আর্দ্রতা শতকরা হিসেবে প্রকাশ করা হয়। সুতরাং আপেক্ষিক আর্দ্রতা R দ্বারা, শিশিরাজ্ঞে সম্পৃক্ত জলীয় বাম্পের চাপ f দারা এবং বায়ুর তাপমাত্রায় সম্পৃক্ত জলীয় বাম্পের চাপ F দারা নির্দেশ করলে,

 $R = \frac{f}{F} \times 100\%$ "বায়ুর আপেক্ষিক আর্দ্রতা 60%"—এর দারা বুঝা যায় যে, (i) বায়ুর তাপমাত্রায় একটি নির্দিষ্ট আয়তনের ঐ বায়ুকে সম্পৃক্ত করতে যে পরিমাণ জ্বলীয় বাস্পের প্রয়োজন তার শতকরা 60 ভাগ জ্বলীয় বাস্প বায়ুতে আছে।

(47)

(ii) বায়ুর তাপমাত্রায় ঐ বায়ুতে উপস্থিত জলীয় বাম্পের চাপ একই তাপমাত্রায় সম্পৃক্ত জলীয় বাম্পের চাপের 100 ভাগের 60 ভাগ অর্ধাৎ $\frac{3}{5}$ অংশ :

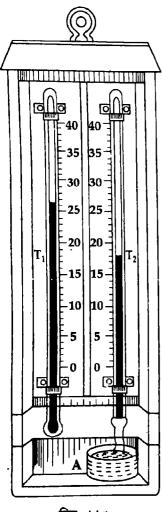
(iii) ঐ বায়ুর শিশিরাক্ষে সম্পৃক্ত জলীয় বাম্পের চাপ বায়ুর তাপমাত্রায় সম্পৃক্ত জলীয় বাম্পের চাপের 100 ভাগের 60 ভাগ।

১১ ২৯ শিশিরাজ্ঞ ও আপেক্ষিক আর্দ্রতা নির্ণয় Determination of dewpoint and relative humidity

বায়ুর আপেক্ষিক আর্দ্রতা নির্ণয়ের জন্য যে যন্ত্র ব্যবহুত হয় তাকে আর্দ্রতামান যন্ত্র বা হাইশ্রোমিটার

(hygros-আর্দ্র, metron-পরিমাপ) বলে। আর্দ্রতামান যন্ত্রগুলোকে নিমলিখিত শ্রেণীতে বিভক্ত করা যায়।

(১) শিশিরাজ্ঞ হাইগ্রোমিটার (Dewpoint hygrometer)


(২) আৰ্দ্ৰ বা সিন্ত ও শুক্ষ বাৰ হাইগ্ৰোমিটার (Wet and dry bulb hygrometer)

(৩) রাসায়নিক হাইশ্রোমিটার (Chemical hygrometer)

(8) কেশ হাইশ্রোমিটার (Hair hygrometer)।

জার্দ্র বা সিন্তু ও শুক্ষ বাল্ব হাইগ্রোমিটার : এটি সরল হাইগ্রোমিটার। সাধারণত আবহাওয়া অফিস ও শিল্প প্রতিষ্ঠানে এই প্রকার যন্ত্র ব্যবহৃত হয়। এর সাহায্যে বায়ুর আপেক্ষিক আর্দ্রতা সম্বন্ধে দ্রুত মোটামুটি ধারণা পাওয়া যায়। এছাড়া এই যন্ত্রে আপেক্ষিক আর্দ্রতা নির্ভূলভাবে পরিমাপও করা যায়।

পানির বাম্পীভবনের হার বায়ুতে উপস্থিত জলীয় বাম্পের উপর নির্ভরশীর্ল---- এই তথ্যের উপর এই হাইগ্রোমিটারের কার্যপ্রণালী প্রতিষ্ঠিত। ১১ ৮ নং চিত্রে একটি আর্দ্র ও শুদ্ধ বালব হাইগ্রোমিটারের প্রয়োজনীয় ব্যবস্থাপনা দেখানো হয়েছে।

দির ১১৮

 $t_1 = t + G(t_1 - t_2)$...

যন্ত্রের বর্ণনা ঃ এই যন্ত্রে দুটি একই প্রকার সাধারণ থার্মোমিটার T₁ ও T₂ একটি ফ্রেমে পাশাপাশি খাড়াভাবে আবন্দ্র থাকে। T₁ থার্মোমিটারের বাল্ব স্বাভাবিক অবস্থায় এবং T₂ থার্মোমিটারের বাল্ব এক টুকরা পরিক্ষার মসলিন কাপড়ে জড়িয়ে কাপড়ের অপর প্রান্ত সলিতার মত পাকানো অবস্থায় নিচের পাত্র A-এর পানিতে ডুবিয়ে রাখা হয়। কাপড় পাত্রের পানি শোষণ করে T₂ থার্মোমিটারের বালবকে সিক্ত রাখে। এই কারণে T₁ বাল্বকে শুক্ষ বাল্ব এবং T₂ বাল্বকে আর্দ্র বাল্ব বলা যায়।

ব্রিয়া ঃ T₂ থার্মোমিটারের বাল্ব সিক্ত মসলিন কাপড়ে আবৃত থাকায় ঐ বাল্ব হতে প্রয়োজনীয় তাপ সংগ্রহ করে পানি বাশ্দীভূত হবে এবং বাল্বের তাপমাত্রা ক্রমশ হ্রাস পাবে। ফলে বায়ুর তাপমাত্রা নির্দেশক T₁ থার্মোমিটারের পাঠ হতে T₂ থার্মোমিটারের পাঠের পার্থক্য ক্রমশ বৃদ্ধি পাবে। বায়ু যত বেশি শুক্ষ হবে অর্থাৎ বায়ুর আপেক্ষিক আর্দ্রতা যত কম হবে বান্ধ্যায়ন তত দ্রুত হবে এবং T₁ ও T₂ থার্মোমিটারের পাঠের পার্ধক্যও তত বেশি হবে। আবার বায়ুতে যত বেশি জ্লীয় বান্ধ্য থাকবে অর্থাৎ বায়ুর আপেন্দিক আর্দ্রতা যত বেশি হবে, বান্ধ্যায়নের হার এবং সাথে সাথে দুই থার্মোমিটারের পাঠের পার্থক্যও তত কম হবে।

সুতরাং দুই থার্মোমিটারের পাঠের পার্থক্য হতে বায়ুর আপেক্ষিক আর্দ্রতা সম্বন্ধে একটি মোটামুটি ধারণা পাওয়া যাবে। কোন সময় শুক্ষ বাল্বের তাপমাত্রা t_1° C ও আর্দ্র বাল্বের তাপমাত্রা t_2° C হলে নিম্নলিখিত উপায়ে ঐ সময়ের বায়ুর শিশিরাজ্ঞ ও আপেক্ষিক আর্দ্রতা নির্ণয় করা যাবে।

(ক) গ্রাইসার-এর সমীকরণের সাহায্যে : গ্রেইসার-এর সমীকরণ অনুসারে,

(48)

এখানে, G = শুক্ষ বাল্বের তাপমাত্রায় গ্রেইসার-এর রাশি এবং t°C = বায়ুর শিশিরাজ্ঞ ।

শিশিরাক্ষ নির্ণয় ঃ শুক্ষ বাল্বের তাপমাত্রায় গ্রেইসার-এর রাশি G-এর মান জেনে উপরের সমীকরণের সাহায্যে বায়ুর শিশিরাজ্ঞ t°C জানা যাবে।

আপেক্ষিক আর্দ্রতা ঃ ধরা যাক রেনোর বান্স চাপের তালিকায় t° C ও t_1° C তাপমাত্রায় সম্পৃক্ত জলীয় বান্সের চাপ যথাক্রমে f ও F mm পারদ।

আপেক্ষিক অর্দ্রেতা,
$$\mathbf{R} = \frac{f}{F} \times 100\%$$

উচ্চ মাধ্যমিক পদার্থবিজ্ঞান

^{BG এ JEWEL} বিভিন্ন তাপমাত্রায় গ্লেইসার-এর রাশির মান

ি শুক্ষ বাল্বের	গ্রেইসারের	শুক্ষ বাল্বের	গ্লেইসারের	শুক্ষ বাল্বের	গ্রেইসারের রাশি	
ডা গ মাত্রা (°C)	রাশি G	তাপমাত্রা (°C)	রাশি G	তাপমাত্রা (°C).	G	
4	7`82	16	1.82	28	1.67	
5	7`28	17	1.82	29	1 ⁻ 66	
6	6.62	18	1.83	30	1.62	
7	5 77	19	1.81	31	1.64	
8	4.92	20	1 [.] 79	32	1.63	
9	4.04	21	1.77	33	1.62	
10	2 .06	22	1.75	34	1 ⁻ 61	
11	2 [.] 02	23	1.74	35	1.60	
12	1.99	24	1 72	36	1.29	
13	1.92	25	1`70	37	1.28	
14	1.92	26	1`69			
15	1.90	27	1.68			

রেনোর সম্পৃক্ত জলীয় বাম্প চাপের তালিকা

t ₁ °C	$(t_1 - t_2)^{\circ}\mathrm{C}$										
•	0	1	2	3	4	5	6	7	8	9	10
0	4.6	3.2	2.9	2.1	1'3						
1	4'9	4.1	3.2	2.4	1.6	0.8					
2	5 [.] 3	4.4	3.6	2 [.] 7	1.9	1.1	0.3				- [
3	5.2	4`8	3.9	3.1	2 [.] 2	1.4	0.6				
4	6'1	5.5	4'3	3.4	2.6	1.7	0.9	0 [.] 1			
5	6.5	5.6	4.7	3'8	2 [.] 9	2.1	1.5	0'4			
6	7.0	6.0	5.1	4.2	3.3	2'4	1.6	0'7			
7	7.5	6.2	5.2	4.6	3.7	2.8	1.9	1.1	0'2		
8	8.1	7 [.] 0	6.0	5.0	4.1	3.5	2.3	1'4	0.6		
9	8.6	7.2	6'5	5.2	4.5	3.6	2.2	1.8	0.8	0 [.] 1	
10	9'2	8.1	7 [.] 0	6.0	5 [.] 0	4.0	3.1	2.5	1.3	0`4	
11	9 [.] 9	8'7	7.6	6.2	5.2	4.5	3.2	2.6	1.2	0.8	
12	10 [.] 5	9.3	8.2	7.1	6.0	5.0	4`0	3.0	2.1	1.5	0'3
13	11.2	10.0	8.8	7.7	6.6	5.2	4.2	3 [!] 5	2.2	1.6	0.7
14	12 [.] 0	10 [.] 7	9.5	8'3	7'2	6.1	5.0	4.0	3.0	2.0	1.1
15	12.8	11.2	10 ⁻ 2	9 [.] 0	7'8	6.7	5.6	4.5	3.2	2.2	1.2
16	13 ⁻ 6	12.3	11.0	9 [.] 7	8 [.] 5	7'3	6.2	5.1	4.0	3.0	2.0
17	14.5	13.1	11.8	10 [.] 5	9 [.] 2	8.0	6.8	5.2	4.6	3.2	2.2
18	15 [.] 5	14.0	12 [.] 6	11'3	10.0	8 [.] 7	7.5	6'3	5.2	4.1	3.0
19	16 [.] 5	15 [.] 0	. 13 [.] 5	12 [.] 1	10'8	9'4	8 [.] 2	7.0	5.8	4.6	3'5
20	17 [.] 7	16'0	14.5	13.0	11'6	10.2	8.9	7.7	6'5	5.3	4'1

020

রেনোর সম্পৃক্ত জলীয় বাম্প চাপের তালিকাটি শুক্ষ বাল্বের তাপমাত্রা t°C এবং শুক্ষ এবং আর্দ্র বাল্বের তাপমাত্রার পার্থক্য ($t_1 - - t_2$)°C-এর সাপেক্ষে সম্পৃক্ত জলীয় বাম্প চাপ নির্দেশ করে প্রস্তৃত করা হয়েছে। তালিকার ব্যবহার বিধি নিম্নের উদাহরণ হতে পরিক্ষার বুঝা যাবে।

আপেক্ষিক আর্দ্রতা নির্ণয় : আপেক্ষিক আর্দ্রতার সংজ্ঞা ও উপরের তালিকা অনুসারে,

ধরা যাক কোন এক সময় শুক্ষ ও আর্দ্র বাল্বের তাপমাত্রা যথাক্রমে 18°C ও 15°C; তালিকা অনুসারে 18°C তাপমাত্রায় একই সমতায় দ্বিতীয় সারিতে সম্পৃক্ত জলীয় বান্ধ্পের চাপ = 15'5 মিমি. পারদ।

আবার দুই থার্মোমিটারের তাপমাত্রার পার্থক্য = $(18 - 15)^{\circ}$ C = 3° C

তালিকায় 18°C তাপমাত্রায় একই সমতায় 3°C পার্থক্য চিহ্নিত সারিতে চাপ = 11'3 মিমি. পারদ = শিশিরাঞ্চে সম্পৃক্ত জলীয় বাস্পের চাপ।

আপেক্ষিক আর্দ্রতা,
$$R = \frac{11^{\circ}3}{15^{\circ}5} \times 100\% = 72^{\circ}9\%$$

শিশিরাঙ্গ নির্ণয় ঃ যে তাপমাত্রায় সম্পৃক্ত জলীয় বাম্পের চাপ = 11'3 মিমি. পারদ সেই তাপমাত্রাই নির্ণেয় শিশিরাজ্ঞ।

তালিকা অনুসারে 13°C তাপমাত্রায় সম্পৃক্ত জলীয় বাম্পের চাপ = 11°2 মিমি. পারদ ; 14°C তাপমাত্রায় সম্পৃক্ত জলীয় বাম্পের চাপ = 12°0 মিমি. পারদ।

সুতরাং নির্শেয় শিশিরাজ্ঞ 13°C ও 14°C-এর মাঝে হবে।

 $12^{\circ}0 - 11^{\circ}2 = 0^{\circ}8$ মিমি. পারদ চাপের পার্থক্যের জন্য তাপমাত্রা বৃদ্ধি = $(13 - 12) = 1^{\circ}C$

11'3 — 11'2 = 0'1 মিমি. পারদ চাপের পার্থক্যের জন্য তাপমাত্রা বৃদ্ধি = $1 \times \left(\frac{0'1}{0'8}\right)^{\circ}$ C = 0'125°C নির্ণেয় শিশিরাজ্ঞ্য, $t = 13^{\circ}$ C + 0'125°C = 13'125°C

১১৩০ শুষ্ক ও আর্দ্র বালব হাইগ্রোমিটারের সাহায্যে আবহাওয়ার পূর্বাভাস

Weather forecast by wet and dry bulb hygrometer

্র্লার্দ্র বায়ু অপেক্ষা শুক্ষ বায়ুতে পানি দ্রুত বাক্ষীভূত হয়। আবার বাক্ষায়ন যত বেশি হয় আর্দ্র বাল্ব থার্মোমিটারের পাঠ তত হ্রাস পায়। সূতরাং আর্দ্র ও শুক্ষ বালব থার্মোমিটারের পাঠের পার্থক্য লক্ষ করে আবহাওয়ার মোটামুটি পূর্বাভাস দেয়া যায়। প্রার্ফোর্ফিটিরে দ্রুটির পার্ফর পার্গকা

প্র্র্থার্মোমিটার দুটির পাঠের পার্ধক্য—

- (১) কম হলে পৃর্বাভাসে আর্দ্র আবহাওয়া উল্লেখ করা যায়।
- (২) খুব বেশি হলে প্রাডাসে বলা যায় যে, আবহাওয়া শুক্ষ।
- (৩) ধীরে ধীরে কমতে থাকলে বলা যায় যে, বৃষ্টি হওয়ার সম্ভাবনা রয়েছে।
- (8) হঠাৎ হাস পেলে পূর্বাভাসে ঝড় হতে পারে উল্লেখ করা যায়।

১১৩১ আপেক্ষিক আর্দ্রতা নির্ণয়ের গুরুত্ব Importance of determination of relative humidity

(১) কোন কোন রোগের জীবাণু শুক্ষ আবহাওয়ায় এবং কোন কোন রোগের <u>জীবাণু আর্দ্র</u> আবহাওয়ায় বংশ বৃম্বি করে। এই কারণে জনস্বাস্থ্য বিভাগ আপেক্ষিক আর্দ্রতার হিসাব রাখে এবং কোন কোন রোগের প্রাদুর্ভাব দেখা দিলে বেতার ও সংবাদপত্রের মাধ্যমে তা ঘোষণা করে।

BG LJEWEL

(২) মানুষের মেজাজ, ষাস্থ্য, কর্মোদ্যম অনেকাংশে আপেক্ষিক আর্দ্রতার উপর নির্ভরশীল। যে সব আবন্ধ স্থানে অধিক লোক সমাগম হয় সেখানকার বায়ু কিছুক্ষণের মধ্যে দূষিত ও আর্দ্র হয়ে পড়ে। এজন্য আধুনিক সিনেমা হল, অডিটরিয়াম, বড় বড় অফিস ইত্যাদিতে শীতাতপ নিয়ন্ত্রণের প্রচলন দেখা যায়।

(৩) কোন কোন বস্তু যেমন আলু, তামাক, কাঠ, পেঁয়াজ, রসুন প্রভৃতি শুক্ষ আবহাওয়ায় ভাল থাকে। তাই আপেক্ষিক আর্দ্রতা জানা আবশ্যক।

(8) জাবার বৈদ্যুতিক, ইলেকট্রনিক প্রভৃতি যন্ত্রপাতির স্টোরে ও কারখানায় একটি নির্দিষ্ট জাপেক্ষিক আর্দ্রতার প্রয়োজন হয়। এই কারণে এসব ক্ষেত্রে বায়ুর আপেক্ষিক আর্দ্রতা একটি নির্দিষ্ট সীমার মধ্যে রাখা রিশেষভাবে প্রয়োজন। তাই আপেক্ষিক আর্দ্রতা জানা অপরিহার্য।

(৫) কোন স্থানের আবহাওয়া বহুলাংশে আপেক্ষিক আর্দ্রতার পরিবর্তনে পরিবর্তিত হয়। তাই আবহাওয়া অফিস আপেক্ষিক আর্দ্রতার হিসাব রাখে এবং বেতার ও সংবাদপত্রে আবহাওয়ার পূর্বাভাস প্রদান করে।

(৬) সিগারেট, পশম, কার্পাস প্রভৃতি শিল্পের কতকগুলো বিশেষ রাসায়নিক প্রক্রিয়ার সহায়তার জন্য বায়ুর আপেক্ষিক আর্দ্রতা একটি নির্দিষ্ট সীমার মধ্যে থাকা প্রয়োজন। এই কারণে এসব কল-কারখানা বিশেষ বিশেষ অঞ্চলে স্থাপিত হয়।

(৭) নিরাপদ বিমান চালনার জন্য বিমান চালককে আর্দ্র বায়ুর অঞ্চল এড়িয়ে যেতে হয়। এই কারণে তাকে আপেক্ষিক আর্দ্রতার হিসাব জানার প্রয়োজন হয়।

১১৩২ আর্দ্রতামিতি সম্পর্কিত কয়েকটি বাস্তব ঘটনা Some real events relating hygrometry

আর্দ্রতামিতি সম্পর্কিত কয়েকটি বাস্তব ঘটনা নিম্নে উল্লেখ করা হল ঃ

(ক) মেঘাচ্ছন রাত্রি অপেক্ষা মেঘশূন্য রাত্রি শিশির জমার জন্যে সহায়ক কেন ?

আর্দ্মরা জানি নদী-নালা, খালবিল, সাগর-সমুদ্র, জলাশয় ইত্যাদি হতে পানি সব সময় বাম্পায়নের ফলে জলীয় বাম্পে পরিণত হয় এবং বায়ুমণ্ডলে মিশে যায়। দিনের বেলায় সূর্যের তাপে ভূ-পৃষ্ঠ সংলগ্ন বাতাস গরম থাকে এবং জলীয় বাম্প দ্বারা অসম্পৃক্ত থাকে। মেঘহীন রাত্রিতে ভূ-পৃষ্ঠ তাপ বিকিরণ করে ঠান্ডা হতে থাকে এবং পরিশেষে এমন একটি তাপমাত্রায় উপনীত হয় যখন বাতাস জলীয় বাম্প দ্বারা সম্পৃক্ত হয় এবং জলীয় বাম্প ঘনীভূত হয়ে শিশির জমে।

কিন্তু আকাশ মেঘাচ্ছন থাকলে ভূ-পৃষ্ঠ তাপ বিকিরণ করে ঠান্ডা হতে পারে না। কারণ মেঘ তাপরোধী পদার্থ বলে ভূ-পৃষ্ঠ হতে বিকিরণন্দ্রনিত কারণে তাপ পরিবাহিত হতে পারে না। ফলে ভূ-পৃষ্ঠ ঠান্ডা হয় না এবং শিশির জমে না।

(খ) বর্ষার দিন অপেক্ষা শীতকা<u>লে ডিন্সা কাপড় তাড়াতা</u>ড়ি শুকায় কেন -

বর্ষার দিনে বায়ুমন্ডল জ্লীয় বাম্প দ্বারা সম্পৃক্ত থাকে। ফলে বাতাস অধিক পরিমাণে জ্লীয় বাম্প ধারণ করতে পারে না। শীতকালের বাতাস শুকনা থাকে। শুকনা বাতাস জ্বলীয় বাম্পহীন। এই বাতাস ভিজ্ঞা কাপড় থেকে দ্বত জ্লীয় বাম্প শোষণ করে নিয়ে সম্পৃক্ত হতে চায়। ফলে শীতের দিনে ভিজ্ঞা কাপড় তাড়াতাড়ি শুকায়।

(গ) গরমের দিনে কুকুর জিল্লা বের করে দৌড়ায় কেন ?

গরমের দিনে কুকুরের শরীর উত্তগ্ত থাকে এবং কুকুর অষস্তিবোধ করে। কিন্তু কুকুরের জিহ্বার উপর এক প্রকার লালা থাকে। সেই লালা কুকুরের শরীর থেকে বাম্পীভবনের সুগ্ত তাপ শোষণ করে এবং কুকুরের শরীর ঠাড়া হয়। কুকুর ষস্তি অনুভব করে। সেজন্য কুকুর জিহ্বা বের করে দৌড়ায়।

(খ) খ্যাক্ত দেহে পাখার বাত্সি লাগলে আরাম অনুভূত হয় কেন ?

ঘর্মাক্ত দেহ খুবই অষস্তিকর। শরীরের ঘাম শরীর থেকে বাষ্শীভবনের সুশ্ত তাপ গ্রহণ করে বাষ্শ হয়ে উড়ে যায়। পাখার বাতাস সেই গরম বাষ্শকে দুরীভূত করে। ফলে শরীর ঠান্ডা হয় এবং আরাম অনুভূত হয়।

বইঘর.কম (ঙ) শীতকালে শরীরে ও ঠোঁটে-মুখে পমেট বা গ্রিসারিন লাগান হয় কেন্-?

শীতিকালে বাতাসে জলীয় বাঞ্চা থাকে না বললেই চলে। ফলে বাতাস জলীয় বাঞ্চা গ্রহণ করে সম্পৃক্ত হতে চায়। শরীরের ঠোঁট-মুখ অত্যন্ত নরম। বাতাস শরীরের সেই অনাবৃত নরম স্থান থেকে জলীয় বাষ্ণ শোষণ করে নেয়। ফলে ঠোঁট মুখের চামড়া শুকনা হয়ে চড়চড় করে এবং ফেটে যায়, সেজন্য পমেট বা গ্রিসারিন লাগিয়ে চামড়াকে ভিজা রাখা হয়।

(চ) একই তাপমাত্রায় দিনাজপুর অপেক্ষা চট্টগ্রাম অস্বস্তিকর অনুভূত হয় কেন 👌

চউগ্রাম সমুদ্র উপকূলে অবস্থিত হওয়ায় সেখানকার বাতাসে অধিক পরিমাণে জলীয় বাম্প থাকে। এই জলীয় বাম্প শরীরে নেগে ঘামের সৃষ্টি করে। কারণ শরীরের তাপমাত্রা জলীয় বাম্পের তাপমাত্রা অপেক্ষা কম। ঘাম হলে শরীর অশ্বস্তি বোধ করে।

পক্ষান্তরে দিনাজপুর সমুদ্র হতে অধিক দূরে অবস্থিত হওয়ায় সেখানকার বাতাসে জলীয় বাস্পের পরিমাণ কম। ফলে শরীরে ঘামের সৃষ্টি হয় না এবং শরীর অশ্বস্তি বোধ না করে আরাম অনুভব করে।

১১ ৩০ জলীয় বাষ্পের ঘনীভবন Condensation of water vapour

কোন স্থানের বায়ুর তাপমাত্রা শিশিরাজ্ঞ্ব অপেক্ষা কম হলে এ বায়ুতে যে জলীয় বাম্প থাকে তার কিছু অংশ বায়ুকে সম্পৃক্ত রাখে এবং বাকি অংশ ঘনীভূত হয়ে পানি বিন্দুর সৃষ্টি করে। সাধারণত নিম্নলিখিত কারণে বায়ুর তাপমাত্রা শিশিরাজ্জের নিচে নামতে পাবে ঃ

- (১) বিকিরণ প্রক্রিয়ায় তাপ বর্জন করে। শিশির, কুয়াশা প্রভৃতি এভাবে সৃষ্টি হয়।
- (২) শীতল ও গরম বায়ুর মিশ্রণে। কোন কোন মেঘের উৎপত্তি ও তিরোধান এই প্রক্রিয়ায় সংঘটিত হয়।
- (৩) রুম্বতাপীয় প্রক্রিয়ায় চাপের দ্রুত পরিবর্তনে। মেঘের উৎপত্তি ও বৃষ্টিপাত এই প্রক্রিয়ায় হয়ে থাকে। 🚽

১১৩৪ বায়ুমণ্ডলে জলীয় বাষ্প ঘনীভূত হওয়ার ফল Result of condensation of water vapour in atmosphere

বায়ুমণ্ডলের জলীয় বাম্প বিভিন্ন প্রক্রিয়ায় ঘনীভূত হয়ে বিভিন্ন নৈসর্গিক ঘটনার উৎপত্তি করে। নিম্নে কয়েকটি নৈসর্গিক ঘটনা সম্বন্ধে আলোচনা করা হল।

শিশির (Dew) ট দিনে সূর্যের উত্তাপে ভূ-পৃষ্ঠ ও ভূ-পৃষ্ঠ সংলগ্ন বায়ু গরম হয় এবং রাত্রিতে এ বায়ু তাপ বিকিরণ করে শীতল হয়। কিন্তু সব বস্তুর তাপ বিকিরণের ক্ষমতা সমান হয় না। যে বস্তু বেশি তাপ বিকিরণ করে, যেমন ঘাস, পাতা প্রভৃতি, সে বস্তু তত শীতল হয়। যখন এই সব শীতল বস্তুর সংস্পর্শে ঠান্ডা হতে হতে বায়ুর তাপমাত্রা শিশিরাজ্ঞ অপেক্ষা কম হয় তখন বায়ুকে সম্পৃক্ত রাখার জন্য যে পরিমাণ জলীয় বাম্পের প্রয়োজন এর অতিরিক্ত জলীয় বাম্প ঘনীভূত হয়ে ক্ষুদ্র ক্ষুদ্র পানি বিন্দুরূপে এ সব বস্তুর উপর জমা হয়। এই ক্ষুদ্র ক্ষুদ্র পানি বিন্দুকে শিশির বলে।

শরৎকালের ভোর বেলা কোন কোন দিন গাছের পাতায় ও ঘাসের উপর প্রচুর পরিমাণ শিশির এবং কোন কোন দিন অল্প পরিমাণ শিশির জমা হতে দেখা যায়। শিশির জমার অনুকূল অবস্থা সব সময় সমান থাকে না বলে এমন হয়।

কুয়াশা (Fog) : কোন কোন সময় ভূ-পৃষ্ঠের কাছাকাছি বায়ুমণ্ডলের বিস্তীর্ণ অঞ্চলের তাপমাত্রা হ্রাস পেয়ে শিশিরাঙ্কের নিচে নেমে যায়। এ অবস্থায় বায়ু জলীয় বাম্প ধরে রাখার সামর্থ্য হারায় এবং জলীয় বাম্প সম্পৃক্ত হয়ে ক্ষুদ্র ক্ষুদ্র পানি বিন্দুর আকারে বায়ুমণ্ডলে ভাসমান ধূলিকণা, কয়লার গুঁড়া বা পানি শোষণকারী বিজাতীয় পদার্থ কণাকে কেন্দ্র করে ভূ-পৃষ্ঠের উপরে ভাসতে থাকে। একেই কুয়াশা বলে। সাধারণত বায়ুপ্রদাহ না থাকলে মেঘহীন রাত্রিতে কুয়াশা বেশি পড়ে। শীতকালে প্রায়ই সকালে কুয়াশা দেখা যায়। কুয়াশা দুই প্রকার—হাদ্ধা কুয়াশা (Mist) এবং ঘন কুয়াশা (Dense fog)। বায়ুমণ্ডলের প্রতি একক আয়তনে কুয়াশার পরিমাণ কম হলে এ কুয়াশাকে হাদ্ধা কুয়াশা বলে এবং বেশি হলে এ কুয়াশাকে ঘন কুয়াশা বলে। কোন কোন সময় নদীর পানির উপর কুয়াশা দেখা যায়। কারণ রাত্রিকালে স্থলভাগ জলভাগ অপেক্ষা দ্রত শীতল হয়। ফলে স্থলভাগের শীতল বায়ু নদীর বুকে নেমে পানির উপরিভাগের বায়ুকে শীতল করে কুয়াশার সৃষ্টি করে।

মেঘ (Cloud) : বায়ুমণ্ডলের বিস্তীর্ণ অঞ্চলের বায়ু জলীয় বাম্প দ্বারা সম্পৃক্ত হয়ে যদি ক্ষুদ্র ক্ষুদ্র পানি বিন্দুরুপে পৃথিবী পৃষ্ঠ হতে বহু উপরে ভেসে বেড়ায় তবে তাকে মেঘ বলে। সুতরাং উর্ধ্বাকাশের কুয়াশাই মেঘ।

ভূ-পৃষ্ঠের জলীয় বাম্পপূর্ণ বায়ু হান্ধা হয়ে যখন উপরের দিকে প্রবাহিত হয় তখনই উপরের অপেক্ষাকৃত শীতল বায়ুর সংস্পর্শে তা আরও ঠান্ডা হতে থাকে। আবার উপরের চাপ কম বলে বায়ু আয়তনে প্রসারিত হয়ে শীতল হয়ে থাকে। এভাবে বায়ুর তাপমাত্রা যখন শিশিরাজ্ঞের খানিকটা নিচে নেমে যায় তখন জলীয় বাম্প ঘনীভূত হয়ে বায়ুতে ভাসমান ধূলিকণা বা পানি শোষণকারী বিজাতীয় পদার্থ কণার সাথে পানি বিন্দুর আকারে ভাসতে থাকে। একে মেঘ বলে।

বৃষ্টি (Rain) ঃ মেঘ যখন উপরের দিকে উঠতে থাকে তখন বিভিন্ন কারণে তা অধিকতর শীতল হয়ে পড়ে। ফলে মেঘের পানি বিন্দুগুলো বড় বড় বিন্দুতে পরিণত হয়। পানি বিন্দুগুলো পরস্পরের সংস্পর্শেও আকারে বড় হয়। এভাবে তারা যথেষ্ট ভারী হয়ে অভিকর্ষের টানে ভূ-পতিত হয়। একেই বৃষ্টি বলে।

শিলা (Sleet) : মেঘ যখন জোরালো বায়ুপ্রবাহে উর্ধ্বাকাশের দিকে উঠতে থাকে তখন তার তাপমাত্রা দুত হাস পায় এবং পানির হিমাজ্ঞ (0°C)-এর নিচে নেমে আসে। এতে মেঘের পানি বিন্দুগুলো জমে ক্ষুদ্র ক্ষুদ্র বরফ খণ্ডের সৃষ্টি করে। এই বরফ খণ্ডের সংস্পর্শে তার আশে-পাশের পানির বিন্দুগুলো শীতল হয়েও ক্ষুদ্র ক্ষুদ্র বরফখণ্ডে পরিণত হয়। এভাবে বরফখণ্ডগুলো আকারে বৃদ্ধি পেয়ে যথেন্ট ভারী হলে তারা আর বায়ুতে ভেসে থাকতে পারে না। অভিকর্ষের টানে সবেগে এরা ভূ-পতিত হয়। একেই শিলাবৃষ্টি বা শিলা বলে। বলা বাহুল্য জলীয় বান্ধা দুত ঘনীভূত হওয়ায় শিলার সৃষ্টি হয় বলে তার ভিতর কিছু কিছু বায়ু আবন্ধ থাকতে পারে।

স্মরণিকা

তাপ ঃ তাপ এক প্রকার শক্তি যা গরম বা উচ্চ তাপমাত্রার বস্তু হতে নিম্ন তাপমাত্রার বস্তৃতে তাপমাত্রার পার্ধক্যের কারণে সঞ্চালিত হয়।

গ্যাসীয় সূত্রাবলি : (১) বয়েলের সূত্র ঃ তাপমাত্রা স্থির থাকলে কোন নির্দিষ্ট ভরের গ্যাসের আয়তন তার চাপের ব্যস্তানুপাতিক।

(২) চার্লস-এর সূত্র ঃ স্থির চাপে কোন নির্দিষ্ট ভরের গ্যাসের আয়তন 0°C থেকে প্রতি ডিগ্রী সেলসিয়াস তাপমাত্রা পরিবর্তনের জন্য এর 0°C তাপমাত্রার আয়তনের নির্দিষ্ট ভগ্নাংশ <u>1</u> 273 অংশ পরিবর্তিত হয়।

(৩) চাপীয় সূত্র ঃ স্থির আয়তনে কোন নির্দিষ্ট ভরের গ্যাসের চাপ 0°C থেকে প্রতি ডিগ্রী সেলসিয়াস তাপমাত্রা পরিবর্তনের জন্য এর 0°C তাপমাত্রার চাপের নির্দিষ্ট ভগ্নাংশ 1/273 অংশ পরিবর্তিত হয়।

আদর্শ গ্যাস ঃ যে সব গ্যাস বয়েল এবং চার্লস-এর সূর্ত্র মেনে চলে তাদেরকে আদর্শ গ্যাস বলে।

পরম শূন্য তাপমাত্রা : স্থির চাপে একটি নির্দিষ্ট ভরের কোন গ্যাসের তাপমাত্রা ক্রমশ কমাতে থাকলে চার্লসের সূত্রানুযায়ী যে তাপমাত্রায় পৌঁছে তার আয়তন শূন্য হয় ও গ্যাসের গতিশব্তি সম্পূর্ণরূপে লোপ পায় তাকে পরম শূন্য তাপমাত্রা বলে।

স্থির চাপে গ্যাসের আয়তন প্রসারস্কর, _{Yp} ঃ স্থির চাপে 0°C তাপমাত্রায় নির্দিষ্ট ভরের গ্যাসের তাপমাত্রা 0°C থেকে প্রতি ডিগ্রী সেলসিয়াস বৃদ্ধির জন্য ঐ গ্যাসের প্রতি একক আয়তনে যে প্রসারণ ঘটে তাকে স্থির চাপে গ্যাসের আয়তন প্রসারাজ্ঞ বলে।

স্থির আয়তনে গ্যাসের চাপ প্রসারাচ্চ, _{Yv} ঃ স্থির আয়তনে 0°C তাপমাত্রার নির্দিষ্ট ভরের গ্যাসের তাপমাত্রা 0°C থেকে প্রতি ডিগ্রী সেলসিয়াস বৃদ্ধির ফলে ঐ গ্যাসের প্রতি একক চাপের যে বৃদ্ধি ঘটে তাকে স্থির আয়তনে গ্যাসের চাপ প্রসারাচ্চক বলে।

প্রমাণ তাপমাত্রা ঃ প্রমাণ বা ষাভাবিক চাপে (760 mm পারদ স্তম্ভ চাপ) যে তাপমাত্রায় বরফ গলে পানিতে পরিণত হয় বা পানি জমে বরফে পরিণত হয় সেই তাপমাত্রাকে পরম তাপমাত্রা বলে।

প্রমাণ চাপ ঃ সমুদ্র পৃষ্ঠে 45° অক্ষাংশে 0°C বা 273 16 K তাপমাত্রায় উল্লম্বভাবে অবস্থিত 760 mm উচ্চতাবিশিষ্ট শুক্ষ ও বিশূদ্ধ পারদ স্তম্ড যে চাপ দেয় তাকে প্রমাণ বা স্বাভাবিক চাপ বলে।

বইঘর.কম

সর্বজনীন গ্যাস ধ্বক, R: এক মোল আদর্শ গ্যাসের তাপমাত্রা এক ডিগ্রী বাড়ালে তা যে পরিমাণ কাজ সম্পন্ন করে তাকে সর্বজনীন গ্যাস ধ্রবক বলে।

গড় বর্গ বেগ : দুই বা ততোধিক বেগের বর্গের গড় মানকে গড় বর্গ বেগ বলে।

গড় বর্গ বেগের বর্গমূল বা মূল গড় বর্গবেগ ঃ দুই বা ততোধিক বেগের বর্গের গড় মানের বর্গমূলকে গড় বর্গবেগের বর্গমূল বা মূল গড় বর্গবেগ বলে।

গড় মুক্ত পথ ঃ পরস্পর ধাক্তাগুলোর ভিতর একটি অণু যে গড় দূরত্ব অতিক্রম করে তাকে গড় মুক্ত পথ বলে।

সম্পৃত্ত বাষ্প চাপ ঃ কোন নির্দিষ্ট তাপমাত্রায় কোন আবন্ধ স্থানের বাষ্প যে সর্বাধিক চাপ প্রয়োগ করে তাকে সম্পৃত্ত বাষ্ণ চাপ বলে।

অসম্পৃক্ত বাষ্ণচাপ ঃ কোন নির্দিষ্ট তাপমাত্রায় কোন আবন্ধ স্থানের বাষ্ণ যদি সর্বাধিক বাষ্ণচাপ অপেক্ষা কম চাপ প্রয়োগ করে তবৈ তাকে অসম্পৃক্ত বাম্প চাপ বলে।

আপেক্ষিক আর্দ্রতা : কোন নির্দিষ্ট তাপমাত্রায় একটি নির্দিষ্ট আয়তনের বায়ুতে যে পরিমাণ জলীয় বাম্প থাকে ঐ তাপমাত্রায় ঐ আয়তনের বায়ুকে সম্পৃক্ত করতে যে পরিমাণ জলীয় বাম্পের প্রয়োজন হয় তাদের অনুপাতকে আপেক্ষিক আর্দ্রতা বলে।

প্রয়োজনীয় সমীকরণ

বয়েলের সূত্র, PV = ধ্রুবক (1)

বয়েলের সূত্র,
$$P_1 V_1 = P_2 V_2 = ধ্র্বক$$
 (2)
চার্লস-এর সূত্র : (i) $V = V_0 \left(1 + \frac{\theta}{273}\right)$ (3)

(ii)
$$V \propto T = \frac{T_1}{T_2}$$
 (4)

(iii)
$$\frac{V_1}{V_2} = \frac{T_1}{T_2}$$
(5)

চাপীয় সূত্র ঃ (i) $P = P_0 \left(1 + \frac{\theta}{273} \right)$ (6)

(ii)
$$P_{\infty} = \frac{T_1}{T_1}$$
 (7)
(iii) $\frac{P_1}{T_1} = \frac{T_1}{T_1}$ (8)

(iii)
$$\frac{1}{P_2} = \frac{1}{T_2}$$
 (8)

বয়েল এবং চার্লস সৃত্রের সমন্বিত রূপ ঃ $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2} =$ ধ্রবক (9)

ম্ধির চাপে গ্যাসের আয়তন প্রসারাজ্ঞ,
$$\gamma_p = \frac{V - V_0}{V_0 \theta}$$
 (10)

$$\frac{V_0\theta}{P_{-}P}$$
(10)

$$P_{--}^{0}$$
 P₀ (11)

স্থির আয়তনে গ্যাসের চাপ প্রসারাজ্ঞ,
$$\gamma_v = \frac{\Gamma - \Gamma_0}{P_0 \theta}$$
 (11)

আদর্শ গ্যাস সমীকরণ, (i)
$$PV = nRT$$
 (12)

$$(ii) PV = \frac{m}{RT} PV = \frac{m}{RT} RT$$
(12)

(iii)
$$PV = \frac{m}{M}RT \Rightarrow PV = \frac{d}{M}RT$$
 (13)

গ্যাসের ঘনত্বের সমীকরণ ২ (
$$\mu$$
) $\frac{\rho_1}{\rho_2} = \frac{T_1}{T_2}$ (14)

$$\frac{1}{\rho_2} = \frac{1}{T_2}$$
(14)

$$(ji) \quad \frac{\rho_1}{\rho_2} = \frac{P_1}{P_2}$$
(15)

$$\mathfrak{N} \mathfrak{S} \mathfrak{S} \mathfrak{n} \mathfrak{s} \mathfrak{c}_n = \frac{c_1 + c_2 + c_3 \dots + c_n}{n}$$
(16)

গড় বৰ্গ বেগ
$$c_a^2 = \frac{c_1^2 + c_2^2 + c_3^2 \dots + c_n^2}{n}$$
 (17)

গড় বর্গ বেগের বর্গমূল বা মূল গড় বর্গবেগ,
$$c = \sqrt{c_a^2} = \sqrt{\frac{c_1^2 + c_2^2 + \dots + c_n^2}{n}}$$
 (18)

আদর্শ গ্যাদের চাপ,
$$J^{\sigma} = \frac{1}{3} \rho c^{-2}$$
 (19)

প্রতি মোল বা এক গ্রাম অণু গ্যাসের গতিশক্তি
$$E = \frac{3}{2} RT$$
 (20)

একক আয়তনের অণুগুলোর গ্যাসের চাপ
$$M^2 = \frac{2}{3}E^2$$
 (21)

মূল গড় বর্গবেগের সাথে চাপের সম্পর্ক
$$\mathcal{G}_c = \sqrt{\frac{3P}{\rho}}$$
 (22)

মূল গড় বর্গবেগের সাথে তাপমাত্রার সম্পর্ক ঃ
$$c = \sqrt{\frac{3RT}{M}}$$
 (23)

গড় মুক্ত পথ ঃ (i) রুসিয়াসের সমীকরণ
$$\lambda = \frac{1}{\pi a^2 n^2}$$
 (24)

(ii) ম্যাক্সওয়েলের সমীকরণ
$$i = \frac{1}{\sqrt{2} \times a^2 n}$$
 (25)

আপেক্ষিক আর্দ্রতা ঃ R =
$$\frac{f}{F} \times 100\%$$
 (26)

$$\sqrt{2}$$
গ্রেইসার-এর সমীকরণ : $t_1 = t + G(t_1 - t_2)$ (27)

সমাধানকৃত উদাহরণ f_{-}^{-7} f_{-7} f_{-7

$$\begin{aligned} \text{universe} & \text{universe} = V_2 \\ \text{universe} \\ \text{univ$$

ে বিদিষ্ট ভরের গ্যাসের তাপমাত্রা 30°C। (i) চাপ স্থির থাকলে কোন্ তাপমাত্রায় আয়তন দ্বিগুণ হবে ? (ii) আয়তন স্থির থাকলে কোন্ তাপমাত্রায় চাপ তিনগুণ হবে ?

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} V_{1} & V_{1} \\ W_{1} & V_{2} \\ T_{1} & V_{2} \\ T_{1} & V_{2} \\ T_{1} & V_{2} \\ T_{2} \end{array} \end{array} \end{array} (1) \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} W_{1} & V_{2} \\ W_{2} & V_{1} \\ W_{2} & V_{1}$$

তাপ ও গ্যাস 009 বইঘর.কম বিকন্ন পম্বতি ঃ আমরা জানি এখানে, $\frac{P_1}{T_1} = \frac{P_2}{T_2}$ $T_1 = 273 + 0^{\circ}C = 273K$ $T_2 = 273 + 60^{\circ}C = 333K$ $\overline{1}, P_2 = \frac{P_1 T_2}{T_1}$ $P_1 = 3 \times 10^5 Pa$ $P_2 = ?$ $P_2 = \frac{3 \times 10^5 \times 333}{273}$ $= 3.66 \times 10^5 \text{ Pa}$ (2 / 1) (8) একটি ট্যাংকে 27 C তাপমাত্রায় ও 2 বায়ুমঙলীয় চাপের 1660 লিটার অক্সিজেন আছে। ট্যাংকে অক্সিজেনের ভর নির্গন কর। [অক্সিজেনের আণবিক ভর = 32 kg k mol^{-1} , 1 বায়্মডলীয় চাপ= 1.013×10^5 Pa ও B = $8314 \text{ L k mol}^{-1}$ K^{-1} P2=244 $R = 8314 J k mol^{-1} K^{-1}$ র অক্সিজেনের ভর = m \sqrt{N} $m = M\left(\frac{PV}{RT}\right)$ ধরি অক্সিজেনের ভর = m এখানে. T = (273 + 27) K = 300 K $M = 32 \text{ kg k mol}^{-1}$ $m = 32 \text{ kg k mol}^{-1} \times \overset{\text{R}}{\longrightarrow}$ $R = 8314 \text{ J k mol}^{-1} \text{ K}^{-1}$ $\begin{pmatrix} 2 \times 1.013 \times 10^5 \text{ Pa} \times 1660 \times 10^{-3} \text{ m}^3 \\ \hline 8314 \text{ J k mol}^{-1}\text{K}^{-1} \times 300 \text{ K} \end{pmatrix}$ = 4.3 kg () जिसत তाপমাত্রায় কত চাপ প্রয়োগ করলে একটি গ্যাসের আয়তন এর যাতাবিক চাপ আয়তনের 4 গুণ $P = 2 \times 1.013 \times 10^5 Pa$ বি. বো. ২০০৪, ২০০২] আমরা জানি এখানে, ষাভাবিক চাপ, $P_1 = 1.013 \times 10^5 \text{ Nm}^{-2}$ $P_1V_1 = P_2V_2$ আদি আয়তন = V_1 $\boxed{P_1} = \frac{V_2}{V_1} = \frac{4V_1}{V_1}$ চূড়ান্ত আয়তন, V₂ = 4V₁ চূড়ান্ত চাপ, P₂ = ? $\overline{\mathbf{q}}; \quad \frac{1.013 \times 10^5}{P_2} = 4$ \overline{A} , $P_2 = \frac{1.013 \times 10^5}{4}$ $= 25.325 \times 10^3 \text{ Nm}^{-2}$ (b) স্বাডাবিক তাপমাত্রা ও চাপে কিছু শুষ্ক বায়ু সংনমিত প্রক্রিয়ায় সংনমিত করে এর <u>আয়</u>তন অর্ধেক করা হল। Pi চূড়ান্ত চাপ নির্ণয় কর। ৰু. বো. ২০০১] P_{1} আমরা জানি, এখানে. প্রাথমিক চাপ, $P_1 = 1.013 \times 10^5 \text{ Nm}^{-2}$ $P_1V_1 = P_2V_2$ প্রাথমিক আয়তন $= V_1$ $\overline{P}_{2}V_{2} = P_{1}V_{1}$ চূড়ান্ত আয়তন, $V_2 = \frac{V_1}{2}$ \overline{A} , $P_2 = \frac{V_1}{V_2}P_1 = \frac{2V_2}{V_2}P_1$

চূড়ান্ত চাপ,
$$P_2 = ?$$

 $= 2P_1 = 2 \times 1.013 \times 10^5 \,\mathrm{Nm^{-2}}$

 $= 2.026 \times 10^{5} \text{ Nm}^{-2}$

উচ্চ মাধ্যমিক পদার্থবিজ্ঞান Or BG & JEWEL (৭1)0.64 m পারদ স্তম্ভ চাপে এবং 39°C তাপমাত্রায় কোন গ্যাসের আয়তন 5'7 × 10-4 m3। প্রমাণ চাপ তাপমাত্রায় গ্যাসের আয়তন কৃত ? TI যি. বো. ২০০১] \mathcal{V}_{1} $\overline{T_n}$ _ wind with, এখানে, প্রাথমিক চাপ, P₁ = 0.64 m Hg $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$ চূড়ান্ত চাপ, $P_2 =$ প্রমাণ চাপ = 0.76 m Hg বা, $V_2 = \frac{P_1 V_1 T_2}{T_1 P_2}$ প্রাথমিক তাপমাত্রা, T $_1 = 39^{\circ}C = (39 + 273) K$ = 312K $= \frac{0.64 \times 5.7 \times 10^{-4} \times 273}{312 \times 0.76} \text{m}^3$ চূড়ান্ত তাপমাত্রা, T₂ = প্রমাণ তাপমাত্রা = 273K প্রাথমিক আয়তন, $V_1 = 5.7 \times 10^{-4} \text{ m}^3$ $= 4.2 \times 10^{-4} \text{ m}^3$ চূড়ান্ত আয়তন, V₂ = ? ন্ । দ্ব্য স্থান স্ স্থান স্ ŝ [সি. বো. ২০০৬ (মান ভিন্ন); য. বো. ২০০০] এখানে. $PV = \frac{m}{M} RT$ $m = 20 \text{ g} = 20 \times 10^{-3} \text{ kg}$ বা, V = $\frac{m RT}{PM}$ $M = 32 \times 10^{-3} \text{ kg mol}^{-1}$ $\begin{array}{l} R &= 8.31 \ JK^{-1} \ mol^{-1} \\ T &= (27 + 273) = 300 \ K \end{array}$ $20 \times 10^{-3} \times 8.31 \times 300$ $=\frac{1}{72 \times 10^{-2} \times 13^{\circ} \times 10^{3} \times 9^{\circ} \times 32 \times 10^{-3}}$ $= 72 \text{ cm} = 72 \times 10^{-2} \text{ m}$ $= h\rho g^{\prime}$ = 0.0162369 $= 72 \times 10^{-2} \times 13.6 \times 10^{3} \times 9.8 \text{ Nm}^{-2}$ V $= 16^{\circ}24 \times 10^{-3} \text{ m}^{3}$ = ? ্ষ্ট্রি স্বাভাবিক তাপমাত্রা ও চাপে হাইদ্রোজেনের ঘনত্ব 0.09 kgm⁻³। হাইদ্রোজেন অণুর গড় বর্গবেগে<u>র বর্গমূ</u>ল আমরা জানি. এখানে. $c = \sqrt{\frac{3P}{0}}$ ষাভাবিক চাপ $P = 1.013 \times 10^5 \text{ Nm}^{-2}$ $c = \sqrt{\frac{3 \times 1.013 \times 10^5}{0.09}}$ হাইড্রোজেনের ঘনতু, $ho = 0.09 \, \mathrm{kgm^{-3}}$ = 18:38 × 10² ms⁻¹ M = 2.8 c = ? 29°C তাপমাত্রায় 3 g নাইট্রোজেন গ্যাসের মোট গতিশক্তি নির্ণয় কর। [নাইট্রোজেনের গ্রাম আণরিক M=28 [কু. বো. ২০০৩] আমরা জানি, n মোল গ্যাসের গতি শক্তি, এখানে, m = 3gK. E. $=\frac{3}{2}nRT = \frac{3}{2}\frac{m}{M}RT$ M = 28gK. E. $=\frac{3}{2} \times \frac{3}{28} \times 831 \times 302$ = 403 J R $= 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$ Т = (273 + 29) K = 302 KK.E. \approx ? (১১)। 27°C তাপমাত্রায় প্রতি গ্রাম অণু হিলিয়াম গ্যাসের গতিশক্তি নির্ণয় কর। পৃ [R = 8'3 JK⁻¹ mol⁻¹] ঢা. বো. ২০০৩ আমরা জানি. এখানে, K.E. $=\frac{3}{2}$ RT $R = 8.3 \, [K^{-1} \, mol^{-1}]$ Т = (273 + 27) K $=\frac{3}{2}$ × 8.3 × 300 = 300 K $= 3735 \, \text{I} \, \text{mol}^{-1}$

১২। স্থির চাপে 4×10^{-3} m³ আয়তনের কোন গ্যাসকে 0°C হতে 68'25°C পর্যস্ত উত্তন্ত করার ফলে এর আয়তন 1×10^{-3} m³ বৃস্থি পেলে পরম শূন্য তাপমাত্রার মান কত ? [কু. বো. ২০০৬; য. বো. ২০০৬; চ. বো. ২০০৫] আমরা জানি, এখানে,

 $V = V_0 (1 + \gamma_p \theta)$ वा, $0 = V_0 (1 + \gamma_p \theta)$ वा, $1 + \gamma_p \theta = 0$ $\theta = -\frac{1}{\gamma_p}$

আবার, আমরা জানি,

$$\begin{split} \gamma_{p} &= \frac{\Delta V}{V_{0}\Delta \theta} = \frac{1 \times 10^{-3}}{4 \times 10^{-3} \times 68^{\circ}25} \\ &= 3^{\circ}66 \times 10^{-3} \\ \theta &= -\frac{1}{3^{\circ}66 \times 10^{-3}} = -273 \\ \theta &= -273^{\circ}C \end{split}$$

্র্তি। কোন হ্রদের তলদেশ থেকে পানির উপরিওলে আসায় একটি বায়ু বুদবুদের আয়তন 5 গুণ হয়। বায়ুমন্ডলের চাপ 10⁵ Nm⁻² হলে হ্রদের গভীরতা কত ? [চ. বো. ২০০৫ ; ব্দ্রু বো. ২০০২; য. বো. ২০০০]

হ্রদের তলদেশে মোট চাপ = P হ্রদের তলদেশে পানির চাপ = P, পানির ঘনত্ব = ρ_2 পানির উপরিতলে বায়ু চাপ = P₁ হ্রদের তলদেশে বুদবুদের আয়র্তন = V পানির উপরিতলে বুদবুদের আয়তন $= V_1 = 5V$ এখানে, $P = P_1 + P_2$. (1)বয়েলের সূত্র হতে, $PV = P_1V_1$ $\overline{\mathbf{q}}$, $\mathbf{PV} = \mathbf{P}_1 \mathbf{5V}$ বা, P = 5P1 (2)(1) এবং (2) নং হতে পাই, $5P_1 = P_1 + P_2$ \Rightarrow 4P₁ = P₂ \Rightarrow 4×10⁵ = h_2 × 10³ × 9'8

এখানে, $P_1 = 10^5 \text{ N m}^{-2}$ $P_2 = h_2 \rho_2 g$ $\rho_2 = 10^3 \text{ kg m}^{-3}$ $g = 9.8 \text{ ms}^{-2}$

 0° C তাপমাত্রায় আয়তন, $V_0 = 4 \times 10^{-3} \text{ m}^3$

পরমশূন্য তাপমাত্রায় গ্যাসের আয়তন, V₀ = 0 সেলসিয়াস স্কেলে পরমশূন্য তাপমাত্রা, θ = ?

তাপমাত্রা বৃদ্ধি, Δθ = 68°25°C

জায়তন বৃদ্ধি, $\Delta V = 1 \times 10^{-3} \text{ m}^3$

(58) কোন হদের তলদেশ থেকে পানির উপরিতলে আসায় একটি বায়ু বুদবুদের ব্যাস শ্বিগুণ হয়। হুদের পৃষ্ঠে বায়্মডলের চাপ স্বাভাবিক বায়্মন্ডলীয় চাপের সমান এবং হদের উষ্ণতা ধ্রুবক হলে হদের গভীরতা কত ? ঢা. বো. ২০০৫; চ. বো. ২০০২)

বুদবুদের আয়তন $\propto d_1^3$ [$V = \frac{4}{3}\pi r^3 = \frac{4}{3}\pi \left(\frac{d}{2}\right)^3$ অর্থাৎ $V \propto d^3$] সৃতরাং ব্যাস দ্বিগুণ হলে আয়তন ৪ গুণ হবে। মনে করি, হ্রদের তলদেশে চাপ= P_1 এবং হ্রদের পৃষ্ঠে চাপ= P_2 . $P_1 = P_2 + h\rho_8$

 $\implies h_2 = \frac{4 \times 10^5}{10^3 \times 9'8} = 40'81 \text{ m}$

এথানে, হদের তলদেশে বুদবুদের আয়তন, V₁ = V হদের পৃষ্ঠে বুদবুদের আয়তন, V₂ = 8V পানির ঘনত্ব, $\rho = 1 \times 10^3 \, {\rm kgm^{-2}}$ অভিকর্ষজ ত্বরণ, g = 9.8 ms⁻² হদের গভীরতা, h = ? বায়ুমণ্ডলের স্বাডারিক চাপ, P₂ = 1.013 × 10⁵ Nm⁻² আমরা জানি,

$$P_1V_1 = P_2V_2$$

a),
$$(P_2 + h\rho_3)V = P_2V_2 = P_2 \times 8V$$

a),
$$h\rho g = 8P_2 - P_2 = 7P_2$$

 $h = \frac{7P_2}{\rho g} = \frac{7 \times 1.013 \times 10^5}{1 \times 10^3 \times 9.8} = 72.36 \text{ m}$

রিক্রি কোন আধারের 20টি গ্যাস অণুর মধ্যে 6টি গ্যাস অণুর প্রত্যেকের বেগ 4 ms⁻¹, 4টি অণুর প্রত্যেকের বেগ 3 ms⁻¹, 3টি অণুর প্রত্যেকের বেগ 2.5 ms⁻¹, 5টি অণুর প্রত্যেকের বেগ 2 ms⁻¹ এবং 2টি অণুর প্রত্যেকের বেগ 1 ms⁻¹। অণুগুলোর গড় বেগ ও গড় বর্গবেগের বর্গমূল নির্ণয় কর।

প্রশান্যায়ী, গড় বেগ,
$$\langle v \rangle = \frac{6 \times 4 + 4 \times 3 + 3 \times 2.5 + 5 \times 2 + 2 \times 1}{6 + 4 + 3 + 5 + 2}$$
 ms⁻¹ = 2.775 ms⁻¹
ও গড় বর্গবেগের বর্গমূল, $c = \sqrt{\frac{6 \times 4^2 + 4 \times 3^2 + 3 \times 2.5^2 + 5 \times 2^2 + 2 \times 1^2}{6 + 4 + 3 + 5 + 2}} = 2.939$ ms⁻¹

১৬। একটি খোলা লিটার ফ্লাস্কে $0^{\circ}\mathrm{C}$ তাপমাত্রার $1.32 imes 10^{-3}~\mathrm{kg}$ বায়ু আছে। $91^{\circ}\mathrm{C}$ তাপমাত্রায় ফ্লাস্ক হতে কি পরিমাণ বায়ু বের হয়ে যাবে ?

প্রশানুযায়ী স্থির বায়ুমণ্ডলীয় চাপে এই পরিবর্তন সংঘটিত হচ্ছে।

কাজেই
$$\rho_1 T_1 = \rho_2 T_2$$
 (1)

$$T_1 = 0^{\circ}C = (273 + 0)K = 273K$$

 $T_2 = 91^{\circ}C = (273 + 91)K = 364K$
 $\rho_1 = \frac{1\cdot32 \times 10^{-3} \text{ kg}}{10^{-3} \text{ m}^3} = 1\cdot32 \text{ kg m}^{-3}$
গাত্রের আয়তন, V = 1 লিটার = 10⁻³ m³

প্রাথমিক তাপমাত্রায় বায়ুর তর =
$$1.32 \times 10^{-3} \text{ kg}$$

এখন সমীকরণ (1)-এ মানগুলো বসিয়ে পাওয়া যায়,

$$\rho_2 = \frac{\rho_1 T_1}{T_2} = \frac{1.32 \times 273}{364} \text{ kg m}^{-3}$$

= পরিবর্তিত অবস্থায় বায়ুর ঘনত্ব

পাত্রস্থিত বায়ুর বর্তমান ভর 😑 আয়তন 🗙 ঘনত্ব

$$= 10^{-3} \times \frac{1.32 \times 273}{364} \text{kg}$$

কাজেই বহিচ্চৃত বায়ুর তর
$$= \left(1.32 \times 10^{-3} - 10^{-3} \times \frac{1.32 \times 273}{364}\right) \text{kg}$$
$$= 3.3 \times 10^{-4} \text{kg}$$

৭৭) স্বাডাবিক তাপমাত্রা ও চাপে নাইট্রোজেনের ঘনত্ব 1'25 kgm⁻³।

র্
) অণুগুলোর গড় বর্গবেগের বর্গমূল বের কর।

[চ. বো. ২০০৩] (ii) 100°C তাপমাত্রায় নাইট্রোজেন অণুর গড় বর্গবেগের বর্গমূল নির্ণয় কর। [ঢা. বো. ২০০২] (i) আমরা জানি, এখানে,

(ii) আবার,
$$c = \sqrt{\frac{3RT}{M}}$$

এবং $c_1 = \sqrt{\frac{3RT_1}{M}}$ $\frac{c_1}{c} = \sqrt{\frac{T_1}{T}}$
বা, $c_1 = c\sqrt{\frac{T_1}{T}} = 493.07 \times \sqrt{\frac{373}{273}}$
 $= 576.34 \text{ ms}^{-1}$

উ: (i) 493 07 ms⁻¹ (ii) 576 34 ms⁻¹

তি স্থির চাপে কোন্ তাপমাত্রায় কোন গ্যাসের অণুর মূল গড় বর্গবেগ প্রমাণ চাপ ও তাপমাত্রার মূল গড় যি. বো. ২০০৩] বর্গবেগেঁর অর্ধেক হবে ?

?

মামরা জানি,

$$c = \sqrt{\frac{3RT}{M}}$$

 $c = \sqrt{\frac{3RT_1}{M}}$
 $c_1 = \sqrt{\frac{3RT_1}{M}}$
এবং $c_2 = \sqrt{\frac{3RT_2}{M}}$
অন্ত এব, $\frac{c_2}{c_1} = \sqrt{\frac{T_2}{T_1}}$
 $a_1, \quad \frac{1}{2} = \sqrt{\frac{T_2}{T_1}}$
 $T_2 = \frac{1}{4} \times T_1 = \frac{1}{4} \times 273K$
 $= 68'25K$

্ঠি) বাভাবিক তাপমাত্রা ও চাপে অক্সিজেন গ্যাসের অণুগুলোর গড় বর্গবেগের বর্গমূল নির্ণয় কর। বাভাবিক চাপ ও তাপমাত্রায় অক্সিজেনের খনত্ব = 1'43 kg m⁻³। [ঢা. বো. ২০০৫ ; চ. বো. ২০০১]

ধরি নির্শেয় গড় বর্গবেগের বর্গমূল = c জামরা পাই, $c = \sqrt{\frac{3P}{\rho}}$ (1) মানগুলো সমীকরণ (1)-এ বসিয়ে পাওয়া যায় P = 0.76 m উল্লম্ব পারদস্তম্ভের চাপ $= 0.76 \text{ m} \times (13.6 \times 10^3 \text{ kg m}^{-3}) \times 9.8 \text{ ms}^{-2}$ $= 0.76 \times (13.6 \times 10^3) \times 9.8 \text{ N m}^{-2}$ [: $P = h\rho g$] $\rho = 1.43 \text{ kg m}^{-3}$ $c = \sqrt{\frac{3 \times 0.76 \times 13.6 \times 10^3 \times 9.8 \text{ Nm}^{-2}}{1.43 \text{ kg m}^{-3}}} = 461 \text{ ms}^{-1}$ 1 ২০) 0°C তাপমাত্রায় বায়ুতে নাইট্রোজেন অণুর গড় বর্গবেগের বর্গমূল নির্ণয় কর। $[K = 1.38 \times 10^{-23}] K^{-1}, M = 28 \text{ kg k mol}^{-1}$ N = 6.02 × 10²⁶ k mol⁻¹] ধরি নির্শেয় বেগ = c_{rms} আমরা পাই, $\frac{1}{2}mc^2 = \frac{3}{2}KT$ ও $m = \frac{M}{N}$ CAT. $c = \sqrt{\frac{3KT}{m}} = \sqrt{3\frac{KT \times N}{M}}$ $= \sqrt{\frac{3 \times (1^{-23} \text{ K}^{-1}) \times (276 \text{ K}) \times 6^{-02} \times 10^{26} \text{ k mol}^{-1}}{28 \text{ kg k mol}^{-1}}}$ = 490 ms⁻¹

২১। স্বির চাপে কত ডাপমাত্রায় হাইড্রোজেন অণুর গড় বর্গবেগের বর্গমূল বাতাবিক চাপ ও ডাপমাত্রার গড় বর্গবেগের বর্গমূলের ছিগুণ হবে ? আমরা পাই, $c \propto \sqrt{T}$ (1) প্রথম $T_1 K$ ও পরিবর্তিত $T_2 K$ তাপমাত্রায় হাইড্রোজেন অণুর গড় বর্গবেগের বর্গমূল $T_1 = 273 K$ যথাক্রমে c_1 ও c_2 হলে, সমীকরণ (1) অনুযায়ী $\frac{c_1}{c_2} = \sqrt{\frac{T_1}{T_2}}$ ধরি নির্ণেয় তাপমাত্রা = T₂ তাহলে, $T_2 = \frac{c_2^2}{c_1^2} \times T_1$ $= \frac{(2 c_1)^2}{c_1^2} \times 273 \,\mathrm{K}$ = 1092K= (1092 - 273)°C = 819°C ২২।)কোন একটি গ্যাসের অণুগুলোর গড় মুক্ত পথ $6 imes 10^{-6}~{
m m}$ ও অণুর ব্যাস $2.5 imes 10^{-10}~{
m m}$ । প্রতি ঘন মিটারে 🕰 [ঢা. বো. ২০০৬ (মান ভিন্ন)] অণুর সংখ্যা নির্ণয় কর। আমরা জানি, $\lambda = \frac{1}{\sqrt{2\pi a^2 n}}$ এখানে, জণুর গড় মুক্ত পথ , $\lambda=6 imes 10^{-8}~{
m m}$ বা, $n = \frac{1}{\sqrt{2\pi a^2 \lambda}}$ অণুর ব্যাস, $a = 2.5 imes 10^{-10} \,\mathrm{m}$ একক আয়তনে অণুর সংখ্যা, n = ? $n = \frac{1}{\sqrt{2} \times 3^{\cdot} 14 \times (2^{\cdot} 5 \times 10^{-10})^2 \times 6 \times 10^{-8}}$ $=\frac{1000 \times 10^{25}}{\sqrt{2} \times 3.14 \times 2.5 \times 2.5 \times 6}$ $= 6 \times 10^{25} / m^3$ ২৩) কোন গ্যান্সের অণুর ব্যাস 3×10^{-10} m এবং গড় মুক্ত পথ 2×10^{-5} m। উক্ত গ্যাসের একুক আয়তনে অণুর সংখ্যা নির্ণির কর। যদি জণুগুলোর গড় বর্গবেগের বর্গমূলীয় মান 500 ms⁻¹ হয়, তবে প্রতি সেকেন্ডে সংঘটিত সংঘর্ষের সংখ্যা নির্ণয় কর। আমরা জানি, এখানে, $\lambda = \frac{1}{\sqrt{2\pi}na^2}$ অণুর ব্যাস, a = 3 × 10⁻¹⁰ m গড় মুক্ত পথ, λ = 2 × 10⁻⁸ m বা, $n = \frac{1}{\sqrt{2\pi a^2 \lambda}}$ **অণ্**র সংখ্যা, n = ? $c = 500 \text{ ms}^{-1}$ $n = \frac{1}{\sqrt{2} \times 3^{\circ} 14 \times (3 \times 10^{-10})^2 \times 2 \times 10^{-8}}$ সংঘৰ্ষ সংখ্যা, N = ? $= 1.25 \times 10^{26} \text{ m}^{-3}$ প্রতি সেকেন্ডে সংঘটিত সংঘর্ষের সংখ্যা 12 ridn $N = \frac{c}{\lambda} = \frac{500}{2 \times 10^{-8}}$ $= 2.5 \times 10^{10} \text{ s}^{-1}$

৩৬২

বইঘর.কম

জিল কান গাঁৱ ভগৰ বা	דד 3 ∨ 10− ¹⁰ m	এবং প্রতি হন সেনিটি	মটারে অণুর সংখ্যা 6 × 1020 হলে অণুর গড় মুক্ত
পথ নির্ণয় কর।	Ch III		(মান ভিন্ন) ; রা. বো. ২০০৫ ; কু. বো. ২০০১]
মনে করি, গড় মুক্ত পথ =)	6		এখানে,
আমরা পাই, $\lambda = \frac{1}{\sqrt{2}}$		(1)	$n = 6 \times 10^{26} \text{mol/m}^3$
√2πa•n সমীকরণ (1) হতে পাই,			$a = 3 \times 10^{-11} \text{ m}$ Ann 4.
$\lambda = \frac{1}{1}$			1 - 6 × 102 - 2 (a) Ansc
$\sqrt{2\pi} \times (3 \times 10^{-10})^2 \times (3 \times 10^{-9})^2 \times ($	6×10^{26}		$n = 6 \times 10^{26} \text{ m Ansc}$
= 4 17 × 10 ° m			l n-

<u>২</u> কোন একটি আবন্ধ স্থানের বায়ুর তাপমাত্রা 15°C ও শিশিরাক্ষ 8°C। তাপযাত্রা কমে 10°C হলে পরিবর্তিত জলীয় বান্দের চাপ ও শিশিরাক্ষ কত হবে ? [<u>7°C ও 8°C তাপমাত্রায় সম্পৃক্ত জলীয় বান্দোর চাপ যথাক্রমে</u> <u>7'5 × 10⁻³ m ও 8'1 × 10⁻³ m পার</u>দ।]

মনে করি 10°C ও 15°C তাপমাত্রায় ঐ স্থানের অসম্পৃক্ত জ্ঞলীয় বান্দের চাপ যথাক্রমে P₁ ও P₂। তা হলে শিশিরাঞ্জের সংজ্ঞা অনুসারে, P₂ = 15°C তাপমাত্রায় অসম্পৃক্ত জ্ঞলীয় বান্দোর চাপ = 8°C তাপমাত্রায় সম্পৃক্ত জ্ঞলীয় বান্দোর চাপ = 8°1 × 10⁻³ m পারদ।

আবার স্থানটি আবন্ধ বলে বায়ুর আয়তন নির্দিষ্ট। কাজেই চাপের সূত্র অনুসারে অ্যমরা পাই,

 $\frac{P_1}{P_2} = \frac{T_1}{T_2} = \frac{273 + 10}{273 + 15} = \frac{283}{288}$

পরিবর্তিত জ্ঞশীয় বান্দের চাপ, $P_1 = \frac{283}{288} \times P_2 = \frac{283}{288} \times 8^{11} \times 10^{-3} \text{ m} = 7.96 \times 10^{-3} \text{ m}$ পারদ।

মনে করি পরিবর্তিত শিশিরাজ্ঞ = t°C

t°C তাপমাত্রায় সম্পৃক্ত বাম্পের চাপ =7'96 × 10⁻³ m পারদ।

এখন প্রদন্ত রাশিগুলো হতে দেখা যাচ্ছে যে, $(8.1 - 7.5) \times 10^{-3}$ m = 6×10^{-4} m পারদ চাপ বৃষ্ণির জন্য 7°C হতে তাপমাত্রা বৃষ্দি = $(8 - 7)^{\circ}$ C = 1° C

 $(7.96 - 7.5) \times 10^{-3}$ m = 0.46×10^{-3} m পারদ চাপ বৃষ্ণির জন্য 7°C হতে তাপমাত্রা বৃষ্ণি = $\frac{1}{0.6} \times 0.46 = 0.766$ °C

পরিবর্তিত শিশিরাজ্ঞ = (7 + 0[·]766)°C = 7[·]766°C

২৬। কোন একদিন সিক্ত ও শুক্ষ বাদ্ব আর্দ্রতামাপক যন্তের শুক্ষ বাদবের পাঠ 30°C এবং সিক্ত বাদবের পাঠ 28° C। আপেক্ষিক আর্দ্রতা নির্ণয় কর। 30° C-এ গ্রেইসারের উৎপাদক 1.65 এবং 26° C, 28° C এবং 30° C তাগমাত্রার সম্পৃক্ত বাদা চাগ যথাক্রমে $25^{\circ}25 \times 10^{-3} \text{ m}$, $28^{\circ}45 \times 10^{-3} \text{ m}$ এবং $31^{\circ}85 \times 10^{-3} \text{ m}$ পারদ চাগ। রো. বো. ২০০০]

আমরা জানি,

 $\begin{aligned} t_1 &= t + G(t_1 - t_2) \\ t_1 &= t_1 - G(t_1 - t_2) \\ &= 30 - 1.65 (30 - 28) \\ &= 26.7^{\circ}C \\ &\text{uiceline uigoid,} \\ R &= \frac{26.7^{\circ}C \text{ oightidik strap of all strap of a$

BG & JEWEL

(২৭) কোন একদিনের শিশিরাক্ষ 10°C ও আপেক্ষিক আর্দ্রতা 67·30%। এ দিনের বায়ুর সম্পৃত্ত বাশচাপ কত?
[10°C তাপমাত্রায় সম্পৃত্ত জনীয় বাশচাপ 13·64 × 10⁻³ m]

আমরা জানি,
$$R = \frac{f}{F} \times 100\%$$

বা, $67.3\% = \frac{13.64 \times 10^{-3}}{F} \times 100\%$
 $F = \frac{13.64 \times 10^{-3}}{67.3}$
 $= 2.02 \times 10^{-4}$

 $f = 13.64 \times 10^{-3} \text{ m}$ R = 67.3%F = ?

(২৮) কোন একদিন বায়ুর তাপমাত্রা 26°C এবং শিশিরাক্ষ 20'4°C। আপেক্ষিক আর্দ্রতা নির্ণয় কর। 20°C, 22°C এবং 26°C তাপমাত্রায় সম্পৃত্ত জলীয় বাম্পের চাপ যথাক্রমে 17'54, 19'83 এবং 25'21 mm পারদ চাপ।
[চ. বো. ২০০৬ ; সি. বো. ২০০৪ ; ব. বো. ২০০৩ ; কৃ. বো. ২০০০]

(22 — 20)° C = 2°C-এর জন্য সম্পৃক্ত জলীয় বাম্পের চাপের বৃদ্ধি = (19.83 — 17.54) mmHg = 2.29 mmHg (20.4 — 20)°C = 0.4°C-এর জন্য সম্পৃক্ত জলীয় বাম্পের চাপ বৃদ্ধি = $\frac{2.29 \times 0.4}{2}$ mmHg = 0.458 mmHg শিশিরাঙ্ক 20.4°C তাপমাত্রায় সম্পৃক্ত জলীয় বাম্পের চাপ, f = (17.54 + 0.458) mmHg = 17.998 mm Hg আবার, 26°C তাপমাত্রায় সম্পৃক্ত জলীয় বাম্পের চাপ, F = 25.21 mmHg

আমরা জানি, আপেক্ষিক অর্দ্রেতা,

$$R = \frac{f}{F} \times 100\% = \frac{17.998}{25.21} \times 100\% = 71.39\%$$

কোন এক দিনের শিশিরাক্ষ 7'4°C এবং কক্ষ তাপমাত্রা 18'6°C। আপেক্ষিক আর্দ্রতা নির্ণয় কর। 7°C, 8°C, 18°C ও 19°C তাপমাত্রায় সম্পৃত্ত জলীয় বান্দা চাপ যথাক্রমে 7'5 × 10⁻³ m, 8'2 × 10⁻³ m, 15'6 × 10⁻³ m
 এবং 16'5 × 10⁻³ m পারদ]
 [সি. বো. ২০০৬ (মান ভিন্ন); ব. বো. ২০০৬ (মান ভিন্ন); ব. বো. ২০০৬ (মান ভিন্ন); ব. বো. ২০০১]

এখানে, 7°C, 8°C, 18°C ও 19°C তাপমাত্রায় সম্পৃক্ত জলীয় বাম্প চাপ যথাক্রমে 7.5 × 10⁻³, 8.2 × 10⁻³, 15.6 × 10⁻³ ও 16.5 × 10⁻³ m পারদ।

সুতরাং 7°C তাপমাত্রার পর (8 — 7) = 1° C তাপমাত্রা বৃদ্ধির জন্য সম্পৃক্ত জলীয় বাম্পচাপ বৃদ্ধি -

$$= (8^{\cdot}2 - 7^{\cdot}5) \times 10^{-3}$$
$$= 0^{\cdot}7 \times 10^{-3} \text{ m Mar}$$

(7·4 — 7) = 0·4°C তাপমাত্রা বৃষ্দ্বির জ্বন্য সম্পৃক্ত জ্বলীয় বাষ্ণচাপ বৃষ্দ্বি

$$= 0.7 \times 10^{-3} \times 0.4 \text{ m} = 0.28 \times 10^{-3} \text{ m}$$

শিশিরাক্ষ (7.4°C) সম্পৃত্ত জ্লীয় বাম্প চাপ,

$$f = (7.5 \times 10^{-3} + 0.28 \times 10^{-3}) \text{ m} = 7.78 \times 10^{-3} \text{ m}$$

আবার, 18°C তাপমাত্রার পর (19—18) = 1°C বৃষ্ধির জন্য সম্পৃক্ত জ্বলীয় বাষ্ণ চাপ বৃদ্ধি

 $(18.6 - 18) = 0.6^{\circ}$ C তাপমাত্রা বৃষ্ণির জন্য সম্পৃক্ত জলীয় বাষ্ণ চাপ বৃষ্ণি

$$0.90 \times 0.6 \times 10^{-3} \text{ m} = 0.54 \times 10^{-3} \text{ m}$$

বায়ুর তাপমাত্রায় (18.6°C) সম্পৃক্ত জ্লীয় বাষ্ণ চাপ,

$$F = (15.6 + 0.54) \times 10^{-3} \text{ m}$$
$$= 16.14 \times 10^{-3} \text{ m} \text{ MAM}$$
$$\text{under, } R = \frac{f}{F} \times 100\%$$
$$= \frac{7.78 \times 10^{-3}}{16.14 \times 10^{-3}} \times 100\%$$
$$= 48.2\%$$

বইঘর.কম

 \odot কোন একদিন শিশিরাজ্ঞ 7'6°C ও বায়ুর তাপমাত্রা 16°C। আপেক্ষিক আর্দ্রতা নির্ণয় কর। [7°C, 8°C এবং 16°C তাপমাত্রায় সম্পৃক্ত জলীয় বাম্প চাপ যথারুমে 7'5 × 10⁻³ m, 8 × 10⁻³ m এবং 13'5 × 10⁻³ m পারদ]

[ঢা. বো. ২০০৪] এখানে, 7°C, 8°C ও 16°C তাপমাত্রায় সম্পৃক্ত জলীয় বাম্প চাপ যথাক্রমে 75 × 10⁻³ m, 80 × 10⁻³ m ও 135 × 10⁻³ m পারদ।

7°C তাপমাত্রার পর (8 – 7) = 1°C তাপমাত্রার বৃদ্ধির জন্য সম্পৃক্ত জলীয় বাম্প চাপ বৃদ্ধি = (8'0 × 10⁻³ – 7'5 × 10⁻³) = 0'5 × 10⁻³m পারদ (7'6 – 7) = 0'6°C তাপমাত্রার বৃদ্ধির জন্য সম্পৃক্ত জলীয় বাম্প চাপ বৃদ্ধি = 0'5 × 10⁻³ × 0'6 = 0'30 × 10⁻³ m পারদ

শিশিরাংকে (7⁻⁶°C) সম্পৃক্ত জলীয় বাষ্ণ চাপ, $f = (7^{-5} \times 10^{-3} + 0^{-3}) \times 10^{-3})$ m পারদ

 $= 7.8 \times 10^{-3} \text{ m}$ পারদ

16°C তাপমাত্রায় বা বায়ুর তাপমাত্রায় সম্পৃক্ত জলীয় বাম্প চাপ, $F = 13.5 \times 10^{-3} \text{ m}$ পারদ।

এখন, $R = \frac{f}{F} \times 100 = \frac{7.8 \times 10^{-3}}{13.5 \times 10^{-3}} \times 100$ = 57.77%

প্রশ্রালা

সংক্ষিশ্ত-উত্তর প্রশু ঃ

১। বয়েলের সূত্রটি বর্ণনা কর। [য. বো. ২০০৫; ঢা. বো. ২০০৪] ২। পরম আর্দ্রতা বলতে কি বুঝ ? [ব. বো. ২০০৫; ঢা. বো. ২০০৪] ৩। মূল গড় বর্গ বেগ কি বা কাঁকে বলে ? [ঢা. বো. ২০০৬ ; সি. বো. ২০০৫ ; কু. বো. ২০০৪ ; য. বো. ২০০৩] ৪। প্রমাণ চাপ কাকে বলে ? কি. বো. ২০০৪; য. বো. ২০০৩; চ. বো. ২০০১] ৫। গ্যাস অণুর গড় মুক্ত পথ কি কি রাশির উপর নির্ভর করে ? [য. বো. ২০০৪; চ. বো. ২০০৩] ৬। আদর্শ গ্যাস কাকে বলে ? [ঢা. বো. ২০০৩] বাস্তব ক্ষেত্রে আদর্শ গ্যাস পাওয়া যায় কি ? বি. বো. ২০০৪] ৭। শিশিরাজ্ঞ কাকে বলে ? [ব. বো. ২০০৪, ২০০২ ; সি. বো. ২০০৩ ; য. বো. ২০০১] [রা. বো. ২০০৫ ; সি. বো. ২০০৪ ; ঢা. বো. ২০০৩, ২০০১; চ. বো. ২০০৫ ; ৮। গড় মুক্ত পথ কাকে বলে ? কু. বো. ২০০১; ব. বো. ২০০৫; য. বো. ২০০৩, ২০০০] ৯। গ্যাসের গতিতত্ত্বের মৌলিক স্বীকার্যগুলো কি কি ? [সি. বো. ২০০৪] ১০। সম্পক্ত বাষ্ণচাপের সংজ্ঞা দাও। ঢা. বো. ২০০৩ ; য. বো. ২০০২] ১১। গ্যাস ও বাম্পের মধ্যে পার্থক্য লিখ। ক. বো. ২০০৩] ১২। চার্লসের সূত্র বিবৃত কর। [ব. বো. ২০০৬ ; কু. বো. ২০০৩] ১৩। প্রমাণ তাপমাত্রা কাকে বলে ? যি. বো. ২০০৩; চ. বো. ২০০১] ১৪। সম্পৃক্ত ও অসম্পৃক্ত বাম্পের পার্থক্য লিখ। [b. বো. ২০০৩ ; কু. বো. ২০০৩] ১৫। আপেক্ষিক আর্দ্রতা কাকে বলে ? বি. বো. ২০০৩, ২০০১ ; কু. বো. ২০০২ ; সি. বো. ২০০২ ; ঢা. বো. ২০০১ ; রা. বো. ২০০১] ১৬। অসম্পৃক্ত বাম্পচাপের সংজ্ঞা দাও। য. বো. ২০০২ ১৭। সংজ্ঞা লিখ ঃ শিশিরাজ্ঞক ও আপেক্ষিক আর্দ্রতা [রা. বো. ২০০৬ ; চ. বো. ২০০২] ১৮। ক্রান্তি তাপমাত্রা কাকে বলে ? [**ए.** (वा. २००७ ; कृ. (वा. २००४) ১৯। দুটি ঘরের তাপমাত্রা সমান। একটিতে আপেক্ষিক আর্দ্রতা 60%, অপর্টিতে 80%। কোন্ ঘরটিতে বেশি অষস্তি লাগবে একং কেন ? ব বো. ২০০৪] ২০। কোন স্থানের আপেক্ষিক আর্দ্রতা 70% বলতে কি বুঝ ? যি. বো. ২০০২] ২১। শিশিরাজ্ঞ 15°C বলতে কি বুঝ ? ২২। পরম শূন্য তাপমাত্রা কাকে বলে ? [ঢা. বো. ২০০৫] ২৩। আদর্শ গ্যাস কাকে বলে ? [ব. বো. ২০০৬] २8 | S. T. P. বা N. T. P कि ? ২৫। সর্বচ্ছনীন গ্যাস ধ্রুবকের সংজ্ঞা দাও। এর একক কি ? ২৬। বো**লজ**ম্যান ধ্রুবক কি ? ২৭। বায়ুর আর্দ্রতা 10⁻² kgm⁻³ বলতে কি বুঝ १

উচ্চ মাধ্যমিক প্রদাধবিজ্ঞান

২৮। মেঘলা রাত্রি অপেক্ষা মেঘহীন রাত্রি শিশির জমার পক্ষে বেশি সহায়ক---ব্যাখ্যা কর। ২৯। শীতকালে ঠোটে গ্রিসারিন লাগান হয় কেন ? ৩০। জামাদের দেশে বর্ষাকাল অপেক্ষা শীতকালে ভেজা কাপড় দুত শুকায় কেন ? [সি. বো. ২০০৬] রচনামূলক প্রশ্ন : ১। প্রমাণ কর যে, কোন গ্যাসের চাপ তার একক আয়তনের অণুগুলোর গতিশক্তির দুই-তৃতীয়াংশ। [রা. বো. ২০০৬, ২০০২ ; চ. বো. ২০০৬, ২০০০ ; সি. বো. ২০০৬, ২০০৪, ২০০২ ; ঢা. বো. ২০০৪ ; কু. বো. ২০০৫, ২০০২ ; ব. বো. ২০০২ ; য. বো. ২০০৫, ২০০০] [রা. বো. ২০০৪ ; য. বো. ২০০২] . ২। গ্যাসের গতিতত্ত্ব অনুসারে গ্যাসের চাপের রাশিমালা নির্ণয় কর। রো. বো. ২০০৫, ২০০৪] ৩। আপেক্ষিক আর্দ্রতা নির্ণয়ের একটি পন্ধতি বর্ণনা কর। ৪। দেখাও যে, গড় মুক্ত পথ গ্যাসের ঘনত্বের ব্যস্তানুপাতিক। [ঢা. বো. ২০০৬ ; কু. বো. ২০০৪ ; য. বো. ২০০৩] ৫। দেখাও যে, T পরম তাপমাত্রায় এক গ্রাম অণু গ্যাসের রৈখিক গতিশক্তি $rac{3}{2}
m RT-এর সমান।$ ৰি. বো. ২০০৪] ৬। আদর্শ গ্যাসের ক্ষেত্রে গ্যাসের গতিতত্ত্বের সাহায্যে প্রমাণ কর যে, $\mathrm{PV}=rac{1}{3}\,mnc^2$, এখানে প্রতীকগুলো প্রচলিত অর্থ [5. (वी. २००८, २०००] বহন করে। ৭। সিক্ত ও শুক্ষ হাইগ্রোমিটারের সাহায্যে কিভাবে আপেক্ষিক আর্দ্রতা নির্ণয় করা যায় বর্ণনা কর। [চ.বো. ২০০৪, ২০০২, ২০০০ ; সি. বো. ২০০৩, ২০০২ ; কু. বো. ২০০১; য. বো. ২০০১ ; ব. বো. ২০০১ ; ব. বো. ২০০৩; ঢা. বো. ২০০২, ২০০১; রা. বো. ২০০২, ২০০০] ৮। চার্লসের সূত্র বিবৃত কর এবং এই সূত্র থেকে প্রমাণ কর যে, স্থির চাপে আয়তন পরম তাপমাত্রার সমানুপাতিক। [ব. বো. ২০০৪ ; রা. বো. ২০০১] ৯। একটি গ্যাসের অণুর গড় মুক্ত পথের রাশিমালা প্রতিষ্ঠা কর। [কু. বো. ২০০৬ ; চ. বো. ২০০৫; সি. বো. ২০০৪, ২০০৩; রা. বো. ২০০৩; য. বো. ২০০০; ঢা. বো. ২০০৩, ২০০১] ১০। একটি আদর্শ গ্যাসের ক্ষেত্রে PV = nRT সমীকরণটি নির্ণায় কর। চি. বো. ২০০৬, ২০০৩, '০১; ঢা. বো. ২০০৫, '০৩; ব. বো. ২০০৫, ২০০৩; য. বো. ২০০৫, ২০০১; সি. বো. ২০০৫, ২০০১; রা. বো. ২০০০ ; কু. বো. ২০০৩] ১১। গ্যাসের প্রসারণে চার্লসের সূত্র বর্ণনা কর এবং এটা হতে কিভাবে পরম শূন্য তাপমাত্রার সংজ্ঞা পাওয়া যায় ব্যাখ্যা কর। [ঢা. বো. ২০০৩] ১২। গ্যাস অণুর গড় মুক্ত পথের রাশিমালা প্রতিপাদন কর এবং দেখাও যে, গড় মুক্ত পথ গ্যাসের ঘনত্বের [সি. বো. ২০০৬ ; চ. বো. ২০০৩, ২০০১] ব্যস্তানুপাতিক। ১৩। গ্যাসের গতিতত্ত্বের ছয়টি মৌলিক স্বীকার্য লিখ। বি. বো. ২০০৪] ১৪। গ্যাসের গতিতন্ত্র হতে প্রমাণ কর যে একক আয়তনে কোন আবন্দ্র গ্যাস পাত্রের দেয়ালে যে চাপ দেয় তা তার গতিশক্তির দুই-তৃতীয়াংশ এবং এটা হতে দেখাও যে, গ্যাস অণুর মূল গড় বর্গবেগ এর ঘনত্বের বর্গমূলের ব্যস্তানুপাতিক। **চি.** বো. ২০০২] ১৬। আপেক্ষিক আর্দ্রতা নির্ণয়ের প্রয়োজনীয়তা ব্যাখ্যা কর। ১৭। বয়েলের সূত্রটি লিখ ও ব্যাখ্যা কর। গাণিতিক সমস্যাবলি : ্ম িথির তাপমাত্রায় $2 imes 10^5$ $m Nm^{-2}$ চাপে কোন নির্দিষ্ট গ্যাসের আয়তন $0.004~
m m^3$, $6 imes 10^5$ $m Nm^{-2}$ চাপে গ্যাসটির আয়তন কত ? P1 [উखत : 1⁻³4×10⁻³ m³] $\sqrt{2}$ $\sqrt{2}^{\circ}$ তাপমাত্রার ও 0.76m পারদ স্তম্ভ চাপে একটি গ্যাসের আয়তন $4.5m^3$ । যদি তাপমাত্রা 77° কিরা হয় তবে [উত্তর ঃ 1:33m পারদ স্তম্ভ চাপ] মুত চাপে আয়তন <u>3m³ হবে</u> ?

ত। একটি পার্ত্রে ০০০ তাপমাত্রায় কিছু গ্যাস আছে। কত তাপমাত্রায় গ্যাসের চাপ ০০০ তাপমাত্রার চাপের অর্থেক হবে १ [উন্তর : 136'5 K]

তাপ ও গ্যাস 069 $\mathcal{P}_{\mathbf{I}}$ 8। স্থির তাপমাত্রায় <u>1 × 10⁵ Nm⁻² চাপে</u> নির্দিষ্ট তরের কিছু গ্যাসের আয়তন <u>0 002m³।</u> (ক) 4 × 10⁵ Nm⁻² চাপে গ্যাসটির জায়তন ও (খ) কত চাপে গ্যাসটির জায়তন 0.004 m³ হবে নির্ণয় কর। $P_{i} = 1$ **√**=7 [উত্তর ঃ (ক) 5×10⁻⁴ m³; (খ) 5×10⁴ Nm⁻²] \star । 30°C তাপমাত্রায় কোন গ্যাসের চাপ $1.5 imes 10^5 \, {
m Nm^{-2}}$ হলে 90°C তাপমাত্রায় এর চাপ ক্রত $\, ?$ ·Pi ি 🖌 🖓 🗸 [উত্তর ঃ 1΄8 × 10⁵ Pa] - T2-র্ও। 600 mm পারদ স্তম্ভ চাপে কত তাপমাত্রায় একটি গ্যাসের আয়তন এর ষাভাবিক চাপ ও তাপমাত্রার আয়তনের দিগুণ হবে ? T [উত্তর ঃ 431'3 K] ্রুপ। একটি লেকের তলদেশ থেকে পানির উপরিতলে আসার সময় বাতাসের বুদবুদ আয়তনে দ্বিগুণ হয়। বায়ুমণ্ডলের চাপ 10⁵ Nm⁻² হলে লেকটির গভীরতা কত? [সি. বো. ২০০৩] [উত্তর ঃ 10⁻20m] 🔍 🖌 ৮। কোন হ্রদের তলদেশ থেকে পানির উপরিতলে আসায় একটি বায়ু বুদবুদের ব্যাস 1.5 গুণ হয়। হ্রদের পৃষ্ঠে বায়ুমণ্ডলের চাপ ষাভাবিক বায়ুমন্ডলীয় চাপের সমান এবং হ্রদের উষ্ণতা ধ্রুবক হলে হ্রদের গভীরতা কত ? [উত্তর ঃ 24:55 m] 🞗 🗸 ি কোন হ্রদের তলদেশ থেকে পানির উপরিতলে আসায় একটি বায়ু বুদবুদের আয়তন 3 গুণ হয়। বায়ুমণ্ডলের চাপ 1 013 × 10⁵ Pa হলে হদের গভীরতা কত ? [উত্তর ঃ 20 67 m] 🔾 🖓 💈 🖉 জলাশয়ের কত গভীরতায় একটি বুদবুদের আয়তন উপর তলে থাকাকালীন আয়তন অপেক্ষা অর্ধেক হবে ? ঐ সময় বায়্মন্ডলের চাপ 760 mm এবং পারদের ঘনত্ব 13.6 × 103 kgm⁻³। [য. বো. ২০০০] [উত্তর ঃ 10⁻336m] ১১ । <u>0°C তাপমাত্রায়</u> ও <u>1</u> বায়ুমন্ডলীয় চাপে বাতাসের অণুগুলোর গৃড় মুক্তপথের মান বের কর। বাতাসের প্রতি ঘন সেন্টিমিটারে জণুর সংখ্যা $\frac{1}{2}$ 4 imes 10¹⁹। প্রতিটি জণুর ব্যাস = 3 imes 10⁻⁸ cm L 2 [উত্তর ঃ 6 26 × 10⁻⁶ cm] ১২। <u>1 লিটার অয়িতনের একটি পাত্রে 2×10^{25} সংখ্যক অণু আছে। যদি অণুর ভর 3×10^{-25} g হয় এবং মূল গড়</u> m [উত্তর ঃ 5 × 10⁵ Nm⁻²] বর্গবেগ $5 \times 10^4 \,\mathrm{cms}^{1}$ হয় তাহলে উক্ত গ্যাসের চাপ নির্ণয় কর। ি ১৩। ষাভাবিক তাপমাত্রা ও চাপে কোন আঁবন্ধ গ্যাসের ঘনত্ব 0.0995 kgm⁻³ হলে এ গ্যাসের অণুগুলোর গড় বর্গবেগের T,P বর্গমূল নির্ণয় ক্রুর। [উত্তর : 1'747 × 10³ ms⁻¹] 5 । 27°C তাপমাত্রায় 5g নাইট্রোজেনের গতিশক্তি নির্ণয় কর। (নাইট্রোজেনের গ্রাম আণবিক ভর = 28g)। EK m. [উন্তর ঃ 667⁻8 J] ১৫/1 27°C তাপমাত্রায় এবং 4×10^5 Nm $^{-2}$ চাপে কোন গ্যাসের আয়তন 100 cm 3 । 100°C তাপমাত্রায় ও 8×10^5 Nm⁻² চাঁপে এর আয়তন কত হবে ? [উত্তর : 62⁻2 cm³] ্রের্ড। 0°C তাশমাত্রায় কোন গ্যাসের চাপ 5 × 10⁵ Pa হলে 80°C তাশমাত্রায় এর চাপ কত হবে ? ि िखत : 6'465 × 10⁵ Pa] ১৭। 20g হিলিয়াম গ্যাস পূর্ণ একটি বেলুনের আয়তন 0.12m³। বেলুনের ভিতরে গ্যাসের চাপ <u>1.5 × 10⁵ Nm⁻²।</u> বেশুনের ভিতরে গ্যাসের তাপমাত্রা কত ? 🍸 [উত্তর : 433⁻2 K] ্র্র্স্টিনি একটি সিলিন্ডারে রক্ষিত অক্সিজেন গ্যাসের আয়তন $1 imes 10^{-2}~{
m m}^3$; তাপমাত্রা 300K এবং চাপ $2.5 imes 10^5$ $m Nm^{-2}$ । তাপমাত্রা স্থির রেখে কিছু অঞ্জিজেন বের করে নেয়ার পর চাপ কমে $1.3 imes10^5~
m Nm^{-2}$ হয়। ব্যবহুত অঞ্জিজেনের ভর fift = P $m = \rho V$ ৰুত ? (উত্তর ঃ 0[.]015 kg) ১৯। 27°C তাপমাত্রা এবং 20 atm চাপের একটি গ্যাসকে প্রসারিত হতে দেওয়ায় এর নতুন আয়তন পূর্বের আয়তনের 10 গুণ এবং নতুন চাপ বায়ুমণ্ডলীয় চাপের সমান হল। গ্যাসটির নতুন তাপমাত্রা কত _? [উন্তর ঃ — 123°C] $\Sigma_{\rm V}$ ২০। যদি $m R=8.31~
m JK^{-1}~
m mol^{-1}$ হয় তবে 76 cm পারদ চাপে 27°C তাপমাত্রায় 50g অক্সিজেনের আয়তন নির্ণয় কর। $v_{i}\sqrt{}$ [উন্তর ঃ 3[·]85 × 10^{−2} m³] ২০ বিদি আদর্শ চাপ ও তাপমাত্রায় হাইদ্রোজেন গ্যাসের ঘনত্ত্ব 0:09 kgm⁻³ হয়, তবে আদর্শ তাপমাত্রা ও চাপে হাইদ্রোন্দ্রেন ভুণুর মূল গড় বর্গবেগ কত ? উত্তর ঃ 1837 6 ms⁻¹] ্র্র্ব। কোন গ্যাসের অণুর ব্যাসার্ধ $1.2 imes 10^{-10}~{
m m}$ এবং গড় মুক্ত পথ $2.6 imes 10^{-8}~{
m m}$ । উক্ত গ্যাসের এক ঘনমিটার আয়তনৈ অণুর সংখ্যা নির্ণয় কর। যদি অণুগুলোর মূল গড় বর্গবেগ 800 ms⁻¹ হয় তবে পরপর দুটি সংঘর্ষের মধ্যে সময়ের ব্যবধান উত্তর **ঃ** 1 504 × 10²⁶ m⁻³ ; 3 25 × 10⁻⁹ sl নির্ণিয় কর। ২৩। একটি গ্যাসের অণুর ব্যাসার্ধ 3.6 × 10⁻¹⁰ m এবং প্রতি ঘন সেন্টিমিটারে অণুর সংখ্যা 2^{.79} × 10¹⁹ হলে অণুর গড় মুক্ত পথ নির্ণয় কর। [কু. বো. ২০০৪] ভিন্তর ঃ 6'25 × 10-8 m]

WG & JE WEL	
২৪। কোন গ্যাস অণুর ব্যাস 2 $ imes 10^8~{ m cm}$ এবং প্রতি ঘন সেন্টিমিটারে অণুর সংখ্যা 3 $ imes 10^{19}$ হলে অণুর গড় মুক্ত $ imes$	
নির্ণয় কর। [ব. বো. ২০০৬] (উত্তর ঃ 1'877 × 10 ⁻⁷ n	
২৫। কোন একটি গ্যাস অণুগুলোর গড় মুক্ত পথ $2.6 imes 10^{-8}~{ m m}$ এবং আণবিক ব্যাস $2.2 imes 10^{-10}~{ m m}$ হলে, প্রতি স	
সেটিমিটারে অণুর সংখ্যা নির্ণয় কর। [ঢা. বো. ২০০৬] ভিত্তর ঃ 179 × 102	
$\sqrt{3}$ ি কোন গ্যাসের প্রতি ঘনমিটারে অণুর সংখ্যা $3 imes 10^{25}$ এবং অণুর ব্যাস $3.8 imes 10^{-10}~{ m m}$ হলে, এ গ্যাসের গড় মু	
পথ বের কর।	-
$\sqrt[3]{4}$ ি কোন একটি গ্যাসের অণুগুলোর গড় মুক্ত পথ $2.6 imes 10^{-8}~{ m m}$ ও অণুর ব্যাস $3 imes 10^{-10}~{ m m}$ হলে, প্রতি ঘনমিটা	
অণুর সংখ্যা নির্ণয় কর। টেন্ডর ঃ 5:2 × 102	-
২৮। 1092°C তাপমাত্রায় বায়ুর অণুগুলোর গড় বর্গবেগের বর্গমূলীয় মান নির্ণয় কর। স্বাভাবিক চাপ ও তাপমাত্রায় বা	
ঘনত্ব = 1 [·] 296 kgm ⁻³] [উঃ 1 [·] 08 × 10 ³ ms	-
২৯। 0°C-এ নাইট্রোজেন গ্যাসের গড় বর্গবেগের বর্গমূলীয় মান 493 ms ⁻¹ । স্বাভাবিক চাপ ও তাপমার নাইট্রোজেনের ঘনত্ব নির্ণয় কর। স্বাভাবিক চাপ ও তাপমাত্রায় পারদের ঘনত্ব = 13 ^{.59} × 10 ³ kgm ⁻³ ও g = 9 ^{.8} ms ⁻²]'	ায়.
নাইট্রোজৈনের ঘনত্ব নির্ণয় কর। স্বাভাবিক চাপ ও তাপমাত্রায় পারদের ঘনত্ব = 13 [.] 59 × 10 ³ kgm ⁻³ ও g = 9 [.] 8ms ⁻²]'	
សំ [បី៖ 1 ⁻ 2493]kgm	
😡 ষাভাবিক তাপমাত্রা ও চাপে অক্সিজেনের ঘনত্ত্ব হাইড্রোজেনের ঘনত্ত্বের 16 গুণ হলে অক্সিজেন অণুর গড় বর্গবে	গর
বর্গমূলীয় মান নির্ণয় কর। [হাইদ্রোজেনের ঘনত্ব = 0'0898 kgm ⁻³] [উ: 461'21 ms	
৩২০০০ তাপমাত্রায় প্রতি কিলোগ্রাম মোল হিলিয়াম গ্যাসের গতিশক্তি নির্ণয় কর। [R = 8314 J k mol ⁻¹ K ⁻¹]	
টিঃ 3 ^{.74} × 10 ⁶	11
৩২। ০°C তাপমাত্রায় একটি হাইদ্রোজেন অণুর গতিশক্তি 5.64 × 10 ⁻²¹ J এবং R = 8320 J k mol ⁻¹ K ⁻¹ ধ	
অ্যাভোগ্রাড্রো সংখ্যা নির্ণন্ন কর। টিঃ 6'04 × 10 ²⁶ কণা K mol	
তি। নির্দিষ্ট কোন একদিনের শিশিরাজ্ঞ ৪ 5°C এবং বায়ুর তাপমাত্রা 18°C। আগৈক্ষিক আর্দ্রতা নির্ণায় কর। দেও	
আছে, 8°C, 9°C এবং 18°C তাপমাত্রায় সর্বোচ্চ বায়ুচাপ যথাক্রমে 0084 m, 00861 m এবং 01546 m পারদ।	
উত্তর ঃ 55	%]
🔞 কোন একদিনে শিশিরাব্রু ৪ [.] 5°C এবং বায়ুর তাপমাত্রা 17 [.] 5°C। আপেক্ষিক আর্দ্রতা নির্ণয় কর। [8°C, 9°	C,
17° C ও 18° C তাপমাত্রায় সম্পৃক্ত জলীয় বাম্পের চাপ যথাক্রমে 7.35×10^{-3} , 8.03×10^{-3} , 15.48×10^{-3} এবং 16.46	×
10 ⁻³ m পারদ। [রা. বো. ২০০৬ (মান ভিন্ন)] [উত্তর ঃ 48 [·] 2	%]
৩৫। কোন একটি আবন্ধ স্থানের বায়ুর তাপমাত্রা 27°C ও শিশিরাচ্চ্ব 15°C। তাপমাত্রা কমে 17°C হলে, জ্বলী	য
বাম্পের চাপ ও শিশিরাজ্ঞ কত হবে ? সম্পৃক্ত জলীয় বাম্পের চাপ 15°C তাপমাত্রায় 12.8 × 10 ⁻³ m ও 14°C তাপমাত্র	ায়
12 0 × 10 ⁻³ m- পারদ ।] ডিঃ 12 37 mm পারদ : 14 462°	C 1
ভূঙ্য কোন একটি বন্ধ ঘরের তাপমাত্রা 17°C এবং শিশিরাঙ্ক 12°C। বায়ুর তাপমাত্রা কমে 14°C হলে শিশিরা	ৰু
৩৬। কোন একটি বন্ধ ঘরের তাপমাত্রা 17°C এবং শিশিরাঙ্ক 12°C। বায়ুর তাপমাত্রা কমে 14°C হলে শিশিরা কত হবে ? [10°C ও 12°C তাপমাত্রায় সম্পৃক্ত জ্লীয় বাস্পের চাপ যথাক্রমে 9'2×10 ⁻³ m ও 10'5×10 ⁻³ m পারদ।]	
টিঃ 11 [.] 053 °	C]
😡। কোন একদিন বায়ুর তাপমাত্রা 22°C এবং আপেক্ষিক আর্দ্রতা 60%। যদি ঐ স্থানের তাপমাত্রা হ্রাস পে	য়ে
12°C হয় তবে বায়ুস্থিত জলীয় বাম্পের কত অংশ ঘনীভূত হবে ? [12°C ও 22°C তাপমাত্রায় সম্পৃক্ত জলীয় বাম্পের চ	79
্যথাক্রমে 10'5 × 10 ⁻³ m এবং 19'8 × 10 ⁻³ m] টিঃ 0'1	16]
৩৮। একটি শুক্ষ ও আর্দ্র বাল্ব থার্মোমিটারের শুক্ষ ও আর্দ্র বাল্বের তাপমাত্রা যথাব্রুমে 25°C ও 19°C। বা	্যুর
ার্শাগরাজ্ঞ ও আপেক্ষিক আর্দ্রতা নিণয় কর। [25°C তাপমাত্রায় G-এর মান 1°65 ; 15°C , 16°C ও 25°C তাপমাত্রায় সম্প	ন্ত
জলীয় বান্দোর চাপ যথাক্রমে 12.77 × 10 ⁻³ m, 13.71 × 10 ⁻³ m ও 23.7 × 10 ⁻³ m l] তিঃ 15.1°C ঃ 54.28	%]
🔊 নির্দিষ্ট কোন দিনে শিশিরাঙ্ক 10 ^{.5°} C এবং বায়ুর তাপমাত্রা 19 [.] 4°C। আপেক্ষিক আর্দ্রতা নির্ণয় ক	a 1
[10°C 11°C, 19°C এবং 20°C তাপমাত্রায় সর্বাধিক বায়ুচাপ যথাক্রমে 9'2 × 10 ⁻³ m, 9'9 × 10 ⁻³ m, 16'5 × 10 ⁻³	m
এবং 177 × 10 ⁻³ m পারদ ৷] [উঃ 56·24	%]
তি বায়ুর তাপমাত্রা 30°C এবং আপেক্ষিক আর্দ্রতা 60% হলে বায়ুর জলীয় বান্দোর চাপ কত ? 30°C তাপমাত্র	ায়
সম্পৃক্ত জলীয় বাম্প চাপ = 31 70 × 10 ⁻³ mHg । যে. বো. ২০০২) উত্তর 8 19 × 10 ⁻³ mH	igl

১২১ সূচনা

Introduction

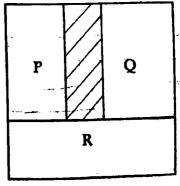
তাপ ও তাপমাত্রা পদার্থবিজ্ঞানের একটি গুরুত্বপূর্ণ বিষয়। পদার্থের ভৌতিক অবস্থা প্রকাশে তাপমাত্রার ভূমিকা বিশেষ গুরুত্বপূর্ণ। আমরা জানি যে কোন পদার্থ অসংখ্য অণুর সমন্বয়ে গঠিত হয়। এই অণুগুলোর গতিশক্তি রয়েছে। তাপমাত্রা বৃদ্ধি করলে গতিশক্তি বৃদ্ধি পায় এবং কমালে গতিশক্তি হ্রাস পায়। তাপমাত্রা একটি পরিমাপযোগ্য রাশি। এখন আমরা তাপমাত্রা, তাপমাত্রার বিভিন্ন স্কেল, তাপমাত্রা পরিমাপের নীতি ও পদ্ধতি ইত্যাদি আলোচনা করব।

১২.২ তাপমাত্রা

Temperature

গরম বা ঠান্ডা বোধ আমাদের সকলেরই রয়েছে। সুতরাং কোন একটি বস্তু কি পরিমাণ গরম বা ঠান্ডা তার পরিমাপকে আপাতভাবে এ বস্তুর তাপমাত্রা বলে। অর্থাৎ আপাতভাবে বলা যায় তাপমাত্রা বস্তুর বা উত্তন্ততার (degree of hotness) পরিমাণ বুঝায়। মনে করি দুটি বস্তু রয়েছে। একটি বস্তু A এবং অপরটি B i যদি স্পর্শ করলে মনে হয় বস্তু A বস্তু B অপেক্ষা বেশি গরম, তবে আমরা বলতে পারি বস্তু A-এর তাপমাত্রা বেশি এবং বস্তু B-এর তাপমাত্রা কম।

কিন্তু নিখুঁততাবে তাপমাত্রার নিম্নলিখিত সংজ্ঞা দেয়া যেতে পারে ঃ


তাপমাত্রা বস্তুর একটি তাপীয় অবস্থা যা ঐ বস্তু হতে অন্য বস্তুতে তাপের প্রবাহ নিয়ন্থণ করে এবং তাপ প্রবাহের অভিমুখ নির্ধারণ করে।

১২৩ তাপীয় সাম্যাবস্থা Thermal equilibrium

পরিপার্শ্বের তুলনায় উত্তগ্ত একটি বস্তুকে যদি উন্তু স্থানে রেখে দেওয়া হয়, তবে দেখা যায় যে উত্তগ্ত বস্তু তাপ হারাতে থাকে এবং যতক্ষণ পর্যন্ত উত্তগ্ত বস্তুর তাপমাত্রা পরিপার্শ্বের তাপমাত্রার সমান না হয় ততক্ষণ পর্যন্ত তাপ হারানো চলতে থাকে। অনুরূপ ঘটনা লক্ষ করা যায় যদি দুটি ভিন্ন তাপমাত্রার বস্তুর মধ্যে তাপীয় সংযোগ করা হয়। তবে উচ্চ তাপমাত্রার বস্তু হতে নিম্ন তাপমাত্রার বস্তুতে তাপ প্রবাহিত হয় এবং এক সময় উত্তয় বস্তুই একই তাপমাত্রায় উপনীত হয়। একে তাপীয় সাম্যাবস্থা বলে।

তাপগতিবিদ্যার শূন্যতম সূত্র (Zeroth law of thermodynamics) ঃ দুটি বস্তু যদি ভৃতীয় কোন বস্তুর সাথে তাপীয় সাম্যাবস্থায় থাকে তবে প্রথমোক্ত বস্তু দুটি পরস্পরের সাথে তাপীয় সাম্যাবস্থায় থাকবে। একে তাপগতিবিদ্যার শূন্যতম সূত্র বলা হয়।

ব্যাখ্যা ঃ দুটি বস্তু সাম্যাবস্থায় আছে, তা নির্ধারণের জন্য তৃতীয় একটি বস্তু ব্যবহার করা হয়। ধরা যাক P ও Q দুটি বস্তু একটি কুপরিবাহী দেওয়াল দিয়ে পৃথক করা অবস্থায় তৃতীয় একটি বস্তু R-এর সংস্পর্শে রাখা হল [চিত্র ১২ ১]। কিছুক্ষণ পরে দেখা যাবে P ও Q উভয়ই তৃতীয় বস্তু R-এর সাথে তাপীয় সাম্যাবস্থায় পৌছবে। এখন কুপরিবাহী দেওয়ালটি

চিত্র ১২ ১

সরিয়ে নিলেও P ও Q-এর তাপমাত্রায় কোন পরিবর্তন হবে না। এ থেকে বুঝা যাচ্ছে যে দেওয়াল সরানোর আগেই P ও Q পরস্পরের তাপীয় সাম্যাবস্থায় পৌচেছে। এই উদাহরণ থেকেই উপরের সূত্র প্রমাণিত হয়। এই সূত্রের উপর ভিন্তি করেই থার্মোমিটার তৈরি করা হয়েছে।

১২.৪ তাপ ও তাপমাত্রার মধ্যে পার্থক্য Distinction between heat and temperature

তাপ এবং তাপমাত্রার মধ্যে ঘনিষ্ঠ সম্পর্ক থাকলেও তারা একই অর্থ বহন করে না। তাদের মধ্যে যথেষ্ট পার্থক্য রয়েছে। পার্থক্যসমূহ নিম্নে উল্লেখ করা হল ঃ

🔨 🗴 তাপ এক প্রকার শক্তি, কিন্তু তাপমাত্রা বস্তুর একটি তাপীয় অবস্থা।

🔨 ২ি তাপ শক্তি, তাপমাত্রা শক্তির প্রকাশ।

্রতাপ কারণ, তাপমাত্রা এর ফল।

৪। তাপ প্রয়োগ করলে বস্তুর তাপমাত্রা বৃদ্ধি পায় এবং তাপ অপসারণে বস্তুর তাপমাত্রা হ্রাস পায়।

৫। দুটি বস্তু একই তাপমাত্রায় থাকলেও তাপের পরিমাণ বিভিনু হতে পারে।

৬। একটি বস্তৃ হতে অন্য বস্তৃতে তাপের প্রবাহ তাদের তাপমাত্রার উপর নির্ভর করে।

্রিন ত্রাপ বস্তুস্থিত অণুগুলোর মোট শক্তির সমানুপাতিক, কিন্তু তাপমাত্রা বস্তুস্থিত একটি অণুর গড় গতিশক্তির সমানুপাতিক।

৮। তাপ অধিক তাপমাত্রাবিশিষ্ট বস্তু হতে কম তাপমাত্রাবিশিষ্ট বস্তুর দিকে ধাবিত হয়।

৯/ পদার্থবিজ্ঞানের যে শাখায় তাপের পরিমাপ করা হয় তার নাম ক্যালরিমিতি এবং যে শাখায় তাপমাত্রার পরিমাপ করা হয়, তার নাম থার্মোমিতি।

২০1 যে যন্ত্রে সাহায্যে তাপ পরিমাপ করা হয় তার নাম ক্যালরিমিটার। অপরপক্ষে, যে যন্ত্রের সাহায্যে তাপসাত্রা পরিমাপ করা হয়, তার নাম থার্মোমিটার বা তাপমান যন্ত্র।

১১। তাপের একক আন্তর্জাতিক পম্ধতিতে জুল। কিন্তু তাপমাত্রা প্রকাশ করা হয় °C, °F ও K-এ।

্
২ শ তাপমাত্রার মাত্রা সমীকরণ নেই, কিন্তু তাপের মাত্রা সমীকরণ শক্তির মাত্রা সমীকরণ/[ML2T-2] দ্বারা প্রকাশ করা হয়।

১২·৫ উষ্ণতামিতি ধর্ম ও উষ্ণতামিতি পদার্থ Thermometric property and Thermometric substance

কোন বস্তু কত গরম অথবা কত ঠান্ডা তা স্পর্শ করে সরাসরি বুঝা যায় না, অনুভব করা যায় মাত্র। এই কারণে তাপমাত্রার তারতম্যভেদে যে পদার্থের বিশেষ কোন ধর্ম নিয়মিতভাবে পরিবর্তিত হয় এবং যে ধর্মের পরিবর্তন লক্ষ করে সহজ ও সূক্ষভাবে তাপমাত্রা নিরূপণ করা যায় সেই পদার্থ বস্তুর তাপমাত্রা পরিমাপে ব্যবহুত হয়।

যে যন্ত্র দ্বারা বস্তুর তাপমাত্রা নির্ভুলভাবে পরিমাপ করা যায় তাকে থার্মোমিটার (Thermometer) বলে। তাপমাত্রা পরিমাপ উপযোগী পদার্থের যে সকল ধর্ম কাজে লাগানো হয়, পদার্থের ঐ ধর্মগুলোকে উষ্ণতামিতি ধর্ম বলে এবং যে সকল পদার্থের উষ্ণতামিতি ধর্ম ব্যবহার করে থার্মোমিটার তৈরি করা হয় তাদেরকে উষ্ণতামিতি পদার্থ বলে। সাধারণত উষ্ণতামিতি পদার্থের বা তার ধর্মের নাম অনুসারে থার্মোমিটারের নামকরণ করা হয়। বিভিন্ন উষ্ণতামিতি পদার্থের তৈরি কয়েকটি থার্মোমিটারের নাম ও ধর্ম উল্লেখ করা হল।

(ক) তরল থার্মোমিটার (Liquid thermometer) ট তাপমাত্রার পরিবর্তনের সাথে সাথে তরল পদার্থের আয়তন পরিবর্তিত হয়। যে সব থার্মোমিটারে উষ্ণতামিতি পদার্থ হিসেবে তরল ব্যবহুত হয় তাদেরকে সাধারণত তরল থার্মোমিটার বলে। থার্মোমিটারে উষ্ণতামিতি পদার্থ হিসেবে পারদ ব্যবহুত হলে তাকে পারদ থার্মোমিটার বলে এবং অ্যালকোহল ব্যবহুত হলে তাকে অ্যালকোহল থার্মোমিটার বলে। তরলকে সুষম ব্যাসের কৈশিক নলে রাখা হয়। তরলের উচ্চতা বা স্তন্ড্রের দৈর্ঘ্যকে উষ্ণতামিতি ধর্ম বলা, যায় এবং কৈশিক নলে তরলের উচ্চতা তাপমাত্রার সমানুপাতিক।

বইঘর.কম

(খ) গ্যাস থার্মোমিটার (Gas thermoneter) ঃ দুই ধরনের গ্যাস থার্মোমিটার রয়েছে। যথা—(১) স্থির আয়তন গ্যাস থার্মোমিটার ও (২) স্থির চাপ গ্যাস থার্মোমিটার।

(১) স্থির আয়তনে একটি নির্দিষ্ট ভরের গ্যাসের চাপ তাপমাত্রা বৃদ্ধি পেলে বৃদ্ধি পায় এবং তাপমাত্রা হ্রাস পেলে চাপ কমে যায়। গ্যাসের এই ধর্মকে ব্যবহার করে যে সব থার্মোমিটার তৈরি হয় তাদেরকে স্থির আয়তন গ্যাস থার্মোমিটার (constant volume gas thermometer) বলে। এই ধরনের একটি থার্মোমিটারে হাইড্রোজেন উষ্ণতামিতি পদার্থরূপে ব্যবহুত হলে তাকে স্থির আয়তন হাইড্রোজেন থার্মোমিটার বলে।

(২) স্থির চাপে একটি নির্দিষ্ট ভরের গ্যাসের আয়তন তাপমাত্রা বৃদ্ধি পেলে বৃদ্ধি পায় এবং তাপমাত্রা হ্রাস পেলে আয়তন কমে যায়। গ্যাসের এই ধর্মকে ব্যবহার করে যে সব থার্মোমিটার তৈরি তাদেরকে স্থির চাপ গ্যাস থার্মোমিট্রুর (constant pressure gas thermometer) বলে। এই প্রকার একটি থার্মোমিটারে হাইড্রোজেন ব্যবহৃত হলে তাকে স্থির চাপ হাইড্রোজেন থার্মোমিটার বলে।

(গ) রোধ থার্মোমিটার (Resistance thermometer) : সাধারণত প্রবিবাহীর তড়িৎ রোধ তাপমাত্রার বৃদ্ধিতে বৃদ্ধি পায়। কাজেই একটি পরিবাহীর তড়িৎ রোধ জেনে তাপমাত্রা নির্ণয় করা যায়। এই নীতির উপর যে সব থার্মোমিটার গঠিত হয়েছে তাদেরকে রোধ থার্মোমিটার (Resistance thermometer) বলে। এরূপ একটি প্রাটিনাম ধাতুর থ্রার্মোমিটারকে প্রাটিনাম রোধ থার্মোমিটার বলে।

দে তাপযুগন বা থার্মোকাপন থার্মোমিটার (Thermocouple thermometer) ঃ দুটি সুবিধামত তার পরপর যুক্ত করে সংযুক্ত দুই প্রান্তে তাপমাত্রার পার্থক্য সৃষ্টি করলে এতে তড়িচ্চালক বলের উদ্ভব হয়। এই বল প্রান্তদ্বয়ের তাপমাত্রার পার্থক্যতেদে বিভিন্ন হয় এবং এই তড়িচ্চালক বল মেপে দুই প্রান্তের তপমাত্রার পার্থক্য জানা যায়। এক প্রান্তের তাপমাত্রা জানা থাকলে এই পার্থক্য হতে অন্য প্রান্তর তাপমাত্রা নির্ণয় করা যায়। বিভিন্ন ধাতুর এরপ দুটি তারকে একত্রে তাপযুগন বা থার্মোকাপন বলে। যেমন— কপার কনস্টানটান (copper-constantan) থার্মোকাপন।

(৬) থার্মিস্টর (Thermistor) : তাপমাত্রা বৃদ্ধির সাথে অধপরিবাহী পদার্থের বৈদ্যতিক রোধ হাস পায়। অর্ধপরিবাহী পদার্থের এই ধর্মের উপর ভিত্তি করে থার্মিস্টর তৈরি করা হয়।

(চ) বিকিরণ থার্মোমিটার (Radiation thermometer) ঃ তাপমাত্রা 550°C-এর বেশি হলে কোন কোন রস্তু হতে বিভিন্ন রঙের আলো বের হতে দেখা যায়। পরীক্ষায় দেখা যায় যে, একটি নির্দিষ্ট তাপমাত্রায় বস্তু হতে একটি নির্দিষ্ট রঙের আলো নির্গত হয়। সুতরাং আলোর বর্ণালী পরীক্ষা করে তাপমাত্রা নির্ণয় করা যায়। এর্প একটি থার্মোমিটারকে বিকিরণ থার্মোমিটার বলে।

(ছ) বির্দুম্বকীকরণ থার্মোমিটার (Demagnetisation thermometer) : তাপমাত্রা পরিবর্তনের সাথে প্যারাটোম্বক পদার্থ (paramagnetic substance)-এর টোম্বক গ্রাহীতার পরিবর্তন হয়। এই ধর্মকে ব্যবহার করে যে থার্মোমিটার তৈরি হয় তাকে বির্চুম্বকীকরণ থার্মোমিটার বলে। নিম্ন তাপমাত্রা পরিমাপে এই থার্মোমিটার খুবই উপযোগী।

১২৬ পানির ত্রৈধ বিন্দুর (বা একটি স্থির বিন্দুর) সাপেক্ষে থার্মোমিডির মূলনীডি

Principle of thermometry in relation to triple point of water

সূচনা ঃ তাপমাত্রার স্কেল তৈরির জন্য নির্দিষ্ট স্থির বিন্দুর দরকার। 1954 সালে অনুষ্ঠিত আন্তর্জাতিক ওজন ও পরিমাপ সংস্থার অধিবেশনের সিন্দ্রান্ত অনুযায়ী তাপমাত্রা পরিমাপে পানির ত্রৈধ বিন্দুকে স্থির বিন্দু হিসেবে ধরে নেয়া হয়। একটি মাত্র স্থির বিন্দুর (পানির ত্রেধ বিন্দু) সাপেক্ষে তাপমাত্রার স্কেল নির্ধারণ করা হয়। পানির ত্রেধবিন্দু হল এমন একটি তাপমাত্রা, যে তাপমাত্রায় বিশুন্ধ বরক, বিশুন্ধ পানি এবং সম্পৃক্ত জলীয় বান্দা তাপগত সহঅবস্থানে থাকে তাকে পানির ত্রেধ বিন্দু বলে। পানির ত্রেধ বিন্দু 0'16°C বা 273'16 K (4'58 mm পারদ চাপে)। আর সাধারণভাবে বলা যায় যে তাপমাত্রায় কোন পদার্থের কঠিন, তরল এবং বাম্প একটি নির্দিষ্ট চাপে তাপগত সহঅবস্থানে থাকে তাকে উক্ত পদার্থের ত্রেধ বিন্দু বলে।

তাপমাত্রা পরিমাপের এস. আই. (S. I.) একক হল কেলভিন (K)। অতএব 1 K বা এক কেলভিন = $\frac{1}{273 \cdot 16^{\circ}C}$ পানির ত্রেধ বিন্দু।

নীতি : কোন পদার্থের উষ্ণতামিতিক ধর্ম তাপমাত্রার সমানুপাতিক।

মনে করি x উষ্ণতামিতিক ধর্ম এবং T তাপমাত্রা।

$$x \propto T$$

যদি T_1 এবং T_2 তাপমাত্রায় উষ্ণতামিতিক ধর্ম যথাক্রমে x_1 ও x_2 হয়, তবে আমরা পাই,

$$\frac{x_1}{x_2} = \frac{T_1}{T_2}$$
(1)

এখন পানির ত্রেধ বিন্দুতে উষ্ণতামিতিক ধর্ম x_{ip} এবং যে কোন তাপমাত্রা T-তে উষ্ণতামিতিক ধর্ম x হলে আমরা পাই, $\frac{T}{273.16 \text{ K}} = \frac{x}{x_{ip}}$

$$\overline{\mathbf{A}}, \ \mathbf{T} = \left(273.16 \frac{x}{x_{1p}}\right) \mathbf{K}$$
(2)

এটিই হল পানির ত্রেধ বিন্দুর সাপেক্ষ কোন থার্মোমিটারের সাহায্যে তাপমাত্রা নির্ণয়ের মূলনীতি। বিভিনু থার্মোমিটার ঃ

(ক) পারদ থার্মোমিটার : এক্ষেত্রে আমরা পারদ স্তম্ভের দৈর্ঘ্য বিবেচনা করি। x-এর স্থলে। এবং পানির ত্রেধ বিন্দুতে উষ্ণতামিতিক ধর্ম l_{tp} হলে,

$$\mathbf{T} = \left(273^{\cdot}16 \times \frac{l}{l_{tp}}\right) \mathbf{K}$$

ে (খ) স্থির চাপ গ্যাস থার্মোমিটার : এ স্থলে উষ্ণতামিতিক ধর্ম গ্যাসের আয়তন V। পানির ত্রৈধ বিন্দুতে উষ্ণতামিতিক ধর্ম V_{tp} হলে,

$$\mathbf{T} = \left(273^{\circ}16 \times \frac{\mathbf{V}}{\mathbf{V}_{tp}}\right)\mathbf{K}$$

(গ) স্থির আয়তন গ্যাস থার্মোমিটার : এক্ষেত্রে উষ্ণতামিতিক ধর্ম গ্যাসের চাপ P। পানির ত্রৈধ বিন্দুতে উষ্ণতামিতিক ধর্ম P_{tn} হলে,

$$T = \left(273.16 \times \frac{P}{P_{ty}}\right) K$$

(ম) রোধ থার্মোমিটার ঃ এক্ষেত্রে উষ্ণমিতিক ধর্ম পরিবাহীর রোধ R। পানির ত্রৈধ বিন্দুতে উষ্ণতামিতিক ধর্ম R_{tp} হলে,

 $T = \left(273^{\circ}16 \times \frac{R}{R_{\eta\gamma}}\right) K$

(ঙ) তাপযুগল বা থার্মোকাপল থার্মোমিটার ঃ এক্ষেত্রে উষ্ণতামিতিক ধর্ম তাপ তড়িচ্চালক বল E। পানির ত্রেধ বিন্দুতে এর মান E_{tp} হলে, T = $\left(273.16 \times \frac{E}{E_{tp}}\right)$ K

(চ) বাল্লচাপ থার্মোমিটার \sharp এক্ষেত্রে উষ্ণতামিতিক ধর্ম বাল্লচাপ fাপানির ত্রৈধ বিন্দুতে উষ্ণতামিতিক ধর্ম f_{tp} হলে, $\mathbf{T} = \left(273.16 \times \frac{f}{f_{tp}}\right) \mathbf{K}$

তাপমাত্রা

বইঘর.কম

১২ ৭ দুই স্থির বিন্দুর সাপেক্ষে থার্মোমিতির মূলনীতি Principle of the thermometry in relation to two fixed points

সেলসিয়াস, ফারেনহাইট এবং আরও কয়েকটি স্কেলে দুই স্থির বিন্দু পম্ধতি ব্যবহার করা হয়। এই পম্ধতির থার্মোমিতির মূলনীতি হল উর্ধ্ব স্থির ও নিম্ন স্থির বিন্দুর মধ্যবর্তী ব্যবধানকে কতগুলো সমান ভাগে ভাগ করে এক একটি স্কেল গঠন করা হয়। প্রতিটি ভাগ এক ডিগ্রী (1°) তাপমাত্রা নির্দেশ করে।

তাপমাত্রা নির্ধারণের সময় পদার্থের উষ্ণতামিতি ধর্ম (যেমন কৈশিক নলে তরলের উচ্চতা, রোধ থার্মোমিটারে পরিবাহীর রোধ, গ্যাসীয় থার্মোমিটারে গ্যাসের চাপ বা আয়তন ইত্যাদি) কাজে লাগানো হয়। ধরা যাক, বরফ বিন্দু ও স্টীম বিন্দুর তাপমাত্রা যথাক্রমে θ_{ice} এবং θ_{steam} । এই দুই তাপমাত্রায় কোন একটি উষ্ণতামিতি ধর্মের মান যথাক্রমে X_{ice} ও X_{steam} । θ_{ice} ও θ_{steam} স্থির বিন্দুদ্বয়ের মধ্যবর্তী মৌলিক ব্যবধান সমান N সংখ্যক ভাগে বিভক্ত ($\theta_{steam} - \theta_{ice} = N$)। এখন অন্য কোন তাপমাত্রা θ_{-} তে এ উষ্ণতামিতি ধর্মের মান X_{θ} । আমরা জানি, উষ্ণতামিতি ধর্ম X-এর পরিবর্তন তাপমাত্রার পরিবর্তনের সমানুপাতিক। এখন N ভাগ (জর্থাৎ N°) তাপমাত্রা বৃদ্ধিতে X-এর বৃন্ধি = $X_{steam} - X_{ice}$

= KN, K সমানুপাতিক ধ্রুবক।

জাবার,
$$\theta$$
 ভাগ (জর্থাৎ θ°) তাপমাত্রা বৃষ্ণ্বিতে X-এর বৃষ্ণ্বি = $X_{\theta} - X_{ice}$
 $X_{\theta} - X_{ice} \propto \theta = K\theta$ (4)

সমীকরণ (3) ও (4) হতে পাই,

$$\frac{K\theta}{KN} = \frac{X_{\theta} - X_{ice}}{X_{steam} - X_{ice}}$$

$$\boxed{\exists I, \ \theta = \frac{X_{\theta} - X_{ice}}{X_{steam} - X_{ice}} \times N}$$
(5)

সমীকরণ (5) হচ্ছে দুই স্থির বিন্দুর সাপেক্ষে থার্মোমিতির মূল সমীকরণ।

উদাহরপ ৫ একটি স্থির আয়তন গ্যাস থার্মোমিটারের 0°C ও 100°C তাপমাত্রায় বায়ুর চাপ যথাক্রমে 90 cm Hg ও 130 cm Hg। উষ্ণ পানিতে থার্মোমিটারটি নিমচ্জিত করলে বায়ুচাপ 110 cm Hg প্রাওয়া গেলে পানির তাপমাত্রা হবে,

$$\theta = \frac{P_{\theta} - P_{0}}{P_{100} - P_{0}} \times 100 = \frac{110 - 90}{130 - 90} \times 100 = \frac{20}{40} \times 100 = 50^{\circ}C$$

১২৬ তাপমাত্রার বিভিন্ন ক্ষেল

Different scales of temperature

তাপমাত্রা পরিমাপের জন্য সর্বমোট ছয়টি স্কেল রয়েছে, যথা---

ি) সেন্টিগ্রেড বা সেন্সিয়াস স্কেন (Centigrade or Celcius scale)

হা ফারেনহাইট কেল (Fahrenheit scale)

তা আদর্শ গ্যাস স্কেন (Perfect Gas scale)

) কেলডিন-এর পরম তাপগতীয় স্কেল (Kelvin's absolute thermodynamic scale) এবং

হ) তাপমাত্রার আন্তর্জাতিক স্কেন্স (International scale of temperature)

১। সেলসিয়াস স্কেল (Celcius scale) : সুইডেনের জ্যোতির্বিজ্ঞানী অ্যানডার্স সেলসিয়াস (Anders Celcius) 1742 খ্রিস্টান্দে তাপমাত্রার এই স্কেল প্রবর্তন করেন। এই স্কেলের বৈশিষ্ট্য হল এতে দুটি স্থির বিন্দু রা স্থিরাজ্ঞক রয়েছে। যথা—নিম্ন স্থির বিন্দু ও উধ্ব স্থির বিন্দু।

५/ द्वाझाएँ

BG & JEWEL

নিম্ন স্থির বিন্দু (Lower fixed point) ঃ যে তাপমাত্রায় প্রমাণ চাপে বিশুন্দ্ধ বরফ গলতে শুরু করে তাকে নিম্ন স্থির বিন্দু বা স্থিরাজ্ঞক বলে। একে বরফ বিন্দু ও (ice point) বলা হয়।

উর্ধ্ব স্থির বিন্দু (Upper fixed point) ঃ যে তাপমাত্রায় প্রমাণ চাপে বিশুন্দ্ধ পানি জনীয় বান্দে পরিণত হতে শুরু করে তাকে সেলসিয়াস স্কেলের ঊর্ধ্ব বিন্দু বা স্থিরাজ্ঞ বলে। একে স্টীম বিন্দুও (steam point) বলা হয়।

এই স্কেলে নিম্ন স্থির বিন্দুকে শূন্য ডিগ্রী (0°) এবং ঊর্ধ্ব স্থির বিন্দুকে 100° ধরা হয় এবং মৌলিক ব্যবধানকে 100টি সমান ভাগে ভাগ করা হয়। প্রত্যেক ভাগকে 1° সেলসিয়াস বা 1° সেণ্টিগ্রেড (1°C) বলা হয়। সুতরাং সেলসিয়াস স্কেল ও 1°C-এর নিম্নোক্ত সংজ্ঞা দেয়া যায়।

সংজ্ঞা ঃ যে স্কেলে বরফ বিন্দুকে 0° এবং স্টীম বিন্দুকে 100° ধরে মধ্যবর্তী মৌলিক ব্যবধানকে সমান 100 ভাগে ভাগ করা হয়, সেই স্কেলকে সেলসিয়াস স্কেল এবং এর প্রত্যেক ভাগকে এক ডিগ্রী সেলসিয়াস (1°C) বলে।

২। ফারেনহাইট স্কেল (Farenheit scale) : জার্মান দার্শনিক জি.ডি. ফারেনহাইট 1720 খ্রিস্টাব্দে এই স্কেল প্রবির্ত্তন করেন। সেলসিয়াস স্কেলের ন্যায় এই স্কেলেও দুটি স্থির বিন্দু পন্ধতিতে তাপমাত্রা পরিমাপ করা হয়। এই স্কেলে নিম্ন স্থির বিন্দু বা স্থিরাজ্ঞ 32° এবং উর্ধ্ব স্থির বিন্দু বা স্থিরাজ্ঞ 212° ধরা হয়। স্থির বিন্দু দুটির মধ্যবর্তী ব্যবধানকে (212 – 32) = 180টি সমান ভাগে ভাগ করা হয়। প্রত্যেক ভাগকে এক ডিগ্রী ফারেনহাইট (1°F) বলা হয়।

সুতরাং, যে স্কেলে বরফ বিন্দুকে 32° এবং স্টীম বিন্দুকে 212° ধরা হয় এবং মৌলিক ব্যবধানকে সমান 180 ভাগে ভাগ করা হয়, সেই স্কেলকে ফারেনহাইট স্কেল এবং এর প্রত্যেক ভাগকে এক ডিগ্রী ফারেনহাইট (1°F) বলে।

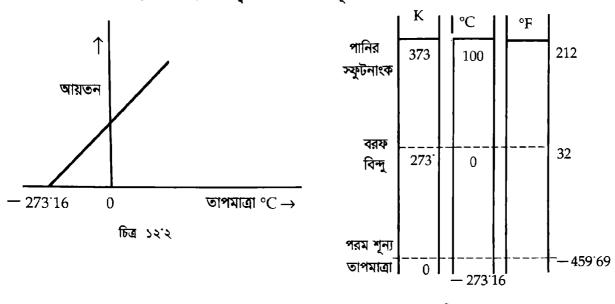
সেলসিয়াস ও ফারেনহাইট স্কেলের তুলনা (Comparison of Celcius and Farenheit Scale) সেলসিয়াস স্কেল ও ফারেনহাইট স্কেল তুলনা করলে দেখা যায় যে,

সেলসিয়াস স্কেলের 100 ভাগ = ফারেনহাইট স্কেলের 180 ভাগ,

অর্থাৎ 100°C পরিবর্তন = 180° F পরিবর্তন

 1° C পরিবর্তন = $\frac{180}{100}$ °F = $\frac{9}{5}$ °F পরিবর্তন।

(৩) আদর্শ গ্যাস কেন্দ (Ideal gas scale) : যি গ্যাস বয়েল ও চার্লসের সূত্র মেনে চলে তাকে আদর্শ গ্যাস বলে। স্থির চাপে একটি নির্দিষ্ট তরের আদর্শ গ্যাসের তাপমাত্রা ক্রমাগত কমাতে থাকলে যে তাপমাত্রায় পৌছলে তার আয়তন তাত্ত্বিকভাবে শূন্য হয় তাকে পরমশূন্য তাপমাত্রা (Absolute zero temperature) বলে। চার্লসের সূত্র হতে পরমশূন্য তাপমাত্রার মান – 273°C বা – 4954° F। এই পরমশূন্য তাপমাত্রা অর্থাৎ – 273°C তাপমাত্রান্দ্রে শূন্য ধরে এবং আরঞ্জ কয়েকটি স্থির বিন্দুর সমন্বয়ে যে কেন্দ তৈরি করা হয়েছে তাকে আনর্শ গ্যাস কেন্দ বা পরম ফেন্দ বলে।


(৪) কেলচিন-এর পরম তাপগতীয় স্কেল (Kelvin's thermodynamic scale) বা সংক্ষেপে কেলডিন স্কেল (Kelvin's cale) ঃ

সেলসিয়াস ও ফারেনহাইট স্কেলে নিম্ন স্থির বিন্দু বা শূন্য বিন্দু ইচ্ছামত (arbitrarily) নির্দিষ্ট করা হয়েছে। সেলসিয়াস স্কেলে শূন্য বিন্দু 0°C এবং ফারেনহাইট স্কেলে শূন্য বিন্দু 32°F। এটাই নিম্নতম তাপমাত্রা নয়।

তাপমাত্রা

বইঘর.কম

এর নিচেও বস্তৃর তাপমাত্রা রয়েছে। 1848 খ্রিস্টাব্দে লর্ড কেলভিন তাপমাত্রার নতুন একটি স্কেল প্রবর্তন করেন। এটাকে **পরম স্কেল বা কেলভিন স্কেল** বলে। কার্নোর তাপ ইঞ্জিনের তাপগতি বিবেচনার প্রেক্ষিতে লর্ড কেলভিন এই স্কেল উদ্ভাবন করেন বলে একে **কেলভিন-এর তাপগতীয় স্কেলও** বলা হয়। এই স্কেলে 1°C তাপমাত্রা কমালে গ্যাসের আয়তন 0°C তাপমাত্রার আয়তনের <u>1</u> 273[°]16</sub> অংশ কমে। এভাবে গ্যাসের তাপমাত্রা হ্রাসের সাথে আয়তন কমতে থাকলে — 273[°]16°C তাপমাত্রায় তাত্ত্বিকভাবে আয়তন শূন্য হবে। চিত্র ১২[°]২)।

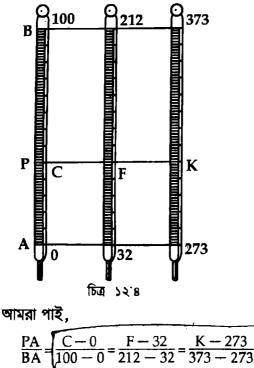
সুতরাং — 273 16°C তাপমাত্রাকে শূন্য ধরে যে তাপমাত্রা স্কেল তাই কেলভিন তাপমাত্রার স্কেল। কেলভিন স্কেলে প্রতি ডিগ্রী তাপমাত্রার পার্থক্য সেলসিয়াস স্কেলের তাপমাত্রার পার্থক্যের সমান [চিত্র ১২৩] অর্থাৎ সেলসিয়াস স্কেলে 1°C তাপমাত্রা পার্থক্য হলে কেলভিন স্কেলেও 1K পার্থক্য হবে। তবে অবশ্যই মনে রাখতে হবে যে 1°C = 1K নয়।

উদাহরণ ঃ কোন বস্তুর তাপমাত্রা 1°C হলে কেলভিন স্কেলে তাপমাত্রা হবে (273 + 1) = 274K ; অনুরূপভাবে 10°C = (273 + 10) K = 283K ; কিন্তু সেলসিয়াস স্কেলে তাপমাত্রার পার্থক্য 10°C এবং কেলভিন স্কেলে তাপমাত্রার পার্থক্য 10K । সেলসিয়াস ও কেলভিন স্কেলের রূপান্তর খুবই সহজে নিম্নোক্ত পম্বতিতে করা যায় ঃ

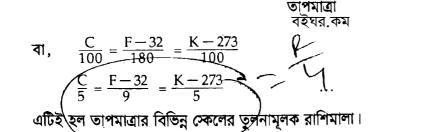
 ${f T}_K={f T}_C+273$ '16, এখানে ${f T}_K$ হচ্ছে কেলভিন স্কেলে তাপমাত্রা এবং ${f T}_C$ হচ্ছে সেলসিয়াস স্কেলে তাপমাত্রা। উপরের আলোচনা থেকে 1K তাপমাত্রার নিয়োক্ত সংজ্ঞা দেয়া যায় ঃ

পানির ত্রৈধ বিন্দুর তাপমাত্রার $rac{1}{273\, {}^{\circ}16}$ কে $1{
m K}$ বা এক কেলভিন বলা হয়।

৫। তাপমাত্রার আন্তর্জাতিক স্কেল (International scale of temperature) : তাপমাত্রা পরিমাপের জন্য বিভিন্ন তাপমান যন্ত্রে তাপমাত্রার বিভিন্ন স্কেল ব্যবহার করা হয়েছে। বিভিন্ন স্কেলে প্রতি ডিগ্রী তাপমাত্রার মান সমান নয়। তাপমাত্রার সবগুলো স্কেলই খেয়ালমাফিক করা হয়েছে। এজন্য একটি স্কেলের সাথে অন্যটির পুরাপুরি সামঞ্জস্য বা মিল নেই। এই অসুবিধা দূর করার জন্য 1927 খ্রিস্টান্দে আন্তর্জাতিক ওজন ও পরিমাপ সমিতির (International Committee of Weights and Measures) এক অধিবেশনে তাপমাত্রার একটি ব্যবহারিক স্কেলের বিকল্প নয়, একই। তবে বৈদ্যুতিক যন্ত্রপাতি ক্রমাঞ্চেনের একটি নির্ভরযোগ্য পন্ধতি। পরবর্তীকালে 1948 খ্রিস্টাব্দে আন্তর্জাতিক ওজন ও পরিমাপ সমিতি অপর একটি অধিবেশনে আন্তর্জাতিক তাপমাত্রা স্কেলের জন্য কতকগুলো মৌঙ্গির্ক স্থির্যঙ্গ নির্দিষ্ট করে দেন। নিম্নে এদের বিবরণ দেয়া হল ঃ


- زرد	অক্সির্জেন বিন্দু বা তরল অক্সিজেনের স্ফুটনাজ্ঞ	\longrightarrow	<u>182[.]97°C</u>	বা	<u>90⁻18</u> K
<u>२</u> ।	বরফ বিন্দু বা বরফের গলনাজ্ঞ	\longrightarrow	0°C	বা	273K
৩।	বাষ্প বিন্দু বা পানির স্ফুটনাজ্ঞ	>	100°C	বা	373K
81	গন্ধক বিন্দু বা গন্ধকের স্ফুটনাজ্ঞ	-	444 [.] 6°C	বা	717 [.] 6K
¢١	অ্যান্টিমনি বিন্দু বা তরল অ্যান্টিমনির কঠিনাজ্ঞ		630 [.] 5°C	বা	9 <u>03⁻5K</u>
ঙ।	রৌপ্য বিন্দু বা রৌপ্যের গলনাজ্ঞ	>	960 [.] 80°C	বা	1 <u>233^{.80}K</u>
٩١	ষর্ণ বিন্দু বা ষর্ণের গলনাজ্ঞ	>	1063 [.] 0°C	বা	<u>1336K</u>

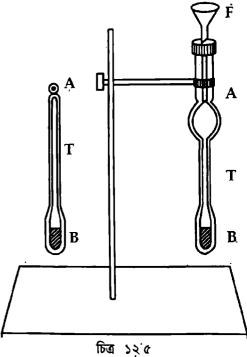
১২ ৯ তাপমাত্রার বিভিন্ন ক্ষেলের মধ্যে সম্পর্ক Relation between the different scales of temperature


তাপমাত্রার বিভিন্ন ক্ষেলের মধ্যে সম্পর্ক আছে। এই সম্পর্কের সাহায্যে একটি স্কেলের তাপমাত্রা অন্য একটি ক্ষেলে পরিণত করা যায়। নিম্নে এদের মধ্যকার সম্পর্ক দেখান হল। স্র্রাপমাত্রার বিভিন্ন ক্ষেল্লের তালিকা

স্কেলের নাম	`সঙ্ কেত	নিম্ন স্থিরাভক	ঊর্ধ্ব স্থিরাজ্ঞ	মৌলিক দূরত্বের ভাগ সংখ্যা
সেন্টিগ্রেড	C	<u>0°</u>	<u>_100°</u>	100
ফারেনহাইট	E	<u>.32°</u>	<u>212°</u>	180
কেলভিন	F	273	373	100

একটি থার্মোমিটার লই। মনে করি এর নিম্ন ও ঊর্ধ্ব স্থিরাজ্ঞ যথাক্রমে A এবং B। মনে করি কোন এক তাপমাত্রায় উক্ত থার্মোমিটারের পারদ স্তন্ড্রের উপরিতল P বিন্দুতে অবস্থান করে।

এখন তিনটি থার্মোমিটার লই [চিত্র ১২'৪]। এরা যথাক্রমে সেন্টিগ্রেড, ফারেনহাইট এবং কেলভিন। ধরি এদের নিম্ন স্থিরাজ্ঞ পূর্বের থার্মোমিটারের A দাগের সাথে মিলে যায় এবং উর্ধ্ব স্থিরাজ্ঞ B দাগের সাথে মিলে যায়। এখন এই তিনটি থার্মোমিটারকে উক্ত তাপমাত্রায় রাখায় P দাগের পারদের উপরিতল সেন্টিগ্রেড, ফারেনহাইট এবং কেলভিন থার্মোমিটারের C, F এবং K দাগের পারদের উপরিতলের সাথে মিলে গেল।

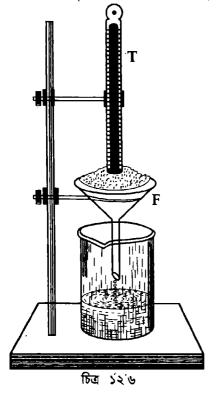


১২·১০ পারদ থার্মোমিটার Mercury thermometer

তাপমাত্রার সাথে পারদের আয়তন পরিবর্তনকে উষ্ণ্ণমিতিক ধর্ম হিসেবে ব্যবহার করে পারদ থার্মোমিটার প্রস্তুত করা হয়।

এতে অতি সৃক্ষ ও সুষম ছিদ্রের একটি কাচ নল থাকে [চিত্র ১২ ৫]। এই নলের এক প্রান্তে পারদপূর্ণ একটি নলাকার বাল্ব B থাকে এবং অপর প্রান্ত A বন্ধ। কাচ নলের গায়ে তাপমাত্রার স্কেল দাগাজ্জিত থাকে। কোন বস্তুর সংস্পর্শে যন্ত্রটি রাখলে পারদের আয়তনের পরিবর্তন ঘটে এবং স্কেলে নলের পারদ পৃষ্ঠের সর্বোচ্চ অবস্থান ঐ বস্তুর তাপমাত্রা নির্দেশ করে।

নির্মাণ প্রণালী ঃ প্রথমে অতি সৃক্ষ ও সুষম ছিদ্রের একটি পরিক্ষার ও শুক্ষ কাচ নল নেয়া হয় যার এক প্রান্তে একটি নলাকার বাল্ব B আছে এবং অপর মুখ খোলা ও তার নিচে A-তে কাচের দেয়াল একটু সরু | চিত্র ১২ ৫)। এখন নলটিকে একটি দন্ডের সাহায্যে খাড়াভাবে রেখে এর খোলা মুখে রবারের নল দ্বারা একটি ফানেল F যুক্ত করা হয়। এই ফানেলে কিছু বিশুন্থ ও শুক্ষ পারদ নিয়ে বাল্বটিকে পর্যায়ক্রমে গরম ও

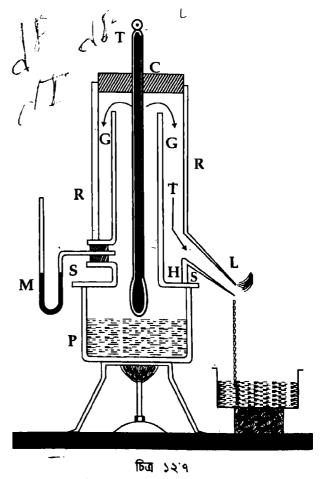


ঠান্ডা করে নল ও বাল্ব সম্পূর্ণরূপে পারদে ভর্তি করা হয়। উদ্ভাপে বাল্ব ও নলের ভিত্রের বায়ুর আয়তন বৃদ্ধি পায় এবং কিছু বায়ু পারদের ভিতর দিয়ে বুদবুদ্ আকারে বের হয়ে যায়। আবার ঠান্ডা করলে বাল্ব ও নলের ভিতরের অবশিষ্ট বায়ুর আয়তন কমে যায় এবং এতে বাইরের বায়ুর চাপে কিছু পারদ নলে প্রবেশ করে। এভাবে বাল্ব ও নল রুমশ পারদে পূর্ণ হয়। অতঃপর বাল্বটিকে যথেন্ট গরম করা হয় যাতে তার ভিতরের পারদ স্টুতে থাকে এবং উথিত বাম্প নলের ভিতরের বায়ুকে বের করে দেয়। এই অবস্থায় একটি তীব্র ও সরু অগ্নি শিখা দ্বারা নলের সরু অংশ গলিয়ে বন্দ্ধ করা হয়। বাল্ব ঠান্ডা হয়ে ঘরের তাপমাত্রায় ফিরে এলে পারদ সম্পূর্ণ বাল্ব ও নলের কিছু অংশ পূর্ণ করে রাখে এবং নলের বায়ুকে বের করে দেয়। এই অবস্থায় একটি তীব্র ও সরু অগ্নি শিখা দ্বারা নলের সরু অংশ গলিয়ে বন্দ্ধ করা হয়। বাল্ব ঠান্ডা হয়ে ঘরের তাপমাত্রায় ফিরে এলে পারদ সম্পূর্ণ বাল্ব ও নলের কিছু অংশ পূর্ণ করে রাখে এবং নলের বাকি অংশ বায়ুগূন্য অবস্থায় থাকে। পারদ মাভাবিক অবস্থায় ফিরে এলে দুটি বিশেষ তাপমাত্রায় নলে পারদের অবস্থান লক্ষ করে তার গায়ে দুটি দাগ কাটা হয়। এই দাগদয় যে দুটি বিশেষ তাপমাত্রা নির্দেশ করে তাদের প্রত্যেককে থার্মোমিটারের স্থিরাজ্ঞ (fixed point) বলে। পারদ থার্মোমিটারে বরফের গলনাজ্ঞ দ্বারা নিম্ন স্থিরাজ্বু এবং পানির স্ফুটনাজ্বু দ্বারা উর্ধ্ব স্থিরাজ্বু নির্দেশ করা হয় **টির্দ্ধ স্থিরাজ্ব ও নিন্ন বিরাফ্লের** মধ্যবর্তী তাপমাত্রার ব্যবধানকে মৌন্দিট বে ব্যবধান (Fundamental interval) বলে। তাপমাত্রার ক্রেণ্ট ডাগকে ডিগ্রী

ৰুলে। থার্মোমিটারের গায়ে এভাবে দাগ দেওয়াকে তার দাগাংকন (Graduation) বলৈ।

(6)

নিম্ন স্ধিরাজ্ঞ নির্ণয় ঃ একটি বড় ফানেল F-এর মধ্যে বিশুন্ধ বরফের ছোট ছোট টুক্রা নিয়ে তার ভিতর উপরে বর্ণিত পারদপূর্ণ নলটিকে খাড়াভাবে ঢুকিয়ে রাখা হয় [চিত্র ১২৬]।


মধ্যে এমনভাবে বসানো হয় যেন থার্মোমিটারের বাল্ব পাত্রের পানি হতে সামান্য উপরে অবস্থান করে। এখন পাত্রের পানিতে তাপ দিয়ে বাম্প তৈরি করা হয়। এই বাম্প GGH চোঙের ভিতরের বাম্প RS চোঙের ভিতরের বাম্প দ্বারা ঘিরে থাকায় GGH চোঙের ভিতরের বাষ্ণ শুষ্ক থাকে ও তাপমাত্রা সর্বত্র সমান থাকে। এভাবে থার্মোমিটারটি বাম্প দ্বারা পরিবেস্টিত হয়ে উত্তন্ত হতে থাকে এবং থার্মোমিটারের নলের পারদের উপরিতল ক্রমশ উপরে উঠতে থাকে। কিছুক্ষণ পরে দেখা যাবে নলের পারদের উপরিতল এক স্থানে পৌঁছে স্থির আছে এবং আর নিচে নামছে না। পারদের উপরিতলের এই অবস্থানে নলের গায়ে একটি দাগ কাটা হয়। এটিই RS চোঙের বাম্পের চাপে থার্মোমিটারের ঊর্ধ্ব স্থিরাজ্ঞ। পানির স্ফুটনাজ্ঞ বায়ুমণ্ডলের চাপের উপর নির্ভর করে এবং প্রতি এক সেন্টিমিটার পারদ চাপের পরিবর্তনে পানির স্ফুটনাংক 0.37°C পরিবর্তিত হয়। এজন্য পেষমান যন্ত্রে পারদ ব্যবহার করে বায়ুমঙলের চাপ ও_{IRS-}এর ভিতরের বাম্প চাপের ব্যবধান নির্ণয় করা হয়। উপরোক্ত হিসাব দুটি হতে এবং বায়ুমন্ডলের মাভাবিক চাপে অর্থাৎ

এ অবস্থায় নলের ভিতরের পারদ ঠান্ডায় ক্রমশ সর্জ্ঞাচিত হয়ে নিচের দিকে নামতে থাকে। পারদের তাপমাত্রা বরফের গলনাব্জের সমান হলে পারদের উপরিতল এক স্থানে এসে স্থির থাকে। এই স্থানে নলের গায়ে একটি দাগ কাটা হয়। এটাই থার্মোমিটারের নিম্ন স্থিরাজ্ঞা।

উর্ধ্ব স্থিরাজ্ঞ নির্ণিয় ঃ থার্মোমিটারের উর্ধ্ব স্থিরাজ্ঞ হিপসোমিটার (Hypsometer) নামক একটি যন্ত্রের সাহায্যে নির্ণয় করা হয়।

বর্ণনা : এই যন্ত্রের একটি তামার পাত্র যার উপর একটি ছোট ধাতব চোঙ GGH-কে ঘিরে একটি বড় ধাতব চোঙ RS বসানো থাকে [চিত্র ১২.৭]। বাইরের চোঙের গায়ে একটি ম্যানোমিটার M এবং একটি নির্গম নল L যুক্ত থাকে। এখানে ম্যানোমিটারের সাহায্যে বাষ্ণ চাপ নির্ণয় করা হয়। RS চোঙের উপরের মুখ একটি ছিপি দ্বারা বন্দ্ধ থাকে।

কার্যপ্রণালী : পাত্র P-এ কিছু পানি নিয়ে RS চোঙের ছিপির মধ্য দিয়ে উপরে বর্ণিত থার্মোমিটারটি চোঙ GH-এর

76 সেমি. পারদ চাপে পানির স্ফুটনাজ্ঞ 100°C। এটিই পারদ থার্মোমিটারের উর্ধ্ব স্থিরাজ্ঞ।

তাপমাত্রা

বইঘর.কম

১২.১১ থার্মোমিটারে পারদ ব্যবহারের সুবিধা

Advantages of using mercury in a thermometer

্রাস্তা <u>পারদ একটি তাপ সুপরিবাহী পদার্থ</u>। ফলে পারদ খুব সহজে তাপ গ্রহণ করে তার বিভিন্ন জ্বংশ ছড়িয়ে দিতে পারে এবং পারদ থার্মোমিটার বস্তৃর প্রকৃত তাপমান্দ্রা নির্দেশ করে।

ন্থা পারদ বিশুদ্ধ অবস্থায় পাওয়া যায়।

(৩) প্রারদ একটি অশ্বচ্ছ ও উচ্জ্বল পর্দার্থ বলে থার্মোমিটারের কাচের নলের ভিতর তার উঠা-নামা বাইরে থেকে সহজেই দেখা যায়।

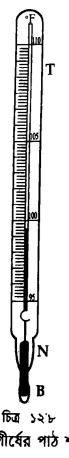
<u>(৪) পারদ কাচের নলের গায়ে লেগে থাকে না।</u> ফলে থার্মোমিটারের পারদ, তাপমাত্রার পরিবর্তনের সাথে সাথে খুব সহজ্বেই নলের মধ্য দিয়ে উঠা-নামা করতে পারে।

(৫) পারদের তাপধারণ ক্ষমতা খুব কম। এজন্য একটি পারদ থার্মোমিটার কোন বস্তৃর সংস্পর্শে এলে তা বস্তুর অতি সামান্য তাপ শোষণ করে এবং বস্তুর তাপমাত্রার উল্লেখযোগ্য কোন পরিবর্তন হয় না। কাজেই পারদ থার্মোমিটার বস্তুর সঠিক তাপমাত্রাই নির্দেশ করে।

<u>(৬) পারিদের স্ফুটনাজ্ঞ 357°C</u> এব<u>ং হিমাজ্ঞ</u> —39°C। এই দীর্ঘ পরিসরে পারদ তরল অবস্থায় থাকে বলে পারদ থার্মোমিটারে এই দুই তাপমাত্রার মধ্যবর্তী যে কোন তাপমাত্রা নির্ণয় করা যায়।

(৭) যে কোন তাপমাত্রা হতে একই তাপমাত্রার বৃদ্ধিতে পারদের আয়তন বৃদ্ধি সমান ও যথেষ্ট হয়। ফলে থার্মোমিটারে দাগ কাটা সহজ ও সুষম হয়, ডিগ্রী আকারে বড় হয় এবং অল্প তাপমাত্রাও সূক্ষভাবে নির্ণয় করা যায়।

(৮) পারদ কম উদ্বায়ী (volatile)। ফলে থার্মোমিটারের পারদের উপরিভাগের যে সাঁমান্য পারদ বাম্প থাকে তা পারদের ওঠা-নামায় কোন বিঘ্ন ঘটায় না।


১২·১২ ক্লিন্স্যিল বা ডাক্তারি থার্মোমিটার Clinical or Doctor's thermometer

সূচনা ঃ এটি এক প্রকার সুবেদী চরম ফারেনহাইট থার্মোমিটার। মানব দেহের তাপমাত্রা (জ্বর) মাপার কাজে এই থার্মোমিটার সাধারণত ডাক্তারগণ ব্যবহার করেন। এই কারণে একে ডাক্তারি থার্মোমিটার বা ক্লিনিক্যাল

> থার্মোমিটার বলা হয়। এর একটি বিশেষত্ব এই যে, একে শরীর হতে সরিয়ে নেয়ার অনেক পরেও শরীরের তাপমাত্রা থার্মোমিটার দেখে জানা যায়।

গঠন ঃ এতে একটি নলাকার বাল্ব B থাকে যা বিশুদ্ধ পারদে ভর্তি [চিত্র ১২৮]। এই বাল্বের সাথে সুষম ও সৃক্ষ ছিদ্রের একটি কৈশিক নল T যুক্ত আছে। B বাল্বের ঠিক উপরে N বিন্দুতে নলটিকে অপেক্ষাকৃত সরু ও বাঁকা করে তৈরি করা হয়। <u>মানব-দেহের তাপমাত্রা 95°F হতে 110°F-এর মধ্যে থাকে বলে নলের গা</u>য়ে 95°F হতে 110°F পর্যন্ত দাগ কাটা থাকে। প্রত্যেকটি ডিগ্রী আবার 5টি সমান অংশে বিভক্ত। এ ছাড়া **একজন সুস্থ ব্যক্তির শরীরের তাপমাত্রা সাধারণত 98** 4°F হয় বলে এর গায়ে 984°F চিহ্নিত একটি বিশেষ দাগ <u>রয়েছে</u>।

কার্যপ্রণালী : এই থার্মোমিটারে শর্রীরের তাপমাত্রা নির্ণয় করার পূর্বে একে বেশ কয়েকবার জোরে ঝাঁকিয়ে নিতে হুয়। এতে বাল্বের উপরের পারদ নিচে নেমে বাল্বের মধ্যে অবস্থান করে। এ অবস্থায় জিহ্বার নিচে অথবা বগলে থার্মোমিটারের বালবটিকে রাখলে শরীরের উত্তাপে পারদের তাপমাত্রা ও আয়তন বৃন্দি পায়। ফলে B-এর কিছু পারদ সরু ছিদ্র N-এর মধ্য দিয়ে ঠেলে উপরের নলে প্রবেশ করে। আবার যন্ধটি শরীর হতে সরিয়ে নিলে পারদ আয়তনে সঙ্জ্বচিত হয়। এতে N-এর নিচের পারদ সঙ্জ্বচিত হয়ে বাল্বের ভিতর চলে যায়, কিন্তু N-এর উপরের পারদ সরু ছিদ্রের মধ্য দিয়ে বাল্বে প্রবেশ করতে না পারায় উপরে থেকে যায়। কাজেই নলের পারদ সূত্রের শীর্ধের পাঠ শরীরের তাপমাত্রা নির্দেশ করে। যন্ত্রটিকে পুনরায় ব্যবহার করার জন্য শরীরের সংস্বর্শে নেবার পূর্বে কয়েকবার জোরে ঝাঁকিয়ে নলের পারদকে বাল্বের ভেতর নিয়ে যেতে হয়।

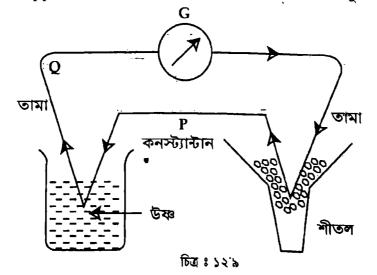
১২:১৩ থার্মোমিটার-এর সুবেদিতা কি ? What is sensitivity of a thermometer ?

তাপমাত্রা পরিমাপের জন্য সুবেদী থার্মোমিটারের প্রয়োজন। একটি থার্মোমিটারকে তখনই সুবেদী বলা হবে যখন পরীক্ষাধীন বস্তৃতে স্থাপন করার সজ্ঞো সঙ্গোই পরীক্ষাধীন বস্তুর তাপমাত্রা প্রদর্শন করবে এবং একটি ডিগ্রীর দশ ভাগের একভাগ কিংবা একশ ভাগের একভাগ পর্যস্ত তাপমাত্রা পরিমাপ করবে।

নিমলিখিত শর্তে একটি কাচ তরল (Liquid in glass) থার্মোমিটার সুবেদী হয় ঃ

১। অল্প তাপমাত্রা পরিবর্তনে তরল স্তম্ভের অধিক স্থান পরিবর্তন হয়।

২। কুণ্ডটি মাঝামাঝি আকারের হবে এবং নলটিও মাঝামাঝি সরু হবে। কুন্ড বড় হলে তাপগ্রাহীতা বৃদ্ধি পাবে এবং নল খুবই সুরু হলে কৈশিকতা বৃদ্ধি পাবে। অতএব থার্মোমিটারের ত্রুটি বৃদ্ধি পাবে।


১২.১৪ তাপযুগল বা থার্মোকপল থার্মোমিতি

____ Thermocouple Thermometry

1821 খ্রিস্টান্দে জার্মান পদার্থবিদ সীবেক (Seebeck) সর্বপ্রথম লক্ষ করেন যে, দুটি ভিন্ন ধাতব পদার্থের দুই প্রান্ত যুক্ত করে একটি বন্দ্ব বর্তনী প্রস্তৃত করে সংযোগস্থল দুটিকে বিভিন্ন তাপমাত্রায় রাখলে বর্তনীর মধ্য দিয়ে ক্ষীণ তড়িৎ প্রবাহ চলতে থাকে। এই ক্রিয়াকে **সীবেক ক্রিয়া** বলে। বর্তনীতে যে বিদ্যুৎ প্রবাহের সৃষ্টি হয় তাকে তাপবিদ্যুৎ (Thermoelectricity) বলে এবং ব্যবহৃত ধাতব পদার্থ দুটিকে তাপযুগল বা থার্মোকাপল বলে। সুতরাং তাপযুগল বা থার্মোকাপলের নিম্নোক্ত সংজ্ঞা দেয়া যায়।

সংজ্ঞা ঃ দুটি ভিন্ন বিশৃন্দ্ধ ধাতৃ বা সংকর ধাতৃর তৈরি তারের দুই প্রান্ত যুক্ত করে একটি বন্দ্ধ বর্তনী তৈরি করে সংযোগ স্থল দুটির একটিকে নিম্ন স্থির তাপমাত্রায় এবং অপরটি অজানা তাপমাত্রার বস্তৃতে রাখলে বর্তনীতে ক্ষীণ তড়িচ্চালক বলের সৃষ্টি হয় এবং বর্তনীতে তড়িৎ প্রবাহ চলে। এর্প একজোড়া সংযোগকে থার্মোকাপল বা তাপযুগল বলে।

তাপযুগল বা থার্মোকাপলের সাহায্যে তাপমাত্রা পরিমাপ করার পন্ধতিকে তাপযুগল থার্মোমিতি (Thermocouple thermometry) এবং এই উদ্দেশ্যে যে থার্মোমিটার তৈরি করা হয় তাকে তাপযুগল থার্মোমিটার (Thermocouple thermometer) বলে। উষ্ণ সংযোগস্থলের যে তাপমাত্রার জন্য বর্তনীতে তড়িচ্চালক বলের মান সর্বাধিক হয় তাকে নিরপেক্ষ তাপমাত্রা (Neutral Temperature) বলে। চিত্র ১২ ৯-এ একটি তামা-কন্সট্যান্টান (copper-constantan) তাপযুগল দেখানো হয়েছে। তাপযুগলের একটি সংযোগস্থলের

বরফের মধ্যে এবং অপর সংযোগস্থলটি উত্তপ্ত বস্তৃতে রাখা হয়। তাপযুগলের দুই প্রান্ত গ্যালভানোমিটারের সজ্ঞা যুক্ত করে বর্তনী সম্পূর্ণ করা হয়। সংযোগস্থল দুটি ভিন্ন তাপমাত্রায় থাকায় বর্তনীতে তড়িৎ প্রবাহের সৃষ্টি হয় যা গ্যালভানোমিটারের সাহায্যে পরিমাপ করা যায়।

তাপমাত্রা

বইঘর.কম

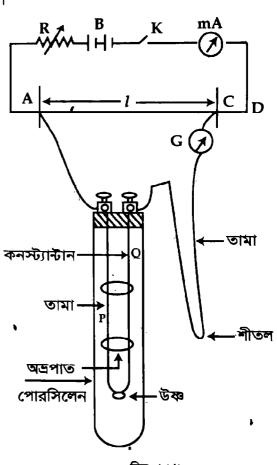
১২.১৫ তাপযুগল থার্মোমিটারের সাহায্যে তাপমাত্রা নির্ণয় Determination of temperature by a thermocouple thermometer

মূলনীতি ঃ নিম্ন সংযোগস্থলের তাপমাত্রা 0°C (বরফ বিন্দু) এবং উষ্ণ সংযোগস্থলের তাপমাত্রা θ হলে বর্তনীতে যে তাপ তড়িচ্চালক বলের (Thermoelectric force) সৃষ্টি হয়, তার মান নিম্নের সমীকরণ হতে পাওয়া স্রার্য

 $\mathbf{E} = a\mathbf{\Theta} + b\mathbf{\Theta}^2$

এখানে a ও b তাপযুগল পদার্থের ধ্রুব সংখ্যা। এদের মান তাপযুগল পদার্থের প্রকৃতির উপর নির্ভর করে। যে কোন দুটি নির্দিষ্ট তাপমাত্রায় E-এর মান জেনে a ও b ধ্রুব এর মান নির্ণয় করা হয়। E, a ও b-এর মান জেনে সমীকরণ (7) ব্যবহার করে অজানা তাপমাত্রা নির্ণয় করা যায়।

কার্যপন্ধতি : এই থার্মোমিটারের সাহায্যে জজানা তাপমাত্রা সূক্ষভাবে পরিমাপ করার জন্য একটি পটেনশিওমিটার নেয়া হয়। পটেনশিওমিটার তারের A বিন্দুর সাথে তাপযুগল P ও Q-এর একপ্রান্ত [চিত্র ১২:১০] এবং তাপ যুগলের অপর প্রান্ত একটি সুবেদী গ্যালভানোমিটার G-এর মধ্য দিয়ে জ্ঞকির সজ্যে যুক্ত করা হয়। চিত্রে P ও Q তামা কনস্ট্যান্টান তাপযুগল। পরিশেষে পটেনশিওমিটার তারের দুই প্রান্তকে সারিতে স্থাপিত একটি পরিবর্তনশীল রোধ R, একটি ব্যাটারী B, একটি মিলি অ্যামিটার (mA) এবং একটি চাবি K -এর সাথে যুক্ত করা হয়। পটেনশিওমিটার তার সুষম প্রস্থচ্ছেদের হওয়ায় তার বরাবর বিভব পতন এর দৈর্ঘ্যের সমানুপাতিক হবে। যদি C নিষ্ক্রিয় বিন্দু হয় এবং AC-এর দৈর্ঘ্য*।* হয় তবে তাপযুগলে উৎপন্ন তড়িচ্চালক বল,


 $E = l\rho i$

পটেনশিওমিটার তারের মোট দৈর্ঘ্য L এবং L দৈর্ঘ্যের জন্য রোধ R হলে,

$$\rho = \frac{R}{L}$$
$$E = l\rho i = \frac{liR}{L}$$

সমীকরণ (8) এর সাহায্যে E নির্ণয় করে সমীকরণ (7) ব্যবহার করে অজ্ঞানা তাপমাত্রা নির্ণয় করা হয়।

বিকল্প পম্পতি ঃ লেখচিত্র হতেও অজ্ঞানা তাপমাত্রা নির্ণয় করা যায়। তাপযুগলের একপ্রান্ত 0°C তাপমাত্রায় স্থির রেখে এর উষ্ণ প্রান্ত একটি তরলপূর্ণ কোন আধারের মধ্যে স্থাপন করা হয়। আধারের বিভিন্ন জ্ঞানা তাপমাত্রায় তাপযুগলে উৎপন্ন তড়িচ্চালক বল বের করা হয়। তাপমাত্রাকে X-অক্ষে এবং তড়িচ্চালক বলকে Y-অক্ষে স্থাপন করে একটি লেখচিত্র অজ্ঞ্বন করা হয়। এবার যে বস্তুর তাপমাত্রা পরিমাপ করতে হবে এ বস্তুতে উষ্ণ সংযোগস্থল স্থাপন করে তড়িচ্চালক বল পরিমাপ করে লেখচিত্র হতে অজ্ঞানা তাপমাত্রা বের করা হয়।

(8)

(7)

উচ্চ মাধ্যমিক পদার্থবিজ্ঞান

BG & JEWEL

পরিমাপ সীমা ঃ তাপযুগল থার্মোমিটারের সাহায্যে — 265°C হতে 3000°C পর্যন্ত তাপমাত্রা পরিমাপ করা

যায় ৷

তাপযুগলের সুবিধা ও অসুবিধা ঃ

সুবিধাসমূহ ঃ

১। এটি সস্তা এবং অতি সহজেই গঠন করা যায়, ফলে এর বহুল ব্যবহার রয়েছে।

২। নিম্ন তাপমাত্রা হতে উচ্চ তাপমাত্রা পর্যন্ত মাপার জন্য বিভিন্ন ধরনের তাপযুগল পাওয়া যায়।

৩। এর সাহায্যে কোন ক্ষুদ্র বস্তুর তাপমাত্রা পরিমাপ করা যায়।

৪। উষ্ণু সংযোগস্থলের তাপগ্রাহীতা কম হওয়ায় এর সাহায্যে দুত পরির্তনশীল তাপমাত্রা পরিমাপ করা যায়।

অসুবিধাসমূহ ঃ

১। দীর্ঘ তাপমাত্রা পরিসরে কোন তাত্ত্বিক সম্পর্ক না থাকায় তাপমাত্রা পরিমাপের ক্ষেত্রে প্রতিটি তাপযুগলের ক্রমাজ্ঞন দরকার হয়।

২। শীতল সংযোগস্থল 0°C তাপমাত্রায় না থাকলে সংশোধনের প্রয়োজন হয়।

৩। নিরপেক্ষ তাপমাত্রা পরিমাপ সীমাকে বিঘ্নিত করে।

১২ ১৬ প্লাটিনাম রোধ থার্মোমিটার

Platinum resistance thermometer

ধাতব পদার্থের বৈশিষ্ট্য হল তাপমাত্রা বৃষ্ধির সাথে বৈদ্যুতিক রোধ বেড়ে যায়। সুতরাং রোধ পরিমাপ করে তাপমাত্রা নির্ণয় করা যায়। <mark>যে কৌশল বা ডিভাইসে (Device) রোধ পরিমাপ করে তাপমাত্রা নির্ণয় করা হয়</mark> তাক<u>ে রোধ থার্মোমিটার বর্লে।</u>

<u>1871 খ্রিস্টাব্দে বিজ্ঞানী সিমেন প্লাটিনাম রোধ থার্মোমিটার তৈরি করেন।</u> এখনও রোধ থার্মোমিটার হিসেবে প্লাটিনাম ধাতৃই সবচেয়ে বেশি ব্যবহার করা হয়। প্লাটিনাম ধাতৃ খুবই দৃঢ় এবং নির্ভরযোগ্য। পুনঃ পুনঃ ব্যবহারেও এর বৈশিষ্ট্য সহজে নন্ট হয় না।

তাপমাত্রার সাথে বৈদ্যুতিক রোধের পরিবর্তন নিম্নোক্ত সমীকরণ দ্বারা প্রকাশ করা যায়,

$$R_{\theta} = R_0 \left(1 + \alpha \theta \right) \tag{9}$$

এখানে, $R_{\theta} = \theta^{\circ}$ তাপমাত্রায় প্লাটিনাম তারের রোধ

 $R_0=0^\circ$ তাপমাত্রায় প্রাটিনাম তারের রোধ

α = একটি ধ্রবক

ধরা যাক, 0°C ও 100°C তাপমাত্রায় প্লাটিনাম থার্মোমিটারের রোধ যথাক্রমে R₀ ও R₁₀₀। সমীকরণ (9) হতে পাই,

$$R_{100} = R_0 (1 + \alpha.100)$$

থার্মোমিটারটিকে অন্য যে কোন অজ্ঞানা তাপমাত্রা ৪-তে রাখলে এর রোধ R₀ হলে,

 $R_{\theta} = R_0 \left(1 + \alpha \theta\right)$

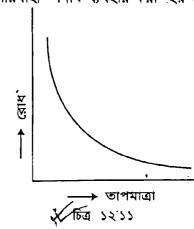
$$\mathbf{A}, \quad \theta = \frac{\mathbf{R}_{\mathbf{\theta}} - \mathbf{R}_{\mathbf{0}}}{\mathbf{R}_{\mathbf{0}} \, \alpha}$$

সমীকরণ (10) ব্যবহার করে,

$$\theta = \frac{R_{\theta} - R_{0}}{R_{100} - R_{0}} \times 100$$
(11)
(11)
(3.14 থার্মোমিটারের সাহায্যে— 25.0°C থেকে 1300°C পর্যন্ত তাপমাত্রা পরিমাপ করা যায় ৷

বইঘর.কম

১২০১৭ থার্মিস্টর


Thermistor

থার্মিস্টর হচ্ছে অর্ধপরিবাহী পদার্থ দ্বারা তৈরি কোন বস্তুর তাপমাত্রা পরিমাপক কৌশল বা ডিভাইস

(Device)। রোধ থার্মোমিটারের ন্যায় থার্মিস্টরের উষ্ণতামিতি ধর্ম রোধ। তবে রোধ থার্মোমিটারে তাপমাত্রা বৃদ্ধির সাথে রোধ বৃদ্ধি পায়, এক্ষেত্রে বিপরীত ঘটনা ঘটে। থার্মিস্টরে যে অর্ধপরিবাহী পদার্থ ব্যবহার করা হয় তার

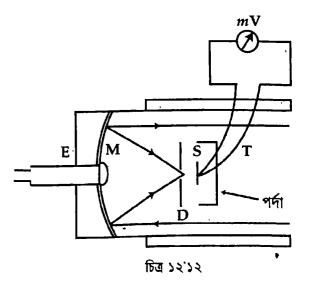
বৈশিষ্ট্য হল তাপমাত্রা বৃষ্ধির সাথে বৈদ্যুতিক রোধ সূচকীয়ভাবে (Exponentially) হ্রাস পায় | চিত্র ১২⁻১১]। / ¹°C তাপমাত্রা পরিবর্তনের জন্য রোধ থার্মোমিটারে যে পরিমাণ পরিবর্তন হয় তার চেয়ে 15 গুণেরও বেশি পরিবর্তন ঘটে থার্মিস্টরে। তাই থার্<u>মিস</u>্টর খুবই সুবেদী।

থার্মিস্টর বিভিন্ন আকৃতির হয়। যেমন রড, চাক্তি, গুটিকা <u>ইত্যাদি। সাধারণত – 50°C থেকে 300°C)তাপমাত্রা পরিমাপের</u> জন্য থার্মিস্টর ব্যবহার করা হয়) উল্লেখিত তাপমাত্রার কম বা বেশি তাপমাত্রায় সুবেদিতা হ্রাস পায়।

১২'১৮ পাইরোমিটার থার্মোমিতি Pyrometer thermometry

সংজ্ঞা : য<u>ে সব থার্মোমিটারের সাহায্যে 500°C-এর অধিক অর্থাৎ পারদ থার্মোমিটারের পরিমাপ</u> সীমার বাইরে তাপমাত্রা পরিমাপ করা যায়, তাদেরকে পাইরোমিটার বলে ('pyros' শব্দের অর্থ 'fire') এবং পদার্থবিজ্ঞানের যে শাখায় (500°C-এর অধিক তাপমাত্রা পরিমাপ করা হয়, তাকে পাইরোমিটার থার্মোমিটি বলে। উক্ত সংজ্ঞা অনুসারে গ্যাস থার্মোমিটার, প্লাটিনাম রোধ থার্মোমিটার, তাপ-তড়িৎ থার্মোমিটারকে পাইরোমিটার বলা হয় এবং তাদেরকে যথাক্রমে গ্যাস পাইরোমিটার, রোধ পাইরোমিটার এবং তাপ-তড়িৎ পাইরোমিটার নাম দেয়া হয়েছোঁ

তাপের বিকিরণকে ভিত্তি করে আমরা এখাদ্দে দুই প্রক্রীরের পাইরোমিটার আলোচনা করব, যথা—


- ১। পূর্ণ বিকিরণ পাইরোমিটার (Total radiation pyrometer) এবং

🔪 আলোকীয় পাইরোমিটার (Optical pyrometer)।

১২'১৮'১ পূর্ণ বিকিরণ পাইরোমিটার Total radiation pyrometer

পূর্ণ বিকিরণ পাইরোমিটারের সাহায্যে কোন বস্তৃ হতে বিকিরিত তাপশক্তি পরিমাপ করে স্টিফেনের সূত্র প্রয়োগ করে তাপমাত্রা নির্ণয় করা হয়। ফেরী (Fery) প্রথম এই ধরনের পাইরোমিটার তৈরি করে তাপমাত্রা পরিমাপ করেন বলে একে ফেরীর পাইরোমিটারও বলা হয়।

যন্ত্রের গঠন : এই যন্ত্র একটি অবতল দর্পণ M রয়েছে যা তামার পাত দিয়ে তৈরি। পাতের উপর তল নিকেল ধাতৃর প্রলৈপ দেওয়া। দর্পণের মাঝখানে একটি ছিদ্র আছে যার পিছনে অভিনেত্র E যুক্ত থাকে [চিত্র ১২ ১২]। M-এর সম্মুখে একটি ছোট ছিদ্র D রয়েছে যার পিছনেই একটি ধাতব ফলক S থাকে। দর্পণ অভিমুখী ফলকের পৃষ্ঠে কালো প্রলেপ দেয়া

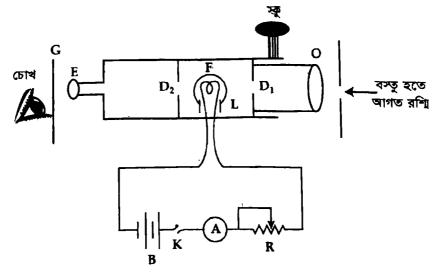
থাকে। ছিদ্র D দুটি অর্ধবৃত্তাকার দর্পণ দ্বারা গঠিত। S-এর পিছন পৃষ্ঠে থার্মোকাপল T যুক্ত থাকে। থার্মোকাপলে উৎপন্ন তড়িষ্চালক বল পরিমাপের জন্য এটি মিলি ভোল্টমিটারের সাথে যুক্ত থাকে। ফলকটির উপর বস্তুর বিকিরিত রশ্মি যাতে সরাসরি আপতিত না হতে পারে সেজন্য ফলকটি একটি বাব্সে আবন্ধ রাখা হয়। একটি স্কু সাহায্যে সম্পূর্ণ ব্যবস্থাটি সামনে পিছনে সরানো যায়।

কার্যনীতি ঃ যে বস্তুর তাপমাত্রা পরিমাপ করা হয় যেটি হতে জাগত রশ্মি অবতল দর্পণের সাহায্যে প্রতিবিদ্দ ছিদ্র D-এর মধ্য দিয়ে S-এর উপর আপতিত হয়। অভিনেত্র E-এ চোখ রেখে তাকালে সঠিক ফোকাসিং হলে ছিদ্র D বৃত্তাকার দেখাবে। সঠিক ফোকাস না হলে D দুই অর্ধাংশে সরে যায়। দর্পণ সামনে পিছনে সরিয়ে ফোকাসিং করা হয়।

তাপমাত্রা নির্ণয় : মিলি ভোন্টমিটারের পাঠ V, উৎসের তাপমাত্রা T এবং ফলক S-এর তাপমাত্রা T $_0$ হলে, স্টিফেনের সূত্র অনুসারে,

 $V = \sigma(T^4 - T_0^4)$, এখানে σ স্ট্রিফেন ধ্রুবক।

সুতরাং, V ও T₀ পরিমাপ করে এই <u>পাইরোমিটারের সাহায্যে অজ্ঞানা</u> তাপমাত্রা নির্ণয় করা যায়। এই যন্ত্রের সাহায্যে সূর্য পৃষ্ঠের তাপমাত্রা পাওয়া গেছে 6000°C।


১২'১৮'২ আলোকীয় পাইরোমিটার Optical pyrometer

কোন উত্তগত বস্তুর উচ্ছ্বলতা ঐ বস্তুর তাপমাত্রার সমানুপাতিক— এই নীতির উপর ভিত্তি করে আলোকীয় পাইরোমিটার তৈরি করা হয়েছে। দুই ধরনের আলোকীয় পাইরোমিটার রয়েছে। যথা— (ক) অদৃশ্যমান ফিলামেন্ট আলোকীয় পাইরোমিটার (Disappearing filament optical pyrometer) ও (খ) সমবর্তন আলোকীয় পাইরোমিটার (Polarising optical pyrometer)। এখানে আমরা অদৃশ্যমান ফিলামেন্ট আলোকীয় পাইরোমিটার বর্ণনা করব।

অদৃশ্যমান ফিলামেন্ট আলোকীয় পাইরোমিটার (Disappearing filament optical pyrometer) মোর্স (Morse) প্রথম এই যন্ত্র আবিক্ষার করেন। পরে হলবোর্ণ (Holborn), কার্লবাউম (Karlbaum) প্রমুখ বিজ্ঞানী এই যন্ত্রের উন্নতি সাধন করেন।

মূলনীতি : এই যন্ত্রে প্রমাণ উৎস হিসেবে ব্যবহৃত একটি ফিলামেন্ট আলোকের তীব্রতা এবং উত্তশ্ত বস্তৃ হতে আপতিত বিকিরণের তীব্রতা সমান করে ফিলামেন্ট অদৃশ্য করা হয়। ফিলামেন্টে আলোকের তীব্রতা কম হলে ফিলামেন্টের তার কালো দেখাবে এবং আপতিত বিকিরণের তীব্রতা কম হলে তারটিকে উচ্জ্বল দেখাবে। যখন উৎস ও ফিলামেন্টের আলোর তীব্রতা সমান হবে তখন তারটি দেখা যাবে না।

যন্ত্রের বর্ণনা ঃ মূল যন্ত্রটি একটি দূরবীক্ষণ যন্ত্রের অনুরূপ। তবে দূরবীক্ষণ যন্ত্রের আড়াআড়ি তারের (cross wire) পরিবর্তে প্রমাণ আলোক উৎস বাল্বের ফিলামেন্ট F রাখা হয়। অভিলক্ষ্য (O) সামনে পিছনে সরিয়ে উত্তপ্ত

বইঘর.কম বস্তু হতে জাগত তাপরশ্মি ফিলামেন্টের অবস্থানে কেন্দ্রীভূত করা হয়। এই অবস্থায় L অবস্থানে বস্তুর একটি প্রতিবিম্ব গঠিত হয়েছে বলা যায়। ফিলামেন্টের সাথে তড়িৎ বর্তনী সংযুক্ত থাকে। বর্তনীর রোধ কম-বেশি করে ফিলামেন্টের আলোর তীব্রতা কম-বেশি করা হয়। বাল্বের দুই পার্শ্বে দুটি ছিদ্র $\, {
m D}_1$ ও ${
m D}_2$ থাকে [চিত্র ১৩ ১৩]। এদের দ্বারা আলোক নিয়ন্ত্রণ করা হয়। অভিনেত্র E-এর সম্মুখে একটি লাল রঙের কাচের (G) মধ্য দিয়ে ফিলামেন্ট পর্যবেক্ষণ করা হয়।

ফিলামেন্টের প্রবাহমাত্রা নিয়ন্ত্রণ করে ফিলামেন্টের দীপন মাত্রা এরূপ করা হয় যে তাপ প্রতিবিন্দের পটভূমিতে তারটিকে অদৃশ্য মনে হবে। এই অবস্থায় নির্দিষ্ট তরজ্ঞাদৈর্ঘ্যে উভয়ের তীব্রতা সমান ধরা যায় এবং প্লাজ্ঞের সূত্রানুযায়ী উত্তগ্ত বস্তুর তাপমাত্রা প্রমান উৎসের তাপমাত্রার সমান হবে। অ্যামিটারকে কয়েকটি সুনির্দিষ্ট তাপমাত্রায় কেলভিন স্কেলে পূর্বেই ক্রমাজ্ঞিত করে নিলে অ্যামিটার পৃষ্ঠ হতে সরাসরি তাপমাত্রা নির্ণয় করা যায়। অথবা অ্যামিটারের প্রবাহমাত্রার পাঠ থেকে উত্তব্ত বস্তুর তাপমাত্রা নিম্নের ফর্মুলা অনুযায়ী বের করা যায়। ফিলামেন্টের তড়িৎ প্রবাহ I এবং ফিলামেন্ট তথা উত্তপ্ত বস্তুর পরম তাপমাত্রা T হলে লেখা যায়,

 $\mathbf{I} = a + b\mathbf{T} + c\mathbf{T}^2$

(12)

এখানে a, b, c ধ্বক। জানা তিনটি তাপমাত্রা থেকে a, b, c -এর মান বের করা যায়। a, b, c-এর মান সমীকরণ (12)-এ বসিয়ে অজ্ঞানা তাপমাত্রা বের করা যায়। এই যন্ত্রের সাহায্যে 1500°C পর্যন্ত তাপমাত্রা পরিমাপ করা যায়। তবে ঘূর্ণায়মান বৃত্তকলা (rotating sector) ব্যবহার করে 1500°C-এর উর্ধ্বের তাপমাত্রাও এই যন্ত্র দ্বারা মাপা যায়।

লাল কাচ ফিল্টারের কান্ধ করে যাতে নির্দিষ্ট তরজ্ঞা দৈর্ঘ্যের সীমার মধ্যে ফিলামেন্টের উচ্জ্বলতা ও উৎসের প্রতিবিস্থ্র সদৃশ করা যায়।

এ ছাড়াও আর একটি বিশেষ ধরনের পাইরোমিটার আছে। এর নাম পাইরোহেলিওমিটার (Pyroheliometer)। এর সাহায্যে 6000°C পর্যন্ত তাপমাত্রা পরিমাপ করা যায়।

১২·১৯ বিভিন্ন থার্মোমিটারের নাম, উক্ষতামিতি পদার্থ ও ধর্ম এবং ত্যপশাত্রার পরিসর

থামোমিটার	টকতামিতি পদার্থ	উষ্ণতামিতি ধর্ম/	তাপমাত্রার পরিসর
শাবন থামোমিটার	পারদ	আয়তন	- 39°C থেকে 357°C
অ্যালকোহল থার্মোমিটার	অ্যালকোহল	ভায়তন	— 130°C থেকে 78°C
স্থির চাপ গ্যাস থার্মোমিটার	স্থির চাপে গ্যাস	গ্যাসের আয়তন্	— 183°C (ጳርক 600°C
স্থির আয়তন গ্যাস			
থার্মোমিটার 🗸	স্থির আয়তনে গ্যাস	গ্যাসের চাপ	— 270°C (থকে 1500°C
প্লাটিনাম রোধ থার্মোমিটার 🔨	শ্রাটিনাম রোধ তার	বৈদ্যুতিক রোধ 🗸	- 200°C ((1200°C
তাপযুগল বা থার্মোকাপল	দুটি ভিন্ন পদার্থের যুগল	তাপ তড়িচ্চালক বল	265°C (47 4 3000°C
র্বিকিরণ পাইরোমিটার 🗸	বিকিরিত তাপশক্তি	তাপের পরিমাপ	<u>500°C থেকে উর্ধের</u>
			তাপমাত্রা
আলোকীয় পাইরোমিটার্র	আলোক শক্তি	खब्द्वमा	600°C (1500°C
থার্মিস্টর	অর্ধপরিবাহী পদার্থ	বৈদ্যুতিক রোধ 🚽	-70°C (917 300°C
বিচুম্বকীকরণ থার্মোমিটার	পরাচৌম্বক পদার্থ	চৌম্বক গ্রহীতা	— 270°C-এর ক্ষ তাপমাত্রা

Obe

স্মরণিকা

তাপমাত্রা : তাপমাত্রা বস্তুর একটি তাপীয় অবস্থা যা ঐ বস্তুতে তাপ প্রবাহ নিয়ন্ত্রণ করে।

থার্মোমিটার ঃ যা দারা বস্তুর তাপমাত্রা পরিমাপ করা যায় তাকে থার্মোমিটার বলে।

তাপমাত্রার বিভিন্ন স্কেন : তাপমাত্রা পরিমাপের জন্য মূলত পাঁচটি স্কেল আছে, যথা—(১) সেন্টিগ্রেড স্কেল, (২) ফারেনহাইট স্কেল, (৩) আদর্শ গ্যাস স্কেল, (৪) কেলভিনের পরম তাপগতীয় স্কেল ও (৫) তাপমাত্রার আন্তর্জাতিক স্কেল।

তাপমাত্রার বিডিনু স্কেলের মধ্যে সম্পর্ক ঃ

 $\frac{C}{5} = \frac{F - 32}{9} = \frac{K - 273}{5}$

থার্মোমিটারের প্রকারভেদ : তরল থার্মোমিটার, গ্যাস থার্মোমিটার, রোধ থার্মোমিটার, তাপ-তড়িৎ থার্মোমিটার, বাম্প থার্মোমিটার, বিকিরণ থার্মোমিটার ও চৌম্বক থার্মোমিটার।

পানির ত্রৈধবিন্দু ঃ যে তাপমাত্রায় বিশুন্ধ বরফ, বিশুন্ধ পানি এবং সম্পৃক্ত জলীয় বাম্প তাপগত সহঅবস্থানে থাকে তাকে পানির ত্রেধ বিন্দু বলে।

ত্রেধ বিন্দু : যে তাপমাত্রায় কোন পদার্থের কঠিন, তরল এবং বাম্প একটি নির্দিষ্ট চাপে তাপগত সহঅবস্থানে থাকে তাকে এ পদার্থের ত্রেধ বিন্দু বলে।

প্রয়োজনীয় সমীকরণ

তাপমাত্রার বিভিন্ন স্কেলের মধ্যে সম্পর্ক, $\frac{C}{5} = \frac{F-32}{9} = \frac{K-273}{5}$ (1)

সেলসিয়াস এবং কেলভিন তাপমাত্রার মধ্যে সম্পর্ক, $t^{\circ} C = (t + 273) K \ \Theta T = (t + 273) ... (2)$ তাপমাত্রা এক স্কেল হতে আর এক স্কেলে পরিণত করার জন্য, $\left(\frac{915 - 61}{584} - 61 + 273\right) - 25$ জনুপাত সব

(3)

স্কেলের জন্য সমান।

উঃ - 40°C এবং - 40°F

্ ক্লেৰ্য এবং তাপমাত্ৰার মধ্যে সম্পর্ক,
$$R_t = R_0 (1 + \alpha t)$$
 (4)

তাপীয় রিদ্যুচ্চালক বল,
$$E = at + bt^2$$
 (5)

চাপ এবং তাপমাত্রার মধ্যে সম্পর্ক,
$$t = \frac{P_t - P_0}{P_{100} - P_0} \times 100$$
 (6)

তাপমাত্রা এবং আয়তনের মধ্যে সম্পর্ক,
$$t = \frac{V_t - V_0}{V_{100} - V_0} \times 100$$
 (7)

ব্রৈধ বিন্দুর সাপেক্ষে থার্মোমিতির মূল সমীকরণ, T =
$$\left(273^{\cdot}16\frac{x}{x_{ip}}\right)$$
K (8)

সমাধানকৃত উদাহরণ (১) এমন একটি তাপমাত্রা বের কর যার মান সেন্টিগ্রেড এবং ফারেনহাইট কেলে এক হয়। [য. বো. ২০০৬ ; চ. বো. ২০০৬ ; ব. বো. ২০০৪ ; রা. বো. ২০০৪ ; সি. বো. ২০০১] মনে করি নির্ণেয় তাপমাত্রা = x জামরা পাই, $\frac{C}{5} = \frac{F-32}{9}$ (1)এথানে, C = F = x. সমীকরণ (1) হতে আমরা পাই, $\frac{x}{5} = \frac{x-32}{9}$ 9x = 5x - 160 **(a)**, 9x - 5x = -160 **(a)**, 4x = -160ৰা. $x = \frac{-160}{4} = -40^{\circ}$

৩৮৭ তাপমাত্রা বইঘর.কম (২)কোন তাপমাত্রায় ফারেনহাইট ও কেলভিন স্কেলে একই পাঠ পাওয়া যায় ? র্জামর জানি $\frac{F-32}{9} = \frac{K-273}{5}$ (1) এখানে, F = K = x 574.25 সমীকরণ (1) হতে পাই $\frac{x-32}{9} = \frac{x-273}{5}$ **A**, $9x - 9 \times 273 = 5x - 5 \times 32$ বা. $4x = 9 \times 273 - 5 \times 32$ $\overline{\mathbf{q}}, \quad x = \frac{9 \times 273 - 5 \times 32}{4} = 574^{\circ}25$ उखत : 574.25 F) वतः 574.25 K ৩। বাতাবিক চাপে পারদের হিমাজ – 39°C, স্ফুটনাজ 357°C। উক্ত চাপে ফারেনহাইট স্কেলে পারদের বি. বো. ২০০৫] হিমাজ্ঞ ও স্ফুটনাজ্ঞ কত হবে ? মনে করি, ফারেনহাইট স্কেলে হিমাজ্ঞ = x 12 এবং ফারেনহাইট স্কেলে স্ফুটনাজ্ঞ্ব = y দেওয়া আছে, সেলসিয়াস স্কেলে হিমাজ্ঞ = — 39°C এবং স্ফুটনাজ্ঞ = 357°C বের করতে হবে, x = ? আমরা জানি, $\frac{C}{5} = \frac{F-32}{9}$ [হিমাঞ্চের জন্য] $\frac{c}{5} = \frac{F - c}{2} = \frac{5c - 2}{5}$ $a_1, \quad \frac{-39}{5} = \frac{x-32}{9}$ বা, 5x = 160 - 351বা, $x = -38^{\circ}2$ $x = -38^{\circ}2^{\circ}F$ আবার, $\frac{C}{5} = \frac{F-32}{9}$ (স্ফুটনাঞ্চের জন্য) $\frac{357}{5} = \frac{y-32}{9}$ বা, 5y = 160 + 3213 $y = 674.6^{\circ} F$ ৪। কোন্ তাপমাত্রা সেন্টিগ্রেড ও ফারেনহাইট স্কেলে পড়লে 40° পার্থক্য হয় ? [রা. বো. ২০০৬ (মান ভিন্ন)] মনে করি সেন্টিগ্রেড স্কেলে পাঠ = x ফারেনহাইট স্কেলে পাঠ = x ± 40 আমরা জানি, $\frac{C}{5} = \frac{F-32}{9}$ (1) $\frac{x}{5} = \frac{x \pm 40 - 32}{9}$ $9x = 5x \pm 200 - 160$ বা, $4x = \pm 200 - 160$ বা, (i) 4x = 200 - 160 = 40 $\overline{1}, x = \frac{40}{4} = 10^{\circ}C$ (ii) $4x = -200 - 160 = -360^{\circ}$ বা. $x = -\frac{360}{4} = -90^{\circ}C$ কিস্তু যখন C = $x = 10^{\circ}$, তখন সমীকরণ (1) জনুসারে, $\frac{10}{5} = \frac{F-32}{9}$ F = $9 \times \frac{10}{5} + 32 = 50^{\circ}$ এবং যখন $x = C = -90^\circ$, তখন $-\frac{90}{5} = \frac{F-32}{9}$

 $F = -\frac{90}{5} \times 9 + 32 = -130^{\circ}$

৫। একটি ত্রুটিপূর্ণ থার্মোমিটার প্রমাণ চাপে গলিত বরফে 1° এবং শুক্ষ বাব্দো 97° পাঠ দেয়। থার্মোমিটারটি যখন 76° পাঠ দেয় তখন সেলসিয়াস স্কেলে শুন্ধ পাঠ কত হবে নির্ণয় কর ? ঢো. বো. ২০০৩ ঢা. বো. ২০০৩] আমরা জানি, যে-কোন তাপমাত্রা স্কিলের ক্ষেত্রে, এখানে.

$$rac{X_t - X_{ice}}{X_{steam} - X_{ice}}$$
 এ অনুপাত সমান।

মনে করি, ত্রুটিপূর্ণ থার্মোমিটারে যখন 76° পাঠ দেয় তখন সেলসিয়াস স্কেলে সঠিক পাঠ C।

সেলসিয়াস স্কেলের সাথে তুলনা করে পাই,

$$\frac{C-0}{100-0} = \frac{76-1}{97-1}$$
at,
$$\frac{C}{100} = \frac{75}{96}$$
at,
$$C = \frac{7500}{96}$$

C = 78.13°C

৬। একটি রোধ থার্বোমিটার বরফ বিন্দু ও স্টীম বিন্দুতে যথাক্রমে 4.5 Ω ও 9.5 Ω রোধ প্রদর্শন করে। এটি একটি তরলে স্থাপন করলে 61 Ω রোধ প্রদর্শন করে। তরলটির তাপমাত্রা নির্ণয় কর।

মনে করি, কক্ষের তাপমাত্রা =
$$t_p$$

আমরা পাই, $R_t = R_0 (1 + \alpha t)$
 $t_p = \frac{R_t - R_0}{R_{100} - R_0} \times 100$
নির্ধোয় তাপমাত্রা, $t_p = \frac{6 \cdot 1 - 4 \cdot 5}{9 \cdot 5 - 4 \cdot 5} \times 100$
 $= \frac{1 \cdot 6}{5} \times 100 = 32^{\circ}$ C = $(32 + 273)$ K = 305 K

হলে তরলের স্ফুটনাজ্ঞ কত ? যি. বো. ২০০৩] 1

আমরা জানি

$$T = \frac{R_t}{R_{tr}} \times 273.16$$

$$= \frac{27.316}{32.316} \times 273.16$$

$$R_t = 32.316 \Omega$$

$$R_t = 27.316 \Omega$$

$$R_t = 27.316 \Omega$$

$$R_t = 27.316 \Omega$$

এখানে,

t,

33[.]3°C

= 2.57 ও'ম

anh -

৮। একটি প্লাটিনাম রোধ থার্মোমিটার 0°C তাপমাত্রায় 2.57 ও'ম এবং 100°C তাপমাত্রায় 3.53 ও'ম পাঠ দেয়। 33'3°C তাপমাত্রায় যন্ত্রটি কত পাঠ দিবে ?

মনে করি 33[·]3°C-এ যন্ত্রটির পাঠ = \mathbf{R}_1

আমবা পাই

$$t_{p} = \frac{R_{t} - R_{0}}{R_{100} - R_{0}} \times 100 \qquad (1)$$

$$R_{0} = 2.57 \text{ s}^{3} \text{ m}$$

$$R_{100} = 3.53 \text{ s}^{3} \text{ m}$$

ত্রটিপূর্ণ থার্মোমিটারে থার্মোমিটারের পাঠ, X, = 76° স্টীম বিন্দু, X_{steam} = 97° বরফ বিন্দু $X_{ice} = 1^{\circ}$ প্রকৃত তাপমাত্রা 🛛 = ?

২০০৩; ব. বো. ২০০১]

৯ বেকটি রোধ ধার্মোমিটারের রোধ 0°C তাপমাত্রায় 8Ω এবং 100°C তাপমাত্রায় 20Ω। ধার্মোমিটারটিকে একটিছেল্লীতে স্থাপন করলে রোধ 32Ω হয়। চুল্লীর তাপমাত্রা নির্ণয় কর।

[কু. বো. ২০০৬ (মান ভিন্ন); সি. বো. ২০০৬ (মান ভিন্ন); চ. বো. ২০০৫]

ধরি, চুল্লীর তাপমাত্রা =
$$\theta^{\circ}$$
C
আমরা জানি,
 $\theta = \frac{R_{\theta} - R_{0}}{R_{100} - R_{0}} \times 100$
 $= \frac{32 - 8}{20 - 8} \times 100$
 $= \frac{24}{12} \times 100$
 $\theta = 200^{\circ}$ C
 $\theta = 200^{\circ}$ C

১০। স্ধির চাপে কোন নির্দিষ্ট ভরের গ্যাস বরফের গুলনাক্রে, পানির স্ফুটনাক্তে এবং গন্ধকের স্ফুটনাক্তে যথাক্রমে 200 ঘন সে. মি., 273 2 ঘন সে. মি. এবং 525 1 ঘন সে. মি. আয়তন দখল করে। গুন্ধকের স্ফুটনাক্ত নির্ণয় কর।

মনে করি গন্ধকের স্ফুটনার্চ্ক = t

আমরা পাই,

 $t = \frac{V_t - V_0}{V_{100} - V_0} \times 100$

সমীকরণ (1) হতে পাই,

$$t = \frac{525^{\circ}1 - 200}{273^{\circ}2 - 200} \times 100$$
$$= \frac{325^{\circ}1}{73^{\circ}2} \times 100 = 444^{\circ}12^{\circ}0$$

এখানে, V₀ = 200 ঘন সে.মি. V₁₀₀ = 273 2 ঘন সে.মি. V_t = 525 1 ঘন সে.মি.

$$T = \frac{P}{T_r} \frac{271}{271}$$

১১। একটি স্ধির আয়তন গ্যাস ধার্মোমিটারকে তরল বায়ু , গলিত বরফ এবং ফুটস্ত পানিতে স্থাপন করলে যধাব্রুমে 2015 cm, 7210 cm এবং 9914 cm পারদ স্তম্ড চাপ নির্দেশ করে। তরল বায়ুর তাপমাত্রা কত ?

মনে করি, তরল বায়ুর তাপমাত্রা = $\theta^{\circ}C$

আমরা জানি,এখানে, $\theta = \frac{P_{\theta} - P_{0}}{P_{100} - P_{0}} \times 100$ $P_{\theta} = \theta^{\circ}C$ তাপমাত্রায় চাপ = 20.5 cm পারদ. $\theta = \frac{20.5 - 72.0}{99.4 - 72.0} \times 100$ $P_{0} = 0^{\circ}C$ তাপমাত্রায় চাপ = 72.0 cm পারদ $= \frac{-51.5}{27.4} \times 100$ $P_{100} = 100^{\circ}C$ তাপমাত্রায় চাপ = 99.4 cm পারদ $= -187.96^{\circ}C$ $P_{100} = 100^{\circ}C$ তাপমাত্রায় চাপ = 99.4 cm পারদ

১২। কেলন্ডিন তাপমাত্রা T-তে স্বির আয়তন গ্যাস ধার্মোমিটারে 4'80 × 104 Nm⁻² চাপ নির্দেশিত হল। যদি ত্রৈধ বিন্দুতে চাপ 4'20 × 104 Nm⁻² হয় তবে T-এর মান নির্ণয় কর। [চ. বো. ২০০১]

আমরা জানি,

$$\Gamma = \frac{P_{\rm T}}{P_{\rm I}} \times 273^{\circ}16 \text{ K}$$
$$= \frac{4^{\circ}80 \times 10^4}{4^{\circ}20 \times 10^4} \times 273^{\circ}16 \text{ K}$$
$$= 312^{\circ}18 \text{ K}$$

এখানে,

T তাপমাত্রায় চাপ, $P_T = 4.80 \times 10^4 \text{ Nm}^{-2}$ ত্রেধ বিন্দুতে চাপ, $P_1 = 4.20 \times 10^4 \text{ Nm}^{-2}$ তাপমাত্রা, T = ?

৩৯০ উচ্চ মাধ্যমিক পদার্থবিজ্ঞান				
১৩। সুষম ছিদ্রবিশিষ্ট একটি থার্মোমিটার সমান ডিগ্রীতে ভাগ করা আছে। থার্মোমিটারটি গলস্ত বরফে 20°C এবং পানির 200°C তাপমাত্রায় 80°C পাঠ দেয়। 100°F তাপমাত্রায় উক্ত থার্মোমিটার কত পাঠ দিবে ? { ব. বো. ২০০২]				
মুদে করি, 100°F সেলসিয়াস স্কেলে	এথানে,			
আমরা জানি,	থার্মোমিটারটির নিম স্থির বিন্দু			
	$t_{ice} = 20^{\circ}\text{C}$			
$\frac{\theta}{5} = \frac{100 - 32}{9}$	উধ্ব স্থির বিন্দু, t _{steam} = 80°C			
$\theta = \frac{68 \times 5}{9} = 37^{\circ}78^{\circ}C$	$t_{\theta} = ?$			
জাবার, $\theta = \frac{t_{\theta} - t_{icce}}{t_{steam} - t_{ice}} \times 100$				
$\mathbf{\overline{A}}, \ 37.78 = \frac{t_{\theta} - 20}{80 - 20} \times 100$				
$t_{\theta} = \frac{60 \times 37.78}{100} + 20$				
= 42.67°C				
১৪। একটি প্লাটিনাম রোধ থার্মোমিটারের সাহায্যে পানির তৈ 7·5 Ω পাওরা যায়। রোধ থার্মোমিটারে কন্দের তাপমাত্রা কত হবে ? আমরা জানি, রোধ থার্মোমিটারে কেলভিন স্কেলে তাপমাত্রা, T =	্সি. বো. ২০০১)			
আমরা পাই,	এখানে, ^K tp			
$T = 273.16 \times \frac{7.5}{6.7}$	$R = 7.5 \Omega$			
0,	$R = 7.5 \Omega$ $R_{tp} = 6.7 \Omega$			
= 305.78 K = 32.62 °C				
১৫। একটি নির্দিষ্ট রোধ থার্মোমিটারের রোধ বরফ ও স্টীম গেল। যে তাপমাত্রায় রোধ 4:83 Ω পাওয়া যায় তার মান নির্ণয় কর।	বিন্দুতে যথাব্ৰুমে 2.00 Ω এবং 2.73 Ω পাওয়া [চ. বো. ২০০০]			
মনে করি নির্ণেয় তাপমাত্রা = $\theta^{\circ}C$	এখানে,			
$\Theta = \frac{R_{\theta} - R_{0}}{R_{row} - R_{0}} \times 100^{\circ}C$	$R_0 = 2.00 \Omega$			
	$R_{100} = 2.73 \ \Omega$			
$=\frac{4.83-2.00}{2.73-2.00}\times100^{\circ}\mathrm{C}$	$R_{\theta} = 4.83 \Omega$			
$= 387.67^{\circ}C$	$\theta = ?$			
১৬। একটি ত্রুটিগূর্ণ থার্মোমিটার প্রমাণ চাপে গলিত বরফে 2°C যখন 30°C পাঠ দেয় তখন প্রকৃত তাপমাত্রা কত १	্র এবং শুচ্চ বান্সে 98°C পাঠ দেয়। থার্মোমিটারটি [সি. বো. ২০০৫]			
আমরা জানি, যে কোন তাপমাত্রা স্কেলের ক্ষেত্রে				
$rac{x_t - x_{icc}}{x_{steam} - x_{ice}}$ এর অনুপাত সমান	এখানে,			
	. x _t = থার্মোমিটারের পাঠ = 30°C			
সেলসিয়াস স্কেলের সাথে তুলনা করে পাই,	$x_{ice} = \overline{\alpha} \overline{\alpha} \overline{\alpha} \overline{\gamma} \overline{\alpha} \overline{\gamma} = 2^{\circ}C.$			
$\frac{C-0}{100-0} = \frac{30-2}{98-2}$	$x_{steam} = 98^{\circ}C$			
বা, $\frac{C}{100} = \frac{28}{96}$	প্রকৃত তাপমাত্রা (C) = ?			
বা, $C = \frac{28 \times 100}{96} = 29^{\circ}16$				
নির্শেয় তাপমাত্রা = 29.16°C				
১৭। একটি অ্যানুমিনিয়াম ও সীসার তাপযুগনের শীতন সংযোগস্থনের তাপমাত্রা 0°C। উষ্ণ সংযোগস্থনের তাপমাত্রা কত হনে তাপ বিদ্যুচ্চানক শস্তি 1050 μ V হবে ? [$a=12\mu$ V/°C ও $b=-0.015\mu$ V / (°C)²]				
আমরা পাই, $E = at + bt^2$ (1)	$b = -0.015 \mathrm{uV} / (^{\circ}\mathrm{C})^2$			
ধরি নির্ণেয় তাপমাত্রা = t° C আমরা পাই, E = $at + bt^{2}$ (1) \therefore সমীকরণ (1) হতে পাওয়া যায়, E = $12 \mu V / {\circ}$ C E = $1050 \mu V / {\circ}$ C				
$2.50 = 12t - 0.015t^2$	I · · ·			
$1050 = 12t - 0.015t^2$ at, $0.015t^2 - 12t + 1050 = 0$				
1, 0 0 0 -121 + 1000 - 0				

- $\mathbf{A}, \quad 1.5t^2 150t 1050t + 105000 = 0$
- $\mathbf{A}, \quad 1.5t \ (t 100) 1050(t 100) = 0$
- খা, (1.5t 1050) (t 100) = 0

$$t = 100^{\circ}$$
C at $t = \left(\frac{1050}{1.5}\right)^{\circ}$ C = 700°C

কিন্তু সমীকরণ (1) অনুসারে *t* ≠ 700°C নির্ণেয় তাপমাত্রা = 100°C = 373K

১৮। একটি স্ধির আয়তন গ্যাস থার্মোমিটারে পানি ত্রৈধ বিন্দুর চাপ 20 Nm⁻² এবং শুক্ষ বরকে চাপ 14·3 Nm⁻² প্রদর্শন করে। শুক্ষ বরফের তাপমাত্রা কত १ [য. বো. ২০০১]

মনে করি, তাপমাত্রা = T আমরা পাই

$$T = \left(273 \cdot 16 \times \frac{P}{P_{ip}}\right)$$
$$= 273 \cdot 16 \times \frac{14 \cdot 3}{20 \cdot 0}$$
$$T = 195 \cdot 31 \text{ K}$$

এখানে,

 $P_{ty} = 20 \text{ Nm}^{-2}$ $P = 14.3 \text{ Nm}^{-2}$

প্রশ্নমালা

সংক্ষিশত-উত্তর প্রশ্ন ঃ ১। উষ্ণতামিতি পদার্থ কাকে বলে ? [b. বো. ২০০৬; সি. বো. ২০০৫ ; কু. বো. ২০০৪, ২০০১ ; রা. বো. ২০০০] ২। থাৰ্মোকাপল কি ? চি. বো. ২০০৫; কু. বো. ২০০৪, ২০০১ ; রা. বো. ২০০৩, ২০০২ ; ঢা. বো. ২০০৫, ২০০২, ২০০০] বা তাপযুগল কি ? [রা. বো. ২০০০; সি. বো. ২০০৬, ২০০৩, ২০০১] ৩। তাপমাত্রার আন্তর্জাতিক স্কেল কি ? যি. বো. ২০০৬, ২০০৪ ; য. বো. ২০০৩] ৪। পানির ত্রেধবিন্দু কি ? ত্রেধবিন্দুর তাপমাত্রা কত ? বি. বো. ২০০৪; য. বো. ২০০৩; ঢা. বো. ২০০০] ৫। থার্মোমিটারে পারদ ব্যবহারের সুবিধাগুলো লিখ। [5. বো. ২০০৬ ; সি. বো.২০০৪ ; ব. বো. ২০০৩ ; য. বো. ২০০২ ; রা. বো. ২০০১] রা. বো. ২০০৩ ; কু. বো. ২০০১ ; চু. বো. ২০০৩ ; য. বো. ২০০১] ৬। পানির ত্রৈধবিন্দুর সংজ্ঞা দাও। ৭। উষ্ণতামিতি ধর্ম ও উষ্ণতামিতি পদার্থ কাকে বলে ? [সি. বো. ২০০৫ ; য. বো. ২০০৩] ৯। সংজ্ঞা লিখ ঃ ধার্মিস্টর, দশা। [চ. বো. ২০০৩]; পানির ত্রেধবিন্দু [ঢা. বো. ২০০২; ব. বো. ২০০২] ধার্মোকাপল [ব. বো. ২০০২] তাপমিতিক ধর্ম [চ. বো. ২০০২ ; ব. বো. ২০০২] সি. বো. ২০০৫, ২০০৩, ২০০১; রা. বো. ২০০০] ১০। পানির ত্রেধবিন্দু বলতে কি বুঝ ? [ता. ता. २००७; त्र. ता. २००७ ; व. ता. २००৫ ; कृ. ता. २००० ; ज. ता. २००२] ১১। ধার্মিস্টর কি 🥐 [ব. বো. ২০০৫; য. বো. ২০০৫, ২০০২; ঢা. বো. ২০০৪, ২০০১] ১২। পাইরোমিটার কি ? ১৩। তাপমিতিক ধর্মের সংজ্ঞা দাও। **[b**. (**d**]. ২০০২] ১৪। কেলভিনের সংজ্ঞা দাও। [চ. বো. ২০০১ ; য. বো. ২০০১] ১৫। সংজ্ঞা লিখ ঃ দশা, পরম শূন্য তাপমাত্রা, ত্রৈধবিন্দু। চ. বো. ২০০৬ ; ব. বো. ২০০১] ১৬। কেলভিন কাকে বলে ? য. বো. ২০০২ ১৭। পরম শূন্য তাপমাত্রা কি ? ১৮। থার্মোমিটারের মৌলিক ব্যবধান কাকে বলে ? ৰ কু. বো. ২০০৬; ব. বো. ২০০৩ ১৯। থার্মোমিটারের স্থিরাভক কি ? নিম্ন স্থিরাভক ও ঊর্ধ্ব স্থিরাভক বলতে কি বুঝ ? ২০। থার্মোমিটারের সুবেদিতা কাকে বলে ? ২১। তাপমাত্রার পরম স্কেল কি ? রচনামূলক প্রশ্ন ঃ ১। তাপীয় সাম্যাবস্থা বলতে কি বুঝ ? তাপগৃতিবিদ্যার শূন্যতম সূত্র ব্যাখ্যা কর ? ২। একটি পারদ ধার্মোমিটারের প্রস্তৃত প্রণাশী বর্ণনা কর রা. বো. ২০০৪, ২০০১ ; কু. বো. ২০০২ ৩। তাপযুগল কি ? তাপযুগলের কার্যপ্রণালী বর্ণনা কর । ৰে. বো. ২০০৪] ৪। দুটি স্থির বিন্দুর সাপেক্ষে থার্মোমিডির মূল সমীকরণ নির্ণয় কর। ক্র্ বো. ২০০৩ ৫। তাগযুগলের সাহায্যে তাপমাত্রা পরিমাপ কিভাবে করা যায় বর্ণনা কর। [য. বো. ২০০৫ ; কৃ. বো. ২০০৩ ; টা. বো. ২০০০] ৬। থার্মোকাপল ও থার্মিস্টর কি ? বঝাও। [কু. বো. ২০০৩ ; য. বো. ২০০২]

উচ্চ মাধ্যমিক পদার্থবিজ্ঞান $BG \ll JEWEL$

৭। বিকিরণ পাইরোমিটারের সাহায্যে কিভাবে তাপমাত্রা নির্ণয় করা যায় ? ্যি. বো. ২০০২ ; ঢা. বো. ২০০১] ৮। একটি তাপ তড়িৎ থার্মোমিটারের গঠন ও কর্মপ্রণালী বর্ণনা কর। [সি. বো. ২০০৬, ২০০১] ৯। একুটি আলোক পাইরোমিটারের বর্ণনা দাও। ঢো. বো. ২০০৪] ২০। প্রাটিনাম রোধ থার্মোমিটার দ্বারা কিভাবে তাপমাত্রা পরিমাপ করা যায় বর্ণনা কর। গাণিষ্ঠিক সমস্যাবলি ঃ ४। ফারেনহাইট কেলে একুটি বস্তুর তাপমাত্রা 95°F হলে কেলভিন স্কেলে উক্ত বস্তুর তাপমাত্রা কত ? ।উত্তরঃ308 KI ২। কোন তাপমাত্রায় সেলসিয়াস ও ফারেনহাইট স্কেলের পাঠের পার্থক্য 50° হবে ? [রা. বো. ২০০৬] [উত্তর ঃ 22.5°C ও 72.5°F , — 102.5°C ও — 152.5°F) ৩। দুটি তাপমাত্রার পার্থক্য 25°C। ফারেনহাইট স্কেলে এই পার্থক্য কত হবে বের কর। [₲\$ 45°F] [উত্তর ঃ 50°F] ৪। ফারেনহাইট স্কেলের কোন্ তাপমাত্রা সেলসিয়াস স্কেলের তাপমাত্রার 5 গুণ ? ৫। কোনু তাপুমাত্রায় সেলসিয়াস ও ফারেন্হাইট স্কেলে 20° পার্থিক্য হয়? [উন্তরঃ —15°C, 5°F বা,—65°C ,— 85°F] ৬। একটি ত্রুটিপূর্ণ থার্মোমিটারের বরফ বিন্দু 15°C, স্টীমবিন্দু 114°C। যখন এ থার্মোমিটার 67°C প্রদর্শন করে, [ব. বো. ২০০৬] [উত্তর ঃ 178'4°F] তখন ফারেনহাইট স্কেলে তাপমাত্রা কত ? ৭। একটি ত্রুটিপূর্ণ থার্মোমিটারের বরফ বিন্দু 4°, স্টীম বিন্দু 98°। যখন এই থার্মোমিটার (i) 50° প্রদর্শন করে, তখন সেলসিয়াস স্কেলে তাপমাত্রা কত १ (ii) 51° পাঠ দিলে ফারেনহাইট ও কেলভিন স্কেলে পাঠ কত হবে १ উত্তর ঃ (i) 48⁻9°C ; (ii) 122°F, 323 K] ৮। একটি ত্রুটিপূর্ণ থার্মোমিটারের বর্ফ বিন্দু 5°C এবং স্টীম বিন্দু 115°C। কোন বস্তুর প্রকৃত তাপমাত্র্রা 40°C হলে ঐ থার্মোমিটার বস্তুটির কত তাপমাত্রা নির্দেশ করবে 🤉 [উত্তর **ঃ** 49°C] ৯। একটি নির্দিষ্ট রোধ থার্মোমিটারের বর্ফ বিন্দু ও স্টীম বিন্দুতে রোধ যথাব্রুমে 46Ω এবং 51.6Ω | কোন তরলের স্ফুটনাজ্ঞে এর রোধ 48[.]5Ω হলে তরলের উষ্ণতা নির্ণয় কর। **ডিন্তর ঃ** 50°C] ১০। বরফ ও স্টীম বিন্দুতে একটি রোধ থার্মোমিটারের রোধ যথাক্রমে 2^{.5}Ω এবং 3Ω পাওয়া গেল। যে তাপমাত্রায় রোধ 10Ω পাওয়া যায় তার মান নির্ণয় কর। [উত্তর : 1500°C] ১১। পানির ত্রৈধবিন্দু এবং ফুটন্ত সালফারে একটি ধ্রুব আয়তন গ্যাস থার্মোমিটার যথাক্রমে 100 cmHg এবং 262 78 cmHg চাপ পাওয়া যায়। সালফারের স্ফুটনাজ্ঞ নির্ণয় কর। [উওঁর ঃ 717[.]8K] ১২। একটি ত্রটিপূর্ণ থার্মোমিটার সাধারণ বায়ুচাপের গলিত বরফে 5°C এবং শুক্ষ বাস্পে 99°C পাঠ দেয়। থার্মোমিটারটি 52°C পাঠ দিলে ফারেনহাইট স্কেলে কত পাঠ পাওয়া যাবে ? [উত্তর ঃ 122°F] ১৩। একটি ত্রুটিপূর্ণ থার্মোমিটার প্রমাণ চাপে গলিত বরফে 1°C এবং শুক্ষ বাব্দে 98°C পাঠ দেয়। থার্মোমিটারটি 30°C পাঠ দিলে প্রকৃত তাপমাত্রা কত ? [উত্তর ঃ 29⁻9°C] ১৪। এমন একটি তাপমাত্রা বের কর যার মান সেন্টিগ্রেড ও ফারেনহাইট থার্মোমিটারে 6° পার্থক্য থাকে। [উঃ — 32.5℃ ও — 26.5° F এবং — 47.5℃ ও 53.5° F] ১৫। এক মগ পানির তাপমাত্রা 100°C থেকে 40°C এ নামানো হল। ফারেনহাইট স্কেলে কত পরিবর্তন হবে 🤉 [উত্তর : 108°F] ১৬। কোন তাপমান যন্ত্র 0°C তাপমাত্রায় 0.5°C পাঠ দেয় এবং 100°C তাপমাত্রায় 100.8°C পাঠ দেয়। 26°C তাপমাত্রায় তাপমান থন্ত্রটি কত পাঠ দিবে বের কর। [፝ቔ፝፝፝ 26 56°C] ১৭। একটি পারদ থার্মোমিটারের পারদ দৈর্ঘ্য 0°C-এ 005 m ও 100°C-এ 025 m হলে কত তাপমাত্রায় ঐ পারদ দৈর্ঘ 0'09 m হবে ? [₲\$ 20°C] ১৮। পানির ত্রেধ বিন্দুতে একটি পারদ থার্মোমিটারে পারদ স্তম্ভের দৈর্ঘ্য 0.4 m এবং অন্য একটি তরলে এর দৈর্ঘ্য 0^{·5} m। উক্ত তরলের তাপমাত্রা নির্ণয় কর। เรี้ះ 341 45 K] ১৯। পানির ত্রেধ বিন্দুতে কোন একটি রোধ থার্মোমিটারের রোধ 60 Ω এবং আর একটি তরলে রোধ 90 Ω । তরলের তাপমাত্রা নির্ণয় কর। [ቼ፡ 409 74 K] ২০ একটি থার্মিস্টরে 150°C তাপমাত্রায় রোধ 2'5 Ω। যদি রোধের তাপমাত্রা গুণাচ্চ্ব 3'75×10⁻³ হয়, তবে 200° েতাপমাত্রায় এর রোধ কত হবে ? [\$ 2.75 Ω] ২১। একটি রোধ ফামোমিটারের রোধ 0°C ও 100°C তাপমাত্রায় যথাক্রমে 10 ohm ও 20 ohm। থার্মোমিটারটি একটি চুল্লীতে স্থাপন করায় রোধ 30 ohm হয়। চুল্লীর তাপমাত্রা বের কর। [সি. বো. ২০০৬] [উন্তর **ঃ** 200°C] ২২। একটি স্থির আয়তন গ্যাস থার্মোমিটারে পানি ত্রৈধ বিন্দুতে গ্যাসের চাপ 2.5×104 Nm⁻² এবং একটি উষ্ণ তরলে গ্যাসের চাপ $4 imes 10^4 \ {
m Nm^{-2}}$ প্রদর্শন করে। এ তরলটির তাপমাত্রা কত १ [উত্তর 8 437 06 K] ২৩। 0° C এবং 100° C তাপমাত্রায় একটি প্লাটিনাম থার্মোমিটারের রোধ যথার্ক্রমে $6.28~\Omega$ এবং $7.32~\Omega$ । তাপমান যন্ত্রের রোধ 5[.]56 Ω হলে প্লাটিনাম তাপমাত্রা নির্ণয় কর। ୁା**ତିଃ —** 69°23℃] ২৪। একটি স্থির আয়তন গ্যাস থার্মোমিটারে 0°C এবং 100°C তাপমাত্রায় বায়ুর চাপ যথাক্রমে 075 m এবং 1 15 m পারদস্তম্ন্ড। বান্ধটিকে উষ্ণ পানিডে ডুবালে বায়ুর চাপ 1 0 m পারদস্তম্ভ হয়। পানির তাপমাত্রা কেলডিনে (K) বের **डिः** 335 5 K]

তাপগতিবিদ্যার প্রথম সূত্র

FIRST LAW OF THERMODYNAMICS

১৩'১ সূচনা Introduction

তাপগতিবিদ্যার প্রথম সূত্র আলোচনা করার আগে আমাদের জানা দরকার তাপগতিবিদ্যা কি ? আমরা জানি কাজ করার সামর্থ্যকে শক্তি বলে। বিভিন্ন প্রকার শক্তির সাথে আমরা পরিচিত। যেমন যান্ত্রিক শক্তি, তাপশস্তি, শব্দ শক্তি ইত্যাদি। এ সব শক্তির মধ্যে পারস্পরিক রূপান্তর ঘটে। সব রূপান্তরের মধ্যেই দেখা যায় যে সব রকম শক্তি অতি সহজেই তাপ শক্তিতে রূপান্তরিত হয়। বিজ্ঞানী কাউন্ট রামফোর্ড, হ্যামফ্রে ডেন্ডী এবং জেমস্ প্রেসকট জুল পরীক্ষা-নিরীক্ষার সাহায্যে প্রমাণ করেন যে কাজ তথা যান্ত্রিক শক্তি হতে তাপ উৎপন্ন হয় এবং তাপ গতিরই একটি রূপ। তাদের এই মতবাদ হতেই বস্তৃত তাপগতিবিদ্যার সূত্রপতি।

পদার্থবিজ্ঞানের যে শাখা তাপ ও যান্ত্রিক শক্তির্র পরস্পর রূপান্তর ও সম্পর্ক নিয়ে আলোচনা করে তাকে তাপ গতিবিদ্যা (Thermodynamic) বলে। পদার্থবিজ্ঞান ছাড়াও বিজ্ঞান ও ইঞ্জিনিয়ারিং-এর বিভিন্ন শাখায় তাপগতিবিদ্যার ব্যবহার ও প্রয়োগ রয়েছে। এ অধ্যায়ে তাপগতিবিদ্যার কয়েকটি গুরুত্বপূর্ণ রাশি, তাপ ও অন্তস্থ শক্তি, তাপগতিবিদ্যার প্রথম সূত্র, সমোষ্ণ ও রূম্বতাপীয় প্রক্রিয়া, গ্যাসের প্রসারণে সম্পাদিত কাজ ও গ্যাসের আপেক্ষিক তাপ আলোচনা করব।

১৩ ২ তাপগতীয় কয়েকটি রাশি Some terms of thermodynamics

তাপগতিবিদ্যার সূত্রাবলি আলোচনার পূর্বে তাপগতি সম্পর্কীয় কয়েকটি রাশির সংজ্ঞা নিম্নে দেয়া হল ঃ

(ক) তাপগতীয় ব্যবস্থা বা সিস্টেম (Thermodynamic system) : তাপগতীয় ব্যবস্থা বলতে তল বা বেষ্টনী দ্বারা সীমাবন্ধ কোন নির্দিষ্ট পরিমাণ বস্তুকে বুঝায়। যেমন একটি পিস্টনযুক্ত সিলিণ্ডারে অথবা একটি বেলুনে আবন্ধ গ্যাসন

(খ) পরিপার্শ (Surroundings) ঃ একটি ব্যবস্থার আশে পাশের সব কিছুকে বলা হয় পরিপার্শ। যেমন পিস্টন ও সিলিন্ডারের আশেপাশের বায়ু হল এর পরিবেশ। অন্যতাবে বলা যায়, কোন নির্দিষ্ট ব্যবস্থার সাথে শক্তি বিনিময়ে সক্ষম যে কোন ব্যবস্থাকে এ ব্যবস্থার পরিপার্শ্ব বলে।

কোন ব্যবস্থা যান্ত্রিক কান্ধ সম্পাদন বা তাপ প্রবাহের মাধ্যমে তার পরিপার্শ্বের সাথে শক্তি বিনিময় করতে পারে।

(গ) ব্যবস্থা বা সিস্টেমের অবস্থা (State of a system) ঃ যে সকল রাশির মান কোন ব্যবস্থার জবস্থা নির্ধারণ করে সেগুলোকে ব্যবস্থার তাপগতীয় স্থানাঙ্ক (co-ordinates) বা অবস্থা পরিবর্তী (variables) বলে।

যেমন, সিলিন্ডারে আবন্দ্র গ্যাস হল ব্যবস্থা এবং গ্যাসের অবস্থার বৈশিষ্ট্য নির্দেশ করে এর চাপ, আয়তন ও পরম তাপমাত্রা। তাই চাপ, আয়তন ও পরম তাপমাত্রাকে তাপগতীয় স্থানাজ্ঞ বলে।

(ছ) সাম্যাবস্থা (Equilibrium) ঃ কোন ব্রিচ্ছিন ব্যবস্থার চূড়ান্ত অবিচল (steady) অবস্থাকে তাপগতীয় সাম্যাবস্থা বলে। সাম্যাবস্থায় ব্যবস্থার সকল বিন্দুতে তাপগতীয় স্থানাজ্ঞ অর্থাৎ চাপ_স, আয়তন, তাপমাত্রার মান সমান।

(ঙ) তাপগতীয় প্রক্রিয়া (Therodynamic process) ঃ কোন ব্যবস্থার তাপগতীয় স্থানাজ্ঞসমূহের যে কোন পরিবর্তনকে তাপগতীয় প্রক্রিয়া বলা হয়।

তাপ ও অন্তস্থ বা অভ্যন্তরীণ শক্তি 200 Internal energy

আমরা জানি, তাপ এক প্রকার শক্তি যা তাপমাত্রার পার্থক্যের জন্য উচ্চ তাপমাত্রার স্থান হতে নিম্ন তাপমাত্রার স্থানে সঞ্চালিত হয়। প্রত্যেক ব্যবস্থা (system)-এর মধ্যে এমন একটি নির্দিষ্ট পরিমাণ শক্তি সুন্ত অবস্থায় থাকে যার ফলে ব্যবস্থাটি পরিবেশ ও পরিস্থিতি অনুযায়ী বিভিন্ন প্রকার শক্তি উৎপন্ন করতে সক্ষম। এই শক্তিকে অন্তস্থ বা অভ্যন্তরীণ শক্তি বলে। অন্তস্থ বা অভ্যন্তরীণ শক্তিকে নিম্নোক্তভাবে সংজ্ঞায়িত করা যায়।

সংজ্ঞা ঃ প্রত্যেক বস্তুর মধ্যে অন্তর্নিহিত শক্তি রয়েছে যা কাজ সম্পাদন করতে পারে এবং জন্য শক্তিতে র্পান্তরিত হতে পারে। বস্তুর মধ্যস্থ অণু পরমাণুর গতিশক্তি এবং এদের মধ্যকার আন্তঃআণবিক বলের কারণে সৃষ্ট শক্তিকে অন্তস্থ বা অভ্যন্তরীণ শক্তি বলে। অন্তস্থ শক্তি নিম্নোক্ত দুই ধরনের শক্তির যোগফল।

(ক) তাপীয় শক্তি যা এলোমেলোভাবে (randomly) বিচরণশীল অণুগুলোর গতিশক্তি এবং

(খ) আণবিক স্থিতিশক্তি। অণুর মধ্যে যে সকল পরমাণু থাকে তাদের মধ্যে ক্রিয়াশীল বল এবং আন্তঃআণবিক বলের কারণে আণবিক স্থিতিশক্তির উৎপত্তি হয়।

মোট অন্তস্থ শক্তি E = K. E. + P. E.

তাপ যা গরম বস্তু থেকে শীতল বস্তৃতে প্রবৃহিত হয় তা গরম বস্তুর অন্তস্থ শুক্তির মধ্যে উৎপন্ন হয়। তাপমাত্রার পার্থক্যের কারণে গরম ও শীতল বস্তুর মধ্যে যখন তাপ প্রবাহিত হয় তখন গরম বস্তুর অন্তঃস্থ শক্তি কমে। পক্ষান্তরে শীতল বস্তুর অন্তস্থ শক্তি বৃদ্ধি পায়। প্রকৃতপক্ষে গরম বস্তু থেকে শীতল বস্তুতে শক্তি গমনক নির্দেশ করার জন্য তাপ শব্দটি ব্যবহার করা হয়। এটা বলা সঠিক নয় যে একটি বস্তু তার অভ্যন্তরে তাপ ধারণ করে। বস্তৃত একটি বস্তু অন্তস্থ শক্তি ধারণ করে, তাপ নয়।

কোন বস্তুর মোট অভ্যন্তরীণ শক্তি কোনভাবেই পরিমাপ করা সম্ভব নয়। তবে তাপ প্রয়োগে বস্তুর অভ্যন্তরীণ শক্তির পরিবর্তন সঠিকভাবে পরিমাপ করা যায়।

গ্যাসের অভ্যন্তরীণ শক্তির নির্ভরতা : কোন গ্যাসের অবস্থা তার চাপ, আয়তন ও তাপমাত্রা দ্বারা নির্ধারিত হয়। সুতরাং, মনে করা ষাভাবিক যে গ্যাসের অভ্যন্তরীণ শক্তি এই তিনটি রাশির উপর নির্ভর করে। প্রকৃতপক্ষে তা নয়। অনেক পরীক্ষা-নিরীক্ষার পর জুল নিমোক্ত সিম্বান্তে উপনীত হন----

কোন নির্দিষ্ট পরিমাণ গ্যাসের অভ্যস্তরীণ শক্তি শুধুমাত্র এর তাপমাত্রার উপর নির্ভর করে, এর চাপ বা আয়তনের উপর নির্ভর করে না। একে মেয়ারের প্রকল্প (Mayers' hypothesis) বলা হয়।

অতএব, তাপমাত্রার পরিবর্তন হতে নির্দিষ্ট পরিমাণ গ্যাসের অভ্যন্তরীণ শক্তির পরিবর্তন পরিমাপ করা যায়। স্পফটত চাপ বা আয়তন পরিবর্তিত হলেও তাপমাত্রা যদি স্থির থাকে তবে গ্যাসের অভ্যন্তরীণ শক্তিও অপরিবর্তিত থাকবে। অভ্যস্তরীণ শক্তির পরিবর্তন কোন ব্যবস্থার প্রাথমিক ও চূড়ান্ত অবস্থার উপর নির্ভর করে। কোন্ পথে চূড়ান্ত অবস্থায় পৌঁছল তার উপর নির্ভর করে না।

১৩ ৪ তাপগতিবিদ্যার প্রথম সূত্র First law of thermodynamics

বিজ্ঞানী জুল সর্বপ্রথম কাজ ও তাপের মধ্যে সম্পর্ক স্থাপন করেন এবং সম্পর্কটি সূত্রাকারে প্রকাশ করেন। সূত্রটি নিম্নরূপ ঃ

সূত্র ঃ ইখন কাজ সম্পূর্ণতাবে তাপে বা তাপ সম্পূর্ণতাবে কাজে রূপান্তরিত হয় তখন কাজ ও তাপ পরস্পরের সমানুপাতিক হয়।

ব্যাখ্যা ঃ যদি W পরিমাণ কাজ সম্পূর্ণরূপে তাপে পরিণত হওয়ায় Q পরিমাণ তাপ উৎপন্ন হয়, তবে তাপ গতিবিদ্যার প্রথম সূত্রানুসারে, 🛛 🛥 Q W = Hবা.

(1)

বইঘর.কম

এখানে । একটি সমানুপাতিক ধ্রুক। একে তাপের যান্ত্রিক সমতা (mechanical equivalent of heat) বা জুল তুল্যাজ্ঞ্ব (Joule's equivalent) বলে। এই সূত্র শক্তির নিত্যতা সূত্রেরই একটি বিশেষ রূপ।

তাপগতিবিদ্যার প্রথম সূত্রের সাধারণ রূপ ঃ বিজ্ঞানী রুসিয়াস তাপগতিবিদ্যার প্রথম সূত্রটিকে আরও সাধারণভাবে প্রকাশ করেন। রুসিয়াস সূত্রটি নিমোক্তভাবে প্রকাশ করেন।

সূত্র : যখন কোন ব্যবস্থায় (system) তাপ সরবরাহ করা হয় বা ব্যবস্থা কর্তৃক তাপ গৃহীত হয়, তখন এর কিয়দংশ অভ্যন্তরীণ শক্তি বৃদ্ধি করতে অর্ধাৎ তাপমাত্রা বৃদ্ধি করতে এবং অবশিষ্ট অংশ বাহ্যিক কাজ সম্পাদনে ব্যয় হয়।

ব্যাখ্যা ঃ কোন সংস্থা dQ তাপ শোষণ করার জন্য এর অন্তর্নিহিত শক্তির পরিবর্তন du এবং কৃতকার্য dW হলে ব্যবকলনীয় সমীকরণের সাহায্যে তাপগতিবিদ্যার প্রথম সূত্রকে লেখা যায়-

dO = du + dW

(2)

(2)

এই সমীকরণটি শক্তির নিত্যতার সূত্রেরই একটি বিশেষ রুণ। সমীকরণ (2) হল তাপগতিবিদ্যার প্রথম সূত্রের-গাণিতিক রূপ। এটি সকল বস্তুর ক্ষেত্রেই প্রযোজ্য।

সমীকরণ (2)-এ dQ, du এবং dW রাশিগুলো ধনাত্মক এবং ঋণাত্মক হতে পারে।

_(i) dQ ধনাত্মক হবে যদি সিস্টেমে তাপ সরবরাহ করা হয় বা সিস্টেম তাপ গ্রহণ করে এবং ঋণাত্মক হবে যদি সিস্টেম তাপ হারায় বা সিস্টেম হতে তাপ পরিপার্শ্বে গমন করে।

(1) সিস্টেমের অভ্যন্তরীণ শক্তি বৃদ্ধি পেলে du ধনাত্মক এবং শক্তি হ্রাস পেলে du ঝণাত্মক হবে।

(iii) সিস্টেমের দারা পরিপার্শ্বের উপর কাজ সম্পাদিত হলে dW ধনাত্মক এবং পরিপার্শ্ব সিস্টেমের উপর কাজ করলে dW ঋণাতাক হবে।

সমোষ্ণ ও রুদ্ধতাপীয় প্রক্রিয়ার ক্ষেত্রে তাপগতিবিদ্যার <u> ১৩'৪'১</u> প্রথম সূত্রের রূপ

Form of the first law of thermodynamics in isothernal and adiabatic processes

(i) সমোষ্ণ প্ৰক্ৰিয়া ঃ

তাপগতিবিদ্যার প্রথম সূত্রকে গাণিতিকভাবে লেখা যায়,

dQ = du + dW

সমোক্ষ <u>প্রক্রিয়ায় তাপমাত্রা স্থির থাকে,</u> ফলে অন্তর্নিহিত বা অন্তস্থ শক্তি অপরিবর্তিত থাকে।

সুতরাং
$$du = 0$$

অতএব, সমীকরণ (2)-কে লেখা যায়,

$$d\mathbf{Q} = \mathbf{0} + d\mathbf{W} = d\mathbf{W}$$

2(a) অর্থাৎ, সিঁমোক্ষ প্রক্রিয়ায় সিস্টেম বা ব্যবস্থা কর্তৃক সম্পাদিত কাজ সিস্টেমে সরবরাহকৃত বা গৃহীত তাপশক্তির সমান মুমীকরণ 2(a) সমোষ্ণ প্রক্রিয়ায় তাপগতিবিদ্যার প্রথম সূত্রের গাণিতিক রপ।

(ii) রুম্ধতাপীয় প্রক্রিয়া ঃ আমরা জানি, রিম্বতাপীয় প্রক্রিয়ায় তাপের আদান-প্রদান হয় না কিন গ্যাসের রুম্বতাপ প্রসারণের ক্ষেত্রে, dQ = 0সমীকরণ (2) হতে পাই, dQ = 0 = du + dW $\overline{\mathbf{q}}_{\mathbf{u}} du = -d\mathbf{W}$ 2(b) কোন গ্যাসের প্রাথমিক অন্তর্নিহিত শক্তি u_1 এবং চূড়ান্ত অন্তর্নিহিত শক্তি u_2 হলে, সমীকরণ 2(b)-কে লেখা যায়,

$$du = u_2 - u_1 = -dW$$

 $u_2 < u_1$

অর্থার্থ রুন্ধতাপীয় প্রসারণের সময় বাহ্যিক কা<u>জ করার জন্য অন্তর্নিহিত শক্তি</u> হ্রাস পায়, ফলে তাপমাত্রাও হাস পায়।

উচ্চ মাধ্যমিক পদার্থকিজ্ঞান

BG & JEWEL

অনুরূপভাবে, রুম্বতাপ সংকোচন বা সংরক্ষণের ক্ষেত্রেও dQ = 0 হয়। সংকোচনের ক্ষেত্রে সিস্টেমের উপর কাজ করা হয় বলে W ঋণাত্মক। সূতরাং সমীকরণ 2(b) হতে পাই,

du = -(-dW) = dW

2(c)

বা, $u_2 - u_1 = dW$, এখানে u_2 ও u_1 যথাক্রমে সিস্টেমের প্রাথমিক ও চূড়ান্ত অন্তর্নিহিত শক্তি।

 $u_2 > u_1$

অর্থাৎ রুম্বতাপ সংকোচনের সময় গ্যাসের অভ্যন্তরীণ শক্তি বৃদ্ধি পায়, ফলে গ্যাসের তাপমাত্রা বৃদ্ধি পায়। সমীকরণ 2(b) ও 2(c) রুম্বতাপীয় প্রক্রিয়ায় তাপগতিবিদ্যার প্রথম সূত্রের গাণিতিক রূপ।

১৩ ৫ তাপগতিবিদ্যার প্রথম সূত্রের তাৎপর্য Significance of the first law of thermodynamics

তাপগতিবিদ্যার প্রথম সূত্রের নিম্নলিখিত তাৎপর্য রয়েছে ঃ

(১) এটি তাপ ও কাজের মধ্যে সম্পর্ক স্থাপন করে।

(২) এই সূত্র অনুযায়ী নির্দিষ্ট পরিমাণ কাজ পেতে গেলে নির্দিষ্ট পরিমাণ তাপের প্রয়োজন অথবা নির্দিষ্ট পরিমাণ তাপ পেতে গেলে নির্দিষ্ট পরিমাণ কাজ সম্দাদন করা প্রয়োজন।

(৩) কোন কিছু ব্যয় না করে কাজ বা শক্তি পাওয়া অসম্ভব।

(৪) কাজ ও তাপ একে অপরের তুল্য মূল্য।

(৫) এটি শক্তির সংরক্ষণ সূত্র ছাড়া আর কিছুই নয়। যে কোন ব্যবস্থায় সম্পন্ন কান্ধ ও অভ্যন্তরীণ শক্তির পরিবর্তনের সমষ্টি সর্বদা প্রযুক্ত তাপের সমান।

(৬) এমন কোন যন্দ্রের উদ্ভাবন হয় নি যা জ্বালানি বা শক্তি ব্যতিরেকে কাজ করতে সক্ষম অর্থাৎ অনন্ত গতিযুক্ত যন্ত্র (perpetual motion machine) উদ্ভাবন সম্চব নয় বা শক্তি ব্যয় না করে কোন কাজ পাওয়া সম্চব নয়।

১৩৬ তাপের যান্ত্রিক সমতার সংজ্ঞা ও একক

Definition and unit of mechanical equivalent of heat

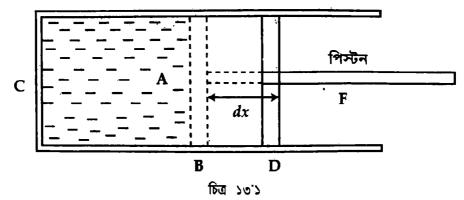
তাপগতিবিদ্যার প্রথম সূত্রান্সারে, W∝H

বা, W = ধ্রসংখ্যা × H = JH

এখানে J একটি ধ্রবসংখ্যা। একে তাপের যান্ত্রিক সমতা বলে। J-কে সংজ্ঞায়িত করার জন্য উপরোক্ত সমীকরণে H = 1 বসালে আমরা পাই,

 $W = \dot{J}$

অতএব তাপের যান্ত্রিক সমতার সংজ্ঞা হল ঃ 'এক একক তাপ উৎপন্ন করতে যে পরিমাণ কান্ত সম্পাদিত হয় অথবা যে পরিমাণ কান্ড সম্পাদিত হলে এক একক তাপ উৎপন্ন হয়, তাব্বে তাপের যান্ত্রিক সমতা বলে।' তাপের যান্ত্রিক ক্ষমতা 4 186 জুল/ক্যালরি অর্থাৎ J = 4 2 প্রোয়) জুল/ক্যালরিন এই উক্তি দ্বারা বুঝি যে এক ক্যালরি তাপ উৎপন্ন করতে 4 2 J কাজ করতে হবে।


এম. কে. এস. একক ঃ এই পূম্বতিতে তাপের একক কিলোক্যালরি (k cal) এবং কাজের একক জুল (J)। অতএব এই পম্বতিতে J-এর একক জুল / কিলোক্যালরি (J / k cal) এবং J এর মান J = 4186 J / k cal।

এস. আই. একক ঃ এই পম্ধতিতে তাপের একক জুল (J) এবং কাজের এককণ্ড জুল (J)। অতএব J এর একক জুল/জুল (J / J) = 1; জুর্থাৎ এই পম্ধতিতে J-এর কোন একক নেই। J একটি সংখ্যা জ্ঞাপক রাশি এবং J=11

Work done in expansion of a gas

আমরা জানি যখন কোন গ্যাস প্রসারিত হয়, তখন গ্যাস নিজে কিছু বাহ্যিক কাজ সম্পন্ন করে। গ্যাস যখন সঙ্কুচিত হয়, তখন গ্যাসের ওপর কিছু কাজ সম্পাদিত হয়। এখানে আমরা গ্যাসের প্রস্যারণে সম্পাদিত কাজের পরিমাণ নির্ণয় করব। মনে করি C কুপরিবাহী পদার্থের তৈরি একটি ধাতব চোঙ। চোঙের মধ্যে কিছু পরিমাণ গ্যাস তরি এবং এর মুখ হালকা, ঘর্ষণ মুক্ত ও বায়ু নিরুন্ধ পিস্টন দ্বারা বন্ধ করি। ফলে পিস্টন বিনা বাধায় চলাচল করতে পারে। উল্লেখ্য, পিস্টনও কুপরিবাহী পদার্থের তৈরি।

যদি আবন্ধ গ্যাসের চাপ P এবং পিস্টন কিংবা চোঙের প্রস্বচ্ছেদের ক্ষেত্রফল A হয়, তবে পিস্টনের ওপর গ্যাস কর্তৃক প্রযুক্ত বল

F = চাপ × ক্ষেত্ৰফল

 $\overline{\mathbf{A}} = \mathbf{P} \times \mathbf{A}$

মনে করি গ্যাস স্থির চাপে প্রসারিত হল, ফলে পিস্টনটি B স্থান হতে D স্থানে সরে গিয়ে dx দূরত্ব অতিক্রম করল। অতএব সম্পাদিত কাজ

dW = বল × সরণ

$$\mathbf{A} \mathbf{I}, \quad d\mathbf{W} = \mathbf{F} \times dx = \mathbf{P} \mathbf{A} \, dx$$

dW

[এখানে A. dx = dV = গ্যাসের প্রসারণজনিত আয়তন বৃদ্ধি]

অর্থাৎ কাচ্চ = চাপ × আয়তন পরিবর্তন

```
এই কান্ধকে বাহ্যিক কান্ধ (external work) বলে।
```

[বিঃ দ্রঃ গ্যাসের সম্প্রসারণে কৃত কাজ ধনাত্মক এবং সংকোচনে কৃত কাজ ঋণাত্মক]

যদি গ্যাসের প্রাথমিক আয়তন V_1 এবং প্রসারণের পর শৈষ আয়তন V_2 হয়, তবে গ্যাস কর্তৃক সম্পাদিত কান্ধ

 $dW = P(V_2 - V_1)$ (4)

য়দি গ্যাসের জাঁয়তন প্রসারণের সময় চাপও পরিবর্তিত হয়, তবে

$$= dP. dV = (P_1 - P_2) (V_2 - V_1)$$
(5)

£

এখানে, $P_1 = \eta্যাসের আদি চাপ এবং P_2 = প্রসারণের পর শেষ চাপ। চাপ Nm⁻² এবং আয়তন m³-এ$ প্রকাশ করা হলে কাজের একক হবে J (জুল)।

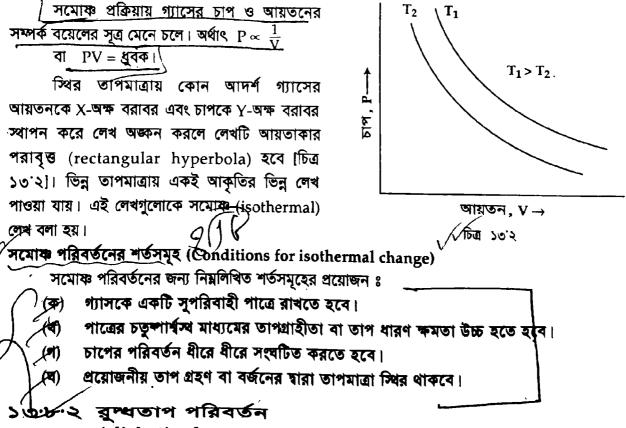
বিভিনু তাগগতীয় পরিবর্তন (Different thermodynamical changes)

প্রাপগতিবিদ্যায় বিভিন্ন প্রকারের পরিবর্তন ঘটে। এই পরিবর্তন মোট চার প্রকারের; যথা—

- (১) সমোৰু পরিবর্তন (Isothermal change)
- (২) রুম্বতাপীয় পরিবর্তন (Adiabatic change)
-)(৩) সমআয়তন পরিবর্তন (Isochronic change) এবং
 - (8) সমচাপ পরিবর্তন (Isobaric change)

এখানে আমরা সমোষ্ণ পরিবর্তন এবং রুদ্র্যতাপ পরিবর্তন আলোচনা করব।

(3)


১৩.৮ সমোক্ষ ও রুম্ঘতাপ পরিবর্তন Isothermal and adiabatic changes

১৩.৮.১ সমোক্ষ পরিবর্তন Isothermal change

এটি একটি পরীক্ষিত ঘটনা যে, কোন গ্যাসে চাপ প্রয়োগ করে হঠাৎ সংকুচিত করলে কিছু তাপ উৎপন্ন হয়। ফলে গ্যাসের তাপমাত্রা বৃদ্ধি পায়। কিন্তু উৎপন্ন তাপকে তৎক্ষণাৎ অপসারণ করে ধীরে ধীরে চাপ বৃদ্ধি করলে তাপমাত্রার কোন পরিবর্তন ঘটবে না।

জাবার গ্যাসকে হঠাৎ প্রসারিত করলৈ তা বাহ্যিক চাপের বিরুদ্ধে কিছু কাজ করার সময় কিছু পরিমাণ তাপ -হারাবে। ফলে এর তাপমাত্রা হ্রাস পাবে। কিন্তু গ্যাসকে যদি ধীরে ধীরে প্রসারিত করা হয় এবং বাইরে থেকে প্রয়োজনীয় তাপ সরবরাহ করা হয়, তবে গ্যাসের তাপমাত্রা স্থির থাকবে। এর্প পরিবর্তনকে সমোক্ষ পরিবর্তন বলা হয়। তাহলে দেখা যাচ্ছে যে, সমোক্ষ পরিবর্তনে গ্যাসে কখনও তাপ সরবরাহ করে আবার কখনও গ্যাস হতে তাপ অপসারণ করে এর তাপমাত্রা সর্বদা স্থির রাখা যায়।

সংজ্ঞা ঃ যে পরিবর্তনে কোন গ্যাসের চাপের ও আয়তনের পরিবর্তন হয়, কিন্তু তাপমাত্রা স্থির থাকে সেই পরিবর্তনকে সমোষ্ণ পরিবর্তন বলে এবং যে পম্ধতিতে এই পরিবর্তন সংঘটিত হয় তাকে সমোষ্ণ প্রক্রিয়া (isothermal process) বলে।

Adiabatic change

কোন গ্যাসকে হঠাৎ চাপ দিয়ে সজ্ঞ্চুচিত করলে কিছু পরিমাণ তাপ উৎপন্ন হয় যদি এই উৎপন্ন তাপ অপসারণ করা না হয়, তবে গ্যাঁসের তাপমাত্রা বৃদ্ধি পাবে। আবার কোন গ্যাসকে হঠাৎ প্রসারিত হতে দিলে গ্যাসটি কিছু পরিমাণ তাপ হারাবে এবং বাইরে থেকে যদি সমপরিমাণ তাপ সরবরাহ করা না হয়, তবে গ্যাসের তাপমাত্রা হ্রাস পাবে। সুতরাং এই পরিবর্তনে তাপমাত্রা কখনও স্থির থাকে না। আরও উল্লেখ থাকে যে, এই ক্ষেত্রে গ্যাস তাপ গ্রহণ করে না বা বর্চ্চন করে না বটে, তবে গ্যাসের অন্তর্নিহিত শক্তি স্থির থাকে না— অন্তর্নিহিত শক্তির হ্রাস-বৃদ্ধি ঘটে। এর্প পরিবর্তনকে **রুন্দতাপ পরিন্বর্তন** বলা হয়। <u>'a' অর্থ 'না', 'dia' অর্থ 'বরাবর' এবং 'bates'</u> অর্থ 'তাপ'। এক কথায় 'adiabatic'—অর্থ 'heat not passing through' অর্থাৎ তাপ সিস্টেমে প্রবেশ করে না বা

বইঘর.কুম

সংজ্ঞাঃ যে প্রক্রিয়ায় সিস্টেম তাপ গ্রহণ করে না কিংবা তাপ বর্জন করে না তাকে রুপ্রতাপীয় প্রক্রিয়া বলে। যে পরিবর্তনে কোন তাপ বাহির হতে সরবরাহ করা হয় না বা গ্যাস হতে অপসারণ করা হয় না অথচ গ্যাসের চাপ এবং আয়তনের পরিবর্তন ঘটে তাকে রুম্ধতাপ পরিবর্তন বলা হয় ।

অথবা, যে প্রক্রিয়ায় গ্যাসের চাপ ও আয়তন পরিবর্তনকালে তাপের পরিমাণ পরিবর্তন হয় না অর্থাৎ সিস্টেম (প্রক্রিয়াধীন গ্যাস) তাপ গ্রহণ বা বর্জন করে না, কিন্তু তাপমাত্রার পরিবর্তন ঘটে তাকে রুম্বতাপ প্রক্রিয়া বলে। এ পরিবর্তনকে রুম্বতাপ পরিবর্তন বলে।

গ্যাসের রুম্বতাগ পরিবর্তনের ক্ষেত্রে বয়েলের সূত্র প্রযোজ্য নয়। এক্ষেত্রে গ্যাসের চাপ ও আয়তনের মধ্যে সম্পর্ক হচ্ছে, PV^Y = ধ্রুবক [অনুচ্ছেদ ১৩:১০ দ্রফীব্য]। রুম্বতাপ পরিবর্তনের ক্ষেত্রে P এবং V-এর লেখকে রুম্বতাপ লেখ (adiabatic curve) বলে। চিত্র ১৩'৩-এ একটি রুম্বতাপ লেখ দেখানো হয়েছে। রুম্বতাপ লেখ সমোষ্ণ লেখ-এর তুলনায়

বেশি খাড়া হয়।

ৰ্জীপ পরিবর্তনের শর্তসমূহ (Conditions for adiabatic change)

রুম্বতাপ পরিবর্তনের জন্য নিম্নলিখিত শর্তসমূহ প্রয়োজন ঃ

ক্র্র্প গ্যাসকে একটি কুপরিবাহী পাত্রে রাখতে হবে।

্রপ্থ) পাত্রের চতৃষ্ণার্শ্বস্থ মাধ্যমের তাপগ্রাহীতা কম হতে হবে।

্র্র্গ্য) চাপ পরিবর্তন খুব দুত সংঘটিত করতে হবে যাতে বাইরের সাথে তাপ আদান-প্রদানের কোন সুযোগ না থাকে।

১৩৯ প্রিমোক্ষ ও রুম্বতাপ পরিবর্তনের মধ্যে পার্থক্য

Distinction between isothermal and adiabtic changes

সমোষ্ণ ও রুদ্ধতাপ পরিবর্তনের মধ্যে পার্থক্য ররেছে। এটি নিম্নে প্রদন্ত হল ঃ

সমোষ্ণ পরিবর্তন	রুম্বতাপ পরিবর্তন	
(১) তাপমাত্রা স্থির রেখে কোন গ্যাসের চাপ ও	(১) মোট তাপের পরিমাণ স্থির রেখে কোন গ্যাসের	
আয়তনের পরিবর্তনকে সমোষ্ণ পরিবর্তন বলে।	চাপ ও আয়তনের পরিবর্তনকে রুচ্বতাপ পরিবর্তন বলে।	
📢 এই পরিবর্তনে প্রয়োজনমত তাপ সরবরাহ	্র্র্র্র্র্র্র্র্র্র্র্র্র্র্র্র্র্র্র	
অপবা গ্রহণ ক্রুরতে হয়।		
• मर्ठा <u>धुটि अक्ति थीत श्</u> रक्तिया।	(৩) এটি একটি অতি দ্রত প্রক্রিয়া।	
এই পরিবর্তনে পাত্রটি তাপের সুপরিবাহী হওয়া	(৪) এই পরিবর্তনে পাত্রটি তাপের কু-পরিবাহী	
প্রয়োজন।	হওয়া প্রয়োজন	
(৫) এই পরিবর্তনে পাত্রের চতৃষ্ণার্শ্বস্থ মাধ্যমের	(৫) এই পরিবর্তনে পাত্রের চতুম্পার্শ্বস্থ মাধ্যমের	
তাপগ্রাহীতা উচ্চ হরত হয়।	তাপগ্রাহীতা নিম্ন হ'ত হয়।	
স্প্রিবর্তন বয়েল-এর সূত্র মেনে চলে	(৬) আদর্শ গ্যাসের রু ন্ <u>ধতাপ পরিবর্তনের সমী</u> রুরণ	
অর্ধাৎ PV = গ্রবক।	<u>रुन, PV^Y = ध्वक।</u>	
শা সমের লেখ অপেক্ষাকৃত কম খাড়া।	<u>(৭) ব্ৰন্দ্বিতাপ লেখ সমোষ্ণ লেখ হতে অধিক খাড়া।</u>	

১৩·১০ রুম্ধতাপ পরিবর্তনে চাপ ও আয়তনের মধ্যে সম্পর্ক Relation between pressure and volume of a gas in adiabatic change

মনে করি এক মোল আদর্শ গ্যাস আছে। এই গ্যাসে dQ পরিমাণ তাপ প্রয়োগ করি। এতে গ্যাসের তাপমাত্রা বৃদ্ধি পাবে এবং সেই সংগে গ্যাস কিছু কাজ করবে অর্ধাৎ প্রদন্ত তাপ দু'ভাবে ব্যয়িত হবে। ধরি আয়তনের পরিবর্তন dV এবং তাপমাত্রার পরিবর্তন dT.

তাপগতিবিদ্যার প্রথম সূত্র হতে পাই,

 $d\mathbf{Q} = \mathbf{C}_v d\mathbf{T} + \mathbf{P} d\mathbf{V}$

(6)

(7)

(9)

)

এখানে, C_v = স্থির আয়তনে গ্যাসের আপেক্ষিক তাপ এবং PdV = নির্দিষ্ট চাপে গ্যাসের প্রসারণের জন্য কৃত কাজের পরিমাণ।

আমরা জানি, রুম্বতাপ প্রক্রিয়ায় বাইরের সাথে গ্যাসের তাপের কোন আদান প্রদান ঘটে না।

অতএব, dQ = 0

সমীকরণ (6) হতে পাই,

 $C_v dT + P dV = 0$

পুনঃ, আদর্শ গ্যাসের ক্ষেত্রে, PV = RT, এখানে R মোলার গ্যাস ধ্রুবক।

উক্ত সমীকরণকে ব্যবকলন করে পাই,

Pav + vaP = Ka1
বা,
$$dT = \frac{PdV + VdP}{R}$$

 $\pi\lambda argama (7)$ इटिज भाई,
 $C_v \left(\frac{PdV + VdP}{R}\right) + PdV = 0$
বা, $C_v PdV + C_v VdP + RPdV = 0$
($R = C_p - C_v$)
 $R = C_p - C_v$]
 $R = C_p$

বইঘর.কম

আমরা জানি, আদর্শ গ্যাসের ক্ষেত্রে, PV = RT

$$P = \frac{RT}{V}$$

পুনঃ, আমরা পাই, P V^Y = ধ্রুবক।

উক্ত সমীকরণে P-এর মান বসিয়ে পাই,

$$\frac{RT}{V} \times \frac{V'}{V} = \frac{4}{4} \frac{4}{4} \frac{1}{4}$$
, $RTV^{\gamma-1} = \frac{4}{4} \frac{4}{4} \frac{1}{4}$
(R = $\frac{4}{4} \frac{1}{4}$)
এটিই হল রূম্বতাপ প্রক্রিয়ায় আয়তন ও তাপমাত্রার মধ্যে সম্পর্ক।

১৩[.]১২ আপেক্ষিক তাপ Specific heat

সংজ্ঞা ঃ কোন একটি বস্তুর একক ভরের তাপমাত্রা 1 ডিগ্রী বৃষ্দি করতে যে পরিমাণ তাপের প্রয়োজন হয়, তাকে এ বস্তুর আপেক্ষিক তাপ বলে। একে 's' দ্বারা প্রকাশ করা হয়।

যেমন পানির আপেক্ষিক তাপ হল 4186 J / kg°C। এর অর্থ হল যে 1 kg ভরের পানির তাপমাত্রা 1°C বৃদ্ধি করতে 4186 J শক্তি পানিতে প্রয়োগ করতে হবে। আমরা যদি একটি বস্তুর আপেক্ষিক তাপের মান জানি, তবে *m* ভরের বস্তুর তাপমাত্রা ∆T পরিমাণ বৃদ্ধি বা হ্রাস করার জন্য যথাক্রমে কি পরিমাণ তাপ প্রয়োগ বা সরাতে হবে তা নির্ণয় করতে পারি।

ব্যাখ্যা ঃ ধরা যাক একজন মানুষের গোসল করার জন্য কক্ষ তাপমাত্রার চেয়ে 10°C বেশি তাপমাত্রার 60 kg গরম পানির প্রয়োজন। এর জন্য পানিতে কি পরিমাণ তাপ প্রয়োগ করতে হবে তা নিম্নোক্তভাবে বের করা যায় ঃ

জামরা জ্ঞানি 1 kg পানিকে 1°C তাপমাত্রায় গরম করার জন্য 4186 J তাপ প্রয়োজন। সুতরাৎ 60 kg পানি 1°C তাপমাত্রায় গরম করার জন্য দরকার 60 × 4186 J তাপ। অতএব 10°C তাপমাত্রায় গরম করতে প্রয়োজন হবে 60 × 10 × 4186 J = 2.5 × 10⁶ J ।

উপরের উদাহরণ থেকে এটা স্পষ্ট যে s আপেক্ষিক তাপবিশিষ্ট m ভরের কোন বস্তুর তাপমাত্রা ∆T বৃদ্ধি ক্রতে তাপের পরিমাণ Q হবে।

ভর × আপেক্ষিক তাপ × তাপমাত্রার পার্ধক্য

$$\Psi \Psi = ms \ \Delta T = ms \ (T - T_0) \tag{10}$$

$$\overline{\mathsf{A}}, \quad s = \frac{1}{m} \frac{\mathbf{Q}}{(\mathbf{T} - \mathbf{T}_0)} \tag{11}$$

এখানে T এবং T₀যথাক্রমে বস্তুর চূড়ান্ত এবং আদি তাপমাত্রা। তাপমাত্রা বৃষ্দ্বির ক্ষেত্রে ΔT এবং Q ধনাত্মক। আবার তাপমাত্রা কমানোর ক্ষেত্রে ΔT এবং Q ঝণাত্মক হবে।

আপেক্ষিক তাপের একক ঃ এস. আই. পন্ধতিতে Q-এর একক J, m-এর একক kg এবং ΔT-এর একক K (কেগভিন)। অতএব সমীকরণ (11) হতে s-এর এস. আই. একক পাওয়া যায় Jkg⁻¹K⁻¹।

.পদার্থবিজ্ঞান (১ম)–৫১

তাপগ্রাহীতা বা তাপধারণ ক্ষমতা (Thermal capacity or heat capacity) বস্তুর ভর ও আপেক্ষিক তাপের গুণফলকে তাপগ্রাহীতা বা তাপধারণ ক্ষমতা বলে। সূতরাং তাপগ্রাহীতা, C = ms সমীকরণ (11) হতে s-এর মান বসিয়ে পাওয়া যায়,

$$C = m \times \frac{1}{m} \frac{Q}{(T - T_0)} = \frac{Q}{(T - T_0)} = \frac{Q}{\Delta T}$$

এখন $\Delta T = 1^\circ$ হলে, C = Q হয়।

অতএব, তাপগ্রাহীতার নিম্নোক্ত সংজ্ঞা দেওয়া যেতে পারে।

সংজ্ঞা ঃ কোন বস্তুর তাপমাত্রা 1 ডিগ্রী বাড়াতে যে পরিমাণ তাপের প্রয়োজন হয় তাকে তাপগ্রাহীতা বা তাপ ধারণ ক্ষমতা বলে। এর এস. আই. একক Cal (°C)-1, J K-1 তবে অনেক ক্ষেত্রে Cal (°C)-1 একক ও ব্যবহূত হয়।

১৩⁻১৩ গ্যাসের আপেক্ষিক তাপ Specific heat of gases

আমরা জানি গ্যাসে তাপ প্রয়োগ করলে তাপমাত্রা বৃন্ধির সাথে সাথে এর আয়তন ও চাপ বৃন্ধি পায়। কিন্তু কঠিন ও তরল পদার্থের ক্ষেত্রে এরূপ হয় না বললেই চলে। সূতরাং গ্যাসের আপেক্ষিক তাপের সংজ্ঞায় আয়তন ও চাপের উল্লেখ থাকা এক্রান্ত প্রয়োজন। আয়তন ও চাপের মধ্যে কখনও আয়তনকে আবার কখনও চাপকে স্থির রাখা হয় বলে গ্যান্দের দুটি আপেক্ষিক তাপ আছে ; যথা—

(১) স্থির আয়তনে গ্যাসের আপেক্ষিক তাপ এবং

- (২) স্থির চাপে গ্যাসের আপেক্ষিক তাপ।

এখন আমরা গ্যাসের এই দুটি আপেক্ষিক তাপ সম্পর্কে বিশদ আলোচনা করব।

স্থির আয়তনে গ্যাসের আপেক্ষিক তাপ (Specific heat of gas at constant volume)

আয়তন স্ধির রেখে একক ডরের কোন একটি গ্যাসের তাপমাত্রা 1 ডিগ্রী বৃন্দিতে যে পরিমাণ তাপের প্রয়োজন হয়, তাকে স্ধির আয়তনে এ গ্যাসের আপেক্ষিক তাপ বলে। একে _{Su} দ্বারা প্রকাশ করা হয়।

স্থির চাপে গ্যাসের আপেক্ষিক তাপ (Specific heat of gas at constant pressure)

স্বির চাপে একক ভরের কোন একটি গ্যাসের তাপমাত্রা 1 ডিগ্রী বৃষ্দিতে যে পরিমাণ তাপের প্রয়োজন হয়, তাকে স্বির চাপে ঐ গ্যাসের আপেক্ষিক তাপ বলে। একে sp দ্বারা প্রকাশ করা হয়।

১৩[.]১৪ মোলার আপেক্ষিক তাপ বা মোলার তাপধারণ ক্ষমতা Molar specific heat or molar heat capacity

আমরা জানি, বস্তু অতি ক্ষুদ্র অণু, পরমাণু সমন্বয়ে গঠিত এবং একটি বস্তুর মধ্যে অণু-পরমাণুর সংখ্যা অত্যস্ত বেশি। যেমন মাত্র 12 gm কার্বনের মধ্যে 6 02 × 10²³ টি পরমাণু থাকে। এত বড় সংখ্যাকে ছোট ধরনের এককে প্রকাশ করা হয়। এই ছোট একককে গ্রাম-মোল (gm-mole) বা সংক্ষেপে মোল (mole) বলে। গ্যাসের ক্ষেত্রে আপেক্ষিক তাপ সংজ্ঞায়িত করার জন্য gm বা kg ব্যবহার না করে মোল ব্যবহার করা হয় এবং সংখ্রিষ্ট আপেক্ষিক তাপকে মোলার আপেক্ষিক তাপ বলে।

১ কোন বস্তুর পারমাণবিক বা আণবিক ওজন (atomic weight) কিলোগ্রামে প্রকাশ করলে তাকে 1 মোল বলা হয়।

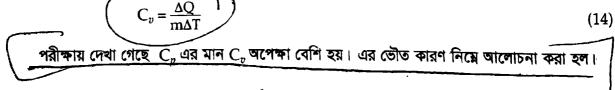
মোলার তাপধারণ ক্ষমতা বা মোলার আপেক্ষিক তাপ ঃ 1 মোল গ্যাসের তাপমাত্রা 1 ডিগ্রী বাড়াতে যে পরিমাণ তাপের প্রয়োজন হয় তাকে ঐ গ্যাসের মোলার তাপধারণ ক্ষমতা বা মোলার আপেক্ষিক তাপ বলে। একে C দ্বারা প্রকাশ করা হয়।

কোন গ্যাসের m মোলের তাপমাত্রা ΔT বৃদ্ধি করতে যদি ΔQ পরিমাণ তাপের প্রয়োজন হয় তবে,

মোলার তাপ ধারণ ক্ষমতা,

$$C = \frac{\Delta Q}{m\Delta T}$$

একক ঃ ΔQ এর একক জুল (joule), m এর একক মোল (mol) এবং ΔT -এর একক কেলভিন (K)। সুতরাং সমীকরণ (12) হতে C-এর একক $I(mol)^{-1} K^{-1}$


গ্যাসের দুটি অপৈক্ষিক তাপ রয়েছে সুর্তরাং এর দুটি মোলার আপেক্ষিক তাপও রয়েছে। যথা— (i) স্থির চাপে গ্যাসের মোলার আপেক্ষিক তাপ এবং (ii) স্থির আয়তনে গ্যাসের মোলার আপেক্ষিক তাপ।

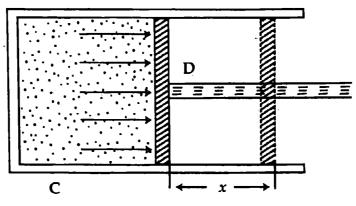
(i) স্ধির চাপে গ্যান্সের মোলার আপেক্ষিক তাপ C_p ঃ স্ধির চাপে 1 mole গ্যান্সের তাপমাত্রা 1K বৃদ্ধি করতে যে তাপের প্রয়োজন তাকে স্ধির চাপে মোলার আপেক্ষিক তাপ বলে। একে C_p হারা প্রকাশ করা হয়। চাপ স্ধির রেখে m মোল গ্যান্সের তাপমাত্রা ΔT বাড়াতে যদি ΔQ জুল তাপের প্রয়োজন হয়, তবে সংজ্ঞানুসারে,

$$C_p = \frac{\Delta Q}{m\Delta T}$$
(13)

(ii) স্ধির আয়তনে গ্যাসের মোলার আপেক্ষিক তাপ, C_v ঃ স্ধির আয়তনে 1 mole গ্যাসের তাপমাত্রা 1K বৃষ্দি করতে যে তাপের প্রয়োজন তাকে স্ধির আয়তনে মোলার আপেক্ষিক তাপ বলে। একে C_v হারা প্রকাশ করা হয়।

জায়তন স্থির রেখে m মোল গ্যাসের তাপমাত্রা ΔT বাড়াতে যদি ΔQ তাপের প্রয়োজন হয়, তবে সংজ্ঞানুসারে,

১৩'১৫ C_p এবং C_v-এর পার্থক্যের ভৌতিক ব্যাখ্যা Physical explanation of the difference between C_p and C_v


একটি নির্দিষ্ট ভরের কোন গ্যাসের আয়তন স্থির রেখে তাকে উত্তন্ত করতে থাকলে তার চাপ ও তাপমাত্রা উভয়ই বৃদ্ধি পায়। কিন্তু আয়তন স্থির থাকায় ঐ গ্যাস বাহ্যিক কোন কাচ্চ করে না। ফলে সম্পূর্ণ তাপ গ্যাসের চাপ ও তাপমাত্রা পরিবর্তনেই ব্যয় হয়। আবার চাপ স্থির রেখে গ্যাসটিকে উত্তন্ত করতে থাকলে তার আয়তন ও তাপমাত্রা উভয়ই বৃদ্ধি পায়। ফলে প্রযুক্ত তাপ একদিকে গ্যাসের তাপমাত্রা বৃদ্ধি করে এবং অপরদিকে বাহ্যিক চাপের বিরুদ্ধে গ্যাসের আয়তন বৃদ্ধি করে কিছু কাচ্চ সম্পন্ন করে। সূতরাং স্থির অয়তনে 1 মোল গ্যাসের তাপমাত্রা 1K পর্যন্ত বৃদ্ধি করতে যে তাপের প্রয়োচ্চন হবে স্থির চাপে ঐ গ্যাসের তাপমাত্রা 1K বৃন্ধি করতে তা অপেক্ষা কিছু রেশি তাপের প্রয়োচ্চন হবে। কেননা দ্বিতীয় ক্ষেত্রে বাহ্যিক চাপের বিরুদ্ধে কাচ্চ করে আয়তন বৃদ্ধি করতে কিছু অতিরিক্ত তাপ লাগবে। অর্ধাৎ $C_p = C_v$ + বাহ্যিক চাপের বিরুদ্ধে কাচ্চের সমতৃল তাপ। সূতরাং $C_p > C_v$ ।

(12)

১৩.১৬ একটি আদর্শ গ্যাসের ক্ষেত্রে C_p \otimes C_v -এর মধ্যে পার্থক্য Difference between C_p and C_v for an ideal gas

আমরা জানি গ্যাসের দুটি আপেক্ষিক তাপ আছে, একটি C_p এবং অপরটি C_v। এদের মধ্যে পার্থক্য বের করতে হবে।

একটি আদর্শ গ্যাসের দুই আপেক্ষিক তাপের মধ্যে পার্থক্য করতে গিয়ে তাপ কুপরিবাহী পদার্থের একটি আবন্ধ চোঙ লই। মনে করি চোঙ C। চোঙের মধ্যে একটি হালকা ঘর্ষণ শূন্য ও বায়ু নিরুন্ধ পিস্টন বিনা বাধায় চলাচল করতে পারে। মনে করি পিস্টনটি D। পিস্টনটিও কুপরিবাহী পদার্থের তৈরি।

চিত্র ১৩'৪

এই আবন্ধ চোঙে 1 মোল পরিমাণ গ্যাস লই। এখন গ্যাসটির আয়তন স্থির রেখে এর তাপমাত্রা dT পরিমাণ বৃন্দি করি। যদি স্থির আয়তনে গ্যাসের আপেক্ষিক তাপ c_vহয়, তবে গ্যাস কর্তৃক গৃহীত তাপ

= ভর × আপেক্ষিক তাপ × তাপমাত্রার পার্থক্য

 $= 1 \times C_v \times dT$

 $= C_v dT$

গ্যাসের তাপমাত্রা বৃদ্ধির পরিমাণ এক কেলভিন হলে গ্যাস কর্তৃক গৃহীত তাপ

 $= C_v \times 1$

= C_v জুল (J)

মনে করি স্থির চাপে গ্যাসের আপেক্ষিক তাপ C_p অর্থাৎ স্থির চাপে 1 মোল গ্যসের তাপমাত্রা 1 ডিগ্রী বাড়াতে C_p পরিমাণ তাপের প্রয়োজন হবে। গ্যাসে সরবরাহকৃত এই তাপ দুই ভাগে ব্যয়িত হবে। এর একটি অংশ C_v গ্যাসের তাপমাত্রা বাড়াবে এবং অপর অংশ বাহ্যিক চাপ P-এর বিরুদ্ধে গ্যাসের আয়তন বৃদ্ধিতে কাজ করে। ধরি চাপের বিরুদ্ধে গ্যাসের আয়তন বৃদ্ধির ফলে পিস্টনটি x পরিমাণ দূরত্ব বাইরে সরে গেল। অতএব কাজের পরিমাণ

= বল × সরণ

= চাপ × ক্ষেত্রফল × সরণ [বল = চাপ × আয়তন]

= P imes A imes x; এখানে A = পিস্টন বা চোঙের প্রস্থচ্ছেদের ক্ষেত্রফল

কাজ = P. dV জুল (J); এখানে dV = গ্যাসের প্রসারিত আয়তন = A. x.

অতএব,

$$C_p = C_v +$$
 কাজের পরিমাণ

বা,
$$C_p = C_v + P. dV$$
 (15)

(16)

আমরা জ্ঞানি আদর্শ গ্যাসের ক্ষেত্রে

PV = RT

যদি চাপ স্থির থাকে, তবে সমীকরণ (16)-কে ব্যবকলন করে পাই,

 $P dV + V \times 0 = R dT + T \times 0$

বা, P dV = R dT = R [: তাপমাত্রা বৃষ্ধি dT = 1 K]

বইঘর.কম

সমীকরণ (15) হতে পাই,

$$C_p = C_v + R$$

রা, $C_p - C_v = R$
(17)
তথ্য গ্রান্সের দুই আপেন্ধিক তাপের পার্থক্য বা অন্তরফল গ্যাস ধ্রবক R-এর সমান।
যেহেতু R ধনাত্মক, স্তরাং $C_p > C_p$ । R-এর মান 8'314 J K⁻¹ mol⁻¹ বসিয়ে সমীকরণ (17) হতে
পাওয়া যায়, $C_p - C_v = 8'314$ J k⁻¹ mol

১৩ ৭ γ-এর মানের ভিন্নতা ও গুরুত্ব Variation in the value of γ and its importance

স্বামরা জানি, $\gamma = \frac{C_p}{C_v} = \frac{1243}{1243}$ চাপে গ্যাসের আপেন্ধিক তাপ

পরীক্ষালক্ষ্র ফলাফল হতে দেখা যায় সকল এক পরমাণুক গ্যাসের ক্ষেত্রে [যেমন He, Ar] γ -এর মান 1'66। সকল দ্বিপরমাণুক গ্যাসের ক্ষেত্রে [যেমন H₂, O₂, N₂, Cl₂] γ -এর মান 1'40 এবং সকল ত্রিপরমাণুক গ্যাসের ক্ষেত্রে [যেমন CO₂, C₂H₆, NH₃] γ -এর মান 1'33। অতএব একই প্রকার আণবিক গঠনের জন্য γ -এর মান নির্দিষ্ট এবং বিভিন্ন গঠনের গ্যাসের জন্য γ -এর মান ভিন্ন ভিন্ন হয়।

🖓 এর গুরুত্ব ঃ

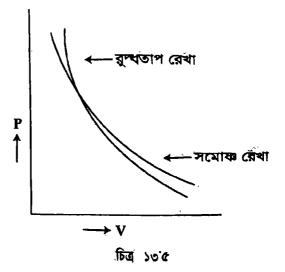
কে) কোন গ্যাসের y-এর মান জানা থাকলে ঐ গ্যাসের আণবিক বিন্যাস জানা যায় অর্থাৎ ঐ গ্যাসের প্রতিটি অণুর মধ্যে কয়টি পরমাণু আছে তা জানা যায়।

ু (খ)' গ্যাসীয় মাধ্যমে শব্দের বেগ γ–এর মানের উপর নির্ভর করে। তাই শব্দের বেগ নির্ণয়ের জন্য এর প্রয়োজন হয়।

(গ) গ্যাসের রুদ্ধতাপ প্রক্রিয়া পর্যালোচনার জন্য γ-এর মান জানা দরকার।

১৩৮ রুম্বতাপীয় রেখা বা লেখ সমোষ্ণ রেখা বা লেখ-এর চেয়ে অধিকতর খাড়া

Adiabatic curve is steeper than isothermal curve


P --- V শেখচিত্রের সাহায্যে সমোষ্ণ ও রুম্বতাপীয় প্রক্রিয়া নির্দেশ করা যায়। শেখচিত্রের কোন বিন্দুতে স্পর্শক টানলে এ বিন্দুতে ঢাল বা নতি হবে $\frac{dP}{dV}$ । দেখা যায় যে, যেকোন বিন্দুতে রুম্বতাপ রেখার ঢাল সমোষ্ণ রেশ্বার ঢালের γ গুণ হয়।

সমোষ্টীয় ও রুম্বতাপীয় সমীকরণদ্বয়কে ব্যবকলন করে সহজেই প্রমাণ করা যায় যে রুম্বতাপীয় রেখা সমোষ্ণ রেখা অপেক্ষা γ-গুণ খাড়া।

সমোষ্ণ পরিবর্তনের ক্ষেত্রে

উভয় পক্ষকে ব্যবকলন করে পাই,

$$PdV + VdP = 0$$

বা, $\left(\frac{dP}{dV}\right)_{\text{সমোজ}} = -\frac{P}{V}$

সমীকরণ (18) ও (19) তুলনা করলে দেখা যায় যে,

$$\left(\frac{dP}{dV}\right)_{\overline{q}^{\text{resolven}}} = -\gamma \left(\frac{dP}{dV}\right)_{\overline{\gamma}\text{resolven}}$$

$$\overline{q}, \quad \frac{\frac{dP}{dV}}{\left(\frac{dV}{dV}\right)_{\overline{\gamma}\text{resolven}}} = -\gamma$$

সমোষ্ণ পরিবর্তন বলে।

বস্তুর আপেক্ষিক তাপ বলে।

তাপগ্রাহীতা বা তাপ ধারণ ক্ষমতা বলে।

সুতরাং, যে কোন বিন্দুতে রুম্বতাপ রেখার ঢাল ঐ বিন্দুতে সমোষ্ণ রেখার ঢাল অপেক্ষা y গুণ বেশি। যেহেতু যে কোন গ্যাসের ক্ষেত্রে $\gamma > 1$, সুতরাং রুম্বতাপীয় রেখা সমোষ্ণ রেখার চেয়ে γ গুণ খাড়া

স্মরণিকা

তাপগতিবিদ্যা : পদার্ধবিজ্ঞানের যে শাখা তাপ ও যান্নিক শক্তি নিয়ে আলোচনা করে তাকে তাপগতিবিদ্যা বলে।

তাখগতীয় ব্যবস্থা বা সিস্টেম : তল বা বেষ্টনী দ্বারা সীমাবন্ধ কোন নির্দিষ্ট পরিমাণ বস্তুকে তাণগতীয় ব্যবস্থা বা সিস্টেম বলে।

পরিপার্শ : কোন নির্দিষ্ট ব্যবস্থার সাথে শক্তি বিনিময়ে সক্ষম যে কোন ব্যবস্থাকে ঐ ব্যবস্থার পরিপার্শ্ব বলে।

সাম্যাবস্থা : কোন বিচ্ছিন ব্যবস্থার চূড়ান্ত অবিচল অবস্থাকে তাপগতীয় সাম্যাবস্থা বলে।

কিন্তু গ্যাসের চাপ ও আয়তনের পরিবর্তন ঘটে তাকে রূম্বতাপ পরিবর্তন বলে।

তাপের প্রয়োজন হয়, তাকে স্থির চাপে ঐ গ্যাসের আপেক্ষিক তাপ বলে।

বৃদ্দিতে যে পরিমাণ তাপের প্রয়োজন হয়, তাকে স্থির আয়তনে ঐ গ্যাসের আপেক্ষিক তাপ বলে।

তাপগতিবিদ্যার প্রথম সূত্র ঃ যখনই কাজ সম্পূর্ণভাবে তাপে বা তাপ সম্পূর্ণরূপে কাজে রূপান্তরিত হয়, তখন কাজ ও তাপ পরস্পরের সমানুপার্তিক হবে।

অভ্যস্তরীণ বা অন্তর্নিহিত শক্তি : প্রত্যেকে সংস্থার মধ্যে এমন একটি নির্দিষ্ট পরিমাণ শক্তি সুন্তু অবস্থায় বর্তমান ধাকে যার ফলে সংস্থাটি পরিবেশ ও পরিস্থিতি অনুযায়ী বিভিন্ন প্রকার শক্তি উৎপন্ন করতে সক্ষম হয়। সংস্থার এই শক্তিকে

তাপের যান্ত্রিক সমতা : এক একক তাপ উৎপনু করতে যে পরিমাণ কান্ধ সম্পাদিত হয় অথবা যে পরিমাণ কান্ধ

অভ্যস্তরীণ বা অস্তর্নিহিত শক্তি বলে।

রুম্বতাপ পরিবর্তন ঃ যে পরিবর্তনে কোন তাপ বাইরে থেকে সরবরাহ করা হয় না বা গ্যাস হতে অপসারণ করা হয় ন

আপেন্দিক তাগ ঃ কোন বস্তুর একক ভরের তাপমাত্রা 1 ডিগ্রী বৃদ্ধি বা হ্রাস করতে যে তাপের প্রয়োজন হয় তাকেই

তাপগ্রাহীতা বা তাপধারণ ক্ষমতা : কোন বস্তুর তাপমাত্রা 1 ডিগ্রী বাড়াতে যে পরিমাণ তাপের প্রয়োচ্চন হয় তাকে

স্ধির আয়তনে গ্যাসের আপেক্ষিক তাপ 💲 আয়তন স্থির রেখে একক ভরের কোন একটি গ্যাসের তাগমাত্রা 1 ডিগ্রী

স্বির চাপে গ্যাসের আপেক্ষিক তাপ : স্বির চাপে একক ভরের একটি গ্যাসের তাপমাত্রা 1.ডিগ্রী বৃদ্ধিতে যে পরিমাণ

সম্পাদিত হলে এক একক তাপ উৎপন্ন হয় তাকে তাপের যান্ত্রিক সমতা বলে। সমোক পরিবর্তন ঃ যে পরিবর্তনে কোন গ্যাসের চাপের ও আয়তনের পরিবর্তন ঘটে কিন্তু তাপমাত্রা স্থির থাকে তাবে

স্থির চাপে মোলার আপেক্ষিক তাপ ঃ স্থির চাপে এক মোল গ্যাসের তাপমাত্রা 1 কেলভিন বৃদ্ধি করতে যে তাপের প্রয়োজন হয় তাকে ঐ গ্যাসের স্থির চাপে মোলার আপেক্ষিক তাপ বলে।

স্বির আয়তনে মোলার আপেক্ষিক তাপ : স্থির আয়তনে এক মোল গ্যাসের তাপমাত্রা 1 কেলভিন বৃষ্ণি করতে যে তাপের প্রয়োজন তাকে এ গ্যাসের স্থির আয়তনে মোলার আপেক্ষিক তাপ বলে।

প্রয়োজনীয় সমীকরণ

তাপগতিবিদ্যার প্রথম সূত্র ঃ

(ক) তাপ ও যান্ত্রিক শব্ত্তির সম্পর্ক, W = JH	(1)
-	}

(খ) প্রথম সূত্রের সাধারণ রূপ,
$$dQ = du + dW$$
 (2)

$$= du + PdV \tag{3}$$

$$C_p$$
 ও C_v এর মধ্যে সম্পর্ক, $C_p - C_v = R$ (4)

রুম্বতাপে চাপ ও আয়তন-এর মধ্যে সম্পর্ক,
$$PV^{\gamma} = ধ্র্বক$$
 (5)

রুন্ধতাপে আয়তন ও তাপমাত্রার মধ্যে সম্পর্ক,
$$TV^{\gamma-1} =$$
ধুবরু (6)

আপেক্ষিক তাপ,
$$s = \frac{Q}{m(T - T_0)}$$
 (7)

তাপধারণ ক্ষমতা বা তাপগ্রাহীতা,
$$C = \frac{Q}{\Delta T}$$
 (8)

ন্থির চাপে গ্যাসের মোলার আপেক্ষিক তাপ,
$$C_P = \frac{\Delta Q}{m\Delta T}$$
 (9)

স্থির আয়তনে গ্যাসের আপেক্ষিক তাপ,
$$C_v = \frac{\Delta Q}{m\Delta T}$$
 (10)
সমাধানকৃত উদাহরণ $P_1 = 1^{103 \times 10^5}$

সমাধানকৃত উদাহরণ

১।)বায়কে রুম্বতাপে প্রসারিত করে এর আয়তন তিনগুণ করা হল। যদি প্রাথমিক চাপ 1 বায়ুমন্ডলীয় চাপ হয় তাহলে চূড়ান্ত চাপ কত হবে ? (γ = 14) [ব. বো. ২০০৫; ঢা. বো. ২০০৪] 42 আমরা জানি এখানে.

$$\begin{array}{l} P_{1}V_{1}{}^{\gamma}=P_{2}V_{2}{}^{\gamma} \\ \left(\frac{V_{2}}{V_{1}}\right)^{\gamma}=\left(\frac{P_{1}}{P_{2}}\right) \\ q_{1}, \quad \left(\frac{3V_{1}}{V_{1}}\right)^{\gamma}=\left(\frac{P_{1}}{P_{2}}\right) \\ (3)^{14}=\frac{1\cdot013\times10^{5}}{P_{2}} \\ q_{1}, \quad P_{2}=\frac{1\cdot013\times10^{5}}{(3)^{14}}=2\cdot176\times10^{4} \end{array}$$

(২) কোন সংস্থা পরিবেশ থেকে ৪০০ J তাপশন্তি শোষণ করায় এর অন্তস্থ শন্তি 500 J বৃন্ধি পেল। সংস্থা কর্তৃক AG পরিবেশের উপর সম্পাদিত <u>কান্সের পরিমা</u>ণ নির্ণয় কর। [কু. বো. ২০০৫] এখানে. ΔW Δu = 500 J $\Delta Q = \Delta u + \Delta W$ ΔQ = 800 J $\Delta W = \Delta Q - \Delta u$ ΔW = ? = 800 - 500= 300 J

80000 cal kg⁻¹ এবং তাপের যান্ত্রিক সমতা = 4'2 J cal⁻¹] ধরি বরফ খণ্ডটির ভর = m kg ও নির্ণেয় উচ্চতা = h m তাহলে পতনে কৃত কাজ = mgh তাপ উৎপন্নে ব্যয়িত পতন শব্বি, $W = \frac{1}{2} mgh \int 50\% = \frac{1}{2}$. উৎপন্ন তাপ, $H = \frac{W}{J} = \frac{m_x h}{2J}$ আবার বরফ খণ্ডটির এক, চতুর্থাংশ গলতে প্রয়োজনীয় তাপ = $\frac{m}{4} \times L$ কিন্তু উৎপন্ন তাপেই বরফ খণ্ডটি গলেছে।

$$\frac{m}{4} \times L = \frac{mgh}{2J}$$
∴ $\forall I, h = \frac{JL}{2g}$

কাজেই, $h = \frac{42 \times 80000}{2 \times 9'80}$ m
$$= .17'14 \text{ km}$$

৮। — 5°C তাপমাত্রার 0.01 kg বরফকে 100°C তাপমাত্রার বান্সে পরিণত করতে কত কান্স সম্পন্ন করে তাপ সরবরাহ করতে হবে ? (বরফের আ. তাপ= 500 cal kg⁻¹ (°C)⁻¹, বরফ গলনের সুন্ত তাপ = 80000 cal kg⁻¹]

বরফকে -5°C হতে 0°C পর্যন্ত উত্তম্ত করতে প্রয়োজনীয় তাপ

= $mS(t_2 - t_1) = 0.01 \text{ kg} \times 500 \text{ cal kg}^{-1} (^{\circ}C)^{-1} \times 5^{\circ}C = 25 \text{ cal}$

0°C তাপমাত্রার বরফকে 0°C তাপমাত্রার পানিডে পরিণত করতে প্রয়োজনীয় তাপ

 $= mL = 0.01 \text{ kg} \times 80000 \text{ cal kg}^{-1} = 800 \text{ cal}$

বরফ গলা পানির তাপমাত্রা 0°C হতে 100°C উঠতে প্রয়োজনীয় তাপ

 $= 0.01 \text{ kg} \times 1000 \text{ cal kg}^{-1} \times 100^{\circ}\text{C} = 1000 \text{ cal}$

100°C তাপমাত্রার বাম্পে পরিণত করতে প্রয়োজনীয় তাপ

$$= mL = 0.1 \text{ kg} \times 53700 \text{ cal kg}^{-1}$$

= 5370 cal

মোট প্রয়োজনীয় তাপ, H = (25 + 800 + 1000 + 5370) cal = 7195 cal

কিন্তু, W = JH এবং J = 4 2 J cal⁻¹

:. নির্ণেয় কাজ,
$$W = 4.2 \text{ J cal}^{-1} \times 7195 \text{ cal} = 3.0219 \times 10^4 \text{ J}$$

২ ১০ পিস্টনযুক্ত একটি সিলিডারে কিছু গ্যাস আবন্দ্র আছে। গ্যাসের চাপ 400 Pa-এ স্বির রেখে সিস্টেমে ধীরে ধীরে 800 J তাপশক্তি সরবরাহ করায় 1200 J কাজ সম্পাদিত হয়। গ্যাসের আয়তন এবং অন্তস্থ শক্তির পরিবর্তন নির্ণয় কর।

 আমরা পাই, $\Delta W = P(V_2 - V_1)$ $1200 = 400 (V_2 - V_1)$
 $1200 = 400 (V_2 - V_1)$ $\Delta W = 1200 J$
 $\therefore (V_2 - V_1) = \frac{1200}{400}$ $\Delta V = (V_2 - V_1) = ?$
 $= 3m^3$ $\Delta V = (V_2 - V_1) = ?$
 $\Delta W = 1200 J$ $\Delta V = (V_2 - V_1) = ?$
 $\Delta W = -1200 + 800$ $\Delta W = -1200 + 800$

 = -400 J $\Delta W = -1200 + 800$

 \sim ১০। 25°C তাপমাত্রা ও 1×10^5 Nm⁻² চাপে একটি আদর্শ গ্যাসের আয়তন $0.05m^3$ । স্বির চাপে গ্যাসটি উত্তন্ত করায় এর আয়তন $0.06m^3$ হল। (ক) বাহ্যিক সম্পাদিত কাজ ও (খ) গ্যাসের নতুন তাপমাত্রা নির্ণয় কর।

(ক) আমরা জানি, এখানে, বাহ্যিক সম্পাদিত কাজ, W = PΔV $5191, P = 1 \times 10^5 Nm^{-2}$ জায়তন পরিবর্তন, $\Delta V = (0.06 - 0.05) \text{ m}^3$ ৰা, $W = 1 \times 10^5 \times 0.01$ = 1000J $= 0.01 \text{m}^3$ (খ) আমরা জানি. এখানে, $\frac{V_1}{T_1} = \frac{V_2}{T_2}$ আদি আয়তন, V₁ = 0[.]05m³ চূড়ান্ত আয়তন, V₂ = 0[.]06m³ জাদি তাপমাত্রা, T₁ = 25°C = (273 + 25) K বা, $T_2 = \frac{V_2 T_1}{V_1}$ = 298 K নতুন তাপমাত্রা, $T_2 = ?$ $T_2 = \frac{0.06 \times 298}{0.05} = 357.6 \text{ K}$

উচ্চ মাধ্যমিক পদার্থবিজ্ঞান 870 BG & JEWEL 🕥। 25°C ডাপমাত্রায় ও বায়মঙলীয় চাপে আবন্ধ শুক্ষ বায়ুকে হঠাৎ বা রূম্ধতাপে সংনমিত করে আয়তন র্বক করা হল। চূড়ান্ত (ক) তাপমাত্রা (খ) চাপ নির্ণয় কর। [$\gamma=1.4$] [য. বো. ২০০৪] মনে করি চূড়াস্ত তাপমাত্রা = T_2K ও চাপ = P_2 এখানে . $T_1 = 25^{\circ}C = (25 + 273) K = 298 K$ $V_1 = 2V_2$ Y = 14 $P_1 = 1$ বায়ুমণ্ডলীয় চাপ আমরা পাই, $T_1V_1^{\gamma-1} = T_2V_2^{\gamma-1}$ (1) $P_1 V_1^{\gamma} = P_2 V_2^{\gamma}$ (2) (ক) সমীকরণ (1) হতে পাই, $T_2 = \left(\frac{V_1}{V_2}\right)^{\gamma-1} \times T_1 = 2^{1.4-1} \times 298 \text{ K} = 393.18 \text{ K} = (393.18 - 273)^{\circ}\text{C} = 120.18^{\circ}\text{C}$ (*) $P_2 = \left(\frac{V_1}{V_2}\right)^{\gamma} \times P_1$ $2^{14} \times 1$ বায়ুমঙলীয় চাপ = 2.64 বায়ুমঙলীয় চাপ 🖄 🔇 ২) 27°C তাপমাত্রায় কোন নির্দিষ্ট পরিমাণ গ্যাস হঠাৎ প্রসারিত হয়ে দ্বিগুণ আয়তন লাভ করে। চূড়াস্ত তাপমাত্রা কত ? (γ = 1·4) - [চ. বো. ২০০৬ ; রা. বো. ২০০৪ ; সি. বো. ২০০১] মনে করি, চূড়াস্ত তাপমাত্রা = T₂K আমরা পাই. এখানে. $T_1 V_1^{\gamma_{-1}} = T_2 V_2^{\gamma_{-1}}$ $\gamma = 1.4$ $T_1 = 27^{\circ}C = (27 + 273) K = 300 K$ $300 \times V_1^{1.4-1} = T_2 \times (2V_1)^{1.4-1}$ $300 \times V_1^{0.4} = T_2 \times (2V_1)^{0.4}$ V1 = আদি আয়তন বা, $\mathbf{\overline{4}}, \quad 300 \times V_1^{0.4} = T_2 \times 2^{0.4} \times V_1^{0.4}$ $V_2 =$ শেষ আয়তন $= 2V_1$ $300 = T_2 \times 2^{0.4}$ বা. $T_2 = ?$ বা, $300 = 1_2 \times 2^{-2}$ $T_2 = \frac{300}{2 \times 10^{0.4}} = 59.72 \text{ K}$ তি যাতাবিক তাপমাত্রা ও চাপের কিছু পরিমাণ গ্যাসকে হঠাৎ সংকৃচিত করে তার আয়তন এক-ভৃতীয়াংশ করা হল। চূড়াস্ত তাপমাত্রা কত ? [y = 1.41] বি. বো. ২০০৩] আমরা জানি, $T_1V_1^{r-1} = T_2V_2^{r-1}$ $T_1 = 273 \text{ K}$ $V_1 = V$ $\therefore \quad T_2 = \frac{V_1}{V_2} + T_1$ $=\left(\frac{V_1}{V_1}\right)^{141-1} \times 273$

$$\begin{pmatrix} \frac{1}{3} V_1 \end{pmatrix}$$

= (3)^{0·41} × 273 = 428°33 K
T = (428°33 - 273)°C = 155°33°C

১৪। 1 kg পানিকে 1 বায়ুমন্ডলীয় চাপে বালোঁ পরিণত করতে অভ্যস্তরীণ শক্তির পরিবর্তন নির্ণয় কর। জিলীর গালোর সুশ্ত তাপ = 2'268 × 10⁶ J / kg ও 1 kg জলীয় বালোর আয়তন = 1'671 m³]।

এখনে, আমরা পাই, du = dQ - dW(1) = জ্ঞলীয় বাস্পের আয়তন — পানির আয়তন dV আয়তন পরিবর্তনে কৃতকাজ, dW = P.dV $= (1.671 - 0.001) \text{ m}^3 = 1.67 \text{ m}^3$ $\therefore dW = P.dV = 1.013 \times 10^5 \text{ Nm}^{-2} \times 1.67 \text{ m}^3$ 1 kg পানির জায়তন = 0'001 m³] $= 0.169 \times 10^{6} \text{ J}$ P = 1 বায়ুমণ্ডলীয় চাপ জাবার অভ্যন্তরীণ শক্তির পরিবর্তন, du = dQ --- dW = 0'76 m উল্লম্ব পারদ স্তম্ভের চাপ $du = (2.268 \times 10^6 - 0.169 \times 10^6)$ J $= 0.76 \text{ m} \times (13.6 \times 10^3 \text{ kgm}^{-3}) \times 9.8 \text{ ms}^{-2}$ $= 1.013 \times 10^{5} \text{ N}.\text{m}^{-2}$ $(:: \mathbf{P} = h\rho g)$ $= 2.099 \times 10^{6} \text{ J}^{4}$ $dQ = 2.268 \times 10^6 J$

৫০ একটি সিলিন্ডারের মধ্যে রাখা কিছু পরিমাণ গ্যাস পরিবেশের উপর 200 J কান্ত সম্পাদনের সময় পরিবেশ থেকে 500 J তাপশক্তি শোষণ করে। গ্যাসের অস্তস্থ শক্তির পরিবর্তন কত হবে ? সিস্টেমের অস্তস্থ শক্তি হ্রাস পাবে না বৃন্দি পাবে ?

আমরা জানি, $\Delta Q = \Delta u + \Delta W$ বা, $500 = \Delta u + 200$ বা, $\Delta u = 500 - 200$ = 300 Jসিস্টেমের অন্তস্থ শক্তি বৃদ্ধি পাবে কারণ অন্তস্থ শক্তির পরিবর্তন ধনাত্মক।

১৬। অক্সিজেনের ক্ষেত্রে C_p ও C_p নির্ণয় কর। ধর C_p = $1.4 c_p$, খাডাবিক চাপ ও তাপমাত্রায় অক্সিজেনের ঘনত্র = 1.428 kg m^{-3} , খাডাবিক চাপ = $1.013 \times 10^5 \text{ Pa}$ ও অক্সিজেনের আগবিক ডর = 32 kg k mol^{-1} ।

बामता भाই, R =
$$\frac{PV}{T} = \frac{P}{T} - \frac{M}{\rho}$$

श्वद्मानुसांसी, R = $\frac{1013 \times 10^5 \text{ Pa}}{273\text{ K}} \times \frac{32 \text{ kg k mol}^{-1}}{1428 \text{ kg m}^{-5}}$
= 8315 J k mol⁻¹ K⁻¹
षामर्भ गारमत रक्ख (C_p - C_v) = R जनुसांसी
C_p - C_v = R = 8315 J k mol⁻¹ K⁻¹
किंदु C_p = 1'4 C_v
कारखरे 1'4 C_v - C_v = 8315 k mol⁻¹ K⁻¹
C_v = $\frac{8315}{04}$ J k mol K⁻¹
= 207875 J k mol⁻¹ K⁻¹
% C_p = 1'4 C_v = 1'4 × 207875 J k mol⁻¹ K⁻¹ = 29102'5 J k mol K⁻¹
N (1) dot भारमांभविक जामर्भ गारमत जगु जनु C_p dat C_v-dat µn निर्भन्न कत्र |
[R = 8'31 J mol⁻¹K⁻¹]
जामता जानि, C_v = $\frac{3}{2}$ R
व1, C_v = $\frac{3}{2} \times 8'31 = 12'5$ J mol⁻¹K⁻¹
? C_p = (12'5 + 8'31) J mol⁻¹K⁻¹
q, C_p = 20'81 J mol⁻¹K⁻¹

প্রশ্নমালা

সংকিন্ত-উত্তর প্রশ্ন :

১। সিস্টেম বলতে কি বুঝ ? াকু. বো. ২০০৩ ২। অভ্যস্তরীণ শক্তি বলতে কি বুঝ ? রো. বো. ২০০৬ ৩। তাপের যান্ত্রিক সমতার সংজ্ঞা দাও। ঢো. বো. ২০০২) 8। তাপের যান্ত্রিক সমতা 4'2 J cal⁻¹ বলতে কি বুঝ ? ৫। আপেক্ষিক তাপ কাকে বলে ? [সি. বো. ২০০৩] ৬। তাপধারণ ক্ষমতা ও আপেক্ষিক তাপের মধ্যে সম্পর্ক কি ? এদের একক কি ? ৭। কোন গ্যাসের দুই প্রকারের আপেক্ষিক তাপ থাকে কেন १ ব্যাখ্যা কর। য. বো. ২০০৪ | ক্রি. বো. ২০০৪, ২০০১ ; চ. বো. ২০০১] ৮া মোলার তাপ ধারণ ক্ষমতা কাকে বলে ? ৯। C_p ও C_v-এর সংজ্ঞা দাও। [**b**. (41, 2000)

BG & JEWEL ১০। সংজ্ঞা দাও ঃ সিস্টেম [চ. বো. ২০০৩] রুম্বতাপীয় পরিবর্তন [চ. বো. ২০০২] মোলার তাপ ধারণ ক্ষমতা বি. বো. ২০০২; সি. বো. ২০০৩] বুম্বতাপীয় প্রক্রিয়া [ঢা. স্কে. ২০০২] সমোষ্ণ প্রক্রিয়া [ঢা. বো. ২০০২] ১১। γ-এর গুরুত্ব উল্লেখ কর। [ঢা. বো. ২০০৬, ২০০১; কৃ. বো. ২০০২] ১২। রুম্বতাপীয় পরিবর্তন বলতে কি বুঝ ? [ঢা. বো. ২০০৬ ; রা. বো. ২০০৫ ; কু. বো. ২০০৩, ২০০০ ; চ. বো. ২০০১) [রা. বো. ২০০৫ ; চ. বো. ২০০৪ ; ঢা. বো. ২০০১, ২০০০] ১৩। সমোষ্ণ ও রুন্ধতাপীয় প্রক্রিয়া কাকে বলে ? ১৪। স্থির আয়তনে গ্যাসের মোলার আপেক্ষিক তাপের সংজ্ঞা দাও। [b. (वा. २००४] ১৫। C,-এর মান C,-এর মান অপেক্ষা বড় কেন ? ব্যাখ্যা কর। [চ. বো. ২০০৫ ; ঢা. বো. ২০০২, ২০০২] ১৬। তাপগতিবিদ্যার প্রথম সূত্রটি বিবৃত কর। [কু. বো. ২০০৬ ; ব. বো. ২০০৬ ; চ. বো. ২০০৩] ১৭। সমোষ্ণ পরিবর্তন কি ? রা. বো. ২০০২] ১৮। স্থির চাপে গ্যাসের মোলার আপেক্ষিক তাপের সংজ্ঞা দাও। ১৯। কৃত কৃচ্চি ধনাত্মক ও ঋণাত্মক হয় কখন ? 'রচনামূলক প্রশ্ন ঃ ১ i তাপগতিবিদ্যার প্রথম সূত্রটি বিবৃত ও ব্যাখ্যা কর। ঢ়া. বো. ২০০৫, ২০০৪, ২০০২ ; ট. বো. ২০০৫ ; সি. বো. ২০০৪; ব. বো. ২০০৩, ২০০১ ; কু. বো. ২০০৩ ; য. বো. ২০০১ ; রা. বো. ২০০০] ২। তাপগতিবিদ্যার প্রথম সূত্রটি কি? এটি কিরপে অভ্যন্তরীণ শক্তির সাথে সম্পর্কিত ? যি. বো. ২০০৪] ৩। একটি আদর্শ গ্যাসের রুম্বতাপীয় পরিবর্তনের ক্ষেত্রে প্রমাণ কর যে, PV⁷ = ধ্রুবক ; এখানে প্রতীকগুলো প্রচলিত অর্থ [5. (वा. २००७, २००८, २००२ ; त्रि. (वा. २००८ ; त. (वा. २००७, २००८, २००२; বহন করে। ঢা. বো. ২০০৫, ২০০১ ; রা. বো. ২০০৪ ; কু. বো. ২০০৪ ; য. বো. ২০০৪] ৪। দেখাও যে, সমোষ্ণ প্রক্রিয়ায় কোন ব্যবস্থা কর্তৃক সম্পাদিত কাজের পরিমাণ এতে সরবরাহকৃত তাপশস্তির সূমান। [**b.** বো. ২০০৪ ; **ঢা.** বো. ২০০১] 🖒 রুম্বতাপ পরিবর্তনে চাপ ও আয়তনের মধ্যে সম্পর্ক মিরূপণ কর। [সি. বো. ২০০৬ ; ঢা. বো. ২০০৪, ২০০২] ৬। রুন্দ্বতাপীয় প্রক্রিয়ায় গ্যাসের আয়তন ও তাপমাত্রার মধ্যে সম্পর্ক স্থাপন কর। [রা. বো. ২০০৬] ৭। দেখাও যে, রুন্দ্রতাপ রেখা সমোষ্ণ রেখা অপৈক্ষা অধিকতর খাড়া। [রা. বো. ২০০৫ ; চ. বো. ২০০৪] ৮। দেখাও যে, স্থির চাপে গ্যাসের মোলার আপেক্ষিক তাপ ও স্থির আয়তনে গ্যাসের মোলার আপেক্ষিক তাপের বিয়োগফল 8'31 JK⁻¹ এর সমান ৷ যি. বো. ২০০৩] ৯। সমোষ্ণ প্রক্রিয়া ও রুম্বতাপীয় প্রক্রিয়ার মধ্যে পার্থক্য দেখাও। যি. বো. ২০০৩] ১০। এক মোল আদর্শ গ্যাসের ক্ষেত্রে দেখাও যে, $C_{p}-C_{v}=R;$ সেখানে প্রতীকগুলো প্রচলিত অর্থবহন করে। [ঢা. রো. ২০০৬, ২০০২, ২০০০; কু. রো. ২০০৫, ২০০১; চ. বো. ২০০৩; সি. বো. ২০০৫, ২০০৩, ২০০১; ব. বো. ২০০৫, ২০০২ ; য. বো. ২০০৫, ২০০১] ১১। গাণিতিভাবে প্রমাণ কর যে, রুন্দ্বতাপীয় লেখ সমোষ্ণ লেখের চেয়ে y গুণ খাড়া। [সি. বো. ২০০৬, ২০০২ ; কৃ. বো. ২০০৪ ; ঢা. বো. ২০০৩ ; য. বো. ২০০২] ১২। তাপগতিবিদ্যার প্রথম সূত্র থেকে রুম্বতাপ প্রক্রিয়ায় PV^Y = ধ্রুবক, সমীকরণটি প্রতিপাদন কর। [য. বো. ২০০৬ ; রা. বো. ২০০২] ১৩। সমচাপ প্রক্রিয়ায় প্রসারণশীল গ্যাস দ্বারা কৃত কান্জের পরিমাণ নির্ণয় কর। ৰু. বো. ২০০২ ১৪। একটি আদর্শ গ্যাসের জন্য দেখাও যে Cp সর্বদা Cv অপেক্ষা বড়। **চি. বো. ২০০১**] ১৫। স্থির চাপে গ্যাসের আপেক্ষিক তাপ ও স্থির আয়তনে গ্যাসের আপেক্ষিক তাপের সংজ্ঞা দাও। এদের প্রথমটি

বি. বো. ২০০১]

দ্বিতীয়টি অপেক্ষা কেন বড় হয় তা ব্যাখ্যা কর।

গাণিতিক সমস্যাবলি :

১। (ক) 6 cal তাপ সম্পূর্ণরূপে কাজে পরিণত হলে কত জুল কাজ সম্পন্ন হবে ?

(খ) 30 J কান্ধ সম্পূর্ণরূপে তাপে রূপান্তরিত হলে কত ক্যালরি তাপ পাওয়া যাবে? [উন্তর ঃ (ক) 252 J (খ) 714 cal] ২। 15°C তাপমাত্রায় হিলিয়ামকে হঠাৎ এর আয়তনের ৪ গুণ বৃদ্ধি করলে এর তাপমাত্রার পরিবর্তন বের কর। (ү = 166) [রা. বো. ২০০৬ ; উন্তর ঃ 2165 K]

৩। 0°C তাপমাত্রা এবং 1 বায়্মন্ডলীয় চাপে কিছু পরিমাণ গ্যাসকে রুম্বতাপ প্রক্রিয়ায় সংনমিত করায় এর আয়তন প্রাথমিক আয়তনের $\frac{1}{5}$ গুণ হল। গ্যাসটির (ক) চূড়ান্ত চাপ এবং (খ) চূড়ান্ত তাপমাত্রা নির্ণয় কর। (গ) প্রক্রিয়াটি সমোষ্ণ হলে গ্যাসটির চূড়ান্ত চাপ কত হবে ? (গ্যাসের $\gamma = 1.4$) [উন্তর ঃ (ক) 9.52 বায়্চাপ ; (খ) 247°C ; (গ) 5 বায়্চাপ]

৪। আদর্শ চাপের কিছু পরিমাণ গ্যাসকে সমোষ্ণ প্রক্রিয়ায় সঙ্জ্বচিত করে তার আয়তনের এক পঞ্চমাংশ করা হল। শেষ চাপ কত হবে নির্ণয় কর।

৫। 30°C তাপমাত্রার কোন গ্যাসের উপর রূম্বতাপ প্রক্রিয়ায় চাপ দ্বিগুণ করা হল। তাপমাত্রা বৃদ্ধি নির্ণয় কর। [ү = 1 4]

৬। 27°C তাপমাত্রায় 0:02 kg হাইদ্রোজেন গ্যাসকে সমোষ্ণ প্রক্রিয়ায় সংনমিত করে প্রাথমিক আয়তনের এক-চতুর্থাংশ করা হল। কৃতকাজের মান বের কর। [উঃ 34576:95 J]

৭। চূড়ান্ত তাপমাত্রা নির্ণয় কর যখন 0°C তাপমাত্রার নির্দিষ্ট পরিমাণ গ্যাসকে হঠাৎ তার প্রাথমিক চাপের 20 গুণ চাপে সংনমিত করা হয়। [γ = 1 42] [উঃ 662 17 K বা, 369 2°C]

৮। 27°C তাপমাত্রায় এবং 1 বায়্মগুলীয় চাপের কোন গ্যাসকে সংকুচিত করে আয়তন এক তৃতীয়াংশ করা হল। তাপমাত্রা ও চাপ কত হবে ? [γ = 14] [উঃ 192.6°C ; 4.654 বায়ু চাপ]

৯। 15°C তাপমাত্রার বায়ুকে রুম্বতাপে প্রসারিত করে তার আয়তন দ্বিগুণ করা হল। যদি প্রাথমিক চাপ 1 বায়ুমণ্ডলীয় চাপ হয়, তবে চূড়ান্ত চাপ নির্ণয় কর। [γ = 14] [উঃ 0:3789 বায়ু চাপ]

১০। 10 kg ভরের একটি বস্তুর বেগ 100 ms⁻¹ হডে 40 ms⁻¹ করতে কত কাজ করতে হবে ? কৃতকাজের সমতুন্য তাপ কত হবে ? [উঃ 4⁻2 × 10⁴ J ও 10⁴ cal]

১১। কত কাজের রূপান্তরিত তাপে 0°C তাপমাত্রার 0.01 kg বরফকে 100°C তাপমাত্রার বাব্দে পরিণত করা যাবে? [] = 4.2 জুল/ক্যালরি] , টিঃ 30.11 × 10³ জুল]

১২। 127°C তাপমাত্রায় কোন নির্দিষ্ট গ্যাস হঠাৎ প্রসারিত হয়ে দ্বিগুণ আয়তন লাভ করে। চূড়ান্ত তাপমাত্রা কত ? [ү = 1'4]। [ঢা. বো. ২০০৪] [উন্তর ঃ 303'14 K]

১৩। 0°C তাপমাত্রার এক শন্ড বরফ কত উচ্চতা হতে অভিকর্ষের টানে পড়লে তা সম্পূর্ণরূপে গলে যাবে ? [ধর সমস্ত শক্তি তাপে পরিণত হয়েছে ও $L = 3.36 \times 10^5 \, J \, kg^{-1}, g = 9.8 \, ms^{-2}$] [উঃ $3.4 \times 10^4 \, m$]

১৪) কত উচ্চতা হতে একটি বরফের টুর্করা অভিকর্ষের টানে পড়লে যে তাপ উৎপন্ন হবে তাতে বরফের 10% গলে যাবে ? এখানে ধর সমস্ত যান্ত্রিক শক্তি তাপে পরিণত হয়েছে। [টঃ 3428 57 m]

১৫। কোন সিস্টেম 1800J তাপ গ্রহণ করে 350 J কাজ সম্পাদন করে। সিস্টেমের অভ্যন্তরীণ শক্তির পরিবর্তন নির্ণয় কর।

১৬। কোন একটি সিন্স্টেমে 6000 J তাপ দেওয়ায় সিস্টেমটি 400 J কাজ সম্পন্ন করে। এ গ্রক্রিয়ায় সিস্টেমের অভ্যন্তরীণ শক্তির পরিবর্তন নির্ণয় কর। [উঃ 5:6 kJ]

১৭। 01 kg পানির তাপমাত্রা 20°C হতে বৃদ্ধি পেয়ে 36°C হওয়াতে পানির অভ্যন্তরীণ শক্তির পরিবর্তন কত হবে? † জায়তনের পরিবর্তন নগণ্য বিবেচনা কর। পানির আ. তাপ = 4200 J kg⁻¹ K⁻¹]

১৮। 0°C-এর 0.01 kg বরফ 0°C এর পানিতে পরিণত হওঁয়ায় অভ্যস্তরীণ শক্তি কি পরিমাণ বৃষ্দি পায় নির্ণয় কর। [আয়তনের পরিবর্তন খুবই নগণ্য বিবেচনা কর। বরফ গলনের সুন্ত তাপ = 336 kJ kg⁻¹] [উঃ 3.36 kJ]

১৯। একটি আদর্শ গ্যাসকে সমোষ্ণ প্রক্রিয়ায় সংনমিত করতে 42] কার্জ সম্পন্ন হয়। সংনমনকালে গ্যাস কত ক্যালরি তাপ হারায় ?

২০। কার্বন ডাই-অক্সাইড গ্যাসের জন্য স্থির আয়তনে ও স্থির চাপে মোলার আপেক্ষিক তাপ নির্ণন্ন কর। ($\gamma = 1.33$ এবং $R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$) [উত্তর $8.25.18 \text{ J mol}^{-1} \text{ K}^{-1}$; $33.49 \text{ J mol}^{-1} \text{ K}^{-1}$]

HEAT RADIATION

১৪'১ সূচনা

<u>তাপ এক প্রকার শক্তি যা গরম বা ঠান্ডার অনুভূতি জন্মায়।</u>

তাপ উষ্ণতম স্থান হতে শীতলতম স্থানে গমন করে। একে তাপ সঞ্চালন বলে। তাপ সঞ্চালনের তিনটি পদ্ধতি রয়েছে। পদ্ধতিগুলো হল—

পরিচলন (Convection) এবং (Radiation) (Radiation)

যে প্রক্রিয়ায় তাপ কোন পদার্থের অপেক্ষাকৃত উষ্ণতম স্থান হতে শীতলতম স্থানে সঞ্চালিত হয়, অথচ পদার্থের উত্তপ্ত কণাগুলোর কোন স্থান পরিবর্তন হয় না, তাকে তাপের পরিবহণ বলে। কঠিন পদার্থের ক্ষেত্রে এটি সংঘটিত হয়। যে প্রক্রিয়ায় তাপ উন্তপ্ত কণাসমূহের স্থান পরিবর্তন দ্বারা বস্তৃর উষ্ণতম স্থান হতে শীতলতম স্থানে সঞ্চালিত হয় তাকে তাপের পরিচলন বলে। তরল ও বায়বীয় পদার্থের ক্ষেত্রে এটা সংঘটিত হয়। পরিচলন ও পরিবহণ পদ্ধতিতে তাপ একস্থান হতে অন্যস্থানে গমনের জন্য মাধ্যমের প্রয়োজন হয় কিন্তু বিকিরণ প্রক্রিয়ায় তাপ সঞ্চালনে কোন মাধ্যমের প্রয়োজন হয় না। এ অধ্যায়ে আমরা বিকিরণ ও তার বৈশিষ্ট্য, কৃষ্ণবস্তু, বিকিরণের বিভিন্ন সূত্র, আপেক্ষিক তাপ নির্ণয়, সবুদ্ধ ঘর ইত্যাদি আলোচনা করব।

১৪'২ তাপ বিকিরণ

জাগুনের পাশে দাঁড়ালে অথবা উত্তপত বস্তুর খানিকটা নিচে হাত রাখলে গরম অনুভূত হয়। এ স্থলে পরিচলন প্রক্রিয়ায় তাপ সঞ্চালিত হয় না। কারণ বায়ু উত্তপত হলে হাদ্ধা হয়ে উপরে উঠে যাবে, নিচে নামবে না। অথচ আমরা গরম অনুভব করি। সুতরাৎ এখানে তাপ বিকিরণ প্রক্রিয়ায় সঞ্চালিত হচ্ছে। বিকিরণের নিয়োক্ত সংজ্ঞা দেয়া যেতে পারে।

সংজ্ঞা : যে প্রক্রিয়ায় তাপ কোন জড় পদার্থের সাহায্য ছাড়াই অপেক্ষাকৃত উষ্ণতম স্থান হতে শীতনতম স্থানে সঞ্চানিত হয়, তাকে বিকিরণ বলে। এই প্রক্রিয়ায় জড় মাধ্যম থাকনেও তাপ এ মাধ্যমের তাপমাত্রায় কোন পরিবর্তন ঘটায় না। বিকিরণ পদ্ধতিতে যে তাপ এক স্থান হতে জন্য স্থানে সঞ্চালিত হয়, তাকে বিক্টার্ণ তাপ বলে।

সূর্য পৃথিৱী হতে 1.5 × 10⁸ কিলোমিটার দরে অবস্থিত। এই বিশাল ব্যবধানের অধিকাংশ স্থানই ফাঁকা অর্থাৎ জড় মাধ্যমের কোন অস্তিত্ব নেই। অথচ সূর্য হতে সোয়া আট মিনিটে সৌর শক্তি পৃথিবীতে আসছে। বিকিরণ প্রক্রিয়ায় এটা সম্ভব হছে। বিকীর্ণ তাপ শক্তি ও আলোক শক্তির মধ্যে সাদৃশ্য রয়েছে। আর এই কারণেই সূর্য হতে তাপ ও আলোক একই সজ্ঞা পৃথিবীতে পৌছায়। এই বিকীর্ণ শক্তির বেগ 3 × 10⁸ মিটার/সে. বা 186000 মাইল/সে.। এটি বিদ্যৎ চম্বকীয় তরক্তা (electro-magnetic wave)। এই মহবিশ্বে বহু প্রকারের ও প্রকৃতির বিকীর্ণ শক্তি বিদ্যমান। এর মধ্যে গামা রশ্যি (γ-রশ্যি), রঞ্জন রশ্যি (x-রশ্যি), অতিবেগুনি (Ultra-violet) রশ্যি, মহাজ্ঞাগতিক রশ্বি (Cosmic ray)—সবই বিকীর্ণ শক্তির অন্তর্ভুক্ত এবং এরা সকলেই বিদ্যৎ চুম্বকীয় তরক্তা । এদের বৈশিন্ট্যের পার্থক্য হল শৃধ তরক্তা দৈর্ঘ্যের।

বিকীর্ণ তাপ শক্তির বৈশিষ্ট্য (Characteristics of radiant heat energy)

বিকীর্ণ তাপ শক্তির নিমলিখিত বৈশিষ্ট্য রয়েছে ঃ

- ১। বিকীর্ণ তাপ শক্তি শূন্য স্থানের মধ্য দিয়ে চলাচল করতে পারবে।
- ২। এটি আলোকের বেগে গমন করে।

তাপ বিকিরণ

বইঘর.কম

 এটি কোন মাধ্যমের মধ্য দিয়ে গমন করলে মাধ্যমের তাপমাত্রার পরিবর্তন ঘটায় না, তবে কোন মাধ্যম বিকীর্ণ শক্তি শোষণ করলে এর তাপমাত্রা বৃদ্ধি পায়।
 বি<u>কীর্ণ তাপ শক্তি বিপরীত বর্গীয় সূত্র মেনে চলে</u>।
 মি। আলোকের ন্যায় এটা প্রতিফলন ও প্রতিসরণের সূত্র মেনে চলে।
 এটা আলোকের ন্যায় ব্যতিচার, অপবর্তন ও সমবর্তন প্রভূতি ঘটনা প্রদর্শন করে।
 বিকীর্ণ তাপ শক্তির পরিমাণ পারিপার্শ্বিক রস্ত্রর উপস্থিতি দ্বারা প্রভাবিত হয় না।
 স্র্য গ্রহণের সময় বিকীর্ণ তাপ শক্তি পৃথিবীতে পৌছতে পারে না। এ কারণে সূর্যগ্রহণের সময় পৃথিবীর তাপমাত্রা হাস পায়।

১৪৩ আদর্শ কৃষ্ণ বস্তু ও কৃষ্ণ বস্তুর বিকিরণ Perfect black body and black body radiation

আমরা জানি, বিকীর্ণ শক্তি যে কোন বস্তৃর উপর আপতিত হলে তার কিছু অংশ বস্তৃ কর্তৃক প্রতিফলিত, কিছু অংশ শোষিত এবং অবশিষ্ট অংশ অপসৃত বা সংবাহিত হয়। যদি মোট আপতিত বিকীর্ণ শক্তির প্রতিফলিত (reflected) অংশকে 'r' দ্বারা, শোষিত (absorbed) অংশকে 'a' দ্বারা এবং অপসৃত (transmitted) অংশকে 't' দ্বারা সূচিত করা হয়, তবে শক্তির নিত্যতা সূত্র হতে মোট বিকীর্ণ শক্তির ক্ষেত্রে আমরা লিখতে পারি r + a + t = 1

যদি r = 0 এবং t = 0 হয়, তবে a = 1 অর্থাৎ জাপতিত বিকীর্ণ শক্তির মোট অংশই বস্তু কর্তৃক শোষিত হয়েছে। অতএব আদর্শ কৃষ্ণ বস্তুর সংজ্ঞা হল নিম্নরূপ ঃ

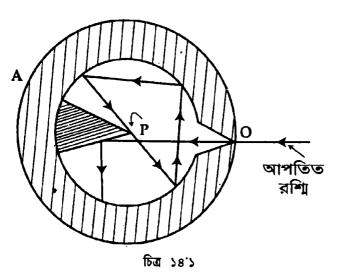
সংজ্ঞা ঃ যে বস্তুর উপর আপতিত মোট বিকীর্ণ তাপ শন্তির সব অংশই বস্তু কর্তৃক শোষিত হয়, কোন অংশই প্রতিফলিত, অপসৃত বা সংবাহিত হয় না তাকে আদর্শ কৃষ্ণ বস্তু বলে।

আবার তরজা দৈর্ঘ্যের আলোকে বলা যায়—

যে বস্তু সকল তরজ্ঞা দৈর্ঘ্যের বিকীর্ণ তাপ শক্তি শোষণ করে তাকে আদর্শ কৃষ্ণ বস্তু বলে। যেহেতু আদর্শ কৃষ্ণ বস্তু সব তরজ্ঞা দৈর্ঘ্যের বিকীর্ণ তাপ শক্তিকে শোষণ করে সেহেতু তাকে উত্তগ্ত করলে তা সকল তরজ্ঞা দৈর্ঘ্যের তাপ শক্তিকে বিকিরণ করে। আলোকের মধ্যে রাখলে একে কালো দেখায়। কৃষ্ণ বস্তুর বিকিরণ ক্ষমতাকে E_λদ্বারা সূচিত করা হয়।

কোন একটি আদর্শ কৃষ্ণ বস্তুকে উত্তন্ত করলে তা হতে সকল তরজা দৈর্ঘ্যের বিকিরণ নিঃসৃত হয়। একে কৃষ্ণ বস্তুর বিকিরণ বলে। এই নিঃসৃত বিকিরণ শক্তির প্রকৃতি কৃষ্ণ বস্তুর কোন বিশেষ ধর্মের উপর নির্ভর করে না। কেবল এবং কেবলমাত্র কৃষ্ণ বস্তুর তাপমাত্রার উপর নির্ভর করে। কিন্তু বাস্তবে কোন বস্তুই সব তাপমাত্রায় সকল তরজা দৈর্ঘ্যের সমসত আপতিত বিকীর্ণ শক্তিকে সম্পূর্ণরূপে শোষণ করতে পারে না। সৃতরং আদর্শ কৃষ্ণ বস্তু কাল্পনিক। বাস্তবে এর কোন অস্তিত্ব নেই। আমরা কৃষ্ণ বস্তু হিসেবে যে সব বস্তুর ক্যা বিবেচনা করি তাদের কোনটিই আদর্শ কৃষ্ণ বস্তু নয়। কিন্তু তাদের শোষণ ক্রতে পারে না। সৃতরং আদর্শ বৃষ্ণ বস্তু কাল্পনিক। বাস্তবে এর কোন অস্তিত্ব নেই। আমরা কৃষ্ণ বস্তু হিসেবে যে সব বস্তুর ক্যা বিবেচনা করি তাদের কোনটিই আদর্শ কৃষ্ণ বস্তু নয়। কিন্তু তাদের শোষণ ক্রতে পারে। 100%-এর কাছাকাছি বলে তাদেরকে কৃষ্ণ বস্তু বনে বিবেচনা করা হয়। যেমন, ভূষাকালি (Lamp black) এবং কালো প্লাটিনাম (Platinum black) যথাক্রমে 96% এবং 90% আপতিত বিকিরণ শোষণ করতে পারে। 100% শোষণ ক্ষমতাবিশিষ্ট কোন কৃষ্ণ বস্তু অর্থাৎ আদর্শ কৃষ্ণ বস্তু বাস্তবে পাওয়া সম্ভব নয়। বিভিন্ন পরীক্ষার সাহায্যে দেখা গেছে যে, স্বির তাপমাত্রায় উন্তন্ত কোন বেফনীর অভ্যন্তরস্থ বিকিরণও কেবল তাপমাত্রার উপর নির্ভর করে। স্তরাং বলা যায় যে, আদর্শ কৃষ্ণ বস্তুর বিকিরণ স্থির তাপমাত্রায় উন্তন্ত কোন বেফনীর অভ্যন্তরস্থ বিকিরণকে কৃষ্ণ বস্তুর বিকিরণে বেলা ব্যে স্বির তাপমাত্রায় উন্তন্ত কোন বেফনীর অভ্যন্তরস্থ বিকিরণকে কৃষ্ণ বস্তুর বিকিরণ বলা হয়। /

যে কোন তরজ্ঞা দৈর্ঘ্যের ক্ষেত্রে কৃষ্ণ বস্তুর শোষণ করার ক্ষমতা যেমন সর্বাধিক তেমনি কোন নির্দিষ্ট তাপমাত্রায় এবং যে কোন তরজ্ঞা দৈর্ঘ্যের ক্ষেত্রে তার বিকিরণ নিঃসরণ করার ক্ষমতাও সর্বাধিক। কাজেই কৃষ্ণ বস্তু কর্তৃক বিকিরণ বা স্থির তাপমাত্রায় উত্তপ্ত বেষ্টনীর অভ্যন্তরস্থ বিকিরণকে অনেক সময় পূর্ণ বিকিরণও (full or total radiation) বলা হয়। BG & JEWEL


কৃষ বস্তুর প্রকারডেদ (Kinds of black body)

গঠন অনুসারে কৃষ্ণ বস্তু দুই প্রকারের ; যথা

(১) বেদরীর কৃষ্ণ বস্তু (Ferry's black body) এবং (২) ভীন-এর কৃষ্ণ বস্তু (Wien's black body)

মূলনীতির দিক হতে উভয়েই একই। তবে কর্ম দক্ষতার দিক দিয়ে উয়েন-এর কৃষ্ণ বস্তু উন্নত ধরনের। আধুনিক কালে এর ব্যবহার অধিক। তবে এখানে ফেরীর কৃষ্ণ বস্তু আলোচনা করা হল।

ফেরীর কৃষ্ণ বস্তু (Ferry's black body) : ফেরীর কৃষ্ণ বস্তুর বর্ণনা নিম্নে দেয়া হল। এটা দুই দেয়ালবিশিষ্ট একটি ফাঁপা গোলক। মনে করি গোলকটি A [চিত্র ১৪'১]। গোলকের ভিতরের দেয়ালে ভূষা কালির

প্রলেপ থাকে এবং বাইরের দেয়ালটি নিকেল পালিশ করা থাকে। দুই দেয়ালের মধ্যবর্তী স্থান বায়ুশূন্য থাকে। ফলে পরিবহণ ও পরিচলন পদ্ধতিতে তাপ নস্ট হতে পারে না। গোলকের একদিকে একটি সরু ছিদ্র আছে। মনে করি ছিদ্রটি O। ছিদ্রের ঠিক বিপরীত দিকের দেয়ালের কিছুটা অংশ শঙ্কু আকৃতির করা হয়। মনে করি এটি P। এতে জাগত বিকীর্ণ তাপ সরাসরি প্রতিফলিত হয়ে বাইরে যেতে পারে না। O ছিদ্র পথে বিকিরণ সরাসরি গোলকের ভেতরে প্রবেশ করে। এই বিকিরণ ভেতরের দেয়ালে বার বার প্রতিফলিত হয় এবং অবশেষে শোষিত

হয়। গোলকটিকে নির্দিষ্ট তাপমাত্রায় উত্তন্ত করলে ছিদ্র দিয়ে বিকিরণ নির্গত হয়। এই বিকিরণকে কৃষ্ণ বস্তুর বিকিরণ বলে। এখানে উল্লেখ্য, কেবল ছিদ্র আদর্শ কৃষ্ণ বস্তুর ন্যায় আচরণ করে, গোলকের দেয়াল নয়।

১৪[·]৪ বিকিরণ ক্ষমতা ও শোষণ ক্ষমতা Emissive power and absorptive power

কোন বস্তুকে উত্তগত করা হলে, উক্ত বস্তু হতে তাপ বিকিরিত হয়। এই বিকিরিত তাপের তরজ্ঞা দৈর্ঘ্য সব ধরনের হতে পারে। বিকীর্ণ বা বিকিরিত তাপের প্রকৃতি নির্ভর করে বস্তুটির তৌতিক অবস্থার উপর। বিভিন্ন পরীক্ষালব্ধ ফলাফল হতে জানা গেছে যে, বিকীর্ণ তাপের পরিমাণ পাঁচটি শর্তের উপর নির্ভর করে, যথা—

(ক) উত্তন্ত বস্তুর তাপমাত্রা, (খ) পারিপার্শিক তাপমাত্রা, (গ) তরজ্ঞা দৈর্ঘ্য, (ঘ) বিকিরণ তলের প্রকৃতি ও ক্ষেত্রফল এবং (ঙ) সময়

এখন আমরা বিকিরণ ক্ষমতা এবং শোষণ ক্ষমতার সংজ্ঞা দিব ⊢

বিকিরণ ক্ষমতা ৪-নির্দিষ্ট তাপমাত্রায় কোন-বিকিরক বস্তুর একক ক্ষেত্রফল একক সময়ে যে পরিমাণ-তাপ বিকিরণ করে এবং একই তাপমাত্রায় ও একই সময়ে একক ক্ষেত্রফলবিশিষ্ট আদর্শ কৃষ্ণ বস্তৃ কে পরিমাণ তাপ বিকিরণ করে, তাদের অনুপাতকে বিকিরণ ক্ষমতা বলে। একে E_λ হারা সূচিত করা হয়।

ব্যাখ্যা ঃ মনে করি নির্দিষ্ট তাপমাত্রায় কোন বিকিরক একক সময়ের একক ক্ষেত্রফল হতে δH_1 পরিমাণ তাপ বিকিরণ করে এবং ঐ তাপ্রমাত্রায় একটি আদর্শ কৃষ্ণ বস্তু একক সময়ে একক ক্ষেত্রফল হতে δH_2 পরিমাণ তাপ বিকিরণ করে।

অতএব বিকিরণ ক্ষমতা

$$E_{\lambda} = \frac{\delta H_1}{\delta H_2}$$

(1)

শোষণ ক্ষমতা ঃ কোন নির্দিষ্ট সময়ে কোন বস্তু বিকীর্ণ তাপের যে পরিমাণ শোষণ করে এবং ঐ সময়ে বস্তুর উপর যে পরিমাণ বিকীর্ণ তাপ আপতিত হয়, তাদের অনুপাতকে শোষণ ক্ষমতা বলে। একে _৫য়ারা সূচিত করা হয়।

ব্যাখ্যা ঃ মনে করি নির্দিষ্ট সময়ে কোন বস্তু বিকীর্ণ তাপের δH_1 ভংশ শোষণ করে এবং ঐ সময়ে বস্তুর উপর মোট δH_2 পরিমাণ বিকীর্ণ তাপ আপত্তিত হয়। অতএব শোষণ ক্ষমতা

$$a_{\lambda} = \frac{\delta H_1}{\delta H_2}$$

(2)

(5)

১৪ ৫ স্টেফান-বোল্জম্যান-এর সূত্র Stefan-Boltzmann's law

1879 খ্রিস্টাব্দে অস্ট্রেলিয়ার পদার্থবিদ জোসেফ স্টেফান, ডুলং ও পেটিট, টিন্ডাল প্রমুখ বিজ্ঞানীদের পরীক্ষালম্ব ফলাফলের উপর ভিন্তি করে বিকিরণের একটি সূত্র প্রমাণ করেন। সূত্রটি নিমন্নূপ ঃ

"কোন উত্তন্ত বস্তৃ হতে নিঃসৃত বিকীর্ণ তাপশস্তি বস্তৃটির পরম তাপমাত্রা T-এর চতুর্ধ ঘাতের সমানুপাতিক।"

1884 খ্রিস্টাব্দে বোলজ্ম্যান তাপগতিবিদ্যার সাহায্যে স্টেফান সূত্রের তত্ত্বীয় প্রমাণ দেন এবং দেখান যে উপরোক্ত সূত্র একমাত্র আদর্শ কৃষ্ণ বস্তু কর্তৃক নিঃসৃত বিকিরণের ক্ষেত্রেই প্রযোজ্য। এজন্য সূত্রটিকে স্টেফান-বোলজ্ম্যান সূত্র বলা হয়। সূত্রটি নিম্নে বিবৃত হল ঃ

সূত্র ঃ কোন আদর্শ কৃষ্ণ বস্তুর একক ক্ষিত্রফল হতে প্রতি সেকেন্ডে বিকীর্ণ তাপের পরিমাণ ঐ বস্তুর পরম তাপমাত্রার চতুর্থ ঘাতের সমানুপাতিক।

ব্যাখ্যা : T পরম তাপমাত্রায় কোন আদর্শ কৃষ্ণ বস্তুর একক ক্ষেত্রফল হতে প্রতি সেকেন্ডে বিকীর্ণ তাপের প্ররিমাণ E হলে, এই সূত্র জনুসারে,

 $E \propto T^4$ বা $E = \sigma T^4$ (3) এখানে $\sigma = \pi \pi \eta$ িতিক ধ্বক। একে স্টেফান-বোলজম্যান ধ্বক বলা হয়। এর মান 5.67×10^{-8} $Wm^{-2} K^{-4}$ ।

জনেক সময় এই সূত্রকে স্টেফান-এর সূদ্র এবং ধ্রবক ত-কে স্টেফানের ধ্রবক বলা হয়।

আদর্শ কৃষ্ণ বস্তুর ক্ষেত্রফল যদি <u>A</u> হয়, তবে তা হতে প্রতি সেকেন্ডে বিকীর্ণ তাপ শক্তির পরিমাণ হবে $E = A \sigma T^4$

L = A o I⁻ যদি T₁ K তাপমাত্রার কোন আদর্শ কৃষ্ণ বস্তু T₂K তাপমাত্রার অপর একটি আদর্শ কৃষ্ণ বস্তু দ্বারা আবৃত থাকে যেখানে T₁ > T₂ , তবে প্রথম বস্তুর প্রতি একক ক্ষেত্রফল হতে প্রতি সেকেন্ডে হারান বিকীর্ণ শক্তির পরিমাণ

 $E = \sigma (T_1^4 - T_2^4)$ (4)

যদি আদর্শ কৃষ্ণ বস্তুর ক্ষেত্রফল A হয়, তবে প্রতি সেকেন্ডে হারান বিকীর্ণ শক্তির পরিমাণ

 $E = A\sigma (T_1^4 - T_2^4)$ 4 (a)

যদি বস্তুটি আদর্শ কৃষ্ণ বস্তু না হয়, তবে সমীকরণ (3) এবং (4)-কে যথাক্রমে লেখা যায় $E = e\sigma T^4$

 $4 \operatorname{Re} E = e \sigma \left(T_1^4 - T_2^4 \right) \tag{6}$

এখানে e = আদর্শ কৃষ্ণ বস্তুর সাপেক্ষে বস্তুটির আপেক্ষিক বিকিরণ ক্ষমতা। e -এর মান 0 (শুন্য) হতে 1 পর্যন্ত হতে পারে। কৃষ্ণ বস্তুর জন্য e = 1 এবং অন্য যে কোন বস্তুর ক্ষেত্রে e -এর মান 1 এর কম হবে।

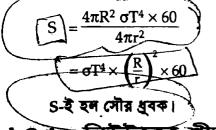
আপেন্দিক বিকিরণ ক্ষমতা ঃ <u>কোন বস্তুর বিকিরণ ক্ষমতা এবং একটি কৃষ্ণ বস্তুর বিকিরণ ক্ষমতার</u> অনুপাতকে এ বস্তুর আপেক্ষিক বিকিরণ ক্ষমতা বর্বে বি

যদি বস্তুটির ক্ষেত্রফল A হয়, তবে সমীকরণ (5) এবং (6)-কে লেখা যায়,

 $\mathbf{E} = e\mathbf{A}\mathbf{\sigma}\mathbf{T}^4$ (7)

(8)

 $E = eA\sigma (T_1^4 - T_2^4)$ এবং


সৌর ধ্বক (Solar constant) # পৃথিবী পৃষ্ঠে প্রতি একক ক্ষেত্রফলে প্রতি মিনিটে এবং তলের অভিলম্বতাবে যে পরিমাণ সৌরশক্তি আপতিত হয় তাকে সৌর ধ্রবক বলে।

সূর্যের কেন্দ্রস্থলে অত্যন্ত উত্তন্ত আলোকমন্ডল রয়েছে। এই আলোকমন্ডলের তাপমাত্রাকে সৌর তাপমাত্রা বলে। আলোকমন্ডলকে যদি কৃষ্ণ বস্তু কর্মনা করা হয় এবং ব্যাসার্ধ R ও তাপমাত্রা T ধরা হয়, তবে স্টেফানের সূত্রানুসারে প্রতি মিনিটে বিকীর্ণ শক্তি,

$$E = A\sigma T^4 \times 60$$

$$= 4\pi R^2 \sigma T^4 \times 60$$

সূর্য হতে পৃথিবীর গড় দূরত্বকে ব্যাসার্ধ r ধরে একটি গোলক বিবেচনা করলে গোলকের ক্ষেত্রফল $4\pi r^2$ হবে এবং ঐ বিকীর্ণ শক্তি গোলকে লন্দ্রভাবে আপতিত হবে। সুতরাং গোলকের একক ক্ষেত্রফলে আপতিত বিকীর্ণ শক্তি,

িনিউটলের শীতলীকরণ সূত্র 28.5

Newton's law of cooling

পরিপার্শ্বের তুলনায় উত্তন্ত বস্তু ক্রমাগত তাপ বিকিরণ করে পরিপার্শ্বের তাপমাত্রার সমান হয়। নিউটন প্রথম উত্তন্ত বস্তুর তাপ হ্রাসের হার এবং বস্তুর তাপমাত্রার মধ্যে সম্পর্ক স্থাপন করেন। এটি নিউটনের শীতলীকরণ সূত্র নামে পরিচিত।

সূত্র ঃ বিকিরণের ফলে কোন উত্তন্ড বস্তু যে হারে তাপ হারায় তা ঐ বস্তুর তাপমাত্রা ও পরিপার্শ্বের তাপমাত্রার পার্ধক্যের সমানুপাতিক। নিউটনের সূত্রটি অন্ন তাপমাত্রার প্রার্থক্যের জন্য প্রযোজ্য।

নিউটনের সূত্র অনুসারে উত্তপ্ত বস্তৃ হতে তাপ হ্রাসের হার $\frac{dQ}{dt}$ হলে লেখা যায়,

	dQ		
$\overline{A}_{\mathbf{k}} - \frac{dQ}{U} = \mathbf{K} \left(\Theta_1 - \Theta_2 \right) $			
	$\overline{d} = K (\theta_1 - \theta_2)$	f	(9) [.]

সমীকরণ (9) এ 01 ও 02 হল যথাক্রমে বস্তুর ও পরিপার্শ্বের তাপমাত্রা এবং K সমানুপাতিক ধ্রুবক। K-এর মান বস্তুর পৃষ্ঠদেশের ক্ষেত্রফল এবং প্রকৃতির উপর নির্ভর করে। সমীকরণে বাম পার্শ্বের ঋণাত্মক চিহ্ন বস্তু তাপ হারায় নির্দেশ করে।

সমীকরণ (9) হতে বস্তুর তাপমাত্রা হ্রাসের হার নির্ধারণ করা যায়। ধরা যাক, বস্তুর ভর m এবং আপেক্ষিক তাপ s এবং dt সময়ে বস্তুর তাপমাত্রা do হ্রাস পায়, তাহলে বস্তু কর্তৃক বর্জিত তাপ,

- ---

$$\frac{dQ}{dt} = ms \frac{d\theta}{dt}$$

সূতরাং, সমীকৃরণ (9)-এর পরিবর্তে লেখা যায়,

$$-ms\frac{d\theta}{dt} = K(\theta_1 - \theta_2)$$

ি অর্ধাৎ, ব্রুমাগত বিক্রিনের ফলে কোন উত্তন্ত বস্তুর তাপমাত্রা হ্রাসের হার অধীৎ শীতলীকরণের হার বস্তু এবং পরিপার্শ্বের তাপমাত্রার পার্থক্যের সমানুপাতিক। এ কারণেই এই সূত্রকে নিউটনের শীতলীকরণ সূত্র বলা হয়। (

১৪·৭ স্টেফানের সূত্র হতে নিউটনের শীতলীকরণ সূত্র প্রতিপাদন Derivation of Newtons' law of cooling from Stefan's law

স্টেফানের সূত্র হতে নিউটনের শীতনীকরণ সূত্র পাওয়া যায়। স্টেফানের সূত্র থেকে আমরা জানি, T_1 পরম তাপমাত্রার একটি উত্তগ্ত বস্তৃ T_2 তাপমাত্রার একটি বেফ্টনীর দ্বারা বেফ্টিত হলে বস্তৃ হতে বিকিরণের জন্য প্রতি সেকেন্ডে তাপ হাসের পরিমাণ,

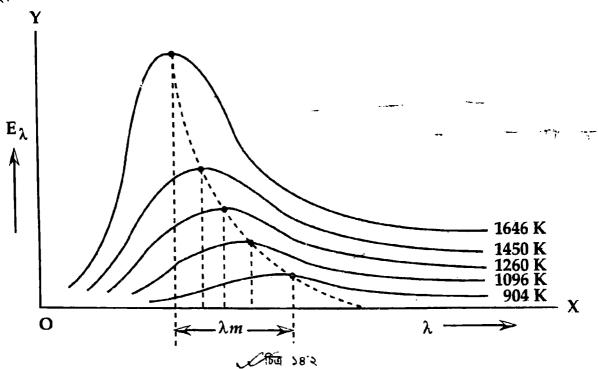
$$E = \sigma(T_1^4 - T_2^4) = \sigma(T_1^2 - T_2^2) (T_1^2 + T_2^2)$$

= $\sigma(T_1 - T_2) (T_1 + T_2) (T_1^2 + T_2^2)$
= $\sigma(T_1 - T_2) (T_1^3 + T_1T_2^2 + T_2T_1^2 + T_2^3)$

তাপমাত্রার পার্থক্য ($T_1 - T_2$) খুব সামান্য হলে আমরা T_1 ও T_2 -এর মান প্রায় সমান ধরতে পারি। সেক্ষেত্রে $T_1T_2^2 = T_2^3$; $T_2T_1^2 = T_2^3$ এবং $T_1^3 = T_2^3$ লেখা যায়। সুতরাং,

$$E = \sigma(T_1 - T_2) 4T_2^3$$

= $4\sigma T_2^3(T_1 - T_2)$


যদি বেফ্টনীর তাপমাত্রা T_2 স্থির রাখা হয়, তবে $4\sigma\mathrm{T}_2{}^3$ = A ধরে উপরের সমীকরণ লেখা যায়,

$$E = A(T_1 - T_2)$$
 [: A = ধ্বক]
(11)
সমীকরণ (11) হতে দেখা যায় যে, তাপমাত্রার পার্ধক্য সামান্য হলে বস্তুর তাপ বর্জনের হার অর্ধাৎ
শীতনীকরণের হার উষ্ণ বস্তু ও পরিপার্ধের (বির্য্তনীর) তাপমাত্রার পার্ধক্যের সমানুপাতিক
এটিই নিউটনের শীতনীকরণ সূত্র।

১৪৮ আদর্শ কৃষ্ণ বস্তুর বিকীর্ণ বর্ণালীতে শক্তির বন্টন

Energy distribution in the spectrum of black body radiation

বিজ্ঞানী শুমার (Lummer) এবং প্রিঙসিম (Pringsheim) কৃষ্ণ বস্তুর বর্ণালীতে বিভিন্ন তরজা দৈর্ঘ্যের জন্য শক্তি বন্টন সম্পর্কিত অনেক পরীক্ষা-নিরীক্ষা করেন। তাঁরা দেখান যে, বিকীর্ণ শক্তির পরিমাণ সব তরজা দৈর্ঘ্যে সমান নয়। এরুপ একটি কৃষ্ণ বস্তুকে উত্তন্ত করলে দেখা যায় তা প্রথমে লাল, তারপর কমলা, হলুদ, বেগুনী (violet) এবং শেষে সাদা রঙের আলোক নির্গত করে। অর্ধাৎ তাপমাত্রা যতই বাড়তে থাকে সর্বাধিক বিকীর্ণ তাপের তরজা দৈর্ঘ্য ততই ক্ষুদ্র তরজা দৈর্ঘ্য প্রান্তির দিকে অগ্রসর হয়। এই নিয়মকে কাজে লাগিয়ে পরবর্তীতে বিজ্ঞানী উইন (Wien) দুটি মূল্যবান সূত্র প্রদান করেন। পুনার ও প্রিঙসিমের পরীক্ষালন্দ ফলাফল ($\lambda - E_{\lambda}$) লেখচিত্রের সাহায্যে দেখানো হল [চিত্র ১৪'২]। চিত্রে X অক্ষে তরক্তা দৈর্ঘ্য λ এবং Y অক্ষে বিকিরণ ক্ষমতা E_λ নির্দেশ করা হয়েছে।

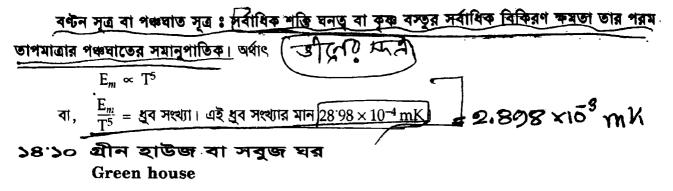
উপরের লেখচিত্র হতে নিমের সিম্বান্তে উপনীত হওয়া যায় ঃ

- একটি নির্দিষ্ট তাপমাত্রায় বিকিরণ বর্ণালীতে শক্তি বন্টন সুষম হয় না।
- (ii) তরজ্ঞা দৈর্ঘ্যের সাথে সাথে E_{λ} বৃন্দি পেতে থাকে এবং একটি চরম মান প্রাশ্ত হয়। তরজ্ঞা দৈর্ঘ্য আরও বৃন্দি পেলে E_{λ} ক্রমশ কমতে থাকে।
- ± 111) সব তরম্ভা দৈর্ঘ্যের জন্য তাপমাত্রা বৃদ্ধির সাথে সাথে E_{λ} বৃদ্ধি পায়।
- (iv) তাপমাত্রা বৃদ্ধির সাথে সাথে সর্বাধিক শক্তি নিঃসরণের তরজ্ঞা দৈর্ঘ্য (λ_m) হ্রাস পায়।
- (v) λ_m এবং পরম তাপমাত্রা T এর মধ্যে নিম্নরূপ সম্পর্ক পাওয়া যায় ঃ

$$\lambda_m T = ध्व সংখ্যা$$

Wien's law

÷.•


বিশিষ্ট জার্মান পদার্থবিদ ভীন 1896 খ্রিস্টাব্দে তাপগতিবিদ্যার তত্ত্ব প্রয়োগ করে কৃষ্ণ বস্তুর বর্ণালীতে বিভিন্ন তরজা দৈর্ঘ্যের জন্য শক্তি বন্টন বিষয়ক দুটি সূত্র প্রদান করেন। তাদের প্রথমটিকে ভীন-এর সরণ সূত্র (Wien's displacement law) এবং দ্বিতীয়টিকে ভীন-এর পঞ্চমাত সূত্র (Wien's fifth power law) বলা হয়।

্রিস্রণ সূত্র ঃ কুষ্ণ বস্তু থেকে সর্বাধিক বিকীর্ণ শক্তির জন্য তরজ্ঞা দৈর্ঘ্য কৃষ্ণ বস্তুর পরম তাপমাত্রার রাস্ত্রানুপাতিক।

ব্যাখ্যা ঃ যদি কৃষ্ণ বস্তু থেকে সর্বাধিক বিকীর্ণ শক্তির জন্য তরচ্চা দৈর্ঘ্য λ_m এবং পরম তাপমাত্রা TK হয় তবে,

$$\lambda_m \propto T$$

বা, $\lambda_m \times T =$ ধ্ব সংখ্যা
এখানে, $\lambda_m =$ স্বাধিক শক্তির জন্য তরজ্ঞা দৈর্ঘা। এই ধ্রবক সংখ্যার মান 28.98 × 10⁻⁴ mK \int

ভীন-এর সূত্রানুসারে তাপমাত্রা T বৃন্দ্বির সঞ্চো সঙ্গো তরজা দৈর্ঘ্য ম_{ান} হাঁস পায় অর্ধাৎ নিঃস্তৃত বিকীর্ণ শক্তির পরিমাণ বৃন্দ্বি পায়) সুতরাং কৃষ্ণ বস্তুর শক্তির নিঃসরণ সর্বাধিক মানের তরজা দৈর্ঘ্য হতে সর্বনিম্ন মানের তরজা দৈর্ঘ্যের অন্তিমুখে সংঘটিত হয় [চিত্র ১৪'২]। শেক্তির সরণ দীর্ঘতর তরজ্ঞা দৈর্ঘ্যের দিক হতে ক্ষুদ্রতর তরজ্ঞা দৈর্ঘ্যের দিকে ঘটে ; এজন্য এই সূত্রটিকে ভীন-এর সরণ সূত্র বলে এই সূত্র লুমার ও প্রিঙসিম-এর পরীক্ষালন্দ ফলাফলের সংগে সংগতিপূর্ণ [চিত্র ১৪'২]

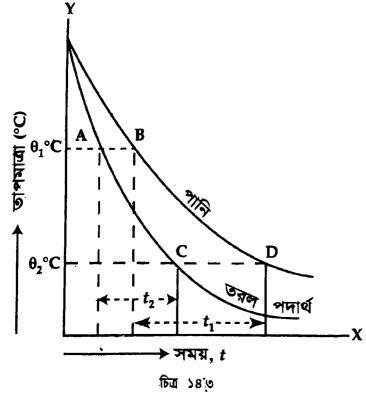
গ্রীন হাউজ বা সবুজ ঘর এক ধরনের কাচের তৈরি ঘর যেখানে একটি নির্দিষ্ট তাপমাত্রা বজ্লায় রেখে শাক-সব্জি, উদ্ভিদ ইত্যাদি উৎপাদন ও সংরক্ষণ করা হয়। এর্প ঘরকে গ্রীন হাউজ বা সবুজ ঘর বলে। নিচে ভীনের সূত্রের সা<u>হায</u>্যে গ্রীন হাউজ প্রক্রিয়া ব্যাখ্যা করা হল।

ভীনের সূত্র অনুসারে আমরা জানি $\lambda_m \propto \frac{1}{T}$, অর্থাৎ তাপমাত্রা বৃদ্ধি পেলে উত্তগ্ত বস্তু হতে নিঃসূত তরচ্চাদৈর্ঘ্য হাস পায় আবার তাপমাত্রা হাস পেলে নিঃসৃত তরচ্চাদৈর্ঘ্য বৃদ্ধি পায়। কাচের ধর্ম হল এর ভেতর দিয়ে অপেক্ষাকৃত ক্ষুদ্র-দৈর্ঘ্যের তাপ সহজে চলাচল করতে পারে; কিন্তু দীর্ঘ দৈর্ঘ্যের তরচ্চা বাধাপ্রান্ত হয়। সূর্য উত্তন্ত অবস্থায় তাপ বিকিরণ করে, ফলে T বেশি হওয়ায় λ_m ক্ষুদ্র হয়। ফলে ক্ষুদ্র দৈর্ঘ্যের তরচ্চা কাচের ভিতর দিয়ে প্রবেশ করে ভিতরের গাছপালা, শাক-সবচ্চি ইত্যাদিকে গরম করে। কিন্তু কাচের ঘরের ভিতরের গাছপালা, মাটি ইত্যাদি যখন তাপ বিকিরণ করে তখন ভিতরের তাপমাত্রা কম থাকায় নিঃসৃত তরচ্চা দৈর্ঘ্য দীর্ঘ হয়, ফলে কাচের ভিতর দিয়ে বেরিয়ে আসতে পারে না বলে গ্রীন হাউজের ভিতর যথেন্ট গরম থাকে। এই কারণে গ্রীন হাউজের ভিতর গাছপালা, উদ্ভিদ, শাক-সর্বন্দি উৎপাদন ও সংরক্ষণ সহজ্ব হয়।

আমাদের এই পৃথিবীতে গ্রীন হাউজ ক্রিয়া সংঘটিত হচ্ছে বলে পৃথিবীর তাপমাত্রা খুবই ধীরে ধীরে বৃদ্ধি পাচ্ছে। এর কারণ নিমন্তূপ ঃ

প্রতিদিন কল-কারখানা থেকে প্রচুর পরিমাণে কার্বন ডাই-অক্সাইড নির্গত হচ্ছে এবং গাছপালা নির্বিচারে নিধনের কলে প্রকৃতিতে কার্বন ডাই-অক্সাইডের পরিমাণ বেড়ে যাচ্ছে। এই CO₂ অনেকটা গ্রীন হাউদ্ধের কাচের মত কাচ্চ করে। কার্বন ডাই-অক্সাইড (CO₂)-এর ধর্ম হল এর ভিতর দিয়ে ক্ষুদ্র তরজা দৈর্ঘ্যের বিকিরণ সহচ্চে চলাচল করতে পারে ; কিন্তু দীর্ঘ তরজা দৈর্ঘ্যের বিকিরণ তা পারে না। এখন সূর্যের তাপমাত্রা বেশি থাকায় ক্ষুদ্র দৈর্ঘ্যের বিকিরণ বায়ুমন্ডলে পৃথিবী দ্বারা শোষিত হয়, ফলে পৃথিবী উন্তন্ত হয়। পৃথিবী যখন পুনরায় তাপ বিকিরণ করে তখন তাপমাত্রা কম থাকায় নিঃসৃত বিকিরণের তরজা দৈর্ঘ্য (তীনের সূত্র অনুসারে) দীর্ঘ হয় যা কার্বন ডাই-অক্সাইড কর্তৃক বাধাপ্রান্ড হয়, ফলে গ্রীন হাউদ্ধ ক্রিয়া সংঘটিত হয় এবং পৃথিবীর তাপমাত্রা খুব সামান্য হলেও বৃন্দি পায়। এই ক্রিয়া অব্যাহত রয়েছে এবং পৃথিবীর দীর্ঘমেয়াদী উদ্ধায়ন চলছে। একে উক্সায়নের তন্ত্ব হিসেবে অভিহিত করা হয়েছে। পৃথিবীর তাপমাত্রা বৃন্দ্যির ফলে মেরু অঞ্চলের জমাট বাধা বরফ আস্তে আস্তে গান্ডে গৃন্ধ ব্য যাত্রযার যথেন্ট সম্ভাবনা রয়েছে। পৃথিবীর এই উদ্ধায়ন বন্দ্দ না হলে বাংলাদেশের সমূহ বিপদ হতে পারে।

১৪'১১ তরন্স পদার্থের আপেক্ষিক তাপ নির্ণয় Determination of specific heat of liquids


শীতনীকরণ প্রণানী (Method of cooling) ঃ এই প্রণানী তরল পদার্থের আপেক্ষিক তাপ নির্ণয়ের ক্ষেত্রেই প্রযোজ্য---কঠিন পদার্ধ বা গ্যাসের ক্ষেত্রে প্রযোজ্য নয়। কারণ আলোড়ক দ্বারা নেড়ে কঠিন পদার্ধ বা গ্যাসের তাপমাত্রা সর্বত্র সমান রাখা যায়_না, প্রণানীটি নিউটনের শীতনীকরণ সূত্রের উপর প্রতিষ্ঠিত।

সূত্রটি হল, "কোন বস্তুর তাপ বর্জনের হার বস্তু এবং তার পারিপার্শ্বিকের তাপমাত্রার পার্বক্যের সমানৃপাতিক।" যদি কোন গরম তরল পদার্থকে তার পরিপার্শ্বের সাপেক্ষে অধিক তাপমাত্রায় রাখা হয়, তা হলে উক্ত তরল প্রদার্থের তাপ হারানোর হার বা তাপ বর্জনের হার নিম্নলিখিত শর্তের উপর নির্ভর করে ঃ

- (১) তরল পদার্থের তাপমাত্রা
- (২) পারিপার্শ্বিকের তাপমাত্রা
- (৩) আধারের প্রকৃতি এবং আকৃতি
- (৪) তরলের উন্যুক্ত তলের ক্ষেত্রফল এবং
- (৫) পাত্রের দেয়ালের ক্ষেত্রফল।

তরল পদার্থের তাপ বর্জনের হার তার প্রকৃতির উপর নির্ভর করে না। কাজেই একই পরিবেশে বিভিন্ন তরল পদার্থকে যদি একটি নির্দিষ্ট তাপমাত্রা হতে অপর একটি নির্দিষ্ট তাপমাত্রা পর্যন্ত শীতল হতে দেয়া হয় তা হলে প্রত্যেক ক্ষেত্রেই তাপ বর্জনের হার সমান হবে। এটি শীতলীকরণ প্রণালীর মূলনীতি। তরলের আপেক্ষিক তাপ নির্ণয়ে এ নীতি প্রয়োগ করা হয়।

কার্যপ্রণানী : প্রথমে আলোড়কসহ একটি পরিক্ষার ও শুক্ষ ক্যালরিমিটারের ভর নির্ণীয় করি। অতঃপর ক্যালরিমিটারের একটি নির্দিষ্ট আয়তন পর্যন্ত ঘরের তাপমাত্রা হতে প্রায় 25°C অথবা 30°C উচ্চ তাপমাত্রার পানিতে ভর্তি করে তাকে রেনোর তাপক্ষয় নিরোধক প্রকোষ্ঠের ভেতর রাখি। এর পর আলোড়ক দ্বারা পানি আস্তে আস্তে নাড়তে থাকি ও এক মিনিট অন্তর অন্তর পানির তাপমাত্রা গ্রহণ করি। পানির তাপমাত্রা ঘরের তাপমাত্রা অপেক্ষা বেশি হওয়ায় তা ক্রমশ তাপ হারিয়ে শীতল হবে। শীতল হয়ে পানির তাপমাত্রা ঘরের তাপমাত্রায় পৌছলে ক্যালরিমিটারসহ পানির র্তর গ্রহণ করি। এই ভর হতে ক্যালরিমটারের ভর বাদ দিলে পানির ভর পাওয়া যায়।

এখন ক্যালরিমিটার হতে পানি ফেলে দিয়ে তাকে পরিক্ষার ও শুক্ষ করে ঘরের তাপমাত্রা হতে 25°C অথবা 30°C উচ্চ তাপমাত্রার পরীক্ষাধীন তরল পদার্ধ দ্বারা পূর্বের আয়তন পর্যন্ত পূর্ণ করি। এর পর ক্যালরিমিটারটিকে রেনোর তাপক্ষয় নিরোধক প্রক্রোষ্ঠে রেখে তরল পদার্থকে আস্তে আস্তে নাড়তে থাকি এবং এক মিনিট অন্তর অন্তর তাদের তাপমাত্রা গ্রহণ করি। পরিশেষে তরল পদার্ধ ঘরের তাপমাত্রায় পৌছলে তাদের ভর নির্ণয় করি। এই ভর হতে ক্যালরিমিটারের ভর বাদ দিলে তরল পদার্ধের জর পাওয়া যায়।

এখন একটি ছক কাগচ্বে তরল পদার্ধ ও পানির জন্য দুটি সময়-তাপমাত্রা লেখচিত্র অক্তন করি [চিত্র ১৪ ৩]। অভিনত লেখচিত্র দুটি হতে তরল পদার্থ ও পানির কোন একটি তাপমাত্রা θ_1° হতে অপর একটি তাপমাত্রা θ_2° পর্যন্ত শীতল হতে কত সময় প্রয়োজন হয় তা নির্ণয় কর।

বইঘর.কম

চিত্রে $\theta_1^{\,\circ}$ C ও $\theta_2^{\,\circ}$ C তাপমাত্রায় সময়-অক্ষের সমান্তরালে দুটি সরলরেখা AB ও CD টেনে দেখানো হয়েছে যে, θ_1° C হতে θ_2° C পর্যন্ত শীতল হতে পানির t_1 সেকেন্ড এবং তরল পদার্থের t_2 সেকেন্ড সময় প্রয়োজন হয়েছে। হিসাব এবং গণনা ঃ ধরা যাক, আলোড়কসহ ক্যালরিমিটারের ভর = $m_1 \, {
m kg}$ ক্যালরিমিটারের আপেক্ষিক তাপ = $S_1 J kg^{-1} K^{-1}$ ব্যবহুত পানির ভর = m₂ kg ব্যবহৃত তরল পদার্থের ভর = M kg পানির আপেক্ষিক তাপ = $S_2 J kg^{-1} K^{-1}$ এবং তরল পদার্থের আপেক্ষিক তাপ = S J kg^{-1} K^{-1} তা হলে, t1 সেকেন্ডে পানি ও ক্যালরিমিটার কর্তৃক বর্জিত তাপ - $\{m_1 S_1 (\theta_1 - \theta_2) + m_2 S_2 (\theta_1 - \theta_2)\}J = (m_1 S_1 + m_2 S_2) (\theta_1 - \theta_2) J$ পানি ও ক্যালরিমিটারের শীতলতার হার $= \frac{(m_1 S_1 + m_2 S_2) (\theta_1 - \theta_2)}{t_1} J s^{-1}$ আবার t2 সেকেন্ডে তরল পদার্থ ও ক্যালরিমিটার কর্তৃক বর্জিত তাপ = { $MS(\theta_1 - \theta_2) + m_1S_1(\theta_1 - \theta_2)$ } J = (MS + m_1S_1) ($\theta_1 - \theta_2$) J তরল পদার্থ ও ক্যালরিমিটারের শীতলতার হার $= \frac{(MS + m_1S_1)(\theta_1 - \theta_2)}{t_2} Js^{-1}$ কিন্তু বর্ণনা অনুসারে শীতলতার হার দুটি সমান হবে। $\frac{(MS + m_1S_1)(\theta_1 - \theta_2)}{t_2} = \frac{(m_1S_1 + m_2S_2)(\theta_1 - \theta_2)}{t_1}$ षर्थवा, $\frac{MS + m_1S_1}{t_2} = \frac{m_1S_1 + m_2S_2}{t_2}$ নির্শেয় আপেক্ষিক তাপ, S = $\frac{1}{M} \left\{ \frac{t_2}{t_1} \left(m_1 S_1 + m_2 S_2 \right) - m_1 S_1 \right\} J \text{ kg}^{-1} \text{K}^{-1}$ (13)

১৪·১২ বিকিরণ ও শোষণজনিত কয়েকটি সাধারণ ঘটনা Some common phenomena relating radiation and absorption

্ (ক) মুর্ অঞ্চলে দিনে তীব্র গরম এবং রাত্রিতে খব ঠান্ডা পড়ে।

মর্ভূমির বায়ু শৃক্ষ হওয়ায় ঐ বায়ু স্বচ্ছ পদার্থের ন্যায় ক্রিয়া করেঁ। এজন্য দিনের বেলা সূর্যের বিকীর্ণ তাপ অতি সহজে বায়ুমন্ডলের ভেতর দিয়ে ভূ-পৃষ্ঠে সঞ্চালিত হয় এবং এতে ভূ-পৃষ্ঠ খুব উন্তন্ত হয়। রাত্রিতে ভূ-পৃষ্ঠ তাপ বিকিরণ করে। শুক্ষ বায়ুর মধ্য দিয়ে এই তাপ সহজেই বায়ুমন্ডল ভেদ করে চলে যেতে পারে। ফলে ভূ-পৃষ্ঠ অত্যধিক শীতল হয়। এজন্য মরু ক্ষর্ফলে দিনে তীব্র গরম এবং রাত্রিতে ভীষণ শীত পড়ে।

.(খ) মেহ্রদা রাত্রি মেহ্রহীন রাত্রি অপেক্ষা অধিকতর গরম।

দিবাভাগে ভূ-পৃষ্ঠ তাপ শোষণ করে এবং রাত্রিকালে বায়্বমন্ডল শীতল হলে ভূ-পৃষ্ঠ এই তাপ বিকিরণ করে। মেঘলা রাত্রে ভূ-পৃষ্ঠের বিকীর্ণ তাপ মেঘের মধ্য দিয়ে উর্ধ্বাকাশে যেতে পারে না, উপরস্থ এই বিকীর্ণ তাপ মেঘে প্রতিফলিত হয়ে ভূ-পৃষ্ঠে ফিরে আসে, পক্ষান্তরে মেঘহীন রাত্রিতে ভূ-পৃষ্ঠ হতে বিকীর্ণ তাপ বাইরে চলে যায় এবং ভূ-পৃষ্ঠ শীতল হয়। এ কারণে মেঘলা রাত্রিতে মেঘহীন রাত্রি অপেক্ষা অধিকতর গরম অনুভূত হয়।

(গ) অগ্রিকুন্ডের পার্শবর্তী কোন স্থান অপেক্ষা অগ্নিকুন্ড হতে একই দূরত্বে এর ঠিক উপরের কোন ন্ধান বেশি উত্তন্ত হয়।

অগ্নিকুন্ড হতে এর ঠিক উপরের কোন স্থানে অগ্নিকুন্ডের তাপ পরিচলন ও বিকিরণ উভয় প্রক্রিয়ায় সঞ্চালিত হয়; কিন্তু অগ্নিকুন্ডের পার্শ্ববর্তী স্থানে তাপ শুধু বিকিরণ প্রক্রিয়ায় সঞ্চালিত হয়ে থাকে। এজন্য অগ্নিকুন্ডের পার্শ্ববর্তী কোন স্থান অপেক্ষা অগ্নিকৃষ্ড হতে সমান দূরত্বে এর ঠিক উপরের কোন স্থানে বেশি তাপ সঞ্চালিত হয় এবং ঐ স্থান বেশি উত্তগত হয়।

<u>(ঘ) চার্যের কাপের বাইরের পৃষ্ঠ পালিশ করা থাকলে এতে চা অনেকক্ষণ গরম থাকে।</u> পালিশ করা পৃষ্ঠের তাপ বিকিরণ করার ক্ষমতা কম। এজন্য পালিশ করা কাপে চায়ের তাপ বিকীর্ণ হয় কম এবং চা অনেকক্ষণ গরম থাকে।

(ছ) নতুৰ কালিশূন্য পাত্ৰ অপেক্ষা কালিমাখা পুৱাতন পাত্ৰে পানি তাড়াতাড়ি ফুটান যায়।

নতুন মসৃণ ও উচ্জ্বল কার্লিশূন্য পাত্র অপেক্ষা পুরাতন কালিমাখা পাত্রের তাপ শোষণ করার ক্ষমতা বেশি। ফলে কালিশূন্য পাত্র অপেক্ষ্য কালিমাখা পাত্র তাড়াতাড়ি গরম হয় এবং পাত্রের পানি তাড়াতাড়ি ফুটান যায়।

(চ) গ্রীমুর্কালের সাদা জামা ব্যবহার আরামপ্রদ।

সাদা বস্তুর তাপ শোষণ করার ক্ষমতা খুব কম। এজন্য সূর্য হতে যে তাপ জামার উপর পড়ে তার বেশির ভাগই প্রতিফলিত হয় এবং সামান্য অংশই শোষিত হয়ে জামার তাপমাত্রা সামান্যই বৃন্ধি করে। এই কারণে গ্রীষ্মকালে সাদা জামা ব্যবহার করা আরামপ্রদ হয়।

স্মরণিকা

বিকিরণ : যে প্রক্রিয়ায় তাপ কোন জড় পদার্থের সাহায্য ছাড়াই অপেক্ষাকৃত উষ্ণতর স্থান হতে শীতলতম স্থানে সঞ্চালিত হয় তাকে বিকিরণ বলে।

আদর্শ কৃষ্ণ বস্তু : যে বস্তুর উপর আপতিত মোট বিকীর্ণ তাপ শক্তির সব অংশই বস্তু কর্তৃক শোষিত হয়, কোন অংশই প্রতিফলিত হয় না, তাকে আদর্শ কৃষ্ণ বস্তু বলে।

কৃষ্ণ বস্তুর বিকিরণ ঃ কোন একটি আদর্শ কৃষ্ণ বস্তুকে উত্তশ্ত করলে বস্তু হতে সব তরক্তা দৈর্ঘ্যের বিকিরণ নিঃসৃত হয়। একে কৃষ্ণ বস্তুর বিকিরণ বলে।

বিকিরণ ক্রমতা ঃ নির্দিষ্ট তাপমাত্রায় কোন বিকিরক বস্তুর একক ক্ষেত্রফল একক সময়ে যে পরিমাণ তাপ বিকিরণ করে এবং একই তাপমাত্রায় ও একই সময়ে একক ক্ষেত্রফলবিশিষ্ট জাদর্শ কৃষ্ণ বস্তু যে পরিমাণ তাপ বিকিরণ করে তাদের অনুপাতকে বিকিরণ ক্ষমতা বলে। একে E_λ দারা সূচিত করা হয়।

শোষণ ক্ষমতা : কোন নির্দিষ্ট সময়ে কোন বস্তু বিকীর্ণ তাপের যে পরিমাণ শোষণ করে এবং ঐ সময়ে বস্তুর উপর যে পরিমাণ বিকীর্ণ তাপ আপতিত হয় তাদের অনুপাতকে শোষণ ক্ষমতা বলে। একে a_λ দারা সূচিত করা হয়।

সৌর ধ্রুবক : পৃথিবী পৃষ্ঠে প্রতি একক ক্ষেত্রফলে প্রতি মিনিটে এবং তলের জভিলম্বভাবে যে পরিমাণ সৌর শক্তি আপতিত হয় তাকে সৌর ধ্রুবক বলে।

নিউটনের শীতদীকরণ সূত্র ঃ বিকিরণের ফলে কোন উন্ত্রণ্ড বস্তু যে হারে তাপ হারায় তা ঐ বস্তুর তাপমাত্রা ও পরিগার্শ্বের তাপমাত্রার পার্ধক্যের সমানুপাতিক। স্বন্ধ তাপমাত্রার পার্ধক্যের জন্য এ সূত্র প্রযোজ্য।

ভীনের সূত্র ঃ

সরণ সূত্রঃ কৃষ্ণ বস্তু থেকে সর্রাধিক বিকীর্ণ শক্তির জন্য তরজ্ঞা দৈর্ঘ্য (λ_m) কৃষ্ণ বস্তুর পূরম তাপমাত্রার ব্যস্তানুপাতিক।

 $(\lambda_m \times T = rac{1}{2} = 28.05 \times 154 (01)$ পঞ্চমাত সূত্র ঃ সর্বাধিক শক্তি ঘনত্ব (E_m) যা কৃষ্ণ বস্তুর সর্বাধিক বিকিরণ ক্ষমতা তার পরম তাপমাত্রার পঞ্চঘাতের সমানুপাতিক।

 $(= \frac{E_{m}}{P^{5}} = \$^{3} + 1) = 25 \text{ OS} \times 10^{4} \text{ CM}$

স্টেক্সান-বোল্জম্যান-এর সূত্র : কৃষ্ণ বস্তৃর পূর্ণ বিকিরণের শক্তি ঘনত্ব বস্তৃর পরম তাপমাত্রার চতুর্ধ ঘাতের সমানুপান্তিক। সূত্রানুসারে, $\mathbf{E} = \mathbf{\sigma} \mathbf{T}^4$

প্রয়োজনীয় সমীকরণ

শক্তির নিত্যতা সূত্র হতে মোট বিকীর্ণ শক্তির ক্ষেত্রে
$$r + a + t = 1...$$
 (1)

বিকিরণ ক্ষমতা,
$$E_{\lambda} = \frac{\delta H_1}{\delta H_2}$$
 (2)

শোষণ ক্ষমতা,
$$a_{\lambda} = \frac{\delta H_1}{\delta H_2}$$
 (3)

স্টেফান বোল্জম্যান এর সূত্র,
$$E = \sigma T^4$$
 * (4),

স্টেফান বোল্জম্যান এর সূত্র,
$$E = A\sigma T^4$$
 (5),
স্টেফান বোল্জম্যান এর সূত্র, $E = \sigma(T_1^4 - T_2^4)$ (6)

স্টেফান বোল্জম্যান এর সূত্র,
$$E = A\sigma(T_1^4 - T_2^4)$$
 (7)

সৌর ধ্বক
$$S = \sigma T^4 \times \left(\frac{R}{r}\right)^2 \times 60$$
 (8)

নিউটনের শীতলীকরণ সূত্র,
$$-\frac{d\theta}{dt} = K (\theta_1 - \theta_2)$$
 (9)

ভীন-এর সূত্র
$$\overbrace{(i)}^{(i)} \lambda_m \times T = \underline{4} \overline{4} \overline{4} \overline{4}$$
 (10)

$$(ii) E_m / T^s = \underbrace{\$ q \diamond} (11)$$

জাপেক্ষিক তাপ, S =
$$\frac{1}{M} \left\{ \frac{t_2}{t_1} (m_1 s_1 + m_2 s_2) - m_1 s_1 \right\} Jkg^{-1}K^{-1}$$
 (12):

ত্র একটি কৃষ্ণ বস্তুর ক্ষেত্রফল 3 × 10⁻⁸ m² এবং তাপমাত্রা 1000 K. I. (i) বস্তুটি কি হারে তাপ বিকিরণ করবে ? (ii) কত তাগমাত্রার এটি তিনগুণ শক্তি বিকিরণ করবে ? [$\sigma = 5.67 \times 10^{-8} \text{ Wm}^{-2} \text{ K}^{-4}$] [ঢা. বো. ২০০৪]

আমরা জানি,

এখানে,

$$\vec{\mu} = A\sigma T^4$$

= 5' $67 \times 10^{-8} \times 3 \times 10^{-8} \times (10^3)^4$
= 17' 01×10^{-4} W

 $\vec{\mu}$ টেফন ধ্রবক, $\sigma = 5'67 \times 10^{-8}$ Wm⁻² K⁻⁴
তাপ মিত্রিণের হার, E = ?

 $= 1.316 \times 10^3 \text{ K}$ $5 \times 10^{-5} \,\mathrm{m^2}$ কেত্রফলের একটি কৃষ্ণকায়া 2000 K তাপমাত্রায় প্রতি সেকেন্ডে কতটা শক্তি বিকিরণ করবে ? $[\sigma = 5.7 \times 10^{-8} \text{ Wm}^{-2} \text{ K}^{-4}]$ ন [ঢ়া. বো. ২০০৫ ; য. বো. ২০০৫, ২০০৪ ; সি. বো. ২০০৪] আমরা জানি, দেয়া আছে, $E = A \sigma T^4$ $A = 5 \times 10^{-5} \text{ m}^2$ $= 5 \times 10^{-5} \times 5^{-7} \times 10^{-8} \times (2000)^4$ T = 2000 K $= 45^{\circ}6 W$ $\sigma = 5.7 \times 10^{-8} \text{ Wm}^{-2} \text{K}^{-4}$ পদার্ধবিজ্ঞান (১ম)–৫৪

E = ?

›তাপ বিকিরণ 8২৭ বইঘর.কম ৰি)একটি কৃষ্ণবস্তু 800°C তাপমাত্রায় রাখা আছে। কৃষ্ণবস্তু হতে সর্বোচ্চ বিকীর্ণ শক্তির তরজাদৈর্ঘ্য কত? (ভীনের ধুরক = 28'98 × 10⁻⁴ mK) আমরা জানি, এখানে. কৃষ্ণবস্থুর তাপমাত্রা, T = 800°C = (800 + 273)K = 1073K ভীনের ধ্রুবক = 28'98 × 10⁻⁴ mK $\lambda_m T = 4 \overline{4} \overline{4} \overline{4}$ $\lambda_{m} = \frac{28.98 \times 10^{-4}}{1073} \text{ m} = 2.701 \times 10^{-6} \text{ m}$ = 1073K ভীনের ধ্বক = $28.98 \times 10^{-4} \text{ mK}$ ভিনের ধ্বক = $28.98 \times 10^{-4} \text{ mK}$ ভিনের ধ্বক = $28.98 \times 10^{-4} \text{ mK}$ 1'026 \times 10⁴ J তাপ বিকিন্নণ করলে বস্তৃটির আপেক্ষিক বিকিন্নণ ক্ষমতা নির্ণয় কর। (σ = 5'67 \times 10⁻⁸ Wm⁻² K⁻⁴) + আমরা জানি . এখানে, $E = Ae\sigma T^4$ কৃষ্ণবস্তুর ব্যাসার্ধ, r = 0.02 m $\overline{\mathbf{A}}, \quad e = \frac{\mathbf{E}}{\mathbf{A}\sigma\mathbf{T}^4} = \frac{\mathbf{E}}{\pi r^2 \sigma \mathbf{T}^4}$ তাপমাত্রা, $T = 427^{\circ}C = (427 + 273) K = 700K$ সময়, t = 20 মিনিট = $20 \times 60s$ $e = \frac{1.026 \times 10^4}{20 \times 60 \times 3.14 \times (0.02)^2 \times 5.67 \times 10^{-8} \times (700)^4}$ 20 মিনিটে তাপ বিকিরণ = 1.026×10^4 J 1 সেকেন্ডে ডাগ বিকিরণ, $E = \frac{1.026 \times 10^4}{20 \times 60} W$ $\frac{1.026 \times 10^6}{2.14 \times 4 \times 5.67 \times (7)^4} = 0.5$

মনে করি, একটি হতে নির্গত তাপশক্তি = E1 এবং অপরটি হতে নির্গত তাপশক্তি = E_2 এবং তাপমাত্রা = T_2 আমরা পাই. $\frac{E_1}{E_2} = \left(\frac{T_1}{T_2}\right)^4$

(1). $\frac{E_1}{E_2} = \frac{81}{1}$ সমীকরণ (1) হতে পা $T_1 = 1500 \text{ K}$ $\frac{81}{1} = \left(\frac{1500}{T_2}\right)^4$ বা, $\left(\frac{3}{1}\right)^4 = \left(\frac{1500}{T_2}\right)^{\bullet}$ বা, $\frac{1500}{T_2} = \frac{3}{1}$

$$1_2 = -3$$
 = .00 ম
তি কোন গ্রীন হাউসের মধ্যে 3200°C তাপমাত্রার 8321 × 10⁻¹⁰m তরভা দৈর্ঘ্যের সর্রোচ্চ পরিমাণ শক্তি
বিকীর্ণ হলে তীনের ধ্রুবক কত হবে ?

আমরা জানি, = 3200°C ভীনের ধ্রুবক $= \lambda_m \times T$ = (3200 + 273) K $= 8321 \times 10^{-10} \times 3473$ = 3473 K $\lambda_{m} = 8321 \times 10^{-10} \,\mathrm{m}$ $= 28'90 \times 10^{-4} \,\mathrm{mK}$

১১। সূর্য ও চন্দ্রের পৃষ্ঠ হতে নিঃসৃত বিকিরণের তরজা দৈর্ঘ্যের সর্বাধিক মান যথাক্রমে 4753A ও 14µ হলে সূর্ব ও চন্দ্রের পৃষ্ঠদেশের তাপমাত্রা নির্ণয় কর।

ভীনের সরণ সূত্র হতে আমরা পাই, $\lambda_m \times T = 4 = 2.898 \times 10^{-3} \text{ mK}$ প্রশানুসারে ঃ (i) সূর্যের ক্ষেত্রে, λ_m = 4753A $[11] 1A = 10^{-10} m$ $= 4753 \times 10^{-10} \text{ m}$

৮ উচ্চ মাধ্যামক পদাধাবৰজ্ঞান

$$BG \ll JEWEL$$

স্বৰ্যের পৃষ্ঠের তাপমাত্রা, $T_s = \frac{\xi q}{\lambda_m}$
 $= \frac{2'898 \times 10^{-3} \text{ mK}}{4753 \times 10^{-10} \text{ m}} = 6097 \text{ K}$
(ii) চন্দ্রের ক্ষেত্রে, $\lambda_m = 14\mu = 14 \times 10^{-6} \text{ m}$ [' $1\mu = 10^{-6} \text{ m}$]
চন্দ্রের পৃষ্ঠের তাপমাত্রা, $T_m = \frac{\xi q}{\lambda_m} = \frac{2'898 \times 10^{-3} \text{ mK}}{14 \times 10^{-6} \text{ m}} = 207 \text{ K}$

.

(১২) 60 cm ব্যাসের একটি ধাতব গোলক 25 W ক্ষমতাবিশিষ্ট তাপ বিকিরণ করে। এর তাপমাত্রা নির্ণয় কর। [$\sigma = 5.67 \times 10^{-8} \text{ Wm}^{-2} \text{ K}^{-4}$] [রা. বো. ২০০৬ ; ঢা. বো. ২০০৩]

আমরা জানি.

এখানে.

$E = \sigma T^4$	E = 25 W
বা, $25 = 1,1304 \times 5.67 \times 10^{-8} \times T^4$	$r = \frac{60 \text{ cm}}{2} = 30 \text{ cm} = 0.3 \text{ m}$
বা, $T^4 = \frac{2.5}{1.1304 \times 5.67 \times 10^{-8}}$	A = $4 \pi r^2 = 4 \times 3.14 \times (0.3)^2$
বা, T ⁴ = 390 [.] 05 × 10 ⁶	= 1.1304
T = 140.53 K	$\sigma = 5.67 \times 10^{-8} \text{ Wm}^{-2} \text{ K}^{-4}$ T = ?
	-

📢) 400°C ডাপমাত্রার একটি বস্তু 250°C ডাপমাত্রার একটি কৃষ্ণবস্তু দ্বারা পরিবেষ্টিত। প্রথম বস্তুর প্রতি একক তল থেকে তাপ বিকিরণের হার নির্ণয় কর। [কু. বো. ২০০৪]

এখানে, আমরা জানি, $T_1 = 400^{\circ}C$ $E = \sigma(T_1^4 - T_2^4)$ = (273 + 400) K = 673 K $= 5.67 \times 10^{-8} \{(673)^4 - (523)^4\}$ $= 7389.51 \text{ Wm}^{-2}$ $= 7389.51 \text{ Wm}^{-2}$ $= 7389.51 \text{ Wm}^{-2}$ $= 5.67 \times 10^{-8} \text{ Wm}^{-2} \text{ K}^{-4}$ $= 5.67 \times 10^{-8} \text{ Wm}^{-2} \text{ K}^{-4}$ $= 5.67 \times 10^{-8} \text{ Wm}^{-2} \text{ K}^{-4}$

টিফোনের ধ্রব $\sigma = 5.7 \times 10^{-8} \text{ Wm} - 2 \text{ K}^{-4}$] ব. বো. ২০০১]

আমরা জানি, $E = A\sigma T^{4}$ $E = 5 \times 10^{-2} \times 5.7 \times 10^{-8} \times (1000)^{4}$ $A = 5 \times 10^{-2} m^2$ T = 1000 K = 2850 W $= 5.7 \times 10^{-8} \text{ Wm}^{-2} \text{ K}^{-4}$

ঠি 0'05m ব্যাসার্ধের একটি কৃষ্ণকায়া গোলককে 1027[°]C তাপমাত্রায় উন্তন্ত করে 127°C তাপমাত্রার একটি পাত্রে বন্ধ করে রাখা হল। গোলকটির তাপ বিকিরণের হার নির্ণয় কর।

 $[\sigma = 5.7 \times 10^{-8} W / m^{-2} / K^4]$ [কু. বো. ২০০৬ (মান ভিন্ন) ; ব. বো. ২০০৩ আমরা জানি, এখানে, $\sigma = 5.7 \times 10^{-8} \text{ W/m}^{-2} / \text{K}^4$ $E = A\sigma (T_1^4 - T_2^4)$ $T_1 = (1027 + 273) K = 1300 K$ $= 0.0314 \times 5.7 \times 10^{-8} \times \{(1300)^4 - (400)^4\}$ $T_2 = (273 + 127) K = 400 K$ $= 5.07 \times 10^3 \,\mathrm{Wm^{-2}}$ $= 4\pi r^2 = 4 \times 3.14 \times (0.05)^2$ = 0.0314

83

তাপ বিকিরণ

বইঘর.কম

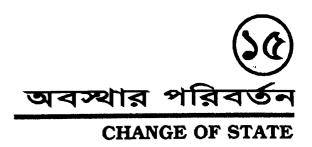
১৬। সম আয়তনের পানি ও একটি তরল পদার্থের তর যথাক্রমে 0'3 kg ও 0'2 kg। তাদের একই ক্যালরিমিটারে পর পর রেখে 50°C হতে 30°C-এ শীতল করতে যথাক্রমে 600 s ও 300 s সময় লাগে। ক্যালরিমিটারের ধারকত্ব 42 J K⁻¹ হলে তরলের আপেক্ষিক তাপ নির্ণয় কর। {পানির আপেক্ষিক তাপ = 4200 $\frac{1}{2}$ kg⁻¹ K⁻¹] ক্র. বো. ২০০১]

আমরা পাই, এথানে, বর্জিত তাপ, $H = ms (t_2 - t_1)$ পানির ভর, $m_1 = 0.3 \ {
m kg}$ $= C(t_2 - t_1)$ তরলের ডর, $m_2 = 0.2 \text{ kg}$ প্রশ্নানুযায়ী 50°C হতে 30°C-এ শীতল হতে \cdot পানির আপেক্ষিক তাপ, $s_1 = 4200 \text{ J kg}^{-1} \text{ K}^{-1}$ (i) ক্যালরিমিটার কর্তৃক বর্জিত তাপ ক্যালরিমিটারের ধারকত্ব, $C = ms = 42 \text{ JK}^{-1}$ $= C(t_2 - t_1) = 42 (50 - 30) J = 840 J$ তরলের আপেক্ষিক তাপ, $s_2 = ?$ (ii) পানি কর্তৃক বর্জিত তাপ $= m_1 s_1 (t_2 - t_1) = 0.3 \times 4200 \times (50 - 30) = 25200 \text{ J}$ (iii) তরল কর্তৃক বর্জিত তাপ = $m_2 s_2 (t_2 - t_1) = 0.2 s_2 (50 - 30) = 4 s$ (ক্যালরিমিটার + পানি) কর্তৃক তাপ বর্জনের হার = $\frac{840 + 25200}{600}$ 600 এবংঁ (ক্যালরিমিটার ও তরল) কর্তৃক তাপ বর্জনের হার = $\frac{840+4s}{300}$ নিউটনের সূত্র অনুযায়ী সূত্রানুযায়ী তাপ বর্জনের হারদ্বয় সমান ! $\frac{840+25200}{600} = \frac{840+4s_2}{300}$ 600 $\frac{210+6300}{6} = \frac{210+s_2}{3}$ বা, $\frac{6510}{2} = \frac{210 + s_2}{1}$ ৰা, ৰা, $3255 = 210 + s_2$ $s_2 = 3255 - 210$ $= 3045 \text{ J kg}^{-1} \text{ K}^{-1}$

১৭। সমআয়তনের পানি ও একটি তরল পদার্ধের ভর যথাক্রমে 0.5kg এবং 0.55kg। তাদের একই ক্যালরিমিটারে পর পর রেখে 50°C থেকে 30°C এ শীতল করতে যথাক্রমে 600s এবং 300s সময় লাগে। ক্যালরিমিটারের তর 0.1kg, এর আপেক্ষিক তাপ 420 $Jkg^{-1}K^{-1}$ হলে তরলের আপেক্ষিক তাপ নির্ণয় কর। (পানির আপেক্ষিক তাপ 4200 $Jkg^{-1}K^{-1}$ [রা. বো. ২০০৫]

এখানে, আমরা পাই, পানির ভর , $m_1 = 0.5 \text{ kg}$ বর্জিত তাপ, $H = ms (\theta_2 - \theta_1)$ প্রশ্নানুযায়ী, 50°C থেকে 30°C এ শীতল হতে তরলের তর, m₂ = 0.55 kg ক্যালরিমিটারের ভর, m3 = 0.1 kg পানি কর্তৃক বর্চ্চিত তাপ $= m_1 s_1 (\theta_2 - \theta_1)$ (i) ক্যালরিমিটারের আঃ তাপ, $s_3 = 420 \text{ J kg}^{-1} \text{ K}^{-1}$ $= 0.5 \times 4200 \times 20$ পানির আঃ তাপ, s₁ = 4200 J kg⁻¹ K⁻¹ = 42000 তাপমাত্রার পার্থক্য , $\theta_2 - \theta_1 = 50^{\circ}\text{C} - 30^{\circ}\text{C}$ তরল কর্তৃক বর্জিত তাপ $= m_2 s_2 (\theta_2 - \theta_1)$ (ii) $= 20^{\circ}C = 20 \text{ K}$ $= 0.55 \times s_2 \times 20$ তরলের আঃ তাপ, s₂ = ? = 11 s2 (iii) - ক্যালরিমিটার কর্তৃক বর্চ্চিত তাপ $= m_3 s_3 (\theta_2 - \theta_1)$ $= 0.1 \times 420 \times 20$ = 840 ক্যালরিমিটার ও পানি কর্তৃক তাপ বর্দ্ধনের হার =<u>840 + 42000</u> = 71.4 ক্যালরিমিটার ও তরল কর্তৃক তাপ বর্জনের হার = $\frac{840 + 11s_2}{300}$ এবং শীতলীকরণের নীতি থেকে পাই $\frac{840 + 11s_2}{300} = 71/4$ ৰা. $11s_2 = 71.4 \times 300 - 840 = 20580$ $s_2 = \frac{20580}{11} = 1870.91 \text{ J kg}^{-1} \text{ K}^{-1}$

BG & JEWEL


১৮। 250 gm ভরের একটি তামার ক্যালরিমিটারে রাখা 5 gm পানি 60°C হতে 40°C তাপমাত্রায় শীতল হতে 80 সেকেন্ড সময় লাগে। একই ক্যালরিমিটারে সমান আয়তনের 6 gm ভরের কোন তরল পদার্থ 60°C থেকে 40°C তাপমাত্রায় শীতন হতে সময় দাগে 70 সেকেন্ড। তরন পদার্থটির আঁপেক্ষিক তাপ নির্ণয় কর। (তামার আ. তাপ 380 Jkg⁻¹ K⁻¹ ; পানির আ. তাপ 4200 J kg⁻¹ K⁻¹) [ঢা. বো. ২০০১] আমরা পাই, $H = ms (t_2 - t_1)$ প্রশ্নানুযায়ী 60°C হতে 40°C-এ শীতল হতে ক্যালরিমিটার কর্তৃক বর্জিত তাপ = $m_1 s_1 (t_2 - t_1) = 250 \times 10^{-3} \times 380 (60 - 40)$ (i) পানি কর্তৃক বর্জিত তাপ = $m_2 s_2 (t_2 - t_1) = 5 \times 10^{-3} \times 4200 \times (60 - 40)$ (ii) (iii) তরল কর্তৃক বর্জিত তাপ = $m_3 s_3 (t_2 - t_1) = 6 \times 10^{-3} s (60 - 40)$ (ক্যালরিমিটার + পানি) কর্তৃক তাপ বর্জনের হার $=\frac{380 \times 250 \times 10^{-3} (60 - 40) + 5 \times 10^{-3} \times 4200(60 - 40)}{1000}$ $=\frac{1900+420}{80}=29$ J ক্যাগরিমিটার + তরণ) কর্তৃক তাপ বর্জনের হার $=\frac{250 \times 10^{-3} \times 380 \times 20 + 6 \times 10^{-3} \times s_3 \times 20}{70} = \frac{190 + 12 \times 10^{-3} s_3}{7}$ নিউটনের শীতলীকরণের সূত্র অনুযায়ী তাপ বর্জনের হারদ্বয় সমান $\frac{190 + 12 \times 10^{-3} s_3}{7} = 29$ $\frac{190 + 12 \times 10^{-3} s_3}{7} = 29$ $190 + 12 \times 10^{-3} s_3 = 203$ বা, $12 \times 10^{-3} s_3 = 13$ বা. $s_3 = \frac{13}{12 \times 10^{-3}} = 1083.33 \,\mathrm{Jkg^{-1} \, K^{-1}}$ 🔇৯। একটি টাংস্টেন বাতির পৃষ্ঠ ক্ষেত্রেফল 0'4 cm²। এটি 3000 K ডাপমাত্রায় আলো ছড়াচ্ছে। বিক্তিরিত শক্তির হাঁর বের কর। [$\sigma = 5.7 \times 10^{-8} \, \mathrm{Wm^{-2}K^{-4}}$] [ব. বো. ২০০৬ (মান ভিন্ন) ; চ. বো. ২০০৩] আমরা জানি. $= 0.4 \text{ cm}^{2}$ $E = A \sigma T^4$ $= 0.4 \times 10^{-4} \text{ m}^2$ $= 0.4 \times 10^{-4} \times 5.7 \times 10^{-8} \times (3000)^4$ = 3000 K = 184.68 W $= 5.7 \times 10^{-8} \text{ Wm}^{-2} \text{ K}^{-4}$ (২০)। 0.625 m² ক্ষেত্রফলবিশিষ্ট একটি গোলকের তাপমাত্রা 850°C। গোলকের আপেন্দিক নিঃসরণ ক্ষমতা 0'60 হলে প্রতি সেকেন্ডে গোলকটি হতে বিকীর্ণ শক্তির ক্ষমতা নির্ণয় কর। [$\sigma=5.67 imes10^{-8}~{
m Wm^{-2}K^{-4}}$] আমরা জানি. এখানে, $\epsilon = 0.60$ $E = \epsilon A \sigma T^4$ A = $4\pi r^2 = 0.625 \text{ m}^2$ $E = 0.60 \times 0.625 \times 5.67 \times 10^{-8} \times (1123)^4$ T = (850 + 273) K $= 0.60 \times 0.625 \times 5.67 \times (11.23)^4 \times 10^{-8} \times 10^8$ = 1123 K \simeq 33817 W \simeq 3'38 \times 10⁴ W প্রশালা **গক্ষিশ্ত-উত্তর প্রশ্ন ঃ** ১। তাপ বিকিরণ কাকে বলে ? ২। বিকীর্ণ তাপ শক্তির বৈশিষ্ট্য লিখ। ৩। আদর্শ কৃষ্ণ বস্তু বলতে কি বুঝ ? [ব. বো. ২০০৬ ; ঢা. বো. ২০০৫, ২০০৩; য. বো. ২০০৬, ২০০৩; ২০০০ ; কু. বো. ২০০০) ৪। বিকিরণ ক্ষমতা কাকে বলে ? [ঢা. বো. ২০০৬ ; ট. বো. ২০০৬ ; য. বো. ২০০৫ ; সি. বো. ২০০৪ ; ব. বো. ২০০৬, ২০০২ ; কু. বো. ২০০০] ৫। আপেক্ষিক বিকিরণ ক্ষমতা কাকে বলে ?

তাপ বিকিরণ 807 বইঘর.কম ৬। আদর্শ কৃষ্ণ বস্তু উত্তম শোষক এবং উত্তম বিকিরক—ব্যাখ্যা কর। ৭। কোন বস্তুর বিকিরণ ক্ষমতা ও শোষণ ক্ষমতা বলতে কি বুঝ ? রো. বো. ২০০৬ ; ঢা. বো. ২০০২) ৮। স্টেফানের সূত্রটি বিবৃত কর। ঢা. বো. ২০০১ ; য. বো. ২০০০] ৯। স্টিফানের সূত্রটি বর্ণনা কর। [সি. বো. ২০০১] ১০। নিউটনের শীতলীকরণ সূত্রটি বিবৃত কর। ক্রি. বৌ. ২০০৬ ; ঢা. বো. ২০০৩ ; ঢা. বো. ২০০০ ; সি. বো. ২০০২] ১১। ভীনের সরণ সূত্র বিবৃত কর। (চ. বো. ২০০৬ ; সি. বো. ২০০৬; রা. বো. ২০০৫; ঢা. বো. ২০০৪, ২০০০] ১২। ভীনের সরণ সূত্রটি শিখ এবং এই সূত্র সংগ্লিষ্ট ধ্রুবকের মান কত ? [রা. বো. ২০০৩ ; য. বো. ২০০২] ১৩। গ্রীষ্মকালে সাদা জামাকাপড় আরামপ্রদ কেন ? ১৪। গ্রীণ হাউচ্চ ক্রিয়া কি 🤉 ঢ়া. বো. ২০০৪ ; রা. বো. ২০০১ ; চ. বো. ২০০৪] ১৫। মেঘলা রাত্রি মেঘহীন রাত্রি অপেক্ষা অধিকতর গরম কেন ? ১৬। কৃষ্ণবস্তৃ বিকিরণ কি ? [কৃ. বো. ২০০৬ ; চ. বো. ২০০৫] রচনামূলক প্রশু : ১। কৃষ্ণ বস্তুর বিকিরণ ও সাধারণ বস্তুর বিকিরণের মধ্যে পার্থক্য কি ? য. বো. ২০০৪] ২। স্টিফেনের সূত্রটি বিবৃত ও ব্যাখ্যা কর। [সি. বো. ২০০৫; ব. বো. ২০০৫, ২০০৩] ৩। স্টিফানের সূত্রটি বিবৃত ও ব্যাখ্যা কর এবং তা থেকে নিউটনের শাঁতলীকরণ সূত্র কিভাবে পাওয়া যায় বর্ণনা কর। [চ. বো. ২০০৩, ২০০১ ; ব. বো. ২০০২ ; কু. বো. ২০০১] ৪। স্টিফানের সূত্র থেকে নিউটনের শীতন্সীকরণ সূত্র প্রতিষ্ঠা কর। [চ. বো. ২০০৫ ; কু. বো. ২০০৪ ; সি. বো. ২০০৫ ; রা. বো. ২০০৫, ২০০৩ ; য. বো. ২০০১ ; ব. বো. ২০০৫ ; ঢা. বো. ২০০৫, ২০০০] ৫। ভীনের সূত্র বিবৃত কর এবং তা হতে গ্রীন হাউচ্চ ক্রিয়া ব্যাখ্যা কর। [ঢা. বো. ২০০৬; য. বো. ২০০৬ ; ব. বো. ২০০৬, ২০০২; চ. বো. ২০০৪ ; চ. বো. ২০০১ ; রা. বো. ২০০৩ ; কু. বো. ২০০২] ৬। গ্রীন হাউজ ক্রিয়া কি ? ভীনের সূত্রের সাহায্যে তা ব্যাখ্যা কর। [চ. বো. ২০০৬, ২০০২ ; রা. বো. ২০০৩] ৭। ভীনের সূত্রটি বর্ণনা ও ব্যাখ্যা কর। [য. বো. ২০০০ ; কু. বো. ২০০৫, ২০০০ ; চ. বো. ২০০০] ৮। নিউটনের শীর্তলীকরণ সূত্রটি বর্ণনা ও ব্যাখ্যা কর। [চ. বো. ২০০৫ ; য. বো. ২০০২] ৯। নিউটনের শীতলীকরণ পন্ধতিতে তরল পদার্থের আপেক্ষিক তাপ নির্ণয়ের পরীক্ষাটি বর্ণনা কর। [ঢা. বো. ২০০৬, ২০০৩; কৃ. বো. ২০০৬, ২০০২; য. বো. ২০০৬, ২০০৩; রা. বো. ২০০৬, ২০০৪; ব. বো. ২০০৪ ; চ. বো. ২০০৪ ; সি. বো. ২০০৪] ১০। তরল পদার্থের আপেক্ষিক তাপ নির্ণয় প্রণালী বর্ণনা কর। ক. বো. ২০০৩] গাণিতিক সমস্যাবলি ঃ ১। একটি কৃষ্ণকায়ার ক্ষেত্রফল $4 imes 10^{-9}~{
m m}^2$ । এটি $1500{
m K}$ তাপমাত্রায় কি হারে শক্তি বিকিরণ করবে ? দেওয়া আছে, $\sigma = 5.7 \times 10^{-8} \text{ Wm}^{-2} \text{ K}^{-4}$ টিঃ 1 154 mWl ২। সূর্যের আলোক মন্ডলের ব্যাসার্ধ R = 6.923×10^5 Km এবং সূর্য থেকে পৃথিবীর গড় দূরত্ব $r = 14.94 \times 10^7$ Km হলে সূর্যের আলোকমন্ডলের তাপমাত্রা নির্ণয় কর।[σ = 5.7 × 10⁻⁸ Wm⁻² K⁻⁴ এবং সৌর ধ্র্বক S= 8.14 × 10⁴ Jm⁻² min⁻¹) [উঃ 5770 K] ৩। একটি কৃষ্ণ বস্তু 527°C তাপমাত্রায় রাখা আছে। বস্তুটি কত তরন্সদৈর্ঘ্যের সর্বোচ্চ শক্তি বিকিরণ করবে ? (ভীনের ধ্রুবক = 28[.]98 × 10⁻⁴ mK) [℃: 3[·]62×10⁻⁶ m] -8। একটি তারকা থেকে সর্বোচ্চ বিকীর্ণ শক্তির জন্য তরচ্চাদৈর্ঘ্য 450 mm হলে তারকা পৃষ্ঠের তাপমাত্রা নির্ণয় কর। (ভীনের ধ্রুবক = 28[.]98 × 10⁻⁴ mK) [উন্ডর **ঃ** 6440K] ৫। 400K তাপমাত্রার একটি বস্তু 300K তাপমাত্রার একটি কৃষ্ণ বস্তু দ্বারা পরিবেষ্টিড। বস্তুদ্বরের মধ্যবর্তী স্থান বায়ূশূন্য। প্রথম বস্তুটির প্রতি একক ক্ষেত্রফল থেকে তাপ বিকিরণের হার নির্ণয় কর।

[রা. বো. ২০০১] [উত্তর **ঃ** 992⁻25 Wm⁻²]

৬। 0.06m ব্যাসের একটি কৃষ্ণকায়া গোলককে 1227°C তাপমাত্রায় উত্তন্ত করে 227°C তাপমাত্রার অপর একটি পাত্রে বন্ধ করে রাখা হল। গোলকটির তাপ বিকিরণের হার নির্ণয় কর। [কু. বো. ২০০৬] টেন্তর ঃ 3[·]256 × 10³Wm⁻²] ৭। একটি কৃষ্ণ বস্তুর ক্ষেত্রফল $2 imes 10^{-9} \ {
m m}^2$ । (i) $1000{
m K}$ তাপমাত্রায় বস্তুটি কি হারে শক্তি বিকিরণ করবে? (ii) কত তাপমাত্রায় এটি দ্বিগুণ হারে তাপ বিকিরণ করবে ? ($\sigma=5.7\times10^{-8}~Wm^{-2}~K^{-4})$ [ច៖ 1⁻14 × 10⁻⁴ W ; 1189⁻2 K] ৮। একটি গোলাকার বস্তুর ব্যাস 2 cm। এটি 600°C তাপমাত্রায় রাখা আছে। বস্তুটির আপেক্ষিক বিকিরণ ক্ষমতা 0'8 হলে বস্তুটি 30 মিনিটে কি পরিমাণ শক্তি বিকিরণ করবে ? 医: 5 99 × 10⁴ J ৯। একটি টাংস্টেনের বাতির পৃষ্ঠ ক্ষেত্রফল 0.3 cm²। এটি 3000K তাপমাত্রায় আলো ছড়াচ্ছে। বিকিরিত শক্তির হার [ব. বো. ২০০৬] [সি, বো. ২০০৩] টেঃ 137.8 W] ዋତ ? [σ = 5[·]67 × 10^{−8} Wm^{−2} K^{−4}] ১০। একটি টাংস্টেন বাতির পৃষ্ঠ ক্ষেত্রফল 0.3 cm²। এটি 3000K তাপমাত্রায় আলো ছড়াচ্ছে। বিকিরিত শক্তির হার [ব. বো. ২০০৬ ; উঃ 136'08 W] **ም** ? [σ = 5.6 × 10⁻⁸ Wm⁻² K⁻⁴] ১১। 0[·]3 m ব্যাসার্ধের একটি কাল ধাতব গোলক 25W ক্ষমতাবিশিষ্ট তাপ বিকিরণ করে। এর তাপমাত্রা নির্ণয় কর। [সি. বো. ২০০১] [উঃ 140'5 K] $[\sigma = 5.67 \times 10^{-8} \text{ Wm}^{-2} \text{ K}^{-4}]$ ১২। একটি কৃষ্ণ বস্তু 800 K তাপমাত্রায় কি পরিমাণ তাপ বিকিরণ করবে তা নির্ণয় কর। [᠖¥ 2·3232 × 10⁴ Wm⁻²] $[\sigma = 5.672 \times 10^{-8} \text{ Wm}^{-2} \text{ K}^{-4}]$ ১৩। একটি নক্ষত্রের উচ্ছ্বল্য সূর্যের উচ্ছ্বল্যের 17000 গৃণ। সূর্য পৃষ্ঠের তাপমাত্রা 6000k ধরে ঐ নক্ষত্র পৃষ্ঠের তাপমাত্রা নির্ণয় কর। [উত্তর ঃ 68511 5 K] ১৪। কোন বস্তু হতে সর্বোচ্চ বিকিরণের জন্য তরজ্ঞা দৈর্ঘ্য $18 imes 10^{-6}\,\mathrm{m}$ হলে বস্তুটির তাপমাত্রা নির্ণয় কর। [উঃ 161 K] ১৫। একটি কৃষ্ণ বস্তুর ক্ষেত্রফল $3 imes 10^{-6}~{
m m}^2$ এবং তাপমাত্রা 500 K । (ক) বস্তুটি কি হারে তাপ বিকিরণ করবে? (খ) কত তাপমাত্রায় এটি তিনগুণ হারে তাপশক্তি বিকিরণ করবে ? [$\sigma = 5.67 \times 10^{-8} \, \mathrm{Wm^{-2}K^{-4}}$] (译: (本) '06×10⁻² W; (*) 658 K] ১৬। সূর্য পৃষ্ঠ থেকে বিকিরণ নিঃসরণের বেলায় যে তরজ্ঞা দৈর্ঘ্য বিকিরিত হচ্ছে তা 500 nm হলে সূর্য পৃষ্ঠের তাপমাত্রা বের কর। [1 nm = 10⁻⁹ m, ভীন ধ্র্বক = 2[.]898 × 10⁻³ mK] [উঃ 5796 K] ১৭। 0.08 m ব্যাসার্ধবিশিষ্ট একটি গোলক 1500 K তাপমাত্রায় আছে। গোলকের আপেক্ষিক নিঃসরণ ক্ষমতা 0.45 হলে এর পৃষ্ঠ হতে প্রতি সেকেন্ডে বিকীর্ণ শক্তির পরিমাণ বের কর। [$\sigma = 5.67 \times 10^{-8} \text{ Wm}^{-2}\text{K}^{-4}$] [টঃ $1.037 \times 10^{4}\text{W}$] ্র্স্র্র্চ সদৃশ তামার ক্যালরিমিটারের প্রত্যেকের ভর 0.1 kg। তারা যথাক্রমে 50 imes 10 $^{-6}{
m m}^3$ পানি ও $50 imes 10^{-6}{
m m}^3$ অ্যালকোহল ধারণ করে। তাদের $60^{\circ}{
m C}$ হতে $40^{\circ}{
m C}$ -এ শীতল হতে যথাব্রুমে $600~{
m s}$ ও $330~{
m s}$ সময় লাগে। অ্যালকোহলের আপেক্ষিক তাপ নির্ণয় কর। [পানি ও তামার আপেক্ষিক তাপ যথাক্রমে $4200~{
m Jkg^{-1}K^{-1}}$ ও $378~{
m Jkg^{-1}K^{-1}}$ এবং অ্যালকোহলের ঘনত্র $= 810 \, \mathrm{kgm}^{-3}$] [উঃ — 2462 Jkg⁻¹K⁻¹] 🖄। একই পারিপার্শ্বিক অবস্থায় 0.152 kg ভরের একটি ক্যালরিমিটার প্রথমে 0.045 kg পানি ও পরে 0.060 kg কেরোসিন তেল 60°C হতে 50°C তাপমাত্রায় শীতল করতে যথাক্রমে 10 min ও 8 min সময় লাগে। কেরোসিন তেলের আপেক্ষিক তাপ কত ? [পানির আপেক্ষিক তাপ = $4200~{
m Jkg}^{-1}{
m K}^{-1}$ এবং ক্যালরিমিটারের উপাদানের আপেক্ষিক তাপ = 420Jkg⁻¹K⁻¹]/ [5: 2305 Jkg⁻¹K⁻¹] ্র্ ২০। 200g ভরের একটি তামার ক্যালরিমিটারে 6g পানি নিয়ে 50°C থেকে 40°C তাপমাত্রায় ঠান্ডা হতে সময় লাগে 75 সেকেন্ড এবং একই ক্যালরিমিটারে পানির সমান আয়তনের 8g তরল পদার্ধ নিয়ে 50°C থেকে 40°C তাপমাত্রায় ঠান্ডা হত্তে

সময় নেয় 65 সৈকেন্ড। তামার আপেক্ষিক তাপ $380~{
m Jkg^{-1}K^{-1}}$ হলে তরল পদার্ধের আপেক্ষিক তাপ কত ? [রা. বো. ২০০২] [উন্তর $$1463~{
m Jkg^{-1}K^{-1}}]$

১৫[.]১ সূচনা Introduction

পদার্থ সাধারণত তিন অবস্থায় থাকতে পারে। যথা–কঠিন, তরল ও গ্যাসীয় অবস্থা। এ অবস্থা নির্ভর করে তাপমাত্রা ও চাপের উপর। কঠিন পদার্থ তাপ শোষণ করে তরল পদার্থে এবং তরল পদার্থ তাপ শোষণ করে বায়বীয় বা গ্যাসীয় পদার্থে পরিণত হয়। আবার বায়বীয় বা গ্যাসীয় পদার্থ তাপ বর্জন করে প্রথমে তরল এবং আরও তাপ বর্জন করে কঠিন পদার্থে পরিণত হতে পারে। পদার্থের এ তিনটি অবস্থাকে অনেক সময় দশা হিসেবে চিহ্নিত করা হয়। এ অধ্যায়ে পদার্থের অবস্থা বা দশার পরিবর্তন আলোচনা করব।

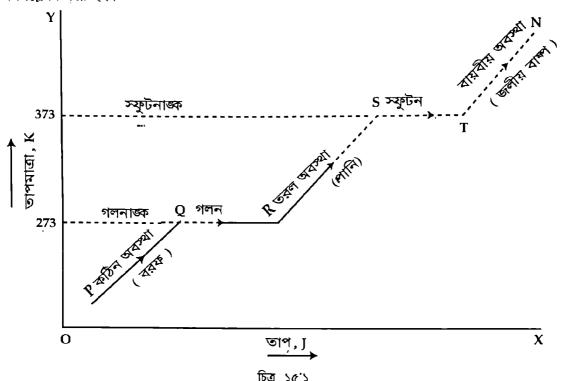
১৫'২ পদার্থের অবস্থার পরিবর্তন Change of state of matter

অবস্থা বলতে আমরা কোন পদার্থ বা সিস্টেমের পরিস্থিতি বা অবস্থান বুঝি। তাপ প্রয়োগ করে অথবা ঠান্ডা করে কোন পদার্থকে এক অবস্থা হতে অন্য অবস্থায় রূপান্তর করাকে পদার্থের অবস্থার পরিবর্তন বলে। পদার্থের বিভিন্ন প্রকার পরিবর্তনকে বিভিন্ন নামে অভিহিত করা হয়। যেমন,

(ক) গলন বা তরলীতবন (Fusion or melting) ঃ তাপ প্রয়োগে কঠিন পদার্থের তরল পদার্থে রূপান্তরিত হওয়াকে গলন বলে।

(খ) হিমায়ন বা কঠিনীভবন (Freezing or solidification) ঃ তাপ বর্জনে কোন তরল পদার্থের কঠিন পদার্থে রূপান্তরিত হওয়াকে কঠিনীভবন বলে।

(গ) বাষ্শীভবন (Vaporisation) ঃ তাপ প্রয়োগে তরল পদার্থের বায়বীয় অবস্থায় রূপান্তরের নাম বাষ্শীভবন। বায়বীয় অবস্থায় রূপান্তরিত বস্তুকে বাষ্শ (vapour) বলে।


(ঘ) ঘনীত্তবন (Condensation) ঃ বাম্পীভবনের বিপরীত প্রক্রিয়াই ঘনীভবন অর্থাৎ তাপ বর্জনে কোন গ্যাসীয় পদার্থের তরল পদার্থে রূপান্তরিত হওয়াকে **ঘনীতত্বন** বলে।

(৩) উদ্ধাপাতন (Sublimation) ঃ কোন কোন কঠিন পদার্থ তাপ প্রয়োগে তরল পদার্থে রূপান্তরিত না হয়ে সরাসরি বান্দো পরিপ্রত হয়। একে উর্ধ্বপাতন বলে। কর্পূর, গন্ধক, ন্যাপথালিন প্রভৃতি পদার্থ সাধারণ তাপমাত্রাতেই সরাসন্ধি বান্দো পরিণত হয়।

(চ) তুর্হিনীভবন (Formation of hoar-frost) ঃ কোন কোন গ্যাসীয় পদার্থ তাপ বর্জন করে তরল পদার্থে রূপান্তরিত না হয়ে সরাসরি কঠিন পদার্থে পরিণত হয়। একে তুহিনীভবন বলে। কাজেই ঊর্ধ্বপাতনের বিপরীত প্রক্রিয়াই তুহিনীভবন।

১৫৩ লেখচিত্রের সাহায্যে পানির অবস্থা পরিবর্তনের বিশ্লেষণ Analysis of change of state of water graphically

আমরা জানি, তাপ গ্রহণে বা তাপ বর্জনে পদার্থ এক অবস্থা হতে অন্য অবস্থায় রূপান্তরিত হয়। যেমন বরফ একটি কঠিন পদার্থ। তাপ গ্রহণে বরফ গলে পানি হয়। পানি হল তরল পদার্থ, আবার পানি তাপ গ্রহণ করে জলীয় বাম্প হবে। জলীয় বাম্প পদার্থের বায়বীয় অবস্থা। বিপরীতক্রমে তাপ বর্জন করে জলীয় বাম্প ঘনীভূত হয়ে পানি হবে এবং পানি হতে তাপ নিম্ফাশন করলে পানি জমাট বেঁধে বরফ হবে। নিম্নে লেখচিত্রের সাহায্যে পানির অবস্থা পরিবর্তন বিশ্লেষণ করা হল।

এখানে X-অক্ষে তাপ এবং Y-অক্ষে তাপমাত্রা স্থাপন করে লেখচিত্রটি অজ্ঞন করা হয়েছে। লেখচিত্রের PQ অংশ পুরোপুরিভাবে পানির কঠিন অবস্থা অর্থাৎ বরফ প্রকাশ করছে। P হতে Q অবস্থায় যেতে বরফ তাপ গ্রহণ করায় এর তাপমাত্রা বৃদ্ধি পেয়েছে এবং Q বিন্দুতে বরফের গলন শুরু হয়েছে। বরফ আরো তাপ গ্রহণ করে R বিন্দুতে সম্পূর্ণভাবে তরল পদার্থ অর্থাৎ পানিতে পরিবর্তিত হবে। লেখের Q বিন্দু বরফের গলনাজ্ঞ্ব প্রকাশ করছে এবং Q বিন্দুতে বরফের গলন শুরু হয়েছে। বরফ আরো তাপ গ্রহণ করে R বিন্দুতে সম্পূর্ণভাবে তরল পদার্থ অর্থাৎ পানিতে পরিবর্তিত হবে। লেখের Q বিন্দু বরফের গলনাজ্ঞ্ব প্রকাশ করছে এবং QR অংশ গলন ক্রিয়া প্রকাশ করছে। R বিন্দুতে পদার্থের গলন ক্রিয়া শেষ হবে। গলন ক্রিয়া শেষ না হওয়া পর্যন্ত কঠিন পদার্থের তাপমাত্রার কোন পরিবর্তন ঘটবে না যদিও পদার্থ তাপ গ্রহণ করবে। লেখচিত্রের QR অংশ হতে তা বুঝা যায়। R হতে S বিন্দুতে যেতে পানি তাপ গ্রহণ করবে এবং এর তাপমাত্রা বৃন্দ্বি পানে। S বিন্দুতে পানি ফুটতে শুরু করবে। সুতরাৎ S বিন্দুই হবে পানির স্ফুটনাজ্ঞ্ব। লেখচিত্রের ST অংশ স্ফুটন ক্রিয়া বুঝায়। তাপ গ্রহণে ও লেখচিত্রির ¹ এই অংশে তাপমাত্রার পরিবর্তন ঘটনে। T বিন্দু স্ফুটন ক্রিয়া শেষ হওয়া বুঝাচ্ছে। লেখচিত্রের TN অংশ পানির বায়বীয় অবস্থা অর্থাৎ জলীয় বাম্প প্রকাশ করছে। T বিন্দু হতে N বিন্দুতে যেতে জলীয় বাম্প তাপ গ্রহণ করায় এর তাপমাত্রা বৃন্দ্বি পেয়েছে।

বিপরীতক্রমে, তাপ বর্জন করে জলীয় বাম্প পানিতে এবং পানি বরফে পরিণত হবে। এটিই হল পানির অবস্থা পরিবর্তনের লেখচিত্র বিশ্লেষণ।

যে কোন কেলাসীয় পদার্থের ক্ষেত্রে অবস্থা পরিবর্তনের চিত্র উপরের ১৫'১ চিত্রের অনুরূপ হবে।

১৫৪ গলনাজ্ঞ্ব ও হিমাজ্ঞ Melting point and freezing point

গলনাজ্ঞ

সাধারণত কোন কঠিন পদার্থে তাপ প্রয়োগ করতে থাকলে তার তাপমাত্রা প্রথমে বৃদ্ধি পায় এবং একটি নির্দিষ্ট তাপমাত্রায় পৌঁছার পর পদার্থটি গলতে শুরু করে। যতক্ষণ পর্যন্ত না সম্পূর্ণ কঠিন পদার্থ গলে তরল পদার্থে

বইঘর.কম

পরিণত হয় ততক্ষণ পর্যন্ত তাপ প্রয়োগ সত্ত্বেও তার তাপমাত্রার কোন পরিবর্তন হয় না [চিত্র ১৫'১]। ঐ নির্দিষ্ট তাপমাত্রাকে এর গলনাচ্চ্ব বলে।

চাঁপের পরিবর্তনে কঠিন পদার্থের গলনাজ্ঞ পরিবর্তিত হয়। পরীক্ষায় দেখা যায় যে, বরফের গলনাজ্ঞ ষাভাবিক চাপে 273 K এবং বায়ুশূন্য স্থানে 272'99 K।

সংজ্ঞা ঃ স্থির চাপে কোন কঠিন পদার্থে তাপ প্রয়োগ করতে থাকলে যে নির্দিষ্ট তাপমাত্রায় পৌঁছে তা গলতে শুরু করে এবং গলন শেষ না হওয়া পর্যস্ত ঐ তাপমাত্রার কোনরূপ পরিবর্তন হয় না তাকে ঐ চাপে উক্ত পদার্থের গলনাজ্ঞ বলে।

"বরফের গলনাজ্ঞ স্বাভাষিক চাপে 273 K"—এটি দ্বারা বুঝা যায় যে, স্বাভাবিক চাপে এক টুকরা বরফে তাপ প্রয়োগ করতে থাকলে তা 273 K তাপমাত্রায় পৌঁছে গলতে শুরু করে এবং সম্পূর্ণ বরফ গলে পানিতে পরিণত না হওয়া পর্যন্ত ঐ তাপমাত্রার কোনরূপ পরিবর্তন হয় না।

হিমাজ্ঞ

সাধারণত কোন তরল পদার্থকে ক্রমাগত ঠান্ডা করতে থাকলে তার তাপমাত্রা প্রথমে কমতে থাকে। কিন্তু একটি নির্দিষ্ট তাপমাত্রায় পৌছার পর তা জমে কঠিন পদার্থে পরিণত হতে থাকে। যতক্ষণ পর্যন্ত না সম্পূর্ণ তরল পদার্থ কঠিন পদার্থে রূপান্তরিত হয় ততক্ষণ পর্যন্ত তাপ নিক্ষাশন সত্ত্বেও তাপমাত্রার কোনরূপ পরিবর্তন হয় না। এই নির্দিষ্ট তাপমাত্রাকৈ উক্ত তরল পদার্থের **হিমাজ্জ** বলে। চাপ প্রয়োগে গলনাজ্জের ন্যায় হিমাজ্ঞ্বও পরিবর্তিত হয়।

সংজ্ঞা : স্ধির চাপে কোন তরল পদার্থকে ক্রমাগত শীতল করতে থাকলে যে তাপমাত্রায় পৌঁছে তৃরল পদার্থটি কঠিন পদার্ধে রূপান্তরিত হতে শুরু করে এবং কঠিনীভবন শেষ না হওয়া পর্যন্ত ঐ তাপমাত্রার কোন পরিবর্তন হয় না তাকে ঐ চাপে উক্ত তরল পদার্থের হিমাজ্ঞ বলে।

"পানির হিমাজ্ঞ 273 K"—এটি দ্বারা বুঝা যায় যে, স্বাভাবিক চাপে 273K তাপমাত্রায় তাপ বর্জনে পানি জমাট বেঁধে তরল অবস্থা হতে কঠিন অবস্থায় পরিণত হয় এবং সমস্ত পানি কঠিন অবস্থায় পরিণত না হওয়া পর্যন্ত এই তাপমাত্রা স্থির থাকে।

১৫৫ বাম্পায়ন, স্ফুটন ও স্ফুটনাজ্ঞ

Evaporation, vaporization and melting point

আমরা জানি তরল পদার্থের রাম্পে পরিণত হওয়ার প্রক্রিয়াকে রাম্পীভবন বলে। রাম্পীভবন দুটি ভিন্ন উপ্রায়ে হতে পারে; যথা---বাম্পায়ন (Evaporation) ও স্ফুটন (Boiling)।

(ক) বান্সায়ন ঃ যে কোন তাপমাত্রায় তরল পদার্থের উপরিতল হতে এর ধীরে ধীরে বান্সে পরিণত হওয়াকে বান্সায়ন বলে। ঘরের তাপমাত্রায় পানি বাম্পায়ন প্রক্রিয়ায় উবে যায়। বাম্পায়নের দরুন গরমকালে খাল, বিল প্রভৃতি শুকিয়ে যায়।

তরল পদার্থ বাম্পায়িত হবার সময় কিছু উচ্চ গতিসম্পন্ন অণু তরল ত্যাগ করে বের হয়ে যায়। ফলে অবশিষ্ট তরলের মোট গতিশক্তি হ্রাস পায় এবং তরলের তাপমাত্রা খানিকটা কমে যায়। তরল হতে উথিত কোন কোন অণু বায়ুর বা যে তলের সংস্পর্শে আসে এর সাথে ধার্কা খাবার পর পুনরায় তরলে প্রবেশ করে। কাজেই তরলের উপরে বায়ু যত কম থাকবে অর্থাৎ বায়ুর চাপ যত কম হবে বাম্পায়নও তত দ্রুত হবে।

(খ) স্ফুটন ঃ একটি নির্দিষ্ট তাপমাত্রায় তরল পদার্ধের সর্বত্র হতে খুব দ্রুত বাব্দে পরিণত হবার প্রক্রিয়াকে স্ফুটন বলে।

কোন একটি তরল পদার্থকে ক্রমাগত উত্তপ্ত করতে থাকলে তার তাপমাত্রা ও বাম্পায়নের হার ক্রমশ বৃম্ধি পেতে থাকে। প্রথমে তরল পদার্থের উপরিতল হতে ধীরে ধীরে বাম্প উন্থিত হতে থাকে। তাপমাত্রা বৃম্ধির সজ্ঞা সঙ্গে বাম্পায়ন শুধুমাত্র তরল পদার্থের উপরিতলে সীমাবন্ধ না থেকে সমগ্র তরল পদার্থে ছড়িয়ে পড়ে এবং বাম্পায়ন দুত গতিতে সংঘটিত হতে থাকে। এই অবস্থায় যতক্ষণ পর্যন্ত না সম্পূর্ণ পদার্থ বাম্পে পরিণত হয় ততক্ষণ পর্যন্ত এর তাপমাত্রার কোনরূপ পরিবর্তন হয় না। এই নির্দিষ্ট স্থির তাপমাত্রাকে স্ফুটনাজ্ঞ (Boiling point) বলে। বিভিন্ন তরল পদার্থের স্ফুটনাজ্ঞ বিভিন্ন এবং কোন একটি তরল পদার্থের স্ফুটনাজ্ঞ তার উপরিতলে প্রযুক্ত চাপের উপর নির্ভর করে।

স্ফুটনাজ্বের সংজ্ঞা ঃ একটি নির্দিষ্ট চাপে কোন একটি তরল পদার্থ যে তাপমাত্রায় পৌঁছে বাম্পে পরিণত হতে শুরু করে এবং সম্পূর্ণ তরল পদার্থ বাব্বে পরিণত না হওয়া পর্যন্ত ঐ তাপমাত্রার কোনরূপ পরিবর্তন হয় না একে উক্ত চাপে ঐ পদার্থের স্ফুটনাজ্ঞ বলে।

'স্বাভাবিক চাপে পানির স্ফুটনাজ্ঞ 373 K'—এটা দ্বারা বুঝা যায় যে, স্বাভাবিক চাপে পানির স্ফুটন 373 K তাপমাত্রায় শুরু হয় এবং সম্পূর্ণ পানি বাম্পে পরিণত না হওয়া পর্যন্ত ঐ তাপমাত্রার কোন পরিবর্তন হয় না।

১৫৬ স্ফুটনাজ্ঞের উপর চাপের প্রভাব Effect of pressure on boiling point

<u>কোন তরল প্রদার্থের স্ফুটনাজ্ঞ এর উপরিস্থিত চাপের উপর নির্ভরশীল।</u> চাপ কমালে স্ফুটনাজ্ঞ কমে যায় এবং চাপ বাড়ালে স্ফুটনাজ্ঞ বৃদ্ধি পায়।

তরল পদার্থের উপর চাপ বৃদ্ধি পেলে তরল হতে উথিত বাম্পীয় অণুকে ঐ চাপের বিরুদ্ধে ক্রিয়া করে বের হয়ে যেতে হয়। ফলে অণুগুলোকে উচ্চ তাপমাত্রায় উত্তেজিত করতে হয় এবং তরল পদার্থের স্ফুটনাজ্ঞ স্বাভাবিক স্ফুটনাজ্ঞ্ব অপেক্ষা বেশি হয়। বিপরীতক্রমে তরল পদার্থের উপর চাপ কমালে তরল হতে উথিত বাম্পীয় অণু পূর্বাপেক্ষা খানিকটা মুক্ত থাকে। এতে অণুগুলো অপেক্ষাকৃত কম তাপমাত্রায় উত্তেজিত হয়েই তরল হতে বের হয়ে যেতে পারে এবং তরল পদার্থের স্ফুটনাজ্ঞ স্বাভাবিক স্ফুটনাজ্ঞ অপেক্ষা কম হয়। <u>পরীক্ষায় দে</u>খা গেছে যে, **প্রতি** 0'027 m চাপ বৃদ্ধি বা হাসের দর্ন পানির স্বাভাবিক স্ফুটনার্জ্ব 273 K করে বৃদ্ধি বা হাস পাঁয়।

উদাহরগ ঃ সুউচ্চ পর্বতের উপর রানা করা <u>দুরূহ</u>।

আমরা জানি তরল পদার্থের স্ফুটনাজ্ঞ এর উপরিস্থিত চাপের উপর নির্ভর করে। চাপ বৃদ্ধি পেলে স্ফুটনাজ্ঞ বৃন্ধি পায় এবং চাপ হ্রাস পেলে স্ফুটনাজ্ঞ হ্রাস পায়।

পৃথিবী পৃষ্ঠে সমুদ্র সমতলে বায়ুর চাপ সর্বাধিক। অতএব তরল পদার্থের স্ফুটনাজ্ঞাও সর্বাধিক। সমুদ্র সমতলে পানির স্ফুটনাজ্ঞ 373 K। যতই উপরে উঠা যায় বায়ুর চাপ ততই কমে। দার্জিলিং সমুদ্র সমতল <u>হতে 6800 ফুট</u> উচ্চে অবস্থিত, এখানে পানির স্ফুটনাজ্ঞ 367 K। পরীক্ষার সাহায্যে দেখা গেছে 0.261 m চার্পের পরিবর্তনে পানির স্ফুটনাজ্ঞ 273 K পরিবর্তিত হয়। এখন ব্যাখ্যা করি সুউচ্চ পর্বতে রান্না করা দুরূহ কেন ?

সুউচ্চ পর্বতের উপর বায়ুর চাপ স্বাভাবিক চাপ অপেক্ষা অনেক কম। ফলে সুউচ্চ পর্বতের উপর পানির স্ফুটনাজ্ঞ স্বাভাবিক স্ফুটনাজ্ঞ 373 K হতে অনেক কম। অর্থাৎ পর্বতের উপর পানি কম তাপমাত্রায় ফুটে। পর্বতের উপর স্ফুটনাঙ্ক কম হওয়ায় খোলা পাত্রে খাদ্যদ্রব্য সহজে সিম্প হয় না। খাদ্যদ্রব্য পূর্ণমাত্রায় সিম্প করতে অনেক বেশি সময় লাগে ও জ্বালানি খরচ বেশি হয়। এসব কারণে সুউচ্চ পর্বতে রান্না করা দুরূহ হয়ে পড়ে।

এই অসুবিধা দূর করার জন্য রান্না করার সময় পাত্রকে ঢেকে রাখতে হয়। 🕻

805

<mark>অবস্থার পরিবর্তন</mark> বইঘর.কম

১৫ ৭ বাম্পায়ন ও স্ফুটনের মধ্যে পার্থক্য Distinction between evaporation and boiling point

বাম্পায়ন ও স্ফুটনের ফলে তরল পদার্থের একই পরিণতি ঘটলেও তাদের মধ্যে পার্থক্য রয়েছে। পার্থক্যসমূহ নিমন্নপ ঃ

বাম্পায়ন	স্ফুটন
	১। যে প্রক্রিয়ায় কোন তরল পদার্থ স্থির চাপে একটি
তাপমাত্রায় শুধুমাত্র তার উপরিতল হতে ধীরে	নির্দিষ্ট তাপমাত্রায় পৌছে এর সর্বত্র হতে দুত বাম্পে
ধীরে বাম্পে পরিণত হয়, তাকে বাম্পায়ন বলে।	পরিণত হয়, তাকে স্ফুটন বলে।
বাম্পায়নে তরল পদার্থ ধীরে ধীরে বাম্পে পরিণত	২। <u>স্ফুটনে তরল পদার্থ দুত বাম্পে পরিণত হয়</u> ।
<u>- 211 </u>	
৩। বাম্পায়ন সকল তাপমাত্রায় ঘটে থাকে।	৩। একটি নির্দিষ্ট চাপে কোন একটি তরল পদার্থের
	স্ফুটন একটি নির্দিষ্ট তাপমাত্রায় সংঘটিত হয়। এই
	তাপমাত্রাকে ঐ চাপে উক্ত তরলের স্ফুটনাজ্ঞ বলে।
৪। তরল পদার্থের শুধু উপরিতল হতে বাম্পায়ন হয়।	৪। স্ফুটনে সমগ্র তরল পদার্থ হতে বাম্প উথিত হয়।
৫। বাষ্শায়ন তরল পদার্থের উপরিতলের ক্ষেত্রফলের	৫। স্ফুটন অনেকাংশে তরল পদার্থে তাপ সরবরাহের
দ্রসির নির্ভর করে।	উপর নির্ভর করে।
🕓। ব্রাষ্ণায়নে শৈত্যের সৃষ্টি হয়।	৬। স্ফুটনে শৈত্যের সৃষ্টি হয় না।
৭। তরল হতে উথিত বাম্পের চাপ তরলের	৭। তরল হতে উথিত বাম্পের চাপ তরলের উপর প্রযুক্ত
উপরিস্থিত চাপ অপেক্ষা কম।	চাপের সমান
বাম্পায়নের সময় তরল পদার্থে কোন বুদ্বুদ্	৮। স্ফুটনের সময় তরল পদার্থে ব <u>ুদবুদ দেখা দেয়।</u>
সৃষ্টি হয় না।	

১৫৮ সুন্ত তাপ বা লীন তাপ Latent heat

কোন বস্তৃকে ক্রমাগত উত্তপ্ত করতে থাকলে সাধারণত এর তাপমাত্রা বৃদ্ধি পায় এবং একটি নির্দিষ্ট তাপমাত্রায় তা এক অবস্থা হতে অন্য অবস্থাতে পরিবর্তিত হতে থাকে। বস্তৃটির অবস্থার পরিবর্তন যতক্ষণ পর্যন্ত চলতে থাকে ততক্ষণ পর্যন্ত তাপ প্রদান সত্ত্বেও তার তাপমাত্রার কোন পরিবর্তন হয় না। কিন্তু সম্পূর্ণ বস্তৃটি পরবর্তী অবস্থায় পরিবর্তিত হবার পরপরই পুনরায় তার তাপমাত্রা বৃদ্ধি পেতে থাকে।

273 K তাপমাত্রার এক খন্ড বরফকে ক্রমাগত উত্তপ্ত করতে থাকলে তা ক্রমশ গলতে থাকে এবং সম্পূর্ণ খন্ডটি গলে পানিতে পরিণত না হওয়া পর্যন্ত ঐ তাপমাত্রার কোনরূপ পরিবর্তন হয় না। তাপ প্রয়োগ অব্যাহত রাখলে বরফ গলা পানি ক্রমশ উত্তপ্ত হয়ে 373 K তাপমাত্রায় জলীয় বাম্পে পরিণত হতে থাকে এবং সম্পূর্ণ পানি বাম্পে পরিণত না হওয়া পর্যন্ত তার তাপমাত্রা 273 K স্থির থাকে। বিপরীতক্রমে ফুটন্ত পানি হতে উদ্গত বাম্পকে ক্রমাগত ঠান্ডা করতে থাকলে 273 K তাপমাত্রায় তা পানিতে পরিণত হতে শুরু করে এবং সম্পূর্ণ বাম্প পরিণত হওয়া পর্যন্ত তার তাপমাত্রা 273 K স্রিণ্ড পরিণত হতে শুরু করে এবং সম্পূর্ণ বাম্প পরিণত হওয়ার পর পরই কেবল এ তাপমাত্রার পরিবর্তন ঘটে। আবার কিছু পরিমাণ পানিকে ক্রমাগত শীতল করতে থাকলে 273 K তাপমাত্রায় তা জমে বরফে পরিণত হতে থাকে এবং যতক্ষণ পর্যন্ত না সম্পূর্ণ বাম্প পানিত থাকলে 273 K তাপমাত্রায় তা জমে বরফে পরিণত হতে থাকে এবং যতক্ষণ পর্যন্ত না সম্পূর্ণ পানি বরফে পরিণত হয় ততক্ষণ পর্যন্ত শীতল করা সত্ত্বেও তার তাপমাত্রা 273 K স্থির থাকে। সুতরাং দেখা যাচ্ছে কঠিন পদার্থকে তরলে বা তরল পদার্থকে বায়বীয় পদার্থে এক কথায় যে কোন বস্তুকে এক অবস্থা হতে অন্য অবস্থায় পরিণত ক্রতে **কিছু তাপ বর্জন বা শোষণের প্রয়োজন হয়।** এই তাপ বাহ্যিক প্রকাশ পায় না অর্থাৎ বস্তুর তাপমাত্রার পরিবর্তন ঘটে না। একে সুন্ত তাপ বা লীন তাপ বলে

সংজ্ঞা <u>৯ যে তাপ বস্তুর তাপমাত্রার পরিবর্তন না ঘটিয়ে</u> অবস্থার পরিবর্তন ঘটায় তাকে বস্তুর ঐ অবস্থা পরিবর্তনে<u>র সন্ত তাপ বা লীন তাপ</u> বলে॥ বস্তু কর্তৃক গৃহীত বা বর্জিত তাপ পদার্থের অবস্থার পরিবর্তন ঘটাতে কাজ করে। আমরা জানি কঠিন পদার্থের অণুগুলোর মধ্যকার প্রবল আকর্ষণ বলের জন্য নিয়মিত সজ্জায় সজ্জিত থাকে। অণুগুলো নিজ নিজ অবস্থানে থেকে কাঁপতে থাকে। তাপমাত্রা বাড়ালে অণুগুলোর কম্পন বাড়তে থাকে এবং এক সময় অণুগুলোর নিয়মিত সজ্জা তেজো যায়। এই অবস্থা পরিবর্তনের জন্য তাপ ব্যয় হয় বলেই তাপমাত্রার কোন পরিবর্তন হয় না। তরল পদার্থের ক্ষেত্রে ও অনুরূপ ঘটনা ঘটে। তরলের অণুগুলোর মধ্যকার আকর্ষণ বল কঠিন পদার্থের অণুগুলোর মধ্যকার বলের ন্যায় প্রবল না হলেও কিছুটা আকর্ষণ বল রয়েছে, যা অণুগুলোকে এক জায়গায় ধরে রাখে। তরল থেকে বায়বীয় অবস্থায় পরিবর্তনের জন্য তাপশক্তির প্রয়োজন হয়। ফলে প্রযুক্ত তাপ অবস্থা পরিবর্তনের কাজে ব্যয়িত হয় বলেই তরল থেকে বায়বীয় অবস্থায় পরিবর্তনের সময়ও তাপমাত্রা স্থির থাকে।

১৫·৯ আপেক্ষিক সুন্ত তাপ Specific latent heat

বস্তুর অবস্থা পরিবর্তনের জন্য যে সুন্ত তাপ প্রয়োজন হয় তা বস্তুর ভর ও উপাদানের উপুর নির্ভর করে। সুতরাং একই পদার্থের ভর ভিন্ন হলে সুন্ত তাপও ভিন্ন হবে। বেশি ভরের সুন্ত তাপ বেশি হবে। কিন্তু একক ভরের কোন নির্দিষ্ট বস্তুর সুন্ত তাপ কেবল বস্তুর উপাদানের উপর নির্ভর করে। একক ভরের এই সুন্ত তাপকে আপেক্ষিক সুন্ত তাপ বলে।

সংজ্ঞা ঃ একক ভরের কোন বস্তু তার তাপমাত্রার পরিবর্তন না ঘটিয়ে এক অবস্থা হতে অন্য অবস্থায় পরিণত হতে যে পরিমাণ তাপ গ্রহণ বা বর্জন করে তাকে ঐ বস্তৃর ঐ অবস্থা পরিবর্তনের আপেক্ষিক সুন্ত তাপ বলে। একে L দ্বারা প্রকাশ করা হয়।

ব্যাখ্যা : মনে করি m ভরের কোন পদার্থকে তার তাপমাত্রার কোন পরিবর্তন না স্মটিয়ে এক অবস্থা হতে অন্য অবস্থায় পরিণত করতে Q প্ররিমাণ তাপ গ্রহণ বা বর্জন করল। অতএব ঐ বস্তুর আপেক্ষিক সুশ্ত তাপ,

$$L = \frac{\overline{\text{orm}}}{\overline{\text{org}}} = \frac{Q}{m}$$
(1)

আপেক্ষিক সুন্ত তাপের একক ঃ এস. আই. পম্বতিতে তাপের একক জুল এবং ভরের একক কিলোগ্রাম। অতএব, আপেক্ষিক সুন্ত তাপের একক জুল/কিলোগ্রাম (Jkg⁻¹)।

আপেক্ষিক সুন্ত তাপের প্রকারভেদ ঃ আপেক্ষিক সুন্ত তাপ মূলত চার প্রকার।

() গলনের আপেক্ষিক সুন্ত তাপ (Latent heat of fusion)

্র্র্স কঠিনীভবনের আপেক্ষিক সুশ্ত তাপ (Latent heat of solidification)

🔏) বাম্পীভবনের আপেক্ষিক সুশ্ত তাপ (Latent heat of vaporisation) এবং

(8) ঘনীভবনের আপেক্ষিক সুশ্ত তাপ (Latent heat of condensation)।

নিম্নে এগুলো ব্যাখ্যা করা হল।

(১) গলনের আপেক্ষিক সুন্ত তাপ ঃ কোন কঠিন পদার্থের একক ভরকে তার গলনাজ্ঞক রেখে তাপমাত্রার পরিবর্তন না ঘটিয়ে কঠিন হতে তরলে পরিণত করতে যে পরিমাণ তাপের প্রয়োজন হয়, তাকে ঐ পদার্থের গলনের আপেক্ষিক সুন্ত তাপ বলে। একে L_f দ্বারা চিহ্নিত করা হয়। $L_f = Q/m$.

মনে করি, ব্রিফ গলনের আপেক্ষিক সুন্ত তাপ (336000 J kg-1) উক্ত উক্তি দারা আমরা বৃঝি, 273 K বা, 0°C তাপমাত্রার 1 kg বরফকে উক্ত তাপামাত্রার পানিতে পরিণত ক্রুন্তে 336000 J তাপের প্রয়োজন হবে।

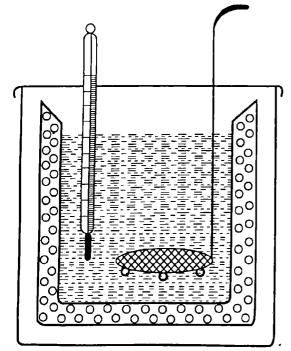
(২) কঠিনীডবনের আপেক্ষিক সুশ্ত তাপ : একক ভরের কোন তরন পদার্ধকে এর তাপমাত্রার পরিবর্তন না ঘটিয়ে শুধুমাত্র তরল অবস্থা হতে কঠিন অবস্থায় পরিণত হতে যে পরিমাণ তাপ পরিত্যক্ত হয় তাকে ঐ তরনের কঠিনীডবনের আপেক্ষিক সুশ্ত তাপ বলে।

বইঘর.কম

273 K বা 0°C তাপমাত্রার 1 kg পানি হতে 336000 J তাপ নিক্ষাশিত বা অপসারিত হলে তা 273 K বা 0°C-এর বরফে পরিণত হবে। অতএব পার্নির কঠিনীভবনের আপেক্ষিক সুল্ত তাপ 336000 J kg⁻¹)

(৩) বাষ্ণীভবনের আপেক্ষিক সুগ্ত তাপ ঃ একক ডরের তরল পদার্থকে তার স্ফুটনাজ্ঞে রেখে তাপমাত্রার কোন পরিবর্তন না ঘটিয়ে শুধু তরল হতে বাম্পে পরিণত করতে যে পরিমাণ তাপের প্রয়োজন হয় তাকে এ তরলের বাম্পীভবনের আপেক্ষিক সুগ্ত তাপ বলে। একে L_v দ্বারা প্রকাশ করা হয়। $L_v = Q/m$.

পানির বাম্পীভবনের আপেক্ষিক সুশ্ত তাপ 2268000 J kg⁻¹ এই উক্তি দ্বারা আমরা বুঝি যে, 1kg পানিকে তার স্ফুটনাব্রুক অর্ধাৎ 373 K-এ রেখে 2268000 J তাপ প্রয়োগ করলে তা 373 K বা 100°C-এর বাম্পে পরিণত হবে।


(৪) ঘনীভবনের আপেক্ষিক সুন্ত তাপ ঃ একক ভরের কোন বায়বীয় পদার্থকে তার তাপমাত্রার কোন পরিবর্তন না ঘটিয়ে শুধুমাত্র বায়বীয় অবস্থা হতে তরলে পরিণত করতে যে পরিমাণ তাপ বর্জিত হয় তাকে ঐ বায়বীয় পদার্থের ঘনীভবনের আপেক্ষিক সুন্ত তাপ বলে।

373 K বা 100°C তাপমাত্রার 1 kg জলীয় বাম্প হতে 2268000 J তাপ বের হয়ে গেলে তা 373 K বা 100°C তাপমাত্রার পানিতে পরিণত হবে অর্থাৎজিলীয় বাম্পের ঘনীভবনের সুশ্ত তা<u>প 2268000 J kg⁻¹ l</u>

১৫.১০ বরফ গলনের আপেক্ষিক সুপ্ত তাপ নির্ণয় Determination of latent heat of fusion of ice

বরফ গলনের আপেক্ষিক সুশ্ত তাপ বিভিন্ন পদ্ধতিতে নির্ণয় করা যায়। এখানে আমরা শুধু **মিশ্রণ পশ্ধতি**

আলোচনা করব।

্চিত্র ১৫ ২

কার্যপন্ধতি (Procedure) : প্রথমে একটি পরিক্ষার ও শুষ্ণ ক্যালরিমিটারের আলোড়কের নিচের প্রান্তে সরু তারের একটি জাল যুক্ত করি [চিত্র ১৫ ২]। এখন আলোড়কসহ ক্যালরিমিটার ওজন করি। অতঃপর ক্যালরিমিটারের দুই-তৃতীয়াংশ সামান্য উষ্ণ পানিতে ভর্তি করে পুনরায় ওজন করি। দ্বিতীয় ও প্রথম পরিমাপের পার্থক্য হতে পানির ভর পাওয়া যায়। একটি থার্মোমিটারে পানির স্থির তাপমাত্রা পড়ে দেখি। এখন কয়েক টুকরা পরিষ্কার বরফ চোষ কাগজ দ্বারা শুষ্ক করে তাড়াতাড়ি এর কয়েকটি টুকরা তাপ কুপরিবাহী চিমটা দ্বারা ধরে ক্যালরিমিটারের পানিতে যোগ করি এবং আলোডকের জাল দ্বারা টুকরাগুলোকে সর্বদা পানির নিচে রেখে আস্তে আস্তে পানি নাড়তে থাকি। এ অবস্থায় বরফ গলতে থাকে এবং পানির তাপমাত্রা ক্রমশ কমতে থাকে। সমস্ত বরফ গলে যাওয়ার পর থার্মোমিটার দ্বারা মিশ্রণের সর্বনিম্ন তাপমাত্রার পাঠ গ্রহণ করি। এর পর পানি ঘরের তাপমাত্রা লাভ করলে পানিসহ ক্যালরিমিটার ওজন করি। ওজনের সর্বশেষ দুই পরিমাপের পার্থক্য হতে গলিত বরফের ভর পাওয়া যায়।

হিসাৰ ও গণনা ঃ

মনে করি		
আলোড়কসহ ক্যালরিমিটারের ভর	=	M kg
উষ্ণ পানির ভর	=	$m_1 \mathrm{kg}$
বরফের ভর	=	m kg

উচ্চ মাধ্যমিক পদার্থবিজ্ঞান BG & JEWEL উষ্ণ পানির তাপমাত্রা $= \theta_1^{\circ}C$ = $\theta^{\circ}C$ মিশ্রণের তাপমাত্রা ক্যালরিমিটারের উপাদানের আপেক্ষিক তাপ = S J $\ kg^{-1} \ K^{-1}$ পানির আপেক্ষিক তাপ = $S_1 J kg^{-1} K^{-1}$ এবং বরফ গলনের আপেক্ষিক সুপ্ত তাপ = $L_f J kg^{-1}$ এখানে ক্যালরিমিটার এবং উষ্ণ পানি তাপ হারাবে। θ₁°C হতে θ°C-এ নামতে ক্যালরিমিটার কর্তৃক হারানো তাপ $\mathbf{Q}_1 = \mathbf{ভ} \mathbf{x} \times \mathbf{w}$ ঃ তাপ imes আপেক্ষিক ত্বাপমাত্রার পার্থক্য $= MS(\theta_1 - \theta) J$ পুনঃ, θ1°C হতে θ°C-এ নামতে উষ্ণ পানি কর্তৃক হারানো তাপ, $\mathbf{Q}_2 = \mathbf{\overline{o}}\mathbf{x} \times \mathbf{\overline{o}}\mathbf{i}\mathbf{s}$ তাপ imes তাপমাত্রার পার্থক্য $= m_1 S_1 (\theta_1 - \theta) J$ মোট হারানো তাপ, $Q = Q_1 + Q_2$ $= MS(\theta_1 - \theta) J + m_1S_1(\theta_1 - \theta) J$ $= (\mathrm{MS} + m_1 \mathrm{S}_1) \ (\theta_1 - \theta) \ \mathrm{J}$ (A)

বরফ দুই পর্যায়ে এ তাপ গ্রহণ করবে। প্রথমত 0°C তাপমাত্রায় বরফ গলে 0°C তাপমাত্রার পানিতে পরিণত হতে গৃহীত তাপ

$$Q_3 = ভর \times$$
 আপেক্ষিক সুশ্ত তাপ
 $= m \times L_f J$ (i)

দ্বিতীয়ত 0°C হতে 0°C-এ উঠতে গলিত বরফ পানি কর্তৃক গৃহীত তাপ

$$Q_4 = {est} \times$$
 আঃ তাপ \times তাপমাত্রার পার্থক্য $= mS_1(\theta - 0)$ (ii)
 $= mS_1 \theta J$

সুতরাং মোট গৃহীত তাপ

$$Q' = Q_3 + Q_4$$

= $mL_f J + mS_1 \theta J$
= $(mL_f + mS_1 \theta) J$ (B)

যদি অন্য কোন উপায়ে তাপের আদান-প্রদান না হয়ে থাকে তবে তার মোট হারানো তাপ = মোট গৃহীত তাপ

সমীকরণ (A) = সমীকরণ (B)
বা, Q = Q'
বা, (MS +
$$m_1S_1$$
) ($\theta_1 - \theta$) J = ($mL_f + mS_1\theta$) J
নির্ধেয় সুশ্ত তাপ
 $L_f = \left\{ \frac{(MS + m_1S_1)(\theta_1 - \theta)}{m} - S_1 \theta \right\} J kg^{-1}$ (2)

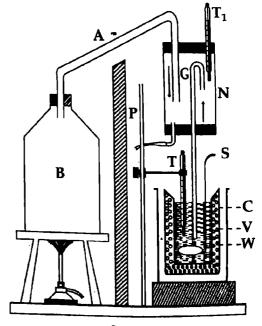
এখন $M,S,m_1,m, heta_1$ এবং heta–এর মান জেনে L_f -এর মান বের করা হয়।

সতৰ্কতা ঃ

১। বরফের খন্ডগুলোকে চোষ কাগন্ধ (blotting paper)-এর সাহায্যে মুছে শুকিয়ে নিতে হয় যাতে বরফের গায়ে পানি লেগে না থাকে। বরফের সাথে কিছু পানি ক্যালরিমিটারে প্রবেশ করলে L_/-এর মান প্রকৃত মান অপেক্ষা কম হবে।

২। বরফের টুকরাগুলো হাত দিয়ে না ধরে চিমটা দিয়ে ধরে তাড়াতাড়ি পানিতে ফেলতে হয়, যাতে হাতের স্পর্শে এবং পরিপার্শ্ব হতে তাপ গ্রহণ করে বরফ গলে না যায়। বরফের সাথে পানি প্রবেশ করলে L_{্র}এর সঠিক মান পাওয়া যাবে না।

৩। বরফ খন্ড আলোড়ক বা জালযুক্ত নাড়ানি দিয়ে নাড়তে হবে যাতে বরফের খন্ডগুলো পানির উপরে ভাসতে না পারে। বরফ খন্ডগুলো পানির উপরে ভাসলে বায়ুমন্ডল হতে কিছু তাপ গ্রহণ করবে ফলে L_{্র}এর মান প্রকৃত মান অপেক্ষা কম হবে।


৪। বিকিরণ প্রক্রিয়ায় তাপক্ষয় রোধ করার জন্য বরফ ফেলার পূর্বে ক্যালরিমিটার ও পানির তাপমাত্রা এবং কক্ষ তাপাত্রার পার্থক্য 5°C-এর কম রাখা হয়। আবার বরফের পরিমাণ এমন নেওয়া উচিত যাতে মিশ্রণের তাপমাত্রা কক্ষ তাপমাত্রার 5°C কম হয়। কক্ষ তাপমাত্রার উপরে এবং নিচে সমান তাপমাত্রার পার্থক্য থাকায় বরফ ফেলার পূর্বে ক্যালরিমিটার হতে যে পরিমাণ তাপ ক্ষয় হয়, মিশ্রণের পর সমপরিমাণ তাপ পরিপার্শ্ব হতে ক্যালরিমিটারে প্রবেশ করে, ফলে L_f-এর পরিবর্তন হয় ন।

১৫ ১০ মিশ্রণ পম্ধতিতে পানির বাম্পীভবনের আপেক্ষিক সুশ্ত তাপ নির্ণয় Determination of latent heat of vaporisation of water by mixture method

নিচের চিত্রে [চিত্র ১৫ ৩] পরীক্ষার আবশ্যকীয় ব্যবস্থাপনা দেখান হয়েছে।

যন্ত্রের বর্ণনা ঃ B একটি স্ফুটন পাত্র বা বয়লার (Boiler)। এই পাত্রে পানি নিয়ে বার্ণারের সাহায্যে পানি উত্তপ্ত করে জলীয় বাম্প উৎপন্ন করা হয়। পাত্রের মুখের ছিদ্র দিয়ে একটি বাঁকা নুল A যুক্ত রয়েছে।

N একটি মোটা কাচের চোঙ ; এর নাম বাম্প-ফাঁদ (steam-trap)। এটি বাম্পকে পানি হতে মুক্ত করে। N চোঙের দুই মুখ কর্ক দ্বারা বন্দ্ধ। উপরের কর্কের মধ্য দিয়ে নল A-এর মুক্ত প্রান্ত বাম্প-ফাঁদের প্রায় নিচের মুখ পর্যন্ত এবং কর্কের মধ্য দিয়ে আর একটি কাচের নল G বাম্প-ফাঁদের প্রায় উপরের মুখ পর্যন্ত প্রবেশ করান থাকে। G নলের নিচের প্রান্ত ক্যালরিমিটার C-এ ঢুকানো থাকে। A নল দিয়ে বাম্পের সাথে পানি বাম্প-ফাঁদে প্রবেশ করলে, ঐ পানি নিচের কর্কের উপর থেকে যায় এবং শুম্ফ বাম্প G নল দিয়ে ক্যালরিমিটারে প্রবেশ করে। বাম্প-ফাঁদের নিচের ফর্কের উপর পানি জমা হলে তা ঐ কর্কের সাথে যুক্ত আর একটি নল দিয়ে ফাঁদ হতে বের হয়ে যায়।

চিত্র ১৫'৩

P একটি পর্দা। বার্ণার ও স্ফুটন পাত্র হতে ক্যালরিমিটারে সরাসরি তাপ চলচল কম্ধ করার জ্বন্য তাদের মাঝে অ্যাস্বেস্টসের তৈরি এই পর্দা দেয়া থাকে। কার্যপ্রণালী ঃ প্রথম স্ফুটন পাত্র B-তে পানি ফুটিয়ে বাম্প উৎপন্ন করি। পানি ফুটে ওঠার অবসরে নাড়ানীসহ একটি পরিক্ষার ও শুক্ষ ক্যালরিমিটার ওজন করি। এর দুই-তৃতীয়াংশ কক্ষ তাপমাত্রায় বিশুন্দ্ব পানিতে ভর্তি করি এবং পুনরায় ওজন করি। এই দুই-এর পার্থক্য হতে ঠান্ডা পানির ভর বের করি। একটি সুবেদী থার্মোমিটারের সাহায্যে ক্যালরিমিটার ও ঠান্ডা পানির প্রাথমিক তাপমাত্রা বের করি। যখন B পাত্র হতে আগত জলীয় বাম্প বান্ধ-ফাঁদে পানিমুক্ত হবার পর G নল দিয়ে বের হতে থাকে, তখন ক্যালরিমিটারটিকে বাম্প-কাঁদের নিচে বসিয়েই ঐ নলের নিচের মুখটি ক্যালরিমিটারের পানির মধ্যে ডুবিয়ে দেই এবং বাম্পের তাপমাত্রা T₁ থার্মোমিটারে গ্রহণ করি। এ অবস্থায় পানিমুক্ত বাম্প ক্যালরিমিটারের সাধারণ পানির সংস্র্দের্শ তাপ বর্জন করে ঘনীভূত হয়ে পানিতে পরিণত হয়। এতে ক্যালরিমিটার ও পানির তাপমাত্রা বাড়তে থাকে। পানির তাপমাত্রা কক্ষ তাপমাত্রা হতে প্রায় 5°C বেশি হলে ক্যালরিমিটার হতে G নলটি সরিয়ে নিই। এর পর থার্মোমিটার T-এর সাহায্যে পানির সর্বোচ্চ তাপমাত্রা বাষ্ঠ বি গ্রহণ করি। কিছুক্ষণ পর তাদের ওজন নিই। ওজনের তৃতীয় ও দ্বিতীয় পরিমাপের পার্থক্য হতে ঘনীভূত বাব্দের পরিমাণ নির্ণয় করি।

হিসাৰ ও গণনা ঃ মনে করি, আলোড়কসহ ক্যালরিমিটারের ভর = W kg ক্যালরিমিটারের উপাদানের আঃ তাপ = S J kg⁻¹ K⁻¹ ক্যালরিমিটারে ব্যবহৃত পানির ভর = M kg পানির আঃ তাপ = $S_1 J kg^{-1} K^{-1}$ ঘনীভূত বাম্পের ভর = m kg ক্যালরিমিটার ও পানির প্রাথমিক তাপমাত্রা = $heta_{I}^{\circ}C$ মিশ্রণের সর্বোচ্চ তাপমাত্রা = 0°C স্ফুটন পাত্র হতে উথিত বাম্পের তাপমাত্রা = 100°C এবং পানির বাষ্ণীভবনের জাপেক্ষিক্ সুশ্ত তাপ = $L_v \; J \; kg^{-1}$ এখানে ক্যালরিমিটার ও পানি তাপ গ্রহণ করবে এবং বাম্প দুই পর্যায়ে সে তাপ হারাবে। এখন, $\theta_1^{\,\circ}\,C$ হতে $\theta^{\,\circ}C$ -এ উঠতে আলোড়কসহ ক্যালরিমিটার কর্তৃক গৃহীত তাপ Q₁ = তর × আঃ তাপ × তাপমাত্রার পার্থক্য = WS ($\theta - \theta_1$) J $\theta_1^{\circ}C$ হভে $\theta^{\circ}C$ -এ উঠতে পানি কর্তৃক গৃহীত তাপ $Q_2 = {
m cond} \times {
m cond} \times {
m cond} {
m cond} {
m and} {
m cond} {
m and} {
m cond} {
m c$ $= MS_1 (\theta - \theta_1) J$ মোট গৃহীত তাপ, $\mathbf{Q} = \mathbf{Q}_1 + \mathbf{Q}_2$ $= (WS + MS_1) (\theta - \theta_1) J$ (A) পুনঃ 100°C তাপমাত্রার বাম্প ঘনীভূত হয়ে 100°C তাপমাত্রার পানিতে পরিণত হতে হারানো তাপ Q₃ = ভর × বাম্পীভবনের আপেক্ষিক সুশ্ত তাপ $= (m \times L_v) J$ 100° C হতে θ°C-এ নামতে ঘনীভূত বাম্প (যা পানিতে পরিণত হয়েছে) কর্তৃক হারানো তাপ ${
m Q}_4~=$ ভর imes আঃ তাপ imes তাপমাত্রার পার্থক্য $= mS_1 (100 - \theta) J$

বইঘর.কম

মোট হারানো তাপ

$$Q' = Q_3 + Q_4$$

= $mL_{\bar{v}} J + mS_1 (100 - \theta) J$
= $\{mL_v + mS_1 (100 - \theta)\} J$ (B)

সুতরাং তাপ পরিমাপের নীতি হতে পাই মোট হারানো তাপ = মোট গৃহীত তাপ

বা, সমীকরণ (A) = সমীকরণ (B)

বা, Q'=Q

বা,
$$\{mL_v + mS_1(100 - \theta)\} J = (WS + MS_1)(\theta - \theta_1) J$$

নির্শেয় $L_v = \left[\frac{(WS + MS_1)(\theta - \theta_1)}{m} - S_1(100 - \theta)\right] J \text{ kg}^{-1}$ (3)

এখন W, S, M, S₁, m, θ এবং θ₁ -এর মান জেনে সমীকরণ হতে L_v-এর মান বের করা হয়। সভৰ্কতা ঃ

১। ক্যালুরিমিটারে ধীরে ধীরে বাম্প প্রবাহিত করতে হবে যাতে পানি ছিটকে বাইরে না পড়ে। পানি বাইরে ছিটকে পড়লে L,-এর প্রকৃত মান প্রাপ্ত মান অপেক্ষা কয় হবে।

২। বাম্প ফাঁদ হতে বাম্প ক্যালরিমিটারে প্রবেশ করার পথে বাম্প যাতে ঘনীভূত না হয়, সেজন্য বাম্প ফাঁদের নির্গম নলটিকে তুলা বা অন্য অপরিবাহী পদার্থ দ্বারা আবৃত রাখতে হবে। অন্যথায় L,-এর প্রকৃত মান কম হবে।

৩। বাষ্ণ খুব ধীরে ধীরে তৈরি করতে হবে। অন্যধায় বাষ্ণ ফাঁদের নির্গম নল দিয়ে বাম্পের সাথে পানি প্রবেশ করতে পারে। এডে L, -এর নান পরিবর্তিত হবে।

৪। ক্যালরিমিটারকে তাপক্ষয় নিরোধক প্রকোষ্ঠে রাখতে হবে যাতে পরিবহণ ও পরিচলন প্রক্রিয়ায় ক্যালরিমিটার হতে তাপ ক্ষয় না হয়।

৫। ক্যালরিমিটার এবং বয়লারের মাঝখানে একটি অপরিবাহী পদার্থের পার্টিশন রাখতে হবে, যাতে ক্যালরিমিটার বয়লার হতে কোন তাপ গ্রহণ করতে না পারে।

৬। বিকিরণজনিত তাপক্ষয় রোধ করার জন্য পরীক্ষণের শুরুতে ক্যালরিমিটার ও পানির তাপমাত্রা পরিপার্শ্বের তাপমাত্রা অপেক্ষা 5°C কম থাকে। আবার ক্যালরিমিটারে নির্দিষ্ট পরিমাণ বাম্প প্রবাহিত করতে হবে যাতে মিশ্রণের চূড়ান্ত তাপমাত্রা পরিপার্শ্বের তাপমাত্রা অপেক্ষা 5°C বেশি হয়। এতে বিকিরণজনিত ত্রুটি দূর হবে।

১৫.১০ কয়েকটি পদার্থের গলনাক্ষ, স্ফুটনাক্ষ, আপেক্ষিক সুন্ত তাপ				
পদার্থ	গলনাক্ত	গলনের আপেক্ষিক	স্ফুটনাজ্ঞ্ব	বাশীভবনের
	(°C) 🔨	সুশ্ত তাপ	(°C)	_আপেক্ষিক সুন্ততাপ
		(Jkg ⁻¹)		, (Jkg ⁻¹)
পানি	0.0	33.5×10^{4}	100	22:6 × 10 ⁵
পারদ	- 38.9	1.14×10^4	356 6	2.96 × 10 ⁵
বেনজিন	5.2	12.6×10^{4}		3 [.] 94 × 10 ⁵
ইথাইল অ্যালকোহল	- 114 4	$10^{8} \times 10^{4}$	78 [.] 3	855×10^{5}
তামা	1083	20.7×10^{4}	2566	47 [.] 3 × 10 ⁵
সোনা	1 063	$6^{\circ}28 \times 10^{4}$	2808	$17^{\circ}2 \times 10^{5}$
সীসা	327 3	2.32×10^{4}	1750	8 [.] 59 × 10 ⁵
লোহা	1538	28 '9 × 10 ⁴	2750	63.4×10^5 •

১৫'১১ সজ্জট ধ্রুবক

Critical eonstant

প্রত্যেক গ্যাসের তিনটি সির্ক্রট ধ্রবক আছে ; যথা—সঙ্কট তাপমাত্রা, সঙ্কট চাপ ও সঙ্কট আয়তন।

সঙ্কট তাপমাত্রা (Critical temperature) : কোন গ্যাসকে যে কোন তাপমাত্রায় রেখে শুধুমাত্র চাপ প্ররোগে তরল অবস্থার রূপান্তরিত করা যায় না। তাপমাত্রা একটি নির্দিষ্ট তাপমাত্রার সমান অথবা নিচে থাকলে তাকে শুধু চাপ প্রয়োগে তরলে পরিণত করা যায়। এই তাপমাত্রাকে উক্ত গ্যাসের সঙ্কট তাপমাত্রা বা ক্রান্তি তাপমাত্রা বলে।

সংজ্ঞা : একটি গ্যাস সর্বোচ্চ যে তাপমাত্রায় থাকলে শুধু চাপ প্রয়োগে তাকে তরলে পরিবর্তন করা যায় একে এর সজ্জট তাপমাত্রা বলে। বিভিন্ন গ্যাসের সজ্জট তাপমাত্রা বিভিন্ন। যেমন কার্বন ডাই-অক্সাইড, হাইদ্রোজেন ও অক্সিজেনের সজ্জট তাপমাত্রা যথাক্রমে 3041 K, 249 K এবং 254 K।

'কার্বন ডাই-অক্সাইড গ্যাসের সজ্জট তাপমাত্রা 304'1 K' —এটা দ্বারা বুঝা যায় যে, তাপমাত্রা 304'1K অথবা তার নিচে থাকলে কার্বন ডাই-অক্সাইড গ্যাসকে শুধু চাপ প্রয়োগ দ্বারা তরলে পরিণত করা যাবে এবং এই তাপমাত্রার উর্ধ্বে থাকলে চাপ প্রয়োগ দ্বারা তাকে তরলে পরিণত করা যাবে না।

সঙ্কট চাপ (Critical pressure) : কোন গ্যাসের সঙ্কট তাপমাত্রায় যে চাপ প্রয়োগ করে তাকে ত্রদৈ পরিণত করা যায় তাকে এ গ্যাসের সঙ্কট চাপ বনে। হাইড্রোজেন, অক্সিজেন ও কার্বন ডাই-অক্সাইড গ্যাসের সঙ্কট চাপ যথাক্রমে 13, 50 ও 73 বায়ুমণ্ডলীয় চাপের সমান। কাজেই 304'1 K তাপমাত্রায় কার্বন ডাই-অক্সাইড গ্যাসে 73 কায়ুমণ্ডলীয় চাপের সমান চাপ প্রয়োগ করলে তা তরলে পরিণত হবে।

সুক্রুট আয়র্তন (Critical volume) : সুক্রুট তাপমাত্রা ও চাপে একক ডরের কোন গ্যাসের আয়তনকে এর সক্রুট আয়তন বলে। হাইদ্রোজেন, অঞ্চিজেন ও কার্বন ডাই-অক্সাইড গ্যাসের সক্রুট আয়তন যথাক্রমে 0[.]322, 0[.]032 এবং 0[.]0217 m³। এই উক্তির অর্থ—সক্রুট তাপমাত্রা এবং চাপে 1 kg হাইদ্রোজেন, 1 kg অক্সিজেন এবং 1 kg কার্বন ডাই-অক্সাইডের আয়তন যথাক্রমে 0[.]322 m³, 0[.]032 m³ এবং 0[.]0217 m³।

১৫.১২ দশা

Phase

জামরা জানি পদার্থ তিনটি অবস্থায় থাকতে পারে, যথা— (১) কঠিন (Solid), (২) তরল (Liquid) এবং (৩) বায়বীয় বা গ্যাস (Gas)। পদার্থের এমনি অবস্থাকে এক একটি দশা বলে। দশা শব্দের শব্দগত অর্থ **অবস্থা**। কিন্তু বিজ্ঞানের ভাষায় দশার নিম্নরূপ সংজ্ঞা দেয়া যেতে পারে।

সংজ্ঞা ঃ কোন ব্যবস্থা বা সিস্টেমের একটি নির্দিষ্ট অংশ যার উপাদানগত গঠন সর্বত্র অভিনু এবং ভৌত বিচারে অন্যান্য অংশ থেকে পৃথকযোগ্য অর্থাৎ কোন যান্ত্রিক প্রক্রিয়ায় অন্যান্য অংশ হতে সহজে পৃথক করা যায়, তাকে দশা বলে।

সিস্টেম বা ব্যবস্থা বলতে আমরা বুঝি জড় জগতের একটি নির্দিষ্ট অংশ যার উপর পরীক্ষা-নিরীক্ষা চালান হয়।

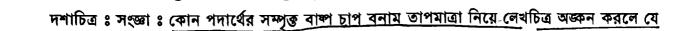
দশকে দুই ভাগে ভাগ করা হয়, যথা ঃ (ক) সমসত্ত্ব দশা (Homogeneous phase) এবং (খ) অসমসত্ত্ব দশা (Heterogeneous phase)।

সমসত্ত্ব দশা হয়ে ব্যবস্থায় বা সিস্টেমে মাত্র একটি দশা আছে, তাকে সমসত্ত্ব দশা বলে অক্সিজেন (O₂) এবং হাইড্রোজিনের সমন্বয়ে পানি (H₂O) উৎপন্ন হয়। পানি একটি তরল পদার্থ <u>আর উপা</u>দানগত গঠন সর্বত্র সমান। এটি একটি সমসত্ত্ব দশী।

অসমসত্ত্ব দশা & যে ব্যবস্থায় একাধিক দশা বিদ্যমান আছে, তাকে অসমসত্ত্ব দশা বলে। যেমন-একটি আবন্ধ পাত্রে পানি-জলীয় বাম্প একত্রে একটি ব্যবস্থা বা সিস্টেম নির্দেশ করে কিন্তু পানি ও জলীয় বাম্প দুটি তিন্ন দশা। সূতরাং, পানি ও জলীয় বাম্প একটি অসমসত্ত্ব দশা।

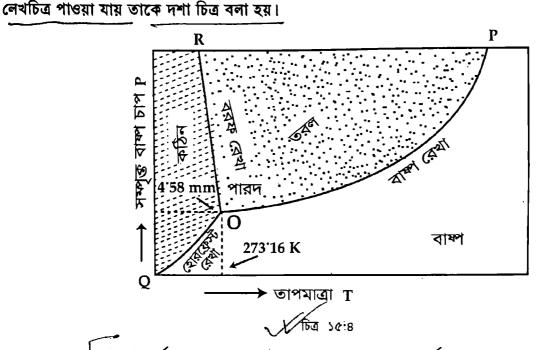
১৫ ১৩ দশা চিত্র এবং ত্রৈধ বিন্দু

Phase diagram and Triple point


পার্মির দশা চিত্র : একটি ছক কাগজের X-অক্ষৈ তাপমাত্রা এবং Y-অক্ষে সম্পৃক্ত বাষ্ণ চাপ স্থাপন করে দশাচিত্র অজ্ঞন করা হল।

যে তাপমাত্রায় পানি এবং জলীয় বাষ্প সহ-অবস্থানে থাকে, সে তাপমাত্রা বনাম সম্পৃক্ত জলীয় বাষ্পের চাপ নিয়ে লেখচিত্র অজ্ঞকন করলে যে লেখচিত্র পাওয়া যাবে তাকে OP রেখা দ্বারা সূচিত করি। এ রেখার নাম বান্দ রেখা (Steam line) যে তাপমাত্রায় কঠিন (বরফ) এবং জলীয় বাম্প সহ-অবস্থানে থাকে, সে তাপমাত্রা বনাম সম্পৃক্ত জলীয় বাম্পের চাপ নিয়ে লেখচিত্র অজ্ঞন করলে যে লেখচিত্র পাওয়া যাবে, <u>তাকে OQ রেখা দ্বা</u>রা সূচিত করি। এ রেখার নাম হোরফ্রোস্ট রেখা (Hoarfrost line)। আবার যে তাপমাত্রায় কঠিন (বরফ) এবং তরল (পানি) সহ-অবস্থানে থাকে সে তাপমাত্রা বনাম সম্পৃক্ত জলীয় বাম্পের চাপ নিয়ে লেখচিত্র অজ্ঞকন করলে যে লেখচিত্র পাওয়া যাবে তাকে OR রেখা দ্বারা সূচিত করি। এই রেখার নাম বরফ রেখা (Ice line)।

উপরোক্ত তিনটি রেখা একটি সাধারণ বিন্দু O-তে ছেদ করেছে। এই সাধারণ বিন্দুকে তৈধ বিন্দু বলে। সুতরাৎ পানির ত্রেধ বিন্দুর নিম্নলিখিত সংজ্ঞা দেয়া যেতে পারে।


সংজ্ঞা ঃ যে তাপমাত্রায় বিশুন্ধ বরফ, বিশুন্ধ পানি এবং সম্পৃত্ত জলীয় বান্ধ তাপগত সহ-অবস্থানে থাকে তাকে পানির ত্রেধ বিন্দু বলে। পানির ত্রেধ বিন্দু 0.16°C বা 273.16 K (ত্রেধ বিন্দুতে চাপ 4.58 mm পারদ বা 612.62 Nm⁻²)। ****-*

সাধারণভাবে বলা যায়, যে তাপমাত্রায় কোন পদার্থের কঠিন, তরল এবং বাষ্প একটি নির্দিষ্ট চাপে

অবস্থার পরিবর্তন

বইঘর.কম

তাপগত সহ অবস্থানে থাকে তাকে উক্ত পদার্থের ত্রেধ বিন্দু বলে)

স্মরণিকা

অবস্থার পরিবর্তন : তাপ গ্রহণে বা তাপ বর্জনে পদার্থ এক অবস্থা হতে অন্য এক অবস্থায় রূপান্তরিত হয়। এর নাম পদার্থের অবস্থার পরিবর্তন ; যেমন গলন, কঠিনীভবন, বাম্পীভবন, ঘনীভবন, উর্ধ্বপাতন, তুহিনীভবন ইত্যাদি।

গলনাঙ্কে : স্থির চাপে যে নির্দিষ্ট তাপমাত্রায় কোন একটি কঠিন পদার্থ গলতে শুরু করে এবং গলন ক্রিয়া শেষ না হওয়া পর্যন্ত এ তাপমাত্রা স্থির থাকে, তাকে ঐ পদার্থের গলনাঙ্ক বলে।

হিমাঙ্ক ঃ স্থির চাপে কোন তরল পদার্থকে ব্রুমাগত শীতল করতে থাকলে যে তাপমাত্রায় পৌঁছে তরল পদার্থটি কঠিন পদার্থে রূপান্তরিত হতে শুরু করে এবং কঠিনীভবন শেষ না হওয়া পর্যন্ত ঐ তাপমাত্রার কোন পরিবর্তন হয় না তাকে ঐ চাপে উক্ত তরল পদার্থের হিমাজ্ঞ বলে।

বাহ্লীভবন : তাপ প্রয়োগের ফলে একটি তরল পদার্থ তরল অবস্থা হতে বাব্দে পরিগত হওয়াকে বাঙ্গীভবন বলে। বাষ্শীভবন দু'প্রকার ; যথা ঃ বাঙ্গায়ন এবং স্ফুটন।

বাশ্লায়ন : সকল তাপমাত্রায় কোন একটি তরল পদার্থ এর উপরিতল হতে ধীর গতিতে বাম্পে পরিণত হওয়াকে বাম্পায়ন বলে।

স্ফুটন ঃ একটি নির্দিষ্ট তাপমাত্রায় তরল পদার্থের সর্বস্থান হতে দ্রুত গতিতে তার বাষ্পে পরিণত হওয়াকে স্ফুটন বলে।

স্ফুটনাঙ্ক ঃ স্থির চাপে যে নির্দিষ্ট তাপমাত্রায় একটি তরল পদার্থ ফুটতে শুরু করে এবং স্ফুটন ক্রিয়া শেষ না হওয়া পর্যন্ত এ তাপমাত্রা <u>স্থির থাকে সে</u> তাপমাত্রাকে ঐ তরলের স্ফুটনাঙ্ক বলে। ----

সুন্ত তাপ বা লীন তাপ ঃ যে তাপ বস্তুর তাপমাত্রার পরিবর্তন না ঘটিয়ে অবস্থার পরিবর্তন ঘটায় তাকে বস্তুর ঐ অবস্থা পরিবর্তনের সুন্ত তাপ বা লীন তাপ বলে।

আপেক্ষিক সুশ্ত তাপ ঃ কোন পদার্থের একক ভর তাপমাত্রার পরিবর্তন না শ্বটিয়ে এক অবস্থা হতে অন্য অবস্থায় রূপান্তরিত হতে পদার্থটি যে তাপ গ্রহণ করে বা বর্জন করে তাকে ঐ পদার্থের আপেক্ষিক সুশ্ত তাপ বলে। একে L দ্বারা সূচিত করা হয়।

আঁপেক্ষিক সুপ্ত তাপ চার প্রকার ; যথা—

(১) গলনের আপেক্ষিক সুণ্ত তাপ ঃ কোন কঠিন পদার্থের একক ভরকে তার গলনাজ্ঞে রেখে তাপমাত্রার পরিবর্তন না ঘটিয়ে কঠিন হতে তরলে পরিণত করতে যে পরিমাণ তাপের প্রয়োজন হয়, তাকে এ পদার্থের গলনের সুণ্ত তাপ বলে।

(২) কঠিনীভবনের আপেক্ষিক সুন্ত তাপ : একক ভরের তরলকে তার তাপমাত্রার পরিবর্তন না ঘটিয়ে তরল অবস্থা হতে কঠিন অবস্থায় পরিণত হতে যে পরিমাণ তাপ বর্জিত হয় তাকে এ পদার্থের কঠিনীভবনের আপেক্ষিক সুন্ত তাপ বলে।

(৩) বাষ্শীভবনের আপেক্ষিক সুন্ত তাপ ঃ কোন একটি তরল পদার্থের একক ভরকে তার স্ফুটনাজ্ঞে রেখে তাপমাত্রার পরিবর্তন না ঘটিয়ে তরল থেকে বাষ্ণে পরিণত করতে যে পরিমাণ তাপের প্রয়োজন হয়, তাকে ঐ পদার্থের বাষ্শীভবনের আপেক্ষিক সুন্ত তাপ বলে।

(৪) ঘনীভবনের আপেক্ষিক সুশ্ত তাপ ঃ একক ডরের কোন বাম্পীয় পদার্থকে তার তাপমাত্রার পরিবর্তন না ঘটিয়ে বাম্পীয় অবস্থা হতে তরল অবস্থায় পরিণত হতে যে পরিমাণ তাপ বর্চ্চিত হয়, তাকে ঐ বাম্পীয় পদার্ধের ঘনীভবনের আপেক্ষ্বিক সুশ্ত তাপ বলে।

বইঘর.কম

সিস্টেম বা ব্যবস্থা : জড় জগতের একটি নির্দিষ্ট অংশ যার উপর পরীক্ষা-নিরীক্ষা চালান হয় তাকে সিস্টেম বা ব্যবস্থা বলে।

সমসত্ত্ব দশা : যে ব্যবস্থায় বা সিস্টেমে মাত্র একটি দশা আছে তাকে সমসত্ত্ব দশা বলে।

র্ভাবস্থানে থাকে তাকে পানির ত্রেধবিন্দু বলে। পানির ত্রেধবিন্দু 0'16°C বা 273'16 K।

তাকে দশাচিত্র বলা হয়।

গ্যাসের সঙ্কট চাপ বলে।

অবস্থানে থাকে তাকে উঁক্ত পদার্থের ত্রৈধ বিন্দু বলে।

হারানো তাপ = গৃহীত তাপ।

.Q = তর × আঃ তাপ × তাপমাত্রার পার্থক্য

= পানিসম × তাপমাত্রার পার্থক্য

Q = ভর × পদার্থের এ অবস্থার সুশ্ত তাপ

= একক ভরের তাপ ধারকতা × তাপমাত্রার পার্থক্য

যায় তাকে এর সঙ্কট তাপমাত্রা বলে।

তাপ পরিমাপের নীতি ঃ

= MS($\theta_2 - \theta_1$) J

 $= W(\theta_2 - \theta_1) J$

 $= C(\theta_2 - \theta_1) J$

অসমসত্ত্ব দশা : যে ব্যবস্থায় একাধিক দশা বিদ্যমান আছে, তাকে অসমসত্ত্ব দশা বলে।

দশাচিত্র ঃ কোন পদার্থের সম্পৃক্ত বাষ্পচাপ বনাম তাপমাত্রার লেখচিত্র অংকন করলে যে লেখচিত্র পাওয়া যায়,

পানির তৈধ বিন্দু : যে তাপমাত্রায় বিশুন্ধ বরফ, বিশুন্ধ পানি এবং সম্পৃক্ত জলীয় বাম্প তাপগত সহ-

তৈধ বিন্দু : যে তাপমাত্রায় কোন পদার্থের কঠিন, তরল এবং বাম্প একটি নির্দিষ্ট চাপে তাপগত সহ

সজ্জট তাপমাত্রা ঃ একটি গ্যাস সর্বোচ্চ যে তাপমাত্রায় থাকলে শুধু চাপ প্রয়োগে তাকে তরলে পরিণত করা

সঙ্কট চাপ ঃ কোন গ্যাসের সঙ্কট তাপমাত্রায় যে চাপ প্রয়োগ করে তাকে তরলে পরিণত করা যায় তাকে ঐ

সক্রুট আয়তন ঃ সঙ্কট তাপমাত্রা ও চাপে একক ভরের কোন গ্যাসের আয়তনকে এর সঙ্কট আয়তন বলে।

প্রয়োজনীয় সমীকরণ

কোন বস্তু একই অবস্থায় থেকে যে পরিমাণ তাপ গ্রহণ করে বা হারায় তার পরিমাণ

= mLJ(4) $L = O/m I k \sigma^{-1}$

কোন একটি বস্তু এক অবস্থা হতে অন্য অবস্থায় রূপান্তরিত হতে যে পরিমাণ তাপ গ্রহণ করে বা হারায় তা

$$L = Q / m J kg^{-1}$$

$$L_{f} = \left\{ \frac{(MS + m_{1}S_{1})(\theta_{1} - \theta)}{m} - S_{1} \theta \right\} J kg^{-1}$$
(5)
(6)

$$L_f = \left[\frac{m}{m} - S_1 \theta_f \right] kg^{-1}$$
(6)
$$L_f = \left[(WS + mS_1) (\theta - \theta_1) - S_1 (\theta - \theta_1) \right] kg^{-1}$$

$$L_{v} = \left[\frac{(WS + mS_{1})(\theta - \theta_{1})}{m} - S_{1}(100 - \theta) \right] Jkg^{-1}$$
(7)

সমাধানকৃত উদাহ্রণ

0°C তাপমাত্রার 1 kg বরফকে 0°C তাপমাত্রার পানিতে পরিণত করতে কত তাপের দরকার হবে ? [বরফ গলনের সুশ্ত তাপ L = 336000 J kg⁻¹]

মনে করি তাপের পরিমাণ = QJ এখানে, M = 1 kg.আমরা পাই, $L = 336000 \text{ J kg}^{-1}$ Q = ভর × সুন্ত তাপ বা, Q=.MLJ (1)

(1)

(2)

(3)

BG & JEWEL

সমীকরণ (1) হতে পাই,

$$Q = 1 \text{ kg} \times 336000 \text{ J kg}^{-1}$$

$$Q = 336000 \text{ J} = 33.6 \times 10^4 \text{ J}$$

8 0°C তাপমাত্রার 40 g বরফকে 100°C তাপমাত্রার বাল্পে পরিণত করতে প্রয়োজনীয় তাপের পরিমাণ নির্ণয় কর। [বরফ গলনের সুন্ত তাপ = 3.36×10^5 Jkg⁻¹, পানির আপেক্ষিক তাপ = 4200 Jkg⁻¹ K⁻¹ এবং বান্সের আপেক্ষিক সুন্ত তাপ 2268000 Jkg⁻¹]। [ঢা. বো. ২০০৪]

0°C তাপমাত্রার পানিকে 0°C তাপমাত্রার বরফে পরিণত করতে প্রয়োজনীয় তাপ, এখ

$$Q_1 = mL$$

= 0.04 × 3.36 × 10⁵
= 13440 J

তাপ, এখানে, m = 40 g = 0.04 kg L = 3.36×10^5 J kg⁻¹ S = 4200 Jkg⁻¹K⁻¹ L_v = 2268000 Jkg⁻¹

0°C তাপমাত্রার পানিকে 100°C তাপমাত্রার পানিতে পরিণত করতে প্রয়োজনীয় তাপ,

 $Q_2 = m S (100 - 0)$

 $= 0.04 \times 4200 \times 100$

= 16800 J

100°C তাপমাত্রার পানিকে 100°C তাপমাত্রার বাম্পে পরিণত করতে প্রয়োজনীয় তাপ,

$$Q_3 = m L_V$$

 $= 0.04 \times 2268000$

= 90720 J

মোট তাপ , Q = Q₁ + Q₂ + Q₃ = 13440 + 16800 + 90720 = 1.21 $\times 10^5$ J.

তে তাপমাত্রার 200g বরফকে 80°C তাপমাত্রার 0'5 kg পানির সাথে মিশানো হলে মিশ্রণের তাপমাত্রা 34'3°C হয়। বরফ গলনের আপেক্ষিক সুন্ত তাপ নির্ণয় কর। [কু. বো. ২০০৪]

(ক) 0°C তাপমাত্রার 0°2 kg বরফকে 0°C তাপমাত্রার পানিতে পরিণত করতে প্রয়োজনীয় তাপ,

 $Q_1 = ML = 0.2 \times LJ$

(খ) 0°C তাপমাত্রার 0'2kg পানিকে 34'3°C তাপমাত্রার পানিতে পরিণত করতে প্রয়োজনীয় তাপ,

 $= 0.2 \times 4200 \times 34.3$ J

এখানে,

বরফের জর, M = 200g = 0.2 kgতাপমাত্রার পার্থক্য, $\Delta \theta_1 = (80 - 0)^{\circ}\text{C} = 80^{\circ}\text{C}$ = 80Kতাপমাত্রার পার্থক্য, $\Delta \theta_2 = (80 - 34^{\circ}3)^{\circ}\text{C}$ $= 45^{\circ}7^{\circ} = 45^{\circ}7\text{K}$ বরফ গলনের আপেক্ষিক সুণ্ড তাপ, L = ?

= 28812J

 $Q_2 = Ms\Delta\theta$

(গ) 80°C তাপমাত্রার 0.5kg পানিকে 34.3°C তাপমাত্রার পানিতে পরিণত করতে হারানো তাপ,

$$Q_3 = ms \Delta \theta_2$$

= 0.5 × 4200 × 45.7 J
= 95970J
এখন, গৃহীত তাপ = বর্জিত তাপ
0.2L + 28812J = 95970 J
বা, 0.2L = 95970 - 28812
= 67158J
L = $\frac{67158}{0.2}$ Jkg⁻¹

 $= 3.36 \times 10^5$ J/kg

অবস্থার পরিবর্তন

বইঘর.কম

 $^{\circ}$ _81 263 K তাপমাত্রার 0.05 kg বরফকে 273K তাপমাত্রার পানিতে পরিবর্তন করতে কত তাপ লাগবে ? বরফের আপেক্ষিক তাপ 2100 J kg⁻¹ K⁻¹ এবং বরফ গলনের আপেক্ষিক সুন্ততাপ 336000 J kg⁻¹ I[য. বো. ২০০১

এখানে দুই পর্যায়ে তাপ গৃহীত হবে ঃ

8.8

(i) 263 K থেকে 273 K-এ উন্নীত হতে বরফ কর্তৃক গৃহীত তাপ,

 $Q_1 = MS (\theta_1 - \theta_2) = 0.05 \times 2100 \times (273 - 263) = 1050 J$

(ii) 273 K তাপমাত্রায় বরফ গলে 273 K তাপমাত্রার পানিতে পরিণত হতে প্রয়োজনীয় তাপ,

 $Q_2 = ML$ = $0.05 \times 3.36 \times 10^5 = 16800 \text{ J}$ মোট গৃহীত তাপ = $Q_1 + Q_2$ = 1050 + 16800= 17850 J5°C তাপমান্তাৰ 0.005 kg বৰফের সাথে 40°C তাপম

্রি () — 5°C তাপমাত্রার 0'005 kg বরফের সাথে 40°C তাপমাত্রার 0'05 kg পানি মিশালে তাপমাত্রা কত হবে ? বরফের আপেক্ষিক তাপ 2'1 × 10³ Jkg⁻¹ K⁻¹, বরফ গলনের আপেক্ষিক সুশ্ত তাপ 3'36 × 10⁵ JK⁻¹ এবং পানির আপেক্ষিক তাপ 4'2 × 10³ Jkg⁻¹ K⁻¹ । [য. বো. ২০০৪ ; চ. বো. ২০০৩]

(ক) মনে করি শেষ উষ্ণতা θ°C

— 5°C তাপমাত্রায় 0.005 kg বরফকে 0°C তাপমাত্রার বরফে পরিণত করতে প্রয়োজনীয় তাপ,

 $Q_1 = 0.005 \times 2.1 \times 10^3 \times \{0 - (-5)\} = 52.5 \text{ J}$

(খ) 0°C তাপমাত্রার 0'005 kg বরফকে 0°C তাপমাত্রার পানিতে পরিণত করতে প্রয়োজনীয় তাপ.

 $Q_2 = 0.005 \times 3.36 \times 10^5 = 1680$

(গ) 0°C তাপমাত্রার 0.005 kg পানিকে 0°C তাপমাত্রার পানিতে পরিণত করতে প্রয়োজনীয় তাপ,

 $Q_3 = 0.005 \times 4.2 \times 10^3 \times (\theta - 0)$

 $= 21\theta J$

(খ) 40°C তাপমাত্রার 0.05 kg পানিকে 0°C তাপমাত্রার পানিতে পরিণত করতে প্রয়োজনীয় তাপ

 $Q_4 = 0.05 \times 4.2 \times 10^3 \times (40 - \theta) = 210 (40 - \theta)]$ আমরা জানি.

গৃহীত তাপ = বর্জিত তাপ

 $Q_1 + Q_2 + Q_3 = Q_4$

a, 52.5 + 1680 + 210 = 210(40 - 0)

বা, 1732.5 + 210 = 8400 -- 2100

বা, 2100 + 210 = 8400 --- 1732.5

বা, 2310 = 66675

$$\theta = \frac{6667.5}{231}$$
$$= 28.86^{\circ}$$

🕒 0°C তাপমাত্রার 2 kg বরফকে কেবলমাত্র বাব্দে পরিণত করতে কত তাপের প্রয়োজন হবে ? পানির আঃ তাপ 4200 Jkg $^{-1}$ K $^{-1}$, বরফ গলনের আঃ সুন্ততাপ $3.36 imes 10^5$ Jkg $^{-1}$ এবং পানির বাশীভবনের গলনের আঃ সুন্ততাপ [সি. বো. ২০০৫] $22^{\circ}68 \times 10^{5} \text{ Jkg}^{-1}$.

(i) 0°C তাপমাত্রায় বরফ গলাতে গৃহীত তাপ এখানে, $Q_1 = ML$ M = 2 kgL = 336000 $= 2 \times 336000$ = ? = 672000 J

(ii) 0°C হতে 100°C-এ উক্ত পানিকে উন্নীত করতে তাপের পরিমাণ,

 $Q_2 = \overline{a} \times \overline{a} \times \overline{a}$ তাপ $\times \overline{a}$ তাপমাত্রার পার্থক্য

 $= 2 \times 4200 \times (100 - 0)$

- $= 2 \times 4200 \times 100$
- = 840000 I.

(iii) 100°C তাপমাত্রার পানি 100°C তাপমাত্রার বাম্পে পরিণত হতে প্রয়োজনীয় তাপ,

 $Q_3 = ML$

 $= 2 \times 2268000$

 $= 4536000 \text{ J}^{\circ}$

মোট তাপ

 $Q = Q_1 + Q_2 + Q_3$

= (672000 + 840000 + 4536000)

 $= 6048 \times 10^3$ J.

(৭) — 5°C তাপমাত্রার 0'01 kg বরফকে 100°C তাপমাত্রার বাম্পে পরিণত করতে কড কাজ সম্পন্ন করে তাগ সরবরাই করতে হবে ? [বরফের আপেক্ষিক তাপ 500 cal kg $^{-1}$ °C $^{-1}$ এবং বরফ গলনের সুন্ত তাপ 8000 cal kg $^{-1}$] [সি. বো. ২০০৩]

(ক) — 5°C তাপমাত্রার বরফকে 0°C. তাপমাত্রায়	এখানে,
উন্নীত করতে প্রয়োজনীয় তাপ,	বরফের ভরবেগ = 0 [.] 01 kg
$\operatorname{Q}_1 =$ ভর $ imes$ আপেক্ষিক তাপ $ imes$ তাপমাত্রা বৃদ্ধি	'বরফের আপেক্ষিক তাপ $= 500 ext{ cal } ext{kg}^{-1} ext{ °C}^{-1}$
$= 0.01 \times 2100 \times \{0 - (-5)\}$ J	$= 500 \times 4.2 \text{ Jkg}^{-1} \text{ K}^{-1}$
= 105 J	$= 2100 \text{ Jkg}^{-1} \text{ K}^{-1}$
(খ) 0°C তাপমাত্রার বরফকে 0°C তাপমাত্রার পানিতে	বরফ গলনের সুশ্ত ডাপ, L = 80000 cal kg ⁻¹
পরিণত করতে প্রয়োজনীয় তাপ,	$= 80000 \times 4.2 \text{ Jkg}^{-1}$
Q_2 $=$ ভর $ imes$ আপেক্ষিক সুশ্ত তাপ	$= 3.36 \times 10^5 \text{Jkg}^{-1}$
$= 0.01 \times 3.36 \times 10^5 $ J	পানির আপেক্ষিক তাপ, $S = 4200 \ Jkg^{-1}C^{-1}$
$= 3.36 \times 10^3 \text{ J}$	বাম্পের আপেক্ষিক তাপ = $2.26 \times 10^6 \mathrm{Jkg^{-1}}$

(গ) 0°C তাপমাত্রার পানিকে 100°C তাপমাত্রার পানিতে পরিণত ক্ষরতে প্রয়োজনীয় তাপ,

 $Q_3 =$ পানির ভরimes পানির আপেক্ষিক তাপimes তাপমাত্রার পরিবর্তন

 $= 0.01 \times 4200 \times (100 - 0)$

= 4200 I

 $= 4.2 \times 10^3$

(ঘ) 100°C.তাপমাত্রার 0'01 kg পানি 100°C তাপমাত্রার বাম্পে পরিণত করতে প্রয়োজ্জনীয় তাপ,

$$Q_4 = \mathfrak{N}$$
নির ভর × বাম্পের আপেক্ষিক তাপ
= $\cdot 01 \times 2.26 \times 10^6 \text{ J}$
= $2.26 \times 10^4 \text{ J}$
অতএব, মোট প্রয়োজনীয় তাপ, $Q = Q_1 + Q_2 + Q_3 + Q_4$
 $= 105 \text{ J} + 3.36 \times 10^3 \text{ J} + 4.2 \times 10^3 \text{ J} + 2.26 \times 10^4 \text{ J}$
= $30.265 \times 10^3 \text{ J}$

formation formatter the second state of th

মনে করি গরম পানির তাপমাত্রা = θ°C

পানি বা বরফের পরিমাণ = m kg

(ক) গরম পানি কর্তৃক বর্জিত তাপ, $Q_1 = m \times 4200 \times (\theta - 0) J = 4200 \text{ m}\theta J$ (খ) বরফ কর্তৃক গৃহীত তাপ, $Q_2 = mL_f = m \times 3.36 \times 10^5 \text{ J} = 3.36 \times 10^5 \text{ mJ}$ আমরা জানি, গৃহীত তাপ = বর্জিত তাপ অর্থাৎ $Q_2 = Q_1$ $3.36 \times 10^5 \text{ mJ} = 4200 \text{ m}\theta \text{ J}$ বা, $\theta = \frac{3.36 \times 10^5}{4.2 \times 10^3} = 80^{\circ}\text{C}$

ঠি।)100°C তাপমাত্রার 500g জনীয় বাম্প ঘনীভূত হয়ে 30°C তাপমাত্রার পানিতে পরিণত হওয়ার জন্য কত তাপ বর্জন করতে হবে ? পানির আপেক্ষিক তাপ 4200 Jkg⁻¹ K⁻¹ এবং পানির বাম্পীভবনের সুন্ত তাপ 2[.]26 × 10⁶ Jkg⁻¹। [য. বো. ২০০০]

(ক) 100°C তাপমাত্রার বাম্প 100°C পানিতে পরিণত এখানে, হলে বৰ্জিত তাপ, বান্দোর ভর, m = 500 g = 0.5 kg $Q_1 = mL_v = 0.5 \times 2.26 \times 10^6 \text{ J}$ তাপমাত্রার পার্থক্য , ১০ $= (100 - 30)^{\circ}C$ $= 1.13 \times 10^{6} \text{ J} = 11.30 \times 10^{5} \text{ J}$ $= 70^{\circ}\text{C} = 70\text{K}$ (খ) 100°C তাপমাত্রার পানি 30°C তাপমাত্রার পানির আপেক্ষিক তাপ , $\mathrm{S}=4200~\mathrm{Jkg^{-1}}$ পানিতে পরিণত হতে বর্জিত তাপ, পানির বাষ্শীভবনের সুন্ত তাপ, $L_v = 2.26 \times 10^6 \text{ Jkg}^{-1}$ $Q_2 = ms \Delta \theta$ $= 0.5 \times 4200 \times 70$ $= 1.47 \times 10^5 \text{ J}$ অতএব, মোট বর্জিত তাপ, $Q = Q_1 + Q_2$ $= 11^{\circ}30 \times 10^{5} \text{ J} + 1^{\circ}47 \times 10^{5} \text{ J}$ $= 12.77 \times 10^5 \text{ J}$ $= 1.277 \times 10^{6} \text{ J}$

🔊 ০°C তাপমাত্রার 1 kg বরফকে 100°C তাপমাত্রায় বাব্দে পরিণত করতে কত তাপ লাগবে 🔋

[ব. বো. ২০০৪]

 0° C তাপমাত্রার 1 kg বরফকে 0°C তাপমাত্রার পানিতে পরিণত করতে প্রয়োজনীয় তাপ = 3.36×10^5 Jkg⁻¹ 0°C তাপমাত্রার 1 kg পানিকে 100°C তাপমাত্রার পানিতে পরিণত করতে প্রয়োজনীয় তাপ

 $= 1 \times 4200 \times (100 - 0)$

- = 420000 J
- $= 4.2 \times 10^5 \text{ J}$

100° C তাপমাত্রার 1 kg পানিকে 100°C তাপমাত্রার বাব্দে পরিণত করতে প্রয়োজনীয় তাপ = 22.6×10^5 J

মোট প্রয়োজনীয় তাপ = $(3.36 \times 10^5 + 4.2 \times 10^5 + 22.6 \times 10^5)$ J = 3.016×10^6 J

১৯। ০°C ডাপমাত্রার 500 g বরফকে বাম্পে পরিণত করতে কৃত তাপেুর প্রয়োজন হবে? বরফের আঃ ডাপ 2100 JKg/K, বরফ গলনের আঃ সুন্ততাপ $3.36 imes 10^5 \, {
m J \ kg^{-1}}$ এবং পানির বাল্টাভবনের আঃ সুন্ততাপ $22.68 imes 10^5 \, {
m J}$ [ব. বো. ২০০৩] kg⁻¹l এখানে তিন পর্যায়ে তাপ গৃহীত হবে----এখানে, M = 500 g = 0.5 kg (i) 0°C তাপমাত্রার বরফ গলে 0°C তাপমাত্রার $L = 3.36 \times 10^5 \,\text{J kg}^{-1}$ পানিতে পরিণত হতে গৃহীত তাপ, $L_n = 22.68 \times 10^5 \text{ J kg}^{-1}$ $Q_1 = ML$ বরফের জা. তাপ, S₁ = 2100 J/kg/K $= 0.5 \text{ kg} \times 3.36 \times 10^5 \text{ J kg}^{-1}$ পানির আ. তাপ, S₂ = 4200 J/kg/K $= 168000 \text{ J} = 1.68 \times 10^5 \text{ J}$ (ii) 0°C হতে 100°C-এ উন্নীত হতে গৃহীত তাপ, $Q_2 = MS (100 - 0)$ $= 0.5 \text{ kg} \times 4200 \text{ J/kg/K} \times 100$ $= 210000 \text{ J} = 2.1 \times 10^5 \text{ J}$ (iii) 100°C তাপমাত্রার পানি 100°C তাপমাত্রার বাম্পে পরিণত হতে প্রয়োজনীয় তাপ, $Q_3 = ML_n = 0.5 \text{ kg} \times 22.68 \times 10^5 \text{ J kg}^{-1}$ $= 11^{\circ}34 \times 10^{5}$ J মোট গৃহাত তাপ, Q = Q₁ + Q₂ + Q₃ = (1[.]68 × 10⁵ + 2[.]1 × 10⁵ + 11[.]34 × 10⁵) J $= 15.12 \times 10^{5}$ J 🖏 ২০)। ০°C তাপমাত্রায় ০°5 kg বরককে 100°C তাপমাত্রায় পানিতে পরিণত করতে কত তাপের প্রয়োজন হবে ? (বরফ গলনের আপেক্ষিক সুন্ততাপ = $33.4 \times 10^4 \text{ Jkg}^{-1}$) [য. বো. ২০০৬ (মান ভিন্ন) ; চ. বো. ২০০8] 0°C তাপমাত্রার 0.5 kg বরফকে গলিয়ে 0°C তাপমাত্রার পানিতে পরিণত করতে প্রয়োজনীয় তাপ, $H_1 = 0.5 \times 33.4 \times 10^4 = 16.7 \times 10^4 J$ 0°C তাপমাত্রার পানির্কে 100°C তাপমাত্রার পানিতে পরিণত করতে প্রয়োজনীয় তাপ, $H_2 = 0.5 \times 4200 \times (100 - 0) = 21.0 \times 10^4 \text{ J}$ প্রয়োজনীয় তাপ = $H_1 + H_2 = (16.7 \times 10^4 + 21.0 \times 10^4) J = 37.7 \times 10^4 J$ 🕼 । ০°C তাপমাত্রার 0'005 kg বরফকে 30°C তাপমাত্রার 0'02 kg পানির সাথে মিশানো হল। মিশ্রণের তাপমাত্রা বের কর। (পানির আঃ তাপ = 4200 J kg⁻¹K⁻¹) [কু. বো. ২০০৬ (মান ভিন্ন); ঢা. বো. ২০০৫] মনে করি মিশ্রণের তাপমাত্রা = θ°C. এখানে M = 0.02 kgএখন, 30°C হতে θ°C-এ নামতে গরম পানি কর্তৃক হারানো $S = 4200 \text{ J kg}^{-1} \text{ K}^{-1}$ তাপ $Q_1 = MS(\theta_1 - \theta) J$ (1) $\theta_1 = 30^{\circ}C$ m = 0.005 kgসমীকরণ (1) হতে পাই, $Q_1 = 0.02 \text{ kg} \times 4200 \text{ J kg}^{-1} \text{ K}^{-1} \times (30 - \theta)^{\circ} \text{C}$ = 2520 J - 840 Jএক্ষেত্রে বরফ দুই পর্যায়ে তাপ গ্রহণ করবে। (i) 0°C তাপমাত্রায় বরফ গলতে গৃহীত তাপ $Q_2 = mLJ$ $= 0.005 \text{ kg} \times 336000 \text{ J kg}^{-1} \text{ K}^{-1}$ = 1680 J(ii) 0°C হতে θ°C-এ উন্নীত হতে উক্ত পানি কর্তৃক গৃহীত তাপ Q 🔒 = ভর 🗙 আঃ তাপ 🗙 তাপমাত্রার পার্ধক্য $= 0.005 \text{ kg} \times 4200 \text{ J} \text{ kg}^{-1} \text{ K}^{-1} \times 0^{\circ} \text{C}$ $= 21 \theta$ J

অবস্থার পরিবর্তন বহুঘর.কম

মোট গৃহীত তাপ $Q' = Q_2 + Q_3 = 1680 J + 21 \theta J$ কিন্তু আমরা জানি, Q₁ = Q' $2520 J - 84 \theta J = 1680 J + 21 \theta J$ বা, 105 e J = 840 J $\theta = \frac{840 \text{ J}}{105 \text{ J}} = 8^{\circ}\text{C}$ 8 – 5°C তাপমাত্রায় 0.005 kg বরফের সাথে 90°C তাপমাত্রায় 0.5 kg পানি মিশালে মিশ্রণের চ্ড়ান্ড তাপমাত্র্রা কত হবে ? [বরফের আপেক্ষিক তাপ = $2 \cdot 1 \times 10^3$ J kg $^{-1}$ K $^{-1}$; বরফ গলনের আপেক্ষিক সুন্ততাপ = $3.36 \times 10^5 \text{ J kg}^{-1}$ এবং পানির আপেক্ষিক তাপ = $4.2 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1}$] [ব. বো. ২০০১] মনে করি, মিশ্রণের তাপমাত্রা = 0°C এখন, 90°C তাপমাত্রা হতে 0°C-এ নামতে গরম পানি কর্তৃক (1) M = 0.5 kg $S = 4.2 \times 10^3 \text{ Jkg}^{-1} \text{ K}^{-1}$ $\theta_1 = 90^{\circ}\text{C}$ m = 0.005 kg $\theta = ?$ হারানো তাপ, $Q_1 = MS(\theta_1 - \theta) J$ সমীকরণ (1) হতে পাই, $Q_1 = 0.5 \times 4.2 \times 10^3 \times (90 - \theta)$ $= (1.89 \times 10^5 - 2.1 \times 10^3 \theta)$ J এক্ষেত্রে বরফ কর্তৃক তিন পর্যায়ে তাপ গৃহীত হবে। (1) — 5°C থেকে 0°C-এ আনতে বরফ কর্তৃক গৃহীত তাপ, $Q_{\textbf{2}}=0{\cdot}005\times2{\cdot}1\times10^3\times5=52{\cdot}5\text{ J}$ (2) 0°C তাপমাত্রায় বরফ গলতে গৃহীত তাপ, $Q_3 = mL = 0.005 \times 3.36 \times 10^5 = 1680 \text{ J}$ (3) 0°C হতে θ°C-এ উন্নীত হতে উক্ত পানি কর্তৃক গৃহীত তাপ, $Q_4 = 0.005 \times 4.2 \times 10^3 \times \theta = 21 \ \theta \text{ J}$ মোট গৃহীত তাপ, $Q' = Q_2 + Q_3 + Q_4 = 52.5 + 1680 + 21.0 = (1732.5 + 21.0) J$ কিন্তু আমরা জানি, বর্জিত তাপ = গৃহীত তাপ অর্থাৎ $Q_1 = Q'$ $1.89 \times 10^5 - 2.1 \times 10^3 \theta = 1732.5 + 12 \theta$ $2 \cdot 1 \times 10^3 \theta + 21 \theta = 1 \cdot 89 \times 10^5 - 1 \cdot 7325 \times 10^3$ বা, বা, 2121 θ = 187267.5 $\theta = \frac{187267.5}{2121} = 88.29^{\circ}C$ তি। 0°C তাপমাত্রার 2'1kg বরফ 40°C তাপমাত্রার 5'9kg পানির সাথে মিশ্রিত করা হল। মিশ্রণের চূড়ান্ত তাপমাত্র্রা কত ? বরফ গলনের সুন্তর্তাপ $336 imes 10^3 {
m Jkg^{-1}}$ এবং পানির আপেক্ষিক তাপ $4200 {
m Jkg^{-1}}$ ${
m K^{-1}}$ । মনে করি মিশ্রণের তাপমাত্রা = θ°C রা. বো. ২০০৫) এখন 40°C হতে 6°C-এ নেমে জাসতে গরম পানি 'কর্তৃক হারানো তাপ, পানির ভর, M= 5⁻9 kg $Q_1 = MS (40 - \theta)$ পানির আঃ তাপ, S = 4200 Jkg⁻¹ K⁻¹ $= 5.9 \times 4200 (40 - \theta)$ 'বরফের ভর , m = 21 kg $= 24780 (40 - \theta)$ এক্ষেত্রে বরফ দুই পর্যায়ে তাপ গ্রহণ করবে।

BG & JEWEL

- (i) 0°C তাপমাত্রার বরফ গলতে গৃহীত তাপ, $Q_2 = ml_f = 2.1 \times 336000 = 705600$
- (ii) 0°C হতে θ °C-এ উন্নীত হতে গৃহীত তাপ, $Q_s = mS(\theta 0) = 2.1 \times 4200 \times \theta = 8820 \theta$ মোট গৃহীত তাপ, $Q_4 = Q_2 + Q_3 = 705600 + 8820 \theta$
- আমরা জানি, বর্জিত তাপ = গৃহীত তাপ বা, $Q_1 = Q_4$
 - $24780(40 \theta) = 705600 + 8820 \theta$
- বা, 991200 24780 0 = 705600 + 8820 0
- বা, (24780 + 8820) θ = 991200 705600
- বা, 33600 0 = 1696800

$$\theta = \frac{1696800}{33600}$$

 $\theta = 50^{\circ}5^{\circ}C$

(5) / শূন্য তাপমাত্রার 20 g বরফকে 100° C তাপমাত্রার বান্দো পরিণত করতে প্রয়োজনীয় তাপের পরিমাণ বের কর। [পানির আপেক্ষিক তাপ = 4200 J kg⁻¹ K⁻¹ এবং বান্দোর আপেক্ষিক সুস্ততাপ = 2260000 J kg⁻¹; বরফ গলনের আপেক্ষিক সুস্ততাপ = 336000 Jkg⁻¹] [রা. বো. ২০০১; য. বো. ২০০৫; কু. বো. ২০০৩]

- (ii) 0°C হতে 100°C-এ উক্ত পানিকে উন্নীত করতে তাপের পরিমাণ,
- Q₂ = ভর × আঃ তাপ × তাপমাত্রার পার্থক্য
 - = 0.02 kg × 4200 J kg⁻¹ K⁻¹ × (100°C 0°C)
 - $= 0.02 \text{ kg} \times 4200 \text{ J} \text{ kg}^{-1} \text{ K}^{-1} \times 100^{\circ} \text{C}$ $\overrightarrow{\text{at}} 100 \text{ K}$

(iii) 100°C তাপমাত্রার পানি 100°C তাপমাত্রার(বাব্দে পরিণত হতে প্রয়োজনীয় তাপ,

$$Q_3 = ML_v = 0.02 \times 2260000$$

= 45200 J

মোট তাপ,
$$Q = Q_1 + Q_2 + Q_3 = (6720 + 8400 + 45200)$$
]
= 60320 J

59 50°C তাপমাত্রার 0.03kg পানিতে 0°C তাপমাত্রার 0.02 kg বরফ মিশানো হলে মিশ্রণের ফলাফল কি হবে? [পানির আঃ তাপ ও বরফ গলনের সুন্ততাপ যথাক্রমে 4200 J kg $^{-1}$ K $^{-1}$ এবং 3.36 imes 10 5 J kg $^{-1}$]

[ঢা. বো. ২০০৩]

এখানে, পানি তাপ বর্জন করবে এবং বরফ তাপ গ্রহণ করবে। মনে করি, মিশ্রণের চূড়ান্ত তাপমাত্রা 0°C। প্রথমত, 50°C তাপমাত্রার 0.03 kg পানি 0°C-এ নামতে বর্জিত তাপ,

 $H_1 =$ ভর \times আঃ তাপ \times তাপমাত্রার পার্থক্য

 $= 0.03 \times 4.2 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1} \times (50 - \theta) = 126 (50 - \theta) \text{ J}$

দ্বিতীয়ত, 0°C তাপমাত্রার 0 02 kg বরফ 0°C তাপমাত্রার পানিতে পরিণত হতে গৃহীত তাপ,

- H₂ = ভর × সুম্ত তাপ
 - $= 0.02 \times 3.36 \times 10^{2}$
 - = 6720 J

বইঘর.কম

800

রো. বো. ২০০১]

ঢা. বো. ২০০৪]

[কু. বো. ২০০৩]

বি. বো. ২০০৪]

[ব. বো. ২০০৪ ; কু. বো. ২০০৪ ; য. বো. ২০০৩]

ঢা. বো. ২০০২ ; য. বো. ২০০১ ; সি. বো. ২০০৩]

কু. বো. ২০০৬ ; ব. বো. ২০০৬ ; চ. বো. ২০০৩, ২০০১;

ভৃতীয়ত, 0°C এর বরফ গলা পানি 0°C-এ পৌঁছতে গৃহীত তাপ,

H₃ = ভর × আঃ তাপ × তাপমাত্রার পার্থক্য

$$= 0.02 \times 4.2 \times 10^3 \times (0 - 0)$$
 J = 840J

এখন, গৃহীত তাপ = বর্জিত তাপ

$$H_2 + H_3 = H_1$$

 $6720 + 84\theta = 126 (50 - \theta)$

- বা, 6720 + 640 = 6300 1260
- বা, 640 + 1260 = 6300 6720

বা,
$$190\theta = -420$$

$$\therefore \theta = -\frac{420}{190}$$
$$= -2.21 \text{ °C}$$

মিশ্রণের তাপমাত্রা ঝণাত্মক। সুতরাং সম্পূর্ণ বরফ গলে পানিতে পরিণত হবে না। এক্ষেত্রে গরম পানি কর্তৃক বর্জিত তাপের পরিমাণ বরফ গলিয়ে পানিতে পরিণত করে মিশ্রণের তাপমাত্রায় পৌছাতে প্রয়োজনীয় তাপের পরিমাণের তুলনায় কম।

প্রশ্নালা

সংক্ষিশ্ত-উত্তর প্রশ্ন ঃ

- ১। অবস্থার পরিবর্তন কাকে বলে ?
- ২। গলন বা তরলীভবন কাকে বলে ?
- ৩। হিমায়ন বা কঠিনীভবরু.কি ?
- ৪। বাষ্শীভবন বলতে কি বুঝ ?
- ৫। ঘনীভবন কাকে বলে ?
- ৬। স্ফুটন কাকে বলে ?
- ৭। স্ফুটনাজ্ঞ কাকে বলে ?
- ৮। হিমাজ্ঞ কাকে বলে ?
- ৯। সুন্ত তাপ কাকে বলে ?

১৫। দশা কাকে বলে ?

১৬। পানির ত্রেধবিন্দু কি ?

অথবা, পানির ত্রৈধবিন্দু কাকে বলে 🤉

১৭। ক্রান্তি তাপমাত্রা বলতে কি বুঝ _?

১৮। পানির ত্রৈধবিন্দুর তাপমাত্রা কত ?

- ১০। বরফ গলনের সুন্ত তাপের সংজ্ঞা দাও।

১৪। পানির বাম্পীভবনের আপেক্ষিক সুন্ত তাপ 2268000J kg⁻¹ বলতে কি বুঝ ?

১৯। সংকট তাপমাত্রা (কু. বো. ২০০১), সংকট চাপ ও সংকট জায়তন বলতে কি বুঝায় ?

(ছ) গলন ; (ছ) বাম্পীভবন ; (ঝ) ঊর্ধ্বপাতন ; (এ) তৃহিনীভবন।

২০ : সংজ্ঞা লিখ ঃ (ক) গলনাজ্ঞক ; (খ) হিমাজ্ঞক ; (গ) সিস্টেম ; (ঘ) স্ফুটনাজ্ঞক ; (ঙ) দশা ; চে) দশাচিত্র ;

- ১৩। গলন ও বাষ্শীভবনের আপেক্ষিক সুন্ত তাপ কাকে বলে ? [সি. বো. ২০০৬ , ব. বো. ২০০৪]

- ১১। আপেক্ষিক সুশ্ত তাপ কাকে বলে ? [ঢা. বো. ২০০৬ ; কু. বো. ২০০১ ; সি. বো. ২০০১]
- ১২। বরফ গলনের সৃশ্ত তাপ $3.36 imes 10^5~{
 m Jkg^{-1}}$ বলতে কি বুঝ~?ঢা. বো. ২০০০]

রচনামূলক প্রশ্ন ঃ

১। শেখচিত্রের সাহায্যে পদার্থের অবস্থা পরিবর্তন ব্যাখ্যা কর।

২। বাম্পায়ন ও স্ফুটনের মধ্যে তিনটি পার্থক্য লিখ।

৩। স্ফুটনাজ্ঞ কাকে বলে ? স্ফুটনাজ্ঞের উপর চাপের প্রভাব আলোচনা কর।

৪। পানির বাষ্পীভবনের সুশ্ত তাপ নির্ণয়ের পর্দ্ধতি বর্ণনা কর। রো. বো. ২০০৪, ২০০২ ; য. বো. ২০০৪ ; ঢা. বো. ২০০২, ২০০১ ; চ. বো. ২০০২ ; ব. বো. ২০০২] ৫। বরফ গলনের আপেক্ষিক সুশ্ত তাপ নির্ণয়ের একটি পদ্ধতি বর্ণনা কর। [ঢা. বো. ২০০৫, ২০০৪, ২০০০ ; রা. বো. ২০০৬, ২০০৩ ; য. বো. ২০০৩, ২০০১ ; চ. বো. ২০০৫, ২০০৩, ২০০০ ; ক্ব. বো. ২০০১ ;

ব. বো. ২০০৫, ২০০১ রা. বো. ২০০০;

[ব. বো. ২০০৬ ; কু. বো. ২০০৩]

[কু. বো. ২০০৫]

৬। পানির দশাচিত্রের বর্ণনা দাও।

৭। প্রয়োজনীয় সাবধানতাসহ বরফ গলনের আপেক্ষিক সুশ্ত তাপ নির্ণয়ের পরীক্ষাটি বর্ণনা কর।

[ব. বো. ২০০৩ ; সি. বো. ২০০৪, ২০০১]

৮। প্রয়োজনীয় সতর্কতা অবলম্মনপূর্বক পানির বাম্পীভবনের আপেক্ষিক সুন্ততাপ নির্ণয়ের একটি পদ্বতি বর্ণনা কর।

। চ. বো. ২০০৬, ঢা. বো. ২০০৬; কৃ. বো. ২০০৬ ; সি. বো. ২০০৬, ২০০৩]

গাণিতিক সমস্যাবলি :

৯/ 0°C তাপমাত্রার 10 kg বরফ 0°C তাপমাত্রার পানিতে পরিণত করতে তাপের পরিমাণ নির্ণয় কর। [বরফ গলনের সুন্ত তাপ = 336000 J kg⁻¹]
[উঃ 33.6 × 10⁵ J]

১৭ ০°C তাপমাত্রার 10 kg বরফকে 30°C তাপমাত্রার পানিতে পরিণত করতে কত তাপের প্রয়োজন হবে ? বিরফ গলনের সুশত তাপ = 336000 J kg⁻¹ এবং পানির আঃ তাপ = 4200 J kg⁻¹ K⁻¹]
[উঃ 462 × 10⁴ J]

メ। — 10°C তাপমাত্রার 0'005 kg বরফের সাথে 40°C তাপমাত্রার 0'002 kg পানি মিশালে মিশ্রণের শেষ তাপমাত্রা কত হবে ?

 $_{-8}$ । —10°C তাপমাত্রার 5g বরফের সাথে 30°C তাপমাত্রার 20g পানি মিশালে মিশ্রণের শেষ তাপমাত্রা কত হবে? [বরফের আপেক্ষিক তাপ 2·1 × 10³ Jkg⁻¹ K⁻¹, বরফ গলনের আপেক্ষিক তাপ = 3.36×10^5 Jkg⁻¹ এবং পানির আপেক্ষিক তাপ 4·2 × 10³ Jkg⁻¹ K⁻¹] [উঃ 7°C]

্র । 5kg বরফকে 50° C তাপমাত্রার পানিতে পরিণত করতে প্রয়োজনীয় তাপের পরিমাণ নির্ণয় কর। পানির আপেক্ষিক তাপ 4.2×10^3 Jkg $^{-1}$ K $^{-1}$ এবং বরফ গলনের আপেক্ষিক সুশ্ত তাপ 3.36×10^5 Jkg $^{-1}$ । [উঃ 2.73×10^6 J

طر । – 10° C তাপমাত্রায় 0.005kg বরফের সাথে 40°C তাপমাত্রায় 0.002 kg পানি মিশালে মিশ্রণের শেষ অবস্থা কি হবে ? পানির আপেক্ষিক তাপ 4.2×10^3 Jkg $^{-1}$ K $^{-1}$, বরফ গলনের আপেক্ষিক সুশ্ত তাপ 3.36×10^5 Jkg $^{-1}$ ।

[উঃ মিশ্রণে $4.3125 imes 10^{-3}~{
m kg}$ বরফ ও $2.6875 imes 10^{-3}~{
m kg}$ পানি থাকবে এবং মিশ্রণের তাপমাত্রা 0°C]

🔏 । 0°C তাপমাত্রার 10 kg বরফকে 100°C তাপমাত্রার বাম্পে পরিণত করতে প্রয়োজ্জনীয় তাপের পরিমাণ নির্ণয় কর।

[বরফ গলনের সুশ্ত তাপ = 336000 J kg^{-1} , পানির আঃ তাপ = $4200 \text{ J kg}^{-1} \text{ K}^{-1}$ এবং পানির বাম্পীভবনের সুশ্ত তাপ = $2268000 \text{ J kg}^{-1}$] [টঃ $3024 \times 10^4 \text{ J}$]

৴ । 0°C তাপমাত্রার 0.05 kg বরফকে 30°C তাপমাত্রার 0.2kg পানির সাথে মিশানো হল। মিশ্রণের শেষ উষ্ণতা নির্ণয় কর। [বরফ গলনের আপেক্ষিক সুশ্ততাপ 336000 Jkg⁻¹, পানির আপেক্ষিক তাপ 4200 Jkg⁻¹K⁻¹।

[কু. বো. ২০০৬] [উন্তর : 8°C]

 \sim । 0°C তাপমাত্রার 2 kg বরফে কতটুকু তাপ সরবরাহ করলে 100°C তাপমাত্রার ফুটন্ত পানি পাওয়া যাবে ? (বরফ গলনের আপেক্ষিক সুন্ততাপ 3.36×10^5 Jkg⁻¹] [য. বো. ২০০৬] [উত্তর ৪ 15 \cdot 12 × 10⁵ J]

5 0°C তাপমাত্রার 3 kg বরফের্ সাথে 40°C তাপমাত্রার 4kg পানি মিশালে মিশ্রণের ফলাফল নির্ণয় কর। [বরফ গলনের আপেক্ষিক সুশ্ততাপ = 3.36×10^5 Jkg^{-1}] [চ. বো. ২০০৫]

[উত্তর ঃ – 11 43°C, মিশ্রণের ডাঁপমাত্রা ঋণাত্মক হওয়ায় সম্পূর্ণ বরফ গলে পানি হবে না]

১১। 100°C তাপমাত্রায় 600 g স্টীম ঘনীভূত হয়ে 20°C তাপমাত্রার পানিতে পরিণত হওয়ার জন্য কত তাপ বর্জন করতে হবে ? [পানির বাষ্পীভবনের আপেক্ষিক সুন্ততাপ=2'66 × 10⁶ J kg⁻¹ এবং পানির আঃ তাপ = 4'2 × 10³ Jkg⁻¹K⁻¹] g [উন্তর ঃ 17'976 × 10⁵ J]

১২। — 5°C তাপমাত্রার 20 kg বরফকে 100°C তাপমাত্রার বাম্পে পরিণত করতে প্রয়োজনীয় তাপের পরিমাণ নির্ণয় কর। [বরফের আঃ তাপ = 2100 Jkg⁻¹ K⁻¹, বরফ গলনের সুশ্ত তাপ = 336000 Jkg⁻¹, পানির আঃ তাপ= 4200 J kg⁻¹ K⁻¹ এবং পানির বাম্পীভবনের সুশ্ত তাপ = 2268000 J kg⁻¹] [টঃ 6069 × 10⁴ J]

১৩। 20°C তাপমাত্রার 0·1 kg টিনকে গলাতে প্রয়োজনীয় তাপ নির্ণয় কর। [টিনের জাঃ তাপ = 210 J kg⁻¹ K⁻¹, টিনের গলনের সুন্ত তাপ = 58800 J kg⁻¹ এবং টিনের গলনাজ্ঞ = 232°C] [উঃ 10332 J]

- S8। 0°C তাপমাত্রার 0.5 kg বরফকে 100°C তাপমাত্রার 0.9 kg পানির সাথে মিশানো হল এবং মিশ্রণের তাপমাত্রা 60°C পাওয়া গেল। বরফ গলনের সুন্ত তাপ নির্ণয় কর। [উঃ 50400 J kg⁻¹]

 $\int Se \mid 0^{\circ}$ C তাপমাত্রার 4 kg বরফের সাথে 40°C তাপমাত্রার 5 kg পানি মিশানো হল । মিশ্রণের শেষ অবস্থা কি হবে ? [বরফ গলনের সুশ্ত তাপ = 336000 J kg⁻¹ এবং পানির আপেক্ষিক তাপ = 4200 J kg⁻¹ K⁻¹] টিঃ 2.5 kg বরফ গলবে

 $\sqrt{5}$ ৬। 0°C তাপমাত্রার 0.05 kg বরফকে 30°C তাপমাত্রার 0.2 kg পানির সাথে মিশানো হল। মিশ্রণের শেষ তাপমাত্রা নির্ণয় কর। [বরফ গলনের সুশ্ত তাপ = 336000 J kg⁻¹, পানির আঃ তাপ = 4200 J kg⁻¹ K⁻¹] [উঃ 8°C

১৭। A,B,C তিনটি তরলের তাপমাত্রা যথাক্রমে 20°C, 30°C ও \$40°C। সমান ডরের A ও B তরল এবং B ও C তরল মিশ্রিত করায় মিশ্রণের তাপমাত্রা যথাক্রমে 25°C ও 35°C হল। তাদের আপেক্ষিক তাপের সম্পর্ক নির্ণয় কর।

উিঃ $S_A = S_B = S_C$

, তাপগতিবিদ্যার দ্বিতীয় সূত্র

SECOND LAW OF THERMODYNAMICS

১৬'১ সূচনা Introduction

কাজ করার সামর্থ্যকে শক্তি বলে। বিভিন্ন প্রকার শক্তির সংগে আমরা পরিচিত। যেমন, যান্ত্রিক শক্তি, বিদ্যুৎ শক্তি, রাসায়নিক শক্তি, সৌর শক্তি, তাপ শক্তি ইত্যাদি। তাপগতিবিদ্যার প্রথম সূত্র থেকে আমরা জেনেছি যে তাপ কাজে এবং কাজ তাপে রূপান্তরিত হতে পারে। তবে কোন্ দিকে তাপ প্রবাহিত হবে বা কাজ সম্পাদিত হবে তা প্রথম সূত্র থেকে জানা যায় না। এছাড়া নির্দিষ্ট পরিমাণ তাপশক্তিকে সম্পূর্ণরূপে কাজে পরিণত করা যায় না। যান্ত্রিক শক্তিসহ বিভিন্ন ধরনের শক্তি থেকে তাপ শক্তি সহজেই পাওয়া যায় ; কিন্তু তাপ ইঞ্জিন ছাড়া তাপ থেকে যান্ত্রিক শক্তি তথা কাজ সম্পাদন সম্ভব নয়। তাই ইঞ্জিনের উপর বিভিন্ন গবেষণার ফলাফল থেকে বিখ্যাত প্রকৌশলী সাদি কার্নো (Sadi Carnot) এ সিন্দ্রান্তে উপনীত হন যে, তাপশক্তিকে কখনই সম্পূর্ণরূপে কাজে পরিণত করা যায় না। এ বক্তব্যই তাপগতিবিদ্যার দ্বিতীয় সূত্রের ভিত্তি। আমরা এ অধ্যায়ে তাপগতিবিদ্যার দ্বিতীয় সূত্র, তাপ ইঞ্জিন, কার্নো ইঞ্জিন, এনট্রপি, এনট্রপির পরিবর্তন ইত্যাদি বিষয়ে আলোচনা করব।

১৬ ২ প্রত্যাগামী এবং অপ্রত্যাগামী প্রক্রিয়া

- Reversible and irreversible process

(কোন সংস্থা বা সিস্টেম (system) যখন এক অবস্থা হতে অন্য অবস্থায় যায়, তখন অবস্থার এই পরিবর্তন দুই প্রক্রিয়ায় সংঘটিত হয়, যথা—____

(১) প্রত্যাগামী প্রক্রিয়া এবং (২) <u>অপ্রত্যাগামী প্</u>রক্রিয়া।

এখন দুটি প্রক্রিয়া বিশদভাবে আলেচিনা করব।

১৬ ২ ১ প্রত্যাগামী প্রক্রিয়া Reversible process

ধরা যাক, কোন একটি প্রক্রিয়ার কার্যকরী পদার্থ (Working substance) এক বিশেষ পরিবেশে, যেমন তাপমাত্রা স্থির রেখে A অবস্থা হতে পরিবর্তিত হয়ে B অবস্থায় গেল এবং এই পরিবর্তনে তা কিছু তাপ শোষণ করল ও কিছু বাহ্যিক কার্য সম্পাদন করল।

তাপগতিবিদ্যার ভাষায় এই প্রক্রিয়াকে সম্মুখগামী (direct operation) প্রক্রিয়া বলা হয়। বিপরীতক্রমে বস্তু যখন B অবস্থা হতে একই পরিবেশে A অবস্থায় ফিরে যাবে তখন তাকে পন্চাৎবর্তী প্রক্রিয়া (reverse operation) বলা হয়। বিপরীত প্রক্রিয়ায় বস্তৃ একই পরিমাণ তাপ উদ্গীরণ (evolve) করবে এবং একই পরিমাণ বাহ্যিক কার্য সম্পাদন করবে। এখন সম্মুখ ও বিপরীত প্রক্রিয়ার সমন্বয়ে সৃষ্ট সমগ্র প্রক্রিয়াকে প্রত্যাগামী প্রক্রিয়া (reversible process) বলে।

সংজ্ঞা : তাপগতিবিদ্যার দৃষ্টিকোণ হতে আমরা সেই প্রক্রিয়াকে প্রত্যাগামী প্রক্রিয়া বলব যা সমূখ পরিবর্তনের পর বিপরীতমুখী হয়ে প্রত্যাবর্তন করতে পারে এবং সম্মুখ ও বিপরীতমুখী পরিবর্তনের প্রতি স্তরে তাপ ও কার্যের ফলাফল সমান ও বিপরীতমুখী হয়।

বৈশিষ্ট্য (Characteristics)

প্রত্যাগামী প্রক্রিয়ায় সংস্থার পরিবর্তন ঘটে খুবই ধীরে ধীরে এবং অতি ক্ষুদ্র পরিমাণে যে পর্যন্ত না সমগ্র পরিবর্তন সংঘটিত হয়। এই প্রক্রিয়া এত ধীরে ধীরে সংঘটিত হয় যে, প্রতিটি ক্ষুদ্র ক্ষুদ্র ধাপে সংস্থা কার্যুত তাপগতীয় সাম্য (Thermodynamical equillibrium) অবস্থা বজায় রাখে। উপরন্থ এই প্রক্রিয়ায় অস্থিতিস্থাপকতা, সান্দ্রতা, ঘর্ষণ, বৈদ্যুতিক রোধ, চুম্বকীয় হিস্টেরিসিস প্রভৃতির নিষ্ণা অবক্ষয়ী ফলাফলগুলো (dissipative effects) থাকবে না। মোট কথা এটি মূলত স্থৈতিক (quasi-static) এবং অনবক্ষয়ী (non-dissipative) হবে। এই প্রক্রিয়া এমনভাবে সংঘটিত করতে হবে যাতে প্রক্রিয়ার শেষে সংস্থা (system) ও পরিপার্শ্বের কোনরূপ নিট পরিবর্তন ব্যতিরেকে উভয়েই প্রাথমিক অবস্থায় ফিরে যেতে পারে।

উদাহরণ (Examples) ঃ নিম্নে প্রত্যাগামী প্রক্রিয়ার কয়েকটি উদাহরণ দেওয়া হল।

বাস্তব ক্ষেত্রে সম্পূর্ণ প্রত্যাগামী প্রক্রিয়ার উদাহরণ দেয়া সম্ভবপর নয়। তবে কিছু কিছু প্রক্রিয়া আছে যাদেরকে আপাতভাবে প্রত্যাগামী প্রক্রিয়া বলা যেতে পারে। এমন কতকগুলো প্রক্রিয়া নিম্নে উল্লেখ করা হল।

(i) খুব ধীরে ধীরে সংঘটিত করলে সমোষ্ণ এবং রুম্বতাপ পরিবর্তন প্রত্যাগামী চবে। কারণ এক্ষেত্রে ঘর্ষণের ন্যায় অবক্ষয়ী বল না থাকায় এবং প্রক্রিয়াটি খুব ধীরে ধীরে সংঘটিত হওয়ায় পরিবহন, পরিচলন ও বিকিরণের দরুন তাপ বা শক্তি ক্ষয় হয় নান

(11) প্রতি গ্রামে 80 ক্যালরি (cal) বা 336 J তাপশক্তি শোষণ করে মাভাবিক চাপের <u>0°C তাপমাত্রায় বরফ</u> পা<u>নিতে পরিণত হয়। আবার মাভাবিক চাপে 0°C তাপমাত্রার পানি হতে প্রতি গ্রামে 80 ক্যালরি তাপ বা 336 J</u> তাপশক্তি অপসারণ করলে পুনরায় বরফ পাওয়া যায়। সুতরাং প্রক্রিয়াটি প্রত্যাগামী।

(মা) কিছুটা উপর হতে একটি স্থিতিস্থাপক বলকে একটি স্থিতিস্থাপক ইস্পাত পাতের উপর ফেলা হলে শক্তির কোন অপচয় না হওয়ায় বলটি আবার তার প্রাথমিক উচ্চতা পর্যন্ত উপরে উঠবে। সুতরাং প্রক্রিয়াটি প্রত্যাগামী।

(iv) স্থিতিস্থাপক সীমার মধ্যে খুব ধীরে ধীরে কোন স্প্রিংকে সম্প্রসারণ করলে প্রতি ধাপে প্রসারণের সময় স্প্রিং-এর উপর যে পরিমাণ কাজ করা হবে সজ্ঞোচনের সময় স্প্রিং সেই পরিমাণ কাজ সম্পন্ন করবে। সুতরাং প্রক্রিয়াটি প্রত্যাগামী।

১৬ ২ ২ অপ্রত্যাগামী প্রক্রিয়া

Irreversible process

ষংজ্ঞা : যে প্রক্রিয়া সম্মুখগামী হওয়ার পর বিপরীতমুখী হয়ে প্রত্যাবর্তন করতে পারে না, তাকে অপ্রত্যাগামী প্রক্রিয়া বলে। একে অনপনেয় প্রক্রিয়াও বলা হয়।

অথবা, যে প্রক্রিয়ায় সম্ভাব্য সব প্রাকৃতিক উপায় সত্ত্বেও সমগ্র সংস্থাকে পুরোপুরি প্রাথমিক অবস্থায় ফিরিয়ে আনা যায় না বা যে প্রক্রিয়া বিপরীতমুখী হয়ে প্রত্যাবর্তন করতে পারে না তাকে অপ্রত্যাগামী প্রক্রিয়া বলে।

বৈশিষ্ট্য (Characteristics)

জিপ্রত্যাগামী প্রক্রিয়া হঠাৎ এবং স্বিতঃস্ফুর্তভাবে (spontaneously) সংঘটিত হয়। প্রকৃতিতে সব প্রক্রিয়া স্বতঃস্ফূর্তভাবে ঘটে থাকে। সুতরাং প্রাকৃতিক প্রক্রিয়া মাত্রই পপ্রত্যাগামী) এই প্রক্রিয়ায় সংস্থা কখনই তার প্রাথমিক অবস্থায় ফিরে যাবার প্রবর্ণতা দেখায় না।

উদাহরণ (Examples) : নিমে অগ্রত্যাগামী প্রক্রিয়ার কয়েকটি উদাহরণ দেওয়া হল।

ে বিদ্যুতিক রোধের মধ্য দিয়ে বিদ্যুৎ প্রবাহিত হলে তাপ সৃষ্টি হয়। এটি একটি অপ্রত্যাগামী প্রক্রিয়া।

لا بَنْ بَالَ مَعْمَةِ عَلَيْهُ اللَّهُ مَعْمَةُ عَلَيْهُ اللَّهُ عَلَيْهُ عَلَيْهُ مَعْمَا عَلَيْهُ مُعْمَا عَلَيْ وَاللَّا عَلَيْهُ مُعْمَا عَلَيْ مُعْمَا عَلَيْهُ مُعْمَا عَلَيْهُ مُعْمَا عَلَيْهُ مُعْمَا عَلَيْهُ مُعْمَا عَلَيْهُ مُعْمَا عَلَيْ مُعْمَا عُلَيْ مُعْمَا عُلَيْهُ مُعْمَا عُلَيْ مُعْمَا عُلَيْهُ مُعْمَا عُلَيْهُ مُعْمَا عُلَيْهُ مُعْمَا عُلَيْهُ مُعْمَا عُلَيْهُ مُعْمَا عُلَيْهُ مُعْمَا مُولُولُكُمُ مُعْمَا مُولُولُكُمُ مُوا مُعْمَا مُعْمَا مُولُولُكُمُ مُعْمَا مُعَامِ مُولُولُكُمُ مُوا مُعْمَا مُعْمَا مُعْمَا مُعْمَا مُولُ

নোন) ভিন্ন তাপমাত্রার দুটি বস্তুকে পরস্পরের সংস্পর্শে স্থাপন করলে তাপ অধিক তাপমাত্রার বস্তু হতে কম তাগমাত্রার বস্তৃতে প্রবাহিত হবে। কিন্তু কম তাপমাত্ররি বস্তু হতে অধিক তাপমাত্রার বস্তৃতে তাপ প্রবাহের কোন প্রবগতা নেই। স্ণুত্ররাৎ এটি একটি অপ্রত্যাগামী প্রক্রিয়া।

প্রত্যাগামী। প্রত্রাগামী। উচ্চ মাধ্যমিক পদার্থবিজ্ঞান

^{BG এ JEWEL} ১৬ ২৩, প্রত্যাগামী ও অপ্রত্যাগামী প্রক্রিয়ার মধ্যে পার্থক্য Distinction betwe reversible and irreversible process

প্রত্যাগামী ও অপ্রত্যাগামী প্রক্রিয়ার মধ্যে নিম্নলিখিত পার্থক্য রয়েছে ঃ

প্রত্যাগামী প্রক্রিয়া	অপ্রত্যাগামী প্রক্রিয়া
(১) যে প্রক্রিয়া বিপরীতমুখী হয়ে প্রত্যাবর্তন করে এবং	(১) যে প্রক্রিয়া বিপরীতমুখী হয়ে প্রত্যাবর্তন
সম্মুখবর্তী ও বিপরীতমুখী প্রক্রিয়ার প্রতি স্তরে তাপ ও	করতে পারে না তাকে অপ্রত্যাগামী প্রক্রিয়া বলে।
কান্ডের ফলাফল সমান ও বিপরীত হয় সেই প্রক্রিয়াকে	
প্রত্যাগামী প্রক্রিয়া বলেন	
🗸 (২) কর্মঙ্গীল সংস্থা প্রাথমিক অবস্থায় ফিরে আসে।	(২) <u>ক</u> র্মশীল সংস্থা প্রাথমিক অবস্থায় ফিরে
	আসতে পারে না।
্রতি প্রতি ধীর প্রক্রিয়া।	 ৩) এটি একটি দ্রুত প্রক্রিয়া।
(8) भीट अकटि बेठाइउक्ट शक्तिया नय।	(৪) এটি একটি স্বতঃস্ফুর্ত প্রক্রিয়া।
প্রিন্দংম্থা তাপগতীয় সাম্যাবন্থা বজায় রাখে।	(৫) তাপগতীয় সাম্যাবস্থা বজায় রাখে না।
छ भेर यकियाय जवक्रयी रालायन मुखे रय ना।	(৬) <u>খুবক্ষয়ী ফলাফল দুফ</u> হয়।

১৬৩ তাপগতিবিদ্যার দ্বিতীয় সূত্র Second law of thermodynamics

আমরা জানি যে, যান্ত্রিক শক্তি, শব্দ শক্তি, আলোক শক্তি প্রভৃতি বিভিন্ন প্রকার শক্তি অতি সহজে তাপ শক্তিতে রূপান্তরিত হয়। কিন্তু তাপ শক্তিকে অতি সহজে অন্য শক্তিতে রূপান্তর করা যায় না। তবে তাপ শক্তিকে অন্য শক্তিতে রূপান্তর করতে হলে যন্ত্রের প্রয়োজন অনষীকার্য। এই যন্ত্রই তাপ ইঞ্জিন নামে পরিচিত। বিজ্ঞানী **কার্শো** (Carnot) এই <u>তাপ ই</u>ঞ্জিন নিয়ে বিস্তর গবেষণা করেন এবং এই সিম্বান্তে আসেন যে—

তাপকে কখনই সম্পূর্ণরূপে কাজে রূপান্তর করা সম্ভবপর নয়।

বিজ্ঞানী ক্লসিয়াস এবং কেলভিন পৃথক পৃথকভাবে কার্শোর উপরোক্ত তথ্যের যে সাধারণ রূপ দেন তাই তাপ-গতিবিদ্যার দ্বিতীয় সূত্র নামে পরিচিত। তাপগতিবিদ্যার দ্বিতীয় সূত্রটি বিভিন্নরূপে প্রকাশ করা যায়, তবে প্রত্যেকটি প্রস্তাবনার মূলতাব একই এবং তা হচ্ছে তাপ কখনও ষতঃস্ফূর্তভাবে নিম্ন তাপমাত্রার বস্তু হতে উচ্চ তাপমাত্রার বস্তুতে যেতে পারে না। এ সব প্রস্তাবন্লার-মধ্যে ক্লসিয়াসের প্রস্তাবনাকে নিখুঁত ও উন্নত বলে গণ্য করা হয়েছে। নিম্নে সূত্রটির বিশেষ কয়েক্লটি রূপ বর্ণনা করা হল।

(ক) ক্লসিয়ালের বিবৃতি (Clausius's statement) : "বাইরের কোন শক্তির সাহায্য ব্যতিরেকে কোন স্বয়ংক্রিয় যন্ত্রের গকে নিয় তাপমাত্রার কোন বস্তৃ হতে উচ্চ তাপমাত্রার কোন বস্তৃতে তাপের স্থানান্তর সম্ভব নয়।"

অথবা "তাপ আপনা হতে শীতন বস্তু হতে উষ্ণ বস্তুতে প্রবাহিত হয় না।"

অথবা, "বাইরের কোন শক্তি কর্তৃক সম্পাদিত কাজ ব্যতিরেকে শীতল বস্তু হতে উষ্ণ বস্তৃতে তাপ নিজে প্রবাহিত হতে পারে না।"

উপরের বিবৃতি হতে এটি পরিক্ষার বোঝা যায় যে, তাপগতিবিদ্যার দ্বিতীয় সূত্র পদার্ধবিদ্যার অন্যান্য শাধার অন্তর্ভুক্ত বিভিন্ন ঘটনার সাথে সংগতিপূর্ণ। যেমন, বাইরে থেকে কোন বস্তুর উপর কাজ সম্পন্ন না করলে বস্তু কখনই নিম তল হতে উচ্চ তলে যেতে পারে না। পুনঃ, কাজ না করলে নিম বিভব তল হতে উচ্চ বিভব তলে বিদ্যুৎ প্রবাহিত হতে পারে না, ইত্যাদি। উক্ত সূত্র হতে বোঝা যায় যে, উষ্ণতর বস্তু হতে শীতলতর বস্তুতে তাপ জাপনা হতেই প্রবাহিত হতে পারে।

বইঘর.কম

পাহাড়ের উপর থেকে কোন বস্তু গড়িয়ে দিলে স্বাভাবিকভাবে বস্তুটি নিচে চলে আসে। কিন্তু নিচে থেকে উপরে নিতে হলে বাইরের শক্তি ব্যবহার করেই করতে হয়, অর্থাৎ বস্তুর ওপর কাজ করতে হয়।

আজ পর্যন্ত এমন কোন হিমায়ন যন্ত্র (refrigerator) অবিষ্ণ্ণার করা যায় নি যা শক্তির সরবরাহ ছাড়া কাজ করতে পারে। এই ঘটনা ব্লুসিয়াস প্রদত্ত তাপগতিবিদ্যার দ্বিতীয় সূত্রের সত্যতা প্রমাণ করে।

(খ) কেনন্তিনের বিবৃতি (Kelvin's statement) ঃ "কোন বস্তুকে তার পরিপার্শ্বের শীতনতম অংশ হতে ইমিরুতর শীতন করে শক্তির অবিরাম সরবরাহ পাওয়া সম্ভব নয়।"

এই সূত্র হতে বুঝা যায় যে, তাপকে কান্ধে পরিণত করা যায় ততক্ষণ যতক্ষণ পর্যন্ত যে বস্তু হতে তাপ গ্রহণ করা যাবে তা তার পরিপার্শ্বের শীতলতম অংশ হতে অধিকতর শীতল হবে না। দুটি বস্তুর তাপমাত্রা সমান হলে ঐ বস্তুদ্বয়ের মধ্যে তাপের পরিমার্ণ যত কম বেশিই হউক না কেন এক বস্তু হতে অন্য বস্তৃতে তাপ প্রবাহিত হবে না।

(গ) প্ল্যাংক-এর বিবৃত্তি (Planck's statement) : "কোন তাপ উৎস হতে অনবরত তাপ শোষণ ক্<u>রবে এবং তা সম্পূর্ণব্রপে কাজে রূপান্তরিত হবে এর্</u>ণ একটি তাপ ইঞ্জিন তৈরি ক্রা সম্ভব নয়।"

(দ) কার্নোর বিবৃতি (Carrnot's statement) : "কোন নির্দিষ্ট পরিমাণ তাপ শক্তি সম্পূর্ণ বা পুরোপুরিভাব্দে যান্ত্রিক)শক্তিতে রূপান্তর করার মত যন্ত্র তৈরি সম্ভব নয়।"

১৬'৪ তাপগতিবিদ্যার প্রথম ও দ্বিতীয় সূত্রের তুলনামূলক আলোচনা Comparative discussion on first and second law of thermodynamics

তাপগতিবিদ্যার দুই সূত্রের মূল পার্থক্য বুঝে রাখা প্রয়োজন। প্রথম সূত্রটি শক্তির সংরক্ষণ সূত্রেরই বিশেষ রূপ। প্রথম সূত্রের প্রস্তাবনা এই যে, তাপ ও যান্ত্রিক শক্তি উভয়ই শক্তির বিভিন্ন রূপ এবং একরূপ হতে অন্যরূপে প্ররিবর্তন সম্ভব। এটি ছাড়া রূপান্তরের সময় একে অন্যের সমতৃল্য এটিও প্রথম সূত্রের সাহায্যে জানা যায়। বাস্ত্রক্রেক্ষেরে যদিও আমরা একটি নির্দিষ্ট পরিমাণ কার্যকে সম্পূর্ণভাবে তাপে রূপান্তর করতে পারি ; কিন্তু একটি নির্দিষ্ট পরিমাণ তাপকে সম্পূর্ণরূপে কার্যে রূপান্তর করার পরিকল্পনা কখনও বাস্তবায়িত করা সম্ভব নয়। কিংবা, তাপের উৎপন্তি কোথায়— কোন উত্তন্ত বস্তৃ, না কোন শীতল বস্তৃ। এ সব প্রশ্নের উত্তর আমরা প্রথম সূত্র হতে পাই না। তাপগতিবিদ্যার সাথে সামঞ্জস্যপূর্ণ এ সব প্রশ্নের আলোচনাই তাপগতিবিদ্যার দ্বিতীয় সূত্রের প্রতিপাদ্য বিষয়।

তাপগতিবিদ্যার দ্বিতীয় সূত্র অনুসারে যখন তাপ কান্ধে রূপান্তরিত হয় তখন তার কিছু অংশ কান্ধে রূপান্তরিত হয়, সকল তাপই কান্ধে রূপান্তরিত হয় না। অধিকন্তু ঐ রূপান্তরের জন্য সর্বদা একটি উত্তন্ত ও একটি শীতল বস্তুর যুগপৎ উপস্থিতি প্রয়োজন। উত্তন্ত বস্তু হতে শীতল বস্তুতে তাপ গমনকালে কিছু কান্ধ সম্পন্ন হবে।

১৬-৫ তাপ ইঞ্জিনের দক্ষতা

Efficiency of heat engine

তাপ ইঞ্জিনের দক্ষতা আলোচনার আগে তাপ ইঞ্জিন কি এবং এর মূলনীতি জানা দরকার।

তাপ ইঞ্জিন । যে যন্ত্র <u>ছারা তাপ শক্তিকে যান্ত্রিক শক্তিতে রূপান্তর করা যায় তাকে তাপ ইঞ্জিন ব</u>লে। যেমন বাম্পীয় ইঞ্জিন, সে<u>র্টোল ইঞ্জিন, ডিজেল ইঞ্জিন ইত্যাদি।</u>

তাপ ইঞ্জিনের মূলনীতি : প্রত্যেক ইঞ্জিনেই একটি কার্যরত পদার্থ (working substance) থাকে। ষেমন বাম্পীয় ইঞ্জিনে বাম্প, পেট্রোল ইঞ্জিনে পেট্রোল ক্যুর্যরত বস্তু।

কার্যরত পদার্ধ উচ্চ তাপমাত্রার কোন তাপ উৎস হতে তাপ গ্রহণ করে ঐ তাপের কিছু অংশ কার্যেঁ পরিণত করে এবং রাকি অংশ নিম্ন তাপমাত্রার তাপগ্রাহকে বর্জন করে। এভাবে কার্যরত বস্তু ক্রমাগত তাপ গ্রহণ্ণে ও বর্জনে প্রতিবার কিছু তাপ কার্যে পরিণত হয়। কোন ইঞ্জিনে গৃহীত তাপের যত বেশি অংশ কাজ্বে পরিণত ক্রতে পারে ঐ ইঞ্জিনের দক্ষতা তত বেশি হয়। বাম্পীয় ইঞ্জিনের তুলনায় পেট্রোল ইঞ্জিনের দক্ষতা বেশি।

এখন তাপ ইঞ্জিনের তাপীয় দক্ষতা বা সৎক্ষেপে দক্ষতা আলোচনা করা যাক।

তাপীয় দক্ষতা ঃ ক্লান্দ্রে পরিণত তাপ এবং গৃহীত তাপের অনুপাতকে তাপীয় দক্ষতা বলে। একে n ধারা প্রকাশ করা হয়।

উচ্চ মাধ্যমিক পদার্থবিজ্ঞান

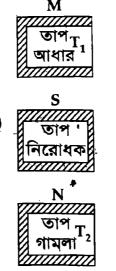
BG & JEWEL

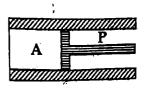
ধরা যাক তাপ ইঞ্জিনে কার্যরত পদার্থ T_1 তাপমাত্রার উৎস হতে Q_1 পরিমাণ তাপ গ্রহণ করে W পরিমাণ কাজ সম্পাদন করে এবং অবশিষ্ট তাপ Q_2 , T_2 তাপমাত্রার তাপ গ্রাহকে বর্জন করে। তাহলে কার্য্যে পরিণত তাপের পরিমাণ = $Q_1 - Q_2$

১৬৬ কার্বোর ইঞ্জিন Carnot's engine

যে যন্ত্রের সাহায়ে তাপ শক্তিকে যান্ত্রিক শক্তিতে রূপান্তর করা হয় তাকে তাপ ইঞ্জিন (heat engine) বলে। তাপ কার্যে রূপান্তরিত হওয়ার নিমিন্ত তান্ত্বিক ব্যাখ্যা প্রদানের জন্য ফরাসি প্রকৌশলী সাদি কার্ণো (Sadi Carnot, 1796—1832) সকল দোষ-ত্রুটিমুক্ত একটি আদর্শ ইঞ্জিনের পরিকল্পনা করেন। একে কার্ণোর ইঞ্জিন বলা হয়। কার্যক্ষেত্রে ব্যবহৃত তাপ ইঞ্জিনগুলোর অনেক দোষ-ত্রুটি থাকে। কার্ণোর কল্পিত ইঞ্জিনটি এই সব দোষ-ত্রুটি এবং অসম্পূর্ণক্ল হতে একেবারে মুক্ত। বলা বাহুল্য, কার্ণোর ইঞ্জিন একটি নিছক কল্পনা মাত্র এবং বাস্তবক্ষেত্রে এটা নির্মাণ করা সম্পর্ব নয়। তবে এর কার্যপ্রণালীর তান্ত্রিক ব্যাখ্যা প্রদান খ্রই সহজ।

ইঞ্জিনের তাপীয় দক্ষর্তা, $\eta = \left(1 - \frac{Q_2}{Q_1}\right) \times 100\%$


এই ইজিনে নিম্নিখিত ছংশগুলো আছে :


(i) <u>চোঙ বা সিলিন্ডার (C</u>)linder), A [চিত্র ১৬ ২] ঃ এর তিনদিকের দেয়াল সম্পূর্ণ তাপ অন্তরক পদার্থের তৈরি ; কিন্তু তলদেশ সম্পূর্ণ তাপ পরিবাহীর দ্বারা তৈরি। চোঙের অত্যস্তরে কার্যকরী পদার্থ (working substance) আবন্দ্<u>দ থাকে।</u> চোঙটির অভ্যন্তরে তাপ অন্তরক পদার্থের তৈরি একটি পিস্টন P ঘর্ষণহীনভাবে চলাচল করতে পারে। ইঞ্জিনে কার্যকরী পদার্থ হিসেকে কোন আদর্শ গ্যাসকে ব্যবহার করা হয়।

(ii) তাপ আধার বা তাপ উৎস (heat source), M : T₁ পরম তাপ্রমান্ত্রায় রাখা অতি উচ্চতাপ গৃহীতাযুক্ত একটি উত্তপ্ত বস্তৃ। এটা তাপ আধার বা উৎস হিসেবে কাজ করে। এর তাপমাত্রা সর্বদা স্থির ধাকে।

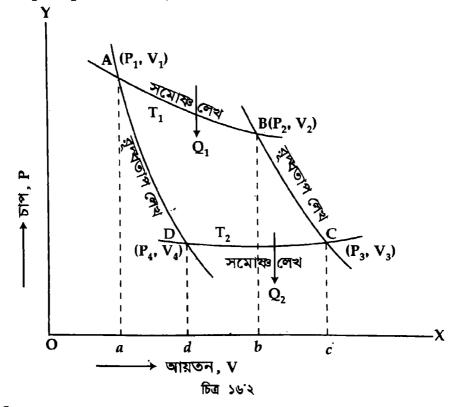
(iii) তাপ গামলা বা তাপ গ্রাহক (heat sink), N ট T₂ পরম তাপমাত্রায় রাখা অনুরূপ একটি শীতল বস্তু বা সিংক যা তাপ গ্রাহক হিসেবে কাজ করে। এর তাপগ্রহীতা অতি উচ্চ। এর তাপমাত্রাও সর্বদা স্থির পাকে। T₂ ব্যু

(iv) আসন, ST S সম্পূর্ণ তাপ নিরোধক বা অন্তরক একটি পাটাতন বা আসন। এর উপর চোঙকে

(2)

বসানো যায়। তাপ আধার এবং তাপ গ্রাহক উভয়ই উচ্চতাপ গ্রহীতাযুক্ত হওয়ায় তাদের সাথে চোঙে তাপ আদান-প্রদান হলে তাদের তাপমাত্রা অপরিবর্তিত থাকে। চোঙ, তাপ আধার, তাপ গামলা তাপ অন্তরক আসনের উপর বসানো যেতে পারে এবং ঘর্ষণবিহীনভাবে সরানো যেতে পারে।

. 18


তাপগতিবিদ্যার দ্বিতীয় সূত্র

বইঘর.কম

১৬-৭ কার্নোর চক্রের ফ্রিয়া ও সম্পাদিত কাজ Operations of Carnot's cycle and work done

কার্নোর চক্রের ক্রিয়া ও সম্পাদিত কাজকে চিত্রের সাহায্যে প্রকাশ করা হয়। একে সূচক বা নির্দেশক চিত্র বলে। নিম্নে সূচক বা নির্দেশক চিত্রে কার্নোর চক্রের বিভিন্ন ক্রিয়ার ব্যাখ্যা ও সম্পাদিত কাজের হিসেব করা হল ঃ

প্রথম ধাপ : এই ধাপে সিলিন্ডারকে তাপ উৎসের উপর বসানো হয়। খুবই অল্প সময়ের মধ্যে সিলিন্ডারের কার্যকরী পদার্থের (গ্যাস) তাপমাত্রা উৎসের তাপমাত্রা T₁-এর সমান হয়। নির্দেশক চিত্রে A বিন্দু এই অবস্থা নির্দেশ করে [চিত্র ১৬'ও]। ধরা যাক, এ অবস্থায় গ্যাসের চাপ P₁ এবং আয়তন V₁। এরপর গ্যাসকে সমোষ্ণ প্রক্রিয়ায় প্রসারিত হতে দেয়া হয়। প্রসারণের সময় উৎস হতে Q পরিমাণ তাপ গ্রহণ করে। সমোষ্ণ প্রসারণ শেষে গ্যাসের চাপ ও আয়তন যথাক্রমে P₂ ও V₂। চিত্রে B বিন্দু দ্বারা এ অবস্থা নির্দেশ করা হয়েছে।

নির্দেশক চিত্রে AB সমোষ্ণ প্রসারণের জন্য কৃত কাজ, W = ABba ক্ষেত্রফল।

দ্বিতীয় ধাপ ঃ এই ধাপে সিলিন্ডারকে তাপ নিরোধক বা অন্তরক আসনের উপরে বসানো হয় এবং আবন্ধ গ্যাসকে রুম্বতাপ প্রক্রিয়ায় প্রসারিত হতে দেয়া হয়। রুম্বতাপ প্রক্রিয়ায় গ্যাসের তাপমাত্রা কমে তাপগ্রাহকের তাপমাত্রা T₂-এর সমান হয়। প্রক্রিয়া শেষে গ্যাসের চাপ ও আয়তন যথাক্রমে P₃ ও V₃ হয় যা চিত্রে C বিন্দু দ্বারা নির্দেশ করা হয়েছে।

নির্দেশক চিত্রে BC রুম্বতাপ প্রসারণ বুঝায় এবং এই প্রসারণে কৃত কাজ, W₂ = BCcb ক্ষেত্রফল।

ভৃতীয় ধাপ ঃ এবার সিলিন্ডারকে তাপগ্রাহকের উপর বসানো হয় এবং গ্যাসকে সমোষ্ণ প্রক্রিয়ায় পিস্টন দ্বারা সংকুচিত বা সংনমিত করা হয় ; ফলে গ্যাসের চাপ বৃদ্বি পায়। এই ধাপে পিস্টন দ্বারা গ্যাসে কাজ সম্পাদিত হয়। সংকোচন বা সংনমনের সময় গ্যাস T₂ তাপমাত্রার তাপ গ্রাহকে Q₂ তাপ বর্জন করে। এই অবস্থায় গ্যাসের চাপ ও আয়তন যথাক্রমে P₄ ও V₄ হয় যা চিত্রের D বিন্দু নির্দেশ করে।

নির্দেশক চিত্রের CD সমোষ্ণ লেখ T₂ তাপমাত্রায় গ্যাসের সংকোচন বুঝায় এবং এই প্রক্রিয়ায় কৃত কাজ, W₃ = CcdD ক্ষেত্রফল।

চতূর্থ ধাগ ঃ এই ধাপে সিলিডারকে তাপ নিরোধক বা অন্তরক আসনের উপর বসানো হয় এবং আবন্দ গ্যাসকে রুদ্ধতাপ প্রক্রিয়ায় সংকুচিত বা সংনমিত করা হয়। এই আবন্দ্ধ গ্যাসের উপর কান্ধ সম্পাদিত হওয়ায় এর তাপমাত্রা বেড়ে উৎসের তাপমাত্রায় সমান হয়। এই প্রক্রিয়ায় গ্যাসের চাপ ও আয়তন যথাক্রমে P_1 ও V_1 হয়। অর্ধাৎ চক্র আদি অবস্থায় ফিরে যায়। চিত্রে A বিন্দু এই অবস্থা নির্দেশ করে।

নির্দেশক চিত্রের DA লেখ রুম্বতাপীয় সংকোচন বুঝায় এবং এই পর্যায়ে কৃত কাজ, W₄ = DdaA ক্ষেত্ৰফল।

প্রচলিত প্রথা অনুসারে আবন্ধ গ্যাস দারা কৃত কাজ ধনাত্মক এবং গ্যাসের উপর কৃত কাজ ঋণাত্মক হবে। সুতরাং, W_1 ও W_2 ধনাত্মক এবং W_3 ও W_4 ঋণাত্মক হবে।

অতএব, আবন্ধ গ্যাস দ্বারা মোট কৃত কাজ,

 $W = W_1 + W_2 - W_3 - W_4 = ABCD$ (क्रज्रेश्व)

উপরের বর্ণনা থেকে দেখা যাচ্ছে যে কার্নো চক্রে কার্যকরী পদ্বার্থ (গ্যাস) কর্তৃক কৃত কাচ্চ নির্দেশক চিত্রে দুটি সমোষ্ণ ও দুটি রুম্বতাপীয় রেখ দ্বারা আবন্ধ ক্ষেত্রফলের সমান। এই চক্রকে কার্নোর চক্র বলা হয়।

কার্নোর ইঞ্জিনের দক্ষতা (Efficiency of Carnot's engine) ঃ ইঞ্জিন একটি চক্রে যে পরিমাণ তাপকে কাজে পরিণত করে এবং তাপ উৎস হতে যে পরিমাণ শোষণ করে, এদের অনুপাতকে ইঞ্জিনের দক্ষতা বলে। একে η দ্বারা প্রকাশ করা হয়।

মনে করি কার্নো ইঞ্জিনের কার্যকরী পদার্থ (গ্যাস) কর্তৃক গৃহীত তাপ ${
m Q}_1$ এবং বর্জিত তাপ ${
m Q}_2$ । তাহলে কার্যে পরিণত তাপের পরিমাণ = $Q_1 - Q_2$

ইঞ্জিনের দক্ষতা,
$$\eta = \frac{\overline{q_1(1 + Q_2)}}{\overline{q_1(1 + Q_2)}}$$

= $\frac{Q_1 - Q_2}{Q_1}$
= $1 - \frac{Q_2}{Q_1}$ (3)

কার্নো ইঞ্জিনের ক্ষেত্রে ইঞ্জিন দ্বারা গৃহীত বা বর্জিত তাপ তাপ উৎস বা তাপ গ্রাহকের তাপমাত্রার সমানুপাতিক। অর্থাৎ $\frac{Q}{T} =$ ধ্রবক।

অতএব,

বা

$$\frac{Q_1}{T_1} = \frac{Q_2}{T_2}$$

বা, $\frac{Q_2}{Q_1} = \frac{T_2}{T_1}$
জনেগ্র সমীক্রণ (1) হতে পাই

ज्यम, भगाक्षत्रग (1) २०० गा**र**,

$$\eta = 1 - \frac{Q_2}{Q_1}$$

$$\eta = 1 - \frac{T_2}{T_1} = \frac{T_1 - T_2}{T}$$
(4)

দক্ষতা সাধারণত শতকরা হিসেবে প্রকাশ করা হয়।

ছার্নো ইঞ্জিনের দক্ষতা,
$$\eta = \left(1 - \frac{T_2}{T_1}\right) \times 100\%$$
 (5)

সমীকরণ (5) হতে দেখা যায় যে, ইঞ্জিনের দক্ষতা তাপ উৎস ও তাপগ্রাহকের তাপমাত্রার উপর নির্ভর করে ; কার্যকরী পদার্থের প্রকৃতির উপরে নয়।

কোর্নোর ইঞ্জিনকে আদর্শ ইঞ্জিন বলা হয়। ব্যবহারিক যে কোন ইঞ্জিনের চেয়ে এর দক্ষতা বেশি।

বইঘর.কম

কার্নো চক্র একটি প্রত্যাগামী চক্র (Carnot cycle is reversible) :

কোন চক্র প্রত্যাগামী হতে গেলে যে সমস্ত বৈশিষ্ট্য থাকা প্রয়োজন কার্নোর আদর্শ ইঞ্জিনে সেগুলো রয়েছে। যেমন—

্র্য্পিস্টন ও চোঙ বা সিলিন্ডারের মধ্যে কোন ঘর্ষণ নেই।

🖌 🔊 কার্যকরী পদার্থ (গ্যাস)-এর উপর প্রযুক্ত প্রক্রিয়াগুলো খুব ধীরে ধীরে সংঘটিত হয়।

' (৩) পিস্টন ও সিলিন্ডার নির্মাণে আদর্শ তাপ নিরোধক বা অন্তরক ও আদর্শ তাপ পরিবাহী ব্যবহার করা হয় এবং তাপ উৎস ও তাপ গ্রাহকের উপাদান এমন অতি উচ্চ তাপ গ্রাহিতাযুক্ত করা হয় যে সমোষ্ণ প্রক্রিয়াগুলো স্থির তাপমাত্রায় সংঘটিত হয়।

১৬৮ এনট্রপি

Entropy

জামরা জানি কোন গ্যাসকে রুম্বতাপ প্রক্রিয়ায় সজ্জুচিত করার সময় কিছু কাজ করা হয়। ফলে গ্যাসের তাপশক্তি এবং সেই সঙ্গে তাপমাত্রা বৃদ্বি পায়। পুনঃ গ্যাসকে রুন্বতাপ প্রক্রিয়ায় প্রসারিত হতে দিলে গ্যাসকে কিছু কাজ করতে হয়। অন্তর্নিহিত শক্তির বিনিময়ে গ্যাস এই কাজ করে থাকে। ফলে গ্যাসের তাপশক্তি ও তাপমাত্রা এই দুটির একটিও স্থির থাকে না। উতয়েই একই সঙ্গে বৃদ্বি পায় বা হ্রাস পায়।

বিজ্ঞীনী ক্লসিয়াস তাপগতিবিদ্যার দ্বিতীয় সূত্র প্রয়োগ করতে গিয়ে উপলব্দি করেন যে. সমোঞ্চ প্রক্রিয়ায় যেমন বস্তুর তাপমাত্রা স্থির থাকে, তেমন রুম্বতাপ প্রক্রিয়ায় বস্তুর 'কোন কিছু' স্থির থাকে। রুম্বতাপ প্রক্রিয়ায় বস্তুর সংগে যখন পরিপার্শ্বের কোন তাপ আদান-প্রদান হয় না, তখন বস্তুর যে তাপীয় ধর্ম অপরিবর্তিত থাকে ক্লসিয়াস তার নাম দেন এন্ট্রপি প্রিতএব এন্ট্রপির নিম্নলিখিত সংজ্ঞা দেওয়া যেতে পারে :

রুর্মতাপ প্রক্রিয়ায় বস্ত্র যে তাপীয় ধর্ম স্থির থাকে, তাকে এন্ট্রপি বলে।

অন্যভাবে বলা হয়, এন্ট্র<u>িপি হল বস্তুর এমন একটি ভৌত ধর্ম যা রুম্ধতাপ প্রক্রিয়ায় স্ধির থাকে।</u>

এন্ট্রপি বস্তুর একটি ভৌত ধর্ম। তাপগতিবিজ্ঞানে এর গুরুত্ব অপরিসীম। এটি তাপগতীয় রাশিসমূহের এমন একটি অপেক্ষক যা তাপ প্রবাহের দিক বা তাপ সঞ্চালনের দিক নির্দেশ করে এবং তাপগতীয় অবস্থা নির্ধারণে সহায়তা করে।

তাপমাত্রা, আয়তন ও চাপের ন্যায় বস্তৃর এন্ট্রপিও একটি রাশি। এর মান বস্তৃত বর্তমান অবস্থার উপর নির্ভর করে। তবে কোন্ পথে বস্তৃ ঐ অবস্থায় পৌঁছল তার উপর নির্ভর করে না অর্থাৎ কোন নির্দিষ্ট অবস্থায় বস্তৃর এন্ট্রপি বস্তৃর পূর্ব ইতিহাসের উপর নির্ভর করে না। তাপ গ্রহণে বা বর্জনে বস্তৃর এন্ট্রপি পরিবর্তিত হয়।

১৬৮'১ এন্ট্রপির একক

-, Unit of entropy

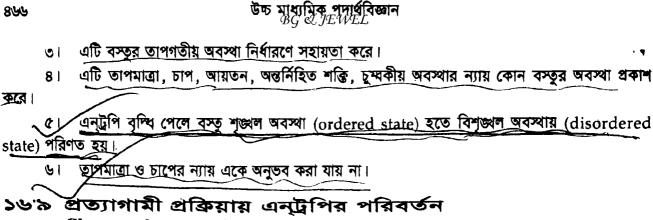
কোন একটি সংস্থা বা চক্রের তাপমাত্রা সাপেক্ষে গৃহীত বা বর্জিত তাপের পরিবর্তনের হার দ্বারা এন্ট্রপি পরিমাপ করা হয়।

মনে করি কোন একটি ব্যবস্থা বা সিস্টেম T পরম তাপমাত্রায় dQ পরিমাণ তাপ গ্রহণ বা বর্জন করে। অতএব এট্রপি

$$dS = \frac{dQ}{T}$$

(6) 🖈

 ${
m T}$ -এর একক কেলভিন এবং $d{
m Q}$ এর একক জ্লা। অতএব এন্ট্রপির এস.আই. এিকক জ্লা / কেলভিন ([K^2))


১৬৮ ২ এন্ট্রপির তাৎপর্য

Significance of entropy

তাপগতিবিদ্যায় এন্ট্রপির গুরুত্ব অপরিসীম। এর নিমলিখিত তাৎপর্য রয়েছে ঃ

<u>এন্ট্রপি একটি প্রাকৃতিক রাশি যার মান তাপ ও পরম তাপমাত্রার অনুপাতের সমান।</u>

২ এটি বস্তুর একটি তাপীয় ধর্ম যা তাপ সঞ্চালনের দিক নির্দেশ করে।

Change of entropy in a reversible process

মনে করি abcd একটি পূর্ণ প্রত্যাগামী কার্ণো চক্র। ১৬ ৪নং চিত্রে এটি প্রদর্শিত হল।

উক্ত চক্রে ab ও cd দুটি সমোষ্ণ লেখ এবং bc ও da দুটি রুম্বতাপ লেখ। মনে করি ab সমোষ্ণ লেখ বরাবর a বিন্দু হতে b বিন্দুতে আসতে কার্যরত পদার্থ T_1 তাপমাত্রায় তাপ উৎস হতে Q_1 পরিমাণ তাপ গ্রহণ করে এবং cd সমোক্ষি লেখ বরাবর c বিন্দু হতে d বিন্দুতে আসতে কার্যরত পদার্ধ T2 তাপমাত্রায় তাপ গ্রাহকে Q2 পরিমাণ তাপ বর্জন করে। কিন্তু bc ও da রুম্বতাপ লেখ হওয়ায় লেখ দুটি বরাবর কোন তাপ গ্রহণ বা বর্জন হবে না বলে এনট্রপির কোন পরিবর্তন হবে না)

ab সমোষ্ণ প্রক্রিয়ায় এন্ট্রপি বৃদিব = $\frac{Q_1}{T_1}$

514. х 0 আয়তন, v

এবং cd সমোষ্ণ প্রক্রিয়ায় এন্ট্রপি হ্রাস = $\frac{Q_2}{T_2}$ সমগ্র চক্রে কার্যরত বস্তুর এন্ট্রপির মোট পরিবর্তন = $\frac{Q_1}{T_1} - \frac{Q_2}{T_2}$ কিন্তু চব্রুটি প্রত্যাগামী হওয়ায় = $\frac{Q_1}{T_1} = \frac{Q_2}{T_2}$ সুতরাং এন্ট্রপির মোট পরিবর্তন $\Delta S = rac{Q_1}{T_1} - rac{Q_2}{T_2} = 0$ $\overline{\mathbf{A}}, \Delta \mathbf{S} = \Sigma \frac{\mathbf{V}}{\mathbf{T}} = 0$ অতএব সিম্বান্ত এই (য, প্রত্যাগামী প্রক্রিয়ায় যে কোন সংস্থার এন্ট্রপি স্বির থাবে

অপ্রত্যাগামী প্রক্রিয়ায় এন্ট্রপির পরিবর্তন 26.70 Change of entropy in an irreversible process

মনে করি কোন অপ্রত্যাগামী ইঞ্জিন T_1 তাপমাত্রায় Q_1 পরিমাণ তাপ গ্রহণ করে এবং T_2 তাপমাত্রায় Q_2 পরিমাণ তাপ বর্জন করে। এক্ষেত্রে কর্মদক্ষতা

$$\eta' = \frac{Q_1 - Q_2}{Q_1}$$
(7)

কিন্তু তাপমাত্রার একই সামার মধ্যে কোন প্রত্যাগামী চক্রের (কার্নোর চক্রের) কর্মদক্ষতা

$$\eta = \frac{T_1 - T_2}{T_1}$$
(8)

বইঘর.কম

এখন কার্শোর উপপাদ্য $^{\circ}$ অনুসারে $\eta > \eta'$

$$\frac{T_{1} - T_{2}}{T_{1}} > \frac{Q_{1} - Q_{2}}{Q_{1}}$$

$$\exists I, \quad 1 - \frac{T_{2}}{T_{1}} > 1 - \frac{Q_{2}}{Q_{1}}$$

$$\exists I, \quad \frac{Q_{2}}{Q_{1}} > \frac{T_{2}}{T_{1}}$$

$$\exists I, \quad \frac{Q_{2}}{T_{2}} > \frac{\dot{Q}_{1}}{T_{1}}$$

$$\exists I, \quad \frac{Q_{2}}{T_{2}} - \frac{Q_{1}}{T_{1}} > 0$$

অতএব কার্যনির্বাহক সংস্থাটিকে সামগ্রিকভাবে বিবেচনা করলে আমরা দেখি যে তাপ উৎসটি $\frac{Q_1}{T_1}$ পরিমাণ এন্ট্রপি হারায় এবং তাপ গ্রাহকটি $\frac{Q_2}{T_2}$ পরিমাণ এন্ট্রপি লাভ করে। সুতরাং সমগ্র প্রক্রিয়াটিতে মোট লাভ = $\left(\frac{Q_2}{T_2} - \frac{Q_1}{T_1}\right)$ যার মান ধনাত্মক।

অতএর অপ্রত্যাগামী প্রক্রিয়ায় এনট্রপি বৃষ্দি পায়/। অপরপক্ষে তাপের আয়ুক্ষাল হাস পাচ্ছে অর্থাৎ তাপ মৃত্যুর দিকে ধার্বিত হচ্ছে।

১৬·১১ এন্ট্রিপির মাধ্যমে তাপগতিবিজ্ঞানের দ্বিতীয় সূত্রের প্রকাশ Formulation of the second law of thermodynamics in terms of entropy ক্লসিয়াসের মতে তাপগতিবিজ্ঞানের প্রথম সূত্র নিম্নরূপ ঃ

বিশ্বের মোট শক্তি স্থির। একে শক্তির নিত্যতার সূত্রও বলা যায়। ক্লসিয়াস তাপগতিবিজ্ঞানের দ্বিতীয়, সূত্রকে নিম্নলিখিতভাবে সংজ্ঞায়িত করেন।

বিশের এন্ট্র<u>পি রুমাগত বৃদ্ধির দিকে যাচ্ছে</u>। একে এন্ট্রপির বৃদ্ধির সূত্রও বলা যায়। আমরা ষাভাবিকভাবে এন্ট্রপির মাধ্যমে তাপগতিবিজ্ঞানের দ্বিতীয় সূত্রকে নিম্নলিখিতভাবে সংজ্ঞায়িত করতে পারি ঃ

প্রুকৃতির সকল ভৌত অথবা রাসায়নিক ক্রিয়া এমনভাবে সংঘটিত হয় যে, যার ফলে সার্বিক ব্যবস্থার এন্ট্রপি বৃন্দ্রি পায়। সীমায়িত ক্ষেত্রে একটি প্রত্যাবর্তী প্রক্রিয়ার এন্ট্রপি অপরিবর্তিত থাকে।

ত্রাপগৃতির্বিজ্ঞানের দ্বিতীয় সূত্রকে গাণিতিকভাবে সংজ্ঞায়িত করার জন্য ধরা যাক একটি ব্যবস্থার প্রাথমিক ও চূড়ান্ত অবস্থা A ও B-তে এন্ট্রপির মান যথাব্রুমে S_A এবং S_B । সুতরাং ব্যবস্থাটির এন্ট্রপির পরিবর্তন,

$$S_B - S_A = \int_A \frac{u_Q}{T}$$
 (10)
যদি A ভ B জবস্থা দুটি পরস্পর খুবই কাছাকাছি হয়, তবে লেখ যায়, $dS = \frac{dQ}{T}$
 $dQ = T dS$ (11)
এটিই তাপগতিবিজ্ঞানের দ্বিতীয় সূত্রের গাণিতিক সংজ্ঞা।
১৬'১২ অপ্রত্যাগামী প্রক্রিয়ায় এন্ট্রাপি বৃদ্ধির উদাহরণ
Examples of increase of entropy in irreversible process

জামরা জানি অপ্রত্যাগামী প্রক্রিয়ায় এন্ট্রপি বৃদ্ধি পায়। বিশ্ব জগতের অধিকাংশ প্রক্রিয়াই অপ্রত্যাগামী প্রক্রিয়া।

সূতরাং বহা যায় বিশুক্রগতের এনট্রপি ক্রমাগত বৃদ্ধি পাছে।

ুয়ে কোন্দ দুটি নির্দিন্ট তাপমাত্রার মধ্যে ক্রিয়ারত কার্নোর প্রত্যাগামী ইচ্ছিনের কর্ম দক্ষমতা অপেক্ষা অন্য কোন ইচ্ছিনের কর্মদক্ষতা বেশি ইচ্ছে সারে না। একে কার্নোর উপপাদ্য বনে।

(9)

এভাবে এনট্রপি বৃদ্ধি পেতে পেতে যখন সর্বোচ্চ মানে পৌছাবে তখন বিশ্বের সকল ব্যবস্থা তাপীয় সাম্যবস্থায় উপনীত হবে। তাপীয় সাম্যবস্থায় পৌছলে তাপশব্তিকে ফলপ্রসূ কাজে পরিণত করা সম্ভব হবে না। ফলে কার্যকরী শব্তির দুম্প্রাপ্যতা সৃষ্টি হবে।

এমনিভাবে যদি চলতে থাকে, তবে পৃথিবী এমন একটি ভয়াবহ অবস্থায় পৌঁছাবে যে সে তাপ শক্তি সরবরাহে অক্ষম হয়ে পড়বে। এ অবস্থায় পৃথিবীর তাপীয় মৃত্যু (Thermal Death of the Earth) হয়েছে বর্দা হবে।

স্মরণিকা

প্রত্যাগামী প্রক্রিয়া : যে প্রক্রিয়া সম্মুখ পরিবর্তনের পর বিপরীতমুখী হয়ে প্রত্যাবর্তন করতে পারে এবং সম্মুখ ও বিপরীতমুখী পরিবর্তনের প্রতি স্তরে তাপ ও কার্যের ফলাফল সমান ও বিপরীতমুখী হয় তাকে প্রত্যাগামী প্রক্রিয়া বলে।

ভপ্রত্যাগামী প্রক্রিয়া ঃ যে প্রক্রিয়ায় কার্যরত বস্তু সম্মুখগামী হওয়ার পর বিপরীতমুখী হয়ে প্রত্যাবর্তন করতে পারে না তাকে অন্রত্যাগামী প্রক্রিয়া বলে।

তাপগতিবিদ্যার দ্বিতীয় সূত্র :

ক্লসিয়াসের বিবৃতি ঃ বাইরের কোন শক্তির সাহায্য ব্যতিরেকে কোন ষয়ংক্রিয় যন্ত্রের পক্ষে নিম্ন তাপমাত্রার কোন বস্তু হতে উচ্চ তাপমাত্রার কোন বস্তৃতে তাপের স্থানান্তর সম্ভব নয়।

কেলভিনের বিবৃতি ঃ কোন বস্তুকে তার পরিপার্শ্বের শীতলতম জংশ হতে অধিকতর শীতল করে শক্তির অবিরাম সরবরাহ পাওয়া সম্ভব নয়।

প্লাক্ষের বিবৃষ্টি : কোন তাপ উৎস হতে অনবরত তাপ শোষণ করবে এবং তা সম্পূর্ণরুপে কাজে রূপান্তরিত হবে এরূপ একটি তাপ ইন্সিন তৈরি করা সম্ভব নয়।

কার্নোর বিবৃতি ঃ কোন নির্দিষ্ট পরিমাণ তাপশক্তি সম্পূর্ণভাবে যান্ত্রিক শক্তিতে রূপান্তর করার মত যন্ত্র তৈরি করা সম্ভব নয়। 💰

তাপ ইঞ্জিন ঃ যে যন্ত্র দ্বারা তাপ শক্তিকে যান্ত্রিক শক্তিতে রূপান্তর করা যায় তাকে তাপ ইঞ্জিন বলে।

তাপ ইন্সিনের দক্ষতা বা তাপীয় দক্ষতা : কাজে পরিণত তাপ এবং গৃহীত তাপের অনুপাতকে তাপ ইন্সিনের দক্ষতা বলে। ইন্সিনের দক্ষতা, $\eta = \frac{1}{6} \frac{1}{6} \frac{1}{6} \frac{Q_1 - Q_2}{Q_1} = 1 - \frac{Q_2}{Q_1}$

কার্নো ইঞ্জিনের দক্ষতা : কার্নো ইঞ্জিনের কার্যকরী পদার্থ কর্তৃক উৎস হতে গৃহীত তাপ Q_1 এবং তাপগ্রাহকে বর্জিত তাপ Q_2 যথাব্রুমে উৎসের তাপমাত্রা T_1 ও তাপগ্রাহকের তাপমাত্রা T_2 এর সমানুপাতিক। জতএব, কার্নো ইঞ্জিনের দক্ষতা,

$$\eta = 1 - \frac{T_2}{T_1}$$
 শতকরা হিসেবে $\eta = \left(1 - \frac{T_2}{T_1}\right) \times 100\%$

এনট্রপি ঃ রুম্বতাপীয় প্রক্রিয়ায় বস্তুর যে তাপীয় ধর্ম স্বির থাকে, তাকে এনট্রপি বলে।

প্রয়োজনীয় সমীকরণ

তাপ ইঞ্জিনের দক্ষতা,
$$\eta = \left(1 - \frac{Q_2}{Q_1}\right) \times 100\%$$
 (1)

কার্শোর ইঞ্জিনের দক্ষতা,
$$\eta = \left(1 - \frac{T_2}{T_1}\right) \times 100\%$$
 (2)

এনট্রপি,
$$dS = \frac{dQ}{T}M$$
 (3)

$$S_{\rm B} - S_{\rm A} = \int \frac{B}{A} \frac{dQ}{T}$$
(4)

তাপগডিবিদ্যার ষিতীয় সূত্র

বইঘর.কম্ প্রত্যাগামী প্রক্রিয়ায় এনট্রপির মোট পরিবর্তন, $\Delta S = \frac{Q_1}{T_1} - \frac{Q_2}{T_2} = 0$ (5) অপ্রত্যাগামী প্রক্রিয়ায় এনট্রপির মোট পরিবর্তন, $\Delta S = \frac{Q_2}{T_2} - \frac{Q_1}{T_1} > 0$ (7) $\sqrt{\frac{5}{2}}$ সমাধানকৃত উদ্বোহরণ ১। একটি প্রত্যাবর্তী ইঞ্জিন 167°C ও 57°C তাপমাত্রায় কার্যকর হলে এর সর্বাধিক দক্ষতা নির্পয় কর। আমরা জনি,

 $T_{1} = 167^{\circ}C = (167 + 273)K$ = 440K $T_{2} = 57^{\circ}C$ = (57 + 273) K $\eta = 1 - \frac{T_2}{T_1}$ $=1-\frac{330}{440}$ = 1 - 0.75 بسر موا رسر ر = 0.25= 330K = 25% = 25% ২। একটি আদর্ণ ইঞ্জিনের কার্যকর বস্তু প্রত্যেক বার উৎস হতে যত ক্যালরি তাপ গ্রহণ করে কাজ সম্পন্ন করার পর তার ৪০% তাপ বর্জন করে। ইস্কিনের দক্ষতা নির্পয় কর। ধরা যাক গৃহীত তাপ $= Q_1$ জামরা পাই, দক্ষতা, $\eta = \frac{Q_1 - Q_2}{\Omega_1} \times 100\%$ তা হলে বর্জিত তাপ, $Q_2 = 80\% \times Q_1 = \frac{80}{100}Q_1 = 0.8 Q_1$ নির্ণেয় দক্ষতা, $\eta_{-}=\frac{Q_1-0.8Q_1}{Q_1}\times 100\%=20\%$ ৩। একটি কার্নো ইঞ্চিন 800K ও 400K তাপমাত্রায় যে দক্ষতায় কান্ত করে, ঠিক সম দক্ষতায় কান্তু করে TK ও 900K তাপমাত্রায়। তাপমাত্রা T-এর মান বের কর। [সি. বো. ২০০২] আমরা জানি, এখানে, ইঞ্জিনের সক্ষতা, $\eta = \frac{T_1 - T_2}{T_1}$ = $\frac{800 - 400}{800}$ প্রথম কেত্রে, উৎসের তাপমাত্রা, T₁ = 800K তাপ গ্রাহকের তাপমাত্রা, T₂ = 400K = 0.5 = 50%**मका**, **n** = ? দিতীয় ক্ষেত্রে, আবার, $\eta = \frac{T_1 - T_2}{T_1}$ উৎসের তাপমাত্রা, T₁ = TK = ? তাপ গ্রাহকের তাপমাত্রা, T₂ = 900K $0.5 = \frac{T - 900}{T}$ দক্ষতা, ŋ = 0'5

বা, 0.5 T = T - 900

 $\begin{array}{r} \mathbf{41}, \quad \dot{0} \cdot 5 \mathbf{T} = 900 \\ \mathbf{7} \quad 900 \quad 100 \end{array}$

আমরা জানি.

$$T = \frac{700}{0.5} = 1800K$$

৪। একটি তাপ ইঞ্জিনের দক্ষতা ৪০%। গ্রাহকের তাপমাত্রা 127°C হলে উৎসের তাপমাত্রা কত ?

[রা. বো. ২০০৩]

	$\eta = 1 - \frac{T_2}{T}$	এখানে,
বা,	$\frac{80}{100} = 1 - \frac{400}{T_1}$	$T_2 = (127 + 273)$ = 400 K
বা,	$\frac{400}{T_1} = 1 - \frac{8}{10}$	$\eta = 80\% = \frac{80}{100}$
বা,	$\frac{400}{T_1} = \frac{2}{10}$	T ₁ = ?
বা,	$T_1 = \frac{400 \times 10}{2} = 2000 \text{ K}$	

863

৫। একটি তাপ ইঞ্জিন উৎস থেকে 600 K তাগমাত্রায় 2'65 × 10° J তাপশস্তি গ্রহণ করে তাগগ্রাহকে 5'12 × 10°J তাগশস্ত্রি বর্জন করে। তাগগ্রাহকের তাগমাত্রা ও ইঞ্জিনটির দক্ষতা নির্ণয় কর।

আমরা জানি, $\frac{Q_1}{Q_2} = \frac{T_1}{T_2}$ বা, $T_2 = \frac{Q_2 \times T_1}{Q_1}$ $= \frac{5'12 \times 10^5 \times 600}{\cdot 2'65 \times 10^6} = 115'924 \text{ K}$ আবার, দক্ষতা, $\eta = 1 - \frac{T_2}{T_1}$ $= 1 - \frac{115'924}{600} = 0'8068$

[সি. বো. ২০০৬ (মান ভিন্ন) ; ব. বো. ২০০৪; রা. বো. ২০০৩] এখানে, $T_1 = 600 \text{ K}$ $Q_1 = 2.65 \times 10^6 \text{ J}$ $Q_2 = 5.12 \times 10^5 \text{ J}$ $T_2 = ?$ $\eta = ?$

আবার, দক্ষতা, $\eta = 1 - \frac{T_2}{T_1}$ $= 1 - \frac{115'924}{600} = 0.8068$ = 80'68 %৬। একটি কার্নো ইন্সিনের উৎসের তাপমাত্রা 400 K। এই তাপমাত্রায় এটি উৎস থেকে 840 J তাপ গ্রহণ করে এবং সিংকে 630 J তাপ বর্জন করে। সিংকের তাপমাত্রা ও ইন্সিনের কর্মদক্ষতা নির্ণয় কর। [ঢা. বো. ২০০১] জামরা জানি, এখানে,

······································		
$Q_1 T_1$	T ₁	= 400 K
$\frac{Q_1}{Q_2} = \frac{T_1}{T_2}$	Q1	= 840 J
$T_2 = \frac{Q_2}{Q_1} \times T_1$	·Q ₂	= 630 J = ?·
$\mathbf{Q}_1 \wedge \mathbf{I}_1$	T ₂	= ?·
$=\frac{630}{840} \times 400$	η	= ?
$T_2 = 300 \text{ K}$		
জাবার, $\eta = 1 - \frac{T_2}{T_1} = 1 - \frac{300}{400}$	•	
= 1 - 0.75 = 0.52 = 25%	, o	

৭। একটি প্রত্যাগামী ইঞ্জিন উৎস হতে গৃহীত তাপের $rac{1}{4}$ অংশ কান্সে পরিণত করে। এর তাগগ্রাহকের তাপমাত্রা ৪০K হ্রাস করলে এর দক্ষতা দ্বিগুণ হর। উৎস ও গ্রাহকের তাপমাত্রা বের কর।

আমরা জানি, $\eta_1 = 1 - \frac{T_2}{T_1}$ $\frac{1}{4} = 1 - \frac{T_2}{T_1}$ $\frac{1}{4} = 1 - \frac{T_2}{T_1}$ $\frac{1}{4} = \frac{1}{T_1} - \frac{T_2}{T_1}$ তাপগ্রাহকের তাপমাত্রা, $T_2 = ?$ বা, $\frac{T_2}{T_1} = \frac{3}{4}$

তাপগ্রাহকের তাপমাত্রা 80K কমালে গ্রাহকের পরিবর্তিত তাপমাত্রা হবে (T₂ — 80)K।

$$\eta_{2} = 1 - \frac{T_{2} - 80}{T_{1}}$$

$$\exists 1, \frac{1}{2} = 1 - \frac{T_{2} - 80}{T_{1}}$$

$$= 1 - \frac{T_{2}}{T_{1}} + \frac{80}{T_{1}} = 1 - \frac{3}{4} + \frac{80}{T_{1}}$$

$$= \frac{1}{4} + \frac{80}{T_{1}}$$

$$\frac{80}{T_{1}} = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$$

$$\exists 1, T_{1} = 80 \times 4 = 320K$$

বইঁঘর.কম

জাবার,
$$\frac{T_2}{T_1} = \frac{3}{4}$$

 $T_2 = \frac{3}{4} \times T_1$
 $= \frac{3}{4} \times 320$
 $\sim 240K$

থা দেশ দেশ দেশ দেশে বিষয় বিষয় বিষয় বিষয় বিজ্ঞান আৰম্ভ বিজ্ঞান বিষয় বিষয় বিষয় বিষয় বিষয় বিষয় বিষয় বি পিছিল বিষয় বিষয় বিষয় বিষয় বিষয় বিষয় বিষয় বিজ্ঞান বিজ্ঞান বিজ্ঞান বিজ্ঞান বিষয় বিষয় বিষয় বিষয় বিষয় ব এর যান্নিক দক্ষতা 48%। তাঁর দাবি কি সঠিক ?

আমরা জানি, যে কোন ইঞ্জিনের চেয়ে কার্নোর ইঞ্জিনের দক্ষতা এখানে. সর্বাধিক। এখন, কার্নোর ইঞ্জিনের দক্ষতা, 1 — $rac{T_2}{T_1}$ $T_1 = 700K$ $T_2 = 400K$ $\eta = 1 - \frac{400}{700}$ $=\frac{700-400}{700}=\frac{3}{7}$ = 0.42 = 42%

আলোচ্য ক্ষেত্রে কোন ইঞ্জিনের দক্ষতা 42%-এর বেশি হতে পারে না। সুতরাং, আবিক্ষর্তার দাবি সঠিক নয়।

১। একটি কার্নো ইঞ্জিন যখন 27°C তাপমাত্রার তাপ গ্রাহকে ধাকে তখন এর কর্মদক্ষতা 50%। একে 60% [ব. বো. ২০০৬ ; কু. বো. ২০০৫] দক্ষ করতে হলে এর উৎসের তাপমাত্রা কত বাডাতে হবে 🔋

আমরা পাই,	এখানে,
$\eta_{1} = 1 - \frac{T_{2}}{T_{1}}$ $\overline{P}(1) = 1 - \frac{300}{T_{1}}$ $\overline{P}(1) = 1 - \frac{300}{T_{1}} = 1 - \frac{50}{100} = \frac{50}{100}$ $\overline{P}(1) = \frac{300 \times 100}{50} = 600 \text{ K}$	$T_2 = (27 + 273)K = 300K$ $\eta_1 = 50\% = \frac{50}{100}$ $T_1 = ?$
আবার,	•

$$\eta_{1} = 1 - \frac{T_{2}}{T_{1}}$$
and $\eta_{1} = 1 - \frac{300}{T_{1}}$
and $\eta_{1} = \frac{300}{T_{1}} = 1 - \frac{60}{100} = \frac{40}{100}$
and $\eta_{1} = \frac{300 \times 100}{40} = 750 \text{ K}$

$$T_{1} = \frac{300 \times 100}{40} = 750 \text{ K}$$

উৎসের তাপমাত্রা বাড়াতে হবে= (750 – 600) K = 150 K ১০। একটি কার্নো ইঞ্জিনের দক্ষতা 60%। যদি তাপ উৎসের তাপমাত্রা 🖷 তৰে তাপ প্ৰাহকের তাপমাত্রা কত 🤉 | সি. বো. ২০০৪]

η	$=1-\frac{T_2}{T_1}$	η	= 60%
বা,	$\frac{60}{100} = 1 - \frac{T_2}{450}$	T,	$=\frac{60}{100}$ = 450 K
বা,	$\frac{T_2}{450} = 1 - \frac{60}{100}$	- 1	= ?
বা,	$T_2 = 180 \text{ K}^{-i}$		

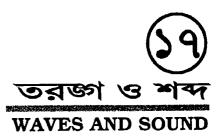
893

গলনের সুল্ট তাপ L = 336000 Jkg⁻¹] মনে করি এনটপির বৃষ্ণি = ΔS জ্ঞামরা জানি, $\Delta S = \frac{\Delta Q}{T}$ জ্ঞাবার $\Delta Q = mL = 1 \text{ kg} \times 336000 \text{ Jkg}^{-1}$ = 336000 J $\Delta S = \frac{336000 \text{ J}}{273 \text{ K}} = 1231 \text{ JK}^{-1}$

dS = 5'799 × 10³ J K⁻¹ ১৩। 1 kg বরক বখন 0°C তাপসাত্রার পানিতে পরিণত হয় তখন এনট্রপির বৃন্ধি কত হয় নির্ণয় কর। [্বরক

 $= 21000 \times \log_{e} \frac{373}{283}$

 $= 21000 \times 0.2761$ $= 5.799 \times 10^{3}$


তাপগতিবিদ্যার দ্বিতীয় সূত্র

890

বইঘর.কম ১৪। 100 °C তাপমাত্রার 4 kg পানিকে 100°C তাপমাত্রার বাব্দে পরিণত করলে এনট্রপির বৃদ্ধি কত হয় নির্ণয় কর। [পানির বাব্দীভবনের সুন্ত তাপ = 2[·]26 × 10⁶ Jkg⁻¹] [।] মনে করি এনট্রপির বৃদ্ধি = dS $U = 2.26 \times 10^{6} \text{ J kg}^{-1}$ T = 100 + 273 = 373 K আমরা জানি. $dS = \frac{dQ}{T}$ জাবার $dQ = mL = 4 \times 2.26 \times 10^6$ J $dS = \frac{4 \times 2.26 \times 10^{6}J}{373 \text{ K}} = 2.42 \times 10^{4} \text{ J}\text{K}^{-1}$ প্রশালা সংক্ষিশ্ত-উত্তর প্রশ্ন ঃ ঢা. বো. ২০০৩] ১। প্রত্যাগামী প্রক্রিয়া কি ? ২। প্রত্যাগামী ও অপ্রত্যাগামী প্রক্রিয়া কাকে বলে ? ক্রি. বো. ২০০৬, '০৪, '০১; চ. বো. ২০০৪; সি. বো. ২০০৪; ঢা. বো. ২০০৪] [ঢা. বো. ২০০৬ ; চ. বো. ২০০২] অথবা, প্রত্যাগামী ও অপ্রত্যাগামী প্রক্রিয়া বলতে কি বুঝ 🤉 ৩। অপ্রত্যাগামী প্রক্রিয়ার একটি উদাহরণ দাও। যি. বো. ২০০৪] যি. বো. ২০০৪] 8। তাপ ইঞ্জিন কি ? ৫। তাপগতিবিদ্যার দ্বিতীয় সূত্রটি বিবৃত কর। [ঢা. বো. ২০০৬ ; চ. বো. ২০০৪ ; কু. বো. ২০০৫, ২০০২ ; সি. বো. ২০০২] ৬। এনট্রপি কি ? রো. বো. ২০০৬, ২০০৫, ২০০৩; চ. বো. ২০০৬, ২০০৩, ২০০১; কৃ. বো. ২০০৬, ২০০০; সি. বো. ২০০৫; য. বো. ২০০৪; ঢা. বো. ২০০৫, ২০০০; ব. বো. ২০০১] অথবা, এনট্রপি বলতে কি বুঝ ? ব্যাখ্যা কর। [য. বো. ২০০৫; কু. বো. ২০০৩ ; ব. বো. ২০০৩ ; সি. বো. ২০০৩] ৭। পৃথিবীর তাপীয় মৃত্যু বলতে কি বুঝ ? [কু. বো. ২০০৩] ৮। এনট্রপির তাৎপর্য লেখ। এর একক কি ? ৯। প্রত্যাগামী ও অপ্রত্যাগামী প্রক্রিয়ার মধ্যে পার্থক্য নির্দেশ কর। [চ. বো. ২০০৬, ২০০১; সি. বো. ২০০৫; য. বো. ২০০১; ব. বো. ২০০১] ১০। ইঞ্জিনের তাপীয় দক্ষতা কাকে বলে ? [ঢা. বো. ২০০৬, ২০০৪, ২০০১] ১১। কার্নোর চব্রু কি ? ১২। এনট্রপির তাৎপর্য লেখ। এর একক কি? ১৩। কার্নোর ইঞ্চিন কি ? [সি. বো. ২০০৫] রচনামূলক প্রশ্ন ঃ ১। প্রত্যাগামী ও অপ্রত্যাগামী প্রক্রিয়া কি উদাহরণসহ ব্যাখ্যা কর। বি. বো. ২০০৩] ২। প্রত্যাগামী ও অপ্রত্যাগামী প্রক্রিয়ার সংজ্ঞা দাও এবং এদের মধ্যে পার্থক্য কর। ঢ়া. বো. ২০০১; ব. বো. ২০০১; চ. বো. ২০০০] ৩। দেখাও যে, প্রত্যাগামী প্রক্রিয়ায় যে কোন ব্যবস্থার এনট্রপি স্থির থাকে। [কু. বো. ২০০৪; রা. বো. ২০০৩; সি. বো. ২০০৩] 8। দেখাও যে, অপ্রত্যাগামী প্রক্রিয়ায় এনট্রপি বৃদ্ধি পায়। ৫। তাপগতিবিদ্যার দিতীয় সূত্র বিবৃত কর এবং এর ভৌতিক অর্থ ব্যাখ্যা কর। [য. বো. ২০০২; কু. বো. ২০০২; সি. বো. ২০০২ ; রা. বো. ২০০০ ; ব. বো. ২০০১ যি. বো. ২০০৩] ৬। উদাহরণসহ অপ্রত্যাবর্তী প্রক্রিয়া ব্যাখ্যা কর। ৭। তাপগতিবিদ্যার দিতীয় সূত্রটি বর্ণনা কর। চো. বো. ২০০৩] ৮। তাপগতিবিদ্যার প্রথম ও দ্বিতীয় সূত্রের মধ্যে পার্থক্য কর। ৯। একটি তাপ ইঞ্জিনের দক্ষতার রাশিমালা বের কর। । ज. (बा. २००७) [व. (वा. २००८) ১০। কার্ণোর ইঞ্জিনের গঠন ও কার্যপ্রণালী সংক্ষেপে বর্ণনা কর। ১১। কার্ণোর ইঞ্জিনের বিবরণ দাও। ইঞ্জিনের দক্ষতা বলতে কি বুঝ ? এর রাশিমালা প্রতিষ্ঠা কর। ১২। কার্ণোর চক্র কি? কার্শোর ইঞ্জিনের বিভিন্ন কার্য প্রক্রিয়া সূচক চিত্রের সাহায্যে ব্যাখ্যা কর। রো. বো. ২০০৪ ; কু. বো. ২০০৩] ১৩। কার্নো ইঞ্জিনের দক্ষতার রাশিমালা প্রতিপাদন কর।

38। প্রমান কর যে, $\eta = \frac{T_1 - T_2}{T_1}$, যেখানে সূচকগুলো মাডাবিক অর্থ বহন করে। [কু. বো. ২০০৬; চ. বো. ২০০৫; য. বো. ২০০৪] ১৫। দেখাও য়ে, কার্নোর চক্রে কার্যনির্বাহক বস্তু কর্তৃক সম্পাদিত নিট কাজ দুটি সমোষ্ণ ও রুদ্বতাপীয় রেখা কর্তৃক ঢা. বো. ২০০৩] আবন্ধ তলের ক্ষেত্রফলের সমান। গাণিতিক সমস্যাবলি ঃ ১। 167°C ও 277°C তাপমাত্রার মধ্যে কার্যরত কোন প্রত্যাগামী ইঞ্জিনের দক্ষতা নির্ণয় কর। [উঃ 20%] ২। 20% দক্ষতাবিশিষ্ট একটি প্রত্যাগামী ইঞ্জিন 200°C তাপমাত্রায় বাম্প গ্রহণ করে। কত তাপমাত্রায় ইঞ্জিন বাম্প [উঃ 378.4 K বা 105.4°C] পরিত্যাগ করে ? ৩। 40% দক্ষতাবিশিষ্ট একটি আদর্শ ইঞ্জিনের নিম্নতাপ আধারের তাপমাত্রা 7°C । ইঞ্জিনের দক্ষতা 50%-এ উন্নীত [উ: 93.33 K] করতে টুচ্চ তাপ আধারের তাপমাত্রা কত বৃদ্ধি করতে হবে ? ৪। একটি কার্নো ইঞ্জিনের তাপগ্রাহকের তাপমাত্রা 7°C এবং এর দক্ষতা 50%। ইঞ্জিনের দক্ষতা 70% করতৈ হলে [উত্তর : 373 33°C] তাপ উৎসের তাপমাত্রা কত বৃদ্ধি করতে হবে ? ৫। একটি কার্নো ইঞ্জিনের কর্মদক্ষতা 40%; এর তাপগ্রাহকের তাপমাত্রা 7°C। এর উৎসের তাপমাত্রা নির্ণয় কর। [চ. বো. ২০০০ ; ব. বো. ২০০২] (উত্তর : 466 7 K] ৬। একটি কার্নো ইঞ্জিনের দক্ষতা 60%। যদি তাপ উৎসের তাপমাত্রা 400K হয় তবে তাপগ্রাহকের তাপমাত্রা কত ? [কু. বো. ২০০০] [উন্তর ঃ 160K] ৭। 27°C এবং 160°C তাপমাত্রাদ্বয়ের মধ্যে কার্যরত একটি কার্নো ইঞ্জিনে 8.4 × 10⁴ J তাপশক্তি সরবরাহ করা হয়। ইঞ্জিনটির কর্মদক্ষতা নির্ণায় কর। ইঞ্জিনটি কডটুকু তাপশব্তিকে কাজে রপান্তরিত করতে পারবে ? [উত্তর ঃ 30.7% ; 2588 J] ৮।একটি ইঞ্জিনের কর্মদক্ষতা 60%। এর তাপগ্রাহকের তাপমাত্রা 27°C হলে উৎসের তাপমাত্রা নির্ণয় কর। টেঃ 750K] ৯। একটি কার্নো ইঞ্জিন 327°C এবং 27°C তাপমাত্রায় কাজ করছে। এর কর্মদক্ষতা কত? [ঢ়া. বো. ২০০৬] (উঃ 50%) ১০। একটি কার্নো ইঞ্জিনের উৎসের তাপমাত্রা 400K। এই তাপমাত্রায় উৎস থেকে এটি 840J তাপ গ্রহণ করে এবং সিঙ্কে 420] তাপ বর্জন করে। ইঞ্জিনটির কর্মদক্ষতা বের কর। (উঃ 50%) ১১। একটি কার্নো ইঞ্জিনের দক্ষতা 60%। যদি তাপ উৎসের তাপমাত্রা 450K হয়, তবে তাপ গ্রাহকের তাপমাত্রা নির্ণয় কর। [**5**: 180K] ১২। একটি ইঞ্জিনের কর্মদক্ষতা 30%। ইঞ্জিনটি গৃহীত তাপের কত অংশ বর্জন করে? [উঃ 70%] ১৩। একটি ইঞ্জিন 400K ও 350K তাপমাত্রায় এবং অপর একটি ইঞ্জিন 350K ও 300K তাপমাত্রায় কান্ধ করছে। ।উঃ দ্বিতীয় ইঞ্জিনের দক্ষতা প্রথম ইঞ্জিনের দক্ষতার চেয়ে 1.8% বেশি। কোন ইঞ্জিনের দক্ষতা বেশি ? ১৪। একটি প্রত্যাগামী ইঞ্জিন উৎস হতে গৃহীত তাপের $rac{1}{6}$ অংশ কান্ধে পরিণত করে। এর তাপগ্রাহকের তাপমাত্রা আরও 62°C হ্রাস করলে এর দক্ষতা দ্বিগুণ হয়। তাপ উৎস ও তাপগ্রাহকের তাপমাত্রা বের কর।) डिः 372K, 310K] ১৫। একটি ইঞ্জিন 3400) তাপ গ্রহণ করে ও 2400) তাপ বর্জন করে। ইঞ্জিনটি দ্বারা সম্পাদিত কার্জির পরিমাণ ও ইঞ্জিনের দক্ষতা নির্ণয় কর। **(**译: 1000 J; 29 41%] ১৬। একটি কার্নো ইঞ্জিনে 500K তাপমাত্রার তাপ উৎস থেকে 1500 J তাপ গ্রহণ করে এবং তাপগ্রাহকে 750J তাপ বর্জন করে। ⁄তাপ গ্রাহকের তাপমাত্রা ও ইঞ্জিনের দক্ষতা নির্ণয় কর। |সি. বো. ২০০৬] [উত্তর ঃ 250 K ; 50%] 🗴 ৭। একটি কার্নো ইঞ্জিন 127°C ও 27°C তাপমাত্রায় কাজ করছে। উচ্চ তাপমাত্রায় এটি 2 × 105 J তাপ শোষণ করে। প্রতি সাইকেলে ইঞ্জিনটি কি পরিমাণ কাজ করছে ? [উ**ख**র 8 5 × 10⁴ J] ' ১৮। দেখাও যে, m ভর ও $_{c}$ স্থির আপেক্ষিক তাপের কোন পদার্থের তাপমাত্রা $\mathrm{T_{1}K}$ হতে $\mathrm{T_{2}K}$ -এ পরিবর্তিত হলে এন্ট্রপির পরিবর্তন $S_2 - S_1 = mc \log_e \frac{1_2}{T_1}$ । $\sum_{k=1}^{\infty} 0^{\circ}$ C তাপমাত্রার $0.05~{
m kg}$ বরফকে গলিয়ে একই তাপমাত্রায় পানিতে পরিণত করলে এন্ট্রপি কি পরিমাণ বৃন্ধি পাবে নির্ণয় কর। [译: 61 5 JK-1] ২০। 100°C এর 0.5 kg পানি 100°C-এর বান্দে পরিণত হল। এন্ট্রপির পরিবর্তন নির্ণয় কর। [S: 3'02 kJ K-1] $[L_v = 2250 \text{ kJ kg}^{-1}]$ ২১। 0°C এ 0.350 kg বরফ গলে একই তাপমাত্রায় পানি হয়। এই প্রক্রিয়ায় এনট্রপির পরিবর্তন নির্ণয় কর $[L = 336000 Jkg^{-1}]$ [\$8 - 427'1 JK⁻¹]

২২। 100°C তাপমাত্রার 2 kg পানিকে 100°C তাপমাত্রার বাম্পে পরিণত করলে এনট্রপির পরিবর্তন নির্ণয় কর।

১৭°১ সূচনা Introduction

তরজ্ঞা ও তরজ্ঞা-গতি পদার্থবিজ্ঞানের একটি গুরুত্বপূর্ণ বিষয়। সব ধরনের তরজোর ক্ষেত্রে দুটি বৈশিষ্ট্য লক্ষ করা যায়। প্রথমত, তরজ্ঞা চলনক্ষম আলোড়ন বা আন্দোলন এবং দ্বিতীয়ত তরজ্ঞা একস্থান হতে অন্যস্থানে শক্তি সঞ্চালন করে। আমরা যে শব্দ শুনি বা আলো দেখি তা তরজ্ঞা আকারে উৎস থেকে আমাদের কাছে পৌছায়। কার্জেই তরজ্ঞা প্রকৃতি এবং তরজ্ঞা গতি সম্পর্কে আমাদের স্পষ্ট ধারণা থাকা প্রয়োজন। এই অধ্যায়ে তরজোর বিভিন্ন বৈশিষ্ট্য এবং শব্দতরজ্ঞা আলোচনা করব।

১৭°২ তরজ্ঞা ও তরজ্ঞা গতি Wave and wave motion

একটি পুকুরের স্থির পানিতে ঢিল ছুড়লে তরজ্ঞার সৃষ্টি হয়। ঢিলটি যে বিন্দুতে পানিতে প্রবেশ করে সে বিন্দুকে কেন্দ্র করে পানির উপরিপৃষ্ঠে সারি সারি তরজা ক্রমবর্ধমান বৃত্তাকারে চারদিকে ছড়িয়ে পড়ে। এর ফলে পানির উপরিতলে একস্থান হতে অন্যস্থানে শক্তির সঞ্চালন ঘটে। পানির উপরে একটি শোলা বা পাটকাঠি থাকলে দেখা যাবে যে শোলা বা কাঠিটি একই স্থানে থেকে উপরে-নিচে উঠানামা করছে। এর অর্থ হল মাধ্যমের কণাগুলো স্থান ত্যাগ করে না, যদি করত তবে শোলা বা কাঠিটি সরে পাড়ে চলে আসত। মাধ্যমের কণাগুলোর মধ্যে সংযুক্তি বলের কারণে এগুলো স্থান ত্যাগ করে না ; তবে আন্দোলনের দ্বারা পার্শ্ববর্তী কণাগুলোতে শক্তি সঞ্চালিত হয়। এবং পাশের কণাগুলো আন্দোলিত হয়। এভাবে শক্তি তরজ্ঞাকারে একস্থান হতে অন্যস্থানে সঞ্চালিত হয়। সুতরাং, তরজোর নিম্নরূপ সংজ্ঞা দেয়া যায় ঃ

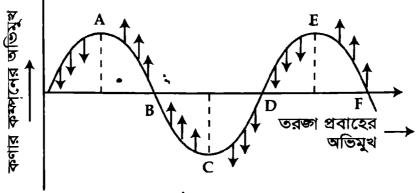
সংজ্ঞা ঃ কোন স্ধিতিস্থাপক মাধ্যমের কণাগুলোর স্থানান্তর ছাড়া যে পর্যাবৃত্ত আন্দোলনের দ্বারা একস্থান হতে অন্যস্থানে শক্তি সঞ্চালিত হয় তাকে তরজ্ঞা বলে।

যে সব তরজা সঞ্চালনের জন্য মাধ্যমের প্রয়োজন হয় সেগুলোকে যান্ত্রিক তরজা বলে। শব্দতরজা, টানা তারে সৃষ্ট ত<u>্রজ</u>্ঞা ইত্যাদি যান্ত্রিক তরজোর উদাহরণ।

মাধ্যম ছাড়াও তরজা সঞ্চালিত হতে পারে। সূর্য থেকে আমরা থে আলো পাই তা কোন মাধ্যম ছাড়াই চলাচল কুরে। এদেরকে তডিচ্চুম্বকীয় তরজা বলে। তড়িৎ ও চৌম্বক ক্ষেত্রের পর্যাবৃত্ত গতি পরিবর্তনের ফলে তড়িচ্চুম্বকীয় তরজোর উৎপত্তি হয়।

১৭·৩ তরজোর প্রকারভেদ

Types of Waves

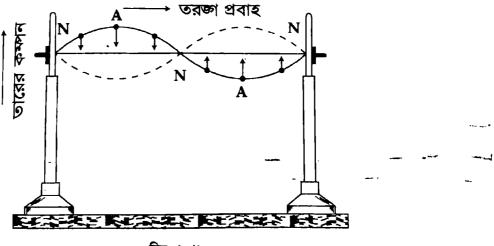

মাধ্যমের কণাগুলো সরল দোল গতিতে কম্পিত হলে যে তরজোর সৃষ্টি হয় তাকে সরল দোল তরজা (Simple harmonic wave) বা সাইন তরজা (Sine wave) বলে। সরল দোল তরজা আবার দুই প্রকারের। যথা—

(১) আড় তরজা বা অনুপ্রস্থ তরজা (Transverse waves) এবং (২) লম্মিক তরজা বা অনুদৈর্ঘ্য তরজা (Longitudinal waves)।

(১) আড় তরজ্ঞা বা অনুপ্রস্থ তরজ্ঞা ঃ মাধ্যমের কণাগুলো তরজ্ঞা গতির অভিমুখের সমকোণে কম্পিত হতে থাকলে সেই তরজ্ঞাকে আড় তরজ্ঞা বা অনুপ্রস্থ তরজ্ঞা বলে।

BG & JEWEL

ব্যাখ্যা ঃ চিত্র ১৭·১-এ একটি অনুপ্রস্থ তরজ্ঞা দেখান হয়েছে। তরজ্ঞোর উপর ছোট ছোট তীর চিহ্ন দারা কণার কম্পনের অভিমুখ দেখান হয়েছে। তরজ্ঞোর উপরের দিকে A ও E বিন্দুতে কণার সর্বোচ্চ সরণ ঘটেছে। তরজ্ঞোর এই বিন্দুগুলোকে তরজ্ঞা শীর্ষ বা তরজ্ঞা চূড়া (crest) বলে। আবার নিচের দিকে C বিন্দুতে সর্বোচ্চ সরণ ঘটেছে। একে তরজ্ঞা পাদ বা তরজ্ঞা খাঁজ (Trough) বলে।



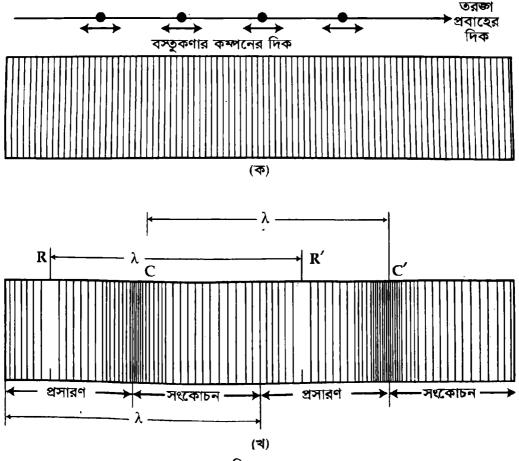
চিত্র ১৭'১

এক্ষেত্রে কণার স্পন্দনের অভিমুখ তরজ্ঞা প্রবাহের অভিমুখের সমকোণে ঘটেছে। অতএব এটা **আড় তরজ্ঞা**। **উদাহরণ ঃ**

(১) পুকুরের পানিতে ঢিল ছুঁড়লে দেখা যায় যে পানির কণাগুলো উপরে-নিচে দুলতে থাকে এবং এই আন্দোলন কিনারার দিকে অগ্রসর হতে থাকে। সৃষ্ট এরূপ আন্দোলনই আড় তরজ্ঞা বা অনুপ্রস্থ তরজ্ঞা।

(২) একটি তার টান করে বেঁধে এর দৈর্ঘ্যের সমকোণে টেনে ছেড়ে দিলে তারে একটি তরজ্ঞার সৃষ্টি হবে [চিত্র ১৭ ২]। লক্ষ করলে দেখা যাবে যে, তারটি এর দৈর্ঘ্যের সাথে সমকোণে আন্দোলিত হচ্ছে। এই আন্দোলন তারের দৈর্ঘ্য বরাবর প্রবাহিত হচ্ছে। সুতরাং টানা তারের এরৃপ কম্পন হতে স্পষ্ট যে, এই তরজ্ঞা আড় তরজ্ঞা।

জাড় তরজা প্রদর্শন (Demonstration of Transverse wave) গ পরীক্ষায় সমান দৈর্ঘ্যের কতকগুলো দন্ড নেয়া হয় যাদের প্রত্যেকের এরু মাথায় একটি করে বল এবং অপর মাথায় একটি করে চাঁকা যুক্ত জাছে [চিত্র ১৭ ৩]। চাকাগুলো একটি হাতলযুক্ত ঘূর্ণনক্ষম দন্ডের সাথে এমনভাবে লাগানো আছে যে চাকাগুলো কম-বেশি উৎকেন্দ্রিক (eccentric) অবস্থায় থাকে অর্থাৎ দন্ডগুলো এক এক চাকার এক এক স্থান দিয়ে পরানো থাকে এবং দন্ডগুলো খাড়াভাবে অবস্থান করে। হাতল ঘূরালে চাকাগুলোও ঘূরতে থাকে এবং দন্ডগুলো উঠা-নামা করে। চাকাগুলো কম-বেশি উৎকেন্দ্রিক হওয়ায় বিভিন্ন দন্ডের উপরের প্রান্তের বলগুলো একসজো উপরে উঠে না বা নিচে


< ার ক নামে না-পর্যায়ক্রমে উঠা-নামা করে। ভালভাবে লক্ষ করলে দেখা যাবে যে বলগুলো যে দিকে উঠা-নামা করে তার

(২) লম্বিক তরজ্ঞা বা অনুদৈর্ঘ্য তরজ্ঞা ঃ মাধ্যমের কণাগুলো তরজ্ঞোর গতির অভিমুখের সমান্তরালে কম্পিত হতে থাকলে, সেই তরজাকে লম্বিক বা অনুদৈর্ঘ্য তরজ্ঞা বলে।

ব্যাখ্যা : চিত্র ১৭-৪-এ অনুদৈর্ঘ্য তরজা প্রবাহ দেখান হয়েছে। মাধ্যমের বিভিন্ন স্তরের সাম্যাবস্থান কতগুলো সমান দূরত্বের রেখা দারা নির্দেশ করা হয়েছে [চিত্র ১৭·৪ (ক)]।

চিত্র ১৭·৪

899

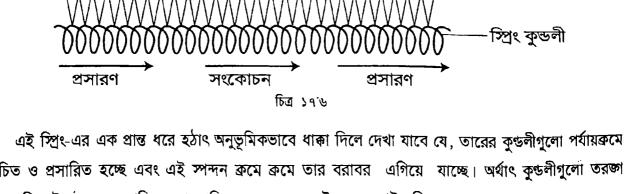
মাধ্যমের ভেতর দিয়ে লম্দিক তরজ্ঞা প্রবাহিত হতে থাকলে যে কোন সময়ে স্তরগুলোর অবস্থান কিরৃপ হবে তা ১৭-৪(খ) চিত্রে দেখান হয়েছে। অনুদৈর্ঘ্য তরজোর ক্ষেত্রে মাধ্যমের কণাগুলো সাম্যাবস্থানের উভয় পার্শ্বে তরজ্ঞোর গতিপথের সমান্তরালে কম্পিত হয়, ফলে তরজ্ঞাশীর্ষ বা তরজ্ঞাপাদ সৃষ্টি হয় না। এক্ষেত্রে কম্পনের সময় কিছু কিছু স্থানে কণাগুলো কাছাকাছি চলে আসে আবার কোথাও দূরে সরে যায়। কণাগুলো কাছাকাছি আসায় মাধ্যমের সংকোচন বা ঘনীভবন (compression or condensation) হয় এবং কণাগুলো সরে গেলে মাধ্যমের প্রসারণ (rarefaction) হয়। চিত্রে রেখাগুলোর মধ্যবর্তী দূরত্ব কম দ্বারা সংকোচন এবং রেখাগুলোর দূরত্ব বৃদ্ধি দ্বারা সম্প্রসারণ বুঝান হয়েছে। সংকোচনের স্থানগুলোতে মাধ্যমের ঘনত্ব ও চাপ বেড়ে যায় এবং প্রসারণের স্থানগুলোতে মাধ্যমের ঘনত্ব ও চাপ কমে যায়। এভাবে মাধ্যমের কণাগুলোর সংকোচন ও প্রসারণের মধ্য দিয়ে অনুদৈর্ঘ্য ও লম্বিক তরজ্ঞা সঞ্চালিত হয়। <u>পাশাপাশি এ</u>কটি সংকোচন ও একটি প্রসারণ নিয়ে একটি তরজ্ঞাদৈর্ঘ্য গঠিত হয়।

উদাহরণ ঃ

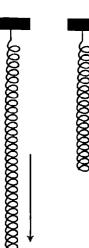
(১) কথা বলার সময় আমরা জিহ্বার সাহায্যে মুখের মধ্যকার বায়ু কণাতে কম্পন সৃষ্টি করি। বায়ুকণাগুলোর কম্পনের দিক শব্দ তরজ্ঞোর গতির অভিমুখে সংঘটিত হয়। অতএব শব্দ লম্বিক তরজ্ঞা। বক্তা বা গায়কের মুখ হতে

> শব্দ বায়ু মাধ্যমে সজ্ঞোচন ও প্রসারণ সৃষ্টি করে লম্বিক তরজোর আকারে শ্রোতার কানে পৌঁছায় [চিত্র ১৭ ৪]।

> (২) একটি স্প্রিং খাড়াভাবে ঝুলিয়ে দিয়ে এর নিচের প্রান্ত খানিকটা নিচের দিকে টেনে ছেড়ে দিলে দেখা যাবে যে স্প্রিং-এর কুন্ডলী পর্যায়ব্রুমে সংকুচিত ও প্রসারিত হতে থাকে [চিত্র ১৭ ৫] এবং এই স্পন্দন তারের দৈর্ঘ্য বরাবর প্রবাহিত হয়।


> অর্থাৎ, কুন্ডলীগুলো সরল দোলন গতিতে তরজ্ঞোর গতির সমান্তরালে আন্দোলিত হচ্ছে। সুতরাং স্প্রিং-এ সৃষ্ট এই তরজ্ঞা লম্বিক তরজ্ঞা।

> > D


D′

সিন্ধ সুতা

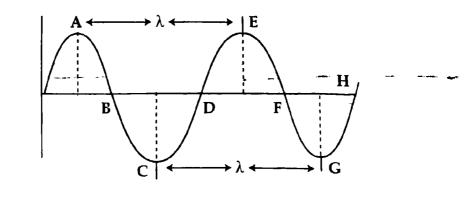
লম্বিক বা অনুদৈর্ঘ্য তরজা প্রদর্শন (Demonstration of longitudinal wave) 🕯 পরীক্ষায় একটি সরু তারের স্প্রিং নিয়ে এর প্রত্যেক কুগুলীকে দুটি অনুভূমিক দণ্ড CD ও C'D' হতে V-আকারে সিদ্ধ সুতা দ্বারা এমনভাবে ঝুলানো হয় যে, তারটি অনুভূমিক থাকে [চিত্র ১৭ ৬]।

সঙ্কুচিত ও প্রসারিত হচ্ছে এবং এই স্পন্দন ব্রুমে ক্রমে তার বরাবর এগিয়ে যাচ্ছে। অর্থাৎ কুন্ডলীগুলো তরজা প্রবাহের দিকেই সরল দোল গতিতে আন্দোলিত হচ্ছে। সুতরাং উদ্ভূত তরজ্ঞাই লম্মিক তরজ্ঞা।

চিত্র ১৭'৫

C

C


Jule, Jule, odel deal	ও শব্দ ৪৭৯ র.কম		
১৭ প্রতিয়েক্তা ও লন্দিবক তরজোর মধ্যে পার্থক্য Distinction between transverse and longitudinal waves আড় তরজা ও লন্দ্বিক তরজোর মধ্যে নিম্নলিখিত পার্থক্য পরিলক্ষিত হয়।			
আড় তরজ্ঞা	লম্বিক তরজ্ঞা		
 ১। যে তরজের ক্ষেত্রে জড় মাধ্যমের কর্ণাগুলির কম্পনের দিক তরজা প্রবাহের দিকের সমকোণী হয়, তাকে আড় তরজা বলে। তরজা প্রবাহে মাধ্যমে তরজা শীর্ষ এবং তরজা পাদ সৃষ্টি হয়। পরি পর দুটি তরজা শীর্ষ বা পর পর দুটি তরজা পাদের মধ্যবর্তী দরতকে তরজা দৈর্ঘ্য বলে। স্বা মাধ্যমে এর সম্রেতন বা পোলারণ) ঘটে। মোধ্যমে এর সমর্বতন বা পোলারণ) ঘটে। মোধ্যমে কঠিন) এই তরজা উৎপন্ন হয়। প্রবাহীতে পৃষ্ঠ টানের দর্নন আড় তরজোর সৃষ্টি হয়। 	কম্পনের দিৎু তরজা প্রবাহের দিকের সমান্তরাল হয় তাকে লম্মিক তরজা বলে। কি তরজা প্রবাহে মাধ্যমে সংকোচন ও প্রসারণ সৃষ্টি হয়। কি শর পর দুটি সংকোচন বা পর পর দুটি প্রসারণের মধ্যবর্তী দরত্বকে বা একটি প্রসারণ ও একটি সংকোচনের মিলিত দৈর্ঘ্যকে তরজা দৈর্ঘ্য বলে। কি মাধ্যমে এর সেমবর্তন বা পোলারণ ঘটে না) ৫। আয়তনের স্থিতিস্থাপক ধর্মসম্পন্ন মাধ্যমে		

১৭°৫ে তরজ্ঞা সংক্রাস্ত কয়েকটি সংজ্ঞা Some definitions relating waves

তরজ্ঞা সংক্রান্ত কয়েকটি রাশির সংজ্ঞা নিম্নে দেয়া হল ঃ

(১) পূর্ণ কম্পন (Complete oscillation) : কম্পমান বস্তু একটি বিন্দু হতে যাত্রা শুরু করে আবার একই দিক হতে সে বিন্দুতে ফিরে এলে একে পূর্ণ কম্পন বলে।

(খ) তরজ্ঞা দৈর্ঘ্য (Wave length) ঃ তরজ্ঞা সৃষ্টিকারী কোন কম্পনশীল কণার একটি পূর্ণ কম্পন সম্পনু করতে যে সময় লাগে, ঐ সময়ে তরজ্ঞা যে দূরত্ব অতিক্রম করে তাকে তরজ্ঞাদৈর্ঘ্য বলে। তরজোর উপরিস্থিত পরপর দুটি সমদশাসম্পন্ন কণার ন্যূনতম দূরত্বই হল তরজ্ঞা দৈর্ঘ্য। একে λ দ্বারা প্রকাশ করা হয়।

চিত্র ১৭'৭

জাড় তরজো ক্ষেত্রে পরপর দুটি তরজাশীর্ষ বা পরপর দুটি তরজা পাদ-এর মধ্যবর্তী দূরত্বকে তরজ্ঞাদৈর্ঘ্য বলে। চিত্র ১৭·৭-এ AE বা BF বা CG আড় তরজোর ক্ষেত্রে তরজা দৈর্ঘ্য এবং চিত্র ১৭·৪-এ RR' বা CC' লম্বিক তরজোর ক্ষেত্রে তরজা দৈর্ঘ্য।

কোন একটি মাধ্যমে বিভিন্ন শব্দের তরজ্ঞা দৈর্ঘ্য বিভিন্ন। একই শব্দের তরক্তা বিভিন্ন মাধ্যমেও বিভিন্ন।

উচ্চ মাধ্যমিক পদার্থবিজ্ঞান $BG \ll JEWEL$

গ) কম্পাব্রু বা স্পন্দন সংখ্যা (Frequency) ঃ কোন একটি কম্পমান বস্তু বা কণা এক সেকেন্ডে যতগুলো পূর্ণ কম্পন সম্পন্ন করে তাকে তার কম্পাব্রু বা স্পন্দন সংখ্যা বলে।

<u>কম্পাৰ্জ্ঞ বা f</u>দ্বারা প্রকাশ করা হয়।

কোন-বস্তু বা কণা t সময় N সংখ্যক কম্পন সম্পন্ন করলে কম্পাজ্ঞক, f বা $n = \frac{N}{t}$

<u>কম্পাব্রের একককে হার্টজ (Hertz সংক্ষেপে Hz)</u> বলে। অনেক সময় প্রাইকেল/সেকেন্ড (cs⁻¹))এককও ব্যবহার করা হয়।

(ঘ) দোলনকাল বা পর্যায়কাল (Time period) ঃ কোন একটি কম্পমান বস্তু একটি পূর্ণ কম্পন সম্পন্ন করতে যে সময় নেয়, তাকে এর দোলনকাল বা পর্যায়কাল বলে। একে T দারা প্রকাশ করা হয়। মনে করি t সেকেন্ডে একটি উৎস Nটি পূর্ণ কম্পন সম্পন্ন করে।

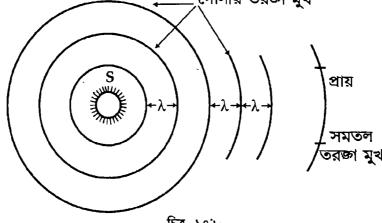
.. দোলন কাল, T = $\frac{t}{N}$ এবং কম্পাৰ্জ্ক, $n = \frac{N}{t}$

চিত্র ১৭'৭-এ তরজ্ঞোর B হতে F বা D হতে H-এ যেতে ব্যয়িত সময়ই পর্যায়কাল বা দোলনকাল।

বিভিন্ন তরজোর পর্যায়কাল বা কম্পাজ্ঞ একই মাধ্যমে বিভিন্ন। কিন্তু একই তরজোর কম্পাজ্ঞ বা পর্যায়কাল বিভিন্ন মাধ্যমে সমান।

(৬) বিস্তার (Amplitude) **: কোন একটি কম্পমান বস্তু তার সাম্যাবস্থান হতে ডানে বা বামে** অথবা উপরে বা নিচে যে সর্বাধিক দূরত্ব অতিক্রম করে তাকে এর বিস্তার বলে। বিস্তার দুই প্রকার, যথা— (ক) রৈখিক বিস্তার; একে সাধারণত 'a' দারা সূচিত করা হয় এবং (খ) কৌণিক বিস্তার; একে সাধারণত 'θ' দ্বারা সূচিত করা হয়। চিত্র ১৭'৭-এ BF হতে E বা C বা A-এর লম্দ্র্যন্বই রৈখিক বিস্তার 'a'।

কোন শব্দের প্রাবল্য 1 বিস্তারের বর্গের সমানুপাতিক। অর্থাৎ $1 \propto a^2$


(চ) দশা (Phase) ঃ দশা কোন একটি কম্পমান বস্তুর কোন মুহূর্তের দোলনের অবস্থা প্রকাশ করে। আরও বিস্তারিতভাবে বলা যায়—তরজ্ঞাস্থিত কোন একটি কণার কোন মুহূর্তের অবস্থান এবং তার গতির অবস্থা ও দিক যার দ্বারা নির্দেশ করা হয় তাকে দশা বলে।

(ছ) আদি দশা (Epoch) ঃ কোন একটি কম্পমান বস্তু যে দশা নিয়ে কম্পন শুরু করে, তাকে আদি দশা বলে।

জে) তরজ্ঞা বেগ (Wave velocity) ঃ কোন একটি তরজ্ঞা কোন মাধ্যমে এক সেকেন্ডে যে দূরত্ব অতিক্রম করে তাকে সেই মাধ্যমে এর তরজ্ঞা বেগ বলে। একে v দ্বারা সূচিত করা হয়।

মাধ্যম ভেদে একই শন্দের বেগ বিভিন্ন। কিন্তু বিভিন্ন শন্দের বেগ একই মাধ্যমে সমান।

(ঝ) তরজ্ঞা মুখ (Wave front) ঃ কোন তরজ্ঞোর উপরিস্থিত সমদশাসম্পন্ন সব বিন্দুর মধ্য দিয়ে অঞ্জিত তলকে তরজ্ঞা মুখ বলে। যেমন পানির তরজ্ঞা শীর্ষে অবস্থিত সব কণার দশা একই। তেমনি এর তরজ্ঞা ______গোলীয় তরজ্ঞা মুখ

চিত্র ১৭'৮

পাদে অবস্থিত সব কণার দশাও একই। কাজেই তরজ্ঞা শীর্ষ বরাবর অঙ্কিত তল হবে একটি তরজ্ঞা মুখ এবং তরজ্ঞা পাদ বরাবর অঞ্চিত তল হবে আর একটি তরজ্ঞা মুখ। পরপর দুটি তরজ্ঞা শীর্ষ বা তরজ্ঞাপাদ বরাবর অঞ্চিত তলের তরজ্ঞা মুখের মধ্যবর্তী দূরত্ব এক তরজা দৈর্ঘ্য [চিত্র ১৭৮]।

(এঃ) তরচ্চা শীর্ষ (Crest) : আড় তরচ্চোর ক্ষেত্রে এর ধনদিকে এক তরচ্চা দৈর্ঘ্যে সর্বাধিক সরণের বিন্দুকে তরঞ্চা শীর্ষ বলে [চিত্র ১৭ ৭-এ A ও E বিন্দু]।

(ট) তরজ্ঞা পাদ (Trough) ঃ আড় তরজোর ক্ষেত্রে এর ঋণদিকে এক তরজ্ঞা দৈর্ঘ্যে সর্বাধিক সরণের বিন্দুকে তরজা পাদ বলে [চিত্র ১৭ ৭-এ C বিন্দু]

(ঠ) তরজোর তীব্রতা (Intensity of wave) : কোন তরজোর সমকোণে একক ক্ষেত্রফলের মধ্য দিয়ে এক সেকেন্ডে যে পরিমাণ শক্তি প্রবাহিত হয় তাকে ঐ তরচ্চোর তীব্রতা বলে। একে মাধ্যমের শক্তি প্রবাহত (energy current or energy flux) বলা হয়। একে। দ্বারা সূচিত করা হয়।

```
তরজ্ঞোর তীব্রতা, I = শব্তি ঘনত্ব × তরজ্ঞা বেগ
```

গাণিতিকভাবে দেখান যায় যে,

$$\mathbf{I} = 2\rho\pi^2 a^2 n^2 v$$

এখানে,

- ρ মাধ্যমের ঘনত্ব
- n তরজোর কম্পাজ্জ
- a তরজ্ঞোর বিস্তার এবং
- v তর**ভো**র বেগ।

উপরের সমীকরণ হতে দেখা যায় যে,

$$I \propto a^2$$

 $= Ka^2$, এখানে K ধ্রুবক।

অর্থাৎ তীব্রতা (I) বিস্তারের বর্গের সমানুপাতিক।

এস. আই. পন্ধতিতে তীরতার একক $(Jm^{-2}s^{-1})$ বা Wm^{-2} ।

(07 5) ARON JM 5' (Wm) ১৭ ৬ তরজ্ঞা বেগ, তরজ্ঞা দৈর্ঘ্য এবং কম্পাজ্জের মধ্যে সম্পর্ক Relation between wave length, frequency and wave velocity or speed

```
মনে করি, কোন মাধ্যমে কোন একটি তরজোর বেগ = v, তরজা উৎসের কম্পাংক = n এবং 🔔
```

তরজ্ঞা দৈর্ঘ্য = λ । তাদের মধ্যে সম্পর্ক স্থাপন করতে হবে। যেহেতু v তরজ্ঞা বেগ

অতএব আমরা পাই,

v = তরজ্ঞা কর্তৃক এক সেকেন্ডের অতিক্রান্ত দূরত্ব

পুনঃ, তরচ্চা দৈর্ঘ্য = λ , সুতরাং শব্দ উৎসের একটি পূর্ণ কম্পনে তরচ্চা কর্তৃক অতিক্রান্ত দূরত্ব = λ । কম্পাল্ধ্ব্য n হওয়ায় প্রতি সেকেন্ডে nটি পূর্ণ কম্পন সম্পন্ন হয়। অতএব nটি পূর্ণ কম্পনের জন্য অতিক্রান্ত দূরত্ব = $n\lambda$

$$n\lambda=$$
তরষ্ণা কর্তৃক এক সেকেন্ডের অতিক্রান্ত দূরত্ব

সমীকরণ (1) এবং (2) হতে পাই,

$$v = n\lambda$$
 (3)
অধ্যৎ তরজা বৈগ = কম্পাজ্জ × তরজা দৈর্ঘ্য।

এটিই হল তরজা বেগ, কন্সান্তক এবং তরজা দৈর্ঘ্যের মধ্যে সম্পর্ক।

(1)

(2)

১৭.৭ দোলনকাল এবং কম্পান্ডেকর মধ্যে সম্পর্ক Relation between time period and frequency

মনে করি কোন একটি কম্পমান বস্তুর দোলনকাল T এবং কম্পাব্রু $n \mid$ এদের মধ্যে সম্পর্ক স্থাপন করতে হবে।

দোলনকাল T-এর অর্থ কম্পমান বস্তুর একটি পূর্ণ কম্পনে অতিবাহিত সময়। অতএব nটি পূর্ণ কম্পনে অতিবাহিত সময় = *n*T

$$nT = n\overline{b}$$
 পূর্ণ কন্সনে ব্যয়িত সময় (4) (4)

আবার কম্পাজ্ঞ শব্দের অর্থ—এক সেকেন্ডের পূর্ণ কম্পন সংখ্যা।

কাজেই nটি পূর্ণ কম্পুন দিতে সময় লাগবে 1 সেকেন্ড।

1 সে. = nটি পূর্ণ কম্পনে ব্যয়িত সময়

(5)

সমীকরণ (4) এবং (5) হতে পাই

$$nT = 1$$

$$\exists I, \quad T = \frac{1}{n}$$

$$\exists I, \quad n = \frac{1}{T}$$
(6)

এটিই হল দোলনকাল ও কম্পাজ্কের মধ্যে সম্পর্ক।

১৭ ৮ অগ্রগামী তরজ্ঞা এবং স্থির তরজ্ঞা Progressive waves and stationary waves

যে তরজা উৎস হতে উৎপন্ন হয়ে সময়ের সাথে সাথে অগ্রসরমান বা চলমান হয় তাকে অগ্রগামী তরজা বলে। অগ্রগামী তরজ্ঞা আড় বা অনুদৈর্ঘ্য এবং লম্দিক বা অনুপ্রস্থ উভয় ধরনের হতে পারে।

আবার দুটি বিপরীতমুখী তরজোর উপরিপাতের ফলে উৎপন্ন তরজা মাধ্যমের একটি সীমিত অংশে আবন্ধ থাকে। এই তরজ্ঞাকে স্থির তরজ্ঞা বলে।

অগ্রগামী তরজ্ঞার সংজ্ঞা গ্রুকোন তরজ্ঞা যদি কোন বিস্তৃত মাধ্যমের এক স্তর হতে অন্য স্তরে

সঞ্চালিত হয়ে ক্রমাগত সম্বখের দিকে অগ্রসর হতে থাকে, তবে তাকে অগ্রগামী বা চলমান তরজা বলে।

উদাহরণ ঃ (ক) পুকুরের পানিতে টিল ছুঁড়লে আড় তরজা সৃষ্টি হয়। এই ঢেউ বা তরজ্ঞা পানির মধ্য দিয়ে কিনারার দিকে ক্রমাগত অগ্রসর হতে থাকে। সুতরাং পানি<mark>র ঢেউ অগ্রগামী আড় বা অনুপ্রস্থ তরজা।</mark>

(খ) বক্তা কথা বললে শব্দ উৎপন্ন হয়। শব্দ লম্মিক বা অনুদৈর্ঘ্য তরক্ষা। এই শব্দ বক্তার মুখ হতে বাতাসের

মধ্য দিয়ে ব্রুমাগত সম্মুখের দিকে অগ্রসর হয়ে শ্রোতার কানে পৌঁছায়। অতএব শব্দ অগ্রগামী লম্বিক তরজ্ঞা।

অগ্রগামী তরজ্ঞের বৈশিষ্ট্য 💈 অগ্রগামী তরজোর নিমলিখিত বৈশিষ্ট্য পরিলক্ষিত হয়, যথা-

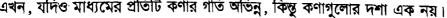
কোন মাধ্যমের একই প্রকার কম্পনে এই তর্জোর উৎপত্তি হয়।

এটি একটি সুষম মাধ্যমের মধ্য দিয়ে একটি নির্দিষ্ট দুতি বা বেগে প্রবাহিত হয়। (켁)

অগ্রগামী তরজোর বেগ মাধ্যমের ঘনত্ব ও স্থিতিস্থাপকতার উপর নির্ভর করে। (গ)

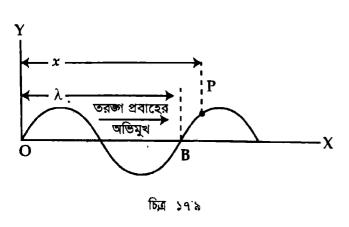
মাধ্যমের কণাগুলোর কম্পন তরজা প্রবাহের সাপেক্ষে আড় ও লম্বিক হতে পারে। গ্ব)

মাধ্যমের কণাগুলো কখনও স্থির থাকে না।


বইঘর.কম

- তরজ্ঞা মুখের অভিলম্ম বরাবর শক্তি বহন করে এ তরজ্ঞা প্রবাহিত হয়। (চ)
- তরজ্ঞা প্রবাহে মাধ্যমের বিভিন্ন অংশের চাপ ও ঘনত্বের একই প্রকার পরিবর্তন ঘটে। **(5**)
- মাধ্যমের প্রতিটি কণার কম্পাজ্ঞ ও বিস্তার একই হয় এবং তারা একই ধরনের কম্পনে কম্পিত হয়। (জ)
- ত<u>রজ্ঞা প্রবাহের দরন মাধ্যমের কণার</u> দশা পরবর্তী কণাতে স্থানান্তরিত <u>হয়। এরপ দুটি কণার</u> দশা (ঝ বৈষম্য তাদের দূরত্বের সমানুপাতিক।
- মাধ্যমের যে কোন কণার বিভিন্ন ধর্ম—যেমন বেগ, ত্বরণ, শক্তি প্রভৃতি একইরূপ পরিবর্তনের মধ্য দিয়ে (എ) যায়।

১৭ ৯ অগ্রগামী তরজোর সমীকরণ Equation of progressive wave


কোন মাধমের কণাগুলো সরল ছন্দিত স্পন্দনে স্পন্দিত বা আন্দোলিত হলে অগ্রগামী তরজোর সৃষ্টি হয় এবং মাধ্যমের এক কণা হতে পরবর্তী কণায় আন্দোলন স্থানান্তরিত হয়। সুতরাং মাভাবিকভাবেই এক কণা হতে পরবর্তী কণায় আন্দোলন পৌঁছতে একটি নির্দিষ্ট সময় লাগে। ফলে তরজোর অভিমুখ বরাবর কণাগুলোর দশার পরিবর্তন ঘটে। এখন তরজ্ঞা যদি বামদিক থেকে ডানদিকে অগ্রসর হতে থাকে তবে বামদিকের কণা আন্দোলিত হওয়ার একটি নির্দিষ্ট সময় পরে ডানদিকের কণা আন্দোলিত হবে, ফলে এদের মধ্যে দশার পার্থক্য সৃষ্টি হবে। এভাবে ডানদিকের পরের কণাগুলো পরে আন্দোলিত হবে। সুতরাং প্রথম কণার সজ্ঞো দুরবর্তী কণার দশা পার্থক্য বৃদ্ধি পেতে থাকবে। তবে প্রতি দুটি পার্শবর্তী কণার দশা পার্থক্য একই হবে। এখন এই অগ্রগামী তরচ্চোর গাণিতিক সমীকরণ বের করব।

মনে করি একটি অগ্রগামী তরজ্ঞা X-অক্ষের ধনাত্মক দিকে অগ্রসর হচ্ছে [চিত্র ১৭-৯]। ধরি t সময়ে মাধ্যমের কোন একটি কণা O-এর সরণ = y (লম্বিক তরজোর ক্ষেত্রে কণার সরণ X-অক্ষ বরাবর এবং আড় তরজোর ক্ষেত্রে কণার সরণ Y-অক্ষ বরাবর ঘটে)। যেহেতু মাধ্যমের কণাগুলো সরল ছন্দিত স্পন্দনে আন্দোলিত হচ্ছে, কাজেই O-কণাটির গতির সমীকরণ হবে,

ধরা যাক, 🔿 বিন্দুস্থ কণার এ গতি ডানদিকের কণাগুলোতে একের পর এক সঞ্চালিত হচ্ছে। এর অর্থ হল O-এর পরবর্তী কণা · কিছু সময় পরে O কণার দশাপ্রান্ত হবে। তারপরের কণা জারও একটু পরে O-কণার দশাপ্রাশ্ত হবে। ফলে O বিন্দু থেকে ডান্দিকের কণাগুলোর দূরত্ব বাঁড়ার সক্তো দশা পার্থক্যও বাড়বে। এক্ষেত্রে তরজোর গতিপথের উপর অবস্থিত প্রতিটি কণার দশা এর পূর্ববর্তী বাম দিকের কণার দশার পন্চাদগামী (Lagging) হবে।

আমরা জানি একটি পূর্ণ কম্পনে তরজা যে পরিমাণ দূরত্ব অতিক্রম করে তাকে তরজা দৈর্ঘ্য (λ) বলে এবং এই সময় দশা পার্থক্য হয় 2π । এখন O বিন্দু হতে x দূরত্বে অবস্থিত P বিন্দুর কণা বিবেচনা ৰুরি। ধরি O বিন্দুর কণার

ন্সাথে এর দশা পার্থক্য δ । সেহেতু λ দূরত্ব অতিক্রমকালে দশা পরিবর্তন বা দশা পার্থক্য হয় 2π ; সুতরাং x দূরত্বের জন্য দশা পাৰ্থক্য হবে, $\delta = \frac{2\pi}{\lambda} x'$ । λ দূরত্বের জন্য দশা পার্থক্য 2π [অর্থাৎ, দশা পার্থক্য = $\frac{2\pi}{\lambda}$ × পথ পার্থক্য $_1$ দূরত্বের জন্য দশা পার্থক্য $rac{2\pi}{\lambda}$ x দূরত্বের জন্য দশা পার্থক্য $rac{2\pi}{\lambda} x$] P বিন্দুর কণার গতির সমীকরণ হবে (8) $= A \sin (\omega t - \delta)$ y $= A \sin (\omega t - \frac{2\pi}{\lambda} x)$ $= A \sin\left(\frac{2\pi}{T} t - \frac{2\pi}{\lambda} x\right) \qquad [\because \omega = \frac{2\pi}{T}]$ $= A \sin 2\pi \left(\frac{t}{T} - \frac{x}{\lambda}\right)$ $= A \sin 2\pi \left(nt - \frac{x}{\lambda} \right) \qquad \qquad [\quad \frac{1}{T} = n]$ $= A \sin 2\pi \left(\frac{v t}{\lambda} - \frac{x}{\lambda} \right) \qquad [v = n\lambda, \ n = \frac{v}{\lambda}]$ $= A \sin \frac{2\pi}{\lambda} (vt - x)$ (9) যদি তরজ্ঞা X-অক্ষের ঋণাত্মক দিকে অগ্রসর হয়, তবে গতির সমীকরণ হবে, $y = A \sin \frac{2\pi}{\lambda} (vt + x)$ (10) j অতএব সমীকরণ (9) ও (10)-ই হল অগ্রগামী তরজোর সাধারণ সমীকরণ বা রাশিমালা। উপরোক্ত সমীকরণ দুটি তরজ্ঞোর উপরিপাতন এবং আবন্ধ নলে শব্দ তরজ্ঞোর প্রতিফলনের ক্ষেত্রে অতি প্রয়োজনীয়।

দ্রন্টব্য ঃ আমুরা জানি, সরল দোলগতির ক্ষেত্রে সরণ <u>সাইন অপেক্ষক (sine function)</u> না হয়ে কোসাইন অপেক্ষক (consine function) হতে পার্রে। সেক্ষেত্রে, উপরের সমীকরণগুলোতে সাইন-এর স্থলে কোসাইন বসালেই অগ্রগামী তরজোর সমীকরণ পাওয়া যাবে।

১৭**-**১০ তরজ্ঞা উপরিপাতনের নীতি Principle of superposition of waves

দুই বা ততোধিক তরজা যদি একই মাধ্যমের মধ্য দিয়ে অগ্রসর হয়, তবে তরজাগুলো পরস্পর নিরপেক্ষভাবে সঞ্চালিত হয়। মাধ্যমের যে অংশে তরজাগুলো পরস্পরের উপর আপর্তিত হয়, সে অঞ্চলে কোন কণার লম্বি সরণ কি হবে তা নির্ণয়ের নিমিন্তে একটি নীতি প্রবর্তিত হয়। এর নাম তরজোর উপরিপাতন নীতি বা সূত্র। সূত্রটি হচ্ছে ঃ

"দুটি শব্দ তরজ্ঞা একই সজ্ঞো কোন মাধ্যমের একটি কণাকে অতিক্রম করলে এ কণা তরজ্ঞা দুটির সম্মিলিত প্রভাবে আলোড়িত হবে। কোন মুহূর্তে কণাটির লব্দি সরণ প্রত্যেকটি তরজ্ঞা পৃথকভাবে এ বিন্দুতে যে সরণ সৃষ্টি করে তাদের ভেক্টর যোগফলের সমান হবে।"

মনে করি একটি তরজা মাধ্যমের কোন কণার _{1/1} সরণ এবং আর একটি তরজা মাধ্যমের উক্ত কণার _{1/2} সরণ ঘটছে।

উপরিপাতন সূত্র অনুসারে কণাটির লম্ধি সরণ

 $y = y_1 + y_2$

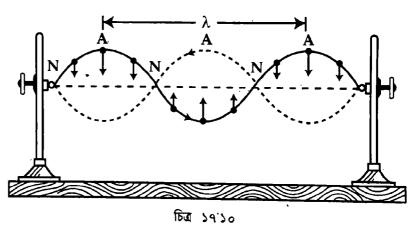
বইঘর.কম

এখানে, yi ও y₂ উভয়ই ধনাত্মক বা উভয়ই ঋণাত্মক কিংবা একটি ধনাত্মক এবং অপরটি ঋণাত্মক হতে পারে।

উপরিপাতন সূত্রের সাহায্যে আমরা স্থির তরজ্ঞা সৃষ্টি, শব্দের ব্যতিচার ও বীট ব্যাখ্যা করতে পারি।

উদাহরণ : পুকুরে কাছাকাছি অবস্থানে দুটি ঢিল ছুড়লে যে দুটি বৃত্তাকার তরজোর উৎপত্তি হয়, তাদের মধ্যে উপরিপাতন লক্ষ করা যায়। পানিতে যে বিন্দুতে দুটি তরজোর চূড়া একই দিক থেকে মিলিত হয় স্রেখানে তরজাচূড়ার উচ্চতা সর্বোচ্চ হয়। পক্ষান্তরে, যে বিন্দুতে দুটি তরজাপাদ একই দিক থেকে মিলিত হয় সেখানে তরজাপাদে গভীরতা সর্বাধিক হয়। আবার সে বিন্দুতে একটি তরজাপীর্ষ ও একটি তরজাপাদ মিলিত হয় সেখানে পানিতে আন্দোলন স্তিমিত হয়ে যায়।

১৭ ১১ স্থির তরজ্ঞা


Stationary Waves

সংজ্ঞা : কোন মাধ্যমের একটি সীমিত অংশে পরস্পর বিপরীতমুখী সমান বিস্তার ও তরজা দৈর্ঘ্যের দুটি অগ্রগামী তরজ্ঞা একে অপরের উপর আপতিত হলে যে নতুন তরজ্ঞা সৃষ্টি হয় তাকে স্থির তরজ্ঞা বলে।

এই তরষ্ঠা মাধ্যমের ঐ অংশে সীমাবন্ধ থাকে, মাধ্যমের ভেতর দিয়ে অগ্রসর হয় না। সাধারণভাবে বলা যায় যে, এ স্থলে সীমাবন্ধ থেকে পর্যায়ব্রুমে গতিশক্তি (স্থিতিস্থাপক) স্থিতি বা বিভব শক্তিতে পরিবর্তিত হয়।

উদাহরণ ঃ একটি টানা তারের কোথাও আঘাত করলে একটি তরজ্ঞা সৃষ্টি হয় [চিত্র ১৭ ১০] এবং এই তরজ্ঞা তার বেয়ে দুই প্রান্তের দিকে অগ্রসর হয় এবং পরিশেষে দুই প্রান্ত হতে প্রতিফলিত হয়ে ফিরে আসে। এই প্রক্রিফলিক কেবল্প ৫০ সমূল কেবল্পন

প্রতিফলিত তরক্ষা ও মূল তরজোর প্রকৃতি অভিন থাকলেও তাদের মধ্যে দশা বৈষম্য 180° হয়। ফলে তারে প্রতিফলিত তরক্ষা ও এর বিপরীত দিকে গতিশীল (নতুন) মূল তরক্ষা মিলে স্থির তরক্ষা সৃষ্টি হয়। এই তরক্ষা তারের তরক্ষা সৃষ্টি হয়। এই তরক্ষা তারের বাইরে যায় না— তারের মধ্যেই পর্যায়ক্রমে উৎপন্ন ও বিলুপ্ত হয়। তারটি তালতাবে লক্ষ করলে দেখা যাবে যে, তারের সকল বিন্দুর বিস্তার সমান নয়। স্থির তরক্ষোর ক্ষেত্রে কোন কোন

বিন্দুতে বস্তৃকণার বিস্তার শূন্য এবং কোন কোন বিন্দুতে বিস্তার সর্বাধিক। যে বিন্দুগুলোতে বিস্তার সর্বাধিক (চিত্রে A চিহ্নিত বিন্দুগুলো) তাদেরকে সুস্পন্দ বিন্দু (Antinode) এবং যে সকল বিন্দুতে বিস্তার শূন্য (চিত্রে N চিহ্নিত বিন্দুগুলো) তাদেরকে নিস্পন্দ বিন্দু (Node) বলে।

শি স্থির তরজোর বৈশিষ্ট্য : স্থির তরজোর কতকগুলো ধর্ম বা বৈশিষ্ট্য রয়েছে। বৈশিষ্ট্যগুলো নিমে উল্লেখ করা হল ঃ

(ক) এই তরজা কোন একটি মাধ্যমের সীমিত অংশে উৎপন্ন হয়।

শ্ব। অগ্রগামী তরজ্ঞোর ন্যায় অগ্রসর না হয়ে একই স্থানে সীমাবন্ধ থাকে।

<u>(গ) তরকোর বিভিন্ন বিন্দুতে কম্পনের বিস্তার সমান নয়।</u>

পদা তরজোর যে বিন্দুতে বিস্তার সর্বাধিক তাকে 'সুস্পন্দ' বিন্দু বলে এবং তরজোর যে বিন্দুতে বিস্তার শূন্য তাকে 'নিস্পন্দ' বিন্দু বলে।

তরজোর সুস্পৃন্দ বিন্দুর বিস্তার তরজা সৃষ্টিকারী মূল তরজোর বিস্তারের দ্বিগুণ-এর সমান

উচ্চ মাধ্যমিক পদার্থবিজ্ঞান 🛥

BG & JEWEL

্চ্যে দুটি পর পর নিস্পন্দ বিন্দুর মধ্যবর্তী কণার সরণ একই দিকে হয় এবং তাদের মধ্যবর্তী দূরত্ব <u>λ/2। পর</u> পর নিস্পন্দ বিন্দুর মধ্যবর্তী অংশকে লুপ (Loop) বলে।

> শর পর দুটি লপের সরণ পরস্পর বিপরীত দিকে হয়।

জে) নিস্পন্দ বিন্দুতে চাপ ও ঘনত্বের পরিবর্তন সর্বাধিক, কিন্তু সুস্পন্দ বিন্দুতে চাপ ও ঘনত্বের পরিবর্তন শূন্য। কো পর পর তিনটি সুস্পন্দ বিন্দু বা পর পর তিনটি নিস্পন্দ বিন্দু বা দুটি লুপের মধ্যবর্তী দূরত্বই স্থির তরচ্চোর

ত্<u>রজ্ঞা দৈর্ঘ্য</u>।

🔨 টি) স্থির তরজোর স্থির বিন্দুস্থ কণাগুলো ছাড়া সকল কণার গতি সরল ছন্দিত গতি।

(ঠ) কোন মাধ্যমে স্থির তরজোর তরজা দৈর্ঘ্য (λ) বা কম্পাজ্ঞ (n) তরজা সৃষ্টিকারী যে কোন একটি মূল তরজোর তরজা দৈর্ঘ্য (λ) বা কম্পাজ্ঞ (n)-এর সমান।

১৭ ১২ স্থির তরজ্গের সমীকরণ

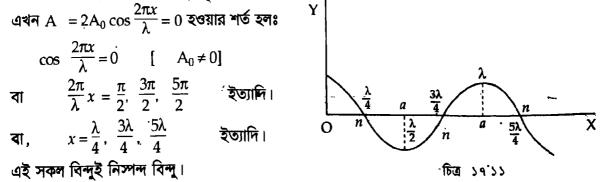
ধরা যাক, ধনাত্মক X-অক্ষের অভিমুখে একটি অগ্রগামী তরজ্ঞা চলছে। এই তরজ্ঞোর সমীকরণ হচ্ছে—

$$y_1 = A_0 \sin \omega \left(t - \frac{x}{v} \right)$$

এবং ঋণাত্মক X-অক্ষ অতিমুখে অগ্রগামী তরজ্ঞোর সরণ সমীকরণ,

$$y_2 = A_0 \sin \omega \left(t + \frac{x}{v} \right)$$

এখানে $A_0 = 0$ রজোর বিস্তার, $T = 2\pi/\omega = 9$ র্যায়কাল এবং v = 4েগ। এ স্থলে, $y_1 \otimes y_2$ হচ্ছে উৎস হতে x দূরত্বে অবস্থিত একটি কণার t সময়ে দুটি পৃথক তরজোর জন্য দুটি সরণ। ধরা যাক, তরজ্ঞা দুটি একটি অপরটির উপর আপতিত হল। এখন এই দুটি তরজোর লধ্বি সরণ—


$$y = y_1 + y_2 = A_0 \sin \omega \left(t - \frac{x}{v} \right) + A_0 \sin \omega \left(t + \frac{x}{v} \right)$$
$$= A_0 \sin \frac{2\pi}{\lambda} (vt - x) + A_0 \sin \frac{2\pi}{\lambda} (vt + x)$$
$$= 2A_0 \sin \frac{2\pi}{\lambda} vt, \cos \frac{2\pi}{\lambda} \cdot x = A \sin \frac{2\pi}{\lambda} vt$$
$$\exists I, y = y_1 + y_2 = A \sin 2\pi nt = A \sin \omega t \qquad (11)$$

এখানে, A = $2A_0 \cos \frac{2\pi}{\lambda} \cdot x$ = স্থির তরজ্ঞোর উপর x দূরত্বে অব্স্থিত কণার বিস্তার।

সমীকরণ (11) হতে দেখা যায় যে সমাপতিত তরজ্ঞা দুটি একটি সরল ছন্দিত গতিসম্পন্ন তরজ্ঞা উৎপন্ন করে। এই সরল ছন্দিত গতিটি অগ্রগামী তরজ্ঞা নয় ; কারণ এতে অগ্রগামী তরজ্ঞোর ন্যায় দশার কোন পার্থক্য নেই। অর্থাৎ অগ্রগামী তরজ্ঞোর ন্যায় দশা কোণের ভিতর (*vt* – *x*) জাতীয় কোন রাশি অন্তর্ভুক্ত নেই। সুতরাং, সমীকরণ (11) দুটি তরজ্ঞোর উপরিপাতের ফলে সৃষ্ট স্থির তরজ্ঞা প্রকাশ করে।

সমীকরণ (11) হল স্থির তরজ্ঞোর গাণিতিক রাশিমালা বা সমীকরণ।

নিস্পন্দ বিন্দু (Nodes) ঃ সমীকরণ (11)-এ বিস্তার, A = 2A₀ cos $\frac{2\pi x}{\lambda}$ । এটা কণার অবস্থান x-এর উপর নির্ভরশীল। কাজেই বিভিন্ন কণার বিভিন্ন অবস্থানের জন্য A ভিন্ন ভিন্ন হবে। ্যু সব বিন্দুতে A = 0 অর্থাৎ বিস্তার শূন্য হবে, সে সব বিন্দুতে নিস্পন্দ বিন্দুর সৃষ্টি হবে।

তরক্ষা ও শব্দ
বইঘর.কম
পরপর সংলগ্ন দুটি নিস্পন্দ বিন্দুর মধ্যবর্তী দূরত্ব =
$$\left(\frac{3\lambda}{4} - \frac{\lambda}{4}\right) = \frac{\lambda}{4}$$
 [চিত্র ১৭՝১০]।

সুস্পন্দ বিন্দু (Antinodes) : যে সকল বিন্দুতে লম্বি বিস্তার, A সর্বাধিক ; অর্থাৎ A = ±2A₀ সে সকল বিন্দুতে সুস্পন্দ বিন্দুর উদ্ভব হবে। সুতরাং, সুস্পন্দ বিন্দু তৈরির শর্ত হল ঃ 2πx

A =
$$2A_0 \cos \frac{2\pi x}{\lambda} = \pm 2A_0$$

বা, $\cos \frac{2\pi x}{\lambda} = \pm 1$
বা, $\frac{2\pi x}{\lambda} = 0, \pi, 2\pi$ ইত্যাদি।
বা, $x = 0, \frac{\lambda}{2}, \frac{2\lambda}{2}, \frac{n\lambda}{2}$ হবে $(n = 0, 1, 2, 3 \dots)$
: পরপর সংলগ্ন দৃটি সুস্পন্দ বিন্দুর মধ্যবর্তী দূরত্ব = $\left(\frac{2\lambda}{2} - \frac{\lambda}{2}\right) = \frac{\lambda}{2}$ চিত্র ১৭.১০] এবং একটি সুস্পন্দ ও

একটি সন্নিহিত নিস্পন্দ বিন্দুর মধ্যবর্তী দূরত্ব বা ব্যবধান $rac{\lambda}{4}$ । চিত্র ১৭ ১১-এ a এবং n দ্বারা যথাক্রমে সুস্পন্দ ও নিস্পন্দ বিন্দুর অবস্থান দেখান হয়েছে। পাশাপাশি দুটি নিস্পন্দ বিন্দুর মধ্যে একটি সুস্পন্দ বিন্দু থাকে।

অগ্রগামী তরজ্ঞা	ও	৾স্থির	তরজ্যের	পার্থক্য

	অগ্রগামী তরজা ও	। স্বর	তর জ্যের পাথক।
	অগ্রগামী তরজ্ঞা		স্থির তরষ্ণ
21	মাধ্যমের সকল কণাই পর্যাবৃত্ত গতি লাভ করে।	21	মাধ্যমের নিস্পন্দ বিন্দুর কণাগুলি ছাড়া অন্যান্য সব কণাই পর্যাবৃত্ত গতি লাভ করে।
રા	মাধ্যমের কণাগুলো কখনও স্থির অবস্থা প্রাশ্ত হয় না।	રા	প্রতিটি পূর্ণ কম্পনে কণাগুলো দুই বার স্থির অবস্থাপ্রান্ত হয়।
9	মাধ্যমের প্রতিটি কণার বিস্তার সমান; কিন্তু তাদের ভেতর দশার পার্থক্য থাকে।	৩়া	মাধ্যমের প্রতিটি কণার দশা সমান ; কিন্তু বিস্তার বিভিন্ন। সুস্পন্দ বিন্দুতে বিস্তার সর্বাধিক এবং নিস্পন্দ বিন্দুতে বিস্তার সর্বাপেক্ষা কম।
81	মাধ্যমের ভেতর দিয়ে নির্দিষ্ট বেগে অগ্রসর হয়। 	81	মাধ্যমের মধ্যে স্থিরভাবে অবস্থান করে এবং সীমাবন্ধ স্থানে পর্যায়ক্রমে উৎপন্ন ও বিলুগ্ত হয়।
¢I	মাধ্যমের প্রতিটি কণাকে সরণ, ঘনত্ব, চাপের পরিবর্তন, শক্তি ও বেগের একই রকম পরিবর্তন চক্রের মধ্য দিয়ে যেতে হয়।	¢ I	মাধ্যমের প্রতিটি কণাকে একই রকম পরিবর্তন চক্রের ভেতর দিয়ে যেতে হয়।
5	অগ্রগামী অনুপ্রস্থ তরজ্জে <u>র ক্ষেত্রে পরপর দুটি</u> তরজ্ঞাশীর্ষের মধ্যবর্তী দূরত্ব এবং অগ্রগামী অনুদৈর্ঘ্য তরজ্ঞোর ক্ষেত্রে একটি সংকোচন ও একটি প্রসারণে <u>র মোট দৈর্ঘ্যকে এক তরজা দৈর্ঘ্য</u> রলে		<u>পরপর তিনটি নিস্পন্দ বিন্দু অথবা তিনটি স</u> স্পন্দ বিন্দুর মধ্যবর্তী দূরত্বই স্থির তরজ্যোর এক তরজ্ঞা দৈর্ঘ্য।
Ø	অগ্রগামী তরজ্জোর সমীকরণ হচ্ছে $y = A \sin \frac{2\pi}{\lambda} (vt - x)$	91	$y = 2A_0 \cos \frac{2\pi x}{\lambda} \sin \omega t$

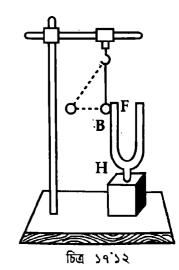
১৭°১৩ শব্দ

____ Sound

শব্দ এক প্রকার শক্তি। কোন কম্পমান বস্তুর দ্বারা সৃষ্ট অনুদৈর্ঘ্য তরজ্ঞাই হল শব্দ। যেমন গীটারের তার, মানুষের বাক্যন্ত্র, মাইক্রোফোনের পর্দা ইত্যাদি হতে উৎপন্ন তরজ্ঞা শব্দ।

শব্দ সঞ্চালনের জন্য মাধ্যম অত্যাবশ্যক। শব্দ তরজ্ঞা যখন বায়ু মাধ্যমের মধ্য দিয়ে সঞ্চালিত হয়ে আমাদের কানে প্রবেশ করে তখন স্নায়ু মাধ্যমে আমাদের মস্তিক্ষে এক প্রকার অনুভূতি জাগায়, যার ফলে আমরা শুনতে পাই। বায়ু বা গ্যাসীয় পদার্থ ছাড়া তরল ও কঠিন পদার্থও শব্দের মাধ্যম হিসেবে কাজ করে। যেমন রেল লাইনে কান পাতলে বহুদূর হতে আগত ট্রেনের শব্দ শোনা যায়। শূন্য মাধ্যমে শব্দের উৎপত্তি ও সঞ্চালন কোনটিই সম্ভব নয়।

সংজ্ঞা : শব্দ এক প্রকার শক্তি যা <u>একটি কম্পনশীল বস্তু হতে উৎপন হয়ে ঐ বস্তু সংলগু এ</u>কটি নিরবচ্ছিন স্বিতিস্বাপক মাধ্যমের মধ্য দিয়ে আমাদের কানে পৌঁছে শুতির অনুভূতি জন্মায় বা জন্মাবার চেষ্টা করে। কম্পমান বস্তুটিকে স্বনক বা শব্দের উৎস (Source of sound) বলে।


১৭°১৪ শব্দের উৎপত্তি Production of sound

শু**দ উৎপত্তির মূল উৎসই বস্তুর কম্পন।** বস্তৃতে যতক্ষণ কম্পন থাকে ততক্ষণই এর শব্দ নিঃসরণ হয়। এ শব্দ নিরবচ্ছিন্ন স্থিতিস্থাপক মাধ্যমের মধ্য দিয়ে আমাদের কানে পৌঁছে শ্রবণের অনুভূতি জন্মায়। উদাহরণস্বরূপ ঃ

একটি সুরশলাকা বা সুরেলী কাঁটাকে [চিত্র ১৭ ১২] আঘাত করলে সুরেলী কাঁটা কম্পিত হবে ও শব্দ উৎপন্ন হবে। সুরেলী কাঁটা হাত দ্বারা স্পর্শ করলে কম্পন বন্দ্ব হবে। ফলে শব্দ নিঃসরণও বন্দ্ব হবে। চিত্রে সুর

নিঃসরণকালে একটি সুরশলাকার এক বাহুর সংস্পর্শে রক্ষিত একটি ঝুলন্ত পিথবল সুরশলাকার কম্পনের দরুন বার বার ধার্কা খেয়ে সরে যাচ্ছে বুঝানো হয়েছে [চিত্র ১৭ ১২]।

আমাদের দৈনন্দিন অভিজ্ঞতা থেকেও শব্দের উৎপত্তি ও প্রকৃতি বুঝতে পারি। যেমন কোন ধাতব পদার্থ মেঝেতে পড়ে গেলে বা ধাতব পদার্থকে কোন ধাতব দণ্ড দিয়ে আঘাত করলে শব্দের সৃষ্টি হয় ; কিন্তু হাত বা শক্ত কিছু দিয়ে চেপে ধরলে শব্দ বন্ধ হয়ে যায়। বাঁশিতে ফুঁ দিয়ে কিংবা বাদ্যযন্ত্রের তারে টান দিয়ে বা ঢাক-ঢোলের চামড়ার পর্দা কাঁপিয়ে শব্দ সৃষ্টি করা হয়। সুতরাং বুঝা যাচ্ছে যে কম্পন থেকেই শব্দ সৃষ্টি হয়। এই কম্পন মাধ্যমে তরজ্ঞোর সৃষ্টি করে যা আমাদের কানের পর্দাকেও আন্দোলিত করে এবং আমরা শব্দ শুনতে পাই।

- î

সিদ্ধান্ত ঃ কোন বস্তুর কম্পনের দর্ন শব্দ উৎপন্ন হয়। সর্বপ্রকার শব্দ উৎপত্তির মূল উৎস ক্ষতুর কম্পন। কম্পনের ফলে যান্ত্রিক শক্তি হতে শব্দ উৎপন্ন হয়।

১৭°১৫ শব্দ একটি অগ্রগামী অনুদৈর্ঘ্য তরজ্ঞা Sound is a longitudinal travelling wave

আমরা জানি, তরজ্ঞা দু'রকমের—অনুপ্রস্থ এবং অনুদৈর্ঘ্য। শব্দ এক প্রকার তরজ্ঞা। নিয়ের কারণগুলো প্রমাণ করে যে শব্দ অনুদৈর্ঘ্য তরজ্ঞা।

১ তিরুক্তা সৃষ্টির জন্য বস্তৃর কম্পন প্রয়োজন। শঙ্গ সৃষ্টির জন্যও বস্তৃর কম্পন প্রয়োজন।

<u>তরিজ্ঞা সঞ্চালনের জন্য স্থিতিস্থাপক মাধ্যমের প্রয়োজন হয়, শব্দ সঞ্চালনের জন্যও স্থিতিস্থাপক</u> মাধ্যমের প্রয়োজন হয়।

বইঘর.কম

৩। তরজ্ঞা সঞ্চালনের জন্য মাধ্যম স্থানান্তরিত হয় না। শব্দের সঞ্চালনের সময়ও মাধ্যমের কণাগুলোর স্থানান্তর ঘটে না।

১৪ একস্থান হতে অন্যস্থানে সঞ্চালিত হতে তরজ্ঞোর কিছু সময়ের প্রয়োজন হয়, শব্দ সঞ্চালনের জন্যও সময় প্রয়োজন হয়।

🔨 তরজ্ঞার বেগ মাধ্যমের প্রকৃতির উপর নির্ভর করে। শব্দের বেগও মাধ্যমের উপর নির্ভর করে।

প্রার্থ প্রক্তোর যেমন প্রতিফলন, প্রতিসরণ, ব্যতিচার এবং অপর্বর্তন ঘটে শব্দের বেলায়ণ্ড তা ঘটে।

পুর্গ শব্দতরক্তোর ক্ষেত্রে মাধ্যমের সক্রেচন ও প্রসারণ ঘটে যা অনুদৈর্ঘ্য তরজোর বৈশিষ্ট্য।

এতে প্রমাণিত হয় যে শব্দ অনুদৈর্ঘ্য তরজা।

৯। শব্দ কঠিন, তরল ও বায়বীয় মাধ্যমে সঞ্চালিত হতে পারে যা অনুদৈর্ঘ্য তরজোর ক্ষেত্রে ঘটে।

উপরের ঘটনাসমূহ হতে প্রমাণিত হয় যে, শব্দ উৎসের কম্পনের ফলে শব্দ উৎপন্ন হয় এবং অনুদৈষ্যি তরজ্ঞাকারে বায়ু মাধ্যমের মধ্য দিয়ে সঞ্চালিত হয়ে আমাদের কানে পৌছায় এবং আমরা তা শুনতে পাই।

অতএব, শব্দ একটি অগ্রগামী অনুদৈর্ঘ্য তরজা।

১৭°১৬ দুটি মাধ্যমে একটি শব্দের বেগের মধ্যে সম্পর্ক Relation between velocities of a sound in two media

মনে করি A ও B দুটি মাধ্যম।

ধরি কোন একটি শব্দের বেগ ও তরজ্ঞা দৈর্ঘ্য যথাক্রমে A মাধ্যমে $v_{\rm A}$ এবং $\lambda_{\rm A}$ ও B মাধ্যমে যথাক্রমে $v_{\rm B}$ এবং $\lambda_{\rm B}$ । যদি শব্দের কম্পাজ্জ n হয়, তবে

A মাধ্যমে শব্দের বেগ $v_{\rm A} = n\lambda_{\rm A}$ (18)

এবং B মাধ্যমে শব্দের বেগ $v_{\rm B} = n\lambda_{\rm B}$ (19)

(18) নৎ সমীকরণকে (19)নৎ সমীকরণ দ্বারা ভাগ করে পাই ,

$$\frac{v_{\rm A}}{v_{\rm B}} = \frac{\lambda_{\rm A}}{\lambda_{\rm B}} \tag{21}$$

এটাই হল দুটি মাধ্যমে শব্দের বেগের মধ্যে সম্পর্ক।

কোন এক মাধ্যমে দুটি শব্দের তরজ্ঞা দৈর্ঘ্য এবং কম্পাক্তর মধ্যে সম্পর্ক । মনে করি একটি মাধ্যমে দুটি তরজ্ঞা প্রবাহিত হচ্ছে। একটির তরজ্ঞা দৈর্ঘ্য λ_1 এবং কম্পাজ্ঞ n_1 । অপরটির তরজ্ঞা দৈর্ঘ্য λ_2 এবং কম্পাজ্ঞ n_2 ।

মাধ্যমে তরচ্চোর বেগ v হলে,

প্রথম তরজ্ঞোর ক্ষেত্রে $v = n_1 \lambda_1$ (22)

এবং দিতীয় তরজ্ঞার ক্ষেত্রে $v = n_2 \lambda_2$ (23)

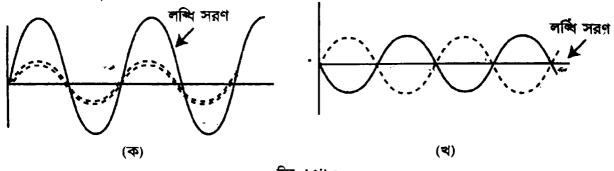
এখন (22) ও (23) সমীকরণ হতে পাই,

 $n_1\lambda_1=n_2\lambda_2$

$$\overline{n}, \ \frac{\lambda_1}{\lambda_2} = \frac{n_2}{n_1}$$
(24)

এটিই হল তরক্তা দৈর্ঘ্য এবং কম্পাক্তের মধ্যে সম্পর্ক।

১৭°১৭ শব্দের ব্যতিচার


Interference of sound

সংজ্ঞা সমান কম্পাজ্ঞ ও বিস্তারের দুটি শব্দ তরজোর উপরিপাতনের দর্ন নীরব বা জোরালো শব্দের সূর্ব্টি হলে এ ঘটনাকে শব্দের ব্যতিচার বলে।

ন্যক্রিচার দুই ধরনের। যথা—(ক) গঠনমূলক ব্যতিচার এবং (খ) ধ্বংসাতাক ব্যতিচার।

(20)

(ক) গঠনমূলক ব্যতিচার (Constructive interference) ঃ সমান বিস্তার ও কম্পাজ্জের দুটি শব্দতরজ্ঞা উপরিপাতনের ফলে যে স্থানে একই দশায় মিলিত হয়, সেখানে লব্দি সরণ শব্দের প্রত্যেকটি তরজোর সরলের যোগফলের সমান হয়। এক্ষেত্রে $y_1 = y_2$ হলে, লব্দি সরণ দ্বিগুণ হয়। ফলে লব্দি সরণের তীব্রতা সবচেয়ে বেশি হয়। এ ব্যতিচারকে গঠনমূলক ব্যতিচার বলে। [চিন্র ১৭·১৩(ক)]

চিত্র ১৭'১৩

(খ) ধ্বংসাত্মক ব্যতিচার (Destructive interference) ঃ সমান বিস্তার ও কম্পাল্জের দুটি শব্দতরজ্ঞা উপরিপাতনের ফলে যে স্থানে বিপরীত দশায় মিলিত হয়, সেখানে লব্দি সরণ শূন্য হওয়ায় কোন শব্দ শোনা যায় না। একে শব্দের ধ্বংসাত্মক ব্যতিচার বলে [চিত্র ১৭·১৩(খ)]। লব্দি সরণ মোটা সরলরেখা দ্বারা দেখান হয়েছে।

সুসংগত উৎস (Coherent source) ঃ দুটি উৎস সর্বদা একই দশায় থাকলে অথবা এদের দশা পার্থক্য সর্বদা স্থির থাকলে উৎস দুটিকে সুসংগত উৎস বলা হয়।

দুটি উৎসকে সুসংগত করতে হলে উভয়কে একই উৎস হতে সৃষ্টি করতে হয়।

শব্দের ব্যতিচারের গাণিতিক ব্যাখ্যা ঃ

Ø

ধরা যাক সমান বিস্তার ও কম্পাঙ্কের দুটি শব্দ তরক্ষা একই রেখায় সঞ্চালিত হয়ে এক বিন্দুতে মিলিত হল। t সময় পরে যে কোন বিন্দুতে এদের সরণ যথাক্রমে y_1 এবং y_2 হলে আমরা পাই,

$$y_1 = A_0 \sin \left(2\pi nt - \frac{2\pi}{\lambda} x_1\right)$$
$$y_2 = A_0 \sin \left(2\pi nt - \frac{2\pi}{\lambda} x_2\right)$$

এখানে $n = সুরশলাকার কম্পাজ্ঞ্ব, <math>\lambda =$ মাধ্যমে শব্দের তরজ্ঞা দৈর্ঘ্য ও A₀ = তরজ্ঞোর বিস্তার। এ স্থলে প্রথম তরজ্ঞা আলোচ্য বিন্দুতে যেতে x_1 পথ ও দ্বিতীয় তরজ্ঞা ঐ বিন্দুতে য়েতে x_2 পথ অতিক্রম করে। এখন তরজ্ঞাদ্বয়ের উপরিপাতের ফলে এদের লব্দি সরণ Y হলে,

$$Y = y_1 + y_2$$

$$\exists I, Y = A_0 \sin\left(2\pi nt - \frac{2\pi}{\lambda}x_1\right) + A_0 \sin\left(2\pi nt - \frac{2\pi}{\lambda}x_2\right)$$

$$= 2A_0 \cos\pi\left(\frac{x_2 - x_1}{\lambda}\right) \times \sin\left[2\pi nt - \frac{2\pi}{\lambda}\left(\frac{x_2 + x_1}{2}\right)\right]$$

$$= A \sin\left[2\pi nt - \frac{2\pi}{\lambda}\left(\frac{x_1 + x_2}{2}\right)\right]$$

$$= A \sin\left[\frac{2\pi}{\lambda}\left[vt - \frac{x_1 + x_2}{2}\right]\right] \qquad [\because v = n\lambda]$$

$$\exists \exists I, A = 2A_0 \cos\pi\left(\frac{x_2 - x_1}{\lambda}\right) \exists \exists I \exists \exists I = 1$$

$$(25)$$

সমীকরণ (25) একটি নতুন তরজোর সমীকরণ। সূতরাৎ, দেখা যাচ্ছে যে দুটি তরজোর উপরিপাতের কলে একটি নতুন তরজা সৃষ্টি হয়।

ৰইঘর.কম

গঠনমূলক ব্যন্তিচার ঃ দুটি তরজোর উপরিপাতনের ফলে উৎপন্ন তরজোর বিস্তার $A = 2 A_0 \cos \pi \left(\frac{x_2 - x_1}{\lambda}\right)$ এবং এর মান মূল তরজাদ্বয়ের পথ পার্থক্য ($x_2 - x_1$)-এর উপর নির্ভর করে। গাণিতিকভাবে পাওয়া যায়, শব্দের তীব্রতা I তরজোর বিস্তারের (A) বর্গের সমানুপাতিক।

অর্থাৎ, I ∝ A²

শব্দের তীব্রতা I সর্বোচ্চ হলে গঠনমূলক ব্যতিচার হয়। এটি হবে যখন $\pi\left(rac{x_2-x_1}{\lambda}
ight)=0,\pi,2\pi$

 $\overline{\mathbf{A}}, \ x_2 - x_1 = 0, \ \lambda \quad 2\lambda \qquad n\lambda \\ \overline{\mathbf{A}}, \ x_2 - x_2 = 0 \quad \frac{2\lambda}{2}, \frac{4\lambda}{2}, \dots, 2n\frac{\lambda}{2}$

তখন $I = 4 K A_0^2$ হবে। এটি I-এর সর্বোচ্চ মান।

অর্থাৎ যে সকল বিন্দুতে তরজ্ঞা দুটির পথ পার্থক্য $2n \frac{\lambda}{2}$ হয়, সে সকল বিন্দুতে তরজ্ঞা দুটি একই দশায় মিলিত হওয়ায় গঠনমূলক ব্যতিচার সৃষ্টি হবে। এই অবস্থায় তরজাদ্বয়ের পথ পার্থক্য শূন্য অথবা $\lambda/2$ -এর যুগ্ম গুণিতক হবে।

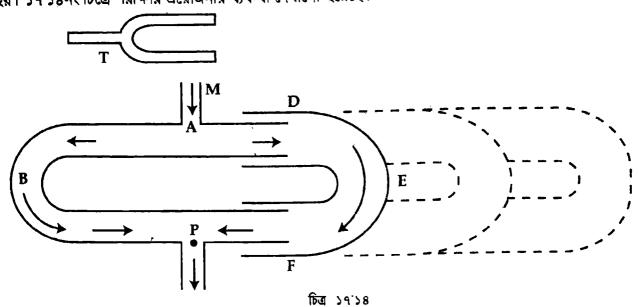
• स्वरंगाञ्चक ব্যতিচার ঃ শব্দের তীব্রতা I শূন্য হলে ধ্বংসাত্মক ব্যতিচার হয়। ধ্বংসাত্মক ব্যতিচারের ক্ষেত্রে,

$$\pi \left(\frac{x_2 - x_1}{\lambda}\right) = \frac{\pi}{2} \cdot \frac{3\pi}{\lambda} \cdot \frac{5\pi}{\lambda} \dots \overline{2}$$
বা, $(x_2 - x_1) = \frac{\lambda}{2} \cdot \frac{3\lambda}{2} \cdot \frac{5\lambda}{2} \dots \overline{2}$

$$= (2n + 1)\frac{\lambda}{2} \quad (n = 0, 1, 2, 3 \dots \overline{2})$$
হিচারের ক্ষেত্রে তরজ্ঞাছয়ের পথ পার্থক্য $\frac{\lambda}{2}$ -এর অযুগা গুণিতক হবে $\overline{2}$

শব্দের ব্যতিচারের শর্ত : উপরের গাণিতিক বিশ্লেষণ থেকে দেখা যায় যে, দুটি শব্দ তরজ্ঞা নিম্নলিখিত শর্তগুলো পূরণ কুব্রুলে ব্যতিচার হবে :

🖫 তরজ্ঞা দুটির কম্পাজ্ঞ ও বিস্তার সমান হতে হবে।


২ তরজ্ঞা দুটির আকৃতি ও দশা অপরিবর্তিত থাকবে।

৩। তরজা দুটির দর্ব মাধ্যমের কোন একটি কণার সরণ একই রেখায় হবে।

৪। শব্দের উৎস হতে নিঃশব্দ বা ধ্বংসাত্মক ব্যতিচার বিন্দুতে তরজাদ্বয়ের অতিক্রান্ত পথ পার্থক্য $rac{\lambda}{2}$ -এর অযুগ্ম গুণিতক হবে এবং জোরালো বা গঠনমূলক ব্যতিচারের ক্ষেত্রে তরজাদ্বয়ের অতিক্রান্ত পথ-পার্থক্য শূন্য অথবা $rac{\lambda}{2}$ -এর যুগ্ম গুণিতক হবে।

১৭·১৮ শব্দের ব্যতিচার প্রদর্শনের পরীক্ষা Demonstration of interference of sound

বাস্তবে দুটি ভিন্ন উৎস দ্বারা ১৭ ১৪-এ বর্ণিত শর্তগুলো পুরাপুরি পূর্ণ করে শব্দের ব্যতিচার দেখানো যায় না। এজন্য কৃইচ্চ্ব (Quincke)-এর উদ্ভাবিত পরীক্ষা ব্যবস্থা দ্বারা একটি শব্দ তরঞ্চাকে কোন একটি বিন্দু হতে দুটি ভিন্ন পথে প্রবাহিত হতে দিয়ে উপযুক্ত দশা বৈষম্যে পুনরায় অপর এক বিন্দুতে আপতিত করে শন্দের ব্যতিচার সৃষ্টি করা হয়। ১৭ ১৪নং চিত্রে পরীক্ষার প্রয়োজনীয় ব্যবস্থা দেখানো হয়েছে।

এ পরীক্ষায় দুটি U-আকৃতির দুই মুখ খোলা নল AB ও DEF নেয়া হয়। AB নলের দুই বাহুতে দুটি পার্শ্ব নল M ও N আছে। DEF নলের দুই বাহুর ভেতর AB নলের বাহু দুটি প্রবেশ করানো যায়।

পরীক্ষা : একটি সুর-শলাকাকে শব্দায়িত করে M নলের মুখে ধরা হয়। এতে সুর-শলাকা হতে শব্দ তরজ্ঞা AB ও DEF পথে প্রবাহিত হয়ে N নল দিয়ে বের হয়ে যাবার কালে P বিন্দুতে মিলিত হবে। ঐ দুই পথে প্রবহমান তরজ্ঞোর কম্পাজ্ঞক, বিস্তার ও জাতি অভিন থাকবে এবং তারা N নলে একই রেখায় সরণ সৃষ্টি করবে। এখন DEF নলটিকে বাইরের দিকে টেনে অথবা তিতরের দিকে ঠেলে ABP ও AEP পথের দূরত্বের পার্থক্য বাড়ালে অথবা কমালে N নলের মুখে শব্দের তীব্রতার নিম্নলিখিত পরিবর্তনগুলো লক্ষ্য করা যাবে ঃ

(ক) যখন ABP ও AEP-এর মধ্যে দৈর্ঘ্যের পার্থক্য অর্থাৎ তরজ্ঞা দুটির অতিক্রান্ত পথের পার্থক্য তরজ্ঞা দৈর্ঘ্যের অযুগা গুণিতক হবে অর্থাৎ (AEP – ABP) = $\frac{\lambda}{2}$, 3 $\left(\frac{\lambda}{2}\right)$, 5 $\left(\frac{\lambda}{2}\right)$ ইত্যাদি হবে তখন তরজ্ঞা দুঁটি P বিন্দুতে বিপরীত দশায় মিলিত হওয়ায় N নলের মুখে কোন শব্দ শোনা যাবে না। এটাই ধ্বাংসাত্মক ব্যতিচার।

(খ) যখন AEP ও ABP পথের দৈর্ঘ্যের পার্থক্য শূন্য অথবা $\frac{\lambda}{2}$ -এর যুগ্ম গুণিতক হবে অর্থাৎ (AEP $_{\mathcal{T}}$ ABP) = 0, 2 $\left(\frac{\lambda}{2}\right)$, 4 $\left(\frac{\lambda}{2}\right)$ ইত্যাদি হবে, তখন তরজ্ঞা দুটি P বিন্দুতে সমদশায় মিলিত হবে এবং N-এর মুখে জোরালো শন্দ শোনা যাবে। এটিই শন্দের গঠনমূলক ব্যতিচার।

ব্যবহার ঃ কুইজ্ঞ নলের সাহায্যে শব্দের বেগ নির্ণয় করা যায়। AEP ও ABP পথের দৈর্ঘ্যের ন্যনতম পার্থক্য N নলের মুখে কোন শব্দ শোনা না গেলে আমরা পাই, AEP – ABP = $\lambda/2$ । এখন, সুর শলাকার কম্পাজ্ঞ n হলে,

$$v = n\lambda = 2n \frac{\lambda}{2} = 2n (AEP - ABP)$$

কাজেই, λ জেনে নলের বায়ুতে শব্দের বেগ জানা যাবে।

তরজ্ঞা : কোন স্থিতিস্থাপক জড় মাধ্যমের বিভিন্ন কণার সমষ্টিগত পর্যাবৃত্ত কম্পনের ফলে মাধ্যমে যে আলোড়ন সৃষ্টি হয়, তাকে তরজ্ঞা বলে।

তরজোর প্রকারভেদ : কম্পনের সাথে তরজা প্রবাহের দিকের তারতম্য ভেদে তরজাকে দু'ভাগে ভাগ করা হয়েছে। যথা---(১) আড় বা অনুপ্রস্থ তরজা; (২) লম্বিক বা অনুদৈর্ঘ্য তরজা।

আড় বা অনুপ্রস্থ তরজ্ঞা : যে সব তরজ্ঞোর ক্ষেত্রে জড় মাধ্যমের কণাগুলোর কম্পনের দিক তরজ্ঞা প্রবাহের দিকের সমকোণী হয়, তাদেরকে আড় বা অনুপ্রস্থ তরজ্ঞা বলে।

লম্বিক বা অনুদৈর্ঘ্য তরজা : যে সব তরজোর ক্ষেত্রে জড় মাধ্যমের কণাগুলোর কম্পনের দিক এবং তরজা প্রবাহের দিক একই দিকে হয় তাদেরকে লম্বিক বা অনুদৈর্ঘ্য তরজা বলে।

শব্দ : শব্দ এক প্রকার শক্তি যা একটি স্থিতিস্থাপক নিরবচ্ছিন মাধ্যমের মধ্য দিয়ে আমাদের কানে পৌঁছে শ্রুতির অনুভূতি জন্মায় বা জন্মাতে চেন্টা করে।

শব্দের উৎপত্তি ঃ কোন বস্তুর কম্পনের দরুন শব্দ উৎপন্ন হয়। সর্ব প্রকার শব্দ উৎপত্তির মূল উৎস বস্তুর কম্পন।

পূর্ণ কম্পন : তরজ্ঞাস্থিত কোন একটি কম্পমান বস্তু একটি বিন্দু হতে যাত্রা শুরু করে আবার একই দিক হতে সেই বিন্দুতে ফিরে এলে তাকে পূর্ণ কম্পন বলে।

তরন্ধা বেগ : কোন একটি তরন্ধা কোন মাধ্যমে এক সেকেন্ডে যতটুকু দূরত্ব অতিক্রম করে তাকে তরন্ধা দুতি বলে।

তরচ্চা দৈর্ঘ্য : কোন মাধ্যমে কোন একটি কম্পমান বস্তু একটি পূর্ণ কম্পনে যে দূরত্ব অতিক্রম করে তাকে ঐ তরচ্চোর তরচ্চা দৈর্ঘ্য বলে। একে λ দিয়ে সূচিত করা হয়।

কম্পাক্ত বা স্পন্দন সংখ্যা : কোন একটি কম্পমান বস্তু এক সেকেন্ডে যত সংখ্যক পূর্ণ দোলন সম্পন্ন করে, তাকে উক্ত বস্তুর কম্পাজ্ঞ বলে। একে n দিয়ে প্রকাশ করা হয়।

দোলনকাল বা পর্যায়কাল : কোন একটি কম্পমান বস্তুর একটি পূর্ণ দোলন সম্পন্ন করতে যে সময় লাগে তাকে ঐ বস্তুর দোলন বা পর্যায়কাল বলে। একে T দিয়ে সূচিত করা হয়।

বিস্তার : কোন একটি কম্পমান বস্তু তার সাম্যাবস্থান থেকে ডানে বা বামে যে সর্বাধিক দূরত্ব অতিক্রম করে, তাকে এ বস্তুর বিস্তার বলে।

দশা ঃ দশা কোন একটি কম্পমান বস্তুর কোন মুহূর্তের দোলনের অবস্থা প্রকাশ করে।

আদি দশা ঃ কোন একটি ৰুম্পমান বস্তু যে দশা নিয়ে কম্পন শুরু করে, তাকে আদি দশা বলে।

তরজ্ঞা মুখ ঃ কোন একটি তরজ্ঞোর উপরিস্থিত সমদশাসম্পন্ন সকল বিন্দুর মধ্য দিয়ে অংকিত তলকে তরজ্ঞা মুখ বলে।

তরজ্ঞা শীর্ষ ঃ আড় তরজ্ঞোর ক্ষেত্রে এর ধন দিকে এক তরজ্ঞা দৈর্ঘ্যে সর্বাধিক সরণের বিন্দুকে তরজ্ঞা শীর্ষ বলে।

তরচ্চা পাদ । আড় তরস্কোর ক্ষেত্রে এর ঝণদিকে এক তরচ্চা দৈর্ঘ্যে সর্বাধিক সরণের বিন্দুকে তরচ্চা পাদ বলে।

তরষ্ণা রেখা : কোন এক মুহূর্তে মাধ্যমের কণাগুলো তরজোর উপর যে রেখায় আপনা-আপনি অবস্থান করে সে রেখাকে তর্জা রেখা বলে।

অগ্রগামী তরজ্ঞা : কোন তরজ্ঞা যদি কোন বিস্তৃত মাধ্যমের এক স্তর হতে অন্য স্তরে সঞ্চালিত হয়ে লামনের দিকে অগ্রসর হতে থাকে, তবে তাকে অগ্রগামী তরজ্ঞা বলে।

স্ধির তরজ্ঞা ঃ যদি কোন মাধ্যমের সীমিত অংশে দুটি পরস্পর বিপরীতমুখী অগ্রগামী তরজ্ঞোর দোলন কার্ল ও বিস্তার সমান হয়, তবে তাদের মিলিত ক্রিয়ায় ঐ অংশে যে নতুন তরজ্ঞা সৃষ্টি হয় তাকে স্থির তরজ্ঞা বলে।

তরজ্ঞার উপরিপাতন । দৃটি শব্দ তরজ্ঞা একই সক্ষো কোন মাধ্যমের একটি কণাকে অতিক্রম করলে ঐ কণা তরজ্ঞা দুটির সম্মিলিত প্রভাবে আলোড়িত হবে। কোন মুহূর্ত্তে কণাটির লম্বি সরণ প্রত্যেকটি তরজ্ঞা পৃথকভাবে ঐ বিন্দুতে যে সরণ সৃষ্টি করে তাদের ভেক্টর যোগফলের সমান। এর নাম তরজ্ঞোর উপরিপাতন।

শব্দের ব্যতিচার ঃ সমান কম্পাজ্ঞ ও বিস্তারের দুটি শব্দ তরজ্ঞোর উপরিপাতনের ফলে নীরবতা অথবা প্রবলতর শব্দের সৃষ্টি হলে এ ঘটনাকে শব্দের ব্যতিচার বা শব্দ সংঘাত বলে।

প্রয়োজনীয় সমীক্ষরণ

- $I \propto a^2$ (1)
 (1) $v = n\lambda = n \frac{S}{N}$ (2)
 - nT = 1(3)
 - $\omega = \frac{2\pi}{T} = 2\pi n \tag{4}$

দশা পার্ধক্য,
$$\delta = \frac{2\pi}{\lambda} \times পথ পার্ধক্য$$
 (5)

শ্বগ্রগামী তরজ্ঞার সমীকরণ ঃ

$$y = A \sin \frac{2\pi}{\lambda} (vt - x)$$
 (6)

$$= A \sin \frac{2\pi}{\lambda} (vt + x)$$
(7)

স্থির তরচ্চোর সমীকরণ ঃ

¥ :

$$y = 2 A_0 \cos \frac{2\pi}{\lambda} x \sin \omega t$$
 (8)

নিস্পন্দ বিন্দু সৃষ্টির শর্ত
$$s \cos \frac{2\pi x}{2} = 0$$
 (9)

$$\overline{\mathbf{A}}_{\lambda} = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}$$
(10)

সুস্পন্দ বিন্দু সৃষ্টির শর্ত ঃ
$$\frac{\cos 2\pi x}{\lambda} = \pm 1$$
 (11).

$$\overline{\mathbf{q}}_{1}, \ \frac{2\pi x}{\lambda} = 0, \ \pi, \ 2\pi.....$$
(12)

দুটি মাধ্যমে ঃ
$$\frac{v_A}{v_B} = \frac{\lambda_A}{\lambda_B}$$
 (13)
একই মাধ্যমে ঃ $\frac{\lambda_1}{\lambda_2} = \frac{n_2}{n_1}$ (14)

সমাধানকৃত উদাহরণ

্বির্দের্ঘ্যের অনুপাড নির্ণর কর। ২০০১] দৈর্ঘ্যের অনুপাড নির্ণর কর।

মনে করি তরজা দৈর্ঘ্য যথাক্রমে λ_1 ও λ_2 আমরা পাই, $v = n_1\lambda_1 = n_2\lambda_2$ $\frac{\lambda_1}{\lambda_2} = \frac{n_2}{n_1}$ (1) সমীকরণ (1) হতে পাই, $n_2 = 384 \text{ Hz}$ $\frac{\lambda_1}{\lambda_2} = \frac{384 \text{ Hz}}{128 \text{ Hz}} = \frac{3}{1}$

 $\lambda_1: \lambda_2 = 3:1$ একটি সুর শলাকা যে সমরে 200 বার কম্পন দের সে সমরে এটি ছারা সৃষ্ট শব্দতরচ্চা বাতাসে 140 m দুরত্ব অতিরুম করে। সুর শলাকার কম্পাক্ষ 500 Hz হলে বায়ুতে শব্দের বেগ নির্ণর কর। [ঢা. বো. ২০০৩] আমরা জানি,

	€C×	এখানে,
Z	$n\lambda$ $500 \times \frac{140}{200}$ $350 \mathrm{ms}^{-1}$	$\lambda = \frac{s}{N} = \frac{140}{200}m$ $n = 500 \text{ Hz}$ $v = ?$

	চরক্তাও শব্দ ৪৯৫
م) المتحد المتحد (ما 232 ms ⁻¹) علمان الم	র্বইঘর কম 54 Hz কম্পাক্ষের একটি সুরেশী কাঁটার শব্দ কাঁটাটির 100টি পূর্ণ,
কম্পনকালে কন্ত পূরত্ব অন্তিক্রম করবে ?	
ধরি নির্ণেয় দূরত্ব = s	(1) $v = 332 \text{ ms}^{-1}$ $n = 664 \text{ Hz} = 664 \text{ s}^{-1}$
জামরা পাই, $s = N\lambda = N\frac{v}{n}$	(1) $v = 332 \text{ ms}^{-1}$
n	$n = 664 \text{ Hz} = 664 \text{ s}^{-1}$
ম্মীকবর্ষ (1) হচ্চে প্লাই $c = 100 \times \frac{33}{2}$	$32 \text{ ms}^{-1} = 50 \text{ m}$
	564 s^{-1} = 30 m
争 🕼 একটি সুর শলাকা কর্তৃক সৃষ্ট শব্দের ডর	<u>32 ms⁻¹</u> = 50 m 664 s ⁻¹ = 50 m রভা দৈঘ্য বায়ুতে 1'006 m ও হাইড্রোজেনে 3'824 m । বায়ুতে
শব্দের বেগ 332 ms ⁻¹ হলে, হাইড্রোজেনে শব্দের বে	
মনে করি সুর শলাকার কম্পাজ্ঞ = n ও হাইড্রোবে	
আমরা $v = n\lambda$ সমীকরণ হতে পাই,	এখানে, $v_a = 332 \text{ ms}^{-1}$
$n=\frac{v_a}{\lambda_{\perp}}=\frac{v_h}{\lambda_{\perp}}$	(1) (1) $v_a = 332 \text{ ms}^{-1}$ $\lambda_a = 1.006 \text{ m}$ $\lambda_h = 3.824 \text{ m}$
	$\lambda_h = 3.824 \text{ m}$ $v_a = \frac{3.824 \text{ m}}{1.006 \text{ m}} \times 332 \text{ ms}^{-1} = 1262 \text{ ms}^{-1}$ সিউ শব্দ তরজা দৈর্ঘ্যের গার্থক্য 4.16 m, বায়ুতে শব্দের বেগ 352 [চ. বো. ২০০৬ ; কু. বো. ২০০১ ; সি. বো. ২০০১] এখ্যানে
সমাকরণ (1) হতে পাই, $v_h = \frac{\lambda v_h}{\lambda_a} \times$	$v_a = \frac{5.024 \text{ m}}{1.006 \text{ m}} \times 332 \text{ ms}^{-1} = 1262 \text{ ms}^{-1}$
🔍 🖓 বায়ু ও পানিতে 300 Hz কম্পাক্ষের এক	গটি শব্দ তরজা দৈর্ঘ্যের গার্থক্য 416 m, বায়ুতে শব্দের বেগ 352
ms ⁻¹ হলে, পানিতে শব্দের নৈগ নির্ণয় কর।	[চ. বো. ২০০৬ ; কু. বো. ২০০১ ; সি. বো. ২০০১]
$\lambda_a = \frac{v_a}{n} = \frac{352}{300}$	$\lambda_{w} - \lambda_{n} = 4.16 \text{ m}$ $n = 300 \text{ Hz}$
$\lambda_w = \frac{v_w}{n} = \frac{v_w}{300}$	$v_n = 352 \text{ ms}^{-1}$
- n 300	$v_w = ?$
প্রশানুসারে,	-
$\lambda_w - \lambda_a = \frac{v_w}{300} - \frac{352}{300}$	
ৰা, $4.16 = \frac{1}{300} (v_w - 352)$	
বা, $v_w - 352 = 300 \times 4.16$	
$v_w = 300 \times 4.16 + 352$	
$= 1600 \mathrm{ms}^{-1}$	
	দুটি কণার মধ্যে দৃশা পার্ধক্য 3'14 rad। তরজা উৎসের কল্যাক
512 Hz হলে মাধ্যমে তরভোর বেগ নির্ণয় কর। সুঁধরি মাধ্যমে তরভোর বেগ = v	l auron
\mathcal{O} নাম নান্চনে তমতোম নেন $= \sigma$ \therefore আমরা পাই, দশা পার্থক্য = $\frac{2\pi}{\lambda} \times$ পথ পার্থক	এখানে, পথ পার্গ্বক্তা – 0'325 m ্ ^{বির্}
	স্ (1) পথ পাৰ্থক্য = 0.325 m [ং]
কান্ডেই সমীকরণ (1) অনুসারে,	
$3.14 \text{ rad} = \frac{2 \times 3.14 \text{ rad}}{\lambda}$	
$\lambda = 2 \times 0.325 \mathrm{m} =$	
নির্ণেয় বেগ, $v = n\lambda = 512$ Hz	z × 0°65 m
$= 332^{\circ}8 \text{ ms}^{-1}$	

উচ্চ মাধ্যমিক পদার্থবিজ্ঞান 826 c,\$G & JEWEL ৭। একটি শব্দু ভরজা বায়ুতে 3 মিনিটে 1020 মিটার দূরত্ব অতিক্রম করে, এই শব্দ তরজোর তরজা দৈর্ঘ্য 50 cm হলে তরজোর পর্যায়কাল কত ? [कु. (बा. २००७] এখানে, $=\frac{s}{t}=\frac{1020}{3\times 60}=5.67$ ms⁻¹ = 3 মি. t = 3 × 60 P. মাবার, ৩ $= n\lambda$ = 1020 মি**.** $=\frac{v}{\lambda}=\frac{5.67}{0.5}$ ্ৰা, n $= 50 \, \mathrm{cm}$ =0'5 m $= 11^{\circ}34 \text{ Hz}$ Т $T = \frac{1}{n} = \frac{1}{11.34} = 0.09 s$ পর্যায়কাল, র্ধ মাধ্যমে শব্দের বেগ B মাধ্যমে শব্দের বেগের চেয়ে 5 গুণ বেশি। B মাধ্যমে একটি শব্দের উৎসের তরজ দৈর্ঘ্য 10 cm হলে A মাধ্যমে উৎসের 100 বার কম্পনে শব্দ কড দূর যাবে ? [ব. বো. ২০০৩] আমরা জানি, $S_A = N\lambda_A$ এখানে. আবার, $n = \frac{v_A}{\lambda_A} = \frac{v_B}{\lambda_B}$ $\lambda_{A} = \frac{v_{A}}{v_{B}} \times \lambda_{B}$ $= \frac{5v}{v} \times 0.1 = 0.5 \text{ m}$ $S_{A} = 100 \times 0.5$ $S_{A} = 50 \text{ m}$ B মাধ্যমে বেগ $v_{\rm B} = v$ A মাধ্যমে বেগ v_A = 5v $\lambda_{\rm B} = 10$ cm = 0.1 m N = 100 বার $S_A = 50 \text{ m}$ $S_A = 50 \text{ m}$ (a) কোন মাধ্যমে 480 Hz এবং 320 Hz কম্পাজ্জের দুটি শব্দের তরজা দৈর্ঘ্যের পার্শ্লকা 2m হলে মাধ্যমে শব্দের বেগ কত হবে ? সঁ আমরা জানি, । রা. বো. ২০০৬ ; সি. বো. ২০০৪ ; ঢা. বো. ২০০৩] এখানে, $v = n_1 \lambda_1 = n_2 \lambda_2$ $n_1 = 480 \text{ Hz}$ $\frac{\lambda_1}{\lambda_2} = \frac{n_2}{n_1}$ $\boxed{1}, \quad \frac{\lambda_1}{\lambda_2} = \frac{320}{480}$ $n_2 = 320 \text{ Hz}$ $\lambda_2 - \lambda_1 = 2$ $\lambda_2 = 2 + \lambda_1$ n = ? $\overline{\mathbf{A}}_{1}, \quad \frac{\lambda_{1}}{\lambda_{1}+2} = \frac{320}{480}$ বা, $480 \lambda_1 = 320 \lambda_1 + 640$ বা, $480 \lambda_1 - 320 \lambda_1 = 640$ বা, 160 $\lambda_1 = 640$ \overline{A}_{1} , $\lambda_{1} = \frac{640}{160} = 4 \,\mathrm{m}$ ĺ $= n_1 \lambda_1$ υ $=480 \times 4$ $= 1920 \text{ ms}^{-1}$ 🛪 🛵 ২০০। কোন একটি সীমাবন্ধ মাধ্যমে সৃষ্ট স্ধির তরজোর কম্লাক্ষ 480 Hz। তরজাস্থ পরপর দুটি নিশন্দ বিন্দুর দূরত্ব 0'346 m। মাধ্যমে তরজ্ঞোর বেগ নির্ণুয় কর। আমরা জানি, এখানে, পরপর দুটি নিস্পন্দ বিন্দুর দূরত্ব $= \frac{\lambda}{2}$ $n = 480 \, \text{Hz}$ $\frac{h}{2} = 0.346 \text{ m}$ পরপর দুটি নিস্পন্দ বিন্দুর দূরত্ব, $\frac{\lambda}{2} = 0.346$ $\lambda = 0.346 \times 2 = 0.692 \text{ m}$ বা, v = ?তরজ্যের বেগ, $v = n\lambda$ $= 480 \times 0.692 \text{ ms}^{-1}$ v $= 332^{\circ}2 \text{ ms}^{-1}$

্বইঘর কম ১১। 332 Hz কম্পান্ডেকর একটি সুর্রশলাকাকে বাতাসে বাজালে, এটি দ্বারা সৃষ্ট তরজা শলাকাটির 150 বার

এখানে, আমরা জানি. কম্পাজ্জ, n = 332 Hz $v = n\lambda$ বা, $\lambda = \frac{v}{v}$ কম্পন সংখ্যা, N = 150 শব্দের বেগ, v = 332 ms⁻¹ $\lambda = \frac{332}{332}m$ অতিক্রান্ত দূরত্ব, s = ?

=1m একবার কম্পনের জন্য শব্দ λ অর্থাৎ1 m দূরত্ব অতিক্রম করে ৷

150 বার কম্পনের জন্য দূরত্ব অতিক্রম করে, $s = 1 \times 150 = 150 \text{ m}$

১২। কোন নির্দিষ্ট কম্পাক্ষে কম্পনরত একটি বস্তু A মাধ্যমে 0.5 m তরজাদৈর্ঘ্য এবং 340 ms⁻¹ বেগ সম্পন্ন অগ্রগামী তরজ্ঞা উৎপনু করে। তা B মাধ্যমে 550 ms-1 বেগের অগ্রগামী তরজ্ঞা উৎপনু করলে এই তরজোর তরজাদৈর্ঘ্য কত হবে ?

আমরা জানি. $\lambda_{\rm A} = 0.5 \text{ m}$ $v_{\rm A} = 340 \text{ ms}^{-1}$ $v_{\rm B} = 550 \text{ ms}^{-1}$ $v_A = n\lambda_A$ এবং $v_{\rm B} = n\lambda_{\rm B}$ $\frac{v_{\rm A}}{v_{\rm B}} = \frac{\lambda_{\rm A}}{\lambda_{\rm B}}$ $\lambda_{\rm B} = 0.5 \times \frac{550}{340} \,{\rm m} = 0.81 \,{\rm m}$

১৩। কোন তরজোর বিস্তার 0'2 m হলে $t=rac{T}{3}$ সময়ে কম্পনের উঁৎস হতে $x=rac{\lambda}{6}$ দূরত্বে অবস্থিত বিন্দুর সাম্যাবস্থান হতে সরণ কত হবে ?

আমরা জানি.

সরণ,
$$y = A \sin \frac{2\pi}{\lambda} (vt - x)$$

বা, $y = A \sin \left(\frac{2\pi vt}{\lambda} - \frac{2\pi x}{\lambda}\right)$
 $y = A \sin \left(\frac{2\pi t}{T} - \frac{2\pi x}{\lambda}\right) \left[\frac{1}{T} = \frac{v}{\lambda}\right]$
 $= 0.2 \sin \left(\frac{2\pi T}{T \times 3} - \frac{2\pi}{\lambda} \times \frac{\lambda}{6}\right)$
 $= 0.2 \sin \left(\frac{2\pi}{3} - \frac{2\pi}{6}\right)$
 $= 0.2 \sin \left(\frac{4\pi - 2\pi}{6}\right)$
 $= 0.2 \sin \left(\frac{\pi}{3}\right)$
 $= 0.173 \text{ m}$

এখানে, তরজ্ঞোর বিস্তার, A = 0[.]2 m সময়, t = T/3উৎস হতে দূরত্ব, $x = \frac{\lambda}{C}$

সরণ, y = ?

উচ্চ মাধ্যমিকশেদ্বাপ্রবিজ্ঞান ্প্রেম্বর্ন

১৪। কোন সুরশলাকা একটি মাধ্যমে 30 সেণ্টিমিটার দৈর্ঘ্যের এবং 330 ms⁻¹ বেগের তরজা উৎপন্ন করে। অপর একটি মাধ্যমে তরজা বেগ যদি 300 ms⁻¹ তবে এ মাধ্যমে সুঁরশলাকার 100টি কম্পনে শব্দ কতদূর যাবে ? আমরা জানি,

এখানে. $v_{\rm A} = n\lambda_{\rm A}$ (1) প্রথম মাধ্যমে শব্দের বেগ, $v_{\rm A}=330~{
m ms}^{-1}$ এবং $v_{\rm B} = n\lambda_{\rm B}$ (2) প্রথম মাধ্যমে তরজাদৈর্ঘ্য , $\lambda_{\rm A}$ = 30 cm = 0.3 m সমীকরণ (1) ও (2) হতে পাই, দ্বিতীয় মাধ্যমে শব্দের বেগ, $v_{\rm B}=300~{
m ms}^{-1}$ $\frac{v_{\rm A}}{v_{\rm B}} = \frac{\lambda_{\rm A}}{\lambda_{\rm B}}$ দ্বিতীয় মাধ্যমে তরজ্ঞাদৈর্ঘ্য, λ_B = ? $\lambda_{\rm B} = \lambda_{\rm A} \frac{v_{\rm B}}{v_{\rm A}}$ বা, 2114= h= 5/10 00 xh - 27 (Ans $\lambda_{B} = 0.3 \times \frac{300}{330}$ = 0.273 m $\lambda_{B} = 0.273 \text{ m}$ $\lambda_{C} = 0.273 \text{ m}$ $\lambda_{C} = \sqrt{10} \times \frac{100}{330}$ $\lambda_{C} = \sqrt{10} \times \frac{100}{30}$ $\lambda_{C} = \sqrt{10} \times \frac{100}{$ দুটি পূর্ণ তরম্ভাদৈর্ঘ্য অপরটির তিনটি পূর্ণ তরম্ভা দৈর্ঘ্যের সমান। শলাকাহ্বয়ের কম্পাজ্ঞ নির্ণয় কর। ক্র. বো. ২০০৪] মনে করি A ও B দুটি সুর শালাকা প্রশ্নানুসারে, $n_2 - n_1 = 118$ (1) এবং $2\lambda_1 = 3\lambda_2$ $\frac{\lambda_1}{\lambda_2} = \frac{3}{2}$ আমরা জানি, $v = n_1 \lambda_1$ এবং $v = n_2 \lambda_2$ $n_1\lambda_1 = n_2\lambda_2$ $\overline{\mathbf{A}}_{1}, \quad \frac{\lambda_{1}}{\lambda_{2}} = \frac{n_{2}}{n_{1}}$ বা, $\frac{3}{2} = \frac{n_2}{n_1}$ $n_1 = \frac{2n_2}{3}$ সমীকরণ (1) হতে পাই, $n_2 - \frac{2n_2}{3} = 118$ বা, $n_2\left(1-\frac{2}{3}\right) = 118$ $n_2 = \frac{118 \times 3}{1} = 354$ Hz $354 - n_1 = 118$ $n_1 = 354 - 118 = 236$ Hz বা. ১৬। বাতাসে একটি সুর শলাকার সৃষ্ট শব্দ তরজ্ঞার দৈর্ঘ্য 50 cm এবং অপর একটি সুর শলাকার সৃষ্ট শব্দ

তরজ্ঞোর দৈর্ঘ্য 70 cm। প্রথম সুর শলাকার কম্পাজ্ঞ 350 Hz হলে দিতীয় সুর শলাকার কম্পাজ্ঞ কত? [রা. বো. ২০০০]

আমরা জানি, $n_1 \lambda_1 = n_2 \lambda_2$	দেয়া আছে,
\overline{a} $n_1 - \frac{\lambda_2}{\lambda_2}$	$\lambda_1 = 50 \text{ cm}$
বা, $\frac{n_1}{n_2} = \frac{\lambda_2}{\lambda_1}$	$\lambda_2 \stackrel{>}{=} 70 \mathrm{cm}$
$\overline{\mathbf{A}}, n_2 = \frac{n_1 \lambda_1}{\lambda_1}$	$n_1 = 350 \text{ Hz}$
λ ₂	$n_2 = ?$
$=\frac{350\times50}{50}$	
= 70 = 250 Hz	

১৭। P ও Q দুটি মাধ্যমে শব্দের বেগ যথাক্রমে 300 $m ms^{-1}$ এবং 350 $m ms^{-1}$ । মাধ্যম দুটিতে শব্দের তরজা দৈর্ঘ্যের পার্থক্য = 0.1 m হলে সুর শলাকার 50 কম্পনে শব্দ Q মাধ্যমে কত দুর যাবে ?

যেহেড় 'Q' মাধ্যমে শব্দের বেগ বেশি ডাই 'Q' মাধ্যমে সৃষ্ট তরজ্ঞোর তরজ্ঞা দৈর্ঘ্য 'P' মাধ্যমে সৃষ্ট তরজ্ঞা দৈর্ঘ্যের চেয়ে বড হবে। অর্ধাৎ ১৯০১ মন

$$\begin{split} \lambda_{Q} - \lambda_{P} &= 0^{\cdot}1 & (1) \\ \lambda_{Q} - \lambda_{P} &= 0^{\cdot}1 & (1) \\ \text{with}, v_{P} &= n\lambda_{P} & (2) \\ \text{with}, v_{Q} &= n\lambda_{Q} & (2) \\ \text{with}, v_{Q} &= n\lambda_{Q} & (2) \\ \text{with}, v_{Q} &= n\lambda_{Q} & (3) \\ \text{with}, n &= \frac{50}{\lambda_{Q} - \lambda_{P}} &= \frac{50}{0^{\cdot}1} \\ &= 500 \text{ Hz} \\ \text{with}, t &= \frac{N}{n} = \frac{50}{500} = 0^{\cdot}1 \text{ s} \\ \text{Quith}, s &= vt \\ &= 350 \times 0^{\cdot}1 \\ &= 350 \\ \text{with}, s &= vt \\ &= 350 \\ \text{with}, s &= 0 \\ \text{$$

১৮। একটি অগ্রগামী তরজের সমীকরণ, Y = 5 sin (200 π t - 1 57 x), এখানে সব করটি রাশি S. I. এককে প্রদন্ত। তরজাটির বিস্তার, কম্পাক্ষ, বেগ ও পর্যায়কাল নির্ণয় কর।

[ঢা. বো. ২০০৬ (মান ভিন্ন) ; ব. বো. ২০০৪ ; য. বো. ২০০০]

দৈওয়া আছে,

 $y = 5 \sin (200 \pi t - 1.57 x)$ (1)আমরা জ্ঞানি, অগ্রগামী তরজ্ঞার সমীকরণ $y = A \sin \frac{2\pi}{\lambda} (vt - x) = A \sin \left(\frac{2\pi}{\lambda} vt - \frac{2\pi}{\lambda} x \right)$ (2) সমীকরণ (1) ও (2) তুলনা করে পাই, A = 5m $\frac{2\pi}{\lambda} v = 200\pi$ $\overline{a}, \ 2\pi n = 200\pi \qquad [::: \frac{v}{\lambda} = n]$ n = 100 Hzজাবার, $\frac{2\pi}{\lambda} = 1.57$ $\lambda = \frac{2\pi}{1.57} = 4m$ এখন, $\frac{v}{\lambda} = n$ বা, $v = \lambda n = 4 \times 100 = 400 \text{ ms}^{-1}$ $T = \frac{1}{n} = \frac{1}{100} = 0.01s$ উদ্ধর : বিস্তার 5m ; কম্পাজ্ঞক = 100 Hz ; বেগ = 400 ms⁻¹ এবং পর্যায়কাল = 0.01s

উচ্চ মাধ্যমিক পদার্থবিজ্ঞান

	উচ্চ মাধ্যমিক পদার্থবিজ্ঞান	
	BG & JEWEL	
	১৯। একটি অগ্রগার্মী তরজ্ঞার সমীর্করণ $y=0.5 \sin(20\pi t-1.57x)$ । এখানে সবকটি রাশি এস. য	মাই. এককে
প্রদন্ধ।		বো. ২০০৫]
	দেওয়া আছে,	
	$y = 0.5 \sin(20\pi t - 1.57x)$	(1)
	আমরা জানি, অগ্রগামী তরজ্ঞোর সমীকরণ	(1)
	$\mathbf{y} = A \sin \frac{2\pi}{\lambda} (vt - x)$	(2)
	$\overline{a}, y = A \sin \left(\frac{2\pi}{\lambda} vt - \frac{2\pi}{\lambda} x \right)$	(3)
	সমীকরণ (1) ও (3) তুলনা করে পাই,	
	বিস্তার, A = 0 ⁻⁵ m	
	এবং $20\pi = \frac{2\pi}{\lambda}v$	(4)
	$\mathfrak{G} \qquad \frac{2\pi}{\lambda} = 1.57$	(5)
	\overline{a} , $\lambda = \frac{2\pi}{1.57} = \frac{2 \times 3.14}{1.57} = 4 \mathrm{m}$	
	সমীকরণ (4) হঁতে পাই,	
	$20\pi = \frac{2\pi}{\lambda} v$	
	বা, $v = \frac{4 \times 20\pi}{2\pi} = 40 \text{ ms}^{-1}$	
	$\frac{2\pi}{\sqrt{2\pi}} = \frac{10}{10} = \frac{10}{10} = 10$	
	পর্যায়কাল, T = $\frac{1}{n} = \frac{1}{10} = 0.1s$	
r	n 10 উত্তর : বিস্তার 0'5m ; কম্পাব্রু 10Hz ; বেগ 40 ms ⁻¹ এবং পর্যায়কাল 0'1s	
- X -	২১। $y = 1.15 \sin(2000t + 0.01x)$, যেখানে সকল রাশি SI এককে প্রকাশিত। তরজ্ঞার বিস্তার	
তরজা		I, 44411049, .
	দৈর্ঘ্য এবঁং তরজাবেগ নির্ণয় কর। [চ.	
	দৈর্ঘ্য এবং তরজ্ঞাবেগ নির্ণয় কর। [চ.	বো. ২০০৫]
()	দৈর্ঘ্য এবং তরজ্ঞাবেগ নির্ণয় কর। দেওয়া আছে, y = 1.15 sin (2000t + 0.01 x) আমরা জানি, অগ্রগামী তরজ্ঞোর সমীকরণ	
()	দৈর্ঘ্য এবং তরজ্ঞাবেগ নির্ণয় কর। দেওয়া আছে, $y = 1.15 \sin (2000t + 0.01 x)$ আমরা জানি, অগ্রগামী তরজ্ঞোর সমীকরণ $y = A \sin \frac{2\pi}{\lambda} (vt + x)$	বো. ২০০৫]
	দৈর্ঘ্য এবং তরজ্ঞাবেগ নির্ণয় কর। দেওয়া আছে, y = 1.15 sin (2000t + 0.01 x) আমরা জানি, অগ্রগামী তরজ্ঞোর সমীকরণ	বো. ২০০৫]
	দৈর্ঘ্য এবং তরজ্ঞাবেগ নির্ণয় কর। দেওয়া আছে, $y = 1.15 \sin (2000t + 0.01 x)$ আমরা জানি, অগ্রগামী তরজ্ঞোর সমীকরণ $y = A \sin \frac{2\pi}{\lambda} (vt + x)$	ৰো. ২০০৫] (1)
	দৈর্ঘ্য এবং তরজ্ঞাবেগ নির্ণয় কর। দেওয়া আছে, $y = 1.15 \sin (2000t + 0.01 x)$ আমরা জানি, অগ্রগামী তরজ্ঞোর সমীকরণ $y = A \sin \frac{2\pi}{\lambda} (vt + x)$ বা, $y = A \sin \left(\frac{2\pi}{\lambda} vt + \frac{2\pi}{\lambda} x\right)$	ৰো. ২০০৫] (1)
	দৈর্ঘ্য এবং তরজ্ঞাবেগ নির্ণয় কর। দেওয়া আছে, $y = 1.15 \sin (2000t + 0.01 x)$ আমরা জানি, অগ্রগামী তরজ্ঞার সমীকরণ $y = A \sin \frac{2\pi}{\lambda} (vt + x)$ বা, $y = A \sin \left(\frac{2\pi}{\lambda} vt + \frac{2\pi}{\lambda} x\right)$ সমীকরণ (1) ও (2) তুলনা করে পাই,	ৰো. ২০০৫] (1)
	দেশ্ব্য এবং তরজ্ঞাবেগ নির্ণয় কর। [চ. দেশ্তয়া আছে, $y = 1.15 \sin (2000t + 0.01 x)$ আমরা জানি, অগ্রগামী তরজ্ঞোর সমীকরণ $y = A \sin \frac{2\pi}{\lambda} (vt + x)$ বা, $y = A \sin \left(\frac{2\pi}{\lambda} vt + \frac{2\pi}{\lambda} x\right)$ সমীকরণ (1) ও (2) তুলনা করে পাই, A = 1.15 m এবং $2000 = \frac{2\pi}{\lambda} v$	ৰো. ২০০৫] (1) (2)
	দের্ঘ্য এবং তরজ্ঞাবেগ নির্ণয় কর। দেওয়া আছে, $y = 1.15 \sin (2000t + 0.01 x)$ আমরা জানি, অগ্রগামী তরজ্ঞোর সমীকরণ $y = A \sin \frac{2\pi}{\lambda} (vt + x)$ বা, $y = A \sin \left(\frac{2\pi}{\lambda} vt + \frac{2\pi}{\lambda} x\right)$ সমীকরণ (1) ও (2) তুলনা করে পাই, A = 1.15 m	ৰো. ২০০৫] (1) (2) (3)
	দের্ঘ্য এবং ভরজ্ঞাবেগ নির্ণয় কর। দেওয়া আছে, $y = 1.15 \sin (2000t + 0.01 x)$ আমরা জানি, অগ্রগামী তরজ্ঞোর সমীকরণ $y = A \sin \frac{2\pi}{\lambda} (vt + x)$ বা, $y = A \sin \left(\frac{2\pi}{\lambda} vt + \frac{2\pi}{\lambda} x\right)$ সমীকরণ (1) ও (2) তুলনা করে পাই, A = 1.15 m এবং $2000 = \frac{2\pi}{\lambda} v$ ও $\frac{2\pi}{\lambda} = 0.01$ বা, $\lambda = \frac{2\pi}{0.01} = \frac{2 \times 3.14}{0.01} = 628 m$ সমীকরণ (3)-এ λ -এর মান বসিয়ে পাই,	ৰো. ২০০৫] (1) (2) (3)
	দেশ্ব্য এবং তরজ্ঞাবেগ নির্ণয় কর। দেশ্তয়া আছে, $y = 1.15 \sin (2000t + 0.01 x)$ আমরা জানি, অগ্রগামী তরজ্ঞার সমীকরণ $y = A \sin \frac{2\pi}{\lambda} (vt + x)$ বা, $y = A \sin \left(\frac{2\pi}{\lambda} vt + \frac{2\pi}{\lambda} x\right)$ সমীকরণ (1) ও (2) তুলনা করে পাই, A = 1.15 m এবং $2000 = \frac{2\pi}{\lambda} v$ ও $\frac{2\pi}{\lambda} = 0.01$ বা, $\lambda = \frac{2\pi}{0.01} = \frac{2 \times 3.14}{0.01} = 628 m$	ৰো. ২০০৫] (1) (2) (3)
	দের্ঘ্য এবং ভরজ্ঞাবেগ নির্ণয় কর। দেওয়া আছে, $y = 1.15 \sin (2000t + 0.01 x)$ আমরা জানি, অগ্রগামী তরজ্ঞোর সমীকরণ $y = A \sin \frac{2\pi}{\lambda} (vt + x)$ বা, $y = A \sin \left(\frac{2\pi}{\lambda} vt + \frac{2\pi}{\lambda} x\right)$ সমীকরণ (1) ও (2) তুলনা করে পাই, A = 1.15 m এবং $2000 = \frac{2\pi}{\lambda} v$ ও $\frac{2\pi}{\lambda} = 0.01$ বা, $\lambda = \frac{2\pi}{0.01} = \frac{2 \times 3.14}{0.01} = 628 m$ সমীকরণ (3)-এ λ -এর মান বসিয়ে পাই,	ৰো. ২০০৫] (1) (2) (3)
	দের্ঘ্য এবং তরজ্ঞাবেগ নির্পয় কর। [চ. দেওয়া আছে, $y = 1.15 \sin (2000t + 0.01 x)$ আমরা জানি, অগ্রগামী তরজ্ঞোর সমীকরণ $y = A \sin \frac{2\pi}{\lambda} (vt + x)$ বা, $y = A \sin \left(\frac{2\pi}{\lambda} vt + \frac{2\pi}{\lambda} x\right)$ সমীকরণ (1) ও (2) তুলনা করে পাই, A = 1.15 m এবং $2000 = \frac{2\pi}{\lambda} v$ ও $\frac{2\pi}{\lambda} = 0.01$ বা, $\lambda = \frac{2\pi}{0.01} = \frac{2 \times 3.14}{0.01} = 628 \text{ m}$ সমীকরণ (3)-এ λ -এর মান বসিয়ে পাই, $2000 = \frac{2\pi}{628} \times v$	ৰো. ২০০৫] (1) (2) (3)
	দৈষ্য এবং তরজাবেগ নির্ণয় কর। [চ. দেশ্বয়া আছে, $y = 1.15 \sin (2000t + 0.01 x)$ আমরা জানি, অগ্রগামী তরজোর সমীকরণ $y = A \sin \left(\frac{2\pi}{\lambda} (vt + x)\right)$ বা, $y = A \sin \left(\frac{2\pi}{\lambda} vt + \frac{2\pi}{\lambda} x\right)$ সমীকরণ (1) ও (2) তুলনা করে পাই, A = 1.15 m এবং $2000 = \frac{2\pi}{\lambda} v$ ও $\frac{2\pi}{\lambda} = 0.01$ বা, $\lambda = \frac{2\pi}{0.01} = \frac{2 \times 3.14}{0.01} = 628 \text{ m}$ সমীকরণ (3)-এ λ -এর মান বসিয়ে পাই, $2000 = \frac{2\pi}{628} \times v$ বা, $v = \frac{2000 \times 628}{2 \times 3.14}$	ৰো. ২০০৫] (1) (2) (3)
	দৈষ্য এবং ভরজাবেগ নির্ণয় কর। [চ. দেওয়া আছে, $y = 1.15 \sin (2000t + 0.01 x)$ আমরা জানি, অগ্রগামী তরজোর সমীকরণ $y = A \sin \frac{2\pi}{\lambda} (vt + x)$ বা, $y = A \sin \left(\frac{2\pi}{\lambda} vt + \frac{2\pi}{\lambda} x\right)$ সমীকরণ (1) ও (2) তুলনা করে পাই, A = 1.15 m এবং $2000 = \frac{2\pi}{\lambda} v$ ও $\frac{2\pi}{\lambda} = 0.01$ বা, $\lambda = \frac{2\pi}{0.01} = \frac{2 \times 3.14}{0.01} = 628 \text{ m}$ সমীকরণ (3)-এ λ -এর মান বসিয়ে পাই, $2000 = \frac{2\pi}{628} \times v$ বা, $v = \frac{2000 \times 628}{2 \times 3.14}$ $= 200000 \text{ ms}^{-1}$ $= 2 \times 10^5 \text{ ms}^{-1}$	ৰো. ২০০৫] (1) (2) (3)
	দৈষ্য এবং তরজাবেগ নির্ণয় কর। (চ. দেওয়া আছে, $y = 1.15 \sin (2000t + 0.01 x)$ আমরা জানি, অগ্রগামী তরজোর সমীকরণ $y = A \sin \left(\frac{2\pi}{\lambda} (vt + x)\right)$ বা, $y = A \sin \left(\frac{2\pi}{\lambda} vt + \frac{2\pi}{\lambda} x\right)$ সমীকরণ (1) ও (2) তুলনা করে পাই, A = 1.15 m এবং $2000 = \frac{2\pi}{\lambda} v$ ও $\frac{2\pi}{\lambda} = 0.01$ বা, $\lambda = \frac{2\pi}{0.01} = \frac{2 \times 3.14}{0.01} = 628 \text{ m}$ সমীকরণ (3)-4 λ -এর মান বসিয়ে পাই, $2000 = \frac{2\pi}{628} \times v$ বা, $v = \frac{2000 \times 628}{2 \times 3.14}$ $= 200000 \text{ ms}^{-1}$ $= 2 \times 10^5 \text{ ms}^{-1}$ কম্পাক্ষ, $n = \frac{v}{\lambda} = \frac{200000}{628}$	ৰো. ২০০৫] (1) (2) (3)
	দৈষ্য এবং ভরজাবেগ নির্ণয় কর। [চ. দেওয়া আছে, $y = 1.15 \sin (2000t + 0.01 x)$ আমরা জানি, অগ্রগামী তরজোর সমীকরণ $y = A \sin \frac{2\pi}{\lambda} (vt + x)$ বা, $y = A \sin \left(\frac{2\pi}{\lambda} vt + \frac{2\pi}{\lambda} x\right)$ সমীকরণ (1) ও (2) তুলনা করে পাই, A = 1.15 m এবং $2000 = \frac{2\pi}{\lambda} v$ ও $\frac{2\pi}{\lambda} = 0.01$ বা, $\lambda = \frac{2\pi}{0.01} = \frac{2 \times 3.14}{0.01} = 628 \text{ m}$ সমীকরণ (3)-এ λ -এর মান বসিয়ে পাই, $2000 = \frac{2\pi}{628} \times v$ বা, $v = \frac{2000 \times 628}{2 \times 3.14}$ $= 200000 \text{ ms}^{-1}$ $= 2 \times 10^5 \text{ ms}^{-1}$	ৰো. ২০০৫] (1) (2) (3)

প্র<u>কৃ</u>য়ন ক্রম প্রান্থালা

সংক্ষিশ্ত-উত্তর প্রশ্ন ঃ ১। দশা কাকে বলে ? ঢ়া. বো. ২০০৪ ; কু. বো. ২০০১] ২। স্থির তরজ্ঞা কাকে বলে ? ক্রি. বো. ২০০৪ ; রা. বো. ২০০৩ ; য. বো. ২০০৩] ৩। শব্দের তীব্রতা বলতে কি বৃঝ ? [কু. বো. ২০০৪ ; ঢা. বো. ২০০২ ; রা. বো. ২০০২] ্ (রা. বো. ২০০৫ ; সি. বো. ২০০৪ ; कु. বো. ২০০৩ ; ঢা. বো. ২০০১ ; য. বো. ২০০৫] ৪। তরজ্ঞামুখ কি ? ৫। স্থির তরজ্ঞা অভ্জন কর এবং এতে ১ চিহ্নিত কর। যি. বো. ২০০৪; চ. বো. ২০০৩] ৬। তরজ্ঞাদৈর্ঘ্য ও বিস্তার কাকে বলে ? [b. বো. ২০০8] ৭। তরজ্ঞোর উপরিপাতন কাকে বলে ? [রা. বো. ২০০৫; ব. বো. ২০০৪; কু. বো. ২০০২] ৮। উপরিপাতন নীতি কি 🤉 । সি. বো. ২০০৬ ; ব. বো. ২০০৬ ; রা. বো. ২০০৩ ; য. বো. ২০০২) ৯। শব্দের প্রাবল্য বলতে কি বুঝ ? [ব. বো. '০৪] ১০। শব্দের ব্যতিচার কি[:] १ ্রাটা. বো. ২০০৬, ২০০২ ; ব. বো. ২৫০৪ ; সি. বো. ২০০৩ ; সি. বো. ২০০৩ ; য়. বো. ২০০০ ; ঢা. বো. ২০০০ ; রা. বো. ২০০০] বা. শব্দের ব্যতিচার কাকে বলে ? [কু. বো. ২০০৬ ; য. বো. ২০০৬ ; ঢা. বো. ২০০৪] ১১। আড় তরজ্ঞা ও লম্বিক তরজ্ঞা কাকে বলে ? রো. বো. ২০০৩] ১২। শব্দের ব্যতিচার ব্যাখ্যা কর। [ঢা. বো. ২০০৫ ; ব. বো. ২০০৩] ১৩। অগ্রগামী তরজ্ঞা কাকে বলে ? [ঢা. বো. ২০০৫ ; রা. বো. ২০০২] ১৪। শব্দ কি ? কিভাবে উৎপন্ন হয় ? [চ. বো. ২০০০] ১৫। সংজ্ঞা দাও ঃ স্থির তরজ্ঞা **()** কি. বো. ২০০৪] অগ্রগামী তরজ্ঞা (켁) [कू. त्वा. २००८ ; त्रि. त्वा. २००२ ; वं. त्वा. २००১] ঢা. বো. ২০০৬, ২০০৩ ; রা. বো. ২০০৬, ২০০০] (গ) তরজ্ঞা (ম্ব) শব্দের তীব্রতা [চ. বো. ২০০৪ ; ঢা. বো. ২০০৩] (3) তরক্তামুখ [চ. বো. ২০০৬, ২০০৩ ; ঢা. বো. ২০০৬, ২০০২ ; সি. বো. ২০০৬, ২০০১; রা. বো. ২০০০ ; য. বো. ২০০০] **(Б)** দশা [চ. বো. ২০০৩ ; ব. বো. ২০০১] স্থির তরজ্ঞা (ছ) [ঢা. বো. ২০০২ ; সি. বো. ২০০২ ; য. বো. ২০০০] (জ) বিস্তার [ा. (वा. २००२ ; जि. (वा. २००১ ; य. (वा. २०००] কু. বো. ২০০২; ঢা. বো. ২০০২ ; য. বো. ২০০০ ; কু. বো. ২০০০] (작) আড় বা অনুপ্রস্থ তরজ্ঞা অনুদৈর্ঘ্য বা লম্মিক তরজ্ঞা [কু. বো. ২০০২ ; ঢা. বো. ২০০২ ; কু. বো. ২০০০] (എം) (ট) সস্পন্দ বিন্দু [সি. বো. ২০০২ ; কু. বো. ২০০১] নিস্পন্দ বিন্দু (ठे) [সি. বো. ২০০২ ; কু. বো. ২০০১] তরম্ভাদৈর্ঘ্য [কু. বো. ২০০৬; ঢা. বো. ২০০১; ব. বো. ২০০১; রা. বো. ২০০০] (ড) তরজ্ঞা শীর্ষ বা চূড়া ; (ড) তরজ্ঞাপাদ বা খাঁজ। (१) ১৬। পরপর দুটি সুস্পন্দ বিন্দু বা দুটি নিস্পন্দ বিন্দুর দূরত্ব কত 🤋 ১৭। একটি তরজ্ঞার বেগ, তরজ্ঞাদৈর্ঘ্য এবং কম্পার্জ্ঞের সম্পর্ক লিখ। ১৮। তরজ্ঞোর দশা পার্থক্য ও পথ পার্থক্যের সম্পর্ক লিখ। রচনামূলক প্রশ্ন ঃ ১। অনুদৈর্ঘ্য ও অনুগ্রস্থ তরজ্ঞা কি? অগ্রগামী তরজ্ঞোর তিনটি বৈশিষ্ট্য লিখ। ৰি. বো. ২০০৫] ২। অনুপ্রস্থ ও অনুদৈর্ঘ্য তরজ্ঞোর মধ্যে পার্থক্যগুলো লিখ। [ঢ়. বো, ২০০৫; ব. বো. ২০০৩; সি. বো. ২০০২; ঢা. বো. ২০০০] ৩। অগ্রগামী তরজ্ঞোর বৈশিষ্ট্যগুলো লিখ। রা. বো. ২০০১] ৪। অগ্রগামী তরক্তোর ক্ষেত্রে $y={
m A}\sinrac{2\pi}{\lambda}\left(vt-x
ight)$ সমীকরণটি প্রতিষ্ঠা কর। যেখানে প্রতীকগুলো প্রচলিত অর্ধ বহন করে। সি. বো. ২০০৪; ঢা. বো. ২০০১ অথবা. একটি অগ্রগামী তরচ্চোর সাধারণ সমীকরণ প্রতিপাদন কর। ঢ়া. বো. ২০০৬, ২০০৩ ; কৃ. বো. ২০০৫ ; সি. বো. ২০০৬; চ. বো. ২০০৩ ; রা. বো. ২০০৬, ২০০২ ; য. বো. ২০০২ ; ব. বো. ২০০২] ৫। স্থির তরজ্ঞা কিভাবে সৃষ্টি হয় ? স্থির তরজোর বৈশিষ্ট্য লিখ। ৰি. বো. ২০০৪] ৬। স্থির তরজ্ঞোর বৈশিষ্ট্যসমূহ কি কি ? কু. বো. ২০০৪ ; সি. বো. ২০০৪ ; য. বো. ২০০২ ; ঢা. বো. ২০০১] ৭। গাণিতিক বিশ্লেষণের সাহায্যৈ স্থির তরষ্ণ কিতাবে সৃষ্টি হয় তা আলোচনা কর (বা ব্যাখ্যা কর)। বি. বো. ২০০৬, ২০০১; ঢা. বো. ২০০৫, ২০০৪; রা. বো. ২০০৫; কু. বো. ২০০৩; সি. ব্লো. ২০০৩; চ. বো. ২০০২ ; অথবা, স্থির তরজ্ঞোর গাণিতিক রাশিমালা প্রতিপাদন কর। [রা. বো. ২০০৩]

[রা. বো. ২০০৬ ; চ. বো. ২০০৪] ৮। অগ্রগামী ও স্থির তরজ্ঞোর মধ্যে পার্থক্য আলোচনা কর। ৯। দেখাও যে, শব্দ একটি অগ্রগামী অনুদৈর্ঘ্য তরজ্ঞা। [ব. বো. '০৩] ১০। সুস্পন্দ বিন্দু ও নিস্পন্দ বিন্দুর শর্তগুলো দেখাও। [রা. বো. ২০০৫ ; সি. বো. ২০০২] ১১। স্থির তরজ্ঞা সুস্পন্দ বিন্দু উদ্ভবের শর্ত আলোচনা কর। যি. বো. ২০০১] ১২। স্থির তরজ্ঞো নিস্পন্দ বিন্দু উদ্ভবের শর্ত আলোচনা কর। ১৩। শুব্দের উপরিপাতন ব্যাখ্যা কর। ১৪। স্থির তরজ্ঞোর সমীকরণ প্রতিপাদন করে সুস্পন্দ বিন্দু ও নিস্পন্দ বিন্দু সৃষ্টির শর্ত আলোচনা কর। [कू. (वा. २००७, २००); इ. (वा. २००৫ ; य. (वा. २००७] ১৫। শব্দের ব্যতিচার সৃষ্টির গাণিতিক বিশ্লেষণ বর্ণনা কর এবং ব্যতিচার হওয়ার শর্ত প্রতিপাদন কর। [त्रि. (বा. २००७ ; इ. (वा. २००७ ; कू. (वा. २००১ ; इ. (वा. २००১ ; ता. (वा. २०००) कू. ता. २००४ ; ता. ता. २००७ ; ज. ता. २००२ ; ১৬। গাণিতিকভাবে শব্দতরজ্ঞোর ব্যতিচার ব্যাখ্যা কর। সি. বো. ২০০১] ১৭। শব্দের ব্যতিচারের বিশ্লেষণ দাও। ধ্বংসাত্মক ও গঠনমূলক ব্যতিচারের শর্ত প্রতিপাদন কর। [য. বো. ২০০৬, ২০০৪] [কু. বো. ২০০২ ; সি. বো. ২০০২ ; য. বো. ২০০১] ১৮। $v = n\lambda$ সমীকরণটি প্রতিপাদন কর। ১৯। গাণিতিক বিশ্লেষণের সাহায্যে গঠনমূলক ও ধ্বংসাত্মক ব্যতিচার ব্যাখ্যা কর। [চ. বো. ২০০৬; রা. বো. ২০০৫] গাণিতিক সমস্যাবলি ঃ ১। দুটি সুর শলাকা কর্তৃক বায়ুতে উৎপন্ন শব্দের তরজ্ঞা দৈর্ঘ্য যথাক্রমের 0.65 m ও 1.95 m। এদের কম্পার্জ্ব তুলনা কর। [58 3 8 1] ২। তিনটি সুর শলাকার কম্পনের পর্যায়কাল যথাব্রুমে 0.008, 0.0025 ও 0.00125 s। বায়ুতে এদের শব্দের তরজ্ঞা দৈর্ঘ্যের অনুপাত নির্ণয় কর। [\$ 32 \$ 10 \$ 5] ূ। তিনটি সুর শলকার কম্পাজ্ঞ যথাক্রমে 123, 369 এবং 615 Hz। এরা বায়ুতে যে তরজ্ঞা সৃষ্টি করে তাদের দৈর্ঘ্যের অনুপাত নির্ণয় কর। **[5**858583] ৪। একটি সুর শলাকার কম্পাংক 264 Hz। সুর শলাকা হতে 42.5 m দূরে শব্দ যাওয়ার সময় অবকাশে শলাকাটি কতটি কম্পন সম্পন্ন করবে ? [বায়ুতে শব্দের বেগ = 340 ms⁻¹] [উঃ 33 বার] ৫। তরজ্ঞাস্থিত একটি কণার 10টি পূর্ণ কম্পনের সময়ে তরজ্ঞা কোন মাধ্যমে 7 m দূরত্ব অতিক্রম করে। তরজ্ঞা উৎসের কম্পার্জ্ঞ 480 Hz হলে ঐ মাধ্যমে তরজ্ঞোর বেগ নির্ণয় কর। [^じ: 336 ms⁻¹] ৬। তরক্তা উৎস যে সময়ে একটি নির্দিষ্ট সংখ্যক পূর্ণ কম্পন দেয় ঐ সময়ে মাধ্যমের 12 m দূরে অবস্থিত দুটি কণার একটি অপরটি অপেক্ষা 10টি পূর্ণ কম্পন কম দেয়। তরজা দৈর্ঘ্য নির্ণয় কর। মাধ্যমে তরজোর দুতি 360 ms⁻¹ হলে, তরজ্ঞা উৎসের কম্পাজ্ঞ নির্ণয় কর। [ਓs λ = 1 2 m ອ n = 300 Hz] ৭। 0.65 m ব্যবধানে অবস্থিত তরজোর দৃটি কণার মধ্যে দশা পার্থক্য 6.28 rad। মাধ্যমে তরজোর বেগ 332.8 m⁻¹ হলে তরজ্ঞা উৎসের কম্পার্জ্ঞ নির্ণয় কর। [উँ8 512 Hz] ৮। দুটি সুর শলাকার কম্পার্জ্বের পার্থক্য 32 Hz। বায়ুতে শলাকা দুটির একটির শব্দ তরজ্ঞা 9টি ও অপরটির শব্দ তরজ 10টি পূর্ণ কম্পন দিয়ে একই দূরত্ব অতিব্রুম করলে কম্পার্জ্বদয় নির্ণয় কর। [58 288 Hz 영 320 Hz] ৯। কোন একটি মাধ্যমে 640 Hz এর 480 Hz কম্পাব্র্জের দুটি শব্দ তরজ্ঞোর তরজ্ঞা দৈর্ঘ্যের পার্ধক্য 1m হলে শব্দের বেগ কত ? চি. বো. ২০০৪] ডিম্বর ঃ 1920 m] ১০। একটি সুর শলাকা A মাধ্যমে 01 m ও B মাধ্যমে 015 m দৈর্ঘ্যবিশিষ্ট তরষ্ণ উৎপন্ন করে। A মাধ্যমে শব্দের বেগ 3 ms⁻¹ হলে B মাধ্যমে শব্দ 6 s-এ কতদূর যাবে নির্ণয় কর। [5° 27 m] ১১। বায়ু ও পানিতে $480~{
m Hz}$ কম্পাঙ্কের একটি শব্দ তরজাদৈর্ঘ্যের পার্থক্য $2.4~{
m m}$ । বায়ুতে শব্দের বেগ $_248~{
m ms}^{-1}$ হলে পানিতে শব্দের বেগ কত ? উঃ 1500 ms⁻¹] ১২। বায়ুতে শব্দ প্রবাহে সৃষ্ট তরক্ষোর পরপর দুটি বিপরীত দশাগ্রস্ত কণার মধ্যবর্তী দূরত্ব 0.6 m । তরজা উৎসের কম্পাব্বু 300 Hz হলে বায়ুতে শব্দের বেগ নির্ণয় কর। 5: 360 ms ১৩। একটি শব্দ উৎস হতে সৃষ্ট শব্দ তরচ্চা উৎসটির 30 বার কম্পনের সময়ে বায়ুতে 24 m দূরত্ব অতিক্রম করে। উৎসটির কম্পাজ্ঞ নির্ণয় কর। [বায়ুতে শব্দের বেগ = 332 ms⁻¹])। উै 8415 Hz] ১৪+ 500 s $^{-1}$ কম্পাজ্রুবিশিষ্ট একটি তুরজোর বেগ কোন মাধ্যমে 350 ms^{-1} । তরজাস্থিত 60° দুশা পার্ধক্যৈ অবস্থিত দুটি বিন্দুর্তে মধ্যবর্তী দূরত্ব নির্ণয় কর। কোন বিন্দুতে 10⁻³ s সময়ের ব্যবধানে দুটি সরণের মাঝে দশা পার্ধক্য কত হবে ? [Ge 0'116 m C π rad] ১৫। একই সরলরেখায় গতিশীল দুটি সাইন সদৃশ তরজোর উভয়ের বিস্তার 0.05 m ও কম্পাব্ধ 80 Hz। এদের দশা পার্থক্য 60° হলে তরজ্ঞা দুটির মিলিত ক্রিয়ার কম্পার্জ্ঞ ও বিস্তার নির্ণয় কর। [℃8 80 Hz ℃ 0.05√3 m] ১৬। A মাধ্যমে শব্দের বেগ B মাধ্যমে শব্দের বেগের 5 গুণ। মাধ্যম দুটিতে একটি শব্দের তরজা দৈর্ঘ্যের পার্ধক্য 4 m l B মাধ্যমে শব্দের বেগ 380 ms⁻¹ হলে শব্দ উৎসের কম্পাজ্ঞ নির্ণয় কর। [उः 380 Hz]

১৭। P ও Q দুটি মাধ্যমে শব্দের বেগ যথাক্রমে 300 ms⁻¹ ও 340 ms⁻¹। মাধ্যম দুটিতে শব্দের তরজ্ঞা দৈর্ঘ্যের পার্থক্য 0.2m হলে সুরশলাকার 50 কম্পনে শব্দ Q মাধ্যমে কতদূর যাবে ? [কু. বো. ২০০৬] [উত্তর ঃ 85m] ১৮। একটি তরজ্ঞোর দুটি কণা 0.175 m ব্যবধানে অবস্থিত। কণাদ্বয়ের মধ্যে দশা পার্থক্য 1.57 রেডিয়াম। তরজ্ঞা উৎসের কম্পাজ্ঞ্ব 470 Hz হলে তরজোর বেগ নির্ণয় কর। [উঃ 329 ms⁻¹] জিঃ 329 ms⁻¹] জিঃ 329 ms⁻¹] জি হিসাবে শব্দের সর্বনিম্ন উদঘাটিত পিচ হল 20 Hz ও সর্বোচ্চ উদঘাটিত পিচ হল 20000 Hz । বায়ুতে উত্তয় পিচযুক্ত দর্দের তরজা দৈর্ঘ্য নির্ণয় কর। [ধর $v = 320 \text{ ms}^{-1}$] স্থিদ্বয়ে তরজা দৈর্ঘ্য নির্ণয় কর। [ধর $v = 320 \text{ ms}^{-1}$] স্থিদ্বয়ে তরজা দুটির অতিক্রান্ত দূরত্বের ব্যবধান ন্যূনতম 35 m হলে এ বিন্দুতে আদৌ কোন শব্দ শোনা যায় না। বায়ুতে শব্দের

২১। একটি স্থির তরজ্ঞোর সমীকরণ $y = 8 \sin \frac{\pi x}{6} \cos 64\pi t$ । এখানে x ও y সেন্টিমিটারে ও t সেকেন্ডে নির্দিষ্ট। যে দুটি তরজ্ঞোর মিলিত ক্রিয়ায় স্থির তরজ্ঞাটি উৎপত্তি হয়েছে তাদের বিস্তার, কম্পার্জ্ঞ ও বেগ নির্ণয় কর।

বেগ নির্ণয় কর।

[𝔅 0.04 m, 32 Hz 𝔅 3.84 ms⁻¹]

[ቼះ 358'4 ms⁻¹]

২২। কোন একটি রশিতে সঞ্চারণরত একটি অনুপ্রস্থ তরজোর সমীকরণ, $y = 0.1 \sin (2\pi t - \pi x)$, এখানে $y \otimes x$ মিটারে ও t সেকেন্ডে প্রকাশিত। তরজাটির বিস্তার, কম্পাঙ্ক, বেগ ও তরজা দৈর্ঘ্য নির্ণয় কর। কণার সর্বাধিক অনুপ্রস্থ বেগ নির্ণয় কর। [উঃ (i) 0.1 m, (ii) 1 Hz, (iii) 2 ms⁻¹ (iv) 2 m, (v) 0.628 ms⁻¹]

২৩। $y = 10 \sin 2\pi \left(\frac{t}{0.02} - \frac{x}{15} \right)$, সমীকরণটি একটি অগ্রগামী তরজ্ঞা প্রকাশ করছে। এক্ষেত্রে দৈর্ঘ্যের একক

সেণ্টিমিটারে এবং সময়ের একক সেকেন্ডে দেয়া হয়েছে। এ তরজোর বিস্তার, কম্পাজ্ঞক, তরজ্ঞাদৈর্ঘ্য এবং তরজ্ঞা বেগ নির্ণয় কর। [উঃ 10 cm; 50 Hz; 15 cm; 75 cms⁻¹]

২৪। y = 10 sin (140 πt — 0.08 πx), x ও y এর একক সেণ্টিমিটার ও t-এর একক সেকেন্ডে হলে ঐ তরজোর দুতি, বিস্তার ও কম্পাজ্ঞ নির্ণয় কর। [উঃ 1750 cm s⁻¹, 10 cm, 70 Hz]

তি হলে 60° দশা পার্থক্যে কণাটির সরণ ও বেগ নির্ণয় কর। তিঃ 4^{-3} m । তরজ্ঞাস্থিত কোন কণার গতি সরলছন্দিত াতি হলে 60° দশা পার্থক্যে কণাটির সরণ ও বেগ নির্ণয় কর। টিঃ $4^{-3} \times 10^{-3}$ m ; 0.523 ms⁻¹

২৬। একটি অগ্রগামী তরক্তোর সমীকরণ $y = 0.1 \sin\left(20 \pi t - \frac{20\pi}{17}x\right)$ মিটার হলে তরজ্ঞাটির বিস্তার, কম্পাল্জ ও

তরম্ভা বেগ কত ? [য. বো. ২০০৩] [উঃ $0.1 \mathrm{m}$; $100 \mathrm{Hz}$; $170 \mathrm{ms}^{-1}$] ২৭। একটি অগ্রগামী তরজোর সমীকরণ $y = 0.5 \sin \pi \left(100t - \frac{x}{3.4} \right)$, এখানে সব কয়টি রাশি S. I. এককে প্রদন্ত।

তরন্ধ্রাটির বিস্তার, কম্পাজ্ঞক, পর্যায়কাল ও বেঁগ নির্ণয় কর। [ঢা. বো. ২০০৬] [উত্তরঃ 0.5 ; 50 Hz, 0.02s ; 340 ms⁻¹] ि ২৮। একটি অগ্রগামী তরন্ধোর সমীকরণ হচ্ছে, $y = 0.00237 \sin(72.1x - 2.72 t)$ । এখানে সবকটি রাশি S. I. এককে প্রদন্ত। তরন্ধাটির বিস্তার, তরন্ধাদৈর্ঘ্য, কম্পাল্জ, পর্যায়কাল এবং বেগ বের কর।

[উঃ — 0'00237 m; 0'0871 m; 0'43 Hz; 2'31s; 0'0375 ms⁻¹] ২৯। একটি জগ্রগামী তরজোর সমীকরণ y = 0'05 sin (100πt — 3'14 x); এখানে সবকটি রাশি এস. জাই. এককে প্রদন্ত। তরজ্ঞাটির বিস্তার, তরজ্ঞাদৈর্ঘ্য, কম্পাল্জ, বেগ ও পর্যায়কাল নির্ণয় কর।

টিং 0.05 m ; 2 m ; 50 Hz ; 100 ms⁻¹ ; 0.02s] ৩০। একটি তারের উপর উৎপন্ন একটি অনুপ্রস্থ তরজোর সমীকরণ $y = 0.5 \sin 2\pi \left(\frac{t}{0.5} - \frac{x}{50}\right)$; এখানে x, yসেন্টিমিটারে এবং t সেকেন্ডে প্রকাশ করা হয়েছে। তরজাটির বিস্তার, তরজাদৈর্ঘ্য, কম্পাজ্ঞক, বেগ ও পর্যায়কাল নির্ণয় কর। টিং 0.5 cm ; 50 cm ; 2 Hz ;100 cms⁻¹ ; 0.5s]

১৮·১ সূচনা Introduction

আমরা জানি, শব্দ প্রকার শক্তি। এই শক্তি শব্দ উৎস হতে নিঃসৃত হয়ে পারিপার্শ্বিক মাধ্যমের মধ্য দিয়ে তরজ্ঞারূপে প্রবাহিত হয়। এই তরজ্ঞাগুলো আমাদের কানে শ্রবণানুভূতি জন্মায়। প্রতিদিন আমরা বিভিন্ন ধরনের শব্দ শুনি। এগুলোর কোনটা শ্রুতিমধুর, আবার কতগুলো বিরক্তিকর। বাদ্যযন্ত্রের শব্দ, সুরেলা কণ্ঠের গান শূনতে ভাল লাগে, কিন্তু হাট-বাজার, রেল স্টেশনের কোলাহল, গাড়ির হর্ণ ইত্যাদি বিরক্তিকর মনে হয়। এই অধ্যায়ে সুরযুক্ত শব্দ, অপসুর, শব্দের তীব্রতা, স্বরকম্প, টানা তারে কম্পন, বিভিন্ন বাদ্যযন্ত্র প্রভৃতি আলোচনা করা হবে।

১৮·২ সুর, স্বর, সমমেল বা হারমোনিক Tone, Note and Harmonics

সুর <u>ঃ একটি মাত্র কম্পাজ্জবিশিষ্ট শব্দকে সূর বলে।</u> যেমন একটি সুরশলাকা হতে যে শব্দ নিঃসৃত হয় তা সুর কেননা এর একটিই কম্পাজ্জ থাকে। শব্দ সৃষ্টিকারী উৎসের সরল ছন্দিত স্পন্দনের জন্য সুর সৃষ্টি হয়।

স্বর : একাধিক কম্পাব্রুবিশিষ্ট শব্দকে স্বর বলে। যেমন বেহালা, ভায়োলিন, হারমোনিয়াম প্রভৃতি বাদ্যযন্ত্র হতে যে শব্দ নিঃসৃত হয় তা স্বর। আমরা যে কথা বুলি তাও স্বর, কেননা তা অনেকগুলো কম্পনের সমষ্টি। উৎসের পর্যাবৃত্ত গতির জন্য স্বর সৃষ্টি হয়।

কোন স্বর যে সব সুরের মিশ্রণে উৎপন্ন হয় তাদের মধ্যকার ন্যূনতম কম্পাব্জের সুরকে **মূল সুর** (Fundamental tone) বলে। সুর ছাড়া অন্য সকল সুর যার কম্পাব্জ মূল সুরের কম্পাব্জের চেয়ে বেশি তাদের উপসুর (over tone) বলে।

সমমেল বা হারমোনিক : উপসুরগুলোর কম্পাজ্ঞ মূল সুরের কম্পাজ্জের সরল গুণিতক হলে তাদেরকে সমমেল বা হারমোনিক বলে। যেমন কোন উপসুর মূল সুরের দ্বিগুণ হলে তাকে দ্বিতীয় হারমোনিক, তিনগুণ হলে তৃতীয় হারমোনিক ইত্যাদি বলে। প্রথম হারমোনিক বা মূল সুর ছাড়া সকল সমমেলই উপসুর। সুতরাং, সকল হারমোনিক উপসুর ; কিন্তু সকল উপসুর হারমোনিক নয়।

উদাহরণ : কোন বাদ্যযন্ত্র থেকে নিঃসৃত ষরে 275, 290, 550, 762, 825 কম্পাব্ধবিশিষ্ট সুর আছে। তাহলে 275 কম্পাব্ধবিশিষ্ট সুরকে মূল সুর বলা হয়। বাকিগুলো সবই উপসুর। কিন্তু এদের মধ্যে 550, 825 কম্পাব্ধ-বিশিষ্ট সুর যথাক্রমে দ্বিতীয় ও তৃতীয় সমমেল বা হারমোনিক; 290, 762 কম্পাব্ধের সুর দুটি উপসুর; কিন্তু সমমেল বা হারমোনিক নয়।

কোন স্বরের বেশির ভাগ শক্তি মূল সুরে বর্তমান থাকে, বাকি শক্তি উপসুরগুলোর মধ্যে থাকে। শক্তির এই বন্টনের উপর স্বরের বৈশিষ্ট্য নির্ভর করে। কোন স্বরে সমমেল উপসুরের সংখ্যা যত বেশি হবে এবং অসমমেল উপসুরের সংখ্যা যত কম হবে, শব্দ তত শুতিমধুর হবে। বইঘর.কম

১৮·৩ সুরযুক্ত ও সুরবর্জিত শব্দ

Musical sound and noise

🔨 র্ম্বামরা যে শব্দ শুনি তাকে প্রধানত দু'ভাগে ভাগ করা যায়। যথা----

(ক) সুরযুক্ত শব্দ বা সুশ্রাব্য শব্দ এবং

(খ) সুরবর্জিত শব্দ বা কোলাহল।

(ক) সুরযুক্ত শব্দ বা সুশ্রাব্য শব্দ : উৎসের কম্পন নিয়মিত বা পর্যাবৃত্ত হলে যে শব্দের সৃষ্টি হয় তাকে সুরযুক্ত বা সুশ্রাব্য শব্দ বলে। যেমন পিয়ানো, ভায়োলিন, গীটার, বাঁশি ইত্যাদি হতে নির্গত শব্দ সুশ্রাব্য শব্দ।

সুরযুক্ত বা সুশাব্য শব্দ শ্রতিমধুর। এটা কানে আনন্দের অনুভূতি জন্মায়।

(খ<u>) সুরবর্জিত শব্দ বা কোলাহল : উৎসের কম্পন অনিয়মিত বা অপর্যাবৃত্ত হলে নিঃসৃত শব্দকে</u> সুরবর্জিত শব্দ বা কোলাহল বলে। হাট-বাজারের হউগোল, মোটর গাড়ির হর্ণ, কল-কারখানার শব্দ ইত্যাদি সুরবর্জিত শব্দ।-সুরবর্জিত শব্দ বা কোলাহল বিরক্তিকর ও পীড়াদায়ক।

তবে সুশ্রাব্য শব্দ ও শ্রুতিকটু শব্দের মধ্যে কোন সুস্পষ্ট বিভেদ রেখা টানা যায় না। শ্রোতার আপেক্ষিক পছন্দের দ্বারা সাধারণত এই দুই প্রকার শব্দের পার্থক্য করা যায়। অনেক সময় সুশ্রাব্য শব্দের মধ্যে স্বনকের অনিয়মিত কম্পন পরিলক্ষিত হয়, আবার সুরাবাহিত বা শ্রুতিকটু শব্দের মধ্যেও অনেক সময় স্বনকের নিয়মিত কম্পন লক্ষ, করা যায়। একই শব্দ অবস্থাভেদে কারও নিকট সুশ্রাব্য আবার কারও নিকট কলরব মনে হয়। বর্ষাকালে ভেকের ডাক, বৃষ্টির টাপুর টুপুর শব্দ, ঝরণার পানির শব্দ কলরব হলেও আমাদের নিকট এরা সুশ্রাব্য মনে হয়।

১৮·৪ সুরযুক্ত শব্দের বৈশিষ্ট্য

Characteristics of Musical sound

শব্দের উৎসের কম্পনের পার্থক্যভেদে বিভিন্ন প্রকার শব্দের উৎপত্তি হয়। সূরযুক্ত শব্দের তিনটি প্রধান বৈশিষ্ট্য রয়েছে। যথা— (১) শব্দোচ্চতা ও তীব্রতা বা প্রাবল্য ; (২) তীক্ষতা এবং (৩) জাতি বা গুণ।

১। শন্দোচ্চতা ও তীব্ৰতা বা প্ৰাবল্য (Loudness and Intensity) **ঃ**

শন্দোচ্চতা ঃ যে বৈশিষ্ট্য দ্বারা একটি শব্দ অন্য একটি শব্দ হতে কত বেশি জোরালো তা বুঝা যায় তাকে শব্দের শন্দোচ্চতা বলে।

তীব্রতা বা প্রাবল্য ঃ শব্দের গতিপথে লম্বতাবে অবস্থিত কোন বিন্দুর চারপাশে একক ক্ষেত্রফলের মধ্য দিয়ে যে পরিমাণ শক্তি প্রতি সেকেন্ডে প্রবাহিত হয় তাকে শব্দের তীব্রতা বা প্রাবল্য বলে।

শব্দোচ্চতা শব্দের তীব্রতার উপর নির্ভরশীল হলেও তা তীব্রতার সমানুপাতিক নয়। শব্দোচ্চতা ব্যক্তির অনুভূতি নির্ভর। একই তীব্রতার শব্দ ভিন্ন তিন লোকের কাছে ভিন্ন ভিন্ন শব্দোচ্চতার অনুভূতি সৃষ্টি করতে পারে।

শব্দের তীব্রতা বা প্রাবল্যের একক Wm⁻²।

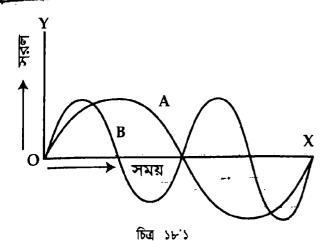
পূর্বের অধ্যায়ে আমরা তরজোর তীব্রতা I-এর সমীকরণ পেয়েছি, I = $2\pi^2 \rho a^2 n^2 v$, এখানে ρ = মাধ্যমের যনত্ব, a = তরজোর বিস্তার, n = কম্পাজ্ঞ এবং v = মাধ্যমে তরজোর দ্রতি। শব্দ অনুদৈর্ঘ্য তরজা। সুতরাং শব্দের তীব্রতার সমীকরণও একই। উপরের সমীকরণ হতে দেখা যায় যে শব্দের তীব্রতা মাধ্যমের ঘনত্ব, শব্দ তরজোর বিস্তার, কম্পাজ্ঞ ও দ্রুতির উপর নির্ভরশীল।

(ক) মাধ্যমের ঘনত্ব ঃ শন্দের তীব্রতা মাধ্যমের ঘনত্বের সমানুপাতিক। শন্দের তীব্রতা Ι এবং মাধ্যমের ঘনত্ব ρ হলে, Ι ∝ ρ । মাধ্যম যত ঘন হবে শন্দের তীব্রতাও তত বেশি হবে। (খ) উৎসের কম্পন বিস্তার : শব্দের তীব্রতা শব্দ সৃষ্টিকারী উৎসের কম্পনের বিস্তারের বর্গের সমানুপাতিক। তীব্রতা I এবং বিস্তার a হলে $I \propto a^2$) শব্দ তরজোর বিস্তার বাড়লে শব্দের তীব্রতা বাড়ে। এ কারণে একটি বস্তুকে মৃদু আঘাত করলে ক্ষীণ সুর নির্গত হয়, কিন্তু জোরে আঘাত করলে কম্পনের বিস্তার ও সুরের তীব্রতা বৃদ্ধি পায়।

(গ) উৎসের কম্পাজ্ঞ : শব্দের তীব্রতা কম্পাজ্ঞের বর্গের সমানুপাতিক। তীব্রতা I এবং কম্পাজ্ঞ n হলে, I ∝ n²। কম্পাজ্ঞ বাড়লে শব্দের তীব্রতাও বাড়ে।

(**ঘ) মাধ্যমের দ্রতি ঃ** কোন মাধ্যমে শব্দের তীব্রতা ঐ মাধ্যমে শব্দের দ্রতির সমানুপাতিক। যে মাধ্যমে শব্দের দ্রতি বেশি ঐ মাধ্যমে শব্দের তীব্রতাও বেশি হবে। EXV

উপরের বিষয়গুলো ছাড়াও শব্দের তীব্রতা উৎসের আকার, উৎস হতে শ্রোতার দূরত্ব, অন্যান্য বস্তৃর উপস্থিতি এ<u>বং মাধ্যমের গতির</u> উপর নির্ভর করে।

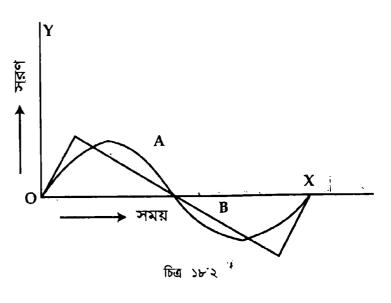

(ঙ) উৎসের আকার ঃ শব্দ সৃষ্টিকারী উৎসের আকার বড় হলে শব্দতরজ্ঞা বেশি পরিমাণে শক্তি সঞ্চালিত করতে পারে, ফলে শব্দের তীব্রতাও বৃদ্ধি পায়। এ কারণে বড় বড় ঘণ্টার শব্দ বহুদূর থেকে শোনা যায়।

(চ) উৎস থেকে শ্রোতার দূরত্ব : শব্দ উৎস হতে গ্রোলীয় তরজ্ঞাকারে চতুর্দিকে ছড়িয়ে পড়ে। উৎস হতে শব্দশক্তি মৃত দূরে যায় শব্দ তত বেশি এলাকায় ছড়িয়ে পড়ে, ফলে একক ক্ষেত্রফলের উপর শব্দ প্রবাহের হার কমে যায়। তীব্রুতা দূরত্বের বর্গের ব্যস্তানুপাতিক। তীব্রতা I এবং উৎস হতে শ্রোতার দূরত্ব r হলে, I ∝ $\frac{1}{r^2}$ । এ জন্য শব্দের উৎসূ হতে শ্রোতার দূরত্ব যত বৃন্ধি পাবে শব্দের তীব্রতা তত হ্রাস পাবে।

(ছ) অন্যান্য বস্তুর উপস্থিতি : উৎসের কাছাকাছি অনুনাদ ও পরবশ কম্পন সৃষ্টিকারী কোন বস্তু থাকলে শব্দের তীব্রতা বৃদ্ধি পায়। এজন্যই তারের বাদ্যযন্ত্রের তারগুলোকে ফাঁকা কাঠের বাব্ধের উপর বসানো হয়। উৎসের নিকটে প্রতিফলক থাকলেও শব্দের তীব্রতা বৃদ্ধি পায়।

(জ) মাধ্যমের গতি : মাধ্যমের গতির দিকে শব্দ সঞ্চালিত হলে শব্দের তীব্রতা বৃদ্ধি পায়, বিপরীত দিকে সঞ্চালিত হলে তীব্রতা কমে।

২। তীক্ষতা (Pitch) ঃ শব্দের যে বৈশিষ্ট্য দ্বারা কোন্ সুর চড়া ও কোন্ সুর মোটা তা বুঝা যায় তাকে -তীক্ষতা বলে। হারমোনিয়ামের বাম দিক হতে ডানু দিকের সুর ক্রমশ চড়া হয়।


শব্দের তীক্ষণ্ডা শব্দ সৃষ্টিকারী বস্তুর কম্পাঞ্চের, উপর নির্ভর করে। কম্পাজ্জ যত বেশি হবে শব্দের তীক্ষতা তত বৃদ্ধি পাবে। কাজেই ক্ষুদ্র তরজ্ঞা দৈর্ঘ্যবিশিষ্ট শব্দের তীক্ষতা বেশি ও বড় তরজ্ঞা দৈর্ঘ্যবিশিষ্ট শব্দের তীক্ষতা কম। পুরুষ অপেক্ষা স্ত্রীলোক ও শিশুর কণ্ঠষ্বরের কম্পাজ্জ বেশি হয় রলে তাদের ষরও চড়া হয়।

দুটি শব্দের মধ্যে তীক্ষণতা ভিনু অন্য কোন পার্থক্য না থাকলে তাদের শব্দ তরজ্ঞোর কম্পাজ্ঞ আলাদা হবে,

কিন্তু আকার ও বিস্তারের মধ্যে কোন পার্থক্য থাকবে না। ১৮ ১ নং চিত্রে তীক্ষতা ভিন্ন অন্য কোন পার্থক্য নেই এরপ দুটি শব্দ তরজ্ঞাের সময়-সরণ রেখা A ও B দেখানো হয়েছে। ৩। জ্ঞান্ডি বা গুণ (Quality) ঃ যে বৈশিষ্ট্য দ্বারা দুটি ভিন্ন উৎস হতে নির্গত শব্দের তীব্রতা ও তীক্ষতা এক হলেও তাদের একটিকে অন্যটি হতে পৃথক করা যায়, তাকে তার জাতি বলে। এ বৈশিষ্ট্য দ্বারা একই গান বাঁশি ও সেতার হতে বাজালে এ গানের শব্দগুলো বাঁশিন্ন না সেতারের তা শোনামাত্র-ৰুঝা যায়।

একটি সুরযুক্ত শব্দ যেসব সুরের মিশ্রণে সৃষ্টি হয় তাদের মধ্যে মূল সুরের কম্পাজ্জ দ্বারা তার তীব্রতার পরিচয় পাওয়া যায়, কিন্তু ঐ শব্দের জাতির পরিচয় পাওয়া যায়, শব্দে উপস্থিত (i) উপসুরগুলোর সংখ্যা দ্বারা, (ii) মূল সুরের কম্পাজ্জের অনুপাত দ্বারা ও (iii) মূল সুরের তীব্রতা ও উপসুরগুলোর তীব্রতার অনুপাত দ্বারা।

কোন একটি সুরযুক্ত শব্দে উপস্থিত উপসুরের প্রভাবে শব্দ তরজ্ঞোর সময়-সরণ রেখার আকার ও সাথে সাথে জাতি বদলায় । ১৮ ২ নং চিত্রে জাতি ভিন্ন অন্য কোন প্রভেদ নেই এরূপ দুটি সুরযুক্ত শব্দ তরজোর সময়-সরণ রেখা A ও B দেখানো হয়েছে।

১৮·৫ সুরযুক্ত শব্দ ও সুরবর্জিত শব্দ বা কোলাহল-এর মধ্যে পার্থক্য Distinction between musical sound and noise

সুরযুক্ত শব্দ এবং কোলাহলের মধ্যে নিম্নলিখিত পার্থক্য রয়েছে ঃ

	স্রযুক্ত শব্দ		, কোলাহল
(5)	সূরযুক্ত শব্দ শ্রুতিমধুর ও আরামদায়ক।	(5)	কোলাহল বা কলরব শু্তিকটু ও বিরক্তিকর।
(૨)	এটি শব্দ উৎসের নিয়মিত এবং পর্যায় কম্পনের ফলে সৃষ্টি হয়।	(২)	এটি শব্দ উৎসের অনিয়মিত কম্পনের ফলে সৃষ্টি হয়।
(৩)	এর তিনটি বৈশিষ্ট্য রয়েছে।	(৩)	এর এর্প কোন বৈশিষ্ট্য নেই।

১৮·৬ শব্দোচ্চতা, তীব্ৰতা ও তীব্ৰতা লেভেল

Loudness, Intensity and Intensity Level

মানুষের কান একটি ষাভাবিক শব্দগ্রাহক যন্ত্র। উৎস হতে শব্দ তরজ্ঞা মাধ্যমের মধ্য দিয়ে সঞ্চালিত হয়ে আমাদের কানের পর্দায় কম্পন সৃষ্টি করে। এই কম্পন সংকেত অনুসারে মস্তিক্ষে অনুভূতি সৃষ্টি করে এবং মস্তিক্ষ শব্দের প্রকৃতি বিশ্লেষণের মাধ্যমে শব্দ জোরালো না ক্ষীণ তা চিহ্নিত করে। মানুষের কান এত সংবেদনশীল (sensitive) যে অতি ক্ষীণ এবং অত্যন্ত জোরালো শব্দ শুনতে পায়। ক্ষীণ এবং জোরালো শব্দের অনুপাত 10¹³। এই সীমার মধ্যে সৃষ্ট শব্দ আমরা শুনতে পাই।

শন্দোচ্চতা হচ্ছে মূলত কর্ণের অনুভূতি। এটি শারীরবৃত্তীয় বিষয় (physiological phenomenon), ভৌত বিষয় নয়। শন্দোচ্চতা শ্রবণের মাত্রা প্রকাশ করে। শন্দোচ্চতা বলতে শব্দ কতটা জ্বোরে হচ্ছে তা বুঝায়। সুতরাং, শন্দোচ্চতার নিম্নোক্ত সংজ্ঞা দেওয়া যায় ঃ

সংজ্ঞা ঃ যে বৈশিষ্ট্য দ্বারা একটি শব্দ অন্য একটি শব্দ হতে কত বেশি জ্বোরালো তা বুঝা যায় তাকে শব্দোচ্চতা বলে। লক্ষণীয় যে, শব্দোচ্চতার সংজ্ঞা ব্যক্তি নির্তর। একই তীব্রতার বিভিন্ন কম্পাজ্জের শব্দ শ্রোতার কাছে কম-বেশি জোরে মনে হতে পারে। শব্দোচ্চতা শব্দের তীব্রতা দ্বারা নির্ধারিত হয়। তীব্রতা যত বাড়ে শব্দোচ্চতা তত বেশি জোরালো হয়। তবে শব্দোচ্চতা শব্দের তীব্রতার সাথে সমানুপাতিক হারে বাড়ে না। শব্দোচ্চতা ও শব্দের তীব্রতার সম্পর্ক নিচে আলোচনা করা হল।

তীব্রতা : শন্দে<u>র তীব্রতা একটি সুনির্দিষ্ট</u> তৌত রাশি। তীব্রতার সংজ্ঞা নি<u>মর</u>প ঃ

সংজ্ঞা ঃ শব্দ সঞ্চালনের অভিমুখের সাথে লম্বভাবে স্থাপিত একক ক্ষেত্রফলের মধ্য দিয়ে যে পরিমাণ শ<u>ক্তি প্রতি সেকেন্ডে প্রবাহিত হয় তাকে তীব্রতা বলে।</u> একে I দ্বারা প্রকাশ করা হয়। তীব্রতার একক Js⁻¹ m⁻² বা Wm⁻²।

পূর্বে উল্লেখ করা হয়েছে যে শব্দোচ্চতা তীব্রতার সাথে বাড়ে তবে সমানুপাতিক হারে নয়। ওয়েবার ফেচনার (Weber Fechner) সূত্র অনুসারে শব্দোচ্চতা শব্দের তীব্রতার লগারিদম (Logarithm)-এর সমানুপাতিক। এই সূত্রানুসারে শব্দোচ্চতা S এবং শব্দের তীব্রতা I হলে, এদের মধ্যে সম্পর্ক হল,

$$S \propto \log_{10} I$$

$$\mathbf{A}, \mathbf{S} = \mathbf{K} \log_{10} \mathbf{I}$$

(1)

শব্দির তীব্রতার একক Wm⁻² হলেও'ব্যবহারিক ক্ষেত্রে প্রমাণ তীব্রতার সাপেক্ষে একে পরিমাপ করা হয়। প্রমাণ তীব্রতা কি তা জানা দরকার।

প্রমাণ তীব্রতা (Standard intensity) : 1000 Hz কম্পাজ্জবিশিষ্ট শব্দের শ্রাব্যতার সীমা 10⁻¹² Wm⁻² তীব্রতার সমান ধরা হয় এবং একেই প্রমাণ বা আদর্শ তীব্রতা বলে। অর্থাৎ 1000 Hz কম্পাজ্জবিশিষ্ট 10⁻¹² Wm⁻² তীব্রতাকে প্রমাণ তীব্রতা বলে। একে I₀ দ্বারা সূচিত করা হয়। I₀ এর সাপেক্ষে সকল তীব্রতা পরিমাপ করা হয়। তীব্রতা লেভেল : যে কোন শব্দের তীব্রতা এবং আদর্শ বা প্রমাণ তীব্রতার শব্দের শব্দোচ্চতার

পার্থকা তীব্রতা লেভেল বলে। অন্যভাবে বলা যায়, কোন শব্দের তীব্রতা ও প্রমাণ তীব্রতার অনুপাতের লগারিদমকে এ শব্দের তীব্রতা লেভেল বলে। তীব্রতা লেভেলকে ডেসিবেল (dB) এককে প্রকাশ করা হয়।

ব্যাখ্যা ঃ ধরা যাক, দুটি নির্দিষ্ট কম্পাজ্জের শব্দের তীব্রতা । ও I₀ এবং শব্দোচ্চতা যথাক্রমে S ও S₀। এখন সমীকরণ (1) হতে পাই

 $S \propto \log_{10} I$

বা, $S = K \log_{10} I$

আবার, $S_0 \propto \log_{10} I_0$

বা, $S_0 = K \log_{10} I_0$ শব্দোচ্চতার পার্থক্য, $\beta = S - S_0 = K (loig_{10}I - log_{10}I_0)$ $= K \log_{10} \left(\frac{I}{I_0}\right)$

(2)

_এখানে K হচ্ছে ধ্রবক। এটি এককের উপর নির্ভর করে। শন্দোচ্চতার পার্থক্য β-কে তীব্রতা লেভেল বলা হয়। এখন I₀ যদি প্রমাণ তীব্রতা হয়, তবে যে কোন শব্দের তীব্রতা লেভেল এবং ঐ প্রমাণ তীব্রতা লগারিদম অনুপাতে নির্দেশিত হবে এবং একক বিহীন হবে।

<u>এখন K = 1 এবং Io প্রমাণ তীব্রতা হলে শন্দোচ্চতার পার্থক্যকে বেল (bels) বলা হয়। টেলিফোনের আবিস্ফারক আলেকজান্ডার গ্রাহাম বেলের নামকরণে এই এককের নামকরণ করা হয়েছে। শন্দোচ্চতার একক বেল খুবই বড় একক, তাই ডেসিবেল ব্যবহার করা হয়। 1 বেলের 1 দশমাংশকে 1 ডেসিবেল (dB) বলা হয়। এই ডেসিবেলই শন্দের তীব্রতার আদর্শ একক।</u>

সমীকরণ (2)-কে ডেসিবেলে লেখা যায়,

$$\beta = 10 \log_{10} \left(\frac{I}{I_0} \right) dB$$
(3)

শব্দ

$$\begin{aligned} \Pi \overline{\mathbf{n}}, \ \beta &= 1 \ d\mathbf{B} \ \boldsymbol{\xi} \mathbf{\hat{x}}, \ \boldsymbol{\theta} \mathbf{\zeta} \mathbf{\hat{z}} \\ \mathbf{I} &= 10 \ \log_{10} \left(\frac{\mathrm{I}}{\mathrm{I}_0} \right) \quad \boldsymbol{\overline{\eta}}, \ \log_{10} \left(\frac{\mathrm{I}}{\mathrm{I}_0} \right) = \frac{1}{10} \\ \frac{\mathrm{I}}{\mathrm{I}_0} &= 1.26 \end{aligned}$$

এর অর্থ হল শব্দের তীব্রতার 26% পরিবর্তনের জন্য তীব্রতার লেভেল 1 dB পরিবর্তিত হয়। উল্লেখ্য, মানুষের ক্লান 1dB এর কম শন্দোচ্চতার পার্থক্য বুঝতে পারে না।

সমীকরণ (3) হতে দেখা যায়—

(i) যখন I = 100 Ig, তখন β = 10 $\log_{10} (100)$ = 10 $\log_{10} 10^2$ = 20dB

(ii) যখন I = 1000 I₀, তখন B = 10 $\log_{10} (1000) = 10 \log_{10} 10^3 = 30 dB$

সুতরাং<u>, দেখা যাচ্ছে যে দুটি শ</u>ব্দের শব্দোচ্চতার পার্থক্য 20 dB হলে জোরালো শব্দ ক্ষীণ শব্দের চেয়ে 100 গুণ তীব্র বুঝায়। আবার পার্থক্য 30 dB হলে জোরালো শব্দ 1000 গুণ বেশি তীব্র বুঝায়।

এখন I = I₀ হলে, সমীকরণ (3) হতে পাই

$$\beta = 10 \log_{10} \left(\frac{I}{I_0} \right) = 0$$

<u>শন্দোচ্চতার পার্থক্য বা তীব্রতা লেভেল শুন্যকে নিম্নতর প্রান্তীয় সীমা বা শ্রাব্যতার সীমা বলে।</u>

শন্দোচ্চতার সর্বোচ্চ সীমা, L = $10 \log_{10} 10^{12} = 120 \ dB$ । এর চেয়ে বেশি তীব্রতার শব্দ কানে জ্বালা বা অষস্তির উদ্রেক করে।

উপরের আলোচনা থেকে বেল ও ডেসিবেলের নিম্নোক্ত সংজ্ঞা দেওয়া যায়।

বেল ঃ শব্দের তীব্রতা যখন 10 গুণ বৃষ্ণি পায় তখন শব্দোচ্চতা যে পরিমাণ বাড়ে তাকে 1 বেল বলে

ডেসিবেল ঃ শন্দের তীব্রতা যখন 10^{0.1} গুণ বৃদ্ধি পায় তখন শন্দোচ্চতা যতটুকু বাড়ে তার্কে 1 ডেসিবেল বলে। অন্যভাবে বলা যায়, 1 বেলের দশভাগের এক ভাগকে 1 ডেসিবেল বলে।

কোন শব্দ উৎসের তীব্রতা I1 হতে I2-তে পরিবর্তিত হলে তীব্রতা লেভেলের পরিবর্তন হবে,

$$\Delta \beta = \beta_1 - \beta_2 = 10 \log_{10} \left(\frac{I_2}{I_1} \right) dB$$

(4)

জুনুরূপভাবে, শব্দ উৎসের ক্ষমতা P_1 হতে P_2 -তে পরিবর্তিত হলে তীব্রতা লেভেল বা ক্ষমতা লেভেলের পরিবর্তন হবে,

 $\Delta\beta = 10 \log_{10} (P_2 / P_1) dB$

(5)

<u>1000 Hz</u> কম্পার্জ্ঞবিশিষ্ট প্রমাণ তীব্রতার এক ডেসিবেল-এর <u>একটি বিশুদ্ধ সুর</u> যে প্রাবল্য সুষ্টি করে তাকে ফ্রন বলে। শব্দ প্রাবল্যের আরও একটি একক আছে। <u>এর নাম সোন (Sone)। শ্রোতার শ্রাব্যতার সীমার 40</u> ডেসিবেল উর্দ্ধে 1000 Hz কম্পার্জ্জের একটি বিশুদ্ধ সুর যে প্রাবল্য সৃষ্টি করে তাকে 'সোন' বলে।

কয়েকটি শব্দের তীব্রতা ও তীব্রতা লেভেল

শব্দ	তীব্রতা, I (Wm ⁻²)	আপেক্ষিক তীব্রতা, I/I_0	তীব্রতা লেন্ডেন (db)
সর্বনিম্ন শ্রাব্য শব্দ	1×10^{-12}	10°	0
পাতার মর্মর শব্দ:	1×10^{-11}	10 ¹	10
<u>ি</u> কিসুফিসানী	1×10^{-9}	103	30
🗸 শ্রেণীকক্ষের শব্দ	1×10-7	105	50
স্বার্ভার্বিক কথাবার্তা	1×10^{-6}	106	60
ব্যস্ততম রাস্তার শব্দ	1×10^{-5}	107	. 70
কারখানার কোলাহল	1×10-3	10 ⁹	90
মাথার উপরের জেট প্রেনের শব্দ	1×10^{-2}	1010	100
তীব্র বজ্বনির্ঘোষের শব্দ	1 × 10 ⁻¹	1011	110 ,
কানে বেদনা দানকারী সূচন শব্দ	1×10^{0}	1012	120

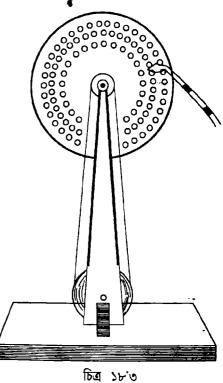
১৮·৭ সিবেক এর সাইরেনের সাহায্যে তীক্ষতা নির্ণয় Determination of pitch by Seebeck's siren

গঠন ঃ এতে ধাতব পদার্থ নির্মিত একটি চাক্তি থাকে [চিত্র ১৮'৩]। এ চাক্তিতে বিভিন্ন ব্যাসযুক্ত বৃত্তের পরিধির উপর কতকগুলো ছিদ্র আছে। বৃত্তগুলো চাকতির সাথে সমকেন্দ্রিক এবং যে কোন বৃত্তের ছিদ্রগুলো পরস্পর হতে সমান দূরে অবস্থিত। চাকতিটি তার কেন্দ্রগামী একটি অনুভূমিক দণ্ডের উপর এমনভাবে বসানো থাকে যে তাকে যে কোন বেগে উল্লম্ব সমতলে ঘুরানো যায়। এ ঘূর্ণনের বেগ পরিমাপের জন্য চাকতির সাথে একটি গতিমাপক যন্ত্র থাকে। চাকতিটির সমুখে একটি সরু মুখযুক্ত নলও আছে।

কার্যপ্রণালী : চাকতিটিকে একটি নির্দিষ্ট বেগে ঘুরতে দিয়ে নলের মুখ যে কোন একটি ছিদ্রের সম্মুখে ধরে নলের মধ্য দিয়ে জোরে বায়ু প্রবাহিত করলে এ বায়ু পর্যায়ক্রমে একবার ছিদ্রের মধ্য দিয়ে বের হয়ে যায় এবং পরক্ষণেই ছিদ্র সরে গেলে বাধা পায়। এভাবে নলের বায়ুপ্রবাহ পর্যায়ক্রমে বাধা প্রাশ্ত ও প্রবাহিত হবার ফলে চাকতির অপর পাশের বায়ু আলোড়িত হয় এবং একটি শব্দের সৃষ্টি হয়। এ শব্দের কম্পাজ্ঞ প্রতি সেকেণ্ডে বায়ুতে সৃষ্ট আলোড়নের সংখ্যার সমান। কাজেই চাকতিটিতে *m* ছিদ্র থাকলে এবং প্রতি সেকেণ্ডে চাকতিটিক<u> n বার ঘুরালে বায়ুতে</u> প্রতি সেকেণ্ডে সৃষ্ট আলোড়নের সংখ্যা, তথা নির্গত শব্দের কম্পাজ্ঞক, N = *m* × *n* । এই সমীকরণ অনুসারে ঃ

(১) চাকুতিটিকে জোরে ঘুরালে n এবং সাথে সাথে সৃষ্ট শব্দের কম্পাজ্জ ও তীক্ষণতা বৃদ্ধি পার্বে।

(২) নলের সরু মুখ যতই বাইরের ছিদ্র চব্রু হতে ভিতরের ছিদ্র চক্রের দিকে সরানো যাবে, শব্দের কম্পাজ্ফ তথা তীক্ষণতা তত হ্রাস পাবে, কেননা এতে m কম হবে।


সাইরেনে কোন শব্দের তীক্ষণা N নির্ণয় করতে হলে সাইরেনটিকে এমন একটি বেগে ঘুরাতে হবে যাতে সাইরেন কর্তৃক নিঃসৃত শুব্দ ও পরীক্ষাধীন শব্দের তীক্ষণা সমান হয় অর্থাৎ শব্দ দুটি মিশে যায়। এ অবস্থায় ব্যবহৃত মোট ছিদ্রের সংখ্যা m এবং গতিমাপক যন্ত্রে চাকতির প্রতি সেকেণ্ডের আবর্তন সংখ্যা n হলে পরীক্ষাধীন শব্দের কম্পাজ্ক, N = $m \times n$ । অনুরূপভাবে বিভিন্ন শব্দের কম্পাজ্ক প্রব্র নির্ণয় করে তাদের কম্পাজ্ক বা তীক্ষণার অনুপাত নির্ণয় করা যাবে।

১৮·৮ বীট বা স্বরকম্প Beats

সমান বা প্রায় সমান তীব্রতা ও প্রায় সমান কম্পাচ্চের দুটি শব্দ তরজা একসজো উৎপন্ন করলে দেখা যাবে যে, শব্দ একটানা হচ্ছে না—একটি নির্দিষ্ট সময় অন্তর অন্তর একবার বাড়ছে ও একবার কমছে। শব্দের তীব্রতার এরূপ পর্যায়ক্রমিক হ্রাস-বৃদ্ধিকে স্বরকম্প বলে। প্র**তি সেকেন্ডে শব্দের তীব্রতার পর্যায়ক্রমিক হ্রাস বা বৃ**ম্ধিরে দ্বারা স্বরকম্পের সংখ্যা (বা কম্পাজ্ঞ) নির্ণয় করা হয়।

সংজ্<u>থাঃ সমান বা প্রা</u>য় সমান তীব্রতা এবং প্রায় সমান কম্পাজ্ঞবিশিষ্ট একই দিকে অগ্রগামী দুটি শব্দ তরজ্ঞার উপরিপাতনের ফলে শব্দের লম্বি প্রাবল্যের ব্রাস-বৃদ্ধির ঘটনাকে স্বরকম্প বা বীট বলে।

ব্যাখ্যা ঃ সমান কম্পাজ্জের দুটি সুর শালাকা লই এবং তাদেরকে খাড়াভাবে একটি ফাঁপা বাক্সের উপর পাশাপাশি স্থাপন করি। এখন সুর শলাকা দুটির একটিকে একবার এবং অপরটিকে আর একবার একটি রবারের প্যাডযুক্ত হাতুড়িতে আঘাত করি। দেখা যাবে তারা প্রায় একই রকম একটানা শব্দ উৎপন্ন ক্বছে। এবার সুর শলাকা

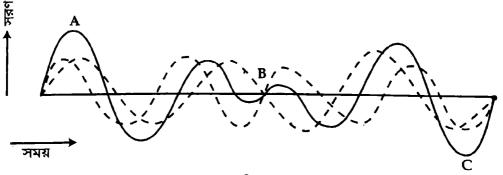
বইঘর.কম

দুটিকে একই সাথে আঘাত করলে দেখা যাবে এখনও তারা একটানা শব্দ উৎপন্ন করছে ; কিন্তু শব্দের তীব্রতা অনেকখানি বৃদ্ধি পাচ্ছে। এখন একটি সুর শলাকার এক বাহুতে কিছুটা মোম লাগিয়ে একে ভারী করি। এর কম্পার্জ কিছুটা কমে যাবে এবং সুর শলাকা দুটির কম্পাব্জের মধ্যে কিছুটা পার্থক্য সৃষ্টি হবে। এ অবস্থায় সুর শলাকা দুটিকে একই সাথে আঘাত করে শব্দ উৎপন্ন করলে একটানা শব্দ শোনা যাবে না। শব্দ পর্যায়ক্রমে জোরে এবং ধীরে ধীরে শোনা যাবে। কাছাকাছি ভিন্ন কম্পাব্জের দুটি সুর শলাকা হতে উৎপন্ন শব্দ প্রায়ক্রমে জোরে এবং ধীরে ঘটবে। শব্দ তীব্রতার এ রকম হ্রাস-বৃদ্ধির নাম বীট বা স্বরকম্প এবং শব্দ তীব্রতার একটি বৃদ্ধি এবং একটি হ্রাস নিয়ে একটি বীট সৃষ্টি হয়।

দুটি শব্দ উৎসের ক্রিয়ায় প্রতি সেকেন্ডে 5টি বীট উৎপন্ন হয়—এটি বলতে কি বুঝ ?

এটি বলতে নিম্নলিখিত বিষয়গুলো বুঝা যায় ঃ

১। উৎসদ্বয়ের ক্রিয়ায় শব্দের তীব্রতা প্রতি সেকেন্ডে 5 বার হ্রাস-বৃদ্ধি হয়।


২। উৎসদ্বয়ের কম্পাব্র্কের পার্থক্য N = 5 Hz

৩। উৎসদ্বয় হতে আগত শব্দ কোন বিন্দুতে বা কানে প্রতি সেকেণ্ডে 5 বার সমদশায় ও 5 বার বিপরীত দশায় মিলিত হয়।

পর পর একটি সর্বোচ্চ ও সর্বনিম্ন তীব্রতার মধ্যে সময়ের ব্যবধান = <u>1</u> = 0.1 সেকেন্ড।

১৮·৯ বীট বা স্বরকম্প গঠনের কৌশল Mechanism of formation of beats

প্রায় সমান কম্পাজ্ঞবিশিষ্ট দুটি শব্দ তরজা মাধ্যমের কোন একটি কণার উপর মিলিত হবার পর তাদের মধ্যে দশা বৈষম্য সময়ের সাথে পরিবর্তিত হয় এবং কোন এক মুহূর্তে কণাটির উপর তরজা সমদশায় আবার পরবর্তী মুহূর্তে তরজ্ঞাদ্বয় বিপরীত দশায় ক্রিয়া করে। এজন্য তরজ্ঞাদ্বয়ের মিলিত ক্রিয়ায় একটি নির্দিষ্ট সময় অন্তর অন্তর কণাটির সরণ তথা শব্দের তীব্রতা একবার সবচেয়ে বেশি হয় এবং আর একবার সবচেয়ে কম হয়। শব্দের তীব্রতার এই পর্যায়ক্রমিক হ্রাস-বৃন্দিই ম্বরকম্প।

চিত্র ১৮'৪

প্রায় সমান কম্পাজ্ঞবিশিষ্ট দুটি সুর শলাকা লই। তাদেরকে আঘাত করে শব্দ তরঞ্জা উৎপন্ন করি। এ তরজ্ঞা দুটি মাধ্যমের মধ্য দিয়ে চলতে থাকবে। এতে মাধ্যমের এক বিন্দুতে শব্দ তরজ্ঞা দুটি কোন এক সময় সমদশায় এবং পরবর্তী অপর এক সময় বিপরীত দশায় মিলিত হবে। ১৮'৪ নং চিত্রে A বিন্দুতে দুটি শব্দ তরজ্ঞা একই দশায় মিলিত হওয়ায় লব্দ্যি শব্দের বিস্তার তরজ্ঞা দুটির বিস্তারের যোগফলের সমান হবে। ফলে লব্দ্বি শব্দের তীব্রতা বেশি হবে। এখানে তরক্ষা দুটিকে সরু রেখা এবং লব্দ্বি শব্দ তরক্ষাকে অবিচ্ছিন্ন মোটা রেখা দ্বারা সূচিত করা হয়েছে।

যতই সময় অতিবাহিত হবে ততই একটি তরজ্ঞা অপরটিকে অতিক্রম করার চেম্টা করবে। B বিন্দুতে তরজ্ঞা দুটি বিপরীত দশায় থাকায় লম্দি শব্দের বিস্তার তরজ্ঞা দুটির বিস্তারের বিয়োগফলের সমান হবে। অতএব লম্দি শব্দের তীব্রতা কম হবে। পুনরায় C বিন্দুতে তরজ্ঞা দুটি একই দশায় থাকায় লম্দি শব্দের বিস্তার তরজ্ঞা দুটির বিস্তারের যোগফলের সমান হবে। ফলে লম্দি শব্দের তীব্রতা অধিক হবে। এভাবে লম্দি শব্দের তীব্রতার পর্যায়ব্রুমে হাস-বৃদ্ধি ঘটবে। প্রতি সেকেন্ডে শব্দের পর্যায়ক্রমে হ্রাস বা বৃদ্ধি দ্বারা স্বরকক্ষের সংখ্যা নির্ণীত হবে।

১৮·১০ বীট বা স্বরকম্পের গাণিতিক বিশ্লেষণ Mathematical analysis of beat

ধরা যাক দুটি শব্দায়িত সুর শলাকার কম্পাজ্ঞ যথাক্রমে $n_1 ও n_2 (n_1 > n_2)$ এবং কম্পাজ্ঞ দুটির পার্থক্য খুব বেশি নয়। আরও ধরা যাক শলাকা দুটি হতে আগত শব্দ তরজ্ঞা মাধ্যমের কোন একটি কণার উপর সমদশায় আপতিত হবার t সেকেন্ড পরে তরজ্ঞা দুটির দরুন কণাটির পৃথক সরণ যথাক্রমে,

$$y_1 = a \sin 2\pi n_1 t \tag{4}$$

$$y_2 = b \sin 2\pi n_2 t \tag{5}$$

উপরিপাতনের নীতি অনুসারে লব্ধি সরণ,

 $y = y_1 + y_2 = a \sin 2\pi n_1 t + b \sin 2\pi n_2 t$ (6) যদি তরজ্ঞা দুটির বিস্তার সমান অর্থাৎ a = b হয়, তবে

$$y = a \left(\sin 2\pi n_1 t + \sin 2\pi n_2 t \right)$$

= $2a \sin \left\{ 2\pi \left(\frac{n_1 + n_2}{2} \right) t \right\} \cos 2\pi \frac{(n_1 - n_2)}{2} t$
= $\left[2a \cos 2\pi \frac{(n_1 - n_2)t}{2} \right] \sin 2\pi \left(\frac{n_1 + n_2}{2} \right) t$
 $\forall \mathfrak{AI} \ \forall I \Phi, \ A = 2a \cos 2\pi \frac{(n_1 - n_2)t}{2} \ \mathsf{agg} \ \mathsf{M} = (n_1 + n_2)/2$
 $y = A \sin 2\pi \mathsf{M} t$ (7)

এটি সমীকরণ (4) ও (5)-এর ন্যায় লম্দি তরজ্ঞাের সমীকরণ। এর কম্পাজ্ঞ M ও বিস্তার A। এই বিস্তার সময় ভেদে বিভিন্ন হবে। কারণ, শব্দ তরজ্ঞা দুটি কোন একটি কণার উপর মিলিত হলে তাদের মধ্যে দশা বৈষম্য সময়ের সাথে পরিবর্তিত হয়। কোন এক মুহূর্তে কণাটির উপর তরজ্ঞাদ্বয় সমদশায় আবার পরবর্তী মুহূর্তে বিপরীত দশায় ক্রিয়া করে। এতে তরজ্ঞাদ্বয়ের মিলিত ক্রিয়ায় একটি নির্দিষ্ট সময় অন্তর অন্তর কণাটির সরণ তথা শব্দের তীব্রতা একবার সবচেয়ে বেশি হয় এবং আর একবার সবচেয়ে কম হয়। শব্দের এ পর্যায়ক্রমিক হ্রাস-বৃন্দিতে ম্বরকম্পের উৎপত্তি হয়। যেমন----

$$t=0, \left(\frac{1}{n_1-n_2}\right), \left(\frac{2}{n_1-n_2}\right), \left(\frac{3}{n_1-n_2}\right)$$
 ইত্যাদি হলে,

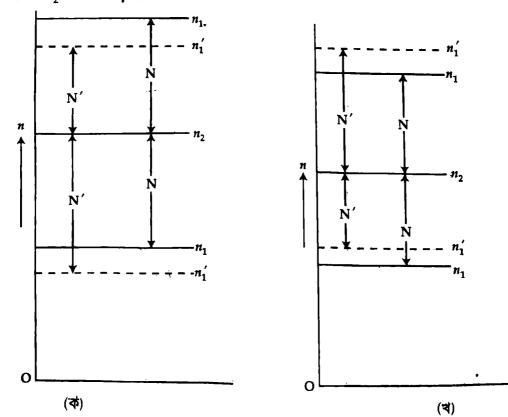
A = 2a, - 2a, 2a, - 2a ইত্যাদি হবে।

সুতরাং এসব মৃহূর্তে বিস্তার সর্বাধিক হবে এবং শব্দ সবচেয়ে জ্বোরে শোনা যেতে পারে। কেনুনা শব্দের তীব্রতা বিস্তারের বর্গের সমানুপাতিক।

আবার, $t = \frac{1}{2(n_1 - n_2)}$ $\frac{3}{2(n_1 - n_2)}$, $\frac{5}{2(n_1 - n_2)}$ ইত্যাদি হলে, A = 0 হবে। সুতরাং এসব মুহূর্তে কোন শব্দ শোনা যাবে না। অতএব দেখা যাচ্ছে যে, পর পর দুটি প্রবল শব্দ বা নিঃশব্দের মধ্যে সময়ের ব্যবধান T = $\frac{1}{(n_1 - n_2)}$ এবং এটিই শব্দের হ্রাস বা বৃষ্ণির তথা স্বরকম্পের পর্যায়কাল।

1 সেকেন্ডে স্বরকন্দের সংখ্যা বা কম্পাজ্ঞ = $\frac{1}{T}$ = $(n_1 - n_2)$ = শব্দ দুটির কম্পাজ্ঞের পার্থক্য। সাধারণভাবে লেখা যায়, N = $(n_1 - n_2)$

এ সমীকরণ অনুযায়ী বীটের একক হবে "/ সেকেন্ড" বা "সেকেন্ড–1"


বীট উৎপত্তির শর্ত ঃ

১। বীট সৃষ্টিকারী শব্দ তরজ্ঞা দুটি একই সময়ে উৎপন্ন হতে হবে।

২। তরচ্চা দুটির কম্পাজ্ঞ্ব ও তীব্রতা প্রায় সমান হতে হবে।

৩। তরচ্চা দুটির দরুন মাধ্যমের কোন একটি কণার সরণ একই রেখায় হতে হবে।

n1 জানা কম্পাজ্ঞ n2 অপেক্ষা বড় হবে।

আবার ষরকম্পের সংখ্যা কমলে অর্থাৎ N' < N হলে বা ষরকম্পের সংখ্যা পূর্বের সমান হলে অজ্ঞাত কম্পাজ্ঞ

অর্থাৎ, N = $n_2 - n_1$ বা, $n_1 = n_2 - N$

একত্রে শব্দায়িত করি এবং প্রতি সেকেন্ডের সরকম্পের সংখ্যা গণনা করি। ধরি বর্তমানে প্রতি সেকেন্ডে, সৃষ্ট স্বরকম্পের সংখ্যা N' [চিত্র ১৮ ৫]। মোম লাগাবার ফলে সুর শলাকাটির ভার বাড়বে, ফলে তার স্বাভাবিক কম্পাজ্জ কমবে। ধরি তার বর্তমান কম্পাজ্ঞ n_1' । এই পরীক্ষায় ষরকম্পের সংখ্যা বাড়লে অর্থাৎ N' > N হলে বুঝতে হবে যে, তাদের কম্পাব্জের পার্থক্য বৃদ্ধি পেয়েছে। অতএব অজ্ঞাত কম্পাজ্ঞ n_1 জানা কম্পাজ্ঞ n_2 অপেক্ষা কম হবে j

এখন অজ্ঞাত কম্পাজ্ঞ n_1 জানা কম্পাজ্ঞ n_2 অপেক্ষা বড় বা ছোট হতে পারে। এবার পরীক্ষাধীন সুর শলাকা অর্ধাৎ অজ্ঞাত কম্পাংকের সুর শলাকার গায়ে মোম লাগিয়ে শলাকা দুটিকে

আমরা পাই, N = $n_1 \sim n_2$

মনে করি প্রতি সেকেন্ডে ষরকম্পের সংখ্যা = N

স্বরকম্পের সংখ্যা গণনা করি।

 n_1 এবং n_2 । এদের পার্থক্য সামান্য। n_2 জানা কম্পার্জ্ঞ। n_1 অজ্ঞাত কম্পার্জ্ঞ। তা নির্ণয় করতে হবে। সুর শলাকা দুটিকে একই সজ্জে আঘাত করে টেবিলের উপর ধরি। স্বরকম্প সৃষ্টি হলে প্রতি সেকেণ্ডের

(১) অজ্ঞাত কম্পাজ্জ নির্ণয় : অজ্ঞাত কম্পাজ্জ নির্ণয়ের জন্য দুটি সুর শলাকা লই। তাদের কম্পাজ্জ যথাব্রমে

বাদ্যযন্ত্রাদির সুর নির্ণয় করা যায়।

শ্বরকম্পের সাহায্যে খনিতে দৃষিত বাতাসের অস্তিত্ব নির্ণয় করা যায়।

(১) ব্রন্নকম্পের সাহায্যে সুর শলাকার অজ্ঞাত কম্পাজ্ঞ নির্ণয় করা যায়।

ষরকৃদ্দের তিনটি প্রয়োগ আছে ; যথা—

Applications of beat

১৮·১১ বীট বা স্বরকম্পের প্রয়োগ

৫। তরজ্ঞা দুটির মিলিত ক্রিয়ার বিস্তার সময়ের সাথে পরিবর্তিত হবে।

পরিবর্তিত হবে।

বইঘর.কম ৪। মাধ্যমের কোন একটি কণার উপর তরজ্ঞা দুটি মিলিত হবার পর তাদের মধ্যে দশা বৈষম্য সময়ের সাথে BG IFWEL

অর্থাৎ, N = $n_1 - n_2$

বা, $n_1 = n_2 + N$

সিম্ধান্ত ঃ অজ্ঞাত কম্পান্ডেকর সুর শলাকায় ভর যুক্ত করলে যদি শ্বরকম্পের সংখ্যা বৃম্ধি পায় তবে অজ্ঞাত কম্পান্ডক জানা কম্পান্ডক অপেক্ষা ছোট হবে অর্ধাৎ জানা কম্পান্ডক বড় ও অজানা কম্পান্ডক ছোট এবং স্বরকম্পের সংখ্যা হ্রাস পেলে বা পূর্বের সমান হলে অজ্ঞাত কম্পান্ডক জানা কম্পান্ডক অপেক্ষা বড় হবে।

এভাবে ষরকম্প গণনা করে অজ্ঞাত কম্পাজ্ঞ নির্ণয় করা যায়।

পুনরায়, অজ্ঞাত কম্পাজ্জের সুর শলাকাকে ঘষে ভর কমিয়ে তাদের একত্রে শব্দায়িত করি ও প্রতি সের্কেন্ডে সৃষ্ট ষরকম্পের সংখ্যা গণনা করি। ধরি বর্তমানে সৃষ্ট ষরকম্পের সংখ্যা N' [চিত্র ১৮'৫]। সুর শলাকাটির ভর কমালে তার ষাভাবিক কম্পাজ্জ বৃন্ধি পায়। ধরি তার বর্তমান কম্পাজ্জ n_1' । ভর কমানোর ফলে যদি ষরকম্পের সংখ্যা বৃন্ধি পায় অর্থাৎ N' > N হয়, তবে অজ্ঞাত কম্পাজ্জ n_1 জানা কম্পাজ্জ n_2 অপেক্ষা বড় হবে,

অথাৎ, N = $n_1 - n_2$

$$\overline{\mathbf{n}}_1 = n_2 + \mathbf{N}$$

কিন্তু ষরকম্পের সংখ্যা কমলে অর্থাৎ, N' < N হলে অজ্ঞাত কম্পার্জ্ঞক n_1 জানা কম্পার্জ্ঞক n_2 অপেক্ষা ছোট হবে।

অর্থাৎ, N = $n_2 - n_1$

 $\overline{\mathbf{n}}, n_1 = n_2 - \mathbf{N}$

সির্ম্বান্ত : অজ্ঞাত কম্পার্জ্ঞের সুর শলাকা হালকা করলে যদি স্বরকম্পের সংখ্যা বৃদ্ধি পায় তবে অজ্ঞাত কম্পাজ্ঞ জানা কম্পাজ্ঞ অপেক্ষা বড় হবে এবং স্বরকম্পের সংখ্যা হ্রাস পেলে অথবা পূর্বের সমান থাকলে অজ্ঞাত কুম্পাজ্ঞ জানা রুম্পাজ্ঞ অপেক্ষা ছোট হবে।

্রিঃ দ্রঃ দুটি কম্পমান বস্তুর কম্পাজ্জের পার্থক্য 10-এর অধিক হলে স্বরকম্প গণনা করা সম্ভব হবে না।]

২। খনিতে দূষিত বাতাসের অস্তিত্ব নির্ণয় ঃ খনিতে দূষিত বাতাসের অস্তিত্ব নির্ণয় করতে গিয়ে দুটি অতিন প্রকৃতির অর্গান নল লই। একটি অর্গান নলে খনির বাতাস এবং অপরটিতে বিশুদ্ধ বাতাস নিয়ে নল দুটিতে একই সক্ষো শব্দ উৎপন্ন করি। খনির বাতাস বিশুদ্ধ না হলে নল দুটিতে সৃষ্ট শব্দের কম্পাল্ফের প্রভেদ থাকবে। ফলে ম্বরকম্পের সৃষ্টি হবে। কিন্তু খনির বাতাস বিশুদ্ধ হলে কম্পাল্ফের প্রভেদ থাকবে না। ফলে ম্বরকম্প শোনা যাবে না।

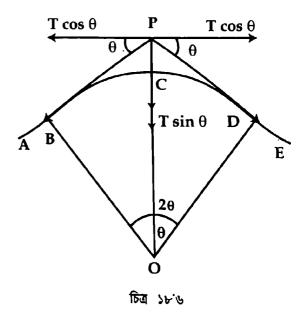
্বিস্পান্ত : স্বরকম্পের সৃষ্টি হলে বুরাতে হবে যে, খনির বাতাস দূষিত।

৩। বাদ্যযন্ত্রাদির সুর নির্ণয় ঃ দুটি বাদ্যযন্ত্রকে এক সুরে জানতে হলে তাদেরকে একই সঞ্চো বাজিয়ে ম্বরকম্পের উপস্থিতি লক্ষ করতে হয়। সুর মিললে ম্বরকম্প জার শোনা যাবে না। এমনিভাবে বীটের সাহায্যে বিভিন্ন বাদ্যযন্ত্রের সুর মিলানো এবং নির্ণয় করা যায়।

১৮•১২ বীট ও ব্যতিচারের পার্থক্য

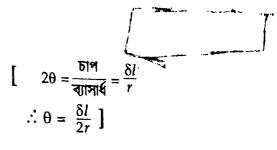
বীট	ব্যতিচার
১। সমান বা প্রায় সমান তীব্রতা এবং প্রায় সমান কম্পাজ্জবিশিষ্ট একই দিকে অগ্রগামী দুটি শব্দতরজ্ঞোর উপরিপাতনের ফলে শব্দের লম্বি প্রাবল্যের পর্যায়ক্রমিক হ্রাস-বৃদ্ধির ঘটনাকে বীট বলে।	১। সমান কম্পাজ্ঞ ও বিস্তারের দুটি শব্দ তরজ্ঞার উপরিপাতনের দরুণ নীরব বা জোরালো শব্দের সৃষ্টি হলে ঐ ঘটনাকে ব্যতিচার বলে।
২। বীটের ক্ষেত্রে কোন বিন্দুতে তরজ্ঞা দুটির মধ্যে	২। ব্যতিচারের ক্ষেত্রে কোন বিন্দুতে তরম্ভা দুটির
দশা পার্থক্য সময়ের সাথে পরিবর্তিত হয়।	মধ্যে দশা পার্থক্য সর্বদা ধ্রুব থাকে।
৩। শব্দের তীব্রতা সময়ের সাথে পরিবর্তিত হয়।	৩। শব্দের তীব্রতা সময়ের সাথে অপরিবর্তিত থাকে।
৪। লব্ধি তরজ্ঞোর কম্পাজ্ঞ বীট উৎপন্নকারী	৪। লম্বি তরজ্ঞোর কম্পাজ্ঞ ব্যতিচার উৎপন্নকারী
তরজ্ঞাদ্বয়ের গড় কম্পাজ্ঞ্জের সমান।	তরজ্ঞাদ্বয়ের উভয়েরই কম্পাজ্ঞ্বের সমান।

১৮·১৩ তারের কম্পন Vibrations of string


শব্দবিজ্ঞানে তারের কম্পন বলতে একটি সুষম, নমনীয় ও সরু তারের কম্পন বুঝায়। এই ধরনের একটি তারে আড় অথবা লম্বিক তরজ্ঞা উৎপন্ন করা যায়। একটি টানা তারের দুই প্রান্ত দৃঢ়ভাবে আবন্ধ করে দৈর্ঘ্যের সমকোণে টেনে ছেড়ে দিলে অথবা দৈর্ঘ্যের আড়াআড়ি আঘাত করলে তারে আড় কম্পন সৃষ্টি হবে। আবার, তারের দৈর্ঘ্য বরাবর ফ্লানেল অথবা রজনমাখা কাপড় দ্বারা ঘর্ষণ করলে তারে লম্বিক তরজ্ঞা সৃষ্টি হবে।

একটি টানা তারে আড় কম্পন সৃষ্টি করলে এ কম্পন তারের দুই প্রান্তের দিকে একটি নির্দিষ্ট বেগে প্রবাহিত হয় এবং উভয় প্রান্ত হতে প্রতিফলিত হয়ে ফিরে আসে। তারে সৃষ্ট নতুন তরজা এবং প্রান্ত হতে প্রতিফলিত হয়ে ফিরে আসা তরজা মিলে তারে আড় স্থির তরজ্ঞা সৃষ্টি করে যা তারের মধ্যেই সীমাবন্ধ থাকে। বিভিন্ন বাদ্যযন্ত্রে তারের এই ধরনের কম্পন কাজে লাগান হয়। সেতার, এস্রাজ, গীটার, পিয়ানো ইত্যাদি বাদ্যযন্ত্রে তারের কম্পন কাজে লাগিয়ে শ্রুতিমধুর শব্দ উৎপন্ন করা হয়।

১৮·১৪ টানা তারে আড় বা অনুপ্রস্থ তরজ্গের বৈগের রাশিমালা Equation of velocity of transverse wave in a stretched string


মনে করি T টানে টান করা একটি তার আছে। তারটির যে কোন বিন্দুতে এর দৈর্ঘ্যের অভিলম্মভাবে টেনে ছেড়ে দিলে তার বরাবর একটি আড় তরজ্ঞা সৃষ্টি হবে। এই তরজ্ঞা একটি নির্দিষ্ট বেগে তার বেয়ে চলতে থাকে। এই বেগের মান তারের একক দৈর্ঘ্যের ভর ও তারের উপর প্রযুক্ত টানের উপর নির্ভর করে।

মনে করি আড় তরক্ষা v বেগে AE তার বেয়ে বাম থেকে ডান দিকে চলছে। AE তারের বিচ্যুতি অংশের শীর্ষ BCD একটি বৃত্তচাপের আকার ধারণ করবে [চিত্র ১৮·৬]। ধরা যাক, চাপটির মধ্যবিন্দু C, চাপটির ব্যাসার্ধ r এবং চাপটি বক্রতার কেন্দ্রে 20 কোণ উৎপন্ন করেছে। তারের শীর্ষবিন্দু C-এ বৃত্তাকার গতির জন্য প্রয়োজনীয় কেন্দ্রমুখী বল তরজোর দু'প্রান্ত B এবং D-তে বিপরীতমুখী দুটি ক্রিয়াশীল টানা বল T থেকে পাওয়া যায়। এখন B ও D বিন্দুতে দুটি স্পর্শক টানা হয় এবং স্পর্শকদ্বয়কে বর্ধিত করলে এরা P বিন্দুতে মিলিত হয়। এই বিন্দুতে টান বল T-কে অনুভূমিক ও উল্লম্ব উপাংশে বিভক্ত করলে দেখা যায় যে অনুভূমিক উপাংশদ্বয়ের প্রত্যেকটির মান T cos θ ; কিন্থু এদের দিক পরস্বের বেপরীত মুখী হওয়ায় একে অপরকে

নাকচ করবে। PO বরাবর ক্রিয়াশীল প্রত্যেক উল্লম্ব উপাংশের মান T sin θ এবং এদের দিক একই হওয়ায় মোট কার্যকর বল হবে 2T sin θ।

PO বরাবর মোট কার্যকর বল = $2T \sin \theta$ θ -এর মান ক্ষুদ্র বলে $\sin \theta = \theta$ সুতরাং মোট কার্যকর বল = $2T\theta$ = $2T\frac{\delta l}{2r}$

$$= \frac{T\delta}{r}$$

(8)

BG & JEWEL

এখানে, ठা = চাপ BCD-এর দৈর্ঘা।

এই বল কেন্দ্রমুখী ত্বরণ সৃষ্টি করবে এবং কেন্দ্রমুখী ত্বরণ $f = {{\rm d} r n \over {\rm d} {\rm d}$

কেন্দ্রমুখী বল =
$$m.\frac{\delta l v^2}{r}$$
 (9)
সমীকরণ (8) ও (9) হতে পাই,
$$\frac{T \delta l}{r} = m.\frac{\delta l v^2}{r}$$

বা, $mv^2 = T$
বা, $v^2 = \frac{T}{m}$
 $v = \sqrt{\frac{T}{m}}$ (10)

এটি হল টানা তারে আড় তরজোর বেগের রাশিমালা।

১৮-১৫ টানা তারে আড় কম্পনের সূত্র প্রতিপাদন Deduction of laws of transverse vibration of a stretched string

টানা অবস্থায় দুই প্রান্ত দৃঢ়ভাবে আটকানো তারকে টানা তার বলে [চিত্র ১৮'৭]। টানা তারে আড় কম্পনের সৃষ্টি করলে তারটি ঢেউয়ের আকার ধারণ করে। তারে আড় তরজ্ঞোর বেগ দুটি শর্তের উপর নির্ভর করে—একটি তারের টান এবং অপরটি তারের একক দৈর্ঘ্যের ভর। তাত্ত্বিকভাবে এ পরীক্ষার সাহায্যে প্রমাণিত হয়েছে যে, আড় তরজ্ঞোর বেগ তারে প্রযুক্ত টানের বর্গমূলের সমানুপাতিক এবং তারের একক দৈর্ঘ্যের ভরের বর্গমূলের ব্যস্তানুপাতিক অর্থাৎ

$$v = \sqrt{\frac{T}{m}}$$
; এখানে $T = original equations of the second state of the second st$

 $n\lambda = \sqrt{\frac{T}{m}}$

আড় তরজ্ঞা প্রবাহে যখন একটি টানা তারের সমগ্র দৈর্ঘ্য একযোগে উঠা-নামা করে, অর্ধাৎ তার যখন মূলসুরে কাঁপে, তখন $\lambda = 2l$

$$n \times 2l = \sqrt{\frac{T}{m}}$$

$$\boxed{11}, \quad n = \frac{1}{2l} \sqrt{T/m}$$

বা,
$$n = \frac{k}{l} \sqrt{T/m}$$
 [এখানে, $k = \frac{1}{2} =$ ধ্রব সংখ্যা]
বা, $n \propto \frac{1}{l} \sqrt{\frac{T}{m}}$ (12)

উক্ত সমীকরণ হতে আড় তরজোর কম্পাজ্জের জন্য তিনটি সূত্র পাওয়া যায়। সূত্রগুলোকে টানা তারের আড় কম্পনের সূত্র বলে।

যদি তারের উপাদানের ঘনত্ব ho এবং ব্যাসার্ধ r হয়, তবে $m=\pi r^2
ho$; অতএব সমীকরণ (11) হতে পাই,

$$n = \frac{1}{2l} \sqrt{\frac{T}{\pi r^2 \rho}} = \frac{1}{2lr} \sqrt{\frac{T}{\pi \rho}}$$
(13)

১৮-১৬ টানা তারে আড় ক^{রচার কম} সূত্রাবলি Laws of transverse vibration of a stretched string

আমরা জানি আড় তরজা প্রবাহের ক্ষেত্রে,

$$n = \frac{1}{2l} \sqrt{\frac{\mathrm{T}}{\mathrm{m}}} = \frac{1}{2lr} \sqrt{\frac{\mathrm{T}}{\mathrm{\pi}\rho}}$$
(14)

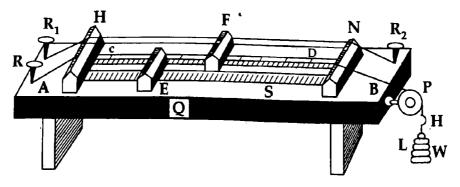
উপরের সমীকরণগুলো হতে দেখা যাচ্ছে যে, তারের আড় কম্পনের কম্পাজ্ঞ *n* মূলত তারের দৈর্ঘ্য *l*, টান T এবং প্রতি একক দৈর্ঘ্যের ভর *m*-এর উপর নির্ভর⁴করে। অতএব টানা তারের আড় কম্পনের **তিনটি সূত্র** পাওয়া যায়।

সূত্রগুলো নিম্নে বর্ণিত হল ঃ

্রি দের্ঘ্যের সূত্র : T ও m স্থির থাকলে টানা তারে আড় তরজোর কম্পাজ্ঞ তার দৈর্ঘ্যের ব্যস্তানপাতিক।

কম্পাজ্জ n এবং দৈর্ঘ্য l হলে, $n \propto \frac{1}{l}$ যখন T ও m স্থির থাকে।

(২) টানের সূত্র : 1 ও m স্থির থাকলে টানা তারে আড় তরজ্ঞার কম্পাজ্ঞ তার টানের বর্গমূলের সমানুপাতিক।


কম্পাজ্জ n এবং টান T হলে, $n \propto \sqrt{T}$; যখন l ও m স্থির থাকে।

্ (৬) উরের সূত্র ঃ T ও । স্থির থাকলে টানা তারে আড় তরজোর কম্পাক্ষ তারের একক দৈর্ঘ্যের ভরের বর্গমূলের ব্যস্তানুপাতিক।

কম্পাজ্ঞ n এবং তারের একক দৈর্ঘ্যের ভর m হলে, $n \propto \frac{1}{\sqrt{m}}$; যখন T ও l স্থির থাকে।

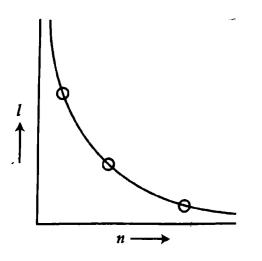
১৮-১৭ সনোমিটার Sonometer

এ যন্ত্রে প্রায় এক মিটার লম্বা একটি ফাঁপা কাঠের বাক্স Q-এর উপর পাশাপাশি দুটি তার AB ও CD থাকে [চিত্র ১৮ ৮]। এখানে AB পরীক্ষামূলক তার এবং CD সাহায্যকারী বা উপমা তার। AB তারের এক প্রান্ত একটি খুঁটি R-এর সাথে জাটকানো থাকে এবং জপর প্রান্ত একটি কপিকল P-এর উপর দিয়ে চলে গেছে। তারের এই

খ'ন হোৱা

প্রান্তের সাথে একটি হুক H যুক্ত আছে। এই হুকে ওজন W চাপিয়ে তারটিকে প্রয়োজনীয় টানে রাখা হয়। CD তারের দুই প্রান্ত দুটি খুঁটি R₁ ও R₂-এর সাথে আটকানো আছে। বাব্সের উপর একটি স্কেল এবং দুই প্রান্তের দিকে উতর তারের নিচে দুটি স্থির সেতু (Bridge) H ও N থাকে। এ স্কেলে তারের কোন অংশের দৈর্ঘ্যের পাঠ

BG & JEWEL


গ্রহণ করা হয়। AB ও CD তারের নিচে আরও দুটি সঞ্চরণশীল সেতু যথাব্রুমে E ও F আছে। প্রয়োজনবোধে E ও F সেতু দুটির অবস্থান পরিবর্তন করে তারের কম্পাজ্ঞ পরিবর্তন করা যায়।

সনোমিটারের বাক্স ফাঁপা হওয়ায় তারের কম্পনে বাক্সের সংস্পৃষ্ট ভিতরের ও বাইরের বায়ুত্তে পরবল কম্পনের সৃষ্টি হয়। এভাবে কম্পন বেশি আয়তনের বায়ুতে সঞ্চালিত,হওয়ায় তার হতে নির্গত সুরের তীব্রতা বৃদ্ধি পায়।

১৮·১৮ টানা তারের আড় কম্পনের সূত্রগুলোর প্রমাণ Verification of the laws of transverse vibration of a stretched string

দৈর্ষ্যের সূত্রের প্রমাণ ঃ দৈর্ঘ্যের সূত্রের প্রমাণের জন্য সনোমিটার যন্ত্র হতে সাহায্যকারী তার খুলে ফেলা হয়। এখন পরীক্ষণীয় তারের হুকে নির্দিষ্ট ওজন W ঝুলিয়ে ভাকে টান করে রাখা হয়।

অতঃপর একটি ছোট কাগজের টুকরাকে (V আকৃতির) উক্ত তারের উপরে স্থাপন করা হয় এবং একটি সুরেলী কাঁটাকে শব্দায়িত করে উক্ত তারের পার্শ্বে বাঞ্জের উপর স্থাপন করা হয়। এখানে একটি বিষয় লক্ষণীয় তা হল রুগাজের টুকরাটিকে সর্বদা H ও E-এর-মাঝামাঝি স্থানে স্থাপন করা। তারটির পার্শ্বে কম্পিত সুরেলী কাঁটা স্থাপন করায় তারটি কম্পিত হবে। যখন তারে অনুনাদের সৃষ্টি হয়, তখন কাগজের টুকরাটি ছিটকে পড়ে। যদি অনুনাদের সৃষ্টি না হয় তবে H সেতু স্থির রেখে E সেতুটিকে বামে অথবা ডানে সরানো হয় যতক্ষণ পর্যন্ত না কাগজের

৯'নে চত্ৰ

টুকরা ছিটকে পড়ে। পরীক্ষাকালে কন্দ্র্লিত সুরেলী কাঁটাকে উক্ত তারের পার্শ্বে স্থাপন করা হয়। অবশ্য যখন তারে অনুনাদ সৃষ্টি হয়, তখন কাগজের টুকরাটি ছিটকে পড়ে। এ অবস্থায় মিটার স্কেলের সাহায্যে H ও E-এর মধ্যবর্তী দূরত্ব মাপা হয়।

মনে করি, n₁ কম্পাঙ্কের সুরেলী কাঁটার জন্য অনুনাদী তারের দৈর্ঘ্য l₁ এবং n₂ কম্পাঙ্কের সুরেলী কাঁটার জন্য অনুনাদী তারের দৈর্ঘ্য l₂।

পরীক্ষালম্ব ফল হতে দেখা যায় যে,

$$n_1 l_1 = n_2 l_2 =$$
ধ্বক (15)
বা, $nl =$ ধ্বক
 $n \propto \frac{1}{l}$ (প্রমাণিত)।

n বনাম l লেখচিত্র একটি পরাবৃত্ত হবে [চিত্র ১৮ ৯]।

টানের সুত্রের প্রমাণ ϵ ২য় সূত্রের প্রমাণের জন্য পরীক্ষণীয় তারের পাশে সাহায্যকারী তার স্থাপন করা হয়। এখন পরীক্ষাধীন তারের দৈর্ঘ্য স্থির করে এর হুকে T_1 ওজন চাপানো হয়। এবার সাহায্যকারী তারটিকে যে কোন একটি টানে রেখে এর নিচের সঞ্চরণশীল সেতু বামে বা ডানে সরিয়ে এমন একটি দৈর্ঘ্য নির্ণয় করা হয় যা পরীক্ষাধীন তারের নির্দিষ্ট দৈর্ঘ্যের সাথে ঐকতানে থাকে। মনে করি সাহায্যকারী তারের এ দৈর্ঘ্য $=l_1$ । পুনরায় পরীক্ষাধীন তারের টান পরিবর্তন করে T_2 করা হয়, কিন্তু সাহায্যকারী তারের পূর্বের টান স্থির থাকে। পরীক্ষণীয় তারের টান (ওজন) পরিবর্তন করার সাথে সাথে এর পূর্বের কম্পাজ্জের পরিবর্তন ঘটবে। এবার পূর্বের মত বইঘর.কম সাহায্যকারী তারের নিচের সঞ্চরণশীল সেতুর স্থান পরিবর্তন করে এমন একটি দৈর্ঘ্য নির্ণয় করা হয় যা পরীক্ষণীয় তারের সাথে ঐকতানে থাকে। ধরি এ দৈর্ঘ্য = l2 । পরীক্ষালম্ব ফল হতে পাওয়া যায়,

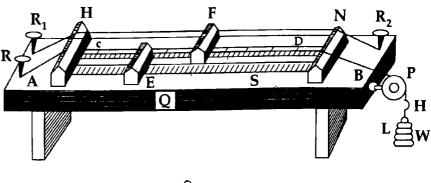
$$\frac{T_{1}}{T_{2}} = \frac{l_{2}^{2}}{l_{1}^{2}}$$

$$\boxed{Presson Presson Presso$$

n² বনাম T লেখচিত্র অঙ্জন করলে একটি মূলবিন্দুগামী সরলরেখা পাওয়া যাবে [চিত্র ১৮·১০]।

ভরের সূত্রের প্রমাণ ঃ ৩য় সূত্রের প্রমাণের জন্য $m_1 \otimes m_2$ একক দৈর্ঘ্যের ভরের দুটি পরীক্ষণীয় তার নেয়া হয়। এ সূত্র প্রমাণের জন্য সনোমিটার যন্ত্রে সাহায্যকারী তারের প্রয়োজন হয়। পরীক্ষার সময় সাহায্যকারী তারের পার্শ্বে m_1 একক দৈর্ঘ্যের ভরের তার স্থাপন করা হয় এবং উভয় তারেই টান সমান রাখা হয়। এবার পরীক্ষণীয় তারের (HE-এর মধ্যবর্তী) দৈর্ঘ্য স্থির করে সাহায্যকারী তারের (HF-এর মধ্যবর্তী) এমন একটি দৈর্ঘ্য নির্ণয় করা হয়, যাতে উভয় তারই ঐক্যতানে থাকে। ধরি সাহায্যকারী তারের এই দৈর্ঘ্য l_1 । এখন m_1 একক দৈর্ঘ্যের ভরের তার পরিবর্তন করে এর পরিবর্তে m_2 একক দৈর্ঘ্যের ভরের তার স্থাপন করা হয়। পরীক্ষণীয় তারের টান পূর্বের সমান করা হয় এবং পূর্বের দৈর্ঘ্যও স্থির রাখা হয়। এবার সাহায্যকারী তারের নিচের সঞ্চরণশীল F সেতু এদিক-ওদিক সরিয়ে এমন একটি দৈর্ঘ্য নির্ণয় করা হয়, যাতে উভয় তারই ঐকতানে থাকে। ধরি, এই দৈর্ঘ্য l_2 ।

পরীক্ষালব্ধ ফলাফল হতে পাওয়া যায়, $\frac{m_1}{m_2} = \frac{l_1^2}{l_2^2}$ কিন্তু প্রথম সূত্র হতে আমরা জানি, $\frac{l_1^2}{l_2^2} = \frac{n_2^2}{n_1^2}$ (17) $\frac{n_2^2}{n_1^2} = \frac{m_1}{m_2}$ বা, $\frac{n^2 \propto \frac{1}{m}}{n \propto \frac{1}{\sqrt{m}}}$ (প্রমাণিত) ১৮·১৯ সনোমিটারের সাহায্যে একটি সূর শলাকার অজ্ঞানা কম্পাজ্ঞ নির্ণয়


Determination of unknown frequency of a tuning fork by sonometer তত্ত্ব: সনোমিটারের সাহায্যে কোন একটি সুর শলাকার কম্পাজ্ঞ নির্ণয়ের জন্য আমরা যে সমীকরণ ব্যবহার করব তা হল $n = \frac{1}{2l} \sqrt{\frac{T}{m}}$ (11)

এখানে, n = কম্পাজ্ঞক, l = তারের কম্পমান দৈর্ঘ্য, T = Mg = তারে প্রযুক্ত টান এবং m = তারের একক দৈর্ঘ্যের ভর।

কাৰ্যপন্দ্ৰতি ঃ

একটি সুর শলাকা লই যার কম্পাজ্ঞ নির্ণয় করতে হবে। পরীক্ষার শুরুতেই পরীক্ষাধীন তারের একক দৈর্ঘ্যের ভর নির্ণয় করি। এর জন্য পরীক্ষাধীন তারের দৈর্ঘ্য ও মোট ভর বের করি। মোট ভরকে মোট দৈর্ঘ্য দ্বারা ভাগ করে তারের একক দৈর্ঘ্যের ভর নির্ণয় করি। এরপর সুর শলাকাকে একটি রাবার প্যাডে আঘাত করি এবং সনোমিটারের

বাব্সের উপর স্থাপন করি। তারপর সেতৃকে এদিক সেদিক সরিয়ে তারের কম্পমান দৈর্ঘ্যকে এমনভাবে উপযোজন করি যাতে তারের উপর স্থাপিত কাগজের টুকরা ছিটকে পড়ে। অর্থাৎ তার এবং সুর শলাকা একতানে আসে। এমতাবস্থায় দুই সেতুর মধ্যবর্তী তারের দৈর্ঘ্য বের করি, এর পর তারে প্রযুক্ত টান বের করি।

হিসাৰ ও গণনা ঃ

মনে করি, টান = T = Mg ডাইন, তারের কম্পমান দৈর্ঘ্য = l সেমি.,

তারের একক দৈর্ঘ্যের ভর = m গ্রাম।

$$\overline{\boldsymbol{\Phi}} = \frac{1}{2l} \sqrt{\frac{T}{m}}$$
$$= \frac{1}{2l} \sqrt{\frac{Mg}{m}}$$

(18)

এখন M, g, l এবং m-এর মান জেনে n নির্ণয় করা যায়।

১৮·২০ মুক্ত ও পরবশ কম্পন Free and forced vibration

একটি সুর শলাকাকে আঘাত করলে এটি নির্দিষ্ট কম্পাজ্ঞ্ব ও পর্যায়কালে কাঁপতে থাকে। এ কম্পন সুর শলাকার মুক্ত কম্পন। আবার একটি সরল দোলককে সাম্যাবস্থা থেকে টেনে ছেড়ে দিলে দোলকটি নির্দিষ্ট কম্পাজ্ঞ ও পর্যায়কালে দুলতে থাকে। এটিও মুক্ত কম্পন। সুতরাং মুক্ত কম্পনের নিম্নোক্ত সংজ্ঞা দেয়া যায়।

সংজ্ঞা : সান্দনক্ষম যে কোন বস্তুকে আন্দোলিত করলে বস্তুটি একটি নির্দিষ্ট কম্পাজ্ঞ ও পর্যায়কালে স্পন্দিত হয়। এই সান্দনকে মুক্ত কম্পন বা স্বাভাবিক (natural) কম্পন বলে। মুক্ত কম্পাজ্ঞ বস্তুর ঘনতু, আকৃতি ও স্থিতিস্থাপকতার উপর নির্ভর করে। যেমন সরল দোলকের দৈর্ঘ্য পরিবর্তন করলে এর কম্পাজ্ঞ ভিন্নতর হয়।

পরবশ কম্পন : কোন পরিবর্তনশীল বলের মান ও দিক যদি নির্দিষ্ট সময় জন্তর একই হয়, তবে এ বলকে পর্যাবৃত্ত বল এবং এ ধরনের স্পন্দনকে পর্যাবৃত্ত স্পন্দন বলে। এর্প কোন পর্যাবৃত্ত বল দ্বারা স্পন্দনক্ষম কোন বস্তুকে কম্পিত করলে বস্তুটি প্রথমে তার মুক্ত বা স্বাভাবিক কম্পাজ্ঞে স্পন্দিত হওয়ায় চেষ্ঠা করে, কিন্তু আর্স্তে আস্তে বস্তুটি পর্যাবৃত্ত বলের কম্পাজ্ঞে স্পন্দিত হতে থাকে। এ ধরনের কম্পন বস্তুটির মধ্যে বাইরে থেকে জারোপ করা হয়েছে। একে আরোপিত বা পরবশ কম্পন বলে।

সুতরাং, পরবশ কম্পন নিম্নোক্তভাবে সংজ্ঞায়িত করা যায়।

বইঘর.কম

সংজ্ঞা ঃ স্পন্দনক্ষম বস্তুর উপর আরোপিত পর্যাবৃত্ত স্পন্দনের জন্য বস্তুটি তার স্বাভাবিক কম্পাজ্ঞে কম্পিত হওয়ার পরিবর্তে যখন আরোপিত কম্পনের কম্পাজ্ঞে স্পন্দিত হতে থাকে তখন এ কম্পনকে আরোপিত বা পরবন্দ কম্পন বলে।

ব্যাখ্যা ঃ একটি সুর শলাকাকে আঘাত করে বায়ু মাধ্যমে রাখলে খুব ক্ষীণ শব্দ শোনা যাবে। কিন্তু ঐ স্পন্দিত সুর শলাকাকে একটি টেবিলের উপরে চেপে ধরলে বেশ জোরে শব্দ শোনা যাবে। এক্ষেত্রে সুর শলাকার কম্পনে টেবিলটি পরবশ কম্পনে কম্পিত হয়। এর ফলে টেবিল সংলগ্ন সমস্ত বায়ুই কম্পিত হয়। এতে অধিক পরিমাণে বায়ু কম্পিত হওয়ার ফলে শব্দের তীব্রতা বা প্রাবল্য বেড়ে যায়।

১৮.২১ অনুনাদ

Resonance

একটি কম্পমান বস্তুকে অন্য একটি বস্তুর নিকট ধরলে দ্বিতীয় বস্তুটি কাঁপতে শুরু করে একে পরবশ বলে। যদি বস্তুর ষাভাবিক পর্যায়কাল ও প্রযুক্ত বলের পর্যায়কাল ভিন্ন হয় তবে বস্তু ক্ষুদ্র বিস্তারে কাঁপবে। কিন্তু বস্তুর ষাভাবিক পর্যায়কাল ও তার উপর প্রযুক্ত বলের পর্যায়কাল সমান হলে বস্তুটি বৃহত্তর বিস্তারে কাঁপতে বাধ্য হয় এবং শব্দের প্রাবল্য বৃদ্ধি পায়। এ প্রক্রিয়াকে অনুনাদ বলে। সুতরাং, অনুনাদ পরবশ কম্পনের একটি বিশেষ অবস্থা।

সংজ্ঞা ঃ কোন বস্তুর উপর আরোপিত পর্যাবৃত্ত স্পন্দনের কম্পাজ্ঞ বস্তুটির স্বাডাবিক কম্পাজ্ঞের সমান হলে বস্তুটি সর্বোচ্চ বিস্তারে কম্পিত হয়। এ ধরনের কম্পনকে অনুনাদ বলে।

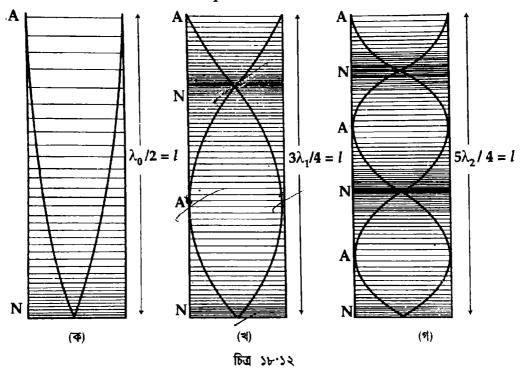
১৮·২২ বায়ুস্তন্ডের কম্পন Vibration of air column

বাঁশের বাশি, মাউথ অর্গান প্রভৃতি নলাকৃতি বাদ্যযন্ত্রে ফুঁ দিস্কে শ্রুতিমধুর শব্দ উৎপন্ন করা যায়। এটি হতে প্রমাণিত হয় যে, নলের মধ্যে আলোড়ন সৃষ্টি করলে, নলের আবন্ধ বায়ুস্তম্ড সুর সৃষ্টি করে থাকে। নলের বায়ুস্তম্ডের কম্পনকে কাজ্বে লাগিয়ে যে সব সুরবন্ত্র সৃষ্টি হয়েছে তাদেরকে দুই শ্রেণীতে বিতক্ত করা যায় ; যথা---একমুখ বন্দ্ধ নল ও দুই মুখ খোলা নল। সংক্ষেপে একমুখ বন্ধ নলকে 'বন্ধ নল' এবং দুইমুখ খোলা নলকে 'খোলা নল' বলে।

১৮·২৩ একমুখ বন্ধ নলে বায়ুস্তম্ভের কম্পন Vibration of air column Pipe closed at one end

এর্প একটি নলের একমুখ খোলা ও অপর মুখ বন্দ্ধ থাকে। এই নলের খোলা মুখে ফুঁ দিলে (অথবা একটি কম্পনরত সুর শলাকা ধরলে) নলের ভিতরের বায়ুস্তম্ভের মধ্য দিয়ে শব্দ লম্বিক তরজ্ঞাকারে বন্দ্ধ মুখের দিকে সঞ্চালিত হবে এবং বন্দ্ধ মুখ হতে (সজ্জোচন স্পন্দন সজ্জোচন স্পন্দনরূপে, প্রসারণ স্পন্দন প্রসারণ স্পন্দনরূপেই) প্রতিফলিত হয়ে খোলা মুখের দিকে অগ্রসর হবে। এই প্রতিফলিত তরজ্ঞা ফুঁ (বা সুর শলাকা) হতে সৃষ্ট আর একটি তরজ্ঞোর সাথে সুরের উৎপত্তি হবে। ফুঁ (বা সুর শলাকা)-এর মূল স্পন্দন ও বায়ুস্তম্ভের কম্পনের মধ্যে অনুনাদ হলে বায়ুস্তম্ভ সর্বাপেক্ষা বেশি আলোড়িত হবে এবং সুর জোরালো হবে।

নলের খোলা মুখের বায়ুকণাগুলো মুক্তভাবে নড়াচড়া করতে পারে। এজন্যে খোলা মুখে সর্বদাই একটি সুস্পন্দ বিন্দুর (A) সৃষ্টি হবে [চিত্র ১৮·১২]। পক্ষান্তরে নলের বন্ধ মুখ সংলগ্ন বায়ুকণার বিচলনের সুবিধা খুবই কম হেতু ঐ স্থানে একটি নিস্পন্দ বিন্দুর (N) উৎপত্তি হবে। বায়ুস্তম্ভের কম্পনডেদে নলের ভিতর কতকগুলো সুস্পন্দ ও নিস্পন্দ বিন্দুর (A ও N) সৃষ্টি হতে পারে।


বায়ুস্তম্ভের সহজতর কম্পনে [চিত্র ১৮·১২ (ক)] বা ন্যূনতম কম্পাল্ডের সুরে শুধুমাত্র বন্ধ মুখে একটি নিস্পন্দ বিন্দু এবং খোলা মুখে একটি সুস্পন্দ বিন্দু উৎপত্তি হবে। কিন্তু পরস্পর সংলগ্ন একটি নিস্পন্দ ও একটি সুস্পন বিন্দুর মধ্যবর্তী দূরত্ব তরজ্ঞা দৈর্ঘ্যের এক-চতুর্থাংশের সমান। সুতরাং নলের দৈর্ঘ্য ৷ এবং এই কম্পনে সৃষ্ট শন্দের তরজ্ঞা দৈর্ঘ্য ১০ ও কম্পাল্জ N₀ হলে, $\frac{\lambda_0}{4} = l$

$$\lambda_0 = 4l$$

(19)

এবং $N_0 = \frac{v}{\lambda_0} = \frac{v}{4l}$ এখানে, $v = শব্দের বেগ ও <math>v = n\lambda$ । নলের এই সুরই মূল সুর বা প্রথম হারমোনিক।

এই নলে পরবর্তী হারমোনিকের সুর উৎপন্নে বা আরও জোরে ফুঁ দিলে নলের বায়ুস্তম্ভে সৃষ্ট লম্বিক তরজ্ঞার দৈর্ঘ্য হ্রাস পাবে এবং বায়ুস্তম্ভের কম্পাজ্ঞ বৃদ্ধি পাবে অর্থাৎ চড়া সুর উৎপন্ন হবে। বায়ুস্তম্ভের পরবর্তী উচ্চ কম্পাজ্ঞোর সুরে বা দ্বিতীয় সম্ভাব্য কম্পনে [চিত্র ১৮'১২(খ)] খোলা মুখের সুস্পন্দ বিন্দু ও বন্ধ মুখের নিস্পন্ বিন্দুর মধ্যে একটি সুস্পন্দ বিন্দু ও একটি নিস্পন্দ বিন্দু উৎপন্ন হবে। ধরা যাক বায়ুস্তম্ভের এই কম্পনে সৃষ্ট সুরের তরজ্ঞা দৈর্ঘ্য = λ_1 এবং কম্পাজ্ঞ N_1 । তা হলে, $\frac{3\lambda_1}{A} = l$.

$$\lambda_1 = \frac{4l}{3} = \frac{\lambda_0}{3}$$
(21)

are $N_1 = \frac{v}{\lambda_1} = 3 \left(\frac{v}{4l} \right) = 3N_0 \dots$
(22)

এই সুরকে প্রথম উপসুর বলে। এই সুর মূল সুরের কম্পাচ্চের তিন গুণ বলে একে তৃতীয় হারমোনিক বলা হয়।

নলের তৃতীয় সম্ভাব্য কম্পনে [চিত্র ১৮·১২ (গ)] বা পরবর্তী হারমোনিকে বন্দ্ধ প্রান্তের নিস্পন্দ বিন্দু এবং খোলা প্রান্তের সুস্পন্দ বিন্দুর মধ্যে দুটি সুস্পন্দ বিন্দু ও দুটি নিস্পন্দ বিন্দুর উৎপত্তি হবে। কাজে কাজেই এই কম্পনে সৃষ্ট সুরের তরজ্ঞা দৈর্ঘ্য = λ_2 এবং কম্পাজ্ঞক = N₂ হলে, $\frac{5\lambda_2}{4^4} = l$

$$\lambda_2 = \frac{4l}{5} = \frac{\lambda_0}{5} \tag{23}$$

are
$$N_2 = \frac{v}{\lambda_2} = 5 \times \frac{v}{4l} = 5N_0$$
 (24)

এই সুরকে দ্বিতীয় উপসুর বা পঞ্চম হারমোনিক বলে। 🥂

উপরের সমীকরণগুলো লক্ষ করে সাধারণভাবে বলা যায় যে, একমুখ বন্ধ নলে যে সব সুর সৃষ্টি হতে পারে তাদের তরজ্ঞা দৈর্ঘ্য,

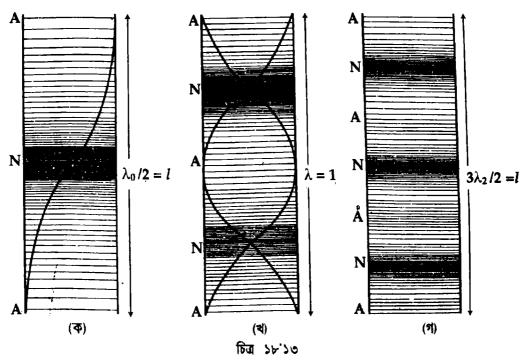
$$\lambda_n = \frac{4l}{(2n+1)} = \frac{\lambda_0}{(2n+1)}$$
(25)

(20)

বহুখর.কম
এবং কম্পাজ্ঞক,
$$N_n = \frac{v}{\lambda_n} = (2n+1) \frac{v}{4l} = (2n+1)N_0$$
 (26)
এখানে, $n = 0, 1, 2, 3$ ইত্যাদি যে কোন একটি পূর্ণ সংখ্যা।

এই সমীকরণগুলো হতে সিম্ধান্ত গ্রহণ করা যায় যে, একমুখ বন্ধ নলে শৃধুমাত্র অযুগা হারমোনিকগুলো উৎপন্ন হতে পারে অর্থাৎ দ্বিতীয়, চতুর্থ, ষষ্ঠ ইত্যাদি হারমোনিকগুলো অনুপস্থিত থাকে। অবশ্য নলের ব্যাসার্ধ r হলে র্যালের প্রান্ত সংশোধন অনুসারে একমুখ বন্ধ নলের সুরগুলোর প্রকৃত তরজ্ঞা দৈর্ঘ্য,

$$\lambda_n = \frac{4(l+0.6r)}{(2n+1)} \text{ arg and } N_n = (2n+1) \frac{v}{4(l+0.6r)}$$
(27)


যে যে কারণে শব্দের বেগ পরিবর্তিত হবে সে সব কারণে মূল সুর এবং সাথে সাথে উপসুরগুলোর কম্পাজ্ঞ পরিবর্তিত হবে। আবার নলের দৈর্ঘ্য যত ছোট হবে মূল সুর এবং সাথে সাথে উপসুরগুলোর কম্পাজ্ঞ্বও তত বৃষ্ণি পাবে।

১৮·২৪ দুই মুখ খোলা নলে বায়ুস্তন্দ্ভের কম্পন Pipe opened at both ends

এর্প একটি নলের দুইমুখ খোলা থাকে। এই নলের একমুখে ফুঁ দিলে (অথবা একটি কম্পনরত সুর শলাকা ধরলে) নলের ভিতরের বায়ুস্তম্ডের মধ্য দিয়ে একটি লম্বিক তরজ্ঞা নলের অপর প্রান্তের দিকে সঞ্চালিত হবে। নলের ভিতরের বায়ু অপেক্ষা বাইরের বায়ুর বিচলনের সুবিধা বেশি থাকায় মূল তরজ্ঞোর কিছু অংশ নলের অপর প্রান্ত হতে ফিরে আসবে। ফলে মূল তরজ্ঞা ও প্রতিফলিত তরজ্ঞা মিলে নলের বায়ুতে স্থির তরজ্ঞা সৃষ্টি করবে এবং সুরের উৎপত্তি হবে। বায়ুস্তম্ডের কম্পাজ্ঞ ফুঁ-এর (বা সুর শলাকার) কম্পাজ্ঞের সমান হলে বায়ুস্তম্ডের কম্পনে অনুনাদ হবে।

নলের দুই মুখ খোলা থাকায় এ দুই স্থানের বায়ুকণাগুলো সবচাইতে বেশি নড়াচড়া করার সুবিধা পায়। এই কারণে নলের দুই প্রান্তে সর্বদাই দুটি সুস্পন্দ বিন্দু (A, A) সৃষ্টি হবে [চিত্র ১৮·১৩]। বায়ুস্তচ্ছের কম্পনভেদে নলে এক বা একাধিক নিস্পন্দ বিন্দু (N) সৃষ্টি হতে পারে।

বায়ুস্তম্ভের সহজতম কম্পনে [চিত্র ১৮·১৩ (ক)] বা ন্যূনতম কম্পাল্ডেক কম্পনের ক্ষেত্রে নলের দুই মুখের দুটি সুস্পন্দ বিন্দুর (A, A) মাঝে একটি নিস্পন্দ বিন্দু (N) থাকবে। কাজেই নলের দৈর্ঘ্য l হলে এই দৈর্ঘ্য সৃষ্ট

৫২৩

শব্দের তরজা দৈর্ঘ্যের অর্ধেকের সমান হবে। সৃষ্ট শব্দের তরজা দৈর্ঘ্য λ_0 এবং কম্পাজ্ক N $_0$ হলে, $rac{\lambda_0}{2}=l$

$$\lambda_0 = 2l \tag{28}$$

এবং
$$N_0 = \frac{v}{\lambda_0} = \frac{v}{2I}$$
 (29)

<u>দিতীয় সম্ভাব্য ক্রম্পনে</u> অর্থাৎ ফুঁ পূর্বাপেক্ষা সুবিধামত জোরালো বা তীক্ষতা সম্পন্ন হলে মোট তিনটি সুস্পন্

তৃতীয় সম্ভাব্য কম্পনে [চিত্র ১৮·১৩ (গ)] বা পরবর্তী হারমোনিকে নলে মোট চারিটি সুস্পন্দ বিন্দু এবং তিনটি

নিস্পন্দ বিন্দু থাকবে। এক্ষেত্রে বায়ুস্তম্ভ হতে নিঃসৃত সুরের তরজ্ঞা দৈর্ঘ্য λ_2 এবং কম্পাজ্ঞ N_2 হলে, 3 $rac{\lambda_2}{2}=l$

সাধারণভাবে উল্লেখ করা যায় যে, দুইমুখ খোলা নলে যে সব সুর উৎপন্ন হতে পারে তাদের তরজ্ঞা দৈর্ঘ্য,

 $\lambda_n = \frac{2(l+1)2r}{(n+1)}$ এবং $N_n = \frac{(n+1)v}{2(l+1)2r}$, কেননা নলের উভয় মুখের সুস্পন্দ বিন্দু খোলামুখে না হয়ে 0.6r দূরত্ব

সুমধুর সুর সৃষ্টির উদ্দেশ্যে আমরা কতকগুলো যন্ত্র ব্যবহার করে থাকি। এদের নাম বাদ্যযন্ত্র। বাদ্যযন্ত্রগুলোকে

(30)

(31)

(32)

(33)

(34)

(35)

$$\lambda_0 = 21$$

বিন্দু এবং দুটি নিস্পন্দ বিন্দু দেখা দিবে [চিত্র ১৮.১৩ (খ)]। এ স্বলে সৃষ্ট তরজ্ঞা দৈর্ঘ্য λ_1 এবং কম্পাজ্ঞ N_1 হলে,

$$\lambda_0 = 21$$

$$-\sqrt{1}\sqrt{1}-\frac{1}{\lambda_0}=\frac{1}{21}$$

$$4N(1N_0) = \frac{1}{\lambda_0} = \frac{1}{21}$$

$$\lambda_0 21$$

$$44(N_0 = \frac{1}{\lambda_0} = \frac{1}{27}$$

$$148 \quad N_0 = \frac{1}{\lambda_0} = \frac{1}{21}$$

$$4\sqrt{10_0} = \frac{1}{\lambda_0} = \frac{1}{21}$$

$$\Delta n \langle 1 n_0 \rangle = \frac{1}{\lambda_0} = \frac{1}{21}$$

$$\lambda_0 = 21$$

$$\lambda_0 = 21$$

$$\lambda_0 = 21$$

$$44(10_0 = \frac{1}{\lambda_0} = \frac{1}{21}$$

$$\operatorname{PR} \mathbf{N}_0 = \frac{v}{\lambda_0} = \frac{v}{2I}$$

$$N_0 = \frac{v}{\lambda_0} = \frac{v}{2I}$$

 $\lambda_1 = l = \frac{1}{2}(2l) = \frac{\lambda_0}{2}$

 $\lambda_2 = \frac{2l}{3} = \frac{\lambda_0}{3}$

 $\lambda_n = \frac{2l}{(n+1)} = \frac{\lambda_0}{(n+1)}$

মোট চার ভাগে ডাগ করা হয়েছে।

বাইরে হবে।

ን ሥ · ২ ሮ

এবং $N_2 = \frac{v}{\lambda_2} = 3\left(\frac{v}{2l}\right) = 3N_0$

এই সুর তৃতীয় হারমোনিক বা দিতীয় উপসুর।

এবং কম্পাজ্ঞ্ব, $N_n = \frac{v}{\lambda_n} = (n+1)\frac{v}{2l} = (n+1)N_0$

n = 0 , 1 , 2 , 3 ইত্যাদি যে কোন একটি পূর্ণ সংখ্যা।

নলের ব্যাসার্ধ r হলে র্যালের প্রান্ত সংশোধন অনুসারে

কয়েকটি বাদ্যযন্ত্র

এবং $N_1 = \frac{v}{\lambda_1} = \frac{v}{l} = 2\left(\frac{v}{2l}\right) = 2N_0$

এই সুর দ্বিতীয় হারমোনিক বা প্রথম উপসুর।

তারের যন্ত্র, যেমন একতারা, দোতারা, সেতার, গিটার, সারিন্দা ইড্যাদি।

সুতরাং, দুইমুখ খোলা নলে যুগা ও অযুগা সকল প্রকার হারমোনিক পাওয়া যেতে পারে।

- ২. বায়ুচালিত যন্ত্র, যেমন বাঁশি, হারমোনিয়াম ইত্যাদি। ৩. পদার্থ সংযুক্ত যন্ত্র, যেমন তবলা, ঢোল ইত্যাদি। ৪. বিদ্যুৎচালিত যন্ত্র, যেমন টেপরেকর্ডার।

Some musical instruments

গিটার ঃ এটি কাঠের তৈরি একটি ফাঁপা বাক্স। বাক্সের নিচের প্রান্তে কয়েকটি হুকের সাথে কয়েকটি সরু ধাতব তারের এক প্রান্ত যুক্ত থাকে। তারের অপর প্রান্তগুলো কাঠের বাব্সের উপরের প্রান্ত ছিদ্রপথে স্থাপিত কতকগুলো কিল্ক বা খিল-এর সাথে আটকানো থাকে। যন্ত্রের নিচের অংশের তারগুলোর নিচে কতকগুলো সেতৃ থাকে যাতে তারগুলো যন্ত্রের গা স্পর্শ না করে।

গিটার বাদক কিল্ক বা খিলগুলোর সাহায্যে তারগুলোকে টানা অবস্থায় রাখে। গিটার বাদক জাজ্ঞালের মাথায় কয়েকটি ধাতব টুপি পরিধান করে তারগুলোতে কম্পন সৃষ্টি করে এবং অপর হাতের আজ্ঞাল দ্বারা তারগুলো পর্যায়ব্রুমে বাব্সের গায়ে চেপে ধরে সুমধুর সুর উৎপন্ন করে।

বাঁশি : এটি বাঁশের তৈরি দুই মুখ খোলা নন। বাঁশির গায়ে গোলাকার কতকগুলো ছিদ্র থাকে। কোন বাঁশির এক প্রান্তে কাঠের তৈরি একটি ছিপি এমনভাবে লাগানো হয় যাতে ছিপি এবং বাঁশির গায়ের মধ্যে যৎসামান্য বায়ু সঞ্চালনের পথ থাকে। আবার এক প্রকারের বাঁশি আছে যার দু মুখই খোলা। শুধু বাঁশির গায়ে কয়েকটি গোলাকার ছিদ্র থাকে।

বংশীবাদক বাঁশিতে ফু দেয় এবং তার হাতের আজ্ঞালগুলোর দারা ছিদ্রপথে নিক্ষাশিত বাতাসের প্রবাহকে নিয়ন্ত্রণ করে মনোমুগ্ধকর সুর সৃষ্টি করে। বাঁশের বাঁশি ছাড়াও ধাতব নির্মিত কতকগুলো বাঁশির সাহায্যেও সুমধুর সুর সৃষ্টি করা হয়।

তবলা ঃ তবলা কাঠের বা মাটির তৈরি একমুখ খোলা একটি ফাঁপা পাত্র। খোলা মুখ ট্যানিং করা চামড়া দারা বন্দ্র থাকে। তবলা বাদক আজুল এবং হাতের কজি দ্বারা চামড়া পর্দায় আঘাত করে সুমধুর সুর উৎপন্ন করে।

ঢোল ঃ ঢোল কাঠের তৈরি দুই মুখ খোলা একটি মোটা চোঙাকৃতি আধার। এর খোলা মুখ দুটি ট্যানিং করা চামড়া দ্বারা বন্দ্ধ করা থাকে।

ঢোল বাদক এক হাতে একটি শক্ত স্টিক নিয়ে ঢোলের এক প্রান্তের পর্দায় আঘাতে শব্দ উৎপন্ন করে এবং অপর হাতে আচ্চালগুলো দিয়ে ঢোলের অপর প্রান্তের চামড়ার পর্দায় নিয়ন্ত্রিতভাবে আঘাত করে সুমধুর সুর উৎপন্ন করে।

অর্গান নল (Organ Pipe) ঃ নলাকৃতি বাদ্যযন্ত্রের মধ্যে অর্গান নল অন্যতম। এই নলে সুর উৎপাদনের ক্ষেত্রে দুই মুখ খোলা ও একমুখ বন্ধ নলের সুর উৎপাদনের নীতি অনুসরণ করা হয়। ১৮·১৪ নং চিত্রে একটি অর্গান নলের বিভিন্ন অংশ দেখান হয়েছে।

এই নলের IO একটি কাঠ বা ধাতু নির্মিত গোল বা চতুক্ষোণাকৃতি নল, P একটি ফলক এবং D একটি ধারাল পাত। পাত D-কে 'লিপ' (Lip) বলা হয়। এই নলের একমুখ I খুবই সরু এবং অপরমুখ O খোলা বা বন্ধ থাকে। মুখ O খোলা থাকলে তা দুই মুখ খোলা নলের ন্যায় এবং বন্ধ থাকলে একমুখ বন্ধ নলের ন্যায় ক্রিয়া করে।

নলের I মুখ দিয়ে বায়ু প্রবাহিত করলে ঐ প্রবাহ P ফলক দ্বারা বাধাপ্রাশ্ত হয় এবং P-এর পাশ ঘেষে সরুপথ দিয়ে যাবার সময় D-এর দুই পাশে পর্যায়ক্তমে আঘাত করে। এভাবে বায়ু প্রবাহে একটি আবর্তের সৃষ্টি হয় অর্থাৎ নলের বায়ু স্তম্ভে একটি কম্পনের সৃষ্টি করে। নলের বায়ুস্তম্ভের মুক্ত বা স্বাধীন কম্পাজ্জ (যা তার দৈর্ঘ্য ও শব্দের বেগের উপর নির্ভর করে) প্রতি সেকেন্ডে সৃষ্ট আবর্তের সংখ্যার সমান হলে, বায়ুস্তম্ভের কম্পন সবচেয়ে জোরালো হয় এবং এতে একটি সুর উৎপন্ন হয়।

। **৪**৫ খন চের

একটি অর্গান নলে এর্প অনেকগুলো নল যুক্ত থাকে। এই নলগুলো হতে বিভিন্ন সুর ও উপসুর নিঃসৃত হয়। টেপ রেকর্ডার (Tape recorder) ঃ এটি একটি বৈদ্যুতিক যন্ত্র। এর সাহায্যে গান-বাজনা, মানুষের বক্তৃতা ইত্যাদি রেকর্ড করে রাখা হয় এবং প্রয়োজন অনুসারে পুনরুৎপাদন করা যায়। টেপ রেকর্ডারে চৌম্মক পদার্থের বল্বে দেওয়া এক ধরনের প্লাস্টিকের ফিতা থাকে। টেপ রেকর্ডার যন্ত্রে দুটি স্পুল থাকে এবং স্পুলের মাঝখানে দুটি রিং আকৃতির তড়িৎ চুম্মক থাকে। তড়িৎ চুম্মকের মেরুদ্বয়ের ফাঁক দিয়ে চৌম্মক ফিতা, একটি বৈদ্যুতিক মোটরের

শব্দ

BG & JEWEL

সাহায্যে এক স্পুল থেকে অন্য স্পুলে অনায়াসে যাঁতায়াঁত করতে পারে। চুম্বক দুটির একটিকে রেকর্ডিং হেড (Recording head) এবং আরেকটিকে প্লে ব্যাক হেড (Playback head) বলে। মাইক্রোফোনের সামনে শঙ্গ উচ্চারিত হলে শব্দের প্রকৃতি অনুসারে পরিবর্তনশীল তড়িৎ প্রবাহের সৃষ্টি হয়। এই পরিবর্তনশীল তড়িৎ প্রবাহ তড়িৎ চুম্বকের কুঙলীতে প্রেরণ করা হয়। পরিবর্তনশীল তড়িৎ প্রবাহের কারণে চৌম্বক ক্ষেত্রের ক্ষেত্ররেখার পরিবর্তন ঘটে। এখন চৌম্বক ফিতা এ রেকর্ডিং হেডের ফাঁক দিয়ে যাওয়ার সময় ক্ষেত্ররেখার পরিবর্তন অনুযায়ী চুম্বকিত হয়। ফলে ফিতাটির উপর শব্দের চৌম্বক প্রতিলিপি মুদ্রিত হয়। এই শব্দ পুনরুৎপাদনের জন্য প্রেবর্তন অনুযায়ী চুম্বকিত হয়। থেব্যাক হেডের মধ্য দিয়ে চৌম্বক ফিতাটি যাওয়ার সময় ফিতার চৌম্বক ক্ষেত্রের পরিবর্তনের প্রভাবে হেডের কুঙলীতে পরিবর্তনশীল তড়িৎ প্রবাহ সৃষ্টি করে। এই তড়িৎ প্রবাহ অ্যামপ্রিফায়ারের সাহায্যে বহুগুণে বিবর্ধিত করে লাউড স্পীকারে প্রেরিত হয়। লাউড স্পীকার পরিবর্তনশীল তড়িৎ প্রবাহ শব্দ তরজো রূপান্তরিত করে এবং আমরা সেই শব্দ শুনতে পাই।

১৮·২৬ সুরবিরাম বা সুরানুপাত Musical interval

দুটি সুরের কম্পাঙ্কের অনুপাত একটি পূর্ণসংখ্যা হলে এদের মিলিত প্রভাবে শ্রুতিমধুর শব্দের উৎপন্তি হয় এবং এদের তীক্ষতার পার্থক্য তালভাবে বুঝা যায়। <u>এই কারণে **দুটি সুরের কম্পাঙ্কের অনুপাতকে সুরবিরাম বা** <u>সুরানুপাত বলে</u>। উদাহরণস্বরূপ ধরা যাক n_1 , n_2 ও n_3 তিনটি সুরের কম্পাঙ্ক। তাহলে দ্বিতীয় সুরের সাপেক্ষে প্রথম সুরের সুরবিরাম = $\frac{n_1}{n_2}$ । আবার তৃতীয়টির সাপেক্ষে দ্বিতীয় সুরের সুরবিরাম = $\frac{n_2}{n_3}$ ।</u>

সুতরাং, তৃতীয়টির সাপেক্ষে প্রথমটির সুরবিরাম = $\frac{n_1}{n_3} = \frac{n_1}{n_2} \times \frac{n_2}{n_3}$

অতএব দেখা যাচ্ছে যে, যে কোন দুটি শন্দের সুরের সুরবিরাম এদের মধ্যবর্তী সুরবিরামগুলোর গুণফলের সমান।

হারমোনিয়াম বা পিয়ানোতে কতগুলো চাবি আছে, যাদের প্রত্যেকের একটি করে নির্দিষ্ট কম্পাক্ষ থাকে। এই কম্পাক্ষগুলোর সুরবিরামের মধ্যে এমন একটা সামঞ্জস্য থাকে যে এদেরকে বাজালে কতগুলো নির্দিষ্ট কম্পাক্ষের সুর বের হয় এবং সুরগুলো মিলে ষরের উৎপন্তি হয় যা কণ্ঠষরের উপযোগী হয়।

বিভিন্ন'সুরবিরামের বিভিন্ন নামকরণ করা হয়। নিচের সারণিতে এদের নাম উল্লেখ করা হল ঃ

সুরবিশ্লাম	নাম	সুরবিরাম	নাম
	সমায়ন (Unision)	5:3	গুরু ষষ্ঠক (Major sixth)
<u>2:1</u>	অফ্টক (Octave)	8:5	লঘু ষষ্ঠক (Minor sixth)
3:2	পঞ্চক (Fifth)	9:8	গুরু সুর (Major tone)
<u>4:3</u>	চতুর্থক (Fourth)	10:9	লঘু সুর (Minor tone)
5:4	গুরু তিস্ত্রক (Major third)	16:15	\জধ সূর (Semi-tone)
6.5	লযু তিস্ত্রক (Minor third)		

সম-সম্ভাতি ও বিষম-সম্ভাতি (Concord or consonance and discord or desonance) ঃ দুই বা ততোধিক সুরের মিলিড ক্রিয়ায় তৃতীয় একটি সুরযুক্ত শব্দ উৎপত্তি হলে এরুপ সমৰয়কে সম-সম্ভাতি বলে। দুই বা ততোধিক সুরের ক্রিয়ায় একটি সুরবর্জিত শব্দ উৎপন্ন হলে এ সমৰয়কে বিষম-সম্ভাতি বলে।

বইঘর.কম

দুটি সুরের কম্পাজ্জের অনুপাত একটি পূর্ণ সংখ্যা 1, 2, 3 ইত্যাদি হলে এবং সুঁর দুটি একই সময় ধ্বনিত হলে একটি সুরযুক্ত শব্দের উৎপত্তি হবে। সুতরাং, এরূপ দুটি সুরের সমন্বয়ই সম-সজ্ঞাতি।

এক-অন্টক (One-octave) : কোন একটি সুরের কম্পাজ্ঞ অপর একটি সুরের কম্পাজ্জর দ্বিগুণ হলে প্রথমটির কম্পাজ্ঞ দ্বিতীয়টির এক-অন্টক বলা হয়। বিপরীতক্রমে দ্বিতীয়টির কম্পাজ্ঞ প্রথমটির এক-অন্টক লিচে বলা হয়। কোন একটি অন্টকের অন্তর্গত আটটি সম-সঙ্গাতিপূর্ণ সুরকে সুরান্টক বলে।

১৮·২৭ স্বর-গ্রাম

Musical scale

শ্বর-গ্রাম বলতে নির্দিষ্ট কম্পাঞ্জের কতকগুলো সাজানো সুর বুঝায়। যে সব সুর আমাদের কানে সহজে সাড়া দেয় এবং কণ্ঠস্বরের উপযোগী হয় স্বর-গ্রামে ঐ সব সুরকে ঢেলে সাজানো হয়। পরীক্ষায় দেখা যায় যে, কোন নির্দিষ্ট সুর ও তার দ্বিগুণ কম্পাজ্জবিশিষ্ট অপর একটি সুরের মধ্যে প্রথম সুরের কম্পাজ্জ জনুযায়ী, বিভিন্ন কম্পাজ্জের কতকগুলো সুর সন্নিবেশ করলে সমসংগতি বজায় থাকে। এরূপ সমসজ্ঞাতিপূর্ণ কতকগুলো সুরের সমষ্টিকে স্বর-গ্রাম বলে। সর্বাপেক্ষা কম কম্পাজ্জের সূচনা সুরকে টোনিক (tonic or key tone) বলে।

হারমোনিয়াম ও পিয়ানোতে কতকগুলো চাবি এবং বাঁশিতে কতকগুলো ছিদ্র আছে। এ চাবি বা ছিদ্রগুলো একটি নির্দিষ্ট ষরগ্রামে সাজানো থাকে। বেহালায় হাতের কায়দায় তারের বিভিন্ন স্থানে আজ্ঞ্যল চেপে সুরযুক্ত শব্দ সৃষ্টি করা হয়। সেতার ও এস্রাজে কতকগুলো ঘাট থাকে যাদের সাহায্যে ইচ্ছেমত ষর-গ্রামের সুরগুলোর সুরবিভেদ পরিবর্তন করা যায়।

১৮·২৮ ডায়াটোনিক স্বরগ্রাম Diatonic scale

একটি বিশেষ সুর ও এর এক অন্টক উপরের সুরের মধ্যে সম-সঞ্চাতিপূর্ণ বিভিন্ন কম্পাজ্জের জারও ছয়টি সুর সন্নিবেশ করে যে ষর গ্রাম প্রস্তুত করা হয় তাকে **ডায়াটোনিক স্বরগ্রাম** বলে। সাধারণত সূচনা সুরের কম্পাজ্জ 256 গণ্য করা হয়। সুরগুলোর বাংলাদেশী ও পান্চাত্য নাম, প্রতীক, সুরবিরাম, আপেক্ষিক কম্পাজ্জ প্রভৃতি নিচে দেয়া হল।

সুর	টোনিব			উপস	র			অঊক
বাংলাদেশী	সা	রে	গা	মা	পা	ধা	, নি	সাঁ
পান্চাত্য (ইংরেজি) নাম	do	re	mi	. fa	sol	la	Ti	do
পান্চাত্য (ইংরেঞ্চি) প্রতীক	C	D	Е	F	G	Α	В	с
ঁসুরের কম্পাঙ্ক (Hz)	256	288	320	341.33	384	426 ⁻ 66	480	512
আপেক্ষিক কম্পাজ্জ	24	27	30	32	36	40	45	-48
(পূর্ণ সংখ্যায়)								
টোনিকের সাপেক্ষে	1	<u>9</u> 8.	<u>5</u> 4	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{15}{8}$	2
(সুরবিরাম)		8.	4	3	2	3	8	
পর পর দুটি সুরের সুর বিরাম		$\frac{9}{8}$	<u>10</u> 9	$\frac{16}{17}$	$\frac{9}{2}$	<u>10</u>	<u>9</u>	<u>16</u>
		8	9	15	8	9	8	15

ডায়াটোনিক ষরগ্রামের সুরগুলোর বাংলাদেশী নাম অনুসারে 'সা'-ই এই সুরাফ্টকের টোনিক। সুরবিরাম অনুসারে <u>রেঃ সা, পাঃ মাও নিঃ ধাগুরু স্কুর</u>্গাঃ রেও ধাঃ পা লঘু এবং সাঃ নিও মাঃ গা অর্ধসুর। গুরু সুরগুলোকে <u>কোন কোন ক্ষেত্রে প্রধান ডায়াটোনিক ষরগ্রাম ব</u>লে। উচ্চ মাধ্যমিক পদার্থবিজ্ঞান

BG & JEWEL

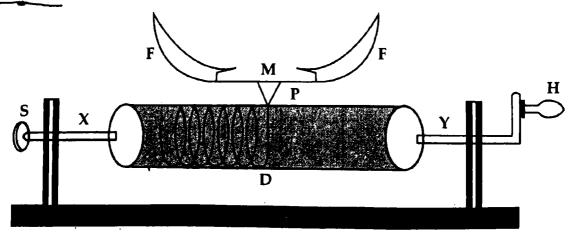
১৮·২৯ সংগীতে কয়েকটি ব্যবহারিক শব্দ Some words used in music

সজ্জীতে নিম্নলিখিত শব্দগুলোর বহুল প্রচলন দেখা যায় ঃ

ত্রিয়ী (Triad) : তিনটি শব্দের কম্পার্জের অনুপাত 4:5:6 হলে তাদের সমন্বয়ে যে সুরযুক্ত শব্দের উৎপত্তি হয় তাক্রে ত্রায়ী বলে। সা : গা : গা = 256 320 : 384 = 4:5:6 এবং মা : ধা : সা = 341 33 426.66 : 512 = 4:5 6; কাজেই 256, 320 ও 384 কম্পার্জ্ক এবং 341 33, 426.66 ও 512 কম্পার্জ্কবিশিষ্ট সুরের সমন্বয়ে উৎপন্ন শব্দ ত্র্য়ী।

প্রিম্বর-সঞ্চাতি (Chord) ঃ চারটি শব্দের কম্পাজ্জের অনুপাত 4:5:6:8 হলে তাদের সমন্বয়ে এক প্রকার শ্রতিমধুর শব্দের উৎপত্তি হয়। এর্প সমন্বয়কে স্বর-সঞ্চাতি বা সমসংগতি বলে। সূতরাং ত্রয়ী ও ত্রয়ীর নিম্নতম কম্পাজ্জের দ্বিগুণ কম্পাজ্জবিশিষ্ট শব্দের সমন্বয় স্বর-সঞ্চাতি। কিন্তু সমন্বয় যদি শ্রতিমধুর না হয় অর্থাৎ শ্রতিকটু হয় তবে এ সমন্বয়কে বিষম সঞ্চাতি বলে।

(৩) সমতান বা হারমোনি (Harmony) ঃ একই সময় কতকগুলো শব্দ উৎপন্ন হলে যদি তাদের মধ্যে একটি ঐকতানের সৃষ্টি হঁয় তবে তাকে সমতান বলে।


(8) স্বরমাধুর্য বা মেলডি (Melody) ঃ কতকগুলো শব্দ একের পর এক উৎপন্ন হয়ে যদি একটি সুরযুক্ত শব্দের্ সৃষ্টি করে তবে তাকে মেলডি বলে।

🗶 সলো (Solo) : একটি মাত্র বাদ্যযন্ত্র হতে যে ষর সৃষ্টি হয় তাকে সলো বা একক সজ্জীত বলে। একটি বেহালা বা পিয়ানো হতে উৎপন্ন ষরই সলো।

সমতান মেলডি উভয়ই উৎপন্ন করে তখন তাকে অর্কেস্ট্রা বলে।

১৮-৩০ ফনোগ্রাফ Phonograph

ট্রমাস আলতা এডিসন (Thomas Alva Edison) 1878 খ্রিস্টাব্দে শব্দ গ্রহণ ও পুনরুৎপাদনের জন্য এই যন্ত্রটি উদ্ভাবন করেন। এর বর্ণনা নিচে দেওয়া হল।

চিত্র ১৮.১৫

এই যন্ত্রে একটি হর্ণ (F, F) কাচ বা অদ্রের পাতলা পর্দা M দ্বারা বন্দ্ধ থাকে [চিত্র ১৮-১৬]। পর্দাটির সাথে একটি পিন অভিলম্বভাবে লাগান আছে। শব্দ গ্রহণের সময় মোমের প্রলেপযুক্ত একটি দ্রাম D-এর উপর এই পিনটি স্থাপন করা হয়। এই দ্রামটিকে এর অক্ষ XY-এর চতুর্দিকে একটি হাতল H-এর সাহায্যে ঘুরান যায়। ঘূর্ণনকালে একটি স্কু S-এর সাহায্যে এটাকে পার্শ্বের দিকে সরান হয়। এতে ব্রুমে ব্রুমে দ্রামের বিভিন্ন জংশ পিনের নিচে আসে।

৫২৮

৫২৯

শব্দ

বইঘর.কম

হর্ণের মুখে কথা বললে অথবা যে শন্দের রেকর্ড নিতে হবে তা উচ্চারিত হলে পর্দা M-এ কম্পন সৃষ্টি হয় এবং এতে পিনটি উঠা-নামা করে। এই অবস্থায় ড্রামটিকে অনবরত ঘুরিয়ে স্কু-এর সাহায্যে পার্শ্বের দিকে সরাতে থাকলে পিনটি ড্রামের উপরকার মোমের পর্দায়, কম্পনের তারতম্য অনুসারে বিভিন্ন গভীরতায় দাগ কেটে চলে এবং শন্দের হুবহু ছাপ তৈরি করে। একে রেকর্ড বলে।

শব্দের পুনরুৎপাদনের ক্ষেত্রে গৃহীত রেকর্ডের উপরকার দাগের গোড়ায় একটি পিন বসিয়ে দ্রামটিকে ঠিক আগের মত ঘুরাতে হয়। এতে পিনটি দাগের উপর দিয়ে চলার সময় দাগের গভীরতা অনুসারে উঠা-নামা করতে থাকে এবং পর্দায় গৃহীত শব্দের অনুরূপ কম্পন সৃষ্টি করে। পর্দার এই কম্পনে রেকর্ডের সময় যের্প শব্দ হয়েছিল মোটামুটি তারই পুনরুৎপাদন ঘটে।

ব্যবহার অসুবিধা ঃ ১। মোমের উপর শব্দের রেকর্ড আপনা-আপনি ও পিনের ক্রিয়ায় ধীরে ধীরে নফ্ট হয়ে যায়। (২) রেকর্ড হতে যে শব্দ পাওয়া যায় তা মূল শব্দ হতে খানিকটা বিকৃত হয়।

১৮·৩১ গ্রামোফোন Gramophone

<u>এটি এক প্রকার উন্নত ধরনের ফনোগ্রাফ</u>। ফনোগ্রাফের দ্রামের পরিবর্তে গ্রামোফোনের শেলাক, তেপাল প্রভৃতি শক্ত পদার্থের চাকতি ব্যবহৃত হয়। ফনোগ্রাফ দ্রামটিকে হাত বা বৈদ্যুতিক মোটরের সাহায্যে ঘুরানো হয়, কিন্তু গ্রামোফোনে চাকতিটিকে স্প্রিং-এর সাহায্যে ঘুরানো হয়। শেলাক, তেপাল প্রভৃতি ফনোগ্রাফের দ্রামের উপরকার মোমের মত সহজে নন্ট হয় না। এ ছাড়া শব্দের রেকর্ড চাকতির কিনারা হতে কেন্দ্র পর্যন্ত বিস্তৃত হয় এবং পিন সমান গভীরতায় আঁকা-বাঁকা দাগ কেটে যায়। দাগের গভীরতা সমান থাকায় শব্দের পুনরুৎপাদনে পিন রেকর্ডের আঁকা-বাঁকা রেখার উপর দিয়ে উপরে-নিচে উঠা-নামা করে অতি সহজে ইততস্ত কাঁপে এবং এতে রেকর্ড ভাল থাকে।

স্মরণিকা

সুর : একটি মাত্র কম্পার্জ্ঞবিশিষ্ট শব্দকে সুর বলে।

স্বর 🖁 একাধিক কম্পাজ্ঞ্চবিশিষ্ট শব্দকে ষর বলে।

মূল সুর ও উপসুর : কোন ষর যে সব সুরের মিশ্রণে উৎপন্ন হয় তাদের মধ্যকার ন্যনতম কম্পাব্র্জের সুরকে মূল সুর বলে। মূল সুর ছাড়া অন্য সকল সুর যার কম্পাব্রু মূল সুরের কম্পাব্র্জের চেয়ে বেশি তাদেরকে উপসুর বলে।

সমমেল বা হারমোনিক : উপসুরগুলোর কম্পাজ্ঞ মূল সুরের কম্পাজ্ঞের সরল গুণিতক হলে তাদেরকে সমমেল বা হারমোনিক বলে।

সুরযুক্ত বা সুশ্রাব্য শব্দ ও সুরবর্জিত শব্দ বা কোলাহল ঃ উৎসের কম্পন নিয়মিত বা পর্যাবৃত্ত হলে যে শব্দের সৃষ্টি হয় তাকে সুরযুক্ত বা সুশ্রাব্য শব্দ বলে। উৎসের কম্পন অনিয়মিত বা অপর্যাবৃত্ত হলে নিঃসৃত শব্দকে সুরবর্জিত শব্দ বা কোলাহল বলে।

শব্দোচ্চতা ঃ যে বৈশিষ্ট্য দ্বারা একটি শব্দ অন্য একটি শব্দ হতে কত বেশি জোরালো তা বুঝা যায় তাকে শব্দের শব্দোচতা বলে।

শব্দের তীব্রতা বা প্রাবল্য : শব্দের গতিপথে লম্বভাবে অবস্থিত কোন বিন্দুর চারপাশে একক ক্ষেত্রফলের মধ্য দিয়ে যে পরিমাণ শব্ধি প্রতি সেকেন্ডে প্রবাহিত হয় তাকে শব্দের তীব্রতা বা প্রাবল্য বলে।

তীক্ষতা ঃ শব্দের যে বৈশিষ্ট্য দ্বারা কোন্ সুর চড়া ও কোন্ সুর মোটা তা বুঝা যায় তাকে তীক্ষতা বলে।

জ্ঞাতি বা গুণ ঃ যে বৈশিষ্ট্য দ্বারা দুটি ভিন্ন উৎস হতে নির্গত শব্দের তীব্রতা ও তীক্ষ্ণতা এক হলেও তাদের একটিকে জন্যটি হতে পৃথক করা যায়, তাকে তার জ্বাতি বা গুণ বলে।

প্রমাণ তীব্রতা ঃ 1000 Hz কম্পাজ্জবিশিষ্ট 10⁻¹² Wm⁻² তীব্রতাকে প্রমাণ তীব্রতা বলে।

তীব্রতা লেভেল : যে কোন শব্দের তীব্রতা এবং প্রমাণ তীব্রতার শব্দের শব্দোচ্চতার পার্থক্যকে তীব্রতা লেভেল বলে। অথবা, কোন শব্দের তীব্রতা ও প্রমাণ তীব্রতার অনুপাতের লগারিদমকে ঐ শব্দের তীব্রতা লেভেল বলে। BG & JEWEL

ভেসিবেলঃ শন্দের তীব্রতা যখন 10⁰¹ বা 1'259 গুণ বৃষ্দি পায় তখন শন্দোচ্চতা যতটুকু বাড়ে তাকে 1 ডেসিবেল বলে।

বীট বা ব্যরকম্প : প্রায় সমান কম্পাজ্জবিশিষ্ট একই দিকে অগ্রগামী দুটি শব্দ তরজ্ঞোর উপরিপাতনের ফলে শব্দের লখি প্রাবল্যের যে হ্রাস-বৃদ্ধি ঘটে তাকে বীট বা ষরকম্প বলে।

মুক্ত বা স্বাডাবিক কম্পন : স্পন্দনক্ষম যে কোন বস্তুকে আন্দোলিত করলে বস্তুটি একটি নির্দিষ্ট কম্পাক্ষ ও পর্যায়কালে স্পন্দিত হয়। এই স্পন্দনকে মুক্ত কম্পন বা ষাডাবিক কম্পন বলে।

পরবশ বা আরোপিত কম্পন ঃ স্পন্দনক্ষম বস্তুর উপর আরোপিত পর্যাবৃত্ত স্পন্দনের জন্য বস্তুটি তার ষাতাবিক কম্পাজ্ঞে কম্পিত হওয়ার পরিবর্তে যখন আরোপিত কম্পনের কম্পাল্ডেক স্পন্দিত হতে থাকে তখন এ কম্পনকে আরোপিত বা পরবশ কম্পন বলে।

জনুনাদ ঃ কোন বস্তুর উপর আরোপিত পর্যাবৃত্ত স্পন্দনের কম্পাঙ্ক বস্তুটির স্বাভাবিক কম্পাঙ্কের সমান হলে বস্তুটি সর্বোচ্চ বিস্তারে কম্পিত হয়। এ ধরনের কম্পনকে জনুনাদ বলে।

সুরবিরাম : দুটি সুরের কম্পাচ্চ্বের অনুপাতকে সুর বিরাম বলে।

় অফ্টক ঃ কোন একটি সুরের কম্পাভ্ক অপর একটি সুরের কম্পাজ্ঞ্বের দ্বিগুণ হলে প্রথমটির কম্পাজ্ঞকে দ্বিতীয়টির এক অফটক বলে।

স্বরগ্রাম ঃ স্বর-গ্রাম বলতে নির্দিষ্ট কম্পাজ্জের কতকগুলো সাজনো সুর বুঝায়।

ডায়াটোনিক স্বরগ্রাম ঃ একটি বিশেষ সুর ও এর এক অফক উপরের সুরের মধ্যে সম-সঙ্গতিপূর্ণ ধিতিন্ন কম্পাক্ষের আরও ছয়টি সুর সন্নিবেশ করে যে ষরগ্রাম প্রস্তৃত করা হয় তাকে ডায়াটোনিক ষরগ্রাম বলে।

সমতান বা হারমোনি ঃ একই সময়ে কতকগুলো শব্দ উৎপন্ন হলে যদি তাদের মধ্যে একটি ঐক্যতানের সৃষ্টি হয় তবে তাকে সমতান বা হারমোনি বলে।

মেলডি ঃ কতকগুলো শব্দ একের পর এক উৎপন্ন হয়ে যদি একটি সুরযুক্ত শব্দের সৃষ্টি করে তবে তাকে মেলডি বলে। সলো ঃ একটি মাত্র বাদ্যযন্ত্র হতে যে ষর সৃষ্টি হয় তাকে সলো বলে।

টানা তারের আড় কম্পনের সূত্র : টানা তারের আড় কম্পনের তিনটি সূত্র রয়েছে, যথা ঃ

(১) দৈর্ঘ্যের সূত্র, (২) টানের সূত্র এবং (৩) ভরের সূত্র।

ফনোগ্রাফ ঃ এটি শব্দ গ্রহণ ও পুনরুৎপাদন যন্ত্র।

প্রয়োজনীয় সমীকরণ

$$S = K \log_{10} I$$
 (1)

$$\beta = 10 \log_{10} \left(\frac{I}{I_0}\right) dB \tag{2}$$

$$\Delta\beta = \beta_1 - \beta_2 = 10 \log_{10} \left(\frac{I_2}{I_1}\right) dB$$
(3)

$$\Delta\beta = 10 \log_{10} (P_2 / P_1) \, dB \tag{4}$$

$$n_2 = n_1 \pm N \tag{5}$$

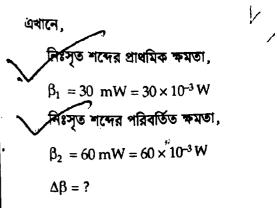
$$v = \sqrt{\frac{T}{m}}$$
(6)

$$n = \frac{1}{2l} \sqrt{\frac{T}{m}}$$
(7)

$$n = \frac{1}{2lr} \sqrt{\frac{T}{\pi\rho}}$$
(8)

$$\frac{I_1}{T_2} = \frac{I_2^2}{I_1^2}$$
(9)

$$\frac{l_1}{l_2} = \frac{n_2}{n_1}$$
(10)


$$\frac{n_2^2}{n_1^2} = \frac{m_1}{m_2} \tag{11}$$

$$\sqrt{\alpha} = \frac{v}{2l}$$
(12)

डान्द नरन,
$$n = \frac{b}{4l}$$
 (13)

7 বইঘর.কম সমাধানকৃত উদাহরণ ৰোন শব্দের তীব্রতা প্রমাণ তীব্রতার 100 গুণ হলে এ শব্দের তীব্রতার নেভেন কত ডেসিবেন ? [য. বো. ২০০৫ ; ব. বো. ২০০৪] আমরা জানি. $\beta = \log_{10}\left(\frac{I}{I_0}\right)$ প্রশানুযারী $I = 100 I_0$ β $= \log_{10} (100)$ $= \log_{10} (10)^2$ = 2 (का = 20 ডেসিবেল ২। কোন জনসভায় শব্দের তীব্রতা 10⁻⁸ watt m⁻²। শব্দের তীব্রতা লেভেল ডেসিবেলে নির্ণয় কর। শব্দের ছীব্ৰতা ভিনগুণ হলে নতুন ডীব্ৰতা নেতেন ৰুড হবে ? [কু. বো. ২০০৪ ; রা. বো. ২০০৩] আমরা জানি. এখানে, প্রমাণ তীব্রতা, I₀ = 10⁻¹² Wm⁻² $= 10 \log \frac{1}{I_0}$ β জনসভায় শব্দের তীব্রতা, I = 10⁻⁸ Wm^{-2/} $= 10 \log \frac{10^{-8}}{10^{-12}}$ তীব্রতা লেন্ডেল, β =? আবার, I' = 3I $= 10 \log (10^4)$ $= 3 \times 10^{-8} \text{ Wm}^{-2}$ = 40 dB $\beta' = ?$ জাবার, $\beta' = 10 \log \frac{I'}{I_0} = 10 \log \frac{3 \times 10^{-8}}{1 \times 10^{-12}}$ $= 10 \log 3 \times 10^4$ $= 44.77 \, dB$ ৩। কোন শ্রেণীকক্ষের শব্দের ডীব্রতা 1 × 10⁻⁶ Wm⁻² হলে শব্দের তীব্রতা লেভেন ডেসিবেলে নির্ণর কর। ण. (वा. २००७, २००); य. (वा. २००८, '०२ ; ठ. (वा. २००७] আমরা জানি. এখানে. $= 10 \log \frac{1}{L}$ β প্রমাণ তীব্রতা, $I_0 = 10^{-12} Wm^{-2}$ $= 10 \log \frac{10^{-6}}{10^{-12}} = 10 \log 10^{6}$ শ্রেণীকক্ষের শব্দ তীব্রতা, I = 10⁻⁶ Wm⁻² = 60 dBতীব্রতা লেভেল, β = ? **৪। একটি ক্যাসেট গ্লেয়ার হতে নিঃসৃত শন্দের ক্ষমতা** 30mW হতে 60mW-এ পরিবর্তিত হলে শব্দের তীব্রতা তলের ৰুত পরিবর্তন হবে গু মনে করি, শব্দের তীব্রতা লেভেনের পরিবর্তন = Δβ

আমরা জানি, $\Delta\beta = 10 \log_{10} \left(\frac{\beta_2}{\beta_1}\right)$ $= 10 \log_{10} \left(\frac{60 \times 10^{-3} \text{ W}}{30 \times 10^{-3} \text{ W}} \right)$ $= 10 \log_{10}(2)$ = 3dB

ര്ത

 $\mathcal{B}G \ll \mathcal{JEWEL}$ ৫। দুটি সুরশ্লাকাকে একই সময়ে কম্পিত করলে প্রতি সেকেন্ডে 5টি বীট সৃষ্টি হয়। একটি শলাকা কোন টানা তারের 1'18 m দৈর্ঘ্যের সাথে এবং অপরটি এ তারের 1'20 m দৈর্ঘ্যের সাথে এক্যতান হয়। সুরশলাকা দুটির কম্লাক [ঢা. বো. ২০০৬ (মান ভিন্ন) ; ব. বো. ২০০৩] নির্ণয় কর।

এখানে, আমরা জানি, $l_1 = 1.18 \text{ m}$ $n = \frac{1}{2I} \sqrt{\frac{T}{T}}$ $l_2 = 1.20 \text{ m}$ $N = n_1 - n_2 = 5$ $n_1 = \frac{1}{2l_1} \sqrt{\frac{T}{m}}$ $n_1 = ?$ $n_2 = ?$ $=\frac{1}{2 \times 1.18} \sqrt{\frac{\mathrm{T}}{\mathrm{m}}}$ $n_2 =\frac{1}{2 \times 1.20} \sqrt{\frac{\mathrm{T}}{\mathrm{m}}}$ এবং $\frac{n_1}{n_2} = \frac{120}{118}$ পুনঃ $n_1 - n_2 = 5$ উভয়পক্ষ 11, দিয়ে ভাগ করে পাই, $\frac{n_1}{n_2} - 1 = \frac{5}{n_2}$ 1 $\frac{120}{118} - 1 = \frac{5}{n_2}$ $\overline{\mathbf{A}}, \quad \frac{1\cdot 20 - 1\cdot 18}{1\cdot 18} = \frac{5}{n_2}$ \overline{a} , $n_2 = \frac{5 \times 1.18}{0.02} = 295 \,\mathrm{Hz}$ $n_1 = \frac{120}{118} \times 295$ = 300 Hz ৬। কোন শ্রেণীকক্ষে শব্দের তীব্রতা 10⁻⁷Wm⁻²। শব্দের তীব্রতা দ্বিগুণ হলে নতুন তীব্রতা লেবেল কত [ব. বো. ২০০৬ ; রা. বো. ২০০৫] আমরা জানি, এখানে. $\alpha = 10 \log \frac{I}{I_0} = 10 \log \frac{10^{-7}}{10^{-12}}$ তীব্রতা, l = 10⁻⁷ Wm⁻² প্রমাণ তীব্রতা, I₀ = 10⁻¹² Wm⁻² $= 10 \log 10^5$ = 50 dBতীব্রতা লেবেল, α = ? আবার, আমরা জানি, আবার, $\alpha = 10 \log \frac{I'}{I_0} = 10 \log \frac{2I}{I_0}$ $I' = 2I = 2 \times 10^{-7} Wm^{-2}$ $\alpha = ?$ $= 10 \log \frac{2 \times 10^{-7}}{10^{-12}} = 10 \log 2 \times 10^{5}$ $= 53.01 \ dB$ ৭। A ও B দুটি সুরেলী কাঁটা একত্রে শব্দায়িত করলে প্রতি সেকেন্ডে 5টি বীট শোনা যায়। A-এর বাহুর ভর কিছু কমালে বীট উৎপত্তির হার বৃদ্ধি পায়। B-এর কম্পাজ্ফ 512 Hz হলে A-এর প্রকৃত কম্পাজ্ঞ কত ? আমরা পাই, $N = n_1 \sim n_2$ প্রশ্নানুসারে ভর হ্রাসে A-এর কম্পাজ্ঞ বৃদ্ধি পায়। এতে বীট উৎপত্তির হার বৃদ্ধি পায় হেতু তাদের কম্পাজ্ঞের পার্ধকাও বৃদ্ধি পায়। एए छ चीरेः वास यास / लॉरा लॉर साम लोरा। ल्राने गन A-এর কম্পার্জ্ক, $n_1 > B$ -এর কম্পার্জ্ক, n_2 সুতরাং, $n_1 - n_2 = N$

 $n_1 = N + n_2 = (512 + 5) Hz = 517 Hz$

শব্দ

্র্বটঘুর কম ৮। দুটি সুর শলাকা A ও B একই সময় শব্দায়িত ইওয়ায় প্রতি সেকেন্ডে 6টি বীট উৎপন্ন হয়। কিন্তু A-তে খানিকটা বোম লাগালে বীটের সংখ্যা হ্রাস পায়। B-এর কম্পাক্ষ 320 Hz হলে, A-এর কম্পাক্ষ নির্ণয় কর।

```
জামরা পাই, N = n_1 - n_2
প্রশানুসারে ভরের বৃষ্ণিতে A-এর কম্পাজ্ফ হ্রাস পায়।
কাজেই A-এর কম্পাজ্ফ,
n_1 > B-এর কম্পাজ্ফ, n_2
কাজেই, N = n_1 - n_2
এখানে, N = 6 বীট/সে. ও n_2 = 320 Hz
n_1 = n_2 + N = (320 + 6) Hz
= 326 Hz
```

্রি ৬। 64টি সুর শলাকা ক্রমবর্ধমান কম্পাঞ্চে সাজানো আছে। তাদের শেষটির কম্পাক্ত প্রথমটির যিপুণ এবং পর পর যে কোন দুটি শলাকা প্রতি সেকেডে 4টি বীট উৎপন্ন করে। প্রথম সুর শলাকার কম্পাক্ত কত ?

```
ধরি প্রথমটির কম্পাজ্ঞ = n
তা হলে শেষটির কম্পাজ্ঞ = 2n
জাবার পর্যায়ক্রমিক দুটি সুর-শলাকার কম্পাজ্ঞের পার্থক্য = 4 Hz
দ্বিতীয় সুর শলাকার কম্পাজ্ঞ = n + 4
= n + (2 - 1)4
তৃতীয় সুর শলাকার কম্পাজ্ঞ = n + 4 + 4 = n + (3 - 1)4
চতুর্থ সুর শলাকার কম্পাজ্ঞ = n + (4 - 1)4
```

```
64-তম সুর শলাকার কম্পান্তক = n + (64 - 1) 4
কিন্তু, n + (64 - 1) 4 = 2n
n = (64 - 1)4 = 252 \text{ Hz}
```

১০। দুটি সুর শলাকা একটি গ্যানে 0.50 m এবং 0.505 m দৈর্ঘ্যের তরজা উৎপন্ন করে। যদি প্রতি সেকেডে 6টি বীট উৎপন্ন হয় তবে উক্ত গ্যানে শব্দের বেগ নির্ণয় কর।

[রা. বো. ২০০৬ ; ঢা. বো. ২	৯০৫ ; য. বো. ২০০৪ ; কু. বো. ২০০৫; ব. বো. ২০০২)
,মনে করি গ্যাসে শব্দের বেগ = ৩	,
আমরা জ্বানি,	
$v = n_1 \lambda_1$	(1)
এবং	٩
$v = n_2 \lambda_2$	(2)
সমীক্ষণ (1) এবং (2) হতে পাই	
$n_1 = \frac{v}{\lambda_1}$	(3)
এবং $n_2 = \frac{v}{\lambda_2}$	(4)
$\mathbf{\widehat{P}}_{\mathbf{Y}} = n_1 - n_2$	$(5) [\lambda_1 < \lambda_2]$
এখন সমীকৃরণ (5) হতে পাই	
$N = \frac{v}{\lambda_1} - \frac{v}{\lambda_2}$	এখানে,
(1 1)	N = 6
$\overline{n}, 6 = v\left(\frac{1}{\lambda_1} - \frac{1}{\lambda_2}\right)$	N = 6 $\lambda_2 = 0.50 \text{ m}$ $\lambda_2 = 0.505 \text{ m}$
$\mathbf{q}, 6 = v \left(\frac{1}{0.50} - \frac{1}{0.505} \right)$	$\lambda_2 = 0.505 \text{ m}$
a , $v = \frac{0.50 \times 0.505 \times 6}{0.005} = 303 \mathrm{ms}^{-1}$	

CV8

১১। দুটি সুরশলাকা A ও B একই সাথে শব্দায়িত হওয়ায় প্রতি সেকেন্ডে 5টি বীট উৎপন্ন হয়। কিন্তু A-তে খানিকটা মোম লাগিয়ে ওজন বাড়ালে বীট সংখ্যা কমে যায়। B-এর কম্পাক্ত 256 Hz হলে A-এর কম্পাক্ত কত ? [ব. বো. ২০০৫]

আমরা জানি, $n_{\rm A} = n_{\rm B} \pm {\rm N}$ এখানে, $n_{\rm A} = n_{\rm B} \pm {\rm N}$ ${\rm N} = 5$ যেহেতু A সূর শলাকার বাহুতে মোম লাগানোর ফলে বীট $n_{\rm B} = 256~{\rm Hz}$ সংখ্যা বৃদ্ধি পায় ; কাজেই $n_{\rm A} > n_{\rm B}$ হবে। অতএব, $n_{\rm A} = ?$

 $n_{A} = n_{B} + N$ = 256 + 5 = 261 $n_{A} = 261 \text{ Hz}$

১২। 9°8N বলে টানা একটি তারের কম্পাজ্ঞ 320 Hz। তারের টান কত হলে কম্পাজ্ঞ 256 Hz হবে। আমরা পাই, n ∝ √T

$$n = 847 \times \sqrt{T}$$

কাজেই, T_1 ও T_2 টানে কম্পাজ্ঞ যথাক্রমে n_1 ও n_2 হলে,

$$\frac{n_1}{n_2} = \sqrt{\frac{T_1}{T_2}}$$

ধরি নির্ণেয় টান = T_2

প্রশ্নানুযায়ী, $n_1 = 320 \text{ Hz}, T_1 = 9.8 \text{ S}$

$$n_2 = 256 \text{ Hz}$$

 $T_2 = \frac{n_2^2}{n_1^2} \times T_1 = \frac{256^2}{320^2} \times 9.8\text{N}$
= 6.27 N

 \sim ১৩। একটি টানা তারের দৈর্ঘ্য 0'5 m এবং টান 3 kg তরের ওজনের সমান। তারটির আড় কম্পনের মূল সুরের সাথে কত কম্পাব্জের একটি সুরেনী কাঁটার সুর একতানিক হবে ? [তারের এক মিটার দৈর্ঘ্যের তর = 3,27 × 10⁻⁴ kg $\sigma_{g} = 9.81 \text{ ms}^{-2}$]।

জামরা পাই,
$$n = \frac{1}{2l} \sqrt{\frac{T}{m}}$$

জামরা পাই, $n = \frac{1}{2l} \sqrt{\frac{T}{m}}$
নির্ধোয় কম্পাজ্জ $n = \frac{1}{2 \times 0.5 \text{ m}} \sqrt{\frac{3 \times 981 \text{ N}}{3'27 \times 10^{-4} \text{ kg m}^{-1}}}$
= 300 Hz

১৪। 60 cm দীর্ঘ একটি টানা তার একটি সুরেদী কাঁটার সাথে এক্যতানে আছে। টান অর্ধেক ক্রে এক্যতানে আনতে কত দৈর্ঘ্যের প্রয়োজন ?

যেহেতু সুরেদী কাঁটা টানা তারের সাথে ঐক্যতানে । আছে, সুতরাৎ উভয়ের কম্পাজ্ঞ্ব একই।

ধরি, কম্পাজ্ঞ = n

জামরা পাই,
$$n = \frac{1}{2l_1} \sqrt{\frac{T}{m}}$$

এখানে, $l_1 = 60 \text{ cm} = 0.6 \text{ m}$ প্রাথমিক টান = T_1 চূড়ান্ত টান, $T_2 = \frac{T_1}{2}$ $l_2 = ?$

with an
$$n = \frac{1}{2l_2} \sqrt{\frac{T_2}{m}}$$

an $n = \frac{1}{2l_2} \sqrt{\frac{T_1}{2m}}$ (ii)
(i) (ii) (ii) (iii) (iii) (iii) (iii) $\sqrt{\frac{s}{2} + \frac{1}{2m}} \sqrt{\frac{T_1}{2m}} = \frac{1}{2l_2} \sqrt{\frac{T_1}{2m}}$
an $\frac{1}{\sqrt{2} \times 0.6} \sqrt{\frac{T_1}{m}} = \frac{1}{2\sqrt{2}l_2} \sqrt{\frac{T_1}{m}}$
an $l_2 = \frac{2 \times 0.6}{2\sqrt{2}} = \frac{0.6}{\sqrt{2}}$
 $l_2 = 0.42 \text{ m}$

১৫। 50 cm দৈর্ঘ্যের একটি টানা ভার একটি সুরেলী কাঁটার সাথে এক্যতানে আছে। টান চারগুণ করলে এক্যতানে আনতে তারটির দৈর্ঘ্য কত করতে হবে ? যি. বো. ২০০৩]

(1) $l_1 = 50 \text{ cm}$ $l_2 = ?$

আমরা জানি.

$$n_1 = \frac{1}{2l_1} \sqrt{\frac{\mathrm{T}}{m}}$$

আবার, $n_2 = \frac{1}{2l_2} \sqrt{\frac{4T}{m}}$ প্রশ্নাত, $n_1 = n_2$

$$\frac{1}{2l_1} \sqrt{\frac{T}{m}} = \frac{1}{2l_2} \sqrt{\frac{4T}{m}}$$

$$\overline{a}, \sqrt{\frac{T}{m}} = \frac{l_1}{l_2} \sqrt{\frac{4T}{m}} \quad \overline{a}, \frac{T}{m} = \frac{l_1^2}{l_2^2} \frac{4T}{m}$$

$$\overline{a}, 1 = \frac{l_1^2}{l_2^2} \times 4 \qquad \overline{a}, \frac{l_2^2}{l_1^2} = 4$$

$$\overline{a}, \frac{l_2}{l_1} = 2 \qquad \overline{a}, l_2 = 2 \times l_1$$

$$l_2 = 2 \times 0.50 \text{ m} = 1 \text{ m}$$

১৬। 40 cm দৈর্ঘ্যবিশিষ্ট একটি টানা তার কোন একটি সুর শলাকার সাধে এক্যতানে আছে। টান শ্বিগুণ করলে এক্যতানে আনতে ৰড দৈৰ্ঘ্যের প্রয়োজন হবে ? [চ. বো. ২০০৬ ; সি. বো. ২০০৪]

আমরা জানি,

 $n_1 = \frac{1}{2l_1} \sqrt{\frac{\mathrm{T}}{m}}$ (1) $n_2 = \frac{1}{2l_2} \sqrt{\frac{2T}{m}}$ Markov, $n_1 = n_2$

$$\frac{1}{2l_1}\sqrt{\frac{T}{m}} = \frac{1}{2l_2}\sqrt{\frac{2T}{m}}$$

$$\sqrt{\frac{T}{m}} = \frac{l_1}{l_2}\sqrt{\frac{2T}{m}}$$

$$\overline{\mathbf{A}}, \quad \frac{\mathrm{T}}{m} = \frac{l_1^2}{l_2^2} \frac{2\mathrm{T}}{m}$$

এখানে, $l_1 = 40 \text{ cm} = 0.40 \text{ m}$ $l_2 = ?$

÷

6

BG & JEWEL

বা,
$$1 = \frac{l_1^2}{l_2^2} \times 2$$

বা, $\frac{l_2^2}{l_1^2} = 2$
বা, $\frac{l_2}{l_1} = \sqrt{2}$
বা, $l_2 = \sqrt{2} \times l_1$
বা, $l_2 = \sqrt{2} \times 0.40$
 $l_2 = 0.57 \,\mathrm{m}$

১৭। একটি সনোমিটারের তার 200 কম্পাক্রযুক্ত একটি টিউনিং ফর্কের সাথে ঐক্যতানে থাকে। তারের টান ঠিক রেখে সনোমিটার তারের দৈর্ঘ্য 1% বৃন্দি করলে প্রতি সেকেন্ডে কয়টি বীট শুনা যাবে ? [য. বো. ২০০৬ ;

 जामता छानि,
 $\frac{n_1}{n_2} = \frac{l_2}{l_1}$ q. (वा. २००७ (भान छिन्न); त्रि. (वा. २०००))

 $\frac{n_1}{n_2} = \frac{l_2}{l_1}$ uখাcn,

 $\pi_1, \frac{200}{n_2} = \frac{1.01l}{l}$ $n_1 = 200 \text{ Hz}$
 $\pi_1, \frac{200}{n_2} = 1.01$ $l_1 = l$
 $q_1, \frac{200}{n_2} = \frac{200}{1.01}$ $l_2 = l + \frac{l}{100} = l\left(1 + \frac{1}{100}\right)$
 $\pi_1, n_2 = \frac{200}{1.01}$ = 198 Hz

 $utice filtera return = n_1 - n_2 = 200 - 198$ $n_1 \sim n_2 = ?$

🔍 ১৮। একটি দুই মুখ খোলা নলের প্রথম উপসুরের কম্পাক্ষ 512 Hz। বায়ুতে শব্দের বেগ = 345.6 ms⁻¹ হলে, নলের দৈর্ঘ্য নির্ণয় কর।

ধরি নলের দৈর্ঘ্য = / ও নলের মূল সুরের কম্পাজ্ঞ = n

তাহলে, 2n = 512 Hz ও $n = \frac{v}{2l}$ कारखरे, $l = \frac{v}{2n} = \frac{345.6 \text{ ms}^{-1}}{512 \text{ Hz}} = 0.675 \text{ m}$

১৯। একটি সুর 512 Hz কম্পাজ্জের একটি সুরশলাকার সাথে প্রতি সেকেন্ডে 4টি বীট এবং 514 Hz কম্পাজ্জের জপর একটি সুরশলাকার সাথে প্রতি সেকেন্ডে ১টি বীট উৎপন্ন করে। সুরটির কম্পাক্ত নির্ণর কর। টে. বো. ২০০৫]

নির্ধেয় অজ্ঞানা কম্পান্ডক = n_1 যেহেতু জানা কম্পান্ডক বৃন্ধিতে বীট বৃন্ধি পায় কাজেই জানা কম্পান্ডক অজ্ঞানা কম্পান্ডকর চেয়ে বড় হবে। অর্ধাৎ $n_2 > n_1$ স্তরাং, $N = n_2 - n_1$ বা, $n_1 = n_2 - N$ = 512 - 4 = 508 $n_1 = 508$ Hz

বইঘর.কম

২০। দুটি সুরেলী কাঁটায় প্রতি সেকেন্ডে 5টি বীট উৎপন্ন হয়। কোন একটি টানা তারের 1'28 m দৈর্ঘ্যের সাথে একটি কাঁটা ও 1'30 m দৈর্ঘ্যের সাথে অপর কাঁটাটি ধানি সমনয় করে। সুরেলী কাঁটাঘয়ের কম্পাক্ষ নির্ণয় কর। [ঢা. বো. ২০০৬]

ধরা যাক কাঁটা দুটির কম্পাজ্ঞক যথাক্রমে n1 ও n2 এখানে, $l_1 = 1.28 \text{ m}$ আমরা জ্বানি, $n = \frac{1}{2I} \sqrt{\frac{T}{m}}$ $l_2 = 1.30 \text{ m}$ তাহলে, $n_1 = \frac{1}{2 \times 1.28} \sqrt{\frac{T}{m}}$ $N = n_1 \sim n_2 = 5$ $\mathfrak{G} n_2 = \frac{1}{2 \times 1.30} \sqrt{\frac{\mathrm{T}}{m}}$ $n_2 = ?$ $\frac{n_1}{n_2} = \frac{1.30}{1.28} > 1$ (1)কাজেই, n₁ > n₂ আবার $n_1 - n_2 = 5$ (2) $\frac{\frac{1\cdot30}{1\cdot28}}{n_2} = \frac{n_2}{n_2} = 5$ All, $n_2 = \frac{5 \times 1\cdot28}{0\cdot02} = 320 \text{ Hz } \$$ $n_1 = 5 + n_2 = (5 + 320) \text{ Hz} = 325 \text{ Hz}$

২১। একটি সনোমিটারের তার কোন একটি বল দ্বারা টানা আছে। যদি টানা বল 4 গুণ বাড়ানো হয় এবং একই সাথে তারের দৈর্ঘ্য হিগুণ করা হয় তবে পূর্বের ও পরের কম্পাক্তের অনুপাত কত হবে ? [চ. বো. ২০০২] মনে করি কম্পাক্ষ n. ও n., টান T. ও T. এবং দৈর্ঘ্য J. ও J.

তা হলে তারের প্রতি একক দৈর্ঘ্যের ভর
$$m$$
 হলে, $n_1 = \frac{1}{2l_1} \sqrt{\frac{T_1}{m}}$ (1)

এখন (1)-কে (2) দিয়ে তাগ করে পাই,

$$\frac{n_1}{n_2} = \frac{l_2}{l_1} \sqrt{\frac{T_1}{T_2}}$$
(3)

শর্তানুসারে $l_2 = 2l_1$ এবং $T_2 = 4T_1$

(3) হতে পাই,
$$\frac{n_1}{n_2} = \frac{2l_1}{l_1} \sqrt{\frac{T_1}{4T_1}}$$

বা, $\frac{n_1}{n_2} = 2 \times \sqrt{\frac{1}{4}} = 1$ বা, $\frac{n_1}{n_2} = 1$

$$n_1 \ \ n_2 = 1 \ \ \ 1$$

 २ । বারুডে শব্দের বেগ 332'8 ms⁻¹]

ধরি, নলের নির্গেষ দৈর্ঘ্য = lআমরা পাই, $n = \frac{v}{4l}$ $l = \frac{v}{4n} = \frac{332.8 \text{ ms}^{-1}}{4 \times 256 \text{ Hz}} = 0.325 \text{ m}$ ì/

২৩। দৃটি অভিনু ঐকতানিক তারের একটির দৈর্ঘ্য 0'36m এবং টান 100N। অপরটির টান 225N হলে এর দৈর্ঘ্য নির্ণয় কর।

মনে করি দৈর্ঘ্য =
$$l_2$$

শর্তানুসারে,
 $n = \frac{1}{2l_1} \sqrt{\frac{T_1}{m}} = \frac{1}{2l_2} \sqrt{\frac{T_2}{m}}$
বা, $\frac{1}{2l_1} \sqrt{\frac{T_1}{m}} = \frac{1}{2l_2} \sqrt{\frac{T_2}{m}}$
বা, $\frac{l_2}{l_1} = \sqrt{\frac{T_2}{T_1}}$ (1)
সমীকরণ (1) হতে পাই, $l_2 = 0.36 \times \sqrt{\frac{T_2}{T_1}} = 0.36 \sqrt{\frac{225}{100}}$

বা, l₂=0.54 m ২৪। একটি সনোমিটার তারের দৈর্ঘ্য পরিবর্তন না করে এর উপর প্রযুক্ত টান 4 গুণ বাড়িয়ে দেয়া হল। তারের কম্পাক্ষের কত পরিবর্তন হবে ?

আমরা জানি,
$$n = \frac{1}{2l} \sqrt{\frac{T}{m}}$$

মনে করি, ১ম ও ২য় ক্ষেত্রে তারটির কম্পাজ্ঞ যথাক্রমে n_1 ও n_2

$$n_{1} = \frac{1}{2l} \sqrt{\frac{T_{1}}{m}}$$
(1)

$$\text{urge} \quad n_{2} = \frac{1}{2l} \sqrt{\frac{T_{2}}{m}}$$
(2)

এখন সমীকরণ (1)-কে (2) দিয়ে ভাগ করে পাই,

$$\frac{n_1}{n_2} = \sqrt{\frac{T_1}{T_2}} = \sqrt{\frac{T_1}{4T_1}} = \sqrt{\frac{1}{4}} = \frac{1}{2} \quad [T_2 = 4T_1]$$

 $n_2 = 2n_1$ and $n_2 - n_1 = n_1$

💙 সুতরাং পরের কম্পাজ্ঞ পূর্বের কম্পাজ্ঞের দ্বিগুণ হবে এবং কম্পাজ্ঞের পরিবর্তন প্রাথমিক কম্পাজ্ঞের সমান হবে। ২৫। একটি সাইরেনের চাকতি প্রতি সেকেন্ডে 10 বার ঘুরছে। চাকতিতে কতটি ছিদ্র থাকলে তা 480 কম্পাজ্ঞের একটি সুর শলাকার সাথে এক্যতানিক হবে ?

মনে করি, ছিদ্রের সংখ্যা = m

জামরা পাই, N = m × n N		এখানে,	
বা, $m = \frac{N}{n}$ (1) হতে পাই,	(1)	N	= 480 Hz
$m = \frac{480}{10} = 48$		n	= 10 Hz
ছিদ্রের সংখ্যা 48টি।			

২৬। A ও B দুটি সুরেলী কাঁটা একত্রে ধ্বনিত করলে প্রতি সেকেন্ডে 5টি বীট উৎপন্ন হয়। A-কে একটু ঘবে পুনরায় ধ্বনিত করলে একই সংখ্যক বীট উৎপন্ন। B-এর কম্পাজ্ঞ 510 Hz। ঘবার পূর্বে ও পরে A-এর কম্পাজ্ঞ নির্ণার কর এবং ঘটনাটি ব্যাখ্যা কর।

মনে করি A ও B সুর শলাকার কম্পাঙ্ক যথাক্রমে $n_{\rm A}$ ও $n_{\rm B}$ । এখানে $n_{\rm A}$ অজ্ঞানা কম্পাঙ্ক, $n_{\rm B}=510~{
m Hz}$ এবং বীট সংখ্যা, N = 5

$$n_{\rm A} = n_{\rm B} \pm {\rm N}$$
 (1)
ঘ্রধার পর A-এর কম্পার্চ্চ

$$n_{\rm A} = 510 + 5$$

= 515 Hz

(3)

ঘর্ষার পূর্বে A-এর কম্পাজ্ঞ

এবং $n_A = 510 - 5$ = 505 Hz

যেহেতু A সুর শলাকাকে ঘষা হয়েছে তাই ঘষার পর এর কম্পাজ্ঞ পূর্বের তুলনায় বেড়ে যাবে। কাজেই ঘষার পূর্বে A-এর সম্ভাব্য কম্পাজ্ঞ, $n_A = 515 \text{ Hz}$ বিবেচনা করলে ঘষার পর বীট সংখ্যা একই হবার সম্ভাবনা নেই। তাই ঘষার পূর্বে A-এর কম্পাজ্ঞ = 505 Hz হবে এবং ঘষার পর A-এর কম্পাজ্ঞ $n_A = 515 \text{ Hz}$.

২৭। দুটি একই রকমের টানা তার সম কম্পাব্রুের আড় কম্পনে কম্পিত হচ্ছে। একটি তারের টান 2% বৃন্দি করে কম্পিত করলে প্রতি সেকেন্ডে 3টি বীট উৎপন্ন হয়। তার দুটির প্রারম্ভিক কম্পাব্ধ কত ? [য. বো. ২০০০] মনে করি,

তার দুটির প্রারম্ভিক কম্পার্চ্ব = n_1 টান বৃদ্ধির পর সংশ্লিষ্ট তারের কম্পার্চ্ক = n_2 শর্ত মতে,

 $n_2 - n_1 = 3$ $\exists 1, n_2 = n_1 + 3$ (1) $\exists 2 = \frac{1}{2} \sqrt{\frac{T_1}{2}}$ (2)

এখানে,
$$n_1 = \frac{1}{2l} \sqrt{\frac{1}{m}}$$
 (

এবং

(3)নং-কে (2) নং দারা তাগ করে,

প্রশান্যায়ী, $\frac{T_2}{T_1} = 1 + \frac{2}{100}$

 $n_2 = \frac{1}{2l} \sqrt{\frac{T_2}{m}}$

$$\frac{n_2}{n_1} = \sqrt{\frac{T_2}{T_1}} \tag{4}$$

$$\overline{n_1}$$
 $\sqrt{\frac{T_2}{T_1}} = \sqrt{1 + \frac{2}{100}}$
 $\overline{n_1}$
 $\frac{n_2}{n_1} = \sqrt{1 + \frac{2}{100}}$
 $\overline{n_1}$
 $\overline{n_1}$
 $\overline{n_1 + 3}$
 $\overline{n_1 + 3} = \sqrt{1.02}$
 $\overline{n_1}$
 $\frac{n_1 + 3}{n_1} = 1.00995$
 $\overline{n_1}$
 $n_1 + 3 = 1.00995 \times n_1$
 $\overline{n_1}$
 $\overline{n_1}$
 $\overline{n_1}$
 $\overline{n_1 + 3} = 1.00995 \times n_1$
 $\overline{n_1}$
 $\overline{n_1}$
 $\overline{n_1}$
 $\overline{n_1 + 3} = 1.00995 \times n_1$
 $\overline{n_1}$
 $\overline{n_1}$
 $\overline{n_1 + 3} = 1.00995 \times n_1$
 $\overline{n_1}$
 $\overline{n_1}$
 $\overline{n_1 + 3} = 1.00995 \times n_1$
 $\overline{n_1}$
 $\overline{n_1}$
 $\overline{n_1 + 3} = 1.00995 \times n_1$
 $\overline{n_1}$
 $\overline{n_1}$

২৮। 1 m ও 101 m তরজা দৈর্ঘ্যর দুটি শব্দ তরজা কোন গ্যাসীয় মাধ্যমে 6 সেকেন্ডে 20টি বীট উৎপন্ন করে। উত্ত গ্যাসীয় মাধ্যমে শব্দের বেগ নির্ণয় কর। [সি. বো. ২০০৬; ব. বো. ২০০৬ ; ঢা. বো. ২০০৩, ২০০১] মনে করি, শব্দের বেগ $v \, {
m ms}^{-1}$ এবং প্রথম ও দ্বিতীয় শব্দের কম্পাজ্ঞ যথাক্রমে n_1 ও n_2 ।

জামরা জানি, $v = n\lambda$ এবং $N = n_1 - n_2$ এখানে, $n_1 = \frac{v}{\lambda_1}$ বা, $n_1 = \frac{v}{1}$ এবং $n_2 = \frac{v}{\lambda_2}$ বা, $n_2 = \frac{v}{1 \cdot 01}$ $\frac{v}{1} - \frac{v}{1 \cdot 01} = \frac{20}{6}$

a1,

$$v \left(1 - \frac{1}{1 \cdot 01}\right) = \frac{20}{6}$$

 a1,
 $v \left(\frac{1 \cdot 01 - 1}{1 \cdot 01}\right) = \frac{20}{6}$

 a1,
 $v \times \frac{0 \cdot 01}{1 \cdot 01} = \frac{20}{6}$
 $v = \frac{20}{6} \times \frac{1 \cdot 01}{0 \cdot 01} = 336 \cdot 67 \text{ ms}^{-1}$

২১। দুটি সদৃশ তার ঐক্যতানে আছে। 0'36 m দৈর্ঘ্যবিশিষ্ট একটি তার 100 kg ওজন হারা টানা দেওয়া আছে। অপর তারটি 230 kg ওজন হারা টানা দেওয়া থাকলে এর দৈর্ঘ্য বের কর।

আমরা জানি,

$$\frac{l_2}{l_1} = \sqrt{\frac{T_1}{T_2}}$$

বা, $l_2 = l_1 \times \sqrt{\frac{T_1}{T_2}}$
 $= 0.36 \times \sqrt{\frac{100 \times 9.8}{230 \times 9.8}}$
 $= 0.36 \times \sqrt{\frac{100 \times 9.8}{230 \times 9.8}}$

৩০। 25 cm দৈর্ঘ্যের একটি তার 5 kg-wt বলের যারা টানা হল। তারটি থেকে উৎপন্ন মূল সুরের কন্সাক্ত বের কর। [তারটির 1 m দৈর্ঘ্যের তর = 4'9 g এবং $g = 9'8 \text{ ms}^{-2}$] কি. বো. ২০০০; ব. বো. ২০০১]

আমরা জানি,এখানে,
$$n = \frac{1}{2l} \sqrt{\frac{T}{m}}$$
 $l = 25 \,\mathrm{cm}$ $= \frac{1}{2 \times 0.25} \sqrt{\frac{49}{4.9 \times 10^{-3}}}$ $0.25 \,\mathrm{m}$ $= \frac{\sqrt{10000}}{0.5}$ $= \frac{4.9 \times 10^{-3}}{1}$ $= \frac{100}{0.5} = 200 \,\mathrm{Hz}$ $m = \frac{4.9 \times 10^{-3} \,\mathrm{kg \,m^{-1}}}{1}$

৩১। 0·5 m লম্ম্বা একটি তারকে 50 N বল দ্বারা টানা হল। যদি তারের তর 0·01 kg হয় তবে এর সৌলিক কম্লাক্ষ নির্পয় কর। [য. বো. ২০০৬ (মান ভিন্ন) ; রা. বো. ২০০১ ; ঢা. বো. ২০০৩]

আমরা জানি,

$$n = \frac{1}{2l} \sqrt{\frac{T}{m}}$$
 তারের দৈর্ঘ্য, $l = 0.5 \text{ m}$
তারের ডর, $m = 0.01 \text{ kg}$
 $n = \frac{1}{2 \times 0.5} \sqrt{\frac{50}{0.02}}$ একক দৈর্ঘ্যের ডর, $m = \frac{0.01}{05} = 0.02 \text{ kg}$
 $= 50 \text{ Hz}$ টান, $T = 50 \text{ N}$
কম্পাজ্ঞক, $n = ?$

এখানে,

বইঘর.কম

৩২। একটি তারের দৈর্ঘ্য 0'25 m এবং তর 4'5 g। এটিকে 6 kg ওজন হারা টানা আছে। তারটি থেকে উৎপন্ন সুরের কম্পাক্ষ কত ?

আমরা জানি,

1

$$n = \frac{1}{2!} \sqrt{\frac{T}{m}}$$

$$n = \frac{1}{2 \times 0.25} \sqrt{\frac{58.8}{18 \times 10^{-3}}} Hz$$

$$= 114.3 Hz$$

এখানে.

তারের দৈর্ঘ্য ,
$$l = 0.25 \text{ m}$$

তারের তর , M = $4.5 \text{ g} = 4.5 \times 10^{-3} \text{ kg}$
 $m = \frac{M}{l} = \frac{4.5 \times 10^{-3}}{0.25} = 18 \times 10^{-3} \text{ 10 gm}^{-1}$
টাল , T = $m_1 g = 6 \times 9.8 \text{ N} = 58.8 \text{ N}$
ফম্পার্জ্ক , $n = ?$

🗙 ৩৬% স্কৃটি সদৃশ তার ঐক্যতানে আছে। 0'50 m দৈর্ঘ্যবিশিষ্ট একটি তার 10 kg ওজন হারা টানা দেওয়া আছে। অগর্ক ত্যুরটি 20 kg ওজন হারা টানা দেওয়া হলে তারটির দৈর্ঘ্য কত ? [সি. বো. ২০০৩]

জ্ঞামরা জ্ঞানি,
$$\frac{l_1}{l_2} = \sqrt{\frac{T_1}{T_2}}$$

বা, $l_2 = l_1 \sqrt{\frac{T_2}{T_1}}$
 $= 0.5 \sqrt{\frac{20 \times 9.8}{10 \times 9.8}}$
 $= 0.5 \sqrt{2}$
 $l_2 = 0.71 \text{ m}$

এখানে,
$$l_1 = 0.50 \text{ m}$$

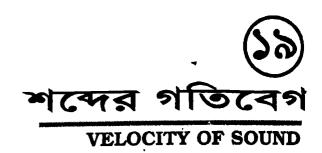
 $\mathbf{T}_1 = 10 imes 9.8 \text{ N}$
 $\mathbf{T}_2 = 20 imes 9.8 \text{ N}$
 $l_2 = ?$

প্রশালা

সংক্ষিত-উত্তর প্রশ্ন ঃ ১। অনুনাদ বলতে কি বুঝায় ? ঢা. বো. ২০০৪] [চ. বো. ২০০৬ ; কু. বো. ২০০৪ ; সি. বো. ২০০৪] অথবা, অনুনাদ কাকে বলে ? ঢাি. বো. ২০০৪ ; রা. বো. ২০০৩ ; সি. বো. ২০০৩] ২। সমমেল কাকে বলে ? ৩। মেলডি বলতে কি বুঝ ? ্রি. বো. ২০০৬ ; ব. বো. ২০০৬ ; ঢা. বো. ২০০৪] [ण. (वा. २००४, २०००; कृ. (वा. २००८ ; य. (वा. २००७ ; व. (वा. २००७, '०); ৪। বীট কি ? রা. বো. ২০০২, ২০০০ ; চ. বো. ২০০১, ২০০০] [সি. বো. ২০০৬, ২০০২ ; চা. বো. ২০০২ ; চ. বো. ২০০২ ; কু. বো. ২০০০] অথবা, বাঁট বলতে কি বুঝ ? ৫। শব্দের তীব্রতা ও তীক্ষণ্ডা বলতে কি বুঝ ? [সি. বো. ২০০৬ ; কৃ. বো. ২০০৪] ৬। ডেসিবেল কি ? [রা. বো. ২০০৫; য. বো. ২০০৪, ২০০২; ঢা. বো. ২০০১] ৭। পরবশ কম্পন ও আরোপিত কম্পন বলতে কি বুঝ ? বি. বো. ২০০৪] ৮। শব্দের প্রাবল্য বলতে কি বুঝ ? [য. বো. ২০০৫; ব. বো. ২০০৪] ১। মূল সুর কি ? ঢা. বো. ২০০৩] ১০। এক অষ্টক বলতে কি বুঝ ? [कू. (वा. २००७, २००७, २००४ ; व. (वा. २००९; ठ. (वा. २००९) ১১। সুরবিরাম বলতে কি বুঝ ? [ব. বো. ২০০৬ ; কু. বো. ২০০৩] ১২। সুর ও স্বরের মধ্যে পার্থক্য কি ? वि. (वा. २००७; य. (वा. २००७; छा. (वा. २००)) অথবা, সুর ও ষর কি ? রো. বো. ২০০২] ১৩। শব্দের ভীব্রতা বলতে কি বুঝ? । চ. বো. ২০০৬ ; কৃ. বো. ২০০৬ ; রা. বো. ২০০৬, ২০০২ ; ব. বো. ২০০৫। ১৪। সুরযুক্ত শব্দ ও সুরবর্জিত শব্দ বন্দতে কি বুঝ ? **हि. (बा. २००२)** ক্র. বো. ২০০১] ১৫। প্রমাণ তীব্রতা কাকে বলে ? [কু. বো. ২০০৬, ২০০৩ ; ১৬। সকল হারমোনিকই উপসূর ; কিন্তু সকল উপসূর হারমোনিক নয়—-ব্যাখ্যা কর। চ. বো. ২০০৪ ; ব. বো. ২০০৩ ; য. বো. ২০০২ ; টা. বো. ২০০০]

BG & JEWEL ১৭। সংজ্ঞা লিখ ঃ (ক) শব্দের তীব্রতা [চ. বো. ২০০৪ ; ঢা. বো. ২০০৩] (খ) অনুনাদ [চ. বো. ২০০৪; ব. বো. ২০০৬; ব. বো. ২০০১; রা. বো. ২০০০] রো. বো. ২০০৬; য. বো. ২০০৬ ; চ. বো. ২০০৪] (গ) পরবশ কম্পন (ঘ) শব্দের প্রাবল্য বি. বো. ২০০৩] রচনামূলক প্রদু ঃ ১। ডেসিবেল কি ? তীব্রতা লেভেলের সমীকরণটি প্রতিপাদন কর। যি. বো. ২০০৪ ; কৃ. বো. ২০০৩] ২। শব্দ কখন নায়েজ এবং কখন সচ্চীত গুণ সৃষ্টি করে তা বর্ণনা কর। **[5.** (**1**]. 2000] ৩। বীট কি ? বীট কিভাবে উৎপন্ন হয় ব্যাখ্যা কর। [চ. বো. ২০০১ ; ঢা. বো. ২০০০] । চ. বো. ২০০৫; রা. বো. ২০০৪ ; চ. বো. ২০০০] ৪। গাণিতিক বিশ্লেষণের সাহায্যে বীট সৃষ্টি ব্যাখ্যা কর। ৫। প্রমাণ কর যে, প্রতি সেকেন্ডে সৃষ্ট বীট সংখ্যা বীট সৃষ্টিকারী উৎসদ্বয়ের কম্পাব্র্বের পার্ধক্যের সমান। [त. (ता. २००५, २००८, '०) ; य. (ता. २००५, २००७, '०) ता. (ता. २००५, २००२, २००० 🕫 সি. বো. ২০০৪; ঢা. বো. ২০০৪; কু. বো. ২০০২,২০০০; চ. বো. ২০০২; সি. বো. ২০০২] ৬। বীট গণনা করে কিভাবে একটি সুরেলী কাটার অজ্ঞানা কম্পাজ্ঞ নির্ণয় করা যায় বর্ণনা কর। কে. বো. ২০০৬, ২০০৩ ; সি. বো. ২০০৬, ২০০৩ ; ঢা. বো. ২০০৫, ২০০৩ ; রা. বো. ২০০৩ ; ব. বো. ২০০৫, ২০০৩, ২০০১; চ. বো. ২০০৩, ২০০১; ম. বো. ২০০৫, ২০০২] ৭। বীট ও ব্যতিচারের মধ্যে পার্থক্য লিখ। [চ. বো. ২০০৫ ; কৃ. বো. ২০০৩] ৮। টানা তারে আড় কম্পনের সূত্র বিবৃত ও ব্যাখ্যা কর। [ব. বো. ২০০৬ ; রা. বো. ২০০১] ৯। দেখাও যে, একটি টানা তারে আড় তরজ্ঞার বেগ তারের টান ও একক দৈর্ঘ্যের ভরের অনুপাতের বর্গমূলের সমান। যি. বো. ২০০৩] ১০। টানা তারের দৈর্ঘ্যের সূত্র প্রমাণের পরীক্ষা বর্ণনা কর। ক্বি. বো. ২০০৩ ; য. বো. ২০০১] ১১। টানা তারে আড় তরষ্ঠোর কম্পনের সূত্রগুলো বিবৃত কর। [সি. বো. ২০০৫, ২০০৪, ২০০১ ব. বো. ২০০৩, '০১ ; কু. বো. ২০০১ ; য. বো. ২০০১ ; ঢা. বো. ২০০১ ; চ. বো. ২০০১] ১২। একটি টানা তারে আড় কম্পনের কম্পার্জ্ব কোন্ কোন্ বিষয়ের উপর নির্ভর করে ? বি. বো. ২০০৪] ১৩। একটি টানা তারে আড় কম্পনের ক্ষেত্রে প্রমাণ কর যে, $n=rac{1}{2l}\sqrt{rac{\mathrm{T}}{m}}$ । যখন রাশিগুলো প্রচলিত অর্ধবহন করে। [চ. বো. ২০০৬, ২০০০ ; य. বো. ২০০৪ ; ব. বো. ২০০৪ ; कृ. বো. ২০০২ ; य. বো. ২০০১ ; সি. বো. ২০০১] অথবা, প্রমাণ কর, $n = \frac{1}{\lambda} \sqrt{\frac{T}{m}}$ এখানে সংকেতগুলো প্রচলিত অর্থ বহন করে। (ঢা. বো. ২০০৬ ; রা. বো. ২০০৩ ; সি. বো. ২০০৩] ১৪। টানা তারে আড় তরচ্চোর বেগের রাশিমালা প্রতিপাদন কর। [সি. বো. ২০০৫; চ. বো. ২০০৪; ব. বো. ২০০২] অথবা, টানা তারে আড় তরন্ধা প্রবাহের বেগ $v=\sqrt{rac{\mathrm{T}}{m}}$ সমীকরণ প্রতিষ্ঠা কর। সংকেতগুলো প্রচলিত অর্ধ বহন করে। [ব. বো. ২০০৬ ; কৃ. বো. ২০০৫; ঢা. বো. ২০০৪; চ. বো. ২০০২ ; সি. বো. ২০০২ ; রা. বো. ২০০১] ১৫। সনোমিটারের সাহায্যে টানা তারের আড় কম্পনের দৈর্ঘ্য সূত্র প্রমাণ কর। বি. বো. ২০০৪] ১৬। তৃমি কিরুপে সনোমিটারের সাহায্যে একটি সুরশলাকার অজ্ঞাত কম্পাজ্ঞ নির্ণয় করবে _? কু. বো. ২০০৪] অথবা, সনোমিটারের সাহায্যে অজ্ঞানা কম্পাজ্ঞ নির্ণয়ের পম্বতি বর্ণনা কর। [D. (A]. 2000) ১৭। দেখাও যে, এক মুখ বন্ধ নল কেবল মূলসুরের অযুগ্ম হারমোনিক উৎপন্ন করে। [রা. বো. ২০০৬ ; ঢা. বো. ২০০৩] ১৮। দেখাও যে, দুই মুখ খোলা নলে মূল সুরের যুগা ও অযুগা উপসুর পাওয়া যায়। [য. বো. ২০০৬] গাণিতিক সমস্যাবলি ঃ ১। কোন শব্দের তীব্রতা প্রমাণ তীব্রতার 1000 গুণ। তাদের তীব্রতার পার্থক্য নির্ণয় কর। [উত্তর 8 30dB]

২। এমন দুটি শব্দের ডীব্রতার অনুপাত নির্ণয় কর যার একটি অপরটি অপেক্ষা 6 db বড়। [উঃ 3 98]


বইঘর.কম

়ত। কত তীব্রতার শব্দ $1 imes 10^{-9} \, \mathrm{Wm^{-2}}$ তীব্রতার শব্দ অপেক্ষা $17\mathrm{db}$ বড় হবে $\, ?$ [᠖ 5×10⁻⁸ Wm⁻²] ৪। একটি কক্ষের শব্দের তীব্রতা 10⁻⁷ watt m⁻²। শব্দের তীব্রতা তিনগুণ হলে নতুন তীব্রতা লেভেল নির্ণয় কর। [চ. বো. ২০০৬] [উত্তর ঃ 54.77 dB] ৫। একটি অ্যামপ্লিফায়ারের নিঃসৃত শব্দের ক্ষমতা 40 mW হতে 80mW এ পরিবর্তিত হলে শব্দের তীব্রতা লেভেলের পরিবর্তন কত ? [উত্তর ঃ 3 dB] ৬। $0.50~{
m m}$ একটি তারকে $50~{
m N}$ বল দ্বারা টান করে রাখা হল। তারের ভর $5 imes 10^{-3}~{
m kg}$ হলে এর মৌলিক কম্পাজ্জ কত হবে ? টিঃ 100 Hz] ৭। দুটি সুরশলাকা একত্রে শব্দায়িত করলে 3 সেকেণ্ডে 12টি বীটের সৃষ্টি হয়। একটি সুরশলাকা নির্দিষ্ট টানে টানা সনোমিটারের তারের 50 cm দৈর্ঘ্যের সাথে ঐক্যতানিক হয়। টান অপরিবর্তিত রেখে তারটির দৈর্ঘ্য 2 cm কমালৈ দ্বিতীয় সুরশলাকার সাথে ঐক্যতানিক হয়। সুরশলাকাদ্বয়ের কম্পাঙ্ক কত ? [장: 96 Hz ; 100 Hz] ৮। 50 cm ও 51 cm দৈর্ঘ্যবিশিষ্ট এক মুখ বন্ধ নলে প্রতি সেকেন্ডে 3টি বীট সৃষ্টি করে। বায়ুতে শব্দের বেগ বের কর। [সি. বো. ২০০৪] [উত্তর 🖁 306 ms⁻¹] ৯। কোন গ্যাসে 0.70 cm এবং 0.71 cm তরজ্ঞাদৈর্ঘ্যের দুটি শব্দতরজ্ঞা প্রতি সেকেন্ডে 7টি বীট উৎপন্ন করে। গ্যাসটিতে শব্দের বেগ বের কর। [উ: 348 ms⁻¹] ১০। 20 cm দীর্ঘ একটি তার কোন একটি সুরশলাকার সাথে ঐক্যতানে আছে। টান দ্বিগুণ করলে, ঐক্যতানে আসতে কত দৈর্ঘ্যের প্রয়োজন হবে ? [ቼঃ 35 4 cm] ১১। দুটি সুরেলী কাঁটাকে একত্রে শব্দায়িত করলে 0⁻2 s অন্তর অন্তর একবার প্রবল ও একবার দুর্বল শব্দ শোনা যায়। একটি সুরেলী কাঁটার কম্পাজ্ঞ 256 Hz হলে অপরটির কম্পাজ্ঞ কত ? [উঃ 261 Hz বা 251 Hz] ১২। দুটি সুর শালাকা A ও B একত্রে শব্দায়িত হলে প্রতি সেকেন্ডে 6টি বীট উৎপন্ন হয়। কিন্তু A-এর বাহুর ভর কিছু কমালে বীটের সংখ্যা হ্রাস পায়। B-এর কম্পাজ্ঞ 288 Hz হলে A-এর কম্পাজ্ঞ কত ছিল ? [উ: 282 Hz] ১৩। দুটি সুর শলাকা বায়ুতে 0.80 m ও 0.804 m তরচ্চা দৈর্ঘ্যের তরচ্চা উৎপন্ন করে। শলাকাদ্বয় একব্রে কাঁপালে প্রতি সেকেন্ডে 2টি বীট উৎপন্ন হয়। বায়ুতে শব্দের বেগ নির্ণয় কর। [উত্তর ঃ 312.54 Hz] ১৪। একটি নির্দিষ্ট দৈর্ঘ্যের তারকে 196N বল দারা টানলে এর কম্পাজ্ঞ 250 Hz হয়। তারটির দৈর্ঘ্য একই রেখে কত বল দ্বারা টানলে এর কম্পাব্ধ 512 Hz হবে ? [উত্তর ঃ 78'4 N] ১৫। 24 টি সুর শলাকা ক্রমবর্ধমান কম্পাঙ্কে সাজানো আছে। যে কোন একটি সুর শলাকা এর পূর্ববর্তী শলাকার সাথে সেকেন্ডে 4টি বীট উৎপন্ন করে এবং শেষ সুর শলাকা যদি প্রথমটির অষ্টক হয়, তাহলে প্রথম ও শেষ শলাকা দুটির কম্পাল্জ নির্ণয় কর। [장: 92 Hz ; 184 Hz] ১৬। একটি তারকে 3 kg ওন্ধনের বল দ্বারা টান দেয়া হলে এর থেকে 50 Hz কম্পাল্ডেকর মৌলিক সুর নির্গত হয়। তারটির একক দৈর্ঘ্যের ভর 0.009 kgm⁻¹ হলে তারটির দৈর্ঘ্য নির্ণয় কর। [উত্তর : 0 57 m] ১৭। 80 cm লম্মা একটি তারকে 80N বল দারা টানা হল। যদি তারের তুর 8g হয় তবে মৌলিক কম্পান্ধক কত ? | উত্তর \$ 55'9 Hz) ১৮। দুটি সুর শলাকা A ও B প্রতি সেকেন্ডে 5টি বীট উৎপন্ন করে। B-কে খানিকটা ঘষা হলে পুনরায় প্রতি সেকেন্ডে 5টি বীট উৎপন্ন হবে। A-এর কম্পাজ্ঞ 512 Hz হলে ঘষার পূর্বে ও পরে B-এর কম্পাজ্ঞ নির্গয় কর। [507 Hz 영 517 Hz] ১৯। 50 cm লম্মা একটি তারকে 50 N বল দ্বারা টানা হল। যদি তারের ডর 5 g হয় তবে এর মৌলিক কম্পাজ্ঞ নির্ণয় কর। রা. বো. ২০০১ ; সি. বো. ২০০২] [উত্তর ঃ 71Hz] ২০। একটি তারের ভর 4 g এবং দৈর্ঘ্য 80 cm। তারটিকে কত বল দ্বারা টানা দিলে এর আড় কম্পনে সৃষ্ট প্রথম উপসুরের কম্পাজ্ঞ 256 Hz হবে ? [উন্তর 8 209'7 N] ২১। দুটি একই ধরনের তার সমকম্পাল্জে আড় কম্পনে কম্পিত হচ্ছে। যখন একটি তারের টান 201% বৃষ্ণি করা হয় এবং তার দুটিকে একত্রে কম্পিত করা হয়, তখন প্রতি সেকেন্ডে 3টি বীট উৎপন্ন হয়। তার দুটির প্রারম্ভিক কম্পাজ্ঞ নির্ণয় হুর।

[উত্তর ঃ 300Hz]

২২। 4 × 103 kgm⁻³ ঘনত্ব বিশিষ্ট এবং 100 cm দীর্ঘ একটি টানা তারকে 30N বল দ্বারা টানা হল। এর কম্পাজ্জ বের কর। [তারের প্রস্থচ্ছেদের ক্ষেত্রফল 1 mm²]! [উखत : 43'3Hz] ২৩। দুটি সুর শলাকা একই সাথে ধ্বনিত হলে প্রতি সেকেন্ডে 5টি বীট দেয়। একটি সুর শলাকা নির্দিষ্ট টানে টানা দেয়া ভারের 1 30m দৈর্ঘ্যের সাধে এবং অপরটি উক্ত তারের 1 28 দৈর্ঘ্যের সাথে ঐক্যতানে থাকে। সুর শলাকা দুটির কম্পাজ্ঞ কত 🤉 [ঢা. বো. ২০০৬] [উত্তর ঃ 320 Hz, 325 Hz] ২৪। দুটি শব্দ তরজোর দৈর্ঘ্য 1 m এবং 1 01 m। তরজ্ঞা দুটি একটি গ্যাসে 3 s-এ 10টি বীট উৎপন্ন করে। শব্দের কো কত ? [₲: 336 66 ms⁻¹] ২৫। দুটি সুর শলাকা A ও B একসাথে শদ্দায়িত হলে প্রতি সেকেন্ডে 5 বার প্রবল ও 5 বার দুর্বল শব্দ শোনা যায়। A-এর এক বাহুতে এক খন্ড তার জড়ায়ে দিলে বীট উৎপত্তির হার বৃদ্ধি পায়। B-এর কম্পাব্ব্ব 320 Hz হলে A-এর প্রকৃত কম্পাজ্ঞ নির্ণয় কর। [5: 315 Hz] ২৬। A সুর শলাকার কম্পাজ্ঞ 320 Hz I A ও B সুর শলাকাদ্বয়কে একসাধে বাজালে প্রতি সেকেন্ডে 4টি বীট শোনা যায়। A-কে কিছু ঘবে A ও B-কে পুনরায় এক সাথে বাজালে প্রতি সেকেন্ডে 5টি বীট শোনা যায়। B সুর শলাকার কম্পাজ্ঞ নির্ণয় কর। [58 316 Hz] ২৭। এক মিটার দীর্ঘ একটি টানা কম্পনরত তারের মূল সূরের কম্পাব্বু 250 Hz। তারে প্রবহমান তরন্ধা দৈর্ঘ্য ও তরক্তোর বেগ নির্ণয় কর। [5: 2 m 3 500 ms⁻¹] ২৮। একটি তারের দৈর্ঘ্য 1 m, ব্যাস 0'001 m ও টান 107'8 N। তারের উপাদানের আপেক্ষিক গুরুত্ব 7 হলে তারের মূল সুরের কম্পাঙ্ক নির্ণয় কর। (S: 70 Hz) ২৯। একটি সনোমিটারের তারটিকে কোন বন্ধ দ্বারা টানা হল। যদি টানা বল 9 গুণ এবং একই সাথে তারের দৈর্ঘ্য দ্বিগুণ করা হয় তবে পরিবর্তনের পূর্বের ও পরের কম্পাঙ্কের অনুপাত নির্ণয় কর। [উঃ 2 ঃ 3] ৩০। একটি সনোমিটারের তার 350Hz কম্পাঙ্কের একটি টিউনিং ফর্কের সাথে ঐক্যতানে থাকে। তাদের টান ঠিক রেখে সনোমিটারের তারের দৈর্ঘ্য 1.5% বৃষ্ণি করলে প্রতি সেকেন্ডে কয়টি বীট শোনা যাবে ? [কু. বো. ২০০৬] [উত্তর ঃ 5] ৩১। আড় কম্পনে কম্পনরত একটি টানা তারের কম্পাঙ্ক 180 Hz। তারটির টান 9 ঃ 25 জনুপাতে এবং দৈর্ঘ্য 2 ঃ 3 অনুপাতে বাড়ালে তারের কম্পাব্দ কত হবে ? डिः 200 Hz] ৩২। 0:40 m দৈর্ঘ্যের একটি তার 2 kg ভরের ওজনের সমান বল দ্বারা টানলে তারটি সুর শলাকার সাথে সমসুরে থাকে। যদি টান বাড়িয়ে 2[·]5 kg ভরের ওঙ্গনের সমান করা হয় তবে তারটির দৈর্ঘ্য কত পরিবর্তন করলে তা পুনরায় শলাকাটির সাথে সম-সুরে থাকবে নির্ণয় কর। [উঃ 0[.]0472 m বৃষ্ণি করতে হবে] ৩৩। টানা দেওয়া একটি তারের সুরের সাথে একটি টিউনিং ফর্কের সাথে একমিল দেখা যায়। তারটির টান চারগৃণ বৃন্দি করলে তার কত দৈর্ঘ্য পুনরায় টিউনিং ফর্কের সাথে একমিল হবে ? [উঃ দ্বিগুণ] ৩৪। ইস্পাত ও রূপার তৈরি দুটি সমান ব্যাস ও দৈর্ঘ্যের তার একই টানে টানা আছে। ইস্পাতের তারটির মূল সুরের কম্পাঙ্ক 200 Hz হলে রূপার তারটির ঐ সুরের কম্পাঙ্ক নির্ণয় কর। ব্রিপা ও ইস্পাতের ঘনত্ব যথাক্রমে 10.4×10^3 kg m⁻³ 7.8×10^3 kg m⁻³] [উঃ 173 Hz] ৩৫। 0'88 m দৈর্ঘ্য ও 0'001 kg'ভরের একটি তারের টান 55 N। তারটি 5টি নৃপে বা বৃন্তাকার অংশে বিভক্ত হয়ে [5: 625 Hz] কাম্পত হলে তারের কম্পাজ্ঞ নির্ণয় কর। ৩৬। একটি দুই মুখ খোলা নলের মূল সুরের কম্পাঙ্ক 300 Hz। এ নলের প্রথম উপসুরের কম্পাঙ্ক একটি একমুখ বন্ধ নলের প্রথম উপসুরের কম্পাজ্জের সমান। নল দুটির দৈর্ঘ্য নির্ণয় কর। [5: 0.41 m • 0.309 m] [বায়ুতে শব্দের বেগ = 247^{.5} ms⁻¹] ৩৭। কোন একটি সীমাবন্ধ মাধ্যমে সৃষ্ট দুটি স্থির তরজোর কম্পাক্ষ 320 Hz। তরজোর পর পর দুটি নিঃশব্দ বিন্দুর [🗗 320 ms⁻¹] দূরত্ব 0.50 m। মাধ্যমে তরজ্ঞার বেগ নির্ণয় কর।

¢88

১৯[.]১ সুচনা Introduction

পূর্বেই আমরা জেনেছি যে কোন কম্পমান বস্তু দ্বারা সৃষ্ট অনুদৈর্ঘ্য তরজাই শব্দ। জড় মাধ্যমের মধ্য দিয়ে শব্দ তরজা আকারে নির্দিষ্ট বেগে গমন করে। শব্দ সঞ্চালনের জন্য মাধ্যম অত্যাবশ্যক। শূন্য মাধ্যমে শব্দ উৎপন্ন হয় না এবং শব্দ চলাচল করতে পারে না। বিভিন্ন মাধ্যমে শব্দের বেগ বিভিন্ন হয়। বায়ু বা শূন্য মাধ্যম অপেক্ষা কঠিন ও তরল মাধ্যমে শব্দের বেগ বেশি হয়। শব্দ যেহেতু তরজা, তাই এর কম্পাজ্ক রয়েছে। শব্দের উৎস এবং শ্রোতার মধ্যে আপেক্ষিক গতি থাকলে শ্রোতার কাছে শব্দ তরজোর আপাত কম্পাজ্ক এর প্রকৃত কম্পাজ্জ হতে ভিন্নতর মনে হয়। কম্পাজ্জের এ আপাত পরিবর্তন ডপলার ক্রিয়া বা প্রভাব (Doppler effect) নামে পরিচিত।

এ অধ্যায়ে আমরা শব্দের বেগ সম্পর্কীয় নিউটনের সূত্র, এ সূত্রের সংশোধন, শব্দের বেগের উপর তাপমাত্রা, আর্দ্রতা ও চাপের প্রভাব, শব্দের বেগ নির্ণয় পন্ধতি, ডপলার ক্রিয়া ইত্যাদি আলোচনা করব।

১৯·২ শব্দের বেগ Velocity of sound

শব্দ তরজা আকারে মাধ্যমের মধ্য দিয়ে একস্থান থেকে অন্যস্থানে গমন করে। শব্দ এক সেকেন্ডে যতটুকু দূরত্ব অতিক্রম করে তাই শব্দের বেগ <u>যোভাবিক চাপ ও তাপমাত্রায় শব্দের বেগ প্রায় 332 ms⁻¹। এ বেগ আলোর</u> বেগের তুলনায় খুবই কম। তাই আকাশে মেঘের ঘর্ষণে বদ্ধনিনাদ এবং বিদ্যুৎ চমক একই সময়ে সৃষ্টি হলেও বদ্ধপাতের শব্দ বিদ্যুৎ ঝলকানি দেখার বেশ কিছু সময় পরে আমাদের কানে এসে পৌছায়। আলোকের বেগ শব্দের বেগ অপেক্ষা বহুগুণ বেশি বলেই এ ঘটনা ঘটে।

শব্দের বেগ নির্ণয়ের বিভিন্ন পম্ধতিকে দু'ভাগগে ভাগ করা হয়েছে। যথা–(১) তত্ত্বীয় পদ্ধতি এবং (২) পরীক্ষাগার পদ্ধতি। বিখ্যাত বিজ্ঞানী নিউটন তত্ত্বীয় পদ্ধতি প্রদান করেন। একে শব্দের বেগের জন্য নিউটনের সূত্র বলা হয়। তিনটি পরীক্ষাগার পদ্ধতি রয়েছে। এখানে আমরা অনুনাদ বায়ুস্তম্ড পদ্ধতি আলোচনা করব।

১৯৩ শব্দৈর বেগ সম্পর্কিত নিউটনের সূত্র Newton's law for the velocity of sound

আমরা জানি, শব্দ সঞ্চালনের জন্য স্থিতিস্থাপক ও অবিচ্ছিন্ন (continuous) মাধ্যমের প্রয়োজন। তরজ্ঞা প্রবাহে মাধ্যমের কণাগুলো পর্যায় গতিতে দুলতে থাকে এবং যে কোন কণার বিচলন পরবর্তী মুহূর্ত্তে পার্শ্ববর্তী কণায় সঞ্চালিত হয়। কোন মাধ্যমে এ তরজ্ঞা গতির বেগ বা দ্রুতি মাধ্যমের ঘনত্ব ও স্থিতিস্থাপকতার উপর নির্ভর করে। বিখ্যাত বিজ্ঞানী স্যার আইজ্যাক নিউটন গাণিতিকভাবে দেখান যে, শব্দের বেগ মাধ্যমের স্থিতিস্থাপক গুণাজ্ঞের বর্গমূলের সমানুপাতিক এবং ঘনত্বের বর্গমূলের ব্র্যস্তর্নির্পান্তিক। তিনি প্রমাণ করেন যে, E স্থিতিস্থাপক গুণাজ্ঞ এবং ρ ঘনত্ববিশিষ্ট কোন মাধ্যমে লম্বিক তরজোর সৃষ্টি হলে এ তরজোর বেগ,

$$v = \sqrt{\frac{E'}{\rho}} = \sqrt{\pi t}$$
মাধ্যমের $\frac{\sqrt{2}}{\sqrt{2}} \sqrt{\sqrt{2}}$

লম্বিক শব্দ তরজ্ঞা প্রবাহে কঠিন পদার্থের অস্থায়ী দৈর্ঘ্য পরিবর্তন হয়। এজন্য কঠিন পদার্থের ক্ষেত্রে স্থিতিস্থাপক গুণাজ্ঞ E-কে ইয়ৎ্ব-এর গুণাংক Y দ্বারা নির্দেশ করা হয়। সুতরাং কঠিন পদার্থে লম্বিক শব্দ তরজ্ঞোর বেগ,

$$v = \sqrt{\frac{2.205 \times 10^{11}}{7.85 \times 10^3}}$$
 মিটার /সে. = 5300 ms⁻¹

তরল অথবা গ্যাসীয় মাধ্যমে শব্দ তরজা প্রবাহের দরুন মাধ্যমের অস্থায়ী আয়তনের পরিবর্তন ঘটবে এবং মাধ্যমের স্থিতিস্থাপক গুণাজ্ঞক E আয়তনের স্থিতিস্থাপক গুণাজ্ঞক K দ্বারা নির্দেশ করতে হবে। সুতরাং তরল অথবা গ্যাসীয় মাধ্যমে শব্দের বেগ,

$$v = \sqrt{\frac{K}{\rho}}$$
(3)

পানির আয়তনের স্থিতিস্থাপক গুণাচ্চন্দ $K = 2.23 \times 10^9 \ \mathrm{Nm^{-2}}$ এবং ঘনত্ $\rho = 1 \times 10^3 \ \mathrm{kgm^{-3}}$ কাজেই পানির মধ্যে শন্দের বেগ

$$v = \sqrt{\frac{K}{\rho}} = \sqrt{\frac{2.23 \times 10^9}{10^3}} = 1493 \,\mathrm{ms}^{-1}$$

১৯৪ বায়ু বা গ্যাসীয় মাধ্যমে শব্দের বেগ সম্পর্কীয় নিউটনের সূত্র প্রতিপাদন

Derivation of Newton's formula for the velocity of sound in air or gases

বায়ু বা গ্যাসীয় মাধ্যমে শব্দের বেগ সম্পর্কিত সূত্র নিরূপণে নিউটন ধারণা করেছিলেন মে গ্যাসের মধ্য দিয়ে তরজ্ঞার সঞ্চালনকালে মাধ্যমের প্রসারণ ও সজ্জোচন খুব ধীরে ধীরে ঘটে। ফলে মাধ্যমের তাপমাত্রার কোন পরিবর্তন হয় না। অর্থাৎ শব্দ তরজা সঞ্চালনের সময় মাধ্যমের চাপ ও আয়তনের পরিবর্তন সমোষ্ণ ভবস্থায় ঘটে। সুতরাৎ মাধ্যমের চাপ ও আয়তন পরিবর্তনের জন্য এক্ষেত্রে বয়েলের সূত্র প্রযোজ্য।

ধরা যাক সমোষ্ণ প্রক্রিয়ার জন্য কোন নির্দিষ্ট ভরের গ্যাসের চাপ P এবং আয়তন V হলে, বয়েলের সূত্রানুযায়ী,

V-এর সাপেক্ষে ব্যবকলন করে আমরা পাই,

$$\frac{d}{dV} (PV) = 0$$

বইঘর.কম

বা,
$$P + V \frac{dP}{dV} = 0$$

বা, $P = -V \frac{dP}{DV} = -\frac{dP}{dV/V}$ (এখানে ঋণত্মক চিহ্নু দ্বারা চাপ বৃদ্ধি পেলে আয়তন হ্রাস

পেলে আয়তন বৃদ্ধি বুঝায়)।

, = চাপের পরিবর্তন আয়তনের পরিবর্তন/আদি আয়তন = আয়তন পীড়ন আয়তন বিকৃতি = গ্যাসের আয়তন গুণাজ্ঞক, K

অর্ধাৎ আয়তনের স্থিতিস্থাপক গুণাজ্ঞক, K = প্রকৃত চাপ, P

$$v = \sqrt{\frac{K}{\rho}} = \sqrt{\frac{P}{\rho}}$$

তরজ্ঞা সঞ্চালনকালে মাধ্যমের প্রসারণের জন্য অনুরূপভাবে প্রকাশ করা যায়,

অর্থাৎ
$$v = \sqrt{\frac{K}{\rho}} = \sqrt{\frac{P}{\rho}}$$

.. বায়ু বা গ্যাসীয় মাধ্যমে শব্দের বেগ

$$v = \sqrt{\frac{\mathbf{P}}{\rho}}$$
(4)

বায়ু বা গ্যাসীয় মাধ্যমে এটিই শব্দের বেগের জন্য নিউটনের সূত্র।

এই সূত্র হতে ষাভাবিক তাপমাত্রায় এবং চাপে বায়ুতে শব্দের বেগ নির্ণয় করা যায়। ষাভাবিক তাপমাত্রায় অর্থাৎ 0°C তাপমাত্রায় বায়ু চাপ, $P_0 = 0.76 \times (13.6 \times 10^3) \times 9.81 \text{ Nm}^{-2}$ এবং বায়ুর ঘনত্ব $\rho_0 = 0.001293 \times 10^3 \text{ kgm}^{-3}$ । যদি ষাভাবিক তাপমাত্রায় এবং চাপে বায়ুতে শব্দের বেগ v_0 হয়, তবে সমীকরণ (4) অনুসারে

$$v_{0} = \sqrt{\frac{P_{0}}{\rho_{0}}} = \sqrt{\frac{0.76 \times 13.6 \times 10^{3} \times 9.81}{0.001293 \times 10^{3}}} \text{ ms}^{-1} = 280 \text{ ms}^{-1} \text{ (SIN)}, 152.62 \text{ (SIN)}, 167.83 \text{ (SI$$

কিন্তু এই মান পরীক্ষালম্ব মান অপেক্ষা অনেক কম। ষাভাবিক চাপ এবং তাপমাত্রায় বায়ুর্তে শব্দের বেগের পরীক্ষালম্ব মান 332 ms⁻¹। এই গরমিল হতে সিম্ণান্ত গ্রহণ করা যায় যে, নিউটনের ধারণায় কোথাণ্ড ব্রুটি রয়েছে।

১৯৫ ল্যাপ্লাস কর্তৃক নিউটনের সূত্র সংশোধন Laplace's correction of Newton's formula

নিউটনের সূত্রানুসারে গ্যাসে শব্দের বেগের তাত্ত্বিক মান ও পরীক্ষালব্ধ মানের মধ্যে একটি বিরাট গরমিল পরিলক্ষিত হয়। বিজ্ঞানী নিউটন এর কোন ব্যাখ্যাও প্রদান করেননি। প্রায় 120 বছর পর 1817 খ্রিস্টাব্দে ফরাসি গণিতবিদ ল্যাপ্লাস যথাযথ ব্যাখ্যাসহ গ্যাসীয় মাধ্যমে শব্দের বেগ সম্পর্কিত নিউটন-এর সূত্রের প্রয়োজনীয় সংশোধন প্রদান করেন। এ সংশোধন **ল্যাপ্লাসের সংশোধন** নামে পরিচিত।

নিউটনের মতে গ্যাসীয় মাধ্যমের মধ্য দিয়ে শব্দ সঞ্চালনের সময় মাধ্যম অতীব ধীরে ধীরে সজ্জুচিত ও প্রসারিত হয়। ফলে মাধ্যমের তাপমাত্রার কোন পরিবর্তন ঘটে না। অতএব গ্যাসীয় মাধ্যমে শব্দের বিস্তার সমোক্ষ তাপীয় (Isothermal) প্রক্রিয়ায় হয় এবং এই প্রক্রিয়া বয়েলের সূত্র মেনে চলে। নিউটনের ধারণার ত্রুটি হিসেবে ল্যাপ্লাস উল্লেখ করেন যে, গ্যাসীয় মাধ্যমের মধ্য দিয়ে শব্দ সঞ্চালনের সময় মাধ্যমের সংকোচন ও প্রসারণ অত্যন্ত দুত সংঘটিত হয় এবং এতে মাধ্যমের তাপমাত্রার পরিবর্তন ঘটে। যেহেতু গ্যাসের তাপ পরিবহণ ও বিক্রিগ ক্ষমতা নিতান্তই কম, সেহেতু সংকোচনের সময় সৃষ্ট তাপ মাধ্যমের এ অংশেই আবন্ধ থাকে পরবর্তী প্রসারণ শৃত্ন হবার পূর্বেই পার্শ্ববর্তী স্তরে সঞ্চালিত হবার অবকাশ পায় না। অনুরূপভাবে প্রসারণের সময় মাধ্যমের প্রমায় প্রসারিত স্তরের তাপমাত্রা হাস পেয়ে শৈত্যের উদ্ভব হয় এবং পরবর্তী সংকোচন শৃত্র হবার পূর্বে পার্শ্ববর্তী স্তর হতে তাপ দ্রুত প্রবাহিত

অথবা চাপ হ্রাস

উচ্চ মাধ্যমিক পদার্থবিজ্ঞান BG & JEWEL

হয়ে তাপমাত্রার সমতা বজায় রাখতে পারে না। ফলে গ্যাসীয় মাধ্যমে শব্দের বিস্তারকালে মাধ্যমের চাপ ও আয়তনের পরিবর্তন বয়েলের সূত্রানুযায়ী না হয়ে **রুম্ধতাপ** (Adiabatic) প্রক্রিয়ায় সংঘটিত হয়। এ পরিবর্তন একটি নির্দিষ্ট ভরের কোন গ্যাসের চাপ P ও আয়তন V-এর মধ্যে সম্পর্ক হবে,

PV ^γ = K = একটি ধ্ব সংখ্যা

এক পরমাণুবিশিষ্ট গ্যাসের (আর্গন, নিয়ন ইত্যাদি) ক্ষেত্রে, γ = 1'66 এবং দ্বি-পরমাণুবিশিষ্ট গ্যাসের (হাইড্রোজেন, অক্সিজেন ইত্যাদি) ক্ষেত্রে, γ = 1'41.

Z

রুম্বতাপ প্রক্রিয়ার ক্ষেত্রে,

$$PV^{\gamma} = \mathfrak{L} \overline{q} \overline{q} \overline{q}$$

এখন V-এর সাপেক্ষে অবকলন করে পাই,
 $V^{\gamma} \frac{dP}{dV} + P. \gamma \quad V^{\gamma-1} = 0$
 $V^{\gamma-1}$ দিয়ে ভাগ করে পাই,
 $V. \frac{dP}{dV} + \gamma \cdot P = 0$
বা, $\frac{dP}{-dV} = \gamma \quad P$

কিন্তু আয়তনের স্থিতিস্থাপক গুণাজ্ঞ

$$K = \frac{dP}{\frac{-dV}{V}}$$
$$K = \gamma . P$$

সুতরাং গ্যাসীয় মাধ্যমে শব্দের বেগ

$$v = \sqrt{\frac{K}{\rho}}$$

$$v = \sqrt{\frac{\gamma P}{\rho}}$$

বায়ুর ক্ষেত্রে $\gamma = 1.41$ । কাজেই যাভাবিক চাপ ও তাপমাত্রায় P = $0.76 \times 13.6 \times 10^3 \times 9.81$ Nm⁻² ও $\rho = 0.001293 \times 10^3$ kg m⁻³।

$$v = \sqrt{\frac{1.41 \times 0.76 \times 13.6 \times 10^3 \times 9.81}{0.001293 \times 10^3}} = 332.52 \text{ ms}^{-1}$$

এটি শব্দের বেগের পরীক্ষালব্ধ মানের প্রায় সমান যা ল্যাপ্লাসের শুন্দ্বি বা সংশোধনের সত্যতা প্রমাণ করে। শব্দের বেগের উপর চাপ, তাপমাত্রা, মাধ্যমের ঘনত্ত্ব, আর্দ্রতা এবং বায়ুপ্রবাহের প্রভাব আছে কিনা তা জ্ঞানা আবশ্যক। এখানে শব্দের বেগের উপর আর্মরা তাপমাত্রা, আর্দ্রতা ও চাপের প্রভাব আলোচনা করব।

১৯৬ শব্দের বেগের উপর তাপমাত্রা, আর্দ্রতা ও চাপের প্রভাব Effect of temperature, humidity and pressure on the velocity of sound তাপমাত্রার প্রভাব (Effect of temperature) ঃ তাপমাত্রার পরিবর্তনে বায়ুর ঘনত্ব এবং সাথে সাথে বায়ুতে শব্দের বেগ পরিবর্তিত হবে। বায়ুর তাপমাত্রা বৃদ্ধি পেলে ঘনত্ব হ্রাস পাবে এবং সাথে সাথে শব্দের বেগ বুদ্ধি পাবে। আবার বায়ুর তাপমাত্রা হ্রাস পেলে ঘনত্ব বৃদ্ধি পাবে এবং শব্দের বেগ কমে যাবে।

মনে করি একটি নির্দিষ্ট চাপ P-এ 0°C ও t° 🖓 স্ট্রিমি ফ্রীট্রায় বায়ুর (বা কোন একটি গ্যাসের) ঘনত্ব যথাক্রমে ho_0 ও ho_t এবং বায়ু মাধ্যমে শব্দের বেগ যথাক্রমৈ v_o ও v_t সুতরাং,

$$v_0 = \sqrt{\frac{\gamma P}{\rho_0}} \tag{5}$$

এবং $v_t = \sqrt{\frac{\gamma P}{\rho_t}}$

সমীকরণ (6)-কে সমীকরণ (5) দ্বারা ভাগ করে পাই, $\frac{v_t}{v_0} = \sqrt{\frac{\rho_0}{\rho_t}}$

থেহেতু,
$$\rho_0 = \rho_t (1 + \alpha t) = \rho_t \left(1 + \frac{t}{273}\right)$$

 $\alpha = 300$ সের আয়েছের প্রচারেণ, গণ্ডাক্র = $\frac{1}{1}/3$

 $\alpha =$ গ্যানের আয়তন প্রসারণ গুণাজ্ঞ = $\frac{1}{273}$ /°C

স্তরাং,
$$\frac{v_t}{v_0} = \sqrt{\frac{\rho_t(1+\alpha t)}{\rho_t}} = \sqrt{1+\alpha t}$$

বা, $v_t = v_0 \sqrt{1+\alpha t}$ (7)

$$=\sqrt{1+\frac{t}{273}} \tag{8}$$

ম 273 N T₀
জর্বাৎ,
$$\frac{v_t}{v_0} = \sqrt{\frac{T}{T_0}}$$
 (9)

এখানে, T ও T₀ হচ্ছে t°C ও 0°C তাপমাত্রার আনুষষ্ঠিাক পরম তাপমাত্রা। ′ সুতরাং, v ∝ √T

সিম্পান্ত ঃ বায়ু বা গ্যাসীয় মাধ্যমে শব্দের বেগ পরম তাপমাত্রার বর্গমূলের স্বমানুপাতিক, অর্থাৎ তাপমাত্রা বৃদ্ধি পেলে সন্দের বেগ বৃদ্ধি পায়।

এখন দেখা যাক, প্রতি ডিগ্রী সেন্টিগ্রেড তাপমাত্রা বৃন্দিতে কোন গ্যাসে শব্দের বেগ বৃন্দির পরিমাণ ৰুত।

সমীকরণ (14) হতে পাই,

$$v_t = v_0 \left(1 + \frac{t}{273} \right)^{\frac{1}{2}}$$
 [বায়ুর ক্ষেত্রে, $\alpha = \frac{1}{273} / °C$ বা, $\alpha = 0.00366 / °C$]

সাধারণ তাপমাত্রায় $\frac{t}{273}$ -এর উচ্চ ঘাতগুলো উপেক্ষা করে লেখা যায়,

$$v_{t} = v_{0} \left(1 + \frac{1}{2} \times \frac{t}{273} \right)^{\frac{1}{2}} = v_{0} \left(1 + \frac{1}{2} \alpha t \right)$$

$$\overrightarrow{al}, \quad v_{t} = v_{0} \left(1 + \frac{t}{546} \right),$$

$$\overrightarrow{al}, \quad v_{t} = v_{0} \left(1 + 0.00183t \right)$$

$$\overrightarrow{al}, \quad v_{t} = 332(1 + 0.00183t)$$

$$= (332 + 332 \times 0.00183t)$$

$$= (332 + 0.61t) \text{ ms}^{-1}$$
(10)

(6)

সমীকরণ 10(a) হতে দেখা যাচ্ছে যে, বাতাসের ক্ষেত্রে প্রতি ডিগ্রী তাপমাত্রা বৃষ্ধির জন্য শব্দের বেগ 0.61m বৃষ্ধি পায়।

উল্লেখ্য ঃ সাধারণ তাপমাত্রার ক্ষেত্রে সমীকরণ (10) প্রযোজ্য। অজ্ঞাত বা যে কোন তাপমাত্রার ক্ষেত্রে সমীকরণ (7), (8) অথবা (9) প্রযোজ্য।

জার্দ্রতার প্রভাব (Effect of humidity) ঃ শব্দের বেগের উপর আর্দ্রতার প্রভাব আলোচনা করতে গিয়ে ধরি P পারদ চাপে ও t°C তাপমাত্রায় শুক্ষ ও আর্দ্র বায়ুতে শব্দের বেগ যথাক্রমে v_d ও v_m এবং বায়ুর ঘনত্ব যথাক্রমে ρ_d ও ρ_m । অতএব আমরা পাই,

$$v_d = \sqrt{\frac{\gamma P}{\rho_d}} \tag{11}$$

$$v_m = \sqrt{\frac{\gamma P}{\rho_m}}$$
(12)

$$\frac{v_d}{\rho_m} = \sqrt{\frac{\rho_m}{\rho_m}}$$

$$\sqrt[\mathbf{v}_m]{v_m} = \sqrt{\frac{\rho_m}{\rho_d}}$$

$$\boxed{\mathbf{A}}, v_d = v_m \sqrt{\frac{\rho_m}{\rho_d}}$$
(13)

আমরা জানি জলীয় বাম্প বায়ু অপেক্ষা হালকা। বায়ুতে জলীয় বাম্পের পরিমাণ অধিক হওয়া অর্থ বায়ু আর্দ্র হওয়া। বায়ু আর্দ্র হওয়া অর্থ বায়ুর ঘনত্ব হ্রাস পাওয়া।

$$ho_d >
ho_m \qquad rac{
ho_m}{
ho_d} < 1$$
কাজেই, $rac{v_d}{v_m} = \sqrt{rac{
ho_m}{
ho_d}} < 1$

 $v_d < v_m$

আবার গ্যাসীয় মাধ্যমে শব্দের বেগ তার ঘনত্বের বর্গমূলের ব্যস্তানুপাতিক সুতরাং সমীকরণ (13) হতে অতি সহজে বলা যায় যে, শুক্ষ বায়ু অপেক্ষা আর্দ্র বায়ুতে শব্দের বে<u>গ বেশি।</u>

সিম্পান্ত : বায়ুর আর্দ্রতা বৃদ্ধি পেলে শব্দের বেগ বৃদ্ধি পায়। অর্থাৎ আর্দ্র বায়ুতে শব্দের বেগ বেশি, শুক্ষ বায়ুতে শব্দের বিগ কম।

চাপের প্রভাব : ধরা যাক, m ভরের কোন গ্যাসের উপর চাপ P_1 এবং গ্যাসের আয়তন V_1 । স্থির তাপমাত্রায় চাপ P_1 হতে P_2 -তে পরিবর্তিত হলে আয়তন V_2 হয়। তাহলে বয়েলের সূত্রানুয়ায়ী,

$$\begin{split} P_1 V_1 &= P_2 V_2 \\ \text{ জাবার জামরা জানি, ঘনতা, } \rho_1 &= \frac{m}{V} \quad \text{ বা, } V = \frac{m}{\rho} \\ V_1 &= \frac{m}{\rho_1} \quad \text{udv} \quad V_2 = \frac{m}{\rho_2} \qquad [\because m \text{ জপরিবর্তিত]} \\ \text{সুতরাং } \frac{P_1 m}{\rho_1} = \frac{P_2 m}{\rho_2} \\ \text{ din, } \frac{P_1}{\rho_1} = \frac{P_2}{\rho_2} = \text{gas} \\ \text{ ordin a fifted formula the fifted of the second sec$$

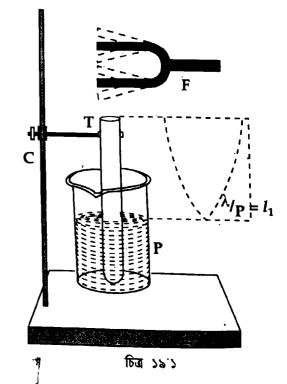
 $v = \sqrt{\frac{\gamma P}{\rho}}$ সূত্রে সেহেতু $\frac{P}{\rho}$ অনুপাতটি ধ্রুব থাকে এবং γ -এর মান কোন গ্যাসের জন্য নির্দিষ্ট কাজেই আমরা বলতে পারি যে, স্থির তাপমাত্রায় চাপের পরিবর্তনের জন্য শব্দের বেগের কোন পরিবর্তন হয় না।

অর্ধাৎ, স্ধির তাপমাত্রায় শব্দের বেগের উপর গ্যাসের চাপের কোন প্রভাব নেই।

১৯.৭ অনুনাদ বায়ুস্তম্ভ পম্পতিতে শব্দের বেগ নির্ণয় Determination of velocity of sound by resonance air column method

এই পম্ধতি আলোচনা করার পূর্বে অনুনাদ ও অনুনাদ বায়ু স্তম্ড কি জানা দরকার। অনুনাদ (Resonance)

একটি কম্পমান বস্তুকে অন্য একটি বস্তুর নিকট ধরলে দ্বিতীয় বস্তুটি কাঁপতে শুরু করে। যদি বস্তুর বাতাবিক পর্যায়কাল ও প্রযুক্ত কম্পন বা বলের পর্যায়কাল ভিনু হয়, তবে বস্তু ক্ষুদ্র বিস্তারে কাঁপবে। কিস্তু যদি বস্তুর স্বাতাবিক পর্যায়কাল ও তার উপর প্রযুক্ত বলের পর্যায়কাল সমান হয়, তবে বস্তুটি বৃহত্তর বিস্তারে কাঁপতে বাধ্য হয় এবং শব্দের প্রাবন্য বৃম্ধি পায়। এ ধরনের কম্পনকে অনুনাদ বলে। সূতরাং অনুনাদ পরবশ কম্পনের একটি বিশেষ অবস্থা। এ ক্ষেত্রে বাহ্যিক বলের দোলন কাল বাধিত বস্তুর দোলন কালের সমান হওয়ায় বাধিত বস্তু সজোরে কম্পিত হয় এবং শব্দের প্রাবং শব্দের প্রাবন্য বৃদ্ধি পায়। একে সমবেদী কম্পনও বলা হয়। মনে রাখতে হবে অনুনাদে উভয়ের পর্যায়কাল একই হতে হবে।


অনুনাদ বায়ুস্তম্ড ঃ কোন বায়ুস্তম্ভের স্বাভাবিক কম্পনের পর্যায়কাল তার উপর আরোপিত পর্যায় বলের পর্যায়কালের সমান হলে এ বায়ুস্তম্ড সর্বাপেক্ষা বৃহৎ বিস্তারে কেঁপে প্রবল শব্দের সৃষ্টি করে। বায়ুস্তম্ডে এ অবস্থায় অনুনাদের সৃষ্টি হয়। এই বায়ুস্তম্ডকে অনুনাদ বায়ুস্তম্ড বলে।

অনুনাদ বায়ুস্তম্ত পম্বতিতে শব্দের বেগ নির্ণয় (Determination of velocity of sound by resonance air column method)

যন্ত্রের বর্ণনা ঃ অনুনাদ বায়ুস্তম্ত পম্ধতিতে দুই মুখ খোলা আগা-গোড়া সমান প্রস্থচ্ছেদবিশিষ্ট একটি ফাঁপা ধাতব বা কাচনল T থাকে [চিত্র ১৯ ১] এর নাম অনুনাদ নল। এর নিম্ন প্রান্তকে $rac{2}{3}$ অংশ পানিতে ভর্তি একটি লম্মা কাচ পাত্র P-এ ডুবিয়ে একটি দণ্ড C-এর সাহায্যে নলটিকে খাড়াভাবে স্থাপন করি।

কার্যপম্ধতি : নির্দিষ্ট কম্পাজ্জবিশিষ্ট একটি সুর শলাকা F লই। একে রবার প্যাডে আঘাত করে অনুনাদী নলের উন্যুক্ত প্রান্তের নিকটে ধরি। এতে নলের মধ্যস্থিত বায়ুতে পরবশ কম্পনের সৃষ্টি হবে। এ কম্পন নিচের দিকে সঞ্চালিত হবে এবং পানির উপরিতল হতে প্রতিফলিত হয়ে পুনরায় উপর দিকে উঠবে। এই তরজ্ঞা সুর শলাকা হতে আগত তরজ্ঞোর সাথে মিলিত হয়ে স্থির তরজ্ঞা সৃষ্টি করবে। এখন নলটিকে উঠা-নামা করিয়ে নলের বায়ুস্তম্ভের দৈর্ঘ্যকে এমনভাবে উপযোজন করি যাতে বায়ুস্তম্ভের সবচেয়ে কম দৈর্ঘ্যে শব্দের প্রাবদ্য সর্বাপেক্ষা বেশি হয় অর্ধাৎ অনুনাদ সংঘটিত হয়। এমতাবস্থায় পানির উপরিতল হতে নলের উন্যুক্ত প্রান্ত পর্যন্ত অনুনাদী বায়ুস্তম্ভের দৈর্ঘ্য নির্দায় করি।

হিসাব ঃ বায়ুস্তম্ডের এই অনুনাদে পানির উপরিতলে একটি নিস্পন্দ বিন্দু এবং মোটামুটি নলের খোলামুখে একটি সুস্পন্দ বিন্দুর উৎপত্তি হয়। অবশ্যই এই অবস্থায় বায়ুস্তম্ভের কম্পাজ্ঞ সুর শলাকার কম্পাজ্ঞের সমান।

মনে করি, অনুনাদী বায়ুস্তম্ভের দৈর্ঘ্য, l। যদি বায়ুতে শব্দের বেগ v হয় এবং বায়ুস্তম্ভের কম্পাজ্জ n হয়, তবে

$$v = n\lambda$$

and $l = \frac{1}{4}\lambda$ and $\lambda = 4l$

(15)

উচ্চ মাধ্যমিক পদার্থবিজ্ঞান BG & JEWEL

কেননা নলের বন্ধ মুখে নিস্পন্দ বিন্দু এবং খোলা মুখে সুস্পন্দ বিন্দু উৎপন্ন হয় এবং এদের মধ্যে দূরত্ব = λ/4 উপরের সমীকরণ হতে আমরা পাই, v=n~ imes 4l

অর্থাৎ, v = 4nl

এখন, n এবং l-এর মান জেনে v বের করা হয়। কিন্তু এভাবে প্রাশ্ত v-এর মান অন্যান্য পম্বতিতে প্রাশ্ত v-এর মান হতে অনেক কম হয়। এ কারণে উপযুক্ত সংশোধন প্রয়োজন।

প্রান্ত সংশোধন (End correction)

উপরে 2নং সমীকরণ প্রতিপাদনে ধরে নেয়া হয় যে, সুস্পন্দ বিন্দু নলের উন্মুক্ত প্রান্তে সৃষ্টি হয়। কিস্তু বিখ্যাত বিজ্ঞানী লর্ড র্যালে গণিতের সাহায্যে প্রমাণ করেন যে, সুস্পন্দ বিন্দু নলের উন্মুক্ত প্রান্তে না হয়ে কিছু উপরে হয়। সুতরাং এর জন্য একটি সংশোধনের প্রয়োজন। এর নাম প্রাস্ত সংশোধন। কাজেই একটি অনুনাদী বায়ুস্তন্ডের বাইরে মুক্ত প্রান্ত হতে ন্যূনতম যে দূরত্বে সুস্পন্দ বিন্দু দেখা যায় তাকে প্রান্ত সংশোধন বলে।

ধরি প্রান্ত সংশোধন = x

অনুনাদী বায়ুস্তম্ভের দৈর্ঘ্য = (l + x)

নলের আন্তব্যাস d হলে, x = 0.3d এবং নলের আন্তব্যাসার্ধ r হলে d = 2r

ু কাজে<u>ই</u> <u>v</u> = nλ সমীকরণ হতে আমরা পাই,

$$v = 4n(l + x)$$
 (17)
 $\exists t, v = 4n(l + 0.3d)$ (18)
 $\exists t, v = 4n(l + 0.6r)$ (19)

প্রান্ত সংশোধন পরিহার (To avoid end correction)

 N_2 N_2 AA l_1 NN প্রান্ত সংশোধন বাদ দিয়েও শব্দের বেগ নির্ভুলভাবে বের করা যায়। এ স্থলে নলের দুই অবস্থানে অনুনাদ নিতে হবে। প্রথম অনুনাদ বের করার পর-নলটিকে উপরে উঠিয়ে বায়ুস্তম্ভের দৈর্ঘ্য পূর্বের প্রায় তিন গুণ করলে দ্বিতীয় অনুনাদ পাওয়া যাবে। দ্বিতীয় অনুনাদের ক্ষেত্রে নলে দুটি নিস্পন্দ বিন্দু এবং দুটি সুস্পন্দ বিন্দুর সৃষ্টি হবে।

(16)

মনে করি, নলের প্রথম অবস্থানে অনুনাদী বায়ুস্তম্ভের দৈর্ঘ্য l_1 [চিত্র ১৯ ২] এবং দ্বিতীয় অবস্থানে অনুনাদী বায়ুস্তম্ভের দৈর্ঘ্য l_2 । যদি প্রান্ত সংশোধন x হয়, তবে

$$l_1 + x = \frac{1}{4}\lambda$$
$$l_2 + x = \frac{3}{4}\lambda$$

এবং

সমীকরণদ্বয়ের দ্বিতীয়টি হতে প্রথমটি বিয়োগ করে আমরা পাই,

$$l_{2} - l_{1} = \frac{1}{2}\lambda$$

$$\lambda = 2(l_{2} - l_{1})$$
এখন সমীকরণ (17) হতে আমরা পাই, $v = n\lambda = n \times 2(l_{2} - l_{1})$

$$v = 2n(l_{2} - l_{1})$$
(20)
$$(20)$$

 l_1 , l_2 এবং n-এর মান জেনে v বের করা যায়। উক্ত (20) সমীকরণে প্রান্ত সংশোধন নেই। কাজেই এভাবে প্রান্ত সংশোধন পরিহার করা যায়।

বইঘর.কম

১৯৬ উপ্লার ক্রিয়া বা প্রভাব Doppler effect

পূর্বের অনুচ্ছেদগুলোতে তরজাগতি সংক্রান্ত আলোচনায় উৎস এবং পর্যবেক্ষক বা শ্রোতার গতি বিবেচনা করা হয় নি। উভয়ই স্থির ধরা হয়েছিল। কিন্তু উৎস এবং পর্যবেক্ষক বা শ্রোতার মধ্যে আপেক্ষিক গতি থাকলে পর্যবেক্ষক বা শ্রোতার নিকট তরজোর আপাত কম্পাজ্ঞ এর প্রকৃত কম্পাজ্ঞ অপেক্ষা ভিন্নতর মনে হয়। সকল ধরনের তরজোর ক্ষেত্রে এই ঘটনা ঘটে। উৎস এবং শ্রোতা পরস্পর হতে দূরে সরে গেলে আপাত কম্পাজ্ঞ প্রকৃত কম্পাজ্ঞ অপেক্ষা কম হয় ; আবার উৎস এবং শ্রোতা পরস্পরের দিকে অগ্রসর হলে আপাত কম্পাজ্ঞ প্রকৃত কম্পাজ্ঞ অপেক্ষা বেশি হয়। এই ঘটনাকে **ডপলার ক্রিয়া** বা প্রভাব বলে। সূতরাং, শব্দের ক্ষেত্রে ডপলার ক্রিয়ার নিম্নোক্ত সংজ্ঞা দেয়া যায় ঃ

সংজ্ঞা ঃ শব্দের উৎস এবং শ্রোতার মধ্যে আপেক্ষিক গতি বিদ্যমান থাকলে শ্রোতার নিকট উৎস হতে নিঃসৃত শব্দের তীক্ষতা বা কম্পাজ্ঞের যে আপাত পরিবর্তন পরিলক্ষিত হয় তাকে ডপলার ক্রিয়া বা প্রভাব বলে। যে নীতির সাহায্যে ডপলার এই আপাত পরিবর্তন ব্যাখ্যা করেছিলেন তাকে ডপলার নীতি বলে (Doppler principle) বলে।

<u>1842</u> খ্রিস্টাব্দে একজন অস্ট্রিয়ান পদার্থবিদ ডপ্লার এই সূত্র আবিক্ষার করেন। তাঁর নাম অনুসারে এই <u>নীতিকে ডপ্লার-এর নীতি বলা হয়।</u>

উপ্লার প্রমাণ করেছেন যে,

্বি) উ<u>ৎস স্থির শ্রোতার দিকে অগ্রসর হলে</u> উৎস হতে নির্গত তরঙ্গগুলোর দৈর্ঘ্য ছোট হয়ে যায়। ফলে তীক্ষতা আরও ব<u>ুদ্</u>ধি পায়।

্র্মা উৎস স্থির শ্রোতা হতে দূরে সরে গেলে উৎস হতে নির্গত তরজ্ঞাগুলোর দৈর্ঘ্য বৃদ্ধি পায়। ফলে তীক্ষণ্ডা হ্রাস পায়।

🔨 গে শ্রোতা যদি উৎসের দিকে অগ্রসর হয়, তবে শব্দের তীক্ষণতা বৃদ্ধি পায়।

্দ্ব শ্রোতা যদি উৎস হতে দূরে সরে যায়, তবে শব্দের তীক্ষতা হ্রাস পায়।

(৬) মাধ্যমের গতিবেগও শন্দের তীক্ষণতাকে প্রভাবিত করে। তবে উৎস ও শ্রোতা উভয়েই স্থির থাকলে মাধ্যমের গতি<u>র জন্য শন্দের তী</u>ক্ষণতার পরিবর্তন ঘটে না।

উদাহরণস্বরূপ বলা যেতে পারে—একটি দুর্তগামী ট্রেন বাঁশি বাজাতে বাজাতে স্টেশনের দিকে আসতে থাকলে স্টেশনে দণ্ডায়মান একজন শ্রোতার নিকট বাঁশির শব্দের তীক্ষণতা ক্রমশ বৃদ্ধি পেতে থাকে। আবার ট্রেনটি বাঁশি বাজাতে বাজাতে স্টেশন ত্যাগ করে চলে গেলে ঐ শ্রোতার নিকট শব্দের তীক্ষণা ক্রমশ কমে যাচ্ছে মনে হবে। তা হলে দেখা যাচ্ছে, শব্দের উৎস এবং শ্রোতার মধ্যে আপেক্ষিক গতি বিদ্যমান থাকার ফলে শ্রোতার নিকট শুত শব্দের তীক্ষণতার আপাত পরিবর্তন ঘটে। এর নাম **ডপ্লার ক্রিয়া**।

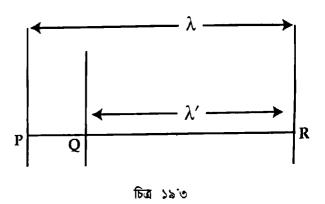
উল্লেখ্য, এটি কোন স্থায়ী পরিবর্তন নয়। উৎস, শ্রোতা এবং মাধ্যমের আপেক্ষিক গতির জন্যে এরূপ ঘটে। এ ক্রিয়া শুধুমাত্র শব্দের জন্যই প্রযোজ্য নয়। আলোক বা যে-কোন তরজ্ঞা গতির ক্ষেত্রে এটি প্রযোজ্য।

১৯·৯ ডপলার ক্রিয়ার জন্য শব্দের কম্পাজ্ঞ বা তীক্ষতা পরিবর্তনের রাশিমালা

Expressions for the change of frequency or pitch due to Doppler effect

কম্পার্জ্ঞ বা তীক্ষন্তা পরিবর্তনের রাশিমালা প্রতিপাদনের জন্য আলোচনার সুবিধার্থে ধরে নেয়া হবে উৎস অথবা শ্রোতা এদের সংযোজনকারী সরলরেখা বরাবর চলছে। ডপলারের ক্রিয়া আলোচনার ক্ষেত্রে নিম্নের তিনটি বিষয় বিবেচনা করা যায় ঃ

(ক) শ্রোতা স্থির কিন্তু উৎস গতিশীল,


- (খ) উৎস স্থির কিন্তু শ্রোতা গতিশীল এবং
- (গ) উৎস এবং শ্রোতা উভয়েই গতিশীল।

(ক) শ্রোতা স্থির কিন্তু উৎস গতিশীল

Observer at rest, but the source in motion

ধরা যাক, v_{s} বেগে একটি তরজ্ঞা উৎস কোন স্থির শ্রোতার দিকে অগ্রসর হচ্ছে। বুঝার সুবিধার জন্য আমরা তরজাটিকে পরপর তরজামুখের সমবায়ে গঠিত এবং পাশাপাশি দুটি তরজ্ঞামুখের মধ্যবর্তী দূরত্ব একটি তরজ্ঞাদৈর্ঘ্যের সমান বিবেচনা করব।

ধরা যাক, উৎসটি যখন P অবস্থানে রয়েছে তখন এটি একটি তরজ্ঞামুখ নিঃসরণ করে। নিঃসৃত হওয়ার পরই তরজ্ঞামুখটি সম্মুখে অগ্রসর হয়। উৎসটি যখন দ্বিতীয় তরজ্ঞামুখ নিঃসরণ করে তখন তরজ্ঞামুখটি R অবস্থানে পৌছেছে [চিত্র ১৯ ৪]। যদি উৎসটি স্থির থাকত তবে দ্বিতীয় তরজ্ঞামুখও P অবস্থানে নিঃসৃত হত। সেক্ষেত্রে PR হত অপরিবর্তিত তরজ্ঞাদৈর্ঘ্য λ । কিন্তু উৎস গতিশীল বলে দ্বিতীয় তরজ্ঞামুখ নিঃসরণ কালে উৎস Q অবস্থানে এগিয়ে যাবে। এক্ষেত্রে উৎস তরজ্ঞামুখের অন্তর্বর্তী দূরত্ব QR। অতএব, QR-ই হবে পরিবর্তিত তরজ্ঞাদৈর্ঘ্য $\lambda'।$

সুতরাং, $PR = \lambda$ এবং $QR = \lambda'$ ।

এখন, যে সময়ে প্রথম তরজ্ঞামুখ P হতে R-এ পৌঁছায়, ঠিক একই সময়ে উৎস P হতে Q-তে পৌঁছায়। তরজ্ঞামুখের বা শব্দের বেগ v এবং উৎসের বেগ v, হলে, আমরা পাই,

$$\frac{PR}{v} = \frac{PQ}{v_s}$$
(21)

বা, $\frac{\lambda}{v} = \frac{PR - QR}{v_s} = \frac{\lambda - \lambda'}{v_s} = \frac{\lambda'}{(v - v_s)}$ গাণিতিক নিয়ম অনুসারে $\frac{a}{b} = \frac{c}{d} = \frac{a - c}{b - d}$

বা, $\lambda' = \lambda \left(\frac{v - v_s}{v_s}\right)$
(22)

কিন্তু যে কোন মাধ্যমে দুটি শব্দ তরজোর ক্ষেত্রে,

$$n\lambda = n'\lambda'$$

এখানে n, λ ও n', λ' যথাক্রমে প্রকৃত ও আপাত বা পরিবর্তিত তরজ্ঞোর কম্পাঙ্ক ও তরজ্ঞা দৈর্ঘ্য।

কজেই,
$$\frac{n'}{n} = \frac{\lambda}{\lambda'} = \frac{v}{(v - v_s)}$$

 $n' = n \frac{v}{(v - v_s)}$
(23)

সমীকরণ (23) হতে দেখা যায়

প্রিট উৎস শ্রোতার দিকে অগ্রসর হলে শব্দের আপাত কম্পাক্ত প্রকৃত কম্পাক্ষের চেয়ে বেশি হয়। প্রার্ট উৎস শব্দের বেগে শ্রোতার দিকে অগ্রসর হলে আপাত কম্পাক্ষ অসীম হবে।

উৎসটি শ্রোতার দিকে অগ্রসর না হয়ে যদি শ্রোতা হতে দূরে সরে যায়, তবে উৎসের বেগ ঋণাত্মক ধরা হয়। সেক্ষেত্রে সমীকরণ (22) ও (23) নিমন্নূপে লেখা যায়,

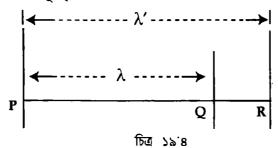
$$\lambda' = \lambda \frac{(v + v_s)}{v}$$

$$(24)$$

$$(25)$$

সমীকরণ (25) হতে দেখা যায়

ট্রিস শ্রোতা হতে দূরে সরে গেলে শব্দের আপাত কম্পাজ্ঞ প্রকৃত কম্পাজ্জের চেয়ে কম হয়।


উৎস শব্দের বেগে শ্রোতা হতে দূরে সরে গেলে শব্দের আপাত কম্পাক্ত প্রকৃত কম্পাক্তের অর্ধেক হবে।

(খ) উৎস স্ধির কিন্তু শ্রোতা পতিশীল

Source at rest, but the observer in motion

ধরা যাক, শ্রোতা v₀ বেগে স্থির শব্দের উৎস হতে দূরে সরে যাচ্ছে। অর্থাৎ শ্রোতা তরজ্ঞোর গতির দিকে অগ্রসর হচ্ছে। পূর্বের মত আমরা তরজ্ঞাকে তরজ্ঞমুখের সমবায়ে গঠিত এবং পাশাপাশি পর পর দুটি তরজ্ঞামুখের মধ্যবর্তী দূরত্ব একটি তরজ্ঞাদৈর্ঘ্যের সমান বিচেনা করব।

ধরা যাক, শ্রোতা যখন Q অবস্থানে তখন উৎস হতে নিঃসৃত প্রথম তরজ্ঞামুখ তার নিকট পৌঁছায়। ঐ সময়ে দ্বিতীয় তরজ্ঞামুখ P অবস্থানে রয়েছে [চিত্র ১৯৫]। সুতরাং PQ হচ্ছে তরজ্ঞোর অপরিবর্তিত তরজ্ঞাদৈর্ঘ্য λ। এখন শ্রোতা তরজ্ঞোর অভিমুখে গতিশীল বলে ধরা যাক দ্বিতীয় তরজ্ঞাদৈর্ঘ্য তার নিকট যখন পৌঁছায় তখন সে R অবস্থানে পৌঁছেছে। অতএব, শ্রোতার নিকট PR দূরত্ব হল পরিবর্তিত তরক্ষাদৈর্ঘ্য।

সুতরাং, $PQ = \lambda$ এবং $PR = \lambda'$ । আবার, যে সময়ে তরজ্ঞামুখ P হতে R-এ পৌঁছায়, এ একই সময়ে স্রোতা Q হতে R অবস্থানে পৌঁছায়। কাজেই, শ্রোতার বেগ v_0 এবং তরজ্ঞার বেগ v বলে আমরা লিখতে পারি

$$\frac{PR}{v} = \frac{QR}{v_0}$$

$$\exists 1, \ \frac{\lambda'}{v} = \frac{PR - QR}{v_0} = \frac{\lambda' - \lambda}{v_0}$$

$$\exists 1, \ \frac{\lambda'}{v} = \frac{\lambda}{v - v_0} \qquad \left[\because \frac{a}{b} = \frac{c}{d} = \frac{a - c}{b - d} \right]$$

$$\exists 1, \ \lambda' = \lambda \left(\frac{v}{v - v_0} \right)$$

কিন্তু একই মাধ্যমে দুটি শব্দ তরজ্ঞোর ক্ষেত্রে

 $n\lambda = n'\lambda'$, এখানে n, λ ও n', λ' যথাক্রমে প্রকৃত (বা অপরিবর্তিত) তরচ্চা ও আপাত (বা পরিবর্তিত) তরচ্চো ও তরচ্চাদৈর্ঘ্য ।

$$\frac{n'}{n} = \frac{\lambda}{\lambda'} = \frac{v - v_0}{v}$$

$$\overline{\mathbf{A}}, \quad n' = n \left(\frac{v - v_0}{v} \right)$$
(27)

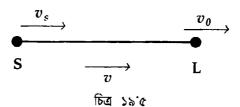
সমীকরণ (27) হতে দেখা যায়

্রি শ্রোতা উৎস হতে দূরে সরে গেলে শব্দের আপাত কম্পাব্দ প্রকৃত কম্পাব্দের চেয়ে কম হয়। প্রিন্দ্রোতা শব্দের বেগে উৎস হতে সরে গেলে আপাত কম্পাব্দ শূন্য হবে।

(26)

যদি শ্রোতা উৎসের দিকে গতিশীল হয় তবে উৎস হতে সরে যাওয়ার বেগ — v₀ হবে এবং সমীকরণ (26) ও (27) নিমন্নপ হবে,

$$\lambda' = \lambda \left(\frac{v}{v + v_0} \right)$$
(28)
(29)


সমীকরণ (29) হতে দেখা যায়

- শ্রোতা উৎসের দিকে অগ্রসর হলে শন্দের আপাত কম্পাজ্ঞ প্রকৃত কম্পাজ্ঞের চেয়ে বেশি হবে।
- (ii) শ্রোতা শন্দের বেগে উৎসের দিকে অগ্রসর হলে শন্দের আপাত কম্পাজ্ঞ প্রকৃত কম্পাজ্ঞের দ্বিগুণ হবে।

(গ) উৎস এবং শ্রোতা উভয়ই গতিশীল

Source and observer both in motion

ধরা যাক, উৎস S ও শ্রোতা L উভয়ই একই দিকে যথাক্রমে v_s এবং v_0 বেগ গতিশীল শব্দের বেগ v[চিত্র ১৯ ৬]।

উৎসের গতির জন্য আপাত কম্পাজ্ঞ হবে,

 $n' = n \frac{v}{(v - v_s)}$ [সমীকরণ (23) অনুসারে]

শ্রোতার গতির জন্য এই কম্পাজ্ঞ্বও পুনরায় পরিবর্তিত হয়। কাজেই, চূড়ান্ত আপাত বা পরিবর্তিত কম্পাজ্ঞ $n^{\prime\prime}$ হবে,

(30)

 $n'' = n' \frac{v - v_0}{v}$ [সমীকরণ (27) ব্যবহার করে]

সমীকরণ (30) বসিয়ে পাই,

$$n'' = n \frac{v}{(v - v_s)} \times \frac{v - v_0}{v}$$
$$= n \left(\frac{v - v_0}{v - v_s} \right)$$
(31)

সমীকরণ .(31) হতে দেখা যায় যে, যদি শ্রোতা ও উৎস একই বেগে একই দিকে অগ্রসর হলে আপাত কম্পাজ্ক ও প্রকৃত কম্পাজ্ক সমান হয় অর্থা<u>ৎ উৎস এবং শ্রোতার কোন আপেক্ষিক বেগ না থাকে তৃবে কম্পাজ্কের কোন</u> পরিবর্তন হয়-না।

 যদি উৎস বা শ্রোতা যে কোন একটির অথবা উভয়েরই বেগের অভিমুখ বিপরীত দিকে হয়, তবে সংশ্লিষ্ট প্রতিটি ক্ষেত্রে বেগের চিহ্ন পরিবর্তিত হবে।

বায়ু প্রবাহের প্রভাব (Effect of wind) ঃ উপরের সমীকরণগুলো প্রতিপাদনের সময় বায়ুর বেগ বিবেচনা করা হয় নি। যদি বায়ুর বেগ v_w হয় এবং উৎস হতে শ্রোতার দিকে বায়ু প্রবাহিত হলে শব্দের বেগ v-এর সাথে v_w যোগ করতে হবে। আপাত কম্পাজ্জের প্রত্যেক সমীকরণে $v - v_w$ ব্যব স্থলে $v + v_w$ হবে। আবার শ্রোতা হতে উৎসের দিকে বায়ু প্রবাহিত হলে শব্দের কার্যকর বেগ হবে $v - v_w$ এবং আপাত কম্পাজ্জের সমীকরণে v এর স্থলে $v - v_w$ বসাতে হবে।

বায়ুর গতি বিবেচনা করলে $n' = n \left(\frac{v - v_0 + v_w}{v - v_s + v_w} \right)$

১৯[.]১০ আলোর ক্ষেত্রে ডপলার ক্রিয়া Doppler effect in light

ডপ্লার ক্রিয়া শুধুমাত্র শব্দ তরজ্ঞোর ক্ষেত্রে পরিলক্ষিত হয় তা কিন্তু নয়। আলোকের উৎস এবং পর্যবেক্ষকের মধ্যে আপেক্ষিক বেগ থাকলে আলোক তরজোর ক্ষেত্রেও ডপলার ক্রিয়া লক্ষ্য করা যায়।

আলোক উৎসের কম্পাজ্ঞ f_{s} , পর্যবেক্ষক কর্তৃক পরিমাপকৃত কম্পাজ্ঞ $f_{
m L}$ আলোকের বেগ c এবং আলোকের উৎস ও পর্যবেক্ষকের মধ্যে আপেক্ষিক বেগ v হলে এদের মধ্যে নিম্নরূপ সম্পর্ক রয়েছে,

$$f_{\rm L} = \left(\sqrt{\frac{c-v}{c+v}}\right) f_{\rm s} \tag{28}$$

এখানে আলোক উৎস পর্যবেক্ষক থেকে দূরে সরে গেলে v ধনাত্মক এবং উৎস পর্যবেক্ষকের দিকে অগ্রসর হলে সেক্ষেত্রে v ঝণাত্মক ধরা হয়েছে।

এখন আলোক উৎস পর্যবেক্ষক থেকে দূরে সরে গেলে উপরোক্ত সমীকরণ থেকে দেখা যায় f_s অপেক্ষা f_L ক্ষুদ্রতর হবে এবং উৎস পর্যবেক্ষকের দিকে অগ্রসর হলে f_s অপেক্ষা f_L বড় হবে। আমরা জানি আলোক বর্ণালীর বেগুনী রং-এর কম্পাক্ত বেশি এবং লাল রং-এর কম্পাক্ত কম। এখন স্পেকট্রোস্কোপ (spectroscope) যন্ত্রের সাহায্যে দূরবর্তী নক্ষত্র থেকে নিঃসৃত বর্ণালী রেখা পর্যবেক্ষণ করলে এবং আর্ক বাতি (arc lamp) নিঃসৃত একই ধরনের বর্ণালী রেখা পর্যবেক্ষণ করলে দেখা যায় যে নক্ষত্র নিঃসৃত বর্ণালী রেখা ধীরে ধীরে লাল প্রান্তের দিকে সরে যাক্ষে বা তরজা দৈর্ঘ্য বৃদ্ধি পাছে। এখন সমীকরণ (28) হতে বোঝা যাছে যে f_s কম হওয়ার অর্থ v ধনাত্মক অর্থাৎ উৎস (এক্ষেত্রে নক্ষত্র) পৃথিবী থেকে দূরে সরে যাচ্ছে। বিভিন্ন গ্যালাক্সীর লাল অপসরণ (red shift) বলে। বিভিন্ন গ্যালাক্সীর লাল অপসরণ পরিয়াপ করে বিখ্যাত বিজ্ঞানী হাবল প্রমাণ করেন যে গ্যালাক্সীগুলোর দূরে বর্বের বর্গের সমানুপাতিক। এটি হাবল-এর সূত্র (Hubble's law) নামে পরিচিত। গ্যালাক্সীগুলো শুধুমাত্র পৃথিবী থেকে দূরে সরে যাচ্ছে তাই নয় এরাও পরস্বর থেকে দূরে সরে যাচ্ছে। এ পর্যবেক্ষণের আর্থ হল আযারে হেরে দূরে সরে যাজ্য তাই নয় এরাও পরস্বে থেকে দূরে সরে যাক্ষে। এ পর্যবেক্ষেলের দিকে পরে যাগ্র হে লাল অপসরণ (red shift) বলে। বিভিন্ন গ্যালাক্সীর লাল অপসরণ পার্রায়াপ করে বিধ্যাত বিজ্ঞানী হাবল প্রমাণ তরেন যে গ্যালাক্সীগুলোর দূরে সরে যাচ্যোর বেগ পৃথিবী থেকে দূরে সরে যাজ্য তাই নয় এরাও পরস্বর থেকে দূরে সরে যাচ্ছে। এ পর্যবেক্ষণের অর্থ হল আযানের এ মহাবিশ্ব ক্রমণ প্রসারিত হন্দে।

শব্দের গতিবেগ ঃ শব্দ এক সেকেণ্ডে যতটুকু দূরত্ব অতিক্রম করে, তাকে শব্দের বেগ বা গতিবেগ বলে। নিউটনের্র সূত্র ঃ কোন মাধ্যমে শব্দের বেগ মাধ্যমের স্থিতিস্থাপক গুণাজ্ঞের বর্গমূলের সমানুপাতিক এবং ঘনত্বের বর্গমূলের ব্যস্তানুপাতিক।

স্মরণিকা

শব্দের বেগের উপর চাপের প্রভাব : স্থির তাপমাত্রায় শব্দের বেগের উপরে গ্যাসের চাপের কোন প্রভাব নেই।

অনুনাদ ঃ একটি কম্পমান বস্তুকে অপর একটি বস্তুর নিকট ধরলে দ্বিতীয় বস্তুটি কাঁপতে শুরু করে। যদি বস্তুর স্বাভাবিক পর্যায়কাল ও এর উপর প্রযুক্ত বলের পর্যায়কাল সমান হয় তবে বস্তুটি বৃহত্তর বিস্তারে কাঁপতে বাধ্য হয় এবং শব্দের প্রাবল্য বৃদ্ধি পায়। এ প্রক্রিয়াকে অনুনাদ বলে। BG & JEWEL

অনুনাদ স্তম্ত ঃ কোন বায়ুস্তম্ভের স্বাভাবিক কম্পনের পর্যায়কাল তার উপর আরোপিত পর্যায় বলের পর্যায়কালের সমান হলে ঐ বায়ুস্তম্ডে অনুনাদের সৃষ্টি হয়। এই বায়ুস্তম্তকে অনুনাদ বায়ুস্তম্ড বলে।

শব্দের বেগের উপর তাপমাত্রার প্রভাব ঃ তাপমাত্রা বৃদ্ধি পেলে শব্দের বেগ বৃদ্ধি পায়।

শন্দের বেগের উপর আর্দ্রতার প্রভাব : বাঁতাসের আর্দ্রতা বৃদ্ধি পেলে শন্দের বেগ বৃদ্ধি পায়।

ডপ্লার ক্রিয়া ও সূত্র : শব্দের উৎস ও শ্রোতার মধ্যে আপেক্ষিক গতি বিদ্যমান থাকলে শ্রোতার নিকট শব্দের উৎস হতে নিঃসৃত শব্দের কম্পাজ্ঞ তথা তীক্ষ্ণতার আপাত পরিবর্তন ঘটে। শ্রোতা এবং উৎসের আপেক্ষিক গতির জন্যে কম্পাজ্ঞ বা তীক্ষ্ণতার এ আপাত পরিবর্তনকে ডপ্লার ক্রিয়া বলে এবং যে নীতি বা তত্ত্বের সাহায্যে ডপ্লার-এর ক্রিয়া ব্যাখ্যা করা যায় তাকে ডপ্লারের সূত্র বলে।

প্রয়োজনীয় সমীকরণ	
কঠিনে শব্দের বেগ, <u>(</u>	
कठित्म भत्मत त्वम, $v = \sqrt{\frac{Y}{\rho}}$ $f' = \frac{V + V_0}{V - U_0} f$	(1)
তরল বা গ্যাসে শব্দের বেগ,	
$v = \sqrt{\frac{\rho}{\rho}}$ তরল বা গ্যাসে শব্দের বেগ, $v = \sqrt{\frac{K}{\rho}}$ গ্যাসে শব্দের বেগের উপর নিউটনের সমীকরণ	(2)
গ্যাসে শব্দের বেগের উপর নিউটনের সমীকরণ	
$v = \sqrt{\rho}$	(3)
গ্যাসে শব্দের বেগের উপর ল্যাপ্ল্যাসের সমীকরণ,	
$v = \sqrt{\frac{\gamma p}{\rho}}$	(4)
গ্যাসে তাপমাত্রার সাথে বেগের পরিবর্তন ঃ	
$v_t = v_0 \sqrt{1 + \alpha t}$	(5)
$v_t = v_0(1 + \frac{1}{2} \alpha t)$	(6)
$= v_0(1 + 0.00183t)$	(7)
$v \propto \sqrt{T}$	(8)
জনুনাদী বায়ুঁস্তম্ডে ঃ	
$v = 4nl_1 = 4nl$	(9)
$v = 4n(l_1 + x) = 4n(l + x)$	(10)
$v = 4n(l_1 + 0.6r) = 4n(l + 0.3d)$	(11)
v = 4n (l + 0.6r)	(12)
$v = 2n \ (l_2 \ -l_1)$ ডপলারের ক্রিয়া ঃ	(13)
-	
$n' = \frac{v}{v - v_{\rm s}} \times n$	(14)
$n' = \frac{v - v_0}{v} \times n$, (15)
$n' = \frac{v - v_0}{v - v_s} \times n$	(16)
$n' = \frac{v \pm v_w - v_0}{v \pm v_w - v_s}$	(17)
ন্দ্রমার এ নিয়া টেক্র, ছার্কার যে কোন হোপেয়া বাব ক্ষেত্র মায়ী করে (০) প্রকাশক ব	

উল্লেখ্য ঃ নিম্ন, উচ্চ, অজ্ঞাত যে কোন তাপমাত্রার ক্ষেত্রে সমীকরণ (5) প্রযোজ্য। তবে সাধারণ তাপমাত্রার ক্ষেত্রে সমীকরণ (6) বা (7) প্রযোজ্য।

১। একমুখ খোলা একটি নলের ভেতরে আবন্ধ বায়ুস্তম্ভকে 356 Hz কম্পাজ্ঞবিশিষ্ট সুর শলাকা দ্বারা শন্দায়িত করলে যদি অনুনাদ সংঘটিত হয় তবে ঐ বায়ুস্তম্ভের সম্ভাব্য ন্যূনতম দৈর্ঘ্য নির্ণয় কর। বিয়ুতে শন্দের বেগ 340 ms⁻¹] মনে করি বায়ুস্তম্ভের সম্ভাব্য ন্যূনতম দৈর্ঘ্য = l (1) n = 356 Hz $v = 340 \text{ ms}^{-1}$ আমরা পাই, v=4nlসমীকরণ (1) হতে পাই, $l = \frac{v}{4n} = \frac{340 \text{ ms}^{-1}}{4 \times 356 \text{ Hz}}$ ২। আলো দেখার 10 sec পরে বন্তু নির্ধোবের শব্দ শোনা গেল। মেঘের দূরত্ব যদি 1650 m এবং 0°C তাপমাত্রায় শব্দের দুতি 332 ms⁻¹ হয়, তবে এ সময়কার তাপমাত্রা নির্ণয় কর। ঢ়া. বো. ২০০৪] আমরা জানি, এখানে, $s = v_t \times \overline{a}$ ায়িত সময় শব্দের দুতি, $v_0 = 332 \text{ ms}^{-1}$ (1) (2) আবার, $v_t = v_0 (1 + 0.00183t)$ মেঘের দূরত্ব, s = 1650 m ব্যয়িত সময় = 10 sec সমীকরণ (1) ও (2) হতে পাই, তাপমাত্রা, t = ? $s = v_0 (1 + 0.00183t) \times$ ব্যয়িত সময় **A**, $1650 = 332 \times (1 + 0.00183t) \times 10$ $\overline{\mathbf{A}}$, 1 + 0.00183t = $\frac{165}{332}$

 165 -1 = -0.503

 1 = -0.503
 $t = -\frac{0.503}{0.00183} = -274.9$ °C

িঁ ৩। 261 Hz কম্পাব্জের একটি সুরশলাকাকে আঘাত করে অনুনাদী নলের উন্যুক্ত প্রান্তের নিকটে ধরলে বাতাসের 0·30 m এবং 0·94 m দৈর্ঘ্যের অনুনাদ পাওয়া গেল। শব্দের দুতি ও প্রান্ত সংশোধন বের কর।

রা. বো. ২০০৬, ২০০৩ ; কৃ. বো. ২০০১] আমরা জানি, এখানে,

 $v = 2n (l_2 - l_3)$ $= 2 \times 261 \times (0.94 - 0.30)$ $= 334.08 \text{ ms}^{-1}$ $v = 4n(l_1 + x)$ $334.08 = 4 \times 261 (0.30 + x)$ $0.30 + x = \frac{334.08}{4 \times 261}$ v = 0.32 - 0.30 = 0.02

४ 8। 512 Hz কম্পনাঞ্চের একটি সুরশলাকাকে আঘাত করে একটি অনুনাদী নলের উন্তু প্রান্তের নিকট ধারায় বাতাসের 0'15 m দৈর্ঘ্যের প্রথম অনুনাদ পাওয়া গেল। বাতাসে শব্দের দুতি 350 ms⁻¹ হলে নলের ব্যাস কত ?

আমরা জানি. v = 4n(l+x) $n = 512 \, \text{Hz}$ বা, v = 4n(l + 0.3 d) $l_1 = 0.15 \,\mathrm{m}$ $350 = 4 \times 512 (0.15 + 0.3 \times d)$ $= 350 \text{ ms}^{-1}$ $\frac{350}{2048} = (0.15 + 0.3d)$ 350 বা, 0.1709 = 0.15 + 0.3dবা, 0.3d = 0.1709 - 0.15 = 0.0209বা. d = 0.07 m

[চ. বো. ২০০১]

৫। 272 Hz কম্পাজ্জের একটি সুর শলাকাকে কম্পিত করে অনুনাদী নলের খোলা মুখের নিকটে ধরুলে বায়ুস্তরের 0 31 m এবং 0 95 m দৈর্ঘ্যে অনুনাদ পাওয়া যায়, বাতাসে শব্দের বেগ এবং প্রান্ত শুম্ধি নির্ণয় কর। [চ. বো. ২০০৬ ; য. বো. ২০০৫, ২০০৪; ব. বো. ২০০৬ ; য

মনে করি, শব্দের বেগ = v এখানে, এবং প্রান্ত শুদ্বি = x n = 272 Hzআমরা জানি, $v = 2n(l_2 - l_1)$ এবং $v = 4n (l_1 + x)$ $l_1 = 0.31 \text{ m}$ $x = \frac{v}{4n} - l_1$ $l_2 = 0.95 \,\mathrm{m}$ v = ?PATRIC এখন, $v = 2n (l_2 - l_1)$ *x* = ? 31 $= 2 \times 272 \times (0.95 - 0.31)$ $= 2 \times 272 \times 0.64 \text{ ms}^{-1}$ $= 348^{\circ}16 \text{ ms}^{-1}$ জাবার, $x = \frac{v}{4n} - l_1 = \frac{348.16 \text{ ms}^{-1}}{4 \times 272 \text{ s}^{-1}} - 0.31 \text{ m}$ = (0.32 - 0.31) m $= 0.01 \,\mathrm{m}$

৬। একটি কম্পমান সুরেলী কাটাকে একটি অনুনাদী নলের উন্যুক্ত প্রান্তের নিকট ধরায় বায়ুস্তম্ভের 16 cm ও 48'5 cm দৈর্ঘ্যে যথাক্রমে ১ম ও ২য় অনুনাদ পাওয়া গেল। প্রান্ত সংশোধন বের কর। [সি. বো. ২০০৬]

আমরা জানি,		এখানে,
$v = 2n (l_2 - l_1)$	(1)	$l_1 = 16 \mathrm{cm}$
এবং $v = 4n (l_1 + x)$	(2)	$l_2 = 48.5 \text{ cm}$ x = ?
সমীকরণ (1) ও (2) হতে পাই,	•	
$2n \ (l_2 - l_1) = 4n \ (l_1 + x)$		
বা, $l_2 - l_1 = 2(l_1 + x)$		
$a_1, 2l_1 + 2x = l_2 - l_1$		
বা, $2x = l_2 - l_1 - 2l_1 = l_2 - 3l_1$	1	
$\boxed{\mathbf{A}}, x = \frac{l_2 - 3l_1}{2} = \frac{48.5 - 3 \times 16}{2}$	2	ţ
$=\frac{0.5}{2}$	G	
=0.25 cm		
	পলাকাতক একটি ন	गनन्त्री जन्मन क्रांग्लन

৭। 512Hz কম্পাব্জের কোন সুর শলাকাকে একটি অনুনাদী নলের খোলা মুখের কাছে কাঁপালে বায়ুততন্ডের 0.16m ও 0.485m দৈর্ঘ্যে প্রথম ও দ্বিতীয় অনুনাদ পাওয়া যায়। বায়ুতে শব্দের বেগ এবং প্রান্ত সংশোধন নির্ণয় কর। [ঢা. বো. ২০০৫]

$$v = 2n (l_2 - l_1)$$

$$= 2 \times 512 (0.485 - 0.16)$$

$$= 332.8 \text{ ms}^{-1}$$
With the second state in the second

আমরা জ্ঞানি

বইঘর কম ৮। ইস্পার্তের ঘনত্ব 7'8 × 10³ kg m⁻³ এবং ইয়ং-এর স্বিতিস্বাপক গুণাজ্ঞ 2 × 10^{5 p} Nm⁻²। ইস্পাতে শব্দের বেগ নির্ণয় কর।

মনে করি ইস্পাতে শব্দের বেগ = v

(1) $p = 7.8 \times 10^3 \text{ kg m}^{-3}$ $Y = 2 \times 10^{11} \text{ Nm}^{-2}$ আমরা পাই, $v = \sqrt{\frac{E}{\rho}} = \sqrt{\frac{Y}{\rho}}$ সমীকরণ (1) হতে পাই, $v = \sqrt{\frac{2 \times 10^{11} \text{ Nm}^{-2}}{7.8 \times 10^3 \text{ kg m}^{-3}}} = 5064 \text{ ms}^{-1}$

১। কোন এক দিন বায়ুতে শন্দের বেগ 340 ms⁻¹ এবং বায়ুর ঘনত্ব 1'22 kg m⁻³ । যদি γ = 1'41 হয় তবে ঐ দিনে বায়ুমন্ডলের চাপ নির্ণয় কর। [পারদের ঘনত্ব = 13'6 × 10³ kg m⁻³ ও g = 9'8 ms⁻² |]

তাহলে
$$P = h\rho_m g$$
 এখানে,

 আমরা পাই, $v = \sqrt{\frac{\gamma P}{\rho}}$
 $\gamma = 1.41$
 $v = \sqrt{\frac{\gamma \times h\rho_m g}{\rho}}$
 $\rho = 1.22 \text{ kg m}^{-3}$
 $h = \frac{v^2 \times \rho}{\gamma \rho_m g}$
 $\rho_m = 1.36 \times 10^3 \text{ kg}^{-3}$
 $= \frac{(340 \text{ ms}^{-1})^2 \times 1.22 \text{ kg m}^{-3}}{1.41 \times 13.6 \times 10^3 \text{ kg}^{-3} \text{ sg}^{-2}} = \frac{340 \times 340 \times 1.22}{1.41 \times 13.6 \times 10^3 \times 9.8} \text{ m} = 0.75 \text{ m}$

১০। কত তাপমাত্রায় বায়ুতে শব্দের বেগ 0°C তাপমাত্রার বেগের দ্বিগুণ হবে ? [কু. বো. ২০০৫; ব. বো. ২০০১] মনে করি নির্ণেয় তাপমাত্রা = t°C m

আমরা পাই,
$$v_t = v_0 \sqrt{(1 + \alpha t)}$$

 $2v_0 = v_0 \sqrt{(1 + \alpha t)}$
বা, $4 = 1 + \alpha t$
 $t = \frac{3}{\alpha} = \frac{3}{\frac{1}{273}/^{\circ}C} = 3 \times 273^{\circ}C$
 $= 819^{\circ}C$
১১ | বন্ত তাপমাত্রায় বাতাসে শব্দের বেগ 0°C তাপমাত্রায় শব্দের বেগের 3 গুণ হবে ? $\left[\alpha = \frac{1}{273}/^{\circ}C\right]$

[ঢা. বো. ২০০৫]

আমরা পাই,

$$v_t = v_0 \sqrt{(1 + \alpha t)}$$

বা, $3v_0 = v_0 \sqrt{(1 + \alpha t)}$
বা, $3 = \sqrt{1 + \alpha t}$
বা, $9 = 1 + \alpha t$
বা, $8 = \alpha t$
 $t = \frac{8}{\alpha} = \frac{8}{\frac{1}{273}/^{\circ}C}$
 $= 8 \times 273$
 $= 2184^{\circ}C$

মনে করি, নির্ণেয় তাপমাত্রা = t°C

धरात,

$$v_t = 3v_0$$

 $\alpha = \frac{1}{273} / K$
 $= \frac{1}{273} / ^{\circ}C$

উচ্চ মাধ্যমিক পদার্থবিজ্ঞান BG & JEWEL ১২। একটি সুর শলাকার কম্পাক্ষ 700 Hz। বায়ুর তাপমাত্রা 30°C হলে 100 কম্পনে শব্দ কত দূর অতিব্রুম করবে १ 0°C তাপমাত্রায় বায়ুতে শব্দের বেগ 332 ms⁻¹। [সি. বো. ২০০ঁ**৫**] মনে করি, 30°C তাপমাত্রায় শব্দের বেগ v₁। এখানে. আমরা জ্ঞানি. 0° C তাপমাত্রায় শব্দের বেগ, $v_0 = 332 \text{ ms}^{-1}$ $= v_0 (1 + 0.00183t)$ v_{t} তাপমাত্রা, t = 30°C $= 332 \times (1 + 0.00183 \times 30)$ $= 350.22 \text{ ms}^{-1}$ $v_{1} = ?$ আবার, অতিক্রান্ত দূরত্ব s = Nλ এখানে, কম্পাজ্জ, n = 700 Hzবা, $s = N \frac{v_t}{n}$ [$n\lambda = v$] $v_t = 350^{\circ} 22 \text{ms}^{-1}$ $s = 100 \times \frac{350.22}{700}$ কম্পান সংখ্যা, N = 100 অতিক্রান্ত দূরত্ব, s = ? = 50.03 m১৩। NTP-তে শব্দের বেগ 332 ms⁻¹ হলে 50°C ও 70 cm পারদ চাপে শব্দের বেগ নির্ণয় কর। [য. বো. ২০০৫; রা. বো. ২০০৪] আমরা জানি. এখানে, t = (50 + 273) K = 323 K $v_t = v_0 \left(1 + \frac{t}{273} \right)^{\frac{1}{2}}$ $v_0 = 332 \text{ ms}^{-1}$ $v_{t} = ?$ $\overline{\mathbf{q}}$, $v_t = 332 \times \left(1 + \frac{323}{273}\right)^{\frac{1}{2}}$ $= 490^{\circ}55 \text{ ms}^{-1}$ শব্দের বেগের উপর চাপের প্রভাবে নেই। সুতরাং শব্দের বেগ = 490[.]55 ms⁻¹ ১৪। আলো দেখার 5'5 s পরে বজ্বনির্ঘোষের শব্দ শোনা গেল। বায়ুর তাপমাত্রা 20°C হলে মেঘের দূরত্ব বের কর। [0°C-এ বায়ুতে শব্দের বেগ 332 ms⁻¹ এবং প্রতি ডিগ্রী সেলসিয়াস তাপমাত্রা বৃম্ধিতে বায়ুতে শব্দের বেগ বৃম্ধি $= 0.61 \text{ ms}^{-1}$] মনে করি মেঘের দূরত্ব = s আমরা পাই, $s = v_t \times$ ব্যয়িত সময় এখানে, ব্যয়িত সময় = 5[.]5 s $s = v_i \times d_j$ য়িত সময় $v_t = 20^{\circ}$ C তাপমাত্রায় শব্দের বেগ $= 344 \text{ ms}^{-1} \times 55 \text{ s}$ $v = (v_0 + 0.61 \times t)$ = 1892 m $= 332 \text{ ms}^{-1} + 0.61 \text{ ms}^{-1} \circ \text{C}^{-1} \times 20^{\circ}\text{C}$ $= 344 \text{ ms}^{-1}$ ১৫। স্বাভাবিক চাপ ও তাপমাত্রায় বায়ুতে শব্দের বেগ 330 ms⁻¹ ধরে হাইড্রোজেনে শব্দের বেগ নির্ণয় কর্_{ণ।} 🖊 া লিটার হাইড্রোজেনের ভর = $0.0896 \times 10^{-3} \text{ kg}$ ও বায়ুর ভর = $1.293 \times 10^{-3} \text{ kg}$] ধরি বায়ুতে ও হাইড্রোজেনে শব্দের বেগ যথাক্রমে v_a ও v_h এখানে, $v_a = 330 \,\mathrm{ms}^{-1}$, তা হলে $v = \sqrt{\frac{\gamma P}{r}}$ সমীকরণ অনসরণে লেখা যায

হাইদ্রোজেনের ঘনত,

বায়ুর ঘনত,

 $\frac{\overline{\text{ess}}}{\overline{\text{witton}}} = \frac{0.0896 \times 10^{-3} \text{ kg}}{1 \times 10^{-3} \text{ m}^3}$

< 10⁻³

 $= 0.0896 \text{ kg m}^{-3}$

$$v_{a} = \sqrt{\frac{\gamma P}{\rho_{a}}} \Im v_{h} = \sqrt{\frac{\gamma P}{\rho_{h}}}$$

$$\frac{v_{h}}{v_{a}} = \sqrt{\frac{\rho_{a}}{\rho_{h}}}$$
(1)

সমাকরণ (1) অনুযায়া,

$$\begin{aligned}
\rho_a &= \frac{1293 \times 10^{-3} \text{ kg}}{1 \times 10^{-3}} \\
&= 330 \text{ ms}^{-1} \times \sqrt{\frac{1293 \text{ kg m}^{-3}}{0.0896 \text{ kg m}^{-3}}} &= 330 \text{ ms}^{-1} \times 37988 = 1253 \text{ ms}^{-1}
\end{aligned}$$

বইঘর.কম

১৬। 78[·]4m গভীর কৃপে একখন্ড পাথর ফেলা হল এবং 4'23 s পর পানিতে এর আঘাতের শব্দ শোনা গেল। যদি অভিকর্ষীয় ত্বরণ g = 9'8 ms⁻² হয় তবে বায়ুতে শব্দের বেগ নির্ণয় কর।

ধরি t সেকেন্ডে পাথরটি h = 78.4 m পথ অতিক্রম করে কূপের পানিতে পড়ে। অতএব পড়ন্ত বস্তুর সমীক্বরণ হতে আমরা পাই, $h = \frac{1}{2} gt^2$

$$78.4 = \frac{1}{2} \times 9.8 \times t^2$$

বা,
$$t = \sqrt{\frac{2 \times 78'4}{9'8}} = 4 \,\mathrm{s}$$

আমর

সুতরাৎ কৃপের নিচ হতে শব্দের কৃপের মুখে আসতে ব্যয়িত সময় = (423 - 4)s = 023 s

কাজেই বায়ুতে শন্দের বেগ, $v = \frac{r_{7} r_{3} r_{3}}{r_{3} r_{3} r_{3}} = \frac{78.4 \text{ m}}{0.23 \text{ s}} = 340.87 \text{ ms}^{-1}$

১৭। দেখাও যে, উৎস যদি স্ধির শ্রোতা থেকে শব্দের দুডিতে সরে যায়, তবে শ্রুত শব্দের কম্পাব্ধ্ব অর্ধেক হয়। [রা. বো. ২০০৫ ; য. বো. ২০০১]

া জানি,

$$n' = \frac{v - v_0}{v - v_s} n$$

 $n' = \frac{v}{v + v} n$ [উৎস হোতা থেকে দূরে যায় তাই $v_s = -v$]
 $= \frac{1}{2} n$ (প্রমাণিত)

১৮। যদি শ্রোতা স্থির উৎসের দিকে শব্দের বেগে অগ্রসর হয় তবে দেখাও যে, শ্রুত শব্দের কম্পাজ্ঞ হিগুণ হবে। মনে করি শব্দের বেগ = v, শ্রোতার বেগ = v₀ ও উৎস হতে উৎপন্ন শব্দের কম্পাজ্ঞ = n

আমরা পাই, শ্রোতা স্থির উৎসের দিকে অগ্রসর হলে শুত শব্দের কম্পাজ্ঞক, এখানে,
$$v = v_0$$

 $n' = \frac{v + v_0}{v} \times n$ (1)

সমীকরণ (1) হতে পাই, $n' = \frac{v+v}{v} \times n = 2n$

অর্থাৎ শ্রোতা স্থির উৎসের দিকে শব্দের বেগে অগ্রসর হলে, শুত শব্দের কম্পাজ্ঞ দ্বিগুণ হয় (প্রমাণিত)।

১১। এক ব্যক্তি বাঁশি বাজিয়ে 600Hz কম্পাজ্ঞের ধ্বনি উৎপন্ন করছে। ঘণ্টায় 16km বেগে একজন সাইকেন আরোহী তাকে অতিক্রম করে গেল। অতিক্রম করার পূর্বে ও পরে এ ধ্বনির আপাত কম্পাজ্ঞ তার নিকট কির্প মনে হবে? [শন্দের দ্রুতি = 300 ms⁻¹]

আমরা জানি, যখন শ্রোতা উৎসের দিকে অগ্রসর হয় তখন আপাত কম্পাক্ত $n' = n \frac{(v + v_0)}{v}$, $n' = 600 \times \frac{(300 + 4.44)}{300}$, = 609 Hz এখানে, কম্পাক্ত, n = 600 Hzসাইকেলের দুতি, $v_0 = 16 \text{ kmh}^{-1}$ $= \frac{16 \times 1000}{60 \times 60}$ $= 4.44 \text{ ms}^{-1}$ শব্দের দুতি, $v = 300 \text{ ms}^{-1}$

আবার, যখন শ্রোতা উৎস অতিক্রম করে দূরে সরে যায় তখন আপাত কম্পাজ্জ

$$n' = n \left(\frac{v - v_0}{v} \right)$$
$$n' = 600 \times \left(\frac{300 - 4.44}{300} \right) = 600 \times 0.985 = 591 \text{Hz}$$

উত্তর ঃ 609 Hz 591 Hz

ano

২২। একাচ দ্রেন 81 km/hr বেগে একজন দডায়মান পথবেক্ষককে আতক্রম করে চলে গেল। দ্রেনাচ ক্রমাগত 200 Hz কম্পাঞ্চের হুইসেল বাজাতে ধাকলে, ট্রেনটি পর্যবেক্ষককে অতিক্রম করে চলে যাবার সময় শুত হুইসেলের কম্পাজ্ঞ কত হবে ?

আমরা জানি,
 $n' = \frac{v}{v + v_s} n$ এখানে,
 $v_s = 330 \text{ ms}^{-1}$
 $v_s = 81 \text{ km/hr}$ বা, $n' = \frac{330}{330 + 22.5} \times 200$
n' = 187 Hz $= \frac{81 \times 1000}{1 \times 60 \times 60}$
 $= 22.5 \text{ ms}^{-1}$
n = 200 Hz
n' = ?

২৩। দুটি ট্রেন যথাক্রমে 50 km/hr এবং 40 km/ hr বেগে পরস্পরের দিকে অগ্রসর হচ্ছে। প্রথম ট্রেনটির ড্রাইভার 600 Hz কম্পাক্তের হুইসেল বাজাল। ট্রেন দুটি পরস্পরকে অতিক্রম করার পূর্বে ও পরে মিতীয় ট্রেনটির কোন যাত্রীর নিকট এ হুইসেলের কম্পাক্ত কত মনে হবে ? শিন্দের বেগ = 332ms⁻¹}

(ক) ট্রেন দুটি পরস্পরকে অতিক্রম করার পূর্বে শব্দের উৎস শ্রোতার দিকে অগ্রসর হচ্ছে বলে আপাত কম্পাজ্ঞ

$$n' = n \frac{v}{v - v_s}$$

১ম টেনটির বেগ, $v_s = 50$ km/hr = 13'89ms⁻¹ ২য় টেনটির বেগ, $v_0 = 40$ km/hr = 11'11ms⁻¹ শব্দের বেগ, v = 332ms⁻¹ হুইসেলের কম্পান্ডক, n = 600Hz

আবার, শ্রোতা উৎসের দিকে v_0 বেগে অগ্রসর হচ্ছে বলে চূড়ান্ত আপাত কম্পাজ্জ

$$n'' = n' \times \frac{v + v_0}{v} = n \frac{v}{v - v_s} \times \frac{v + v_0}{v} = n \frac{v + v_0}{v - v_s}$$
$$n'' = 600 \times \left[\frac{(332 + 11^{-11})}{332 - 13^{-89}} \right] \text{Hz} = 647 \text{ Hz}$$

বইঘর.কম

(খ) ট্রেন দুটি পরস্পরকে অতিক্রম করার পর শব্দের উৎস শ্রোতা হতে দূরে সরে যাচ্ছে এবং শ্রোতাও উৎস হতে v বেগে দুরে সরে যাচ্ছে, অতএব চূড়ান্ত আপাত কম্পাজ্ঞ

$$n'' = n \frac{v - v_0}{v + v_s}$$
$$n'' = 600 \times \left(\frac{332 - 1111}{332 + 1389}\right) \text{Hz} = 557\text{Hz}$$

উত্তর 🖁 647Hz ; 557Hz

 $\begin{array}{l} \overline{\mathbf{A}}, \quad \frac{n'}{n} = \frac{v}{v - v_s} \\ 1.0032 = \frac{1470}{1470 - v_s} \end{array}$

বা, 1470 — $v_{s} = \frac{1470}{10032}$

২৪। পানির নিচে একটি সাবমেরিন স্ধির অবস্থানে রয়েছে। একটি চলস্ত জাহাজ হতে আগত শব্দ চিহ্নিত করন। জাহাজ হতে নির্গত শুব্দের কম্পাজ্ক অপেক্ষা 1.0032 গুণ বেশি কম্পাজ্ঞের শব্দ সাবমেরিনে ধরা পড়লে জাহাজের বেগ নির্ণয় কর। [পানিতে শব্দের বেগ 1470 ms⁻¹]

যেহেতু সাবমেরিন বেশি কম্পাজ্ঞ্বের শব্দ চিহ্নিত করছে ; সুতরাং জাহাজটি সাবমেরিনের দিকে এগিয়ে আসছে। অর্থাৎ উৎস শ্রোতার দিকে পানিতে শব্দের বেগ, $v = 1470 \text{ ms}^{-1}$ জাহাজের বেগ v =? জাসছে। অতএব, আপাত কম্পাজ্ঞক, $n' = n \frac{v}{v - v}$

$$\frac{n'}{n} = 1.0032$$

 $\frac{n'_{1}}{n'_{2}} = 6.5$ v = 332ms⁻¹ v₅ = ?

 $\overline{\mathbf{1}}$, $v_s = 1470 - \frac{1470}{10032} = 1470 - 1465 = 5 \mathrm{ms}^{-1}$ উত্তর 8 5 ms⁻¹ -

২৫। একটি ইঞ্জিন স্থির দর্শক অতিক্রমকালে এর আপাত প্রতীয়মান কম্পাক্ত 6 : 5 অনুপাতে পরিবর্তন হয়। যদি বাতাসে শব্দের বেগ 332 ms⁻¹ হয় তবে ইঞ্জিনটির বেগ নির্ণয় কর। [ব. বো. ২০০৫; চ. বো. ২০০৪] এখানে.

শ্রোতা ও উৎস উভয়ই গতিশীল হলে আমরা পাই,

$$n' = \left(\frac{v - v_0}{v - v_s}\right) n \qquad (1)$$
উৎস যখন শ্রোতার দিকে গতিশীল তখন আপাত কম্পাজ্ঞক,
$$n_1' = \left(\frac{v}{v - v_s}\right) n \qquad (2)$$

আবার, উৎস শ্রোতা হতে সরে গেলে

জাপাত কম্পাৰ্চ্চ,
$$n_2' = \left(\frac{v}{v+v_s}\right)n$$
 (3)

সমীকরণ (2) ও (3) হতে পাই, $\frac{n_1}{n_2'} = \frac{v + v_s}{v - v_s}$ $\frac{6}{5} = \frac{332 + v_s}{332 - v_s}$ **A**, $332 \times 5 + 5v_e = 332 \times 6 - 6v_e$

বা, $11v_s = 1992 - 1660 = 332$

বা,
$$6v_s + 5v_s = 332 \times 6 - 332 \times 5$$

বা, $v_s = \frac{332}{11} = 30^{\circ}18 \text{ ms}^{-1}$

২৬। দুটি হর্ন বহন করে একটি মোটর গাড়ী 36kmhr-1 বেগে দন্ডায়মান একজন পর্যবেক্ষকের দিকে ধাবিত হচ্ছে। হর্ণ দুটির শব্দের কম্পাঞ্জের পার্থক্য 320 Hz হলে পর্যবেক্ষক কর্তৃক শুত দুটি শব্দের কম্পাঞ্জের পার্থক্য কত হবে ? বাতাসৈ শব্দের বেগ 350 ms⁻¹। ক. বো. ২০০৬]

আমরা জানি.

$n' = \frac{v}{v - v_s} \times n$	শব্দের বেগ, $v=350~{ m ms}^{-1}$ উৎসের বেগ, $v_{ m s}=36~{ m kmhr}^{-1}$
$n' = \frac{350 \times 320}{350 - 10}$	$=\frac{36\times1000}{60\times60}=10\mathrm{ms}^{-1}$
$= \frac{350 \times 320}{340}$ = 329.4 Hz	কম্পাডেকর পার্থক্য, n = 320 Hz শুত কম্পাডেকর পার্থক্য, n* = ?

এখানে,

এখানে দর্শক স্থির এবং উৎস দর্শকের, সাপেক্ষে গতিশীল।

$$n' = n \left(\frac{v}{v - v_s}\right)$$

$$\exists I, \quad 1250 = 1050 \times \left[\frac{330}{330 - v_s}\right]$$

$$\exists I, \quad 25 = 21 \times \frac{330}{330 - v_s}$$

$$\exists I, \quad 25 \times 330 - 25 \times v_s = 330 \times 21$$

$$\exists I, \quad 25 v_s = 8250 - 6930$$

$$\exists I, \quad 25 v_s = 1320$$

$$\exists I, \quad v_s = \frac{1320}{25}$$

$$v_s = 528 \text{ ms}^{-1}$$

আমরা পাই.

u = 1050 Hz n' = n + 200 = 1050 + 200 = 1250 Hz $v = 330 \text{ ms}^{-1}$ $v_s = ?$

🥌 😥। একটি ইঞ্জিন স্থির দ<u>র্শক অতিক্রমকালে</u> এর হুইসেলের আপাত প্রতীয়মান কম্পাজ্ঞ 6 : 5 অনুপাতে পরিবর্তন হয়। যদি বাতাসে শন্দের বেগ 352 ms⁻¹ হয়, তবে ইঞ্জিনের বেগ নির্ণয় কর।

 [য. বো. ২০০৬ (মান ভিন্ন) ; রা. বো. ২০০৩] এখানে,

[ঢা. বো. ২০০৪]

রচনামূলক প্রশ্ন ঃ

১। বায়ুতে শব্দের বেগ সম্পর্কিত নিউটনের সূত্রটি লিখ। ল্যাপ্লাস কেন এবং কিভাবে নিউটনের সূত্র সংশোধন করেন ? [সি. বো. ২০০৬ ; ব. বো. ২০০৬, ২০০৪, ২০০২ ; রা. বো. ২০০৬, ২০০২ ; চ. বো. ২০০৬, ২০০৪,২০০০; য. বো. ২০০৫, ২০০৩, ২০০০; চা. বো. ২০০৪ ; কু. বো. ২০০৪, ২০০০]

শব্দের গতিবেগ

বইঘর.কম ২। শব্দের বেগ সংক্রান্ত নিউটনের সূত্র কিভাবে ল্যাপ্লাস সংশোধন করেছেন বর্ণনা কর। [রা.বো.২০০৪; সি.বো. ২০০৪] ৩। শব্দের বেগের উপর্র তাপমাত্রার প্রভাব আলোচনা কর। [রা. বো. ২০০৫; চ. বো. ২০০৪, '০১, ব. বো. ২০০৪; সি. বো. ২০০৫ ; কু. বো. ২০০৩ ; য. বো. ২০০৩, ২০০০] ৪। দেখাও যে, কোন গ্যাসীয় মাধ্যমে শব্দের বেগ তার পরম তাপমাত্রার বর্গমূলের সমানুপাতিক। [व. (वा. २००७; कू. (वा. २००२, २००० ; ज. (वा. २०००, २००८, य. (वा. २००८ ; ता. (वा. २०००] ৫। দেখাও যে, প্রতি ডিগ্রী সেলসিয়াস তাপমাত্রা বৃষ্ণির জন্য বাতাসে শব্দের বেগ 0.61m বৃষ্ণি পায়। [কু. বো. ২০০৩ ; ব. বো. ২০০১] ৬। শব্দের দ্রুতির উপর আর্দ্রতার প্রভাব ব্যাখ্যা কর। ঢ়া. বো. ২০০২] 🖓 । শব্দের বেগের উপর তাপমাত্রা ও আর্দ্রতার প্রভাব নির্ণয় কর। ৮। অনুনাদী বায়ু স্তম্ড পম্বতিতে শব্দের বেগ নির্ণয়ের পরীক্ষা বর্ণনা কর। [ঢা. বো. ২০০৫, ২০০০; রা. বো. ২০০৪ ; চ. বো. ২০০৩ ; য. বো. ২০০২ ; সি. বো. ২০০১] বা, বায়ুস্তচ্ছের অনুনাদ পন্ধতিতে কিভাবে শব্দের বেগ নির্ণয় করা যায় বর্ণনা কর। [ব. বো. ২০০২ ; য. বো. ২০০০ ; চ. বো. ২০০০ ; কু. বো. ২০০১ ; রা. বো. ২০০০] ৯। প্রান্তীয় সংশোধন পরিহার করে কিরৃপে অনুনাদ বাযুস্তম্ড পম্ধতিতে শব্দের বেগ নির্ণয় করা যায়? [কু. বো. ২০০৬, ২০০৪ ; য. বো. ২০০৬] ২০০। প্রথম ও দ্বিতীয় অনুনাদের ক্ষেত্রে একমুখ বন্ধ নলের বায়ুস্তন্ডের দৈর্ঘ্য যথাক্রমে l1 ও l2 হলে দেখাও যে, নিঃসৃত শব্দৈর তিরজ্ঞা দৈর্ঘ্য $\lambda = 2(l_2 - l_2)$ ১১। দেখাও যে, পর পুর দুটি অনুনাদী বায়ুস্তম্ভের দৈর্ঘ্যের পার্থক্য সৃষ্ট শব্দ তরজা দৈর্ঘ্যের অর্ধেকের সমান। ১২। শ্রোতা যদি গতিশীল উৎসের দিকে অগ্রসর হয় তাহলে শুত কম্পান্ডেকর রাশিমালা প্রতিপাদন কর। রা. বো. ২০০২ ; কু. বো. ২০০২ ; ঢা. বো. ২০০৪] ১৩। কোন স্থির উৎসের দিকে গতিশীল শ্রোতা কর্তৃক শুত শব্দের কম্পাব্র্জের রাশিমালা প্রতিপাদন কর্। কর। বা, স্থির শ্রোতার দিকে শব্দের উৎস গতিশীল থাকলে শ্রোতা কর্তৃক শ্রুত শব্দের জ্ঞাপাত কম্পাব্রুকর রাশিমালা প্রতিপাদন [य. বো. ২০০৫; সি. বো. ২০০১; य. বো. ২০০০; চ. বো. ২০০৫] কর। ১৫। একটি শব্দের উৎস কোন স্থির শ্রোতা থেকে দূরে যেতে থাকলে দেখাও যে শুত শব্দের কম্পাজ্ঞ প্রকৃত কম্পাজ্ঞ্বের চেয়ে কম হয়। ক্রি. বো. ২০০১] বা স্থির শ্রোতা হতে একটি শব্দের উৎস দূরে যেতে থাকলে শ্রোতা কর্তৃক শ্রুত আপাত কম্পাব্ধের রাশিমালা প্রতিপাদন কর। বি. বো. ২০০১] ১৬। আলোক তরচ্চোর ক্ষেত্রে ডপলার ক্রিয়া আলোচনা কর। উৎসের কম্পাব্ধ্ব এবং পরিমাণকৃত কম্পাব্ধ্বের সম্পর্ক লিখ। গাণিতিক সমস্যাবাল : ১। 256 Hz কম্পাজ্ঞবিশিষ্ট একটি সুর শলাকাকে আঘাত করে অনুনাদী নলের উনাুক্ত প্রান্তের নিকটে ধরা হল। বায়ুতে শব্দের বেগ 332 ms⁻¹ হলে, বায়ুস্তম্ভের কত দৈর্ঘ্যে প্রথম অনুনাদ ঘটবে বের কর। [উঃ 0 3242 m] ২। 250 Hz কম্পাজ্জের একটি কম্পমান সুরেলী কাঁটা কোন কাচের নলে 0.33 m বায়ুস্তম্ভের সাথে প্রথম অনুনাদ সৃষ্টি করে। এ একই নলে বায়ুস্তম্ভের দৈর্ঘ্য 1 005 m হলে সুরেলী কাঁটাটি পুনরায় অনুনাদ সৃষ্টি করে। নলের প্রান্ত সংশোধন নির্ণয় কর। [₲% 7[·]5 × 10⁻³ m] ৩। 332 Hz কম্পান্ডেকর একটি কম্পমান সুরেলী কাঁটাকে অনুনাদ বায়ুস্তম্ড নলের মুখে ধরলে 0.238 m দৈর্ঘ্যে প্রথম অনুনাদ সৃষ্টি হয়। নলের ভেতরের ব্যাসার্ধ 0:02 m হলে বায়ুতে শব্দের বেগ নির্ণয় কর। [উः 332 ms⁻¹] 8। 256 Hz কম্পাজ্ঞ্ববিশিষ্ট একটি সুর শলাকাকে আঘাত করে 0.05 m ব্যাসবিশিষ্ট একটি অনুনাদী নলের উনুক্ত প্রান্তের নিকটে ধরলে বায়ুস্তন্ডের 0.31 m দৈর্ঘ্যে প্রথম অনুনাদ পাওয়া গেল। বায়ুতে শব্দের বেগ নির্ণয় কর। বায়ুস্তন্ডের দৈর্ঘ্য কত হলে দ্বিতীয় অনুনাদ পাওয়া যাবে ? [উ: 332 8 ms⁻¹ ℃ 0.96 m] ৫। 250Hz কম্পাজ্ঞ বিশিষ্ট একটি সুর শলাকাকে আঘাত করে অনুনাদী নলের উন্মুক্ত প্রান্তের নিকট ধরায় বায়ুতে 0'31m দৈর্ঘ্যে প্রথম অনুনাদ পাওয়া গেল। যদি বায়ুতে শব্দের বেগ 330ms-1 হয় তবে (ক) প্রান্ত সংশোধন নির্ণয় কর ; (খ) নলের খোলামুখ হতে কত উপরে সুস্পন্দ বিন্দু পাওয়া যাবে ? (গ) নলের ব্যাস কত ? উত্তর ঃ 0 02 m, এই প্রান্ত সংশোধনই নলের খোলা মুখ হতে সুস্পষ্ট বিন্দুর দূরত্ব ;0 067m] ৬। 612Hz কম্পাল্জে কোন সূর শলাকাকে একটি অনুনাদী নলের খোলা মুখের কাছে কাঁপালৈ বায়ু স্তম্ভের 0 36m এবং 0.525 m দৈর্ঘ্যে প্রথম ও দিতীয় অনুনাদ পাওয়া যায়। বায়ুতে শব্দের বেগ ও প্রান্ত সংশোধন নির্ণয় করे। [ঢা. বো. ২০০৪] [উত্তর ঃ 201 96ms-1 ; — 0 2775m] ৭। এক মুখ খোলা 1m লম্মা একটি খাড়া কাচনল পানি দ্বারা পূর্ণ 660 Hz কম্পাজ্ঞ বিশিষ্ট একটি সুর শলাকাকে নলের খোলা মুখের উপর ধরলে ও নলের তলদেশ হতে ধীরে ধীরে পানি নির্গত হলে নলের মধ্যে পানির তলের কোন্ কোন্ অবস্থানের জন্য অনুনাদ ঘটবে ? (বায়ুতে শব্দের বেগ = 330ms⁻¹) উত্তর ঃ 0°125m ; 0°375m ; 0°625m ; 0°875m)

৮। 384 Hz কম্পাধ্কবিশিষ্ট একটি সুর শলাকাকে আঘাত করে একটি অনুনাদী নলের উন্মুক্ত প্রান্তের উপরে ধরায় নলের 0 21 m দীর্ঘ বায়ুস্তম্ভের জন্য প্রথম অনুনাদ পাওয়া যায়। বায়ুতে শব্দের বেগ 345 6 ms⁻¹ হলে নলের খোলামুখ হতে কত উপরে সুস্পন্দ বিন্দু উৎপন্ন হবে ?

৯। একটি দুই মুখ নল আংশিকভাবে পানিতে খাড়াডাবে ডুবান আছে। নলের উপরের খোলা মুখের নিকটে 360 Hz কম্পাজ্ঞের একটি কম্পিমান সুরেলী কাঁটা ধরলে প্রথম অনুনাদ সৃষ্টি হয়। বায়ুতে শব্দের বেগ 332 ms⁻¹ হলে পানির উপর নলের [ቼዩ 0 219 m] দৈর্ঘ্য কত ? [নলটির অন্তব্যাস 0.04 m] ্রিকা একমুখ খোলা 1 m লম্মা একটি কাচনল পানিতে পূর্ণ আছে। 360 Hz কম্পাজ্ঞবিশিষ্ট একটি সুর শলাকাকে নলের খোলা মুখের উপরে ধরলে এবং নলের তলদেশ হতে ধীরে ধীরে পানি নির্গত হতে দিলে নলের মধ্যে পানির তলের কোন্ কোন্ অবস্থানের জন্য অনুনাদ ঘটবে १। বায়ুতে শুদের বেগ 330 ms⁻¹ J) ১১। একটি কম্পমান সুরেলী কাঁটা প্রথমে কোন কাচনলের 0.31 m বায়ুস্তম্ভের সাথে অনুনাদ সৃষ্টি করে। প্রান্ত উিঃ 0[°]0275 m] সংশোধন নির্ণয় কর। ১২। কোন কেল্লা হতে নির্দিষ্ট সময়ে তোপধ্বনি করা হয়। কেল্লা হতে 10'2 km দূরে দাঁড়ানো একজন পর্যবেক্ষক তোপধ্বনি শুনে নিজের ঘড়ি মিলিয়ে নেয়। কিন্তু পরে কেল্লার ঘড়ির সাথে মিলিয়ে দেখেন যে ঘড়ি অর্ধ মিনিট ল্লো হয়েছে। [🖫 340 ms⁻¹] বায়ুতে শব্দের বেগ নির্ণয় কর। ১৩। একটি তামার নলাকার দন্ডের দৈর্ঘ্য 760 m, প্রস্থচ্ছেদ-ক্ষেত্রফল 15 × 10-4 m² ও ভর 10260 kg। তামার ভেতর শব্দের বেগ নির্ণায় কর। ঐ দণ্ডের এক মুখ হতে অপর মুখে যেতে শব্দের কত সময় লাগবে ? তোমার ক্ষেত্রে Y = 1 2996 ×. [𝔅 3800 ms^{−1} 𝔅 0.2s] 10¹¹ Nm⁻² _২ৃ8⁄। 1050 m দীর্ঘ একটি ফাঁপা লোহার চোঙের এক মুখে শব্দ করে অপর মুখে 2.8 s সময়ের ব্যবধানে দুটি শব্দ শোনা [উঃ 5250 ms⁻¹] গেল। বায়ুতে শব্দের বেগ 350 ms⁻¹ হলে লোহার মধ্যে শব্দের বেগ নির্ণয় কর। ১ু৫ । একটি নির্দিষ্ট আয়তনের পানির প্রতি বর্গ সেমি. ক্ষেত্রে 8.41~
m N চাপ বৃদ্ধিতে তার আয়তন $4 imes 10^{-5}$ গুণ $\,$ হাস [ចឹ៖ 1450 ms⁻¹ ; 3 02 m] পায়। পানিতে শব্দের বেগ এবং 480 Hz কম্পাব্দের কোন সুরের তরজা দৈর্ঘ্য নির্ণয় কর। ১৬। পানির আয়তনের স্থিতিস্থাপক গুণাজ্ঞ $2.25 imes 10^9$ $m Nm^{-2}$ । পানিতে শব্দের বেগ নির্ণয় কর। [উঃ $1500~
m ms^{-1}$] $_{2}$ ৭। পানিতে শব্দের বেগ $4^{
m o}
m C$ -এ $1350~
m ms^{-1}$ ধরে পানির আয়তনের স্থিতিস্থাপক গুণাজ্ঞ নির্ণয় কর। [𝔄: 1[·]8×10⁶ Nm^{−2}] ্রিদ্রা)কোন কৃপের মুখে একখন্ড পাথর ছেড়ে দেওয়ায় খন্ডটি কুপের পানির উপরিতলকে 39.2 ms⁻¹ বেগে আঘাত করে। [당: 340'86 ms⁻¹] যদি আমিতির শব্দ পাথর ফেলে দেয়ার 4 23 s পরে শোনা যায় তবে বায়ুতে শব্দের বেগ নির্ণয় কর। ১৯। বায়ুতে শব্দের বেগ 0°C-এ 330 ms⁻¹ ও 27°C-এ তাপ 346'3 ms⁻¹ হলে বায়ুর আয়তন প্রসারণ গুণারুক নির্ণয় [७: <u>1</u>/°C] কর। ∞ । কত ডিগ্রী সেলসিয়াস তাপমাত্রায় বায়ুতে শব্দের বেগ $_{
m 0^oC}$ তাপমাত্রার বেগের $_{
m 1.5}$ গুণ হবে ?[উত্তরঃ $341^225^{
m oC}$] ্বি ∞ কত তাপমাত্রায় বাতাসে শব্দের বেগ 0°C তাপমাত্রায় শব্দের বেগের 2.5 গুণ হবে ? [$lpha=rac{1}{273}$ /°C] $T_2 = (n^2 - 1)T_1$ [উত্তর ঃ 1433⁻25°C] ২২। 27°C তাপমাত্রায় বায়ুতে শব্দের বেগ 346 ms⁻¹ হলে 0°C তাপমাত্রায় বায়ুতে শব্দের বেগ বের কর। $[\alpha = 0.003665/K]$ [ቼះ 330 ms⁻¹] ২৩। 774° C তাপমাত্রায় ও 2 বায়ুমণ্ডলীয় চাপে হিলিয়াম গ্যাসে শব্দের বেগ 1900 ms^-1, হিলিয়ামের ক্ষেত্রে Y-এর মান নির্ণয় কর। [হিলিয়ামের গ্রাম-আণবিক ভর = 4] [উঃ 1.66] 🔕 👌 একটি সাইরেন হতে উদ্ভূত কম্পাজ্ঞ 100 Hz। তোমার নিকট হতে সাইরেনটি 10 ms⁻¹ বেগে সরে যেতে থাকলে তুমি যে শব্দ শুনবে তার কম্পাজ্ঞ কত হবে ? [উঃ 97 Hz] ২৫। প্রতি সেকেন্ডে 40 ডপলার পরিবর্তন উৎপন্ন করতে 1000 Hz কম্পাজ্ঞবিশিষ্ট কোন স্থির শব্দ উৎসের দিকে [ቼ፣ 13[·]2 ms⁻¹] একজন শ্রোতাকে কত বেগে অগ্রসর হতে হবে ? ২২৬) প্রমাণ কর যে, য<u>দি কোন স্থির পর্যবেক্ষক হতে শব্দের উৎস শব্দের বেগে দ</u>ূরে সরে যে<u>তে থাকে তবে শ</u>ুত শব্দের কম্পাজ্ঞ অধিক হয়। হিন্স। একটি সাইরেন 1000 Hz কম্পার্জির শব্দ উৎপন্ন করতে করতে <u>10 ms⁻¹ বেগে এ</u>কজন পর্যবেক্ষক হতে দুরে সরে [বায়ুতে শব্দের বেগ = 332ms⁻¹] [উন্তর ঃ 97 07 Hz] গেল। পর্যবেক্ষক কত কম্পান্ডেকর শব্দ শনতে পাবে ? হিচা একটি মোটর গাড়ি 40 km/hr বেগে চলতে চলতে একটি সাইরেনকে অতিক্রম করল। সাইরেনটি 500 Hz কম্পান্দ্রে বাঁজছে। একে অতিক্রম করার পূর্বে এবং পরে গাড়ির চালক কর্তৃক শ্রুত আপাত কম্পান্ধ্ব কত হবে ? (শব্দের বেগ উত্তর ঃ 516 Hz ; 483 Hz] 332ms⁻¹) ক্র্র্য্য একটি ইঞ্জিন স্থির দর্শক অতিক্রমকালে এর হুইস্রেলের জাপাত প্রতীয়মান কম্পাজ্ঞ 6:5 অনুপাতে পরিবর্তন হয়। যদি বাতাসে শব্দের বেগ 352 ms⁻¹ হয়। তবে ইঞ্জিনের বেগ নির্ণয় কর। [রা. বো. ২০০৩] [উন্তর ঃ 32ms⁻¹] 🕢। একটি ইঞ্জিন স্থির দর্শক অতিক্রমকালে এর হুইসেলের আপাত প্রতীয়মান কম্পাজ্ঞক 6:5 অনুপাতে পরিবর্তন হয়। যদি ইঞ্জিনের বেগ 32 ms⁻¹ হয়। তবে শব্দের বেগ কত ? [য. বো. ২০০৬] (উত্তর ঃ 352ms⁻¹] ত্রি। একটি ট্রেন হুইসেল বাজাতে বাজাতে ৪০ km/hr বেগে একটি রেলস্টেশন পার হয়ে গেল। হুইসেলের কম্পার্জ 450Hz। ট্রেনটি (ক) স্টেশনের দিকে আসার সময় এবং (খ) স্টেশন পার হয়ে যাওয়ার পর প্লাটফর্মে দাঁড়ানো কোন ব্যক্তির নিকট হুইন্সেলের আপাত কম্পাজ্ঞ কত হবে ? [শব্দৈর বেগ 332 ms⁻¹] উত্তর ঃ 482 Hz ; 422 Hzl 🚱 একটি ট্রেন 450 Hz কম্পাঙ্কের হুইসেল দিতে দিতে একটি প্লাটফরম থেকে 144 km/hr বেগে দূরে সরে যাচ্ছে। বায়ুতে শঁন্দের বেগ 332ms-1 হলে প্রাটফরমে দাঁড়ানো কোন শ্রোতার নিকট শ্রুত কম্পাজ্ঞ কত হবে ?

11/ _ ****m

ঢা. বো.

[ঢা. বো. ২০০৬] (উন্তর ঃ 401 6Hz]